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Abstract

We develop a theory of necessity operators within a version of higher-order logic that
is neutral about how fine-grained reality is. The theory is axiomatized in terms of the
primitive of being a necessity, and we show how the central notions in the philosophy of
modality can be recovered from it. Various questions are formulated and settled within
the framework, including questions about the ordering of necessities under strength,
the existence of broadest necessities satisfying various logical conditions, and questions
about their logical behaviour. We also wield the framework to probe the conditions
under which completely reductive theories of necessities are possible.

Keywords: Broadest necessity; higher-order metaphysics; higher-order logic; modal meta-
physics.

The philosophy of modality often finds itself preoccupied with the notion of metaphysical
necessity. But there are many other necessities that are worthy of study. Some of these
are restrictions of metaphysical necessities, such as physical necessity or various practical
necessities concerning what we can do. However there are, arguably, other necessities which
are not restrictions of metaphysical necessities. According to some philosophers, epistemic
necessities, certain tense operators, determinacy operators, or counterfactual necessity are
not restrictions of metaphysical necessity.1 According to these views, the philosophy of
modality is not simply the study of restrictions of metaphysical necessity. As such, many
questions about the structure of necessities remain open:

Is there a necessity which is a restriction of every necessity?

For any two necessities, is there a further necessity which they are both restrictions
of? Or a necessity which is a restriction of both?

Is there a broadest necessity: a necessity which every necessity is a restriction of?

If there is a broadest necessity, what is its logic?

Can necessities be reductively defined in purely logical or in non-modal terms?

In this paper we will introduce a general framework for theorizing about necessities in higher-
order logic. Within this system one can say what it means for one necessity to be broader
than another, and prove that there are (possibly several) necessities that are as broad as
any other necessity, and that these necessities obey the principles of S4.

1See, respectively: Chalmers [6], Fine [11] and Kaplan [19], Bacon [2], Nolan [24].
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A similar project is undertaken in Bacon [1], which attempts to uphold a form of modal
logicism: definitions of necessity, broader than and the broadest necessity are offered in purely
logical terms. Roberts [29] shows, in this framework, how other necessities can be understood
as restrictions of the broadest necessity. However, the adequacy of the definitions, and
the results about the broadest necessity, depend essentially on the background theory of
propositional granularity assumed in those papers: a system that included identities, like
A = (A∧B)∨A and ∃x(A∨B) = (∃xA∨∃xB), that correspond to provable biconditionals in
the underlying logic. Such identities are contentious, and rejected by philosophers interested
in more fine-grained pictures.2

In this paper we aim to provide a grain-neutral theory of necessities. But to remain
grain-neutral, we have found it necessary to take at least one modal term as primitive. In
this paper we proceed by taking the notion of being a necessity operator as primitive, and
axiomatize it directly yielding a general theory of necessities. The theory does not imply any
of the aforementioned propositional identities; indeed we will show that it is conservative
over a minimal theory of higher-order logic that does not encode any particular vision of
granularity.

The theory also brings to salience a distinction between two sorts of extensionalism
that are often conflated. One is a theory of granularity, which we call Fregeanism, that
maintains that propositions, properties and relations are individuated by their extensions.
The other is a fundamentally modal principle we are calling Quineanism, which maintains
that every necessity is a truth-functional operator, and which is completely neutral about
how propositions, properties and relations are individuated.3 While Fregeanism entails
Quineanism as we will see, the converse is not true. Rather Fregeanism is the result of
adding Intensionalism — the view that necessarily equivalent entities are the same — to
Quineanism. Indeed, given any extension of our theory of necessities, there is an intensional
view corresponding to the result of adding Intensionalism to that theory. As a limiting case,
when you add Intensionalism to the theory of necessities itself you get a very natural theory
of granularity, Classicism (appearing in, e.g. [2], [4]), which we believe deserves special
attention.

In section 1 we outline the background framework of higher-order logic, and present a
theory, H0, that we believe is sufficiently grain-neutral. In section 2 we introduce our theory
of necessities, and explain its axioms and their motivation. In section 3 we establish some
facts about the ordering of necessities, including the fact that there is a minimal element —
the broadest necessity — and we establish some facts about its logic. We also explore the
notion of a relative necessity and prove the aforementioned conservativeness result. Section 4
explores some strengthenings of the theory including the forms of extensionalism mentioned
above. In section 5 we compare our theory with that of Williamson [36], Roberts [30], and
Dorr, Hawthorne and Yli-Vakkuri [9]. In section 6 we explore some connections between our
grain-neutral theory and the aforementioned reductive one, and then outline some general
conditions under which a reductive theory of necessities is possible.

2e.g. Dorr [8], Fine [12] Goodman [15], Soames [32], Zeng [37].
3Quineanism is consistent with many very fine-grained pictures of reality. But surprisingly, it is even

consistent with a conception of propositions in which they are sets of possible worlds, even though such
views are often assumed to admit lots of necessities that are not truth-functional.

2



1 Higher-order logic

In modal logic, a modality is typically regimented with a sentential operator expression
representing an English phrase like it is necessary that or it is possibly that : an expression
that can combine grammatically with a sentence to form another sentence. A language with
particular sentential operator expressions may be sufficient for articulating the theory of a
particular necessity, but in order to formulate a theory of necessities in general we will need
to quantify into the position that operator expressions occupy and to employ expressions
with more complicated types, such as expressions which combine with operator expressions
to form sentences. We therefore believe that the appropriate framework for this investigation
is higher-order logic. What follows is a brief introduction to higher-order logic.

In higher-order logic, expressions fall into different grammatical categories, called types.
There are basic types e and t, corresponding to the category of names and sentences respec-
tively. And whenever σ and τ are types, there is a functional type (σ → τ) of expressions
that combines with expressions of type σ to form an expression of type τ . In what follows
we shall adopt the convention of omitting brackets from types that are associated to the
right: i.e. σ1 → σ2 → · · · → σn is short for (σ1 → (σ2 → (· · · → σn . . . ))). Thus operator
expressions have type t → t, expressions that combine with operator expressions to form
sentences — operator predicates — have type (t → t) → t, and so on. For each type σ,
we have a set of specified constants c1, c2, . . . , which may or may not be empty, and a set
of infinitely many variables x1, x2, . . . . Terms of a higher-order language will be built from
those constants and variables recursively (we use M,N,O, . . . as meta-linguistic variables
and ‘M : σ’, for example, means M is a term of type σ):

� If M is a constant or a variable of type σ, then M : σ;

� If M : σ → τ and N : σ, then (MN) : τ ;

� If M : τ and x is a variable of type σ, then (λx.M) : σ → τ .

With terms we follow the convention of omitting brackets associated to the left, i.e. M1M2 . . .Mn

is short for ((. . . (M1M2) . . . )Mn). And we often write λx1x2 . . . xn.M for λx1.(λx2.(. . . (λxn.M) . . . )).
We will omit brackets as we see fit, provided no ambiguities arise.

Given a λ-term λx.N , N is the scope of λx. An occurrence of a variable x in a term is
free if it is not in the scope of λx. A variable x is said to be free in a term M if it has some
free occurrences in M .4 A term is closed if no variable is free in it and open otherwise. We
use M [N1/x1, . . . , Nn/xn] for the result of substituting N1, . . . , Nn for each free occurrence
of x1, . . . , xn in M simultaneously (note that Ni and xi must belong to the same type).5

4Let FV be the function mapping each term to the set of all variables free in it. Then we have: FV(c) = ∅,
FV(x) = {x}, FV(MN) = FV(M) ∪ FV(N), and FV(λx.M) = FV(M) \ {x}.

5The notion of substitution can be defined as follows (let N̄ = N1, . . . , Nn and x̄ = x1, . . . , xn):

� xi[N̄/x̄] = Ni;

� M [N̄/x̄] = M when M is a c or a y /∈ {x1, . . . , xn};
� MN [N̄/x̄] = M [N̄/x̄]N [N̄/x̄];

� (λxi.M)[N̄/x̄] = λxi.M [N1/x1, . . . , Ni−1/xi−1, Ni+1/xi+1, . . . , Nn/xn];

� (λy.M)[N̄/x̄] = λy.M [N̄/x̄] when xi ∈ FV(M) and y ∈ FV(Ni) for no i;

� (λy.M)[N̄/x̄] = (λz.M [z/y])[N̄/x̄] when xi ∈ FV(M) and y ∈ FV(Ni) for some i, where z /∈ FV(M)∪
FV(N1) ∪ · · · ∪ FV(Nn).

Note that this is not the typical way to define substitution. We do so just because we want to choose
the system H0 as our background theory. If we defined substitution in the usual way, we would need, for

3



Two terms are said to be immediately β-equivalent if one of them is (λx.M)N and the
other is M [N/x] for some M and N . Two terms are said to be immediately η-equivalent
if one of them is λx.Mx and the orther is M for some M , where x is not free in M . Two
terms are βη-equivalent if one can be gotten from the other by replacing immediately β or
η-equivalent terms for n times (n ≥ 0).6 It is not hard to see that βη-equivalent terms share
the same type.

From now on, let’s focus on languages containing a logical constant ∀σ of type (σ →
t) → t for each σ and the logical constant → of type t → t → t. We use A,B,C, . . . in
particular as meta-linguistic variables for terms of type t. Following the conventions, we
write A → B for →AB, write A1 → A2 → · · · → An for (A1 → (A2 → (· · · → An . . . ))),
and ∀σxA for ∀σ(λx.A). Other logical terms can be defined accordingly:

⊥ := ∀t→t∀t ∨ := λpq.(¬p→ q) ∃σ := λX.¬∀σx¬Xx
> := ⊥ → ⊥ ∧ := λpq.¬(p→ ¬q) =σ := λxy.∀σ→tX(Xx→ Xy)

¬ := λp.(p→ ⊥) ↔ := λpq.(p→ q) ∧ (q → p)

We shall drop the superscript from ∀σ, ∃σ or =σ when it is clear from context; and we shall
write, for example, ∀x1 . . . xnA for ∀x1 . . . ∀xnA.

Sometimes we will provide English glosses on expressions in higher-order languages. For
example, we may gloss ∀X(WX → Xp) as ‘every operator X having the property W applies
to the proposition p’. This talk should not be understood as providing any translation from a
higher-order language to English; rather, it should only be understood as a way of indicating
a particular sentence of higher-order logic.7 Another thing we should clarify here is that in
the interest of readability, we will not distinguish carefully between use and mention. For
instance, when the context is clear enough, we may use X of type t → t for an operator
expression which is a term but in other contexts we may use X for the corresponding
operator which is a wordly matter.

Theories will be treated as sets of formulae — i.e. terms of type t. An axiomatic system
of higher-order logic is a collection of axioms and rules, and it determines a theory as the
smallest set containing those axioms and closed under those rules. Given, for example, a
theory T , a (schematic) formula A and an inferential rule R, we’ll use T ⊕ A ⊕ R for the
result of adding A to T and closing under R plus the original rule(s) of T .

The weakest axiomatic system of higher-order logic studied in this paper, H0, has the
following axioms and rules:

PC All theorems of propositional calculus;

UI ∀σF → Fa;

βE (λx1 . . . xn.A)N1 . . . Nn ↔ A[N1/x1, . . . , Nn/xn];

example, an extension of H0 containing α, a principle about grain, which says that α-equivalence suffices for
identity (see below).

6Two terms are immediately α-equivalent if one of them is λx.M and the orther is λy.M [y/x] for some
M , where y is not free in M . Two terms are α-equivalent if one can be gotten from the other by replacing
immediately α-equivalent terms for zero or more times. It can be proved that two terms are α-equivalent
only if they are βη-equivalent. (Hint: Since it is required that y is not free in M , λx.M is immediately
η-equivalent to λy.(λx.M)y and (λx.M)y is immediately β-equivalent to M [y/x].)

7The indication relation may not preserve meaning, or even truth: the sentence ‘Alice possesses some
property’ indicates the sentence ∃X.Xa, but we understand the latter sentence in such a way that it would
be true if there were no properties. For more discussions, see Prior [27] and Williamson [35], ch. 5.9.

4



mp If ` A→ B and ` A, then ` B;

Gen If ` A→ Fx, then ` A→ ∀σF , provided x is not free in A.

Note that by our definition of =σ, the reflexivity of identity and Leibniz’s Law are theorems
of H0:

Ref M =σ M ;

LL M =σ N → A[M/x]→ A[N/x].

The system H0 can be given a sound and complete semantics using the model theory of
Muskens [23]. H0 is equivalent to Muskens sequent calculus ITL, which has a sound and
complete semantics, in the sense that one can derive the sequent Γ ⇒ Σ in ITL iff one can
derive a contradiction in H0 from Γ,¬Σ, where ¬Σ = {¬A | A ∈ Σ}.8

H0 is fairly neutral about how fine-grained reality is; for instance the only identities it
implies are trivial self-identities.9 It can be strengthened by adding axioms or rules reflecting
certain assumptions of grain. Consider the following one:

βη A↔ B whenever A and B are βη-equivalent.

Let H be the result of replacing βE in H0 with βη. H is an extension of H0 because βE can
be derived from βη in H.10 Also note that within H, βη is equivalent to such a seemingly
stronger principle:11

βη∗ M = N whenever M and N are βη-equivalent.

So the extended system H says something about grain: βη-equivalence implies identity. For
instance, the proposition that Mary loves Mary, formalized Lmm, is therefore identical to
(λx.Lxm)m, (λx.Lmx)m, (λx.Lxx)m and (λx.Lmm)m. Someone who adopted a very fine-
grained account of propositions might reject these identities on the grounds that they each
ascribe different properties to Mary: loving Mary, being loved by Mary, loving oneself and
being such that Mary loves Mary respectively.

Still, βη is a relatively modest grain constraint. There are rules reflecting some more
contentious ideas:

E If ` A↔ B, then ` A =t B;

ζ If `Mx =τ Nx, then `M =σ→τ N .12

8Roughly each sequent rule in ITL, from Γ ⇒ Σ to Γ′ ⇒ Σ′, is admissible in the sense that if Γ,¬Σ is
inconsistent in H0 then so is Γ′,¬Σ′. Conversely, for each axiom A of H0, the sequent Γ⇒ A is derivable in
ITL, and the rules of mp and Gen correspond to admissible sequent inferences, e.g. if Γ⇒ A and Γ⇒ A→ B
are derivable in ITL then so is Γ⇒ B.

9But note that the notorious Russell-Myhill argument can be run within H0, which means that certain
structural views about grain (for example, those asserting the claim ∀XY xy(Xx = Y y → X = Y ∧ x = y))
are ruled out by H0. See e.g. Uzquiano [33], Dorr [8], §6 or Goodman [14]. But the Russell-Myhill argument
can be run in many different logics provided certain plausible assumptions. So we tend to think that the
structural views ruled out are themselves very unattractive.

10To give the derivation precisely requires one get into the fine mechanics of the definition of α-equivalence
(see note 6); we omit the argument for brevity.

11By Leibniz’s Law, A = B only if A↔ B. Conversely, when M and N are βη-equivalent, so are M = M
and M = N .

12The name comes from the ζ rule for the equational λ-calculus (see Hindley and Seldin [17]).
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Let HE = H ⊕ E and HEζ = HE ⊕ ζ. HE straightforwardly articulates the idea that logical
equivalence suffices for identity between propositions, and HEζ does the same for arbitrary
relations.13 In Bacon and Dorr [4] it is shown that it can be equivalently axiomatized by a set
of closed equations, comprised of some equations imitating the theory of Boolean algebras
governing the truth functional connectives, and some equations capturing an adjunctive
relation between the quantifiers and the k combinator λxy.x. (If we are in a restricted
setting where all non-basic types end in t, it can be even shown that closing H0 under E and
ζ yields HEζ as well: the rough idea is that with E and ζ, βE allows one to prove the identities
that were previously only provable with βη; see Proposition 6.2.) We will henceforth also
refer to HEζ as Classicism (following [3], [4]).

By the arguments in Bacon [1], we can see that in HE (and thus HEζ) the operator
2> := λp.(p = >) has the behaviour of a broadest necessity satisfying a logic of at least
S4. But the systems HE and HEζ are not grain neutral: the rule E, for instance, ensures
identities like A ∧ B = B ∧ A, A = ¬¬A, (A ∧ B) ∨ A = A and so on. Moreover, these
theories contain many intensionalist theses to the effect that propositions and properties are
individuated by necessary equivalence:

Propositional Intensionalism 2>(A↔ B)→ A = B;

Property Intensionalism 2>∀x(Fx↔ Gx)→ F = G.

