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Abstract

Many philosophers have argued that statistical evidence regarding group char-
acteristics (particularly stereotypical ones) can create normative conflicts between
the requirements of epistemic rationality and our moral obligations to each other.
In a recent paper, Johnson King and Babic argue that such conflicts can usually
be avoided: what ordinary morality requires, they argue, epistemic rationality
permits. In this paper, we show that as data gets large, Johnson King and
Babic’s approach becomes less plausible. More constructively, we build on their
project and develop a generalized model of reasoning about stereotypes under
which one can indeed avoid normative conflicts, even in a big data world, when
data contain some noise. In doing so, we also articulate a general approach to
rational belief updating for noisy data.
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1 Introduction

In a world characterized by socioeconomic and other inequalities, some stereotypes
will be statistically sound. In those cases, many philosophers have argued, epistemic
rationality can come apart from our moral obligations to each other (e.g., Basu and
Schroeder, [2019]). For example, Tamar Gendler puts the point as follows:

As long as there’s a differential crime rate between racial groups, a perfectly
rational decision maker will manifest different behaviors, explicit and im-
plicit, toward members of different races. This is a profound cost: living in
a society structured by race appears to make it impossible to be both rational
and equitable (Gendler, [2011], p. 57, emphasis added).

This is an example of what has come to be known as normative conflict (Basu, [2018]).
It refers to the notion that in an unequal society we often learn about the uneven
distribution of stigmatized traits along sensitive demographic lines. We are then, it
seems, forced by the hand of epistemic rationality to formulate beliefs about vulnerable
groups that strike many people as immoral.

In a recent paper, Johnson King and Babic ([2020]) (JKB henceforth) argue that
such normative conflicts can ordinarily be avoided: what ordinary morality demands,
they argue, epistemic rationality typically permits. They rely on the notion of min-
imizing epistemic risk, developed in Babic ([2019]), as a principle for identifying an
appropriate prior which captures the relevant normative considerations at stake. As a
result, they avoid normative conflicts by explaining how in most such cases epistemic
rationality permits a much wider set of priors than has previously been assumed.

In this project, however, we explain that as a dataset gets large (in the sense of
the number of observations in a sample), relying on moral attitudes to restructure the
prior becomes an increasingly less sensible way to avoid normative conflicts. With very
large samples, this strategy requires very stubborn priors which ultimately undermine
an agent’s ability to learn. More constructively, we build on their project and develop
a generalized model of reasoning about stereotypes under which one can indeed avoid
normative conflicts, even in a big data world, when such data contain some noise. In
doing so, we also articulate a model of rational belief updating in response to learning
experiences characterized by large but noisy samples.

The paper proceeds as follows. First, we explain the basic notion of epistemic risk
and briefly describe the argument in JKB. A key step in their argument is that different
attitudes to epistemic risk license different priors in the absence of other information.
And in most cases giving rise to normative conflicts, there will exist an epistemically per-



missible prior which cautions an agent from adopting stereotype reinforcing credences
(for instance: a prior which cautions against adopting a high credence that members
of some racial groups are more likely to commit certain crimes, in Gendler’s example).
Second, we articulate our challenge to this argument: with large datasets, tweaking the
priors only goes so far — the likelihood dominates inferences and normative conflicts
reemerge. Third, and most importantly, we develop a model of belief updating under
noise and use it to explain how such normative conflicts can be avoided still, when the
data is not perfect. Our model leaves room for identifying true population differences
where they exist.

2 Priors and Epistemic Risk

We develop the argument to follow within the general framework of epistemic utility
theory (see e.g., Joyce, [1998]; Pettigrew, [2016]). In particular, we assume that an
epistemically rational agent should adopt credences in a way that minimizes expected
inaccuracy, where inaccuracy is measured by an appropriate scoring rule. Generally, a
scoring rule is appropriate if it is monotonic, continuous, and strictly proper.! These
properties, together with some modest decision theoretic norms, commit us to proba-
bilism — the thesis that subjective credences should conform to the probability axioms
— and conditionalization — the thesis that upon receiving new information (in ordinary
circumstances),? one should update by Bayes’ Rule (Joyce, [2009]; Greaves and Wallace,
[2006]). This, in a nutshell, is what we take to be a floor on epistemic rationality.

Consider a dichotomous proposition, ‘A’. For example, ‘Alice will be tenured next
year’. The core idea in Babic ([2019]) is that there are two ways of being inaccurate
about A. We may increase our credence in A, p(A), when A is false. This is a case of
increasing inaccuracy in the false positive direction, so to speak. Or we may decrease our
credence in A, p(A), when A is true. This is a case of increasing inaccuracy in the false
negative direction. Let s(p(A), I4) be a measure of the inaccuracy of the credence for
A, where 4 is an indicator variable that equals 1 if A is true and 0 otherwise (note that
higher accuracy is equivalent to lower inaccuracy). For scoring rules that are symmetric,
in the sense that s(p, 1) = s(1 — p,0) for all p € [0, 1], a unit increase in inaccuracy in
either direction should be treated equally. But many continuous, monotonic, strictly
proper scoring rules are not symmetric and, indeed, we may well care differently about
these two error directions regarding A.

'For discussion of these properties, we refer the reader to Joyce ([2009]) and Babic ([2019]).

2There are of course disputed cases, such as when evidence is uncertain, conditional, or non-
propositional, but no such cases will arise here. See, for example, van Fraassen ([1981]) and Howson
and Franklin ([1994]).



For example, if we are concerned about offending Alice by assuming she is less
talented than she is, then false confidence in her denial of tenure is relatively worse.
Alternatively, if we are especially concerned about helping Alice decide whether to go on
the job market while awaiting tenure, then falsely assuring her she will get tenure might
be relatively worse. Figure (1) depicts a pair of scoring rules to illustrate the point.
The scoring rule on the left is symmetric, and penalizes increases in inaccuracy (y-axis)
in either direction equally, whereas the scoring rule on the right punishes increases in
inaccuracy in the false negative direction less. The way one adjudicates the relative
costs of increasing inaccuracy in either direction will determine the scoring rule they
deem appropriate.

