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Abstract

We develop a theory of necessity operators within a version of higher-order logic that
is neutral about how fine-grained reality is. The theory is axiomatized in terms of the
primitive of being a necessity, and we show how the central notions in the philosophy of
modality can be recovered from it. Various questions are formulated and settled within
the framework, including questions about the ordering of necessities under strength,
the existence of broadest necessities satisfying various logical conditions, and questions
about their logical behaviour. We also wield the framework to probe the conditions un-
der which a logicist account of necessities is possible, in which the theory is completely
reducible to logic.

Keywords: Broadest necessity; higher-order metaphysics; higher-order logic; modal meta-
physics.

The philosophy of modality often finds itself preoccupied with the notion of metaphysical
necessity. But there are many other necessities that are worthy of study. Some of these
are restrictions of metaphysical necessity, such as physical necessity or various practical
necessities concerning what we can do. However there are, arguably, other necessities which
are not restrictions of metaphysical necessity. According to some philosophers, epistemic
necessities, certain tense operators, determinacy operators, or counterfactual necessities are
not restrictions of metaphysical necessity.! According to these views, the philosophy of
modality is not simply the study of restrictions of metaphysical necessity. As such, many
questions about the structure of necessities remain open:

Is there a necessity which is a restriction of every necessity?

For any two necessities, is there a further necessity which they are both restrictions
of? Or a necessity which is a restriction of both?

Is there a broadest necessity: a necessity which every necessity is a restriction of?
If there is a broadest necessity, what is its logic?

Can necessities be reductively defined in purely logical or in non-modal terms?

*Thanks are due to Cian Dorr and an anonymous referee for making several helpful suggestions. Both
authors contributed equally to this paper.
1See, respectively: Chalmers [6], Fine [11] and Kaplan [19], Bacon [2], Nolan [24].



In this paper we will introduce a general framework for theorizing about necessities in higher-
order logic. Within this system one can say what it means for one necessity to be broader
than another, and prove that there are (possibly several) necessities that are as broad as
any other necessity, and that these necessities obey the principles of S4.

A similar project is undertaken in Bacon [1], which attempts to uphold a form of modal
logicism: definitions of necessity, broader than and the broadest necessity are offered in purely
logical terms. Roberts [29] shows, in this framework, how other necessities can be understood
as restrictions of the broadest necessity. However, the adequacy of the definitions, and
the results about the broadest necessity, depend essentially on the background theory of
propositional granularity assumed in those papers: a system that included identities, like
A = (AANB)VA and 3x(AV B) = (3zAV3zB), that correspond to provable biconditionals in
the underlying logic. Such identities are contentious, and rejected by philosophers interested
in more fine-grained pictures.?

In this paper we aim to provide a grain-neutral theory of necessities. But to remain
grain-neutral, we have found it necessary to take at least one modal term as primitive. In
this paper we proceed by taking the notion of being a necessity operator as primitive, and
axiomatize it directly yielding a general theory of necessities. The theory does not imply any
of the aforementioned propositional identities; indeed we will show that it is conservative
over a minimal theory of higher-order logic that does not encode any particular vision of
granularity.

The theory also brings into focus a distinction between two sorts of extensionalism
that are often conflated. One is a theory of granularity, which we call Fregeanism, that
maintains that propositions, properties and relations are individuated by their extensions.
The other is a fundamentally modal principle we are calling Spinozism, which maintains
that every necessity is a truth-functional operator, and which is completely neutral about
how propositions, properties and relations are individuated.®> While Fregeanism entails
Spinozism as we will see, the converse is not true. Rather Fregeanism is the result of
adding Intensionalism — the view that necessarily equivalent entities are the same — to
Spinozism. Indeed, given any extension of our theory of necessities, there is an intensional
view corresponding to the result of adding Intensionalism to that theory. As a limiting case,
when you add Intensionalism to the theory of necessities itself you get a very natural theory
of granularity, Classicism (appearing in, e.g. [2], [4]), which we believe deserves special
attention.

In section 1 we outline the background framework of higher-order logic, and present a
theory, Hp, that we believe is sufficiently grain-neutral. In section 2 we introduce our theory
of necessities, and explain its axioms and their motivation. In section 3 we establish some
facts about the ordering of necessities, including the fact that there is a minimal element —
the broadest necessity — and we establish some facts about its logic. We also explore the
notion of a relative necessity and prove the aforementioned conservativeness result. Section 4
explores some strengthenings of the theory including the forms of extensionalism mentioned
above. In section 5 we compare our theory with that of Williamson [36], Roberts [30], and
Dorr, Hawthorne and Yli-Vakkuri [9]. In section 6 we explore some connections between our
grain-neutral theory and the aforementioned reductive one, and then outline some general
conditions under which a logicist reduction of necessities is possible.

2See, e.g. Dorr [8], Fine [12] Goodman [15], Soames [32], Zeng [37].