For instance, since HE is closed under the rule E, we know it contains the identities (i)
((A ↔ B) → A) = ((A ↔ B) → B), (ii) (> → A) = A and (iii) (> → B) = B (since the
corresponding biconditionals are tautologies, and thus belong to HE). If (A↔ B) = > and
given (i), we may use Leibniz’s Law to infer that (> → A) = (> → B) and thus that A = B
using (ii) and (iii), thus establishing Propositional Intensionalism. Property Intensionalism
is established in a completely parallel fashion, using E and ζ to turn open propositional
equivalences into property identities.14

2 Being a necessity

In this section we present, informally, some constraints for being a necessity operator, which
will provide a basis for the formal axiomatization of our theory of necessities.

Our formal theory will be formulated in the language of higher-order logic with a further
constant, Nec of type (t → t) → t, representing our primitive notion of being a necessity
operator. In what follows we will refer to the language of pure higher-order logic by L, and
the augmented language with LNec.

13Here logical equivalence is taken to include not only all provable equivalences in the background theory
H, but also logical equivalences one can derive using these two further rules. However, in Bacon and Dorr
[4] it is shown that there isn’t really any distance between these ideas: merely adding identities between
things provably equivalent in H would yield the same theory as closing under our stronger rules.

14Using the rules E and ζ, we can show (i) λy.(∀x(Fx↔ Gx)→ Fy) = λy.(∀x(Fx↔ Gx)→ Gy), where
y is free in neither F nor G. This is because (λy.(∀x(Fx↔ Gx)→ Fy))y ↔ (λy.(∀x(Fx↔ Gx)→ Gy))y is
derivable in H, with the help of βη. Similarly, by using βη, E and ζ, we can get (ii) λy.(> → Fy) = λy.Fy
and (iii) λy.(> → Gy) = λy.Gy. So given the assuming that ∀x(Fx ↔ Gx) = > we can infer that
λy.Fy = λy.Gy from (i)-(iii), and thus that F = G by βη. A more general version of Property Intensionalism,
2>∀x(Rx1 . . . xn ↔ Sx1 . . . xn)→ R = S, can be proved in a similar way.
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2.1 Conditions for being a necessity

Let us begin with some necessary conditions for an operator to be a necessity. According to
a widely accepted modal intuition, a necessity operator satisfies, at least, the normal modal
logic K. Within a propositional modal language, this logic can be axiomatized by extending
propositional calculus with one modal axiom plus one rule of proof:

K 2(A→ B)→ 2A→ 2B;

N If ` A, then ` 2A.

They suggest two plausible necessary conditions that an operator must satisfy if it is a
necessity operator. We will, moreover, posit that together they are sufficient.

The K axiom suggests that we should demand that necessity operators are closed under
modus ponens. This just means that if p and q are propositions, and X is a necessity
operator that applies to p→ q and p, then X must apply to q too. But this is not enough.
An operator can be closed under modus ponens for all sorts of contingent reasons. For
instance, the operator Alice said that might be closed under modus ponens because Alice
has said nothing (so that what she has said is vacuously closed under modus ponens). We
shouldn’t count this operator as a necessity: even though it is in fact closed under modus
ponens it is possible (physically possible, say) that Alice failed to say all the consequences
of things she’s said that can be inferred using modus ponens. More generally, if an operator
possibly fails to be closed under modus ponens in any other sense of ‘possibly’, it will not
count as a necessity either. Thus we require necessities to satisfy a more robust condition
we will call being Closed, namely that the operator should be not only closed under modus
ponens, but necessarily closed under modus ponens, for any candidate notion of ‘necessity’:

Closure Every necessity operator is Closed.

The principle plausibly is true for any of the candidate notions we mentioned in the intro-
duction, and we assert that it is true more generally of all necessity operators.

Because higher-order logic affords us the ability to quantify into sentence position, we
can formulate the property of being an operator X that is closed under modus ponens,
or, in other words, being an operator obeying the modal axiom K, with a single universal
generalization:

K := λX.∀pq(X(p→ q)→ Xp→ Xq).

And since we can also quantify into operator position, we spell out what it means for a
proposition p to be necessary in every sense as ∀X(NecX → Xp). Indeed, this notion of
being necessary in all senses is so important, we shall introduce a shorthand for it:

L := λp.∀X(NecX → Xp).

Thus our definition of being Closed becomes:

Closed := λX.(KX ∧ LKX).

Closure can then be formalised by the principle NecX → ClosedX, which ought to be a
consequence of our theory of necessities. One might wonder why we appeal to both KX and
LKX when formalising the condition Closed. Shouldn’t being necessary in every sense imply
being true? Yes, we believe so. But also note this means that at least some necessities are
factive in the sense that whenever Xp it is the case that p. At the current stage, we haven’t
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introduced enough information about necessities to guarantee this, so we will simply bake it
into the definition for now. It will turn out in our complete theory that being necessary in
every sense implies being true; so the putative difference between LA and A∧LA disappears
(see section 2.2).

The necessitation rule N ensures that 2A is a theorem of the logic K whenever A is a
theorem of K. Those who accept the rule of necessitation often do so by way of a more
general principle stating that whenever A is a logical truth, then so is 2A — the rule of
necessitation then being justified by the fact that the axioms of K are logically true and
other rules of inference preserve logical truth. The notion of logical truth is a feature of
sentences not propositions, but we have a natural worldly analogue of logical truth, namely:
being necessary in every sense of necessity.15 So the worldly analogue of this principle about
logical truth is that a necessity X must satisfy the principle that if p is necessary in every
sense, then so is Xp. However, as with Closure, a necessity shouldn’t contingently satisfy
this principle, thus we say that an operator X is Logical just in case it is necessary in every
sense that if p is necessary in every sense, so is Xp, and then endorse the requirement:

Logicality Every necessity operator is Logical.

We may similarly define what it is for an operator to be Logical in higher-order logic:

N := λX.∀p(Lp→ LXp);

Logical := λX.(NX ∧ LNX).

We propose that these two conditions are in fact not only necessary conditions, but
sufficient for being a necessity operator. In our previous notation, this can be formalised:

Necessity NecX ↔ LogicalX ∧ ClosedX.

Indeed, this will be the central axiom of our theory of necessities.
At this juncture we must emphasize the difference between giving necessary and sufficient

conditions for an operator to be a necessity, and giving a definition of what it is to be a
necessity. Our principle Necessity does not provide us with a definition of Nec because it
involves the term L and therefore the term Nec on the right-hand-side (contained in our
definitions of Closed and Logical). If we could give a definition without invoking Nec on
the right-hand-side, we would have succeeded in giving a definition of Nec16; a project we

15One may try to directly define an operator applying to all and only propositions expressed by some
logical truth(s) without appealing to Nec. Under the assumption of Classicism (i.e. HEζ), for example,
all theorems of HEζ express the same proposition, >, so 2> := λp.(p = >) is such an operator. But if
propositions are structured this project will be harder. We can, for instance, characterize the operator being
expressed by some theorem of propositional calculus, using a complex term of pure higher-order logic:

PC := λp.∀X((∀pqX(p→ q → p)∧
∀pqrX((p→ q → r)→ (p→ q)→ p→ r)∧
∀pqX((¬q → ¬p)→ p→ q)∧
∀pq(X(p→ q)→ Xp→ Xq))→ Xp).

However, a finite definition of the theorems of higher-order logic is not possible because there are infinitely
many logical constants — ∀σ for each σ. This same limitation applies to wider conceptions of logical truth
that extend the theorems of higher-order logic (such as the theorems of our theory of necessities).

16Or at least, a definition of a predicate whose extension is just the necessity operators, which is good
enough for most purposes.

8



suspect is impossible in a completely grain-neutral setting.17

∗ ∗ ∗ ∗ ∗

Before moving on, let us make a few brief methodological remarks. In presenting this theory,
we do not conceive of ourselves as doing conceptual analysis on the word ‘necessity’ as it is
used in philosophy. For one thing, it is a technical term, and has slightly different uses in
different parts of philosophy. For instance, in metaphysics ‘necessity’ seems to be reserved for
operators that are at least factive, i.e. obey the T axiom (2p→ p) of modal logic, whereas in
linguistics and philosophy of language the word ‘necessity’ is used more liberally to include
non-factive deontic modalities, such as those expressed by ‘ought’ in some contexts. Our
view is that this is an entirely terminological issue: we just see our target to be the notion of
a normal operator — the worldly analogue of an operator expression governed by the modal
logic K. Other starting points would be equally acceptable to us. For instance, Bacon [1]
works with an even weaker notion that builds in Logicality, but does not require Closure.

Similarly, one might take as a starting point a stronger notion. For example, if one wants
to work with the notion of objective necessities studied by Williamson [36] and Roberts [30],
one might wish to add the requirement that every necessity is factive in every sense of
necessity. (But someone may disagree and argue that there is an operator of having an
objective chance of 1, which is an objective but non-factive necessity.) Another particularly
salient option in this direction is to strengthen the Closure condition. This condition ensures
that given finitely many propositions, if each of them is X-necessary, so are their logical
consequences. It’s worth noting that we do not impose the stronger condition that necessities
are closed under infinitary consequence since no analogous principle follows from our two
principles of the modal logic K. (And as with the case of factivity, one might wish to include
operators like having an objective chance of 1 among the necessities, which are not closed
under infinitary consequence.18) If we wished instead to characterize the worldly analogue of
the stronger notion of an infinitely closed normal operator, we could similarly add a stronger
condition Closed∞X, capturing a stronger form of closure.19 However, we see little reason
to take those stronger notions of being a necessity as primitive, as we can simply define
them in the present theory.

2.2 Necessitation

Let us explore some further elements that we think should be part of our theory of necessities.
Like the rule N for the logic K, we might demand that anything derivable in the theory of

17Again, if we assume Classicism, the operator 2> would suffice to serve all functions of L. This is
basically because all theorems of higher-order logic express the same proposition according to this theory.
So replacing all occurrances of L in LogicalX ∧ClosedX with 2> would give us a definition of NecX (see
more discussion in section 6.1). The same strategy doesn’t work in a grain-neutral setting. As we have
explained in note 15, since we can’t define, in the pure language L, an operator applying to all theorems
of higher-order logic, we take L-truth as an analogue of logical truth. Consequently, L should apply to all
theorems of higher-order logic, and we do guarantee this by the rule Necessitation introduced in the next
section. But if we could characterize L in L, we would de facto define an operator applying to all theorems
of higher-order logic in L.

18This operator is not closed under infinite conjunction introduction: the chance of a point-sized dart
missing a given point on a unit disc is 1, but the chance of it missing every point (the conjunction of these
propositions) is 0.

19The rough idea can be understood as follows. Say that a collection of propositions represented by a
propositional property X of type t→ t entails p if every proposition entailing every member of X entails p,
and say that X is Closed∞ if X applies to any proposition entailed by X relative to every sense of necessity.
We will have more discussion on infinite closure in sections 3.1 and 3.4.
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necessities should itself be necessary in any given sense of necessity. We can ensure this by
demanding that our theory of necessities be closed under a rule of necessitation:

Necessitation If ` A, then ` NecX → XA.

As with the rule N, this rule may be given a similar justification. Given the rule Gen,
and the axiom UI, ` NecX → XA is equivalent to ` ∀X(NecX → XA), or given our
notational conventions, just ` LA. Restated this way, the rule takes on a more familiar
form of necessitation.

The combination of Necessity and Necessitation is a very powerful theory, which has
many substantial consequences about necessities. Let TN0 be the theory H0 ⊕ Necessity ⊕
Necessitation. One theorem of TN0 is that the operator L is Closed.

Proposition 2.1. `TN0 ClosedL.

Proof. By Necessity, we know that NecX → ∀pq(X(p→ q)→ Xp→ Xq) for each X. It is
not hard to see this implies ∀X(NecX → X(p→ q))→ ∀X(NecX → Xp)→ ∀X(NecX →
Xq), which amounts to L(p→ q)→ Lp→ Lq, for all p and q. Once we getKL, Necessitation
will then give us LKL.

Another important theorem of TN0 is the principle below, which states that the operator
it is true that is a necessity (we adopt the convention of writing I for the identity combinator
λp.p):

Identity Nec I.

In H0, every A is provably equivalent to IA. I is therefore a trivial operator. However,
although I is intuitively a necessity, this requires some justification:

Proposition 2.2. `TN0 Identity.

Proof. By applying Necessitation to the H0 theorem p → Ip we have L(p → Ip). We just
showed that L is closed under modus ponens, thus we can get ∀p(Lp → LIp). Also note
that I is closed under modus ponens. So by Necessitation again, we have Logical I and
Closed I. Thus, according to Necessity, I is a necessity.

Recall that when we formalise, for example, the idea that one operator is Closed, we
appeal to both LKX and KX. Seemingly this is redundant because it is tempting to think
that L is factive. But we point out for L to be factive, there must be some factive necessities.
We’ve seen above that Identity provides us the existence of a factive necessity and therefore
the factiveness of L. So now we can derive the following principle in TN0 as well:20

Necessity′ NecX ↔ LNX ∧ LKX.

20One tricky thing is that if we replace Necessity with Necessity′ as an axiom, we cannot directly get
Identity. However, in a great many contexts Identity turns out to be derivable even if we have only Necessity′.
For instance, assume the principle βη of section 1 is accepted. Then note that Lp and LIp are βη-equivalent.
So βη will give us Lp → LIp and therefore LNI. Even if you’re the sort of person who rejects βη because
you believe propositions are structured somehow, we think you should accept the principle that necessarily
p if and only if necessarily it is true that p: NecX → (Xp ↔ XIp). This also suffices to prove Identity:
Because Lp implies NecX → Xp, this principle helps us to get NecX → XIp, from which LIp follows. So
we can have LNI.
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Let’s see one more theorem of TN0, which will be cited later. It says that if X and Y
are necessities, then their composition λp.XY p is also a necessity.

◦ := λXY λp.XY p.

Proposition 2.3. `TN0 NecX → NecY → Nec(X ◦ Y ).

Proof. From NX, we have LY p→ LXY p. By Necessitation and the closure of L, we have
LY p → L(X ◦ Y )p. So given NY , we have ∀p(Lp → L(X ◦ Y )p) and hence N(X ◦ Y ).
If we necessitate this reasoning and distribute L, we can get LNX → LNY → LN(X ◦
Y ). Moreover, observe that the conjunction of KX and XKY implies K(X ◦ Y ). So by
Necessitation and the closure of L, we have LKX → LXKY → LK(X ◦Y ). Next, note that
from NX, we have LKY → LXKY . So we can get NX ∧ LKX → LKY → LK(X ◦ Y ).
Therefore, Necessity lets us conclude that if both X and Y are necessities, so is X ◦ Y .

Finally, note that TN0 allows us to talk about possibilities. We may define a term Pos
of type (t→ t)→ t, which means being a possibility operator, as follows:

Pos := λX.∃Y (NecY ∧ L∀p(Y ¬p↔ ¬Xp)).

This definition guarantees that the dual operator of a necessity (possibility) must be a
possibility (necessity).21 Whenever X is a necessity, we may use X3 for the possibility
λp.¬X¬p.

Although the theory TN0 is strong enough, it is not our final theory. One more axiom
is needed. We motivate it in the following section.

2.3 Mix-and-Match

Our final axiom imposes a closure condition on necessities. As emphasized in the intro-
duction, we are attempting to capture a very liberal conception of necessity in which any
operator with the right sort of formal behaviours counts as a necessity. Thus, for instance,
if X and Y are necessities, then the operator being X-necessary if snow is white and Y
necessary if snow isn’t white is also a necessity. In fact, this result is already a consequence
of the theory TN0 introduced above.22

The final axiom generalizes this idea: whenever W is necessarily a property of necessities,
the operator of possessing all the W -necessities, λp.∀X(WX → Xp), is a necessity too.
Adopting the notation

LW := λp∀X(WX → Xp),

our principle may be formalised as follows:

Mix-and-Match L∀X(WX → NecX)→ NecLW .

21If X is a necessity, then it directly follows from the definition that its dual λp.¬X¬p is a possibility. If
X is a possibility, observe that by our definition, λp.¬X¬p is L-necessarily coextensive with some necessity
Y . It is easy to check that by Necessity′, when two operators are necessarily coextensive in every sense, one
is a necessity only if the other is also a necessity.

22We prove that the operator O = λp.((q → Xp) ∧ (¬q → Y p)) is a necessity whenever both X and Y
are necessities: Given the tautology Xp → q → Xp, by Necessitation, we have LXp → L(q → Xp) and
therefore (Lp → LXp) → Lp → L(q → Xp). The same reasoning applies to Ip → ¬q → Ip and we can
therefore get (Lp→ LY p)→ Lp→ L(¬q → Y p). So we have (Lp→ LXp) ∧ (Lp→ LY p)→ Lp→ L(q →
Xp) ∧ L(¬q → Y p). Observe that L(q → Xp) ∧ L(¬q → Y p) implies LOp. Then by Necessitation again,
LogicalX ∧ LogicalY implies LogicalO. A similar strategy can be employed to show that X and Y are
Closed only if O is Closed.
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Although the principles preceding Mix-and-Match encode a liberal conception of necessity,
Mix-and-Match does not follow from them. The reason is that, for all we have said so far,
it is possible, in some sense of ‘possible’, for there to exist new necessities — necessities
which do not actually exist, as well as their dual possibilities. And moreover, it might
be possible for things to be possible in these new senses of possibility that are not in fact
possible for any actually existing kind of possibility. Now if W were a property of necessities
which possibly contains new kinds of necessity like this, then there would be things that
are possible according to some W -possibility but not possible according to any actually
existing notion of possibility. Roughly, Mix-and-Match ensures that if something is possible
according to a merely possible sort of possibility, it is in fact possible in some sense.