S(p, Ia) — o) S(p, 1a) — 1)

s(p,0) s(p, 0)

p=0.5 1 p=0.42 1
PIAl=p

Figure 1: Symmetric scoring rule (left), and asymmetric scoring rule (right).

Because the scoring rules are continuous, and decreasing (increasing) in p(A) when A
is true (false), the intermediate value theorem guarantees that the point of intersection
we see in both plots must exist for reasonable measures of inaccuracy. This is the point
at which there is no variability in inaccuracy outcomes — the safest point, or the point
of zero epistemic risk. Call it p*. More generally, Babic ([2019]) defines the epistemic
risk associated with investing probability p in A as

*

i) - | " st 1) — s(t,0)]dt (1)

when p < p*. When p > p* the bounds of integration are reversed. Thus, if we want
to adopt a maximally safe prior for A, in terms of inaccuracy, we should adopt p(A)
which satisfies s(p, 1) = s(p,0). In this way, we can use the notion of epistemic risk,
and the associated normative attitudes it incorporates, in order to identify reasonable
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priors in the absence of information. In the example above, an epistemic risk minimizer
who cares about errors symmetrically would adopt p = 0.5, whereas an epistemic risk
minimizer whose attitudes to error correspond to the scoring rule on the right would
adopt p = 0.42.

This recipe provides a family of indifference principles, so to speak, for identifying
priors — with each instance corresponding to different temperaments about the relative
severity of increasing inaccuracy. In the next section, we will explain how JKB rely on
this idea in order to avoid normative conflicts.

3 Normative Conflicts

Johnson King and Babic ([2020]) apply the notion of epistemic risk in order to explain
how one can avoid normative conflicts. They use the following example.

Gender Bias Study. One morning, you read a report about a study on
gender discrepancies in academic employment. The study surveyed 500 men
and 500 women employed in universities. They found that only 30% of the
women were employed in faculty positions, while the other 70% were admin-
istrative assistants. For men, the proportions were reversed. Before learning
this, you had no prior relevant information. The study was otherwise legiti-
mate. You then meet Mary. Mary tells you she works in a university. What
should be your credence that Mary is a faculty member?

Many epistemologists would argue that epistemic rationality requires one to be-
lieve it is 70% likely that Mary is an administrative assistant. This conclusion would
follow from the so-called frequency-credence connection, and lead directly to normative
conflict. Call this the naive answer.

JKB argue against the naive answer by using the standard Bayesian approach to
predictive inference, but structuring the prior in their model by taking into account
attitudes to epistemic risk. We will develop their model with care here, as we build on
it in the next section.

Let 6 be the (unknown) proportion of women in academia who are faculty. Suppose
that in a sample of n women in academia, we observe x women who are faculty. Then
x follows a Bernoulli process with parameter 6 and the likelihood function is given by

l(x]0,n) =6%(1—0)""" (2)
In the Bayesian approach, we need to identify prior beliefs regarding 6. A beta distri-
bution, being relatively flexible, can approximate a wide variety of information states



regarding a Bernoulli process and is commonly used in Bayesian models involving pro-
portions (Lindley and Phillips, [1976]). Let f(€) be the prior probability density for 0,
where

f(0) = fs(0lag, bg) = 6%~ (1 — 6)*~"/B(ag, by) (3)

is a beta density function with B(ag,by) = T'(ag)'(bg)/T(ag + by). The mean and
variance of a beta distribution are given by E[f] = ag/(ag+by) and Var(6) = agby/[(as+
bo)?(ag+by+1)]. As ag becomes larger the distribution moves towards the right, whereas
an increase in by moves the distribution towards the left. When ay = by, the distribution
is symmetric around 0.5. If both ag and by increase the distribution begins to narrow.
The parameters ag and by can also be interpreted as “pseudo” observations upon which
the prior beliefs are based. For instance, ay = 7 and by = 3 would be equivalent
to having observed 7 faculty and 3 non-faculty out of 10 women in academia. These
properties will be important to our argument in Section 4. Note, also, that as (ag + by)
increases, the prior becomes more resilient, in Joyce ([2005])’s sense — it exerts more
weight on the posterior.

With the likelihood in (2) and the prior in (3), the posterior density for 6 is given
by
f(Olz,n) = fs(Blag + 2,bp +n — ) oc 20T (1 — g)bot(n—o)-1 (4)

Note that the posterior distribution is of the same form as the prior distribution. This
is because a beta distribution is conjugate to the Bernoulli process. This means that if
we start with a beta prior for #, and update via Bayes’ Rule with data from a Bernoulli
process, our posterior will likewise be beta but with updated parameters. Such a model
lends itself to an intuitive interpretation. The posterior beta distribution for 6 after
seeing the data is given by adding the actual observations (in the sample data) and the
corresponding pseudo observations represented in the prior distribution. For example,
suppose our prior for 6 is a beta density with parameters (ag = 7,by = 3), and we
observe 4 out of 10 women in academia who are faculty. Our posterior for § would be
a beta density with parameters (7+4, 3+6).

But in order to formulate a credence about Mary, we need more than the posterior
distribution. Let X € {0,1} be an additional outcome that has yet to be observed (i.e.,
Mary). The distribution of X given z is called the predictive distribution, and is of the
following form:

Go T2 (5)

~ 1 ~
P(X = 1|z) = /0 P(E = 1l6,0)fOlo)dp — L2

Huttegger ([2017]) refers to the expression in (5) as the generalized rule of succession
and shows that this form of the predictive probability follows from several modest
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assumptions about the structure of the data-generating process, which are satisfied
here. The question for us is: which values should we assign to ag and bg??