We can leverage these observations to find other assumptions from which Mix-and-Match
can be derived. A strong assumption like this is the assumption that there simply cannot
be any new necessities. We may formulate this principle in terms of the Barcan formula
restricted to necessities:

BFNec ∀X(NecX → LA)→ L∀X(NecX → A).

The informal reason that this principle entails Mix-and-Match should be clear from the
above.23

However, we think this is an overly restrictive assumption: if there could have been
‘alien’ fundamental properties, there could be new laws and nomic necessities corresponding
them (see our discussion in section 5). An alternative and less contentious route to Mix-
and-Match is simply the idea articulated above — that if something is possible according to
some merely possible notion of possibility it is possible according to some actual possibility.
Reformulating this in its contrapositive form allows us to state this principle with our
preferred primitive, Nec:

∀Z(NecZ → Zp)→ ∀X(NecX → X∀Y (NecY → Y p)).

This of course just has the form of the 4 axiom (2p → 22p) for L. Given the assumption
that this principle is itself necessary in every sense of necessity — L∀p(Lp→ LLp) — we may
prove Mix-and-Match. Suppose that W is necessarily a property of necessities. We must
show that LW is also a necessity. LW is easily seen to be Closed, since W necessarily consists
only of Closed operators. It is also Logical because: by the 4 axiom for L, if p is necessary
in every sense, then it is necessary, in every sense, that p possesses all necessities. This
means it is necessary, in every sense, that p possesses every W -operator, since, necessarily,
W -operators are necessities.24

The connection to the 4 axiom does bring to salience a competing picture — suggested in
Fritz [13], Clarke-Doane [7], Roberts [28] — in which the space of possibilities are indefinitely
extensible in something analogous to the way that the set-theoretic hierarchy is sometimes
alleged to be. Roberts [30], for instance, formulates of the idea as follows, where X ≤ Y
stands for Roberts notion of a necessity X being as broad as Y (we introduce the notion in
the present framework in section 3):

23A formal deduction from the L-necessitated version of BFNec to Mix-and-Match can be run in TN0:
Suppose Lp holds. By Necessity, it implies ∀X(NecX → LXp). Then BFNec lets us derive L∀X(NecX →
Xp), which amounts to LLp given the closure of L. So by Necessitation LBFNec implies L∀p(Lp → LLp).
See note 24 for the proof that the latter implies Mix-and-Match.

24Here’s the formal argument in TN0: From ∀X(WX → NecX), we have Lp → LW p. Therefore by
Necessitation and the 4 axiom for L, L∀X(WX → NecX) implies L∀p(LLp→ LLW p), which then implies
L∀p(Lp→ LLW p) given the necessitated version of the 4 axiom, and this amounts to LogicalLW .
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Extensibility L∀X(NecX → ¬L¬∃Y (NecY ∧X ≤ Y ∧ Y � X)).

So understood, Extensibility says that it’s necessary in every sense that for any necessity,
it’s possible in some sense that there is a strictly broader notion of necessity. In such a
picture, the 4 axiom for L is not valid, because it can be possible that there’s a new sort of
possibility in which p is true without there being any actual sense of possibility in which p
is true.

Extensibility is not merely the view that there could have been new sorts of necessity
— a view we find eminently plausible. It is much more radical: it entails, for instance, that
there could have been new necessities strictly broader than any actually existing necessities.
But we feel there is a direct argument against such a view. For consider the operator of
it being possible, in some sense of ‘possible’, that p. We contend that being possible in
some sense of possibility is itself a kind of possibility. However Extensibility entails that it’s
possible, in some sense of possibility, that there is a notion of possibility strictly wider than
it. That is to say, it’s possible, in some sense, that there’s a proposition p, and a notion
of possibility, X, such that (i) it’s X-possible that p, and (ii) it’s not possible in any sense
that p. But this is clearly incoherent.

This argument rested, of course, on the assumption that being possible in some sense
of possibility is itself a sense of possibility, or equivalently to the assumption that L is a
necessity. However, we think this principle is compelling in its own right. This brings us to
a final principle from which Mix-and-Match could be derived, namely the assumption that
being necessary in every sense of necessity is itself a form of necessity.

L-Necessity NecL.

Clearly, given Necessity, NecL implies LogicalL, which is just to say that L∀p(Lp→ LLp),
so our argument for Mix-and-Match from the 4 axiom goes through. Indeed, this implication
goes in the other direction, so that NecL could be substituted for Mix-and-Match, as an
alternative axiomatization of our theory.

Let us end with one final thought on the view that modal notions are indefinitely exten-
sible. In our motivating discussion we often appealed to the idea that a genuinely Logical
(or Closed) operator shouldn’t contingently have the property λX.∀p(Lp→ LXp), namely
N , and we secured this by requiring that it be necessary for every actual necessity that the
operator in question has N . We have seen that necessities are closed under composition
(Proposition 2.3), so that this condition also ensures that if a proposition is necessary in
every sense, then the result of prefixing any finite string of necessities to that proposition is
also true. But if your view is that not only could there have been necessities that don’t in
fact exist, but there could have been necessities broader than any actual necessity, condi-
tions stated in terms of being necessary for every actually existing necessity (or even every
finite string of actually existing necessities) seems insufficiently strong. If X is a necessity,
it shouldn’t be possible, in some sense, that it is contingent in some sense that it applies
only to truths. For X to be truly Logical, on this picture, it should be the case, speaking
crudely, that for any string of necessities Z1, Z2, Z3, . . . which may not all actually exist,
but are such that Z1 exists, Z2 Z1-possibly exists, Z3 (Z1 ◦Z2)-possibly exists, etc, that the
p be (Z1 ◦ · · · ◦Zn)-necessary. One way to capture this is to say that p is not only necessary
in every sense, but necessary in every sense that it’s necessary in every sense, necessary in
every sense that it’s necessary in every sense that it’s necessary in every sense, and so on ad
infinitum. We can encode this using Church’s numerals: a Church numeral is an operation
n of type (t → t) → (t → t) that takes an operator X as it’s argument, and returns the
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operator that applies X to a proposition n times, λp.X . . .X︸ ︷︷ ︸
n

p

0 := λX.X;

suc := λn.λX.λp.(nX)Xp;

ChurchNum := λn.∀W (W0 ∧ ∀m(Wm→W (sucm))→Wn).

So we think the view under consideration should not be giving the operator L the theoretical
role we have been assigning it here, but instead the operator of having all finite iterations
of L:

L∗ := λp.∀n(ChurchNumn→ (nL)p).

Indeed, if you simply replace L with L∗ in TN0, and make a modest modal assumption about
the Church numerals — roughly that there couldn’t have been any ‘non-standard’ Church
numerals (i.e. Church numerals that don’t in fact exist) — you can prove that L∗ satisfies
the 4 axiom. Since L∗ is easily seen to be Closed in the modified sense, and the 4 axiom
guarantees its Logicality, we can directly show that L∗ is a necessity: so in this reinterpreted
theory there is no need to make this extra assumption.25 So we think the availability of
the operator L∗, and the fact that it behaves like a genuine modality, provides us with a
powerful argument against the modal indefinite extensibilist.

3 The theory of necessities

Putting this together we are now in a position to state our theory of necessities. As noted,
we adopt the following definitions:

� LW := λp.∀X(WX → Xp);

� L := λp.∀X(NecX → Xp);

� K := λX.∀pq(X(p→ q)→ Xp→ Xq);

� N := λX.∀p(Lp→ LXp);

� Closed := λX.(KX ∧ LKX);

� Logical := λX.(NX ∧ LNX).

25The modest assumption about the Church numerals is simply this: the property of being a Church
numeral is modally rigid, which we can spell out in terms of the Barcan formula and its converse for
quantifiers restricted to the Church numerals:

Numerical Rigidity ∀n(ChurchNumn→ L∗X)↔ L∗∀n(ChurchNumn→ X).

The reason this principle is necessary is slightly surprising. It is easy to prove, by induction on the Church
numerals, that if something is a Church numeral it is L∗ necessarily so, and so this property cannot shrink
across modal space. However using the model theory in [1], we were able to find models in which the
Church-numerals expand: in the actual world they consist of the standard Church numerals, but there are
non-actual worlds in which you can iterate an operator a ‘non-standard’ number of times.

The reader may wonder why we did not take this route over the one we have presently taken. The reason
is that, although we think the assumption of Numerical Rigidity is extremely plausible, it is a substantive
metaphysical principle, and by assuming it we would no longer be able to prove all of our conservativity
results. For instance, we wouldn’t be able to show that our theory is interpretable in Classicism (since that
theory also does not prove the rigidity of the Church numerals).
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Let TN be H0 ⊕Necessity⊕Mix-and-Match⊕Necessitation:

Necessity NecX ↔ LogicalX ∧ ClosedX;

Mix-and-Match L∀X(WX → NecX)→ NecLW ;

Necessitation If ` A then ` LA.

Before we start to explore our theory TN, let’s define a useful notion. Say that a propo-
sition p entails a proposition q if the former necessarily implies the latter relative to all
senses of necessity, i.e. L(p→ q). This notion of entailment can be naturally generalized so
that it can apply to any item of a type that ends in t:

≤σ:= λXY.L∀x1 . . . xn(Xx1 . . . xn → Y x1 . . . xn),

where σ = σ1 → · · · → σn → t and x1, . . . , xn are of types σ1, . . . , σn respectively.

3.1 Basic results

We will begin by proving some basic results involving the notion Nec, which we introduced
informally as being a necessity.

Firstly, observe that by definition:

L = λp.∀X(NecX → Xp) = LNec.

Since L∀X(NecX → NecX) is trivial, Mix-and-Match allows us to conclude that L, the
operator of possessing all necessities, is itself a necessity!

One may wonder what general principles L obeys. Here, we show that the modal logic
governing L is at least as strong as S4. In section 6.1, it will be shown that no non-theorem
of S4 can be derived in the modal fragment of TN (although it is consistent with TN that
the theorems of stronger modal logics are in fact true). The rule of necessitation is provided
by the rule Necessitation. Given our axiom Necessity, it is an immediate consequence of L’s
being a necessity that it obeys the modal axioms K and 4. The fact that L obeys T is just
an immediate corollary of I’s being a necessity, which has already been shown in section
2.2.

An extremely significant consequence of our theory TN is that L is not only a necessity,
but the broadest necessity. One necessity can be broader than another. For instance,
philosophers typically judge metaphysical necessity to be broader than physical necessity,
and this in turn to be broader than various kinds of practical necessities. But what does it
mean, in general, for one necessity operator to be broader than another? Let’s turn to the
notion of being as broad as, since the notion of being broader than can be easily understood
in terms of it: X is broader than Y if X is as broad as Y but not vice versa.

Certainly if necessity X is as broad as necessity Y , then a proposition is X-necessary
only if it is also Y -necessary. However, this relation between necessities could obtain just
by coincidence. If X were genuinely broader than Y , it wouldn’t be contingent that every
X-necessary proposition is a Y -necessary proposition: the inclusion should be necessary.26

26Consider the operator O := λp.((A → 2metap) ∧ (¬A → Ip)), where 2meta is metaphysical necessity
and A is the proposition that Biden is the President of the U.S. It is a necessity (since we have shown in
section 2.3 that λp.((q → Xp) ∧ (¬q → Y p)) is a necessity whenever X and Y are necessities). Moreover,
in the actual world, every proposition has O is metaphysically necessary. But O might, in many possible
circumstances, apply to some propositions which are not metaphysically necessary (in those circumstances).
We are reluctant to think O is as broad as 2meta.
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So we say that X is as broad as Y if in every sense of necessity, a proposition is X-necessary
only if it is Y -necessary: L∀p(Xp → Y p); in other words, X entails Y : X ≤t→t Y .27 A
broadest necessity is a necessity that is necessarily as broad as all necessities in every sense
of necessity:

BroadestNec := λZ.(NecZ ∧ L∀X(NecX → Z ≤ X)).

Theorem 3.1. `TN BroadestNecL.

Proof. We know L is a necessity. Then observe that ∀p(Lp → LXp) → ∀p(Lp → Xp) is a
theorem of TN because L is factive. So by Necessitation and the closure of L, L∀p(Lp →
LXp) → L ≤ X. Given Necessity, we have NecX → L ≤ X, and by using Necessitation
again, we have L∀X(NecX → L ≤ X).

It’s worth noting that there might be many equally broadest necessities: they might contain
different constituents, for instance. However it strikes us that there is something especially
natural about the definition of L — namely that it is nearly built into the definition that it
is as broad as any necessity — so that the title of ‘the broadest necessity’ seems particularly
apt for this operator.

Let’s continue to prove more results concerning L. Because L is closed under modus
ponens, an implication is that L is closed under finite entailment. Given finitely many
propositions p1, . . . , pn, they jointly entail the proposition p just in case p1∧· · ·∧pn ≤t p. So
if every pi is L, we can get L(p1∧· · ·∧pn) and then derive Lp.28 As we discussed in section 2.1
however, to deal with cases of infinite entailment, we need a more general characterization
of entailment. Say a collection of propositions represented by a propositional property X
entails p if every proposition entailing every member of X entails p, i.e. ∀q(∀r(Xr → q ≤
r) → q ≤ p).29 Accordingly, there is a stronger notion of being closed: an operator X is
closed in this sense just in case X necessarily applies to every proposition entailed by X in
every sense of necessity:

Closed∞ := λX.L∀p(∀q(∀r(Xr → q ≤ r)→ q ≤ p)→ Xp).

Surprisingly, we can prove that L also satisfies Closed∞ (a fact that cannot be proven of an
arbitrary necessity in TN alone).

Proposition 3.2. `TN Closed∞ L.

Proof. Suppose we have ∀q(∀r(Lr → q ≤ r) → q ≤ p). An instance of it just amounts
to ∀r(Lr → L(> → r)) → L(> → p). Since r → > → r is a tautology, by Necessitation
and the closure of L, we have ∀r(Lr → L(> → r)). Then we get L(> → p). Lp will be
derived from L(> → p) plus L>. The whole reasoning can be necessitated, which will give
us Closed∞ L.

27Here we deviate slightly from Bacon [1], where the following definition of the as broad as relation
is presented instead λXY.∀Z(NecZ → ∀pZ(Xp → Y p)). They are equivalent, in that paper, given the
Functionality principle (or the Barcan formula for L). But in the context of the weaker principle Modalized
Functionality (discussed in the appendix of that paper), and in the context of this paper, they are not
equivalent. Roughly, in these contexts there could have (in some sense of ‘could have’) been more propositions
than there in fact are: our definition requires that according to every possibility, all existing X-propositions
are Y , whereas the definition in [1] only requires the inclusion to hold for the actually existing propositions.
But intuitively, an operator cannot be as broad as another if it’s possible that a proposition falls under the
first but not the second.

28Thus Necessity and Theorem 3.1 jointly imply that every necessity is closed under finite entailment.
29This definition performs well because it guarantees, by the transitivity of ≤, that p’s being entailed by

X is inconsistent with its entailing a proposition which is not entailed by X.
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Another important property of L is that it satisfies the converse Barcan formula for each
type σ:

CBFσ L∀σxA→ ∀σxLA.

The type e instance of this principle is a well-known theorem of first-order modal logic. The
derivation at other types is entirely parallel: since an instance of UI yields ∀σxA → A, by
Necessitation and the closure of L, L∀σxA → LA and then by Gen, we have L∀σxA →
∀σxLA.30

The converse Barcan formula tells us that if something exists, it does so necessarily.
This is one of the surprising consequences of combining quantificational logic with modal
logic. It effectively boils down to the fact that we have chosen classical logic, rather than
a free logic, as our basic quantificational theory. Some philosophers may wish to avoid this
consequence by weakening the theory H0 along the lines of a free logic, although we will not
pursue that line of inquiry here.31

One particular consequence of the converse Barcan formula for type (t→ t)→ t is that
necessity operators necessarily exist. But you may wonder whether necessity operators are
necessarily necessity operators, as the principle below states:

Persistence NecX → LNecX.

The answer is “Yes”.

Proposition 3.3. `TN Persistence.

Proof. We have Necessity′: Nec↔ LNX ∧ LKX. Given the closure of L, this amounts to
Nec ↔ L(NX ∧ KX). Necessitating it and then distributing the L operator will give us
LNec↔ LL(NX ∧KX). By the 4 axiom for L, we also have L(NX ∧KX)→ LL(NX ∧
KX).

As in the case of basic first-order modal logic, our theory does not prove the Barcan
formula:

BFσ ∀σxLA→ L∀σxA.

This means that, although once something exists it does so necessarily, new things can come
into existence. Prior [25] noted that given the B axiom (p → 2¬2¬p) one can derive the
Barcan formula from the converse Barcan formula. However the B axiom for L is not a
theorem of TN either.32 Another observation due to Prior is that the B axiom guarantees

30Indeed, this reasoning works for any necessity — one can show by analogous reasoning that NecX →
X∀σxA→ ∀σxXA is a theorem of TN.

31For more discussion of this in the context of first-order modal logic, see Linsky and Zalta [21], Williamson
[34]. Bacon and Dorr [4] contains discussion of these issues in higher-order logic in the context of Classicism.
There it is shown — given certain background assumptions, the most important of which is the assumption
that being true entails being entailed by a truth — that even if the official quantifiers of the theory obey a
free logic, one can still define ‘unrestricted’ quantifiers satisfying UI, and by extension the converse Barcan
formula. So the necessity of existence is hard to avoid when one is explicitly talking about existence in the
unrestricted sense.

32This can be established as follows. Theorem 6.1 provides us with a translation of LNec to L, that takes
theorems of TN to theorems of Classicism, and that maps any modal principle involving L to something
equivalent in Classicism to the corresponding modal principle involving 2>. But by the model theoretic
techniques in Bacon [1], any modal sentence that can be refuted in a Kripke frame can be refuted in a
corresponding model of Classicism built over that frame. So the B axiom for 2> is not a theorem of
Classicism, and thus not a theorem of TN.
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the necessity of distinctness, but again, without it the necessity of distinctness is not a
theorem.33 So in our theory we cannot prove such a principle:

NDσ x 6=σ y → L(x 6=σ y).

We will consider strengthenings of the theory with principles such as the B axiom for L in
section 4.

We may also derive forms of the converse Barcan formula for quantifiers restricted by
certain properties, including both of the following:

CBFL L∀p(Lp→ A)→ ∀p(Lp→ LA);

CBFNec L∀X(NecX → A)→ ∀X(NecX → LA).

Intuitively, CBFL says that the extension of L cannot shrink and CBFNec says that the
extension of Nec cannot shrink. They follow, given our previous observations, from the 4
axiom for L and the persistence of necessities.34

3.2 Necessities and modal logics

In this section we will introduce, for every finitely axiomatizable modal logic, a corresponding
notion of necessity satisfying that logic. It will turn out that for some logics, but not all
logics, there exists broadest necessities satisfying that logic. In particular, we will see that
the operator of possessing all S5-necessities is itself an S5-necessity, and is thus a broadest
such necessity among that class.

Let L2 be the higher-order language equipped with a necessity operator constant 2

of type t → t and L2
P the propositional modal fragment of L235; so L2

P amounts to a
propositional modal language. For every A ∈ L2

P where p1, . . . , pn are all propositional
variables that occur in it, let A] be L∀p1 . . . pnA. Given a normal modal logic M ⊆ L2

P,
an operator O is said to be an M-necessity if A][O/2] holds for all A ∈ M, where A][O/2]
is the result of substituting O for each occurrence of 2 in A].36 This natural idea can be
captured in our theory of necessities so long as the logic M is finitely axiomatizable. By a
‘finitely axiomatizable’ normal modal logic, we simply mean one that can be obtained by
adding finitely many axioms, A1, . . . , An ∈ L2

P, to K and closing under the rules of K. The
property of being an M-necessity, M, can then be defined in this way:

M := λX.(LNX ∧ LKX ∧A]1[X/2] ∧ · · · ∧A]n[X/2]).

For instance, the property of being an S5-necessity is just λX.(LNX ∧ LKX ∧ 5][X/2]),
where 5][X/2] is L∀p(¬X¬p→ X¬X¬p). The adequacy of our definition is secured by the
following result, which says, roughly, that for any theorem of M, TN proves the corresponding
theorem about any particular M-necessity.

Proposition 3.4. Given a normal modal logic M ⊆ L2
P which is finitely axiomatizable, if

`M A, then `TN MX → A][X/2].

33Prior’s original observation in [25] is presented in the context of the system S5. He later presents an
argument, attributed to E. J. Lemmon that uses only the B axiom [26] p.146.

34In fact, we have `TN0
CBFL ↔ ∀p(Lp→ LLp) and `TN0

CBFNec ↔ Persistence.
35More precisely, L2P may be defined as the smallest set containing ⊥ (:= ∀t→t∀t), →, 2 plus infinitely

many t-type variables p, q, . . . , and closed under the term-forming rule of application: if M : σ → τ and
N : σ, then (MN) : τ

36The precise definition of this substitution is similar to the one in note 5.
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Proof. By induction on the length of a derivation in M. In particular, when A is derived from
someB through N, A[X/2]] amounts to L∀p1 . . . pnXB[X/2]. MX implies LNX∧LKX, so
by Necessity′, it implies NecX. Then by Theorem 3.1, MX and L∀p1 . . . pnB[X/2] jointly
imply ∀p1 . . . pnXB[X/2]. Given the 4 axiom for L, MX and B][X/2] imply A][X/2]. So
the induction hypothesis MX → B][X/2] will let us conclude that MX → A][X/2].

So every necessity is a K-necessity. Consequently LK and L are L-necessarily coextensive
and LK is itself a K-necessity.37 In fact it can be shown that LM is an M-necessity for any
finitely axiomatizable M included in S4:

Proposition 3.5. Given a normal modal logic M ⊆ S4 which is finitely axiomatizable,
`TN MLM.

Proof. Note that L is an S4-necessity and, since M ⊆ S4, an M-necessity. So LM entails
L by definition. Conversely, LM is a necessity by Mix-and-Match, so L entails LM too.
Since L and LM are necessarily coextensive in every sense of necessity and the former is an
M-necessity, so is the latter.

Could such a result hold for all finitely axiomatizable normal modal logics? The answer is
negative. Consider for example S4.2, axiomatized over S4 by adding the G axiom (¬2¬2p→
2¬2¬p). There’s no way to prove that LS4.2 satisfies G. Indeed, there are models in which
there is no broadest S4.2-necessity at all.38

The good news, however, is that this result indeed holds for both B and S5. LB and LS5

obey N and K because they are necessities; they obey T because I is an S5-necessity. The
big task to show that LB obeys the B axiom and LS5 obeys the 5 axiom.

Proposition 3.6. `TN p→ LB¬LB¬p.

Proof. Suppose p is true. For each B-necessity X, we can get X¬X¬p from p. Due to
the 4 axiom for L, X is necessarily a B-necessity in every sense of necessity. So we have
LBX ∧X¬X¬p, from which, by Theorem 3.1, we can get X BX ∧X¬X¬p and therefore
X∃X(BX ∧ ¬X¬p).

But to finish the whole proof for LS5, we have to make a detour. Let’s start with the
following definition:

S5∗ := λZ.∀W (∀X(S5X →WX) ∧ ∀Y Y ′(WY ∧WY ′ →W (Y ◦ Y ′))→WZ).

Intuitively S5∗ mimics the smallest collection containing all S5-necessities and closed under
the composition of operators: so basically the finite strings of compositions of S5-necessities.

Proposition 3.7. `TN S5∗X ∧ S5∗ Y → S5∗(X ◦ Y ).

37Note that in a fine-grained setting LK may not be identical to L because λX.(LNX ∧ LKX) may not
be identical to Nec. But it’s still easy to see that they are necessarily coextensive in every sense.

38To show this negative result, we may exploit reasoning about ordinary Kripke models as outlined
in note 32. The rough idea is this: suppose that the structure of the broadest necessity, L, can be
represented by a Kripke frame that consists of three worlds in a forking structure — W = {0, 1, 2},
R = {(0, 0), (0, 1), (0, 2), (1, 1), (2, 2)}. G characterises convergent frames, and the only convergent sub-
relations of R are the identity relation, R \ {(0, 1)} and R \ {(0, 2)}. In this model, there are two maximally
but incomparable S4.2-necessities, given by R \ {(0, 1)} and R \ {(0, 2)}, and so there is no broadest S4.2-
necessity.
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Proof. Let’s fix a W . Assume that ∀X(S5X → WX) and ∀Y Y ′(WY ∧WY ′ → W (Y ◦
Y ′)). Given that S5∗X and S5∗ Y , we can derive WX as well as WY . By appealing to
∀Y Y ′(WY ∧WY ′ →W (Y ◦ Y ′)) again, we have W (X ◦ Y ).

The definition of S5∗ allows us to prove things about S5∗ by induction: for any W , if W
applies to every S5-necessities, and is closed under composition (of things in S5∗), we may
conclude that S5∗X →WX for all X.

Proposition 3.8. (i) `TN S5∗X → NecX; and (ii) `TN S5∗X → LS5∗X.

Proof. (i) It is trivial that all S5-necessities are necessities. Proposition 2.3 tells us that Nec
is closed under composition.

(ii) Recall that we have Necessitation and the closure of L. It is trivial that S5X →
S5∗X. So by the 4 axiom for L, S5X → LS5∗X. Further, according to Proposition 3.7,
the property of being L-necessarily an S5∗ is closed under composition.

Let’s define the notion of reversal here. It will help us to present our core idea involved
in the next proof. Fix a necessity X. A reversal of it is a necessity Y : it can trivialise
X in the sense that the composition of X and λp.(¬Y ¬p) amounts to the truth operator
I; more intuitively, the reversal Y brings us back to the actual world from any accessible
X3-possibility.39 For example, the tense operators it will always be the case that and it was
always the case that are reversals of each other.

Rev := λXY.∀p(p→ X¬Y ¬p).

Proposition 3.9. `TN S5∗X → ∃Y (S5∗ Y ∧ LRevXY ).

Proof. If X is an S5-necessity, it obeys the B axiom, so it’s a reversal of itself necessarily.
Suppose X1 and X2, which belong to S5∗, have reversals Y1 and Y2 necessarily, which belong
to S5∗ too. From L∀p(p→ X2¬Y2¬p), we can get L(¬Y1¬p→ X2¬Y2¬(¬Y1¬p)). Since X2

belongs to S5∗, it is a necessity by Proposition 3.8-(i). So we have L(¬Y1¬p → X2¬(Y2 ◦
Y1)¬p). Since X1 is also a necessity, we then have X1¬Y1¬p→ (X1 ◦X2)¬(Y2 ◦Y1)¬p. From
L∀p(p → X1¬Y1¬p), we have p → X1¬Y1¬p. Therefore, Rev(X1 ◦X2)(Y2 ◦ Y1). Then by
Proposition 3.8-(ii) and the 4 axiom for L, we can conclude that LRev(X1 ◦X2)(Y2 ◦ Y1).
Finally, note that according to Proposition 3.7, Y2 ◦ Y1 belongs to S5∗.

Proposition 3.10. (i) `TN S5X → LS5∗ ≤ X; (ii) `TN ¬LS5∗¬p → LS5∗¬LS5∗¬p; and
(iii) `TN S5LS5∗ .

Proof. (i) Just recall that S5X implies S5∗X.
(ii) Suppose we have ¬X¬p for someX belonging to S5∗. For all Y in S5∗, it is guaranteed

by Proposition 3.9 that it has a reversal Y ′ in S5∗. Hence, ¬X¬p implies Y ¬Y ′X¬p, which
then implies Y ¬(Y ′ ◦ X)¬p. Note that Y ′ ◦ X belongs to S5∗. So we can conclude that
∃Z(S5∗ Z ∧ Y ¬Z¬p). Given Proposition 3.8-(ii), it is not hard to derive such a converse
Barcan formula restricted to necessities in S5∗: NecY → Y ∀Z(S5∗ Z → A)→ ∀Z(S5∗ Z →
Y A). Because Y is indeed a necessity, we have Y ∀Z(S5∗ Z → A) → ∀Z(S5∗ Z → Y A).
Replace A with A → ∃Z(S5∗ Z ∧ A). Note that we have Y ∀Z(S5∗ Z → A → ∃Z(S5∗ Z ∧
A)). Thus, we can get ∀Z(S5∗ Z ∧ Y A → Y ∃Z(S5∗ Z ∧ A)), which turns out to imply

39Recall that we’ve shown in section 2.2 that X is a necessity only if X3, namely λp.(¬X¬p), is the dual
possibility.
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∃Z(S5∗ Z ∧ Y A) → Y ∃Z(S5∗ Z ∧ A). Then from ∃Z(S5∗ Z ∧ Y ¬Z¬p), we are allowed to
infer that Y ∃Z(S5∗ Z ∧ ¬Z¬p).

(iii) By Proposition 3.8-(i) and Mix-and-Match, LS5∗ is a K-necessity. It obeys T for
I is an S5-necessity. Since we have also proved that LS5∗ obeys 5, LS5∗ is itself an S5-
necessity.

Proposition 3.11. `TN ¬LS5¬p→ LS5¬LS5¬p.

Proof. Suppose that ¬X¬p for some S5-necessity X. Given an S5-necessity Y , notice that
by Proposition 3.10, ¬X¬p implies ¬LS5∗¬p and then implies LS5∗¬LS5∗¬p, which turns
out to imply Y ¬LS5∗¬p; moreover, it’s the case that S5LS5∗ . So by the 4 axiom for L,
we have LS5LS5∗ ∧ Y ¬LS5∗¬p, and by Theorem 3.1, we have Y S5LS5∗ ∧ Y ¬LS5∗¬p and
therefore Y ∃Z(S5Z ∧ Y ¬Z¬p).

In fact, it can be further shown that if A ∈ L2
P is not derivable in S5, then A[LS5/2]

cannot be derived in TN either (see section 6.1). We believe this conclusion has some
philosophical significance. Kripke famously introduced the notion of metaphysical necessity
in [20]. There he introduced it as the necessity “in the highest degree”. But Kripke, and
early commentators, also said many specific things about it which have since become to
be taken as constitutive of the notion, for instance facts about the necessity of origins, or
that it is governed by a logic of S5. The former idea of necessity in the highest degree can
be straightforwardly captured using our notion of broad necessity, L.40 However, we have
taken seriously the idea that there might be notions of necessity broader than metaphysical
necessity, and also the idea that the logic of L might not include the 5 axiom.41 The
existence of the broadest S5-necessity LS5 provides us with a natural fall-back for playing
the role of metaphysical necessity, as it appears in post-Kripkean modal metaphysics.

3.3 The pre-lattice of necessities

At the beginning of section 3, we defined the entailment relation ≤. In the current sub-
section, we investigate the logic of ≤ over the space of necessity operators. For instance,
it is fairly easy to show that ≤ is a preorder over necessities: that is, it is a reflexive and
transitive order.42 Given our present assumptions, ≤ cannot be shown to be a partial order:
that is to say, we do not have that if X ≤ Y and Y ≤ X then X = Y . The reason is that
our theory is consistent with many very fine-grained conceptions of operators, in which two
operators may be necessarily coextensive, in every sense of necessity, but still be distinct
— perhaps because they are structured differently. (Later we will consider an axiom, In-
tensionalism, which forces ≤ to be a partial order.) When X and Y are just as broad as
each other, we will write X ∼ Y . ∼ is clearly an equivalence relation, given the reflexivity
and transitivity of ≤. Indeed, modulo ∼, we talk as though ≤ is partial order, and freely
employ lattice-theoretic notions, like meets and joins.

40Williamson [36] and Roberts [30] recently put forward an alternative interpretation: according to them,
metaphysical necessity should be the broadest objective necessity but may not be a broadest necessity. See
section 5 for more discussion.

41See Bacon [1], §5 for positive arguments according to which it is weaker than S5. Although those
arguments are originally run under the assumption of Classicism, they can be smoothly moved into our
current grain-neutral setting without any loss of argumentative power, so we won’t repeat them here.

42Since we have Persistence, Reflexivity can be established by necessitating the trivial truth NecX →
∀p(Xp→ Xp) and Transitivity can be established by necessitating the trivial truth NecX∧NecY ∧NecZ →
∀p(Xp→ Y p)→ ∀p(Y p→ Zp)→ ∀p(Xp→ Zp).
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Given that ≤ satisfies the constraints of the familiar mathematical notion of being a
preorder, one might wonder what other lattice-theoretic properties it has. For instance,
does it have a top and a bottom element? We have already shown that there are necessities
that are as broad as any necessity: L (and any other necessity exactly as broad as L). And
it is easy to see that there are necessities that are no broader than any necessity: λp.> (and
any other necessity that is exactly as broad as λp.>). (In the case that ≤ is a partial order,
L and λp.> are the unique broadest and narrowest necessities respectively.) We might also
ask whether the necessities have finite meets and joins under ≤, making it a pre-lattice. And
if so, whether the resulting pre-lattice is distributive. We will answer the former question
in the affirmative. The main theorem of this subsection is thus:

Theorem 3.12. According to TN, necessities forms a bounded pre-lattice under ≤.