First, the naive answer requires that ap = by = 0. This would result in an im-
proper (and arbitrarily incoherent) prior, because 1/(6(1 —6)) is not bounded. Second,
following Laplace’s rule of succession, we could set ay = by = 1. This is equivalent to a
uniform prior for #. And third, JKB follow Huttegger’s generalized rule of succession,
but they use attitudes to epistemic risk in order to identify appropriate values for ag
and by — i.e., to make specific the generalized rule of succession. Suppose we find it
more costly to falsely increase confidence in Mary not being a professor (false negative
mistake) than we do to falsely increase confidence in Mary being a professor (false pos-
itive mistake). Then we need a a scoring rule which penalizes inaccuracy more in the
direction of false negative mistakes, and the safest (risk-free) point will be above 0.5.
If we wish to minimize epistemic risk, then we should choose a beta prior which is such
that E[§] = p* where p*, as noted above, satisfies s(p,1) = s(p,0). It is now a short
step to see how JKB seek to avoid normative conflicts. In particular, we can state an
explicit condition on what kind of prior might be “morally required,” so to speak, as
follows.

JKB Approach. If one wants the posterior probability (that, say, Mary
is a professor) to be above 0.5 due to underlying normative considerations
then, if the sample mean x/n is less than 0.5, it must be the case that
g — By >n — 2.

Under this approach, one’s prior, selected by consulting the underlying normative con-
siderations, will guarantee that the updated credence for the claim that, say, Mary
is faculty, will be above 0.5. JKB’s argument is that there is no obvious reason that
this prior is epistemically impermissible — the agent is coherent and is updating by
Bayes’ Rule. If one finds the agent’s prior objectionable, an argument is needed that
such distorted attitudes to error (or, rather, to epistemic risk) are unreasonable in the
particular context. One cannot appeal, without circularity, to something like the or-
dinary principle of indifference, because that principle tacitly presupposes attitudes to
epistemic risk — namely, that both error directions are equally costly.

3Note that (ag +)/(ag + by +n) approaches the sample mean, x/n, as z and n go to infinity. This
implies that the prior washes out in the limit. But this is also why, on the JKB approach, as n — oo,
(cvg + Bp) also has to go to infinity. We explain this further below. Thanks to an anonymous reviewer
for emphasizing this point.



4 Stereotypes Under Noisy Big Data

The JKB Approach explains many ordinary cases of normative conflict. Like the Gender
Bias Study, if all one has to go on is a newspaper description of an isolated report,
perhaps it is worth being extra careful in applying it to Mary. And indeed, the reason
we are hesitant to jump onto stereotype encoding evidence is precisely because we are
worried about the cost of being wrong if the individual in question proves to be an
exception.

But notice the strategy employed here: we avoid a pernicious prediction by setting
up our prior in a way that hedges against it, and we justify this due to the asymmetry
of the cost of mistakes in the relevant problem. While this can be an appropriate way to
reflect differential costs of error, with increasingly larger samples we become vulnerable
to the objection that we are burying our head in the sand, so to speak. We have to load
our prior to such an extent that we become increasingly stubborn and unable to learn.
And the implied normative attitudes to error that are required to carry this heavy
burden begin to look epistemically unreasonable. If instead of observing 500 women,
we observe 100,000 women, the JKB approach would require a prior that is almost
arbitrarily peaked around 0.7 in order to avoid normative conflict. The figure below
illustrates this point for a sample size of 5,000, 10,000, and 100, 000. In each case, the
sample mean (of female faculty) is assumed to remain as in the original hypothetical,
ie., 0.3.
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Figure 2: Prior distributions for #, if one is to avoid normative conflict, for n = 5000,
n = 10000, n = 100000.

The reason that such sharply peaked priors undermine one’s ability to learn is,
as mentioned, because if one seeks a posterior probability (that, say, Mary is a faculty
member) to be above 0.5 due to underlying normative considerations then, if the sample
mean z/n is less than 0.5, (& — ) must be greater than n — 2x. The pseudo count
increases linearly in n, which means that for very large sample sizes, the prior that is
called for by normative considerations will become extremely dogmatic. Or, as Joyce
([2005]) calls it, resilient — but resilient to a fault. For example, if we start with a
Beta (1000, 1000) prior for a coin’s bias and observe 19 heads and 1 tails, our posterior
point estimate would be 0.504. Indeed, even if we toss the coin 100 times and observe
all heads, our posterior point estimate would be 0.52 even though the probability of
observing 100 heads conditional on a fair coin is 0.5'%. Intuitively, 100 tosses of a coin
with every single one of them heads is extremely strong evidence against the hypothesis
that the coin is fair, yet this agent barely moves away from the estimate that it is exactly
fair.

While the reemergence of normative conflicts is perhaps inevitable with perfect
data, large datasets are rarely perfect. When we collect statistical evidence about peo-
ple, such as in the Gender Bias Study, there typically exists some noise in the data.



And, the level of noise is usually unknown. This can lead to unobservable misclassi-
fication error in the data. Suppose, for example, we survey people about their voting
intentions, asking whether they will vote Democrat or Republican in the next presiden-
tial election. The observed data in the survey may differ from actual voting behavior
for a variety of reasons. Some respondents in the survey may intentionally misreport,
may be leaning toward voting for one candidate but still somewhat undecided, or may
change their mind at the time of voting in light of new information. These are all in
addition to the possibility of the responses being coded incorrectly. The figure below
gives a couple of examples of how the actual voting behavior might differ from reported
voting intentions.

Republican Democrat

Reported 50 50
Actual (one possibility) 55 45
Actual (another possibility) 45 55

Table 1: Sampling error in voting.

This is not surprising. We are all too familiar with such voting analyses. More
generally, however, noise of this sort is the norm rather than the exception when we
collect data. Insofar as the Gender Bias Study assumes perfect sampling, therefore, it
is not representative of the types of cases we usually face in ordinary decision making.
Accordingly, consider a simple case which mirrors the Gender Bias Study but where
the sample is large and the possibility of error exists.

Recruitment. A study on gender disparities in performance among in-
vestment bankers looked at evaluations of 100,000 men and 100,000 women
in junior positions. The evaluations recorded each employee as “director
worthy” or “not director worthy” (talented and untalented, for short). The
researchers found that only 30% of the women were recorded as talented
whereas for men, 70% were recorded as talented. The research is otherwise
sound. Later, you meet Alice, who has applied for a job at your bank. How
confident are you that Alice is actually talented, based on data regarding
the proportion of women who were recorded, or deemed, talented?

Using the JKB recipe, the probability would be proportional to p(6) f(x|0) where
0 follows a beta distribution, with ag and by being determined by the agent’s attitudes
to epistemic risk, and each x is a Bernoulli draw (corresponding to each woman being
talented or untalented). To avoid normative conflicts, the prior would have to be arbi-
trarily peaked, as Figure (2) illustrates. Accordingly, the JKB model is not appropriate
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for a case like Recruitment, because it ignores the possibility that an actually talented
woman is recorded as untalented.

We should emphasize that when we say “recorded” as untalented, we are not
referring merely to clerical errors. Rather, we mean to denote the situation where the
true but unobservable state (person is talented) comes apart from the state imputed to
them (person is deemed to be not talented). Consider a simple example. The LSAT
score measures one’s aptitude for success in law school. But aptitude is never observed,
and LSAT performance is only an imperfect indicator of it. It is possible for someone
who would be a very successful law student to score poorly on the LSAT. This could
of course happen because their actual score is incorrectly recorded. But it could also
happen that their score does not correspond to their aptitude, due to contingent testing
circumstances (anxiety, illness, lack of sleep, etc.), or due to more general underlying
socioeconomic inequities that make them less well prepared as compared to their peers
to sit for the LSAT without affecting their aptitude for legal study. We will restructure
the likelihood in the JKB model so as to create logical space for this kind of discrepancy
between actual aptitude (i.e., potential to be a successful law student) and observed
aptitude (i.e., LSAT score).

Turning back to the Recruitment example, this kind of misclassification is a sub-
stantial risk in a world we know to be characterized by gender inequality, in which
women face especially large barriers to success, and in which implicit bias regarding
gender affects women’s performance assessments. We can of course disagree on the ex-
tent of this, but we do not want to assume its absence by hypothesis. Thus, we need an
altogether different model that makes room for the possibility of misclassification. And
as we will see below, when we build a model that accommodates this possibility, we find
that it is very rarely the case that epistemic rationality calls for stereotype enforcing
beliefs. The following material will be somewhat technical, so before we proceed let us
explain the motivation, which is quite intuitive.

Recall that in the beta-binomial model, updating beliefs by Bayes’ Rule is equiv-
alent to counting the number of favorable and unfavorable observations. Thus, when
there is no noise, as in the Gender Bias Study, to compute the posterior we simply add
the number of women faculty to our initial value of ay, and the number of women non-
faculty to our initial value of by. And to make predictions about Mary in the Gender
Bias Study example, we simply use the mean derived from these values. When there is
noise, as in Recruitment, we don’t want to do this, because we suspect the number of
women deemed untalented is inflated. Therefore, given some noise rate, and a sample
size, what we want to figure out is the “noise-adjusted” sample size, and update on that
instead before making predictions about Alice. What will be interesting to observe is
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how rapidly the noise-adjusted sample size decreases even with modest possible levels
of noise and as the uncertainty about the level of noise increases.

As before, let 6 € [0, 1] be the proportion of women who would be truly successful
under ideal conditions, i.e., conditions identical to those of men (or as an alternative
interpretation, those who would be promoted absent any socioeconomic, occupational,
political etc. gender disparities among men and women). The point is, € represents
women’s true talent rate — it is an unobserved latent variable, much like IQ, EQ, or any
other indicator of aptitude in education or the workforce. Further, let A € [0,1] be the
misclassification rate of talented women as untalented. We assume for now that the
other type of misclassification (untalented women recorded as talented) is so small that
it is not worth worrying about (In Appendix B we expand the model to accommodate
both types of error). Then the data generating model we have looks like this:

0 (1-10)

Talented Untalented
Figure 3: Recruitment with noise level .

In this model, the probability that a woman is deemed talented is ¢ = (1 — \).
The probability that a woman is deemed untalented is 1 —¢ = (1—6)+6A. In a sample
of n women, let v be the number of women who are deemed talented and the remaining
n — v as untalented. Then the data generating process for the recording (as opposed
to the actual number) of women as talented and untalented is Bernoulli in ¢ and not
in 0 (the actual proportion of talented women, as in the JKB model). The likelihood
of the sample is thus of the form

1, 0.0) = 001 = V] [(1 - 6) + 03] )

The maximum likelihood estimate of (6, A) is not unique. The likelihood function
is unable to distinguish among all (6, ) pairs with the same value of ¢. As a result
of this identification problem, the maximum likelihood estimate of (6, \) consists of
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all (0, \) pairs such that #(1 — \) = v/n. For example, if 30% of 100,000 women are
observed as talented, then the likelihood is maximized at infinite combinations of (6, \)
including, for example, (§ = 0.3,A = 0),(0 = 0.5, = 04), (6 = 0.8, A = 0.625) and
(0 = 1,2 =0.7). In other words, many disparate explanations of the data seem equally
compelling. If we assume that A = 0 then this model is the same as the JKB noise-free
model.

The likelihood function in (6) can be expressed as

U(y|n, 6, \) 3 ( )en—t(l —O)ATTITH(L — ). (7)

t=0

Here t can be interpreted as the number of women who are correctly classified as
untalented. Since we do not know or observe ¢, the likelihood is expressed as a mixture
of the n—~+1 likelihoods that could arise with each possible number of misclassifications
in the data.