In other words, all of the following principles can be derived within our theory of necessities:

Reflexivity NecX → X ≤ X;

Transitivity NecX ∧NecY ∧NecZ → X ≤ Y → Y ≤ Z → X ≤ Z;

Minimum ∃X(NecX ∧ ∀Y (NecY → X ≤ Y ));

Maximum ∃X(NecX ∧ ∀Y (NecY → Y ≤ X));

Meets NecX ∧NecY → ∃Z(NecZ ∧ Z ≤ X ∧ Z ≤ Y ∧ ∀Z ′(NecZ ′ ∧ Z ′ ≤ X ∧ Z ′ ≤ Y →
Z ′ ≤ Z));

Joins NecX ∧ NecY → ∃Z(NecZ ∧X ≤ Z ∧ Y ≤ Z ∧ ∀Z ′(NecZ ′ ∧X ≤ Z ′ ∧ Y ≤ Z ′ →
Z ≤ Z ′)).

We have described how to get Reflexivity, Transitivity, Minimum and Maximum above.
The existence of meets may be established by showing that if X and Y are necessities then
the conjunctive operator λp.(Xp ∧ Y p) is a necessity and satisfies the conditions for being
a meet:

u := λXY λp.(Xp ∧ Y p).

Proposition 3.13.

(i) `TN NecX ∧NecY → Nec(X u Y );

(ii) `TN NecX ∧NecY → X u Y ≤ X ∧X u Y ≤ Y ;

(iii) `TN NecX ∧NecY → ∀Z(NecZ ∧ Z ≤ X ∧ Z ≤ Y → Z ≤ X u Y ).

Proof. (i) Clearly, if X and Y are necessities, then we can get ∀p(Lp → LXp ∧ LY p),
which amounts to ∀p(Lp→ L(X u Y )p). So by the 4 axiom for L, we can infer L∀p(Lp→
L(X uY )p), which amounts to LN(X uY ), from NecX and NecY . For similar reasons, we
can derive LK(X u Y ) as long as X and Y are necessities.

(ii) Just observe that (X u Y )p→ Xp and (X u Y )p→ Y p are theorems of H0.
(iii) Note that (Zp→ Xp) ∧ (Zp→ Y p)→ Zp→ (X u Y )p is a theorem of H0.

The meet of two necessities is the obvious generalization of the meet operation on propo-
sitions under the entailment ordering: conjunction. One might have näıvely thought that the
join of two necessities would be defined similarly as their disjunction, i.e. λXY λp.(Xp∨Y p).
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But this is not so. The disjunction of two necessities need not be closed under modus po-
nens: for instance p might be X-necessary but not Y -necessary, p→ q might be Y -necessary
but not X-necessary, allowing q to be neither X nor Y -necessary. But the join of X and
Y will be given by the operator representing the smallest collection containing all X and
Y -propositions and closed under modus ponens:

t := λXY λp.∀Z(∀q(Xq ∨ Y q → Zq) ∧KZ → Zp).

Proposition 3.14.

(i) `TN NecX ∧NecY → Nec(X t Y );

(ii) `TN NecX ∧NecY → X ≤ X t Y ∧ Y ≤ X t Y ;

(iii) `TN NecX ∧NecY → ∀Z(NecZ ∧X ≤ Z ∧ Y ≤ Z → X t Y ≤ Z).

Proof. (i) Note that both Xp and Y p can imply (X tY )p. So L∀p(Xp∨Y p→ (X tY )p) is
derivable. If X and Y are necessities, then by the 4 axiom for L, we can derive L∀p(Lp→
L(XtY )p), which amounts to LN(XtY ), from the conjunction of L∀p(Xp∨Y p→ (XtY )p)
and LNX/LNY . The case of LK(X t Y ) is obvious; we leave the proof as an exercise.

(ii) Just observe that Xp→ (X t Y )p and Y p→ (X t Y )p are theorems of H0.
(iii) Note that (Xp → Zp) ∧ (Y p → Zp) → Xp ∨ Y p → Zp is a theorem of H0 and Z’s

being a necessity implies its being closed under modus ponens.

There is a question that we have not been able to settle: is this ordering distributive?43

Distributivity NecX ∧NecY ∧NecZ → X u (Y t Z) ∼ (X u Y ) t (X u Z).

It is worth emphasizing that this principle is non-trivial even under the assumption of
Classicism, even when the operators as a whole form a distributive lattice under ≤. The
reason is that while the meet of two necessities in the lattice of all operators is the same
as their meet in the lattice of necessities, the join of two necessities in the lattice of all
operators, namely their disjunction, is in general distinct (indeed ≤-lower than) their join
in the lattice of necessities.

We do not claim that the above is an exhaustive list of the distinctive features of the
lattice of necessities, but feel it is enough to motivate this investigation. Let us end the
section by posing a question of completeness. Could there be an equational theory in the
operators of u and t which is complete for the lattice of necessities? More specifically,
consider the algebraic language in variables, u and t. An individual term s in the alge-
braic theory can be translated into an operator term of higher-order logic by mapping the
individual variables x1, . . . , xn in s to operator variables, X1, . . . , Xn and translating u and
t into the expressions by the same name defined above. An equation s = r may then be
translated to a corresponding formula of the form M ∼ N , which may then be prefixed by a
string of restricted universal quantifiers, ∀X1 . . . Xn(NecX1 ∧ · · · ∧NecXn → . . . ) to obtain
a closed sentence which we’ll call (s = r)∗. Let the equational theory of necessities be the
set of equations s = r such that (s = r)∗ is a theorem of TN. Question: can the equational
theory of necessities be axiomatized by a finite or recursive set of equations?

43In fact, if X, Y and Z are all necessities, it is not difficult to prove (X u Y ) t (X u Z) ≤ X u (Y t Z):
Suppose we have (X uY )t (X uZ). It suffices to show Xp and ∀Z′(∀q(Y q∨Zq → Z′q)∧∀qr(Z′(q → r)→
Z′q → Z′r) → Z′p). To show them, just notice these two theorems of H0: (Xp ∧ Y p) ∨ (Xp ∧ Zp) → Xp
and ∀q(Y q ∨ Zq → (Xq ∧ Y q) ∨ (Xq ∨ Zq)). What we are not able to show is the other direction, and we
suspect it doesn’t generally hold.
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3.4 Relative necessities

Sometimes one sort of necessity is a restriction of another. For instance, it is widely believed
that physical necessity is a restriction of metaphysical necessity. By contrast, Kripke is
sometimes read as having demonstrated that metaphysical necessity is neither a restriction
of a priori truth nor, conversely, that a priori truth is a restriction of metaphysical necessity.
A number of authors have tried to provide a general definition of what it means for one
necessity to be a restriction of another. Suppose, for example, that a physical necessity is a
proposition metaphysically entailed by laws of physics. Following this line of thought, Smiley
[31] proposed that being a physical necessity could be analysed in terms of metaphysical
necessity and a sentential constant P, denoting the conjunction of the physical laws in the
actual world (we use 2meta and 2phys for metaphysical necessity and physical necessity
respectively):

2phys := λp.2meta(P→ p).

However, Humberstone [18] raised a number of problems for this account.44 For example,
it is widely accepted that the logic of metaphysical necessity is not weaker than S4. But if
so, it directly follows that 2phys defined by Smiley also obeys the 4 axiom no matter what
physical laws are.45 Physical necessity may or may not obey the 4 axiom. Even though it
obeys the 4 axiom, this is due to the nature of phyiscal laws, not its being a restriction of
metaphysical necessity.46

Hale and Leech [16] rightly point out the problem is that Smiley’s definition fails to track
which propositions are the laws of physics at different worlds, and propose a definition in
terms of a property of propositions, Law, which characterises the propositions that are laws
of physics, and suggest that

2phys := λp.∃q1 . . . qn(Law q1 ∧ · · · ∧ Law qn ∧2meta(q1 ∧ · · · ∧ qn → p)).

But as Roberts [29] emphasizes, this account faces some different problems. A nearly un-
controversial idea in modal philosophy is that if necessity X is a restriction of necessity
Y , then it should be (at least) Y -necessary that every Y -necessary proposition is also an
X-necessary proposition. Hale and Leech’s definition of relative necessity, however, is in
conflict with this idea. Just imagine a metaphysical possibility according to which there
are no physical laws. At this possibility, 2phys applies to nothing but 2meta still applies to
something. Consequently, ∃p(2metap ∧ ¬2physp) turns out to be metaphysically possible.

Roberts [29] then put forward a novel account which overcomes all of these problems.
But he doesn’t work in a grain-neutral picture — his assumption about grain implies Propo-
sitional Intensionalism we mentioned in section 1; and he works with a narrower conception
of necessity according to which every necessity is closed under infinitary consequence, which
goes beyond the minimal assumptions we are making here.47

In our theory TN, we can define a natural candidate of 2phys to be the restriction of
2meta by Law and prove that it is a necessity. More generally, suppose that we have an

44The problems are attributed to Kit Fine in that paper.
45Proof: Given the 4 axiom for 2meta, we have 2meta(P → p) → 2meta2meta(P → p) for any p. Since

2meta(P→ p)→ P→ 2meta(P→ p) is a tautology, by the rule of necessitation and the K axiom for 2meta,
we have 2meta2meta(P→ p)→ 2meta(P→ 2meta(P→ p)).

46In the present context, 2phys defined by Smiley would not even obey T in every sense of necessity, if
there are some possibility in which P is metaphysically necessarily false: for then 2meta(P → p) would be
vacuously true whatever p is.

47As we briefly discussed in the end of section 2, it is easy to capture such a narrower conception of
necessity within our framework: just let Closed∞X be a necessary condition for NecX.
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operator Y . Then given any necessity X, we may define a restricted necessity XY as follows:

XY := X t Y.

Proposition 3.15. `TN NecX → NecXY .

Proof. See the proof of Proposition 3.14-(i). Note that in that proof, we assume the two
operators X and Y are both necessities. But the same conclusion can be achieved even if
Y is not.

Since we directly define XY as X t Y , one would expect the notion of a restriction of a
necessity to be somehow related to the ordering of ≤. Here’s a nice result:

Proposition 3.16. `TN NecY → (X ≤ Y ↔ Y ∼ XY ).

Proof. Suppose X ≤ Y . Note that XY = X t Y . We have proved Y ≤ X t Y (see
Proposition 3.14-(ii)). Consider the converse direction: Since we have X ≤ Y , we have
L∀q(Xq ∨ Y p → Y p). Since Y is a necessity, we have LKY . Finally, suppose Y ∼ X t Y .
We have also proved X ≤ X t Y (see Proposition 3.14-(ii) again).

As a corollary, all necessities are necessarily coextensive with some restriction of L because
L is as broad as all necessities.

To see that our account does provide an appropriate characterization of a restriction of a
necessity, we may turn back to the case of 2phys and 2meta. Now, 2phys is defined as 2Law

meta.
Our definition captures the idea that a physical necessity is a proposition metaphysically
entailed by zero or more laws of physics. Suppose B is metaphysically entailed by the
conjunction of laws A1, . . . , An. Since A1, . . . , An are laws, we get 2physA1 ∧ · · · ∧2physAn
by our definition of 2phys. According to Proposition 3.15, 2phys is a necessity and hence
closed under modus ponens. So we can derive 2phys(A1 ∧ · · · ∧ An). Because we have
assumed 2meta(A1 ∧ · · · ∧ An → B), by Proposition 3.16, 2phys(A1 ∧ · · · ∧ An → B) and
thus 2physB. Moreover, our account doesn’t suffer from any problems mentioned before.
What the logic of 2phys is remains an open question. And our definition predicts that in
a metaphysically possible world where there are no physical laws, 2phys is just coextensive
with 2meta; in general, if necessity Y is a restriction of necessity X, it follows that X ≤ Y
and therefore X∀p(Xp→ Y p).

One limit of the current account, as we saw above, is that it only characterizes those
physically necessary propositions that are metaphysically entailed by a finite set of laws.
Perhaps this is not a real limit — perhaps there are only finitely many laws (at least in the
actual world) or the set of laws is compact in the sense that a proposition is 2meta-entailed by
it only if the proposition is 2meta-entailed by a finite subset of it. But to provide a sufficient
characterization for those who insist there are physical necessities only 2meta-entailed by
infinitely many laws, we may redefine the restriction of a necessity as follows:

XY := λp.∀Z(∀q(Xq∨Y q → Zq)∧∀q(∀r(∀r′(Zr′ → X(r → r′))→ X(r → q))→ Zq)→ Zp).

Given this new definition, we can still prove that so long as X is a necessity, XY is also
a necessity.48 Now, suppose B is 2meta-entailed by infinitely many laws. This means it is
2meta-entailed by the set of all laws. Recall that we imitate the entailment relation between

48The proof of LNXY is similar to the proof of Proposition 3.15 and thus the proof of Proposition 3.14-(i).
To show LKXY , it is crucial to observe that given the closure of X, ∀r(∀r′(Zr′ → X(r → r′)) → X(r →
q))→ Zq implies the closure of Z.
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a set of propositions and a single proposition by using propositional operators: p is entailed
by a set corresponding to X just in case ∀q(∀r(Xr → q ≤ r) → q ≤ p). Similarly, we can
formulate the idea that B is 2meta-entailed by laws in this way: ∀q(∀r(Law r → 2meta(q →
r))→ 2meta(q → B)). Then we can show it follows from our new definition that 2physB.49

However, with this new characterization of a restriction of a necessity, we cannot prove
the result stated by Proposition 3.16, so we cannot guarantee that every necessity is neces-
sarily coextensive with a restriction of L. The reason is that not all necessities are closed
under infinitary consequence, as we emphasized before, although we can still prove for in-
stance Closed∞ Y → (X ≤ Y ↔ Y ∼ XY ). If one wants to insist that every necessity is
equivalent to a restriction of L as well as our new characterization at the same time, one can
always adopt Roberts’ conception of necessity according to which all necessities are closed
under infinitary consequence.

3.5 Conservativeness

We have proved many results, and we have claimed to do so without taking on any grain-
theoretic commitment. But this latter claim of grain-neutrality is in need of justification.
While it is known that one cannot derive, for example, the Boolean identities in H0, we need
some guarantee that one cannot derive them in our stronger theory of necessities. In this
section we will in fact show that any theorem of TN that can be stated in the language L
of pure higher-order logic (i.e. not including the primitive Nec) is already a theorem of H0.
That is to say, TN is conservative over H0. So principles of granularity, like p ∧ q = q ∧ p,
cannot be proven from TN unless they are already theorems of the minimal system H0.

50

Lemma 3.17. TN is interpretable in H0 via the translation i which replaces Nec with
λX.(∀p(p→ Xp) ∧KX):

i : LNec → L

For all A ∈ LNec, `TN A only if `H0 i(A).

Proof. We only need to show that given the translation i, all the axioms of TN become
theorems of H0 and the rule Necessitation preserves theoremhood.

Note that i(L) = λp.∀X(∀q(q → Xq)∧KX → Xp) and hence i(L)A↔ A is provable in
H0 for all A ∈ L. So it is an admissible rule of H0 that if ` A then ` i(L)A. Moreover, to
show that i(Necessity) and i(Mix-and-Match) are theorems of H0, it suffices to prove that
the following two statements are theorems of H0:

(i) ∀p(p→ Xp) ∧KX ↔ ∀p(p→ Xp) ∧KX;

49Proof: Suppose for any Z, we have (i) ∀p(2metap ∨ Law p → Zp) and (ii) ∀p(∀q(∀r(Zr → 2meta(q →
r)) → 2meta(q → p)) → Zp). Suppose further that we have (iii) ∀q(∀r(Law r → 2meta(q → r)) →
2meta(q → B)). Our target is to show ZB. From (ii), we can get ∀q(∀r(Zr → 2meta(q → r))→ 2meta(q →
B)) → ZB. So it suffices to show that (iii) implies ∀q(∀r(Zr → 2meta(q → r)) → 2meta(q → B)).
Consequently, it suffices to show that ∀r(Zr → 2meta(q → r)) implies ∀r(Law r → 2meta(q → r)). Then it
turns out to be sufficient to show that Law r implies Zr, which has already been guaranteed by (i).

50Conservativity is not the only dimension of grain-neutrality one might demand. For instance, con-
servativity does not tell us whether TN implies any distinctively grain-theoretic identities involve the new
predicate Nec itself. An identity like Nec = λX.¬¬NecX, for instance, is distinctive to theories like Clas-
sicism, but since it involves Nec, conservativity offers no guarantee as to its unprovability. The stronger
requirement is that if TN proves an identity (possibly involving Nec) then that identity is provable in H0 as
formulated in the same language LNec. We believe this stronger result is true, but it would take us too far
afield to prove it here, as we suspect it would require a model theoretic argument.
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(ii) ∀X(WX → ∀p(p→ Xp) ∧KX)→ ∀p(p→ LW p) ∧KLW .

(i) is trivial and the proof of (ii) is immediate.

Theorem 3.18 (Conservativeness). TN is conservative over H0.

Proof. Let A ∈ L and suppose that there is a derivation of A in TN. Given the lemma
above, it is easy to see i(A) is derivable in H0 by induction. But since A belongs to L,
A = i(A).

3.6 Interpretability

The conservativeness result of the last section provided an interpretation of TN in H0 in
which L became equivalent to the truth operator I. More generally, it is possible to interpret
TN in any theory augmented with an operator expression governed by a logic of S4 and vice
versa (so by using the truth operator I, we obtain our previous result as a special case).

Recall the higher-order language L2 with the operator constant 2. Let H0S4 ⊆ L2 be
the theory H0⊕ S4. Clearly, H0S4 can be interpreted in TN: since we have shown in section
3.1 that the logic of L is at least S4, we may just interpret 2 as L. Now, let’s see the
converse direction. Define:

Logical2 := λX.2∀p(2p→ 2Xp);

Closed2 := λX.2(∀pq(X(p→ q)→ Xp→ Xq));

Nec2 := λX.Logical2X ∧ Closed2X.

Theorem 3.19. TN is interpretable in H0S4 via the translation i2 that replaces Nec with
Nec2:

i2 : LNec → L2

For all A ∈ LNec, `TN A only if `H0S4 i
2(A).

Proof. Given that 2 obeys principles of S4, for all A ∈ L∪L2, i2(L)A↔ 2A is provable in
H0S4. Thus, by the rule N of H0S4, we have the rule that ` A only if ` i2(L)A. Moreover,
it is obvious that i2(Necessity) is a theorem of H0S4. To show that H0S4 proves i2(Mix-
and-Match), it suffices to show that the following statement is derivable in H0S4:

2∀X(WX → Logical2X ∧ Closed2X)→ Logical2 LW ∧ Closed2 LW .

From WX → Logical2X, we can infer 2p→WX → 2Xp. Because the logic of 2 is S4, we
then have ∀p(2p→ 2(λp.∀X(WX → Xp))p). It means from 2(WX → Logical2X), we can
infer Logical2 LW . Closed2 LW can also be easily inferred from 2(WX → Closed2X).

4 Strengthenings

The theory TN is not only neutral about questions of grain, but is also neutral about many
classical debates in the philosophy of modality. The preceding arguments — about the
existence and logic of the broadest necessity, on the pre-lattice of necessities, and so on —
therefore can be accepted without taking a stance on these questions. Nonetheless, as a
metaphysical theory TN is weak. Further axioms about necessities can be added to provide
a more fleshed out theory.
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Let us consider one extreme position in the philosophy of modality, which we shall call
Quineanism:

Quineanism NecX → (p↔ q)→ (Xp↔ Xq).

This axiom says that every necessity is truth-functional. In particular, given that necessities
are closed under modus ponens, this leaves only the truth operator and the vacuously
true operator: thus every necessities is coextensive with one of these two truth-functional
operators. So there is no contingency. (Of course, since this principle is stated in higher-
order logic, it would not be acceptable to Quine, but we feel it captures an important aspect
of the extensionalist world-view of which Quine is the most salient proponent.) Given
Lemma 3.17, it follows from Quineanism that I is coextensive with L and is therefore a
broadest necessity.

The simplest way to be a Quinean is to be, what we shall call, a Fregean:

Fregeanism ∀XY (∀z1 . . . zn(Xz1 . . . zn ↔ Y z1 . . . zn)→ X = Y ),

where the n = 0 case tells us that materially equivalent propositions are identical. Unlike
Quineanism, Fregeanism is not a principle about necessity (it does not involve the primitive
Nec), rather it is a pure principle of granularity. It is easily seen that Fregeanism entails
Quineanism (in TN0).

51 But crucially, Quineanism does not entail Fregeanism. In fact,
implicit in our proof of the conservativeness result in section 3.5 was an argument that any
theory of granularity consistent with H0 is consistent with Quineanism. This highlights an
important issue, namely one can accept a very fine-grained picture of reality — perhaps
even some sort structured picture — but still embrace Quine’s anti-modal scruples.52

Other principles of granularity formulated in the pure language of higher-order logic
can be added into our theory of necessities as well. (We will explore some systematic and
deep connections between necessity and granularity in section 6.) But we can even use our
theory of necessities itself to formulate principles about granularity. For instance, consider
the following view:

Intensionalism ∀XY (L∀z1 . . . zn(Xz1 . . . zn ↔ Y z1 . . . zn)→ X = Y ).

Unlike Fregeanism, Intensionalism is stated using our distinctive primitive predicate Nec
(through L). Once we add Intensionalism to TN, the axiom Mix-and-Match will become
redundant.53 More interestingly, the resulting theory is in a certain sense, exactly the same
as Classicism: the theorems not involving Nec are exactly the theorems of Classicism, and
Nec itself is provably identical to predicate in the language of Classicism (i.e. the language
of pure higher-order logic), so even the theorems involving Nec do not extend Classicism in
an interesting way. We’ll return to this result in section 6.1.

51By Fregeanism we can show that L = I. Then the axiom Necessity become equivalent to NecX ↔
∀p(p→ Xp) ∧KX, from which Quineanism follows.

52There are some theories of granularity that sit less comfortably with Quineanism: for instance one might
accept HE or HEζ, whilst rejecting the Fregean view that there are only two propositions. Within these
theories, one can prove the existence of operators that formally behave like necessities (such as λp.(p = >)),
which will not count as necessities by the lights of Quineanism. We view this as a consistent, but highly
unattractive position to take; see section 6 for more discussion.

53Consider the result of adding Intensionalism to the theory TN0 and closing under mp, Gen and Necessi-
tation. Suppose that Lp is true. Then we have L(p↔ >). By Intensionalism, p is identical to >. We know
that Necessitation allows us to get LL>. So by Leibniz’s Law, we also have LLp. This reasoning gives us
the 4 for L and its necessitated version. We have shown in section 2.3 that Mix-and-Match follows from the
latter.
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One might wonder if it is possible to strengthen our theory in the opposite direction
than Quineanism. For instance, are there any axioms that would force there to be as much
contingency as possible? One option in this direction is to adopt a schema of this form:54

Logical Necessity LA(c1 . . . cn)↔ ∀x1 . . . xnA(x1 . . . xn),

provided A involves no free variables, c1, . . . , cn enumerate all the distinct non-logical con-
stants in A, and A(x1 . . . xn) denotes the result of replacing them with distinct free vari-
ables.55 Roughly speaking, the principle tells us that the logical predicate A(x1 . . . xn) is
satisfiable for some x1, . . . , xn just in case it is L3-possible that c1, . . . , cn instantiate this
predicate.

The notion of satisfiability involved in the principle Logical Necessity could be replaced
by other notions of consistency, for instance, one could consider the schema

Humeanism ¬L¬A,

whenever A is a consistent formula of TN.56 So long as we are formulating this schema
in a fundamental language, where every constant denotes a distinct fundamental entity,
this principle goes some way to capturing the Humean maxim that there are no necessary
connections between distinct fundamental entities. Unlike Logical Necessity, which is com-
patible with a coarse-grained theory like Classicism, Humeanism implies a very fine-grained
picture of reality. For instance, since TN is conservative over H0, anything consistent in the
latter will be possible. For instance p ∧ q 6= q ∧ p is consistent in H0, and so its possibility
is an instance of Humeanism. But since we can also prove L(p ∧ q = p ∧ q) in TN, we may
infer that in fact p ∧ q and q ∧ p are distinct.

A surprising consequence of adding Logical Necessity or Humeanism to our theory TN is
that no necessities are fundamental. Consider Logical Necessity, and suppose we’re working
in a language where every constant denotes a distinct fundamental entity. Assume for
reductio that C is a fundamental necessity. Note that NX ∧KX is a logical predicate, so
¬L(NC ∧KC)↔ ∃X¬(NX ∧KX) is an instance of Logical Necessity. Since ∃X¬(NX ∧
KX) is true,57 we have ¬L(NC ∧ KC). Then by Necessity, C is not a necessity. A
contradiction. The argument involving Humeanism proceeds similarly.

We’ve discussed several ways to strengthen our theory by saying something more about
necessities. Another natural dimension to strengthen the theory is to extend the modal logic
of the broadest necessity L. Quineanism indirectly does so — it makes the modal logic of
L be Triv, whose characteristic axiom is:

TrivL p↔ Lp.

But there is a great number of strengthenings of the modal logic S4 that are less extreme
than this one.58 Any one of these modal principles provides a potential way in which to
strengthen the theory we have presented above. Perhaps the most famous such axiom is
Brouwer’s axiom, B, yielding the logic S5 when added to S4:

BL p→ L¬L¬p.
54See the principle Logical Necessity from [3].
55For the purposes of formulating the schemata we count Nec as a logical constant.
56We do not know whether Humeanism is consistent.
57Consider the operator λp.⊥. If it has the property N , then we have L> → L⊥ and therefore L⊥. But

since L is factive, we’ll then derive ⊥.
58Indeed, there are continuum many between S4 and Triv; see Fine [10].
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This principle could simply be added to our system as a way of strengthening it. But
unlike the B axiom of modal logic, the principle BL is really a shorthand for something
stated explicitly in terms of the operator predicate Nec, and therefore BL so understood
states something very non-obvious about the domain of necessity operators. It would be
nice to have a more transparent principle directly about necessities that corresponds to
BL. Williamson [36] suggests the principle that every necessity has a reversal, which in our
system corresponds to the principle:

Reversal NecX → ∃Y (NecY ∧ RevXY ).

Recall that we defined the relation Rev in section 3.2 as λXY.∀p(p → X¬Y ¬p). Reversal
is far from an obvious principle: while some tense operators, for example, evidently have
reversals, it is far from obvious what the reversal of, say, physical necessity is. As it turns
out, Reversal and BL are equivalent.

Proposition 4.1. `TN BL ↔ Reversal.

Proof. See the proof of Proposition 4.2 below.

Note that once BL (or equivalently Reversal) is added into TN, CBFNec will imply BFNec.
Of course, one may directly add BFNec to strengthen the theory.

Another well-known modal logic between S4 and Triv is S4.2, the result of extending S4
by adding G:

GL ¬L¬Lp→ L¬L¬p.

As with BL, this indirectly imposes a constraint on necessity operators. We can make that
constraint on necessities explicit as follows:

Convergence NecX ∧NecZ → ∃Y U(NecY ∧NecU ∧ ∀p(¬X¬Y p→ Z¬U¬p)).

Proposition 4.2. `TN GL ↔ Convergence.

Proof. Suppose we have GL. Because L is itself a necessity, we have ∃Y U(NecY ∧NecU ∧
∀p(¬L¬Y → L¬U¬p)), which amounts to ∃Y U(NecY ∧NecU ∧ ∀p(¬L¬Y → ∀Z(NecZ →
Z¬U¬p))) or equivalently, ∃Y U(NecY ∧ NecU ∧ ∀Z(NecZ → ∀p(¬L¬Y → Z¬U¬p)). As
we consequence, we have ∀Z(NecZ → ∃Y U(NecY ∧ NecU ∧ ∀p(¬L¬Y p → Z¬U¬p))).
Note that ¬X¬Y p implies ¬L¬Y p whenever X is a necessity. So we can get ∀XZ(NecX ∧
NecZ → ∃Y U(NecY ∧NecU ∧ ∀p(¬X¬Y p→ Z¬U¬p))).

Conversely, suppose we have Convergence. Suppose further that ¬X¬∀Y (NecY → Y p)
for some necessity X. Then it is not difficult to infer that ∀Y (NecY → ¬X¬Y p) by
Persistence. Now, let Z be an arbitrary necessity. According to Convergence, we have
∀p(¬X¬Y p → Z¬U¬p) for some necessities Y and U , so by NecY , Z¬U¬p follows. This
means we can infer from ∃X(NecX∧¬X¬∀Y (NecY → Y p)) that ∀Z(NecZ → ∃U(NecU ∧
Z¬U¬p)), which then implies ∀Z(NecZ → Z∃U(NecU ∧¬U¬p)) by Persistence again.

Curiously, adding Reversal or Convergence to TN does not create any more Nec-free conse-
quences: it is also conservative over H0.

59

59The argument is the same as given in section 3.5, simply check that Reversal and Convergence are also
true under the interpretation of Nec provided there.
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5 Comparison with other theories

In this section we compare our approach to other theories of necessities. Here we begin
with some ideas articulated in Williamson [36]. Related ideas, formulated in the present
framework of higher-order logic can be found both in Roberts [30] and Dorr, Hawthorne
and Yli-Vakkuri [9], ch. 8.4.60

Like our approach, Williamson takes the notion of being a necessity as basic, and sub-
jects it to some natural closure conditions. Let’s begin with the following two,61 which he
introduces informally as

The composition of any two necessities is a necessity;

The conjunction of any collection of necessities is a necessity.

Unlike us, Williamson formulates these principles in an algebraic language instead of a
higher-order one. However, they have natural analogues in this framework, as other authors
mentioned above have shown. Recall that we defined the composition of two operators X
and Y as X ◦ Y := λp.XY p, so the first principle becomes:

Composition NecX → NecY → Nec(X ◦ Y ).

The formulation of the second principle is somewhat delicate. For finitely many operators
X1, . . . , Xn, we may define their conjunction simply as λp.(X1p∧· · ·∧Xnp). But a collection
of necessities might be infinite. So we need a more general notion of conjunction. We know a
collection can be represented by a property. Someone may therefore suggest the conjunction
of all operators with the property W is just the greatest lower bound (henceforth, GBL) of
W under the entailment relation:

GLB := λXW.(∀Y (WY → X ≤ Y ) ∧ ∀Z(∀Y (WY → Z ≤ Y )→ Z ≤ X)).

However this condition does not suffice for X to count as a conjunction of the W -operators,
since an actual greatest lower bound could fail to be a greatest lower bound if there had
been new necessities (i.e. necessities which do not actually exist) between X and the W -
operators in strength. In this case the things that is in fact the greatest lower bound of
the W s possibly violates the conjunction introduction rule: if there could be an operator
Y strictly weaker than X but entailing each member of W , then Y is analogous to the
possible existence of a sentence A which entails p1, p2, p3 et cetera, without entailing their
conjunction. Thus the notion of a conjunction is strictly stronger than that of a greatest
lower bound of some propositions. A conjunction, thus, is necessarily a greatest lower bound
of W , in every sense of necessity.

Conj := λXW.LGLBXW.

The next problem is that in order to talk about the same collection of operators across
different possibilities we need some way to pick out those operators out rigidly. (Indeed, a
non-rigid property of operators most likely won’t have anything that is necessarily a GBL.)
But so long as a property is rigid, the existence of its GLB is guaranteed. Here we say that

60Although Williamson and Roberts assume HE and HEζ in their works respectively, their ideas concerning
necessities can be formulated against the background of a grain-neutral theory like H0. In fact, Dorr,
Hawthorne and Yli-Vakkuri just do so.

61Williamson endorses other closure conditions but only the following two are relevant here.
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a property W is rigid iff the extension of it doesn’t expand or shrink between worlds, which
we cash out in terms of the Barcan formula and its converse holding for the quantifiers
restricted to W :62

Persistent := λW.∀X(WX → LWX);

Inextensible := λW.∀U(∀X(WX → LUX)→ L∀X(WX → UX));

Rigid := λW.(PersistentW ∧ InextensibleW ).

It is fairly easy to show that if W is rigid, then LW (i.e. λp.∀X(WX → Xp)) is a GLB of
W .63 Thus, in order to talk about the conjunction of the W operators, we shall require that
W be a rigid property of operators in every sense of necessity. Then the second principle
listed above may be formulated in this way:

Conjunction LRigidW ∧ L∀X(WX → NecX)→ NecLW .

Of course, even though W is not necessarily rigid, one may still talk about the conjunction
of W in a derivative sense, by assuming there is a necessarily rigid property W ′ coextensive
with W and then regarding the conjunction of W ′ as the conjunction of W .64

From here Williamson and Roberts attempt to define the broadest necessity as follows.
They firstly note that by Conjunction, the conjunction of all necessities, CNec (assuming it
exists), is itself a necessity. They then argue that the conjunction of all necessities entails
each necessity:65

∀X(NecX → CNec ≤ X).