While A is unknown, one might have some prior beliefs on A along with those on 6.
We might use our background knowledge about social inequality, gender stereotypes in
finance, barriers to success for women in business, historical practices of discrimination,
and so forth. For instance, a priori, (6 = 0.7, A = 0.3) might be considered more likely
than (0 = 0.49,\ = 0) or (f = 0.98, A = 0.5), although all three pairs have identical
likelihoods for any given data. The Bayesian approach encourages us to start with
whatever prior information we can muster. Such beliefs can be expressed in the form
of a joint distribution for 6 and A, and given a sample, they can be updated by Bayes’
Rule.

Bayesian models with unknown misclassification rates in dichotomous data have
been developed in Winkler and Gaba ([1990]), Gaba and Winkler ([1992]), and Gaba
([1993]). For ease of exposition, we restrict attention to their special case with a prior
density on (6, \) which assumes ¢ and A are independent and is given by

f(9, )‘) = fﬁ(ma@’bG)fﬁ()“a/\vb)\) (8)
o 6(1971(1 o e)bgfl)\a)\fl(l o )\)bkfl’

where fj is a beta density as defined in Eq. (3). Restricting attention to the independent
case is reasonable in our setting, and not merely a simplifying assumption. One can
think of other contexts where such independence might be less valid. Suppose, for
example, we are collecting information about self-reported marijuana use among the
public. Suppose we do this survey in a city where marijuana use is widespread and
attitudes to it are quite liberal. In this city, the misclassification rate is likely to be
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fairly low because our respondents will not be worried about admitting to their use
habits. Now suppose we take the same survey in a very conservative city where the use
of marijuana is very taboo and its use is limited to small, marginalized communities.
In this case, the misreporting rate will almost certainly be higher. In general, as
a region’s attitudes to the use of marijuana liberalize, we can expect that people’s
dishonesty about their use of it will decrease. So in a case like this, A is very closely
connected to #, and they move together. But in our case, the prejudice, implicit biases,
historical patterns of discrimination and systemic institutional barriers that deflate
women’s perceived aptitude are not as strongly connected to their true talent rate. In
other words, the problem of gender imbalance cannot be solved by simply telling women
to do better or work harder.

Admittedly, it is unlikely that the actual correlation between # and A would be
exactly zero.* If women are frequently falsely misclassified as untalented, this may have
adverse effects on their confidence and self-perception in a way that to some extent cre-
ates a vicious self fulfilling prophecy and affects their actual performance. Likewise, if
women are rarely falsely misclassified as untalented, this can have a positive reinforcing
effect. There are certainly many ways to model the situation where the observed rate
is connected to noise, if this is desired, and when we model such dependence in the
data-generating model, it can yield exchangeable data or not. Gaba ([1993]) develop
one such model. For example, we can build a hierarchical model, with a separate 6; for
each person and a higher-order distribution for 6 from which the 6; values are drawn.
After seeing new data, we would then revise both the higher-order distribution and
the distribution for each ;. Alternatively, one can consider using different likelihood
functions for combining # and A. For instance, our model assumes that the probabil-
ity of being classified as talented is (1 — A), in which case the probability decreases
proportional to 6. But this is not the only way for A to disturb 0. For example, we
could have /0= Here, if A = 0, there is no disturbance, and if 6 is close to 1, the
disturbance is small; while for small 6 it is very large.

Either alternative could be an interesting extension for future work, but for now
we believe we can generate sufficiently rich insights with a relatively parsimonious yet
still realistic model. And after all, even if some proportion of the discrepancy turns
out to be due to the fact that the minority group is under performing, our point would
be that a substantial amount of the observed discrepancy might not be due to actual
underlying differences in aptitude but rather to the social conditions that affect our
perceptions of it. In other words, the key is that rational inferences about performance
across groups should reflect prior uncertainty about A rather than assuming a priori

4We are indebted to two anonymous reviewers for raising the insightful suggestions described in
this paragraph, including the alternative likelihood mentioned below.
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that A = 0.
With the prior in (8), and the likelihood in (7), the posterior density is given by

S
2

fO,Ay,n)= > f(t,0,\v,n)

T
5o

(]

f(tly,n) f(0, Aly,n, 1)

T
5o

wtf(97 )\|’77 n, t)?
t=0
where

n—y
Wy = at/ E Gy,
t=0

n p—
w= (") Bl B 1)

F(O, My, n,t) = fa(Blag, by) fs(Aa, 03),
with

agy =ap+n—tby="by+1,

ay =ay+n—y—t,and by = by + .

The posterior density in (9) is a mixture of densities of the same form as in (8). The
weight w; is the posterior probability that ¢ out of n —+ women recorded as untalented
were correctly recorded. And the posterior density is a mixture of n — v + 1 possible
posterior densities that would result under perfect knowledge of the exact number of
misclassifications (i.e., under perfect knowledge of n — v — t). Indeed, this expression
provides an intuitive explanation for the phenomenon we will soon observe — which is
the rapidly diminishing information value of data with even slight additions of noise.
This occurs because the posterior is a weighted mixture of many posteriors, one for each
possible misclassification. The marginal posterior densities for # and A\ can be obtained
as

eh/v Zwtfﬁ 8|a’07b9)

and (10)
)\h/a Zwtfﬁ )‘|a’)\7b*)
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Now we can return to Recruitment. Recall that we are uncertain about the actual
proportion of talented women, but perhaps we start with the assumption that 6 ~
f5(0|7,3). This implies that a priori E(#) = 0.7, but the distribution is fairly spread
out and admits all values of § between 0 and 1. At the same time, we suspect that there
is a meaningful chance of women being incorrectly recorded as untalented in any data
that we might see. Suppose that our uncertainty about the one-sided misclassification
rate (false negative) is best represented by A ~ fz(A[3,7). Then, E(A) = 0.3, and as in
the case of @, the prior distribution for A is also quite spread out, admitting values close
to zero and as high as 0.7. For both parameters, the sum (« + ) is modest, and thus
the prior is not objectionably stubborn. We are lightly structuring each prior, which
could reflect either prior information, or our attitudes to epistemic risk, or both.