Secondly, like us, they show that the ‘broadest necessity’ so defined satisfies the 4 axiom.
Since necessities are closed under composition, and CNec is a necessity, CNec ◦ CNec is a
necessity. Since CNec entails each necessity, CNec entails CNec ◦ CNec, which we are spelling
out as L∀p(Lp→ LLp), the 4 axiom.66

62See Bacon and Dorr [4]. Persistence is also equivalent to the condition that ∀U(L∀X(WX → UX) →
∀X(WX → LUX)), corresponding to the converse Barcan formula.

63This can be shown in a pretty weak theory. Just suppose we have H0 and L obeys the modal logic
K — so the background theory is even weaker then TN0. Fix a rigid property W . By definition, we have
WX → ∀p(LW p → Xp). By the rule N and the axiom K for L, we get LWX → LW ≤ X. So given the
persistence of W , LW is a lower bound of W . Next, suppose that ∀Y (WY → ∀p(Zp→ Y p)) for an arbitrary
Z. It follows that ∀p(Zp→ LW p). By N and K again, we can have L∀(WY → ∀p(Zp→ Y p))→ Z ≤ LW .
Note that by the inextensibility of W , ∀Y (WY → Z ≤ Y ) implies L∀(WY → ∀p(Zp → Y p)), so LW is a
greatest lower bound of W .

64For example Dorr, Hawthorne and Yli-Vakkuri assume in their background theory that every property
is coextensive with a necessarily rigid property (see [9], ch. 1.5). But note that our theory TN is neutral
about this idea. If W is a property that isn’t coextensive with a necessarily rigid one, then, surprisingly, it
doesn’t really make sense to talk about the conjunction of the W s. We have no way to even state what it
means for the conjunction of the W s to have no possible failures of the analogues of conjunction elimination
and introduction.

65Note, however, that entailment in Williamson’s framework is being taken as primitive, or at least, taken
to fall out of the algebraic structure of propositions. We take it to be a significant advantage of our approach
that we can simply define entailment in terms of necessity itself, via L-strict implication. Note also that
because Williamson is working in an algebraic framework, he defines operator entailment proposition wise
— for each proposition p, CNecp entails Xp — so the force of the L in front of ∀p(CNecp → Xp) in our
formulation is lost.

66The two closure conditions discussed here cannot guarantee that the logic of CNec is at least S4. More
principles are needed. For example, Roberts adds a principle similar to Closure (NecX → ClosedX) to
guarantee the K axiom for CNec and the principle Identity (Nec I) to guarantee the T axiom for CNec. Since
Roberts assumes HEζ, the rule N for CNec becomes admissible once he has K. But in a grain-neutral setting,
one may directly add this rule. Williamson adds the principle Reversal of section 4 further. We earlier
showed that Reversal is equivalent to the Brouwerian principle for L in our theory, and Williamson argues
that it implies something similar for CNec in his framework as well, so for him CNec satisfies a logic of S5.
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Dorr, Hawthorne and Yli-Vakkuri adopt the same definition of CNec, but they do not
claim that the result of the definition is a broadest necessity. They more cautiously call it
an “extensionally minimal” necessity (see below).

Recall that our theory of necessities is very liberal concerning what counts as a neces-
sity: any operator that is Logical and Closed. By contrast, the Williamson-Roberts-DHY
approach is consistent with a much narrower conception of necessity. It should be empha-
sized that their project is not necessarily opposed to ours: one could simply view them as
theories of two different notions. For instance, Williamson and Roberts are explicit that
their are theories of objective necessities, which may be a subclass of a broader class of
necessities, including epistemic, deontic and vagueness theoretic operators.

However, we think even on a narrower conception of what a necessity is, the two principles
identified above are not enough to deliver a broadest necessity in an interesting sense. In
fact, it is worth noting that all of the above reasoning concerning CNec, the conjunction of
all the actually existing necessities, can also be carried out in our present theory, without
invoking Mix-and-Match.67 But we believe this is not sufficient for proving the existence
of a broadest necessity. To be a real broadest necessity, it’s not sufficient that you simply
be a necessity which entails every other necessity, for this could be true only contingently.
Specifically, CNec will clearly entail all the actually existing necessities, but if there could
have been new necessities, then CNec need not entail them: a conjunction doesn’t entail
anything not already entailed by the conjuncts.

To circumvent these issues, Roberts entertains a further axiom which says that the prop-
erty of being a necessity is rigid; in other words, he embraces the conjunction of Persistence
(or equivalently CBFNec) and BFNec of section 2.3. So there can’t be new necessities, avoid-
ing the above problem.68 (Williamson implicitly imposes the same constraint since in his
algebraic framework the domain of necessities is constant.) The persistence of Nec is a
theorem of our theory. But why should be accept the assumption that there can’t be new
necessities? It is natural to think that there could have been. For instance, imagine a pos-
sibility with alien physical properties and new laws governing them: one would expect the
resulting physical necessity to not exist in the actual world, in virtue of its involving prop-
erties that don’t actually exist. Even Roberts’ preferred background theory of Classicism
allows for the possibility of new necessary operators. Indeed, there is a close relationship
between Classicism and our theory TN: TN is interpretable in Classicism in the sense that
there is a translation from the former into the latter such that the theorems of Classicism
include the translates of theorems of TN. By contrast, the translation in question maps
the principle BFNec to a non-theorem of Classicism. (The details of this interpretation are
spelled out in the next section.)

Our strategy to guarantee the real broadest necessity without any loss of generality
is to endorses the axiom Mix-and-Match. But Mix-and-Match is a very strong closure
condition. In what follows, we suggest another closure condition on necessities: a principle

67As we just saw, the reasoning relies on Composition and Conjunction. We have shown that Composition
is derivable in TN0 (see Proposition 2.3). Let’s turn to Conjunction. Suppose W is a rigid property of
necessities. Then by Necessity, it follows that ∀p(Lp → ∀X(WX → LXp)). Given the rigidity of W , we
then have ∀p(Lp → L∀X(WX → Xp)) which amounts to NLW . So by Necessitation and the closure of
L, if W is L-necessarily a rigid property of necessities, we have LogicalLW . Moreover, it’s easy to see that
ClosedLW follows from that W is L-necessarily a property of necessities.

68More technically, CNec must be the conjunction of some W such that LRigidW ∧ ∀X(WX ↔ NecX).
By LRigidW , we have L∀X(WX → CNec ≤ X). If Nec is also inextensible, from ∀X(NecX →WX) we can
derive ∀X(NecX → LWX) and then L∀X(NecX → WX), which will give us L∀X(NecX → CNec ≤ X).
(If Nec is necessarily rigid, we can even directly show that L is the conjunction of Nec, by the proof in note
63.)
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strictly between Conjunction and Mix-and-Match in strength. So the resulting view retains
the sort of neutrality we have sought in the present investigation; but it is in the same
spirit as Williamson and Roberts, because as it is still consistent with narrower conceptions
of necessity and doesn’t commit you to the liberal conception encoded by principles like
Necessity.

Our principle states that whenever W is L-necessarily a persistent property of necessities,
the operator possessing all W necessities is itself a necessity:

Modalized GLB LPersistentW ∧ L∀X(WX → NecX)→ NecLW .

Notice the principle is a weakening of Mix-and-Match because we have strengthened the an-
tecedent to require that W is necessarily persistent. And it is a strengthening of Conjunction
because we have weakened the antecedent by requiring that W is necessarily persistent, but
not necessarily rigid.

To explain why Modalized GLB is a natural principle, it’s necessary to make a little
detour. We motivated the definition of a conjunction from the order theoretical notion
of a GLB, where the background theory of mathematical objects is set theory. However
properties are not extensional, like sets are, and we saw that we needed special assumptions
to talk about the GLB (or the conjunction) of the W -entities — for instance, that there
exists a (necessarily) rigid property coextensive with W .

Category theory has allowed us to formulate abstract definitions of notions like being a
partial order, or being a GLB, in a way that’s applicable within other realms of mathematical
objects that behave relevantly like sets, but are not necessarily as ‘extensional’ as sets. Since
quantification into predicate and operator position need not be extensional, we believe these
generalizations are helpful both for obtaining intuitions about higher-order logic and for
constructing models of it.

Of particular interest is the realm of ‘modalized’ sets. A modalized set is effectively a
family of sets indexed by worlds in a transitive reflexive Kripke frame.69 The elements of a
modalized set necessarily persist, in the sense that if you have an element at world w and
w′ is accessible from w, then that element exists there too.70 We may informally think of
them as necessarily persistent properties: a property such that necessarily if something has
it, it necessarily has it. And among these modalized sets are modalized partial orders that
roughly stand to the background realm of modalized sets as partial orders stand to sets in
set theory: a family of partial orders indexed by worlds, with similar persistence properties.
Just as a GLB of a set of elements from a partial order is defined in the realm of sets, one
can define the modalized GLB of any modalized set of objects contained in the modalized
partial order.

Translating this into the present setting, we may introduce a more general relation
between an operator and a property of operators, being the modalized GLB of that property.
Roughly, the modalized GLB of W is something which is necessarily a lower bound of W ,
and necessarily as great as anything else that’s necessarily a lower bound of W .

MGLB := λXW.L(∀Y (WY → X ≤ Y ) ∧ ∀Z(L∀Y (WY → Z ≤ Y )→ Z ≤ X)).

As you can see, it is different from a conjunction in a couple of ways. Firstly, one can
take the modalized GLB of any necessarily persistent property of operators, even if it is

69We are talking here about the functor category SetW of functors from a transitive reflexive Kripke frame
(W,R) to Set.

70Note that the accessibility relation at issue is transitive.
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not necessarily rigid. Secondly, you don’t need to be, necessarily, a greatest lower bound of
the W s, you need only be, necessarily, a lower bound that is greater than anything that is
necessarily a lower bound of the W s. It is also not an extensional notion: W and W ′ might
be coextensive, yet have different modalized GLBs. Just as we were able to show that for a
necessarily rigid W , LW is a conjunction of W , it is possible to show that if W is necessarily
persistent, then LW is a modalized GLB of W .71 When understood this way, the principle
Modalized GLB just states that necessities are closed under the more general operator of
modalized GLB. From a mathematical perspective, we feel the notion of a modalized GLB
is far more natural than the notion of conjunction, as a generalization of GLB, and thus the
principle Modalized GLB is far more natural than the principle Conjunction.

Now, consider the theory TN− = H0⊕Closure⊕ Identity⊕Persistence⊕Composition⊕
Modalized GLB ⊕ Necessitation. It looks like our theory TN in many formal aspects; in
particular, the operator L is still a broadest necessity in the interesting sense and it is still
obeys principles of S4.

Proposition 5.1. (i) `TN− BroadestNecL; (ii) according to TN−, the modal logic of L
contains S4 and the modal fragment of TN− contains no non-theorems of S4.

Proof. (i) By Closure, L is closed under modus ponens. By Persistence and Modalized
GLB, L is a necessity. It follows from the definition of L that NecX → ∀p(Lp → Xp), so
by Necessitation and the closure of L, we have LNecX → L ≤ X. By Persistence again,
NecX → L ≤ X, and by Necessitation again, L∀X(NecX → L ≤ X).

(ii) We have shown the closure of L, and the rule of necessitation is just the rule Neces-
sitation. Provided the result in (i) above, the T axiom for L follows from Identity and the
4 axiom follows from Composition. Moreover, it is easy to see that all theorems of TN− are
also derivable in TN. By Corollary 6.5 of section 6.1, no non-theorem of S4 can be derived
in the modal fragment of TN−.

However, since Necessity is not a theorem of TN−, one may take TN− as theorizing a
narrower conception of necessity.

6 Necessity and granularity

In this section, we explore some connections between necessity and granularity. We explained
in section 2.1 that to provide a comprehensive theory of necessities in a grain-neutral setting,
it is inevitable to take some modal notion(s) as primitive. For example, in our theory TN,
we take the predicate Nec, representing the notion of being a necessity, as primitive, and
due to the interpretability theorem in section 3.6, it is equivalent to start with a primitive
operator expression 2 for the broadest necessity. But once we strengthen the background
logic H0 by adding principles of granularity, we may provide a reductionist account of being
a necessity and of the broadest necessity — TN can then be reinterpreted in the resulting
theory. In fact, we have already seen an instance in section 4: once we add the principle
Fregeanism to H0, we can get a Quinean interpretation of TN by our conservativeness result
of section 3.5. But we also noticed that the Quinean interpretation is a trivial one, since
according to it all necessities are truth-functional operators, so the resulting reductionist

71Like the proof in note 63, this argument can be run in a pretty weak theory — H0 plus a logic K for
L: Suppose W is necessarily persistent. Since PersistentW implies ∀Y (WY → LW ≤ Y ), LPersistentW
implies L∀Y (WY → LW ≤ Y ). Moreover, since for any Z, ∀Y (WY → Z ≤ Y ) implies ∀p(Zp → LW p),
L∀Y (WY → Z ≤ Y ) implies Z ≤ LW , and we therefore have L(∀Z(L∀Y (WY → Z ≤ Y )→ Z ≤ LW )).
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theory is not very interesting. If we add some more modest constraints of granularity in H0

however, we may end up with a non-Quinean interpretation of TN. One existing theory of
this sort is developed by Bacon [1]. Let’s begin with his account.

6.1 Classicism

Bacon operates with a more liberal notion of necessity than we are employing here; for
instance, his notion needn’t be Closed. Perhaps it is more appropriate to use the term
modality for that notion.72 His background theory of higher-order logic is HEζ, namely
Classicism, which admits rules ensuring that provably equivalent things are identical.

However, it is possible to offer a reductive account of our notion of a Logical and Closed
necessity in that theory too. Recall that we write 2> for the operator λp.(p = >). The
reductive definitions can be given as follows:

Logical′ := λX.2>∀p(2>p→ 2>Xp);

Closed′ := λX.2>∀pq(X(p→ q)→ Xp→ Xq);

Nec′ := λX.Logical′X ∧ Closed′X.

It is quite easy to see that according to HEζ, namely Classicism, the modal logic of 2> is
at least S4.73 Thus, by Theorem 3.19 we have:

Theorem 6.1. TN has a non-Quinean interpretation in HEζ via the translation j that
replaces Nec with Nec′:

j : LNec → L

For all A ∈ LNec, `HEζ A only if `TN j(A).

By this interpretation, 2> turns out to be the broadest necessity.
Of course, Classicism proves a lot of sentences about grain that are translations of non-

theorems of TN. But one might conjecture a much tighter connection between TN and
Classicism: that once one blurs the distinction between L-necessarily equivalent entities
within TN, the theories coincide. We will consider a couple of ways of making this precise.

As a preliminary, we prove an important lemma. The result is also interesting in itself.
It says that closing the system H0 under E and ζ yields HEζ as well. But we have to restrict
attention to the theories as formulated in the relational types.74 Let H0Eζ be H0 ⊕ E ⊕ ζ.
Then we have:75

Proposition 6.2. H0Eζ = HEζ when they are formulated in the relational types.

72For instance, as we showed in the end of section 2.2, if X is a modality (either a necessity or a possibility),
its dual operator λp.¬X¬p is also a modality, but this does not hold for necessities.

732> obeys K: if (p → q) = > and p = >, then by Leibniz’s Law (> → q) = > and therefore q = >,
since q and > → q are provably equivalent and, by the rule E, are identical. 2> obeys T: it is obvious that
2> is factive. 2> obeys 4: note that (> = >) = > is provable in HEζ, so if p = > then by Leibniz’s Law,
(p = >) = >. Finally, the rule N for 2> is admissible in HEζ. This is because A is derivable only if A↔ >
and hence A = > are derivable.

74Both e and t are relational types; and whenever σ, τ are both relational types and τ 6= e, (σ → τ) is a
relational type.

Since H0 has no principles governing identities between terms with types ending in e, we cannot even prove
(λx.x)a = a where x and a are of type e, and we don’t have anything analogous to βE for non-relational
types, so we certainly can’t recover HEζ.

75Thanks to Cian Dorr for discussing the proof of this proposition.
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Proof. We only show that HEζ ⊆ H0Eζ since the converse direction is trivial. This amounts
to showing that all instances of βη∗ mentioned in section 1 are theorems of H0Eζ. To get
the intended conclusion, it suffices to prove that if M is βη-reducible to M ′, then M = M ′

is derivable in H0Eζ.76

So suppose that M is βη-reducible to M ′. By induction on the complexity of M . If M is
a variable or a constant, then M ′ must be the same variable or constant. When M is λx.N ,
either M ′ is λx.N ′ for some N ′ where N is βη-reducible to N ′ or M is M ′x where x is not free
in M ′. The former case can be easily dealt with by I.H. As to the latter case, we suppose that
the of type M ′ is σ → τ → t for brevity. So x is of type σ. Moreover, let y be a variable of
type τ not free in M ′. Note that M ′xy is immediately β-equivalent to both (λy.M ′xy)y and
(λxy.M ′xy)xy. Therefore by using βE, E and ζ, we have M ′x = λy.M ′xy = (λxy.M ′xy)x.
Further, by Leibniz’s Law and ζ, we can get M ′ = λx.M ′x. When M is N1N2, either M ′

is N ′1N
′
2 for some N ′1 and N ′2 where N1/N2 is βη-reducible to N ′1/N

′
2 or N1 is λx.N for

some N and M ′ is N [N2/x]. Again, the former case can be dealt with by I.H. In the latter
case, we suppose the type of N is σ → t for brevity. Let y be a variable of type σ not
free in N . Note that N [N2/x]y is immediately β-equivalent to (λxy.Ny)N2y. So we have
N [N2/x] = (λxy.Ny)N2. According to the last inductive step, N = λy.Ny. Hence, we can
get N [N2/x] = (λx.N)N2.

Now, we can introduce two ways to make the connection between TN and Classicism
tighter. One is simply that adding the thesis Intensionalism of section 4 to TN yields a theory
such that the Nec-free theorems of it are exactly the theorems of Classicism. Moreover, the
sense in which this theory extends Classicism is uninteresting, since one can prove the
identity Nec = Nec′ showing that even TN’s new primitive is identical to something already
definable in the base language of Classicism. We use LR be the language of pure higher-
order logic based on relational types and LNec

R the corresponding language equipped with
the primitive predicate Nec. Let TNI denote the theory TN ⊕ Intensionalism. Then we
have:77

Theorem 6.3. (i) For all A ∈ LR, `TNI A iff `HEζ A; (ii) `TNI Nec = Nec′, so for all
A ∈ LNec, there is a B ∈ L such that `TNI A↔ B.

Proof. (i) Given Proposition 6.2, to show that a formula A ∈ LR is derivable in HEζ
only if it is derivable in TNI, it suffices to show that E and ζ are both admissible rules of
TNI. If A ↔ B is provable in TNI, so is L(A ↔ B). Then by Intensionalism, we have
A = B. Moreover, suppose M and N are of type σ1 → · · · → σn → t and Mx = Nx is
provable in TNI. Let y2, . . . , yn be distinct variables free in neither M nor N . Note that
L∀xy2 . . . yn(Mxy2 . . . yn ↔ Nxy2 . . . yn) is also provable. So by Intensionalism again, we
have M = N .

To show the converse direction, recall the translation function j introduced in Theorem
6.1, which translates all theorems of TN as theorems of HEζ. So it suffices to show that
j also translates Intensionalism to a theorem of HEζ. According to j, j(Intensionalsism)

76One term is said to be immediately β/η-reducible to another if they are immediately β/η-equivalent, the
former is of the form (λ.M)N/λx.Nx, and the latter is of the form M [N/x]/N . One term is βη-reducible to
another if the former can be gotten from the latter by replacing one term with another which is immediately
β or η-reducible to it for 1 time.

77Note that in the second claim we don’t need the restriction that the theories at issue are formulated in
the relational types.
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is provably equivalent, in HEζ, to ∀XY (2>∀x1 . . . xn(Xz1 . . . zn ↔ Y z1 . . . zn) → X = Y ),
which is clearly a theorem of HEζ.78

(ii) Given Intensionalism, to prove Nec = Nec′ we just need to show that NecX ↔ Nec′X
is provable in TNI. By Necessity′, it suffices to show that LNX ∧ LKX ↔ 2>∀p(2>p →
2>Xp) ∧2>KX is provable, and this claim follows from the observation that LA↔ 2>A
is provable for all A: if 2>A holds, which means A = >, then since L applies to >, by
Leibniz’s Law, it applies to A as well; conversely, if we have LA, then we can get L(A↔ >)
and therefore A = > by Intensionalsim.

Another way of making this connection tighter is to ask for a converse interpretability
result, allowing us to interpret Classicism in our theory of necessities. The rough idea is
to translate the vocabulary of Classicism in such a way that identity gets reinterpreted as
necessary equivalence in TN, and thus the broadest necessity according to Classicism, 2>,
corresponds to λp.L(p ↔ >), which is evidently necessarily equivalent to L. Of course, we
didn’t take identity or 2> as primitive in our axiomatization of Classicism, rather we de-
fined both in terms of the truth-functional connectives and the higher-order quantifiers. Our
strategy, then, will be to reinterpret the quantifiers by restricting them to higher-order enti-
ties that preserve necessary equivalence. We can make this precise by introducing a notion,
≈σ, within the language LNec

R of TN which simultaneously defines necessary equivalence at
each type, and removes operators that do not preserve necessary equivalence:

� ≈e:= =e;

� ≈t:= λpq.L(p↔ q);

� ≈σ→τ := λXY.L∀xy(x ≈σ y → Xx ≈τ Y y).

Such a relation is symmetric and transitive but not reflexive: it generates a partition of a
subcollection of entities. An operator X of type σ preserves necessary equivalence when it
stands the relation ≈σ to itself, so we may define our restricted quantifiers as follows:

∀≈σ := λX.∀σx(x ≈σ x→ Xx).

We may now establish the following correspondence between Classcism and TN. It states
that this reinterpretation of the quantifiers is a faithful interpretation of Classicism.

Theorem 6.4. HEζ has a faithful interpretation in TN via the translation j∗ that replaces
each ∀σ with ∀≈σ :

j∗ : LR → LNec
R

For all closed A ∈ LR, `HEζ A iff `TN j∗(A).

Proof. To establish the claim that HEζ is interpretable in TN via j∗, we prove a more general
claim for open formulae A. If `HEζ A, then `TN x̄ ≈ x̄ → j∗(A), where x̄ = x1, . . . , xn are
the variables free in A.

Let’s begin with the following two rules corresponding to E and ζ respectively:

` A↔ B only if ` A ≈ B;

78This is just a version of Property Intensionalism we introduced in section 1. We have proved it in note
14.
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` x ≈ y →Mx ≈ Ny only if `M ≈ N .

Clearly, they are admissible in TN. Given these two rules, since TN is also closed under mp
as well as Gen, our task is to show that x̄ ≈ x̄→ j∗(A) is derivable in TN for each axiom A
of HEζ.

The case of βη can be dealt with because we have the previous mentioned rules and
Proposition 6.2. Thus, the remaining non-trivial case is that A is an instance of UI, so
x̄ ≈ x̄→ j∗(A) amounts to x̄ ≈ x̄→ ∀x(x ≈ x→ j∗(F )x)→ j∗(F )j∗(a). To prove that this
is derivable in TN, it suffices to show by induction that if ȳ = y1, . . . , ym enumerate the free
variables in a term M , then ȳ ≈ z̄ →M ≈M [z̄/ȳ] is a theorem of TN where z̄ = z1, . . . , zm.

When M is a variable, the proof is trivial. When M is a logical constant, it is also
easy to check that M ≈ M is a theorem of TN. When M is the predicate Nec, Nec ≈ Nec
holds because (i) X ≈t→t Y amounts to L∀pq(L(p ↔ q) → L(Xp ↔ Y q)) and therefore
implies L∀p(Xp ↔ Y p) and (ii) every operator necessarily coextensive with a necessity is
itself a necessity. When M is N1N2, by I.H., we have ȳ ≈ z̄ → N1 ≈ N1[z̄/ȳ] ∧ N2 ≈
N2[z̄/ȳ]. Note that N1 ≈ N1[z̄/ȳ] amounts to L∀yy′(y ≈ y′ → N1y ≈ N1[z̄/ȳ]y′), so
N1 ≈ N1[z̄/ȳ] ∧ N2 ≈ N2[z̄/ȳ] implies N1N2 ≈ (N1N2)[z̄/ȳ]. When M is λx.N , by I.H.,
we have ȳ ≈ z̄ → x ≈ x′ → N ≈ (N [z̄/ȳ])[x′/x]. Note that N is β-equivalent to (λx.N)x
and (N [z̄/ȳ])[x′/x] is β-equivalent to (λx.N [z̄/ȳ])x′. Moreover, since we now have βη, both
ȳ ≈ z̄ → x ≈ x′ → (λx.N)x ≈ N and ȳ ≈ z̄ → x ≈ x′ → (λx.N [z̄/ȳ])x′ ≈ (N [z̄/ȳ])[x′/x]
are derivable. So we can get ȳ ≈ z̄ → x ≈ x′ → (λx.N)x ≈ (λx.N [z̄/ȳ])x′ and therefore
ȳ ≈ z̄ → λx.N ≈ (λx.N)[z̄/ȳ]. (Note that we use the necessity of identity and the 4 axiom
for L repeatedly. In model theoretic terms, this result is related to the ‘basic lemma’ for
Kripke logical relations (see Mitchell [22]).)

Conversely, given Theorem 6.1, to show that `TN j∗(A) only if `HEζ A, it suffices to
show that for each M ∈ LR, `HEζ M = j(j∗(M)), where j replaces Nec with Nec′. Consider
the unique non-trivial case in which M is ∀σ. Since j(j∗(∀σ)) is λX.∀σx(j(x ≈σ x)→ Xx),
let’s directly prove that `HEζ j(N ≈ N) = > for all N , by showing that `HEζ j(N ≈ N ′)↔
j(N) = j(N ′).

By induction on the type of N . When N is of type e or type t, it’s easy to see that
the result holds. When N is of a non-basic relational type σ → τ , N ≈σ→τ N ′ amounts
to L∀σxx′(x ≈σ x′ → Nx ≈τ N ′x′), so j(N ≈σ→τ N ′) amounts to 2>∀σxx′(j(x ≈σ x′)→
j(Nx ≈τ N ′x′)), which is in fact equivalent to 2>∀σxx′(j(x) = j(x′) → j(Nx) = j(N ′x′))
given I.H. Then, it turns out that j(N ≈σ→τ N ′) ↔ j(N) = j(N ′) is equivalent to the
principle Modalized Functionality: ∀XY (2>∀x(Xx = Y x) → X = Y ), which is a theorem
of HEζ.79

We promised in previous sections to show that the modal logic of L is cannot be proven
to be stronger than S4 in TN, and the modal logic of LS5 cannot be proven to be stronger
than S5 in TN. Given the interpretability theorem 6.1 established in this section, we can
fulfill our promise.

Corollary 6.5. For all A ∈ L2
P, if 0S4 A, then 0TN A[L/2].

Proof. Suppose that there is some A ∈ L2
P such that 0S4 A. Since A is not derivable in

S4, it must be false in some Kripke model M with a reflexive and transitive accessibility

79We omit the proof for Modalized Functionality because it is very similar to the proof for Property
Intensionalism we’ve given in note 14. In the current setting of relational type theory, HEζ can even be
equivalently axiomatized by adding Modalized Functionality to HE.
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relation. But given Corollary A.6 in Bacon [1], M can always be used to generate a model
MM for HEζ falsifying A[2>/2], which means that A[2>/2] cannot be derived in HEζ.
So by Theorem 6.1, it follows that (A[2>/2])[L/2>], namely A[L/2], is not derivable in
TN.

To get the result for LS5, the first step is to observe that since TN is interpretable in
HEζ, it is interpretable in any theory stronger than HEζ. In particular, let HEζ+ = HEζ ⊕
¬2>¬p → 2>¬2>¬p. Clearly, TN can be interpreted in HEζ+ via the same translation
function j. The next step and also the most crucial step is to show that for every A ∈ L,
j(LS5)A ↔ 2>A is provable in HEζ+. This is warranted by the fact that 2> is an S5-
necessity according to HEζ+. So by a proof similar to the one of Corollary 6.5, we can
conclude that the modal logic of LS5 cannot be proved to be stronger than S5 in TN.

6.2 Other theories of granularity

We have seen that given a background of Classicism one can offer completely reductive
definitions of necessity and the broadest necessity, and moreover, do so in a way that is
distinct from the Quinean interpretation of Nec and allows for contingency.

This possibly because, within this theory of granularity, there is only one logical truth,
so that the condition of being Logical may be defined reductively. However we believe that
non-Quinean reductive definitions of necessity should be possible in a wide range of more
fine-grained theories.

Our discussion here will be far from comprehensive, however. We consider a theory T
extending H0 that contains all instances of following schema as theorems, where Con(M)
denotes the set of non-logical constants in M , and FV(M) the set of free variables:

Excision ((A ∧ C) ∨ A = (B ∧ C) ∨ B) → A = B, provided Con(A) = Con(B) and
FV(A) = FV(B).

And moreover, suppose T is closed under the following rule of proof:

Strong Equivalence If ` A ↔ B, then ` A = B, provided Con(A) = Con(B) and
FV(A) = FV(B).

Classicism satisfies both of these conditions, however many more fine-grained theories do
as well. For instance, consider views in which, roughly, propositions may be thought of
as ordered pairs of logical contents (e.g. sets of possible worlds) and non-logical contents
(e.g. the set of individuals that proposition is about). The theory of agglomerative algebras
of Goodman [15] and the theory of Berto [5] have this form. We also suspect that Kit
Fine’s truthmaker semantics [12] could also fall under this general class of views. Excision
effectively states that we can excise redundant non-logical contents: the only way for (A ∧
C)∨A and (B∧C)∨B) to be identical is if A and B share the same Boolean logical content
(in a Boolean algebra this identity only holds when A and B are identical). Moreover,
if A and B contain the same free variables and constants, they must have the same non-
logical contents and thus be identical. We assume here that logical constants and λ do not
contribute non-logical contents; they are not about any individuals for instance. So A and
B are identical. The rule of Strong Equivalence can be motivated similarly: if A and B
are provably equivalent in the theory, one ought to expect them to have the same logical
contents, and if they involve the same non-logical constants and variables, they are alike in
non-logical content as well.
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We may interpret TN in any theory T ⊇ H0 satisfying these two properties in such a way
that the operator 2∗ := λp.(p = (p = p)) turns out to be a broadest necessity. Before we
continue, let us note a remarkable property of this operator. Without assuming any logic
beyond Leibniz’s law and propositional logic, we may show an analogue of the 4 axiom:

Proposition 6.6. `T (p = (p = p)) = ((p = (p = p)) = (p = (p = p))), where T is a theory
containing propositional logic and Leibniz’s Law.

Proof. Suppose that p = (p = p). By Leibniz’s law, we may replace all of the ps in this
assumption with p = ps, getting (p = p) = ((p = p) = (p = p)). Again, using Leibniz’s law,
we may replace the second, fourth and sixth ps with p = ps to obtain (p = (p = p)) = ((p =
(p = p)) = (p = (p = p))).

Notice that if we had βη our proposition would be equivalent to the 4 axiom for 2∗:
2∗p → 2∗2∗p. However, even without βη we can justify this move using the rule of
Strong Equivalence, since by βE, 2∗A is equivalent to A = (A = A) for all A, and they
involve the same free variables (and non-logical constants).

We may also show that 2∗ satisfies other principles of S4.

Lemma 6.7. According to T , the modal logic of 2∗ is at least S4, where T is any extension
of H0 ⊕ Excision⊕ Strong Equivalence.

Proof. We just showed that 2∗ satisfies the 4 axiom in such a theory. It satisfies the T axiom
because the reflexivity of identity is provable, so whenever we have p = (p = p) we can infer
p. Moreover, the rule of necessitation is admissible: If A is derivable, so is A ↔ (A = A).
Then by Strong Equivalence, we have A = (A = A).

Let’s turn to the K axiom: Suppose 2∗(p→ q) and 2∗p. So we have (i) (p→ q) = ((p→
q) = (p → q)) and (ii) p = (p = p). By applying the identity in (ii) and Leibniz’s Law to
(i), we obtain ((p = p) → q) = ((p → q) = (p → q)). (p = p) → q is provably equivalent to
(q∧p)∨ q, and they involve the same propositional variables, so by Strong Equivalence they
are identical. Similarly, (p→ q) = (p→ q) is provably equivalent to ((q = q) ∧ p) ∨ (q = q),
and they involve the same propositional variables and are identical, so we may conclude
that ((q ∧ p) ∨ q) = (((q = q) ∧ p) ∨ q = q). Finally, by Excision, we obtain q = (q = q),
which amounts to 2∗q.

We may now interpret Nec in any such theory T as follows:

Logical∗ := λX.2∗∀p(2∗p→ 2∗Xp);

Closed∗ := λX.2∗∀pq(X(p→ q)→ Xp→ Xq);

Nec∗ := λX.Logical∗X ∧ Closed∗X.

Given the lemma above and Theorem 3.19, the following interpretability result is a routine
corollary:

Theorem 6.8. TN has a non-Quinean interpretation in T via the translation h that replaces
Nec with Nec∗, where T is any extension of H0 ⊕ Excision⊕ Strong Equivalence:

h : LNec → L

For all A ∈ LNec, `T A only if `TN h(A).
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