Now suppose, as in the Recruitment example, we observe data on 100,000 women
of whom 30% are recorded as talented. Given our model, one thing is immediately clear:
the number of women who are actually untalented is inflated in the recorded data. Our
built-in conjecture is that this is the result of historical patterns of discrimination and
implicit biases leading to women being perceived as on average less talented. But, we
are uncertain as to what extent.

It is worth emphasizing that we do not intend to make any essentialist claim be-
tween gender and performance here. Indeed, we could equivalently express differential
outcomes using either gender, or one of its many correlate characteristics. As in Simp-
son’s Paradox, if we introduce other factors, like years of work experience or education
level, we may see a reduction in the differential.’

In any case, using our model, we can find the posterior distributions for  and A. As
can be seen from the above expressions, the analytical calculations require computing
combinatorial terms with large values. Hence, we use stochastic simulation to approxi-
mate the posterior marginal densities. To draw simulations, our data-generating model
for Recruitment can be summarized as follows:

SThanks to an anonymous reviewer for highlighting this point.
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A ~ Beta(3,7)

0 ~ Beta(7,3)
p=0(1-N)

7 ~ Binomial(¢, n)
n = 100, 000

1 n
;;%:0.3

Now that the model is specified, we can estimate the joint posterior distribution for
(A, 0) and derive the marginal distributions for each. Figure 4 illustrates the marginal
posterior densities for § and A that we obtained given the data (y = 30,000 and
n = 100,000), using a Markov Chain Monte Carlo algorithm known as the Gibbs
Sampler (Plummer, [2003]; Geman and Geman, [1984]).

lambda theta

02 04 0.6 04 0.6 0.8

Figure 4: Posterior distributions for 6§ and A for n = 100000.

Recall that the marginal posterior mean for 6 is our predictive probability that
Alice in our Recruitment example is talented, using Huttegger’s generalized rule of
succession. The posterior mean for 6 that we obtained using this simulation is 0.55. As
a result, despite the very large noisy sample suggesting that only 30% of the women
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are talented, our prediction that Alice is talented is very nearly 0.5. In other words, we
avoid normative conflict.

To get further insight concerning this model, consider the entire posterior density
for # which provides the full representation of uncertainty about #, and compare it to
a noise-free model. Ignoring misclassifications, i.e., assuming A = 0, the prior f(#) =
fs(Blag = T7,bg = 3) would be revised to the posterior f(0|y,n) = fs(0lag + v =
30007,by + n — v = 70003). Note that the prior mean of 6 is 0.7. The noise-free
posterior density has a mean of 0.3, with a standard deviation of 0.001, placing almost
the entire probability mass at 8 = 0.3 and completely overwhelming the prior on . On
the other hand, in our model with noise, the posterior mean of 6 is near 0.5, with a
posterior standard deviation of 0.114 which is 114 times larger than in the noise-free
case. This is because consideration of all the possible misclassifications that could have
occurred in the sample leads to much greater uncertainty about 6. In fact, we can
calculate the noise-free sample size leading to the same posterior mean and standard
deviation as a noisy sample size. This helps us to see just how much and how quickly
the value of information diminishes with noise.

Effective sample size. Given a prior, and a sample of size n, with mis-
classification rate A, the effective sample size n* is the sample which would
have the same effect on the prior if A = 0.

We compute effective sample size through a matching of moments approach —
in particular, by matching posterior variance with n observations and noise in A to
posterior variance with n* observations and zero noise, as follows.

Var(6) = (a+ B2+ B8+1)
_ (aiﬁ)(aiﬁ)
o+ 6 + 1 (11)
_ El6)l1 — E[]
n+1
BB

where ay and fy are the initial parameters assigned to fi,(0]a, ).

Using the model above, where oy = 7, By = 3, E[#] = 0.56, Var(f) = 0.013,
and letting n = 100,000, we find that a noise-free sample n* of merely four women
would lead to the same posterior mean and standard deviation as in our model with
noise. More generally, Table 2 shows the equivalent noise-free sample size that would
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be needed to obtain the same posterior mean and variance for 6 as in our model with
noise, with 6 ~ f5(0|7,3) and A ~ fz(A|3,7), as n gets increasingly larger. In Appendix
A, we derive the noise-free sample size as the sample goes to infinity (Theorem 1 from
Appendix A enables us to compute the last row in the table).

Sample size (n) Equivalent noise-free sample size for  (nj)

10 14
100 3.2
1,000 3.6
10,000 3.7
100, 000 3.7
n — 00 3.8

Table 2: Actual and equivalent noise-free sample sizes.

Note that in our example above, the equivalent noise-free sample size has an upper
bound of 3.8. This reveals a drastic loss of information. This is because, as mentioned
before, the likelihood function is unable to distinguish between numerous disparate
explanations of the observed data (i.e., an infinite combination of 6 and A values lead
to the same likelihood). Indeed, the equivalent noise-free sample size relative to the
actual sample size remains disproportionately low even for tight distributions for A or
low expected values of X\. For example, Table 3 shows the equivalent noise-free sample
size under different prior specifications for A\, keeping n = 100,000 fixed. Note that
even if E[A] = 0.0625, a very low prior estimate of misclassification, n still shrinks to
117.

Noise estimate () Effective sample size
E[\] = 0.2, Var()\) = 0.02 n=4.7

E[\] = 0.1, Var(\) = 0.008  n}=16.3

E[A] = 0.0625, Var(\) = 0.003 n} = 117.1

Table 3: Equivalent noise-free sample sizes for different assumptions about A.

In short, we do not have to bury our head in the sand, or overload our prior. By prop-
erly estimating the noise in the data, we typically avoid normative conflict. That is, by
using the information we have regarding gender disparities in unemployment, historical
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patterns of discrimination, implicit biases in the workplace, and so forth, and accepting
the possibility of observed data coming from a noisy process as a result, one will ordinar-
ily avoid normative conflict regardless of sample size in cases like Recruitment. While
Recruitment is just an illustration, the potential for such misclassifications is a real
risk in similar contexts involving hiring, lending, college admissions, and other domains
where scarce resources are unevenly distributed across sensitive categories.

5 Discussion

In this section, we explain a little bit more generally how normative conflict need not
arise under the model we develop, regardless of samples size, and we consider some
broader discussion questions and areas for future work.

First, it is worth reflecting on the relationship between the model developed here
and the original JKB approach. Our model is designed to complement and expand the
latter, rather than to refute it. As mentioned earlier, when A = 0 we recover the JKB
model. And if one wishes, one can continue to rely on normative attitudes, as reflected
in the epistemic risk function, in order to structure the prior in the model we develop.
But the advantage of our approach is that while we may rely on normative attitudes to
restructure the prior, we do not have to. Thus, unlike the JKB approach, our model is
not vulnerable to the objection that we are avoiding normative conflict at the cost of
our ability to learn.

Rather, we focus on capturing the noise in the data generating process. And we
show that once one captures that noise reasonably well, the ensuing rational belief will
not necessarily be one that leads to normative conflict, regardless of the difference in
observed proportions between, say, talented men and talented women. Another way to
put the point is that the conflict is avoided because uncertainty about both ¢ and A
does not completely go away even with an infinite sample size (as we show in Appendix

A).

Thus, our approach encourages learning by incorporating the full information about
the relevant situation. In the case of Alice and the Recruitment example, that includes
the observed proportion of women who are deemed talented, but it also includes ev-
erything else we know about gender disparities in the workforce, historical patterns
of discrimination, implicit attitudes and bias, and systemic institutional barriers that
may undermine women’s success. The model encourages us to include what we know
by setting up a prior for 6, for A\, and, as we will see in Appendix B, for a parameter,
&, reflecting errors in the other direction as well (untalented women who are recorded
as talented).
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It is also worth highlighting that in our approach, we do not avoid normative con-
flicts a priori, so to speak. That is, we do not write out the possibility of normative
conflict as a mathematical fact. Rather, we avoid normative conflict because the in-
formation about the workforce that is reflected in our prior reflects the world we live
in — i.e., a world where women have been historically discriminated against. It is of
course possible to assume the opposite — that women are favored in the workforce — and
then epistemic rationality would require one to believe that women like Alice are less
talented then their male counterparts. But this is not a problem because in a possible
world where women dominate the workforce and are privy to the privileges that men
are provided in our world, gender stereotypes would no longer remain the same either.
Indeed, in such a hypothetical world, we might worry about the opposite — statistical
information supporting stereotypes reinforcing men’s talent or aptitude. And using our
model, we would then structure the priors on €, A\, and £ to capture the noise with
respect to men. The same general point can be made about any group distinction or
number of groups.

Second, one might worry that by using the noise model, we could amplify the
notion that a disadvantaged group doesn’t possess some of the characteristics that are
necessary to be successful or to be deemed talented and thus create further normative
conflicts. Consider en example. Suppose that one of the unobservable and/or unmea-
surable attributes to be deemed talented in an industry like banking is membership in
an “old boys club.” Then it is of course possible that our noise model would amplify
the absence of this attribute among women — i.e., the absence of women in old boys’
clubs. While this is true, the belief that women are more likely to be absent in old boys’
clubs is not a further normative conflict. Instead, it is evidence of just the kinds of in-
justice that lead to the disparity in the proportion of women who are deemed talented
as compared to men to begin with. In other words, normative conflict arises when we
believe that women are overall less likely to be talented, and not when we believe that
they are overall less likely to be members of old boys’ clubs. The latter merely reflects
the unfair advantage of the advantaged group. Indeed, it is information we should not
ignore if we want to mitigate gender disparities in the workforce.

Third, it is worth emphasizing that we do not intend to banish, so to speak, all
normative attitudes from the identification of an appropriate model. We agree with
JKB that in the absence of any information about a parameter, the choice of prior
reflects, to some extent, normative attitudes to the cost of error. What we would like
to avoid, though, is situations where normative attitudes overwhelm inference in such a
way that the agent appears to be incapable of reasonably responding to evidence. And
the cases where the JKB account is most vulnerable are cases where the sample size
is very large, such as Recruitment. By introducing the possibility of misclassification,
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we show that epistemic rationality does not necessarily require a stereotypical belief,
regardless of sample size, and we do so without tinkering with the resilience, as Joyce
([2005]) calls it, of the prior. The key message that we would like to drive home here
is that a reasonable model for cases like Recruitment needs to include uncertainty
about A, but a precise estimate of A\ is not needed and in practice not realistic. For
example, one may start with a uniform prior for A due to background assumptions that
mistakes in either the false positive or false negative error direction are equally bad.
This would exert only a negligible effect on inference after we update A on thousands
of observations, as in Recruitment.

Fourth, we would like to further highlight why the massive loss of information
occurs. As we illustrate in Table 1, under a modest misclassification rate the effective
sample size remains extremely low even as data gets arbitrarily large. And in Theorem
1 in Appendix A, we reinforce this point by highlighting that the effective sample
size is asymptotically bounded by 3.8. One might wonder whether we are baking this
conclusion in by specifying too high of a misclassification rate. But we are not. In Table
2, we present a number of different models, and in each row we specified a different
prior for A, with increasingly less misclassification in descending order. And regardless
of how small the error rate gets, the loss of information remains overwhelming. For
example, even when the misclassification rate is as low as 6%, and the variance around
that estimate extremely tight (last row of Table 2), the effective sample size still shrinks
from 100, 000 to just over 100.

To understand why this occurs, it is helpful to recall that we can think of the pos-
terior as a weighted mixture of many posteriors, one for each possible misclassification
(Equation 8). That is, the posterior is a mixture of the posterior we would have if
only one woman is misclassified, multiplied by the probability that only one woman
is misclassified, plus the posterior one would have if exactly two women were misclas-
sified, multiplied by the probability that exactly two women were misclassified, etc.
The information loss occurs even with a low misclassification rate because there are so
many possible ways the true state of nature could turn out to be. Of course, as the
misclassification rate gets asymptotically close to 0, the effective sample size will not
shrink as much. But the highlight is not so much that effective sample size collapses for
any non-zero misclassification. Rather, it is just how sensitive the effective sample size,
n*, is to prior uncertainty about A, and how quickly it diminishes, given very modest
assumptions about noise.
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6 Concluding Remarks

Consider again the passage from Gendler that we started with: in an unequal society
one can not be simultaneously moral and epistemically rational. If we know that more
crimes in our society are on average committed by a minority group, the thought goes,
then epistemic rationality seems to force us to use that frequency in estimating the
future criminality of any particular member of that group —in a way that seems patently
unjust. But if we know our society is unjust, then we also know that the disparity in
observed crime rates is occurring because of, for example, bias against this group, over
policing of its minority neighborhoods, harsh prosecution of petty crimes, etc. And our
model encourages us to take this information into account as we go from the observed
disparity in crime rates across groups to the prediction that any particular individual
from the minority group will commit a crime in the future. When we do this, epistemic
rationality is no longer misaligned with considerations of justice. The same can be said
for performance differences in academia, finance, and so forth, across many different
protected classes, including race, ethnicity, and gender. Thus, in most cases we are
likely to encounter, normative conflicts are avoidable. But the requirement of noise
does mean that we cannot guarantee they will be avoided. The absence of such a
guarantee is a virtue, rather than a vice. It means that when there are true underlying
population differences — differences which must be addressed in order to reduce the
kinds of socioeconomic disparities that give rise to unequal statistics in the first place
— our model will enable us to detect them.

Appendix A

In this Appendix we derive the posterior distribution for # when n — oo with the
proportion of women who are deemed talented, ¢q = 7/n, being held constant. We will
exploit the fact that as n — oo, the likelihood (7) converges to the Dirac delta function

6 (0(1=X) = o).

Theorem 1. Let the prior distribution for (6, ) be a product of independent
beta distributions fz(6|ag, bg) and fz(A|ax,by), and let the likelihood be the Dirac delta
function § (0 (1 — \) — ¢p). Then, up to normalization, the marginal posterior pdf for

0 is
Hao—ax—bx (1 _ 9)b971 (6 — gpo)a)‘il if 6 > ©o,
F @) o { 08 < g

Proof. When n — oo, the joint posterior pdf is
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(8, Mwo) o< f5(8lag, bg) fa(Alax, b2)d (8 (1 = A) = o),

and the marginal posterior for 0 is
1
F (Bl o fo(@hanbo) ([ £s0an b3 6 (1= 3) = ) r)
0

Denote ¢ =60 (1 — A); then A =1 — /6, d\ = —3dp, and

/0 Fa(Max, b2)8 (6 (1 — ) — o) dA

[%
— /0 fa(1 —@/0lax,br)d (¢ — ¢o) %dso

~f 3fa(1—o/0lax, by) if 6 > ¢,

Therefore,

1 .
5f3(0)ag, bg) fa (1 — @o/0lax,by) if 6 > o,
0

S Blio) { 0if 0 < po.

I turn, fs(Oag, by) o 01 (1~ )" and fy(Nax, by) o 651 (1 - ), s0

Lgao=t (1 —0)" " (1 — o/0)™ " (p0/0)™ " if 0 > o,

f(9!<ﬂo)0<{ 0if 6 <
0o (1= 0)" 1 (0 — o)™ i 0 > o,
CX .
0if 6 < y.

The marginal posterior pdf for A is derived similarly, and is given by

a1 (1— /\)bx—ae—be (1— o — /\)be_l it A <1— o,
F Ogo) o § 03 A>T~

To compute the equivalent sample size as in Table 1, we first find parameters
apand bj of the beta distribution that match the first two moments of f (6|pg). Then the
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equivalent sample size equals nj = a}+0bj—ag—by. From the equations F (0|pg) = aaﬁ

[Z 0
_ apbs * x _ E(0lpo)(1-E(0]¢o)) ;

and V (0]go) = (a;+b;)29(a9;+b;+1) we find ay + b = %V(leo) £00 — 1. In particular,

for ap =7, bp = 3, ay =3, by =7, and ¢y = 0.3 we get n; = 3.8.

Appendix B

In this Appendix, we expand the model to accommodate two-way errors. That is,
suppose we have misclassification in both directions so that, using our Recruitment
example, actually talented women are sometimes recorded as untalented, with rate
A, and actually untalented women are sometimes recorded as talented, with rate &.
Graphically, the situation now looks like this.

0 (1-9)
L—A £ N 1-¢
e’ - o Sy
Talented Untalented

Figure 5: Recruitment with noise levels A and &

The probability that a woman is classified as talented is now ¢* = 6(1 — A) + (1 — 0)<&.
And the probability that a woman is classified as untalented is (1 —6)(1 —&) 4+ 6. The
likelihood is now Bernoulli in ¢*,

o, A, &) = ¢™[1 — ™" 7.
Using a beta prior for both noise parameters, the full prior is,
(0, N, §) o< w(B|ag, Bo)m(A|an, Br)m(€lag, Be).
The posterior is
(0,8, Aly) o< (6,6, A) f(yl0, &, ).
Finally, the marginal posterior distribution for # is

1 1
W(@\y)oc/o /0 (0, €, Ay)dNdE.
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Using the same Monte Carlo simulations as in the main text, but with a now weakly
informative beta prior on &, we find that n* < 2. This is to be expected because we
have now increased the number of ways in which different values can be assigned to
these parameters.
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