3Spinozism is consistent with many very fine-grained pictures of reality. But surprisingly, it is even
consistent with a conception of propositions in which they are sets of possible worlds, even though such
views are often assumed to admit lots of necessities that are not truth-functional.



1 Higher-order logic

In modal logic, a modality is typically regimented with a sentential operator expression
representing an English phrase like it is necessary that or it is possibly that: an expression
that can combine grammatically with a sentence to form another sentence. A language with
particular sentential operator expressions may be sufficient for articulating the theory of a
particular necessity, but in order to formulate a theory of necessities in general we will need
to quantify into the position that operator expressions occupy and to employ expressions
with more complicated types, such as expressions which combine with operator expressions
to form sentences. We therefore believe that the appropriate framework for this investigation
is higher-order logic. What follows is a brief introduction to higher-order logic.

In higher-order logic, expressions fall into different grammatical categories, called types.
There are basic types e and ¢, corresponding to the category of names and sentences respec-
tively. And whenever o and 7 are types, there is a functional type (o — 7) of expressions
that combines with expressions of type ¢ to form an expression of type 7. In what follows
we shall adopt the convention of omitting brackets from types that are associated to the
right: i.e. 07 — 09 — -+ — o, is short for (07 — (62 = (--+ = 0, ...))). Thus operator
expressions have type t — ¢, expressions that combine with operator expressions to form
sentences — operator predicates — have type (t — t) — ¢, and so on. For each type o,
we have a set of specified constants cy,ca, ..., which may or may not be empty, and a set
of infinitely many variables x1,x2,.... Terms of a higher-order language will be built from
those constants and variables recursively (we use M, N,O,... as meta-linguistic variables
and ‘M : ¢’ for example, means M is a term of type o):

e If M is a constant or a variable of type o, then M : o;
e If M:0— 7and N :o, then (MN) : T;
e If M : 7 and z is a variable of type o, then (A\x.M):0 — 7.

With terms we follow the convention of omitting brackets associated to the left, i.e. M1 M, ... M,
is short for ((... (M1 Ma)...)M,). And we often write Azixa ... x,. M for Azy.(Aza.(. .. Az, M) ...)).
We will omit brackets as we see fit, provided no ambiguities arise.
Given a A-term Ax.N, N is the scope of Az. An occurrence of a variable x in a term is
free if it is not in the scope of Ax. A variable x is said to be free in a term M if it has some
free occurrences in M.* A term is closed if no variable is free in it and open otherwise. We
use M[Ny/x1,...,Ny,/x,] for the result of substituting Ny, ..., N, for each free occurrence
of x1,...,x, in M simultaneously (note that N; and x; must belong to the same type).’

4Let FV be the function mapping each term to the set of all variables free in it. Then we have: FV(c) = @,
FV(z) = {z}, FV(MN) = FV(M) UFV(N), and FV(\z.M) = FV(M) \ {z}.
5The notion of substitution can be defined as follows (let N=Ni,...,Npand T =2x1,...,Zn):
o x;[N/z] = Ny
e M[N/Z]= M when Misacoray¢ {x1,...,zn};
e MN[N/z] = M[N/Z]N[N/z];
o Az M)[N /) = M&i-M[N1 /1, ..., Nim1/@i—1, Nig1/@it1,- -, Nofan];
o (\y.M)[N/z] = \y.M[N/z] when z; € FV(M) and y € FV(N;) for no i;
o (\y.M)[N/z] = (A\2.M[z/y])[N/Z] when z; € FV(M) and y € FV(N;) for some i, where z ¢ FV(M)U
FV(N1)U---UFV(Ny).
Note that this is not the typical way to define substitution. We do so just because we want to choose
the system Hp as our background theory. If we defined substitution in the usual way, we would need, for



Two terms are said to be immediately (-equivalent if one of them is (Ax.M)N and the
other is M[N/z] for some M and N. Two terms are said to be immediately n-equivalent
if one of them is Ax.Mxz and the orther is M for some M, where z is not free in M. Two
terms are [1-equivalent if one can be gotten from the other by replacing immediately 3 or
n-equivalent terms in some finite number of steps.® It is not hard to see that Bn-equivalent
terms share the same type.

From now on, let’s focus on languages containing a logical constant V, of type (o —
t) — t for each o and the logical constant — of type t — ¢t — t. We use A, B,C,... in
particular as meta-linguistic variables for terms of type t. Following the conventions, we
write A — B for - AB, write A1 — Ay — -+ = A, for (A1 — (A2 = (- = An...))),
and V,zA for V,(Ax.A). Other logical terms can be defined accordingly:

L=V Vs V= Apgq.(—p = q) do = AX . Ve~ Xzx
Ti=1—1 A= Apg.—(p — —q) =5 = AxyVo: X (X — Xy)
~=Ap(p— L) ©=Apg.(p = @) Ag—p)

We shall drop the superscript from V,, 3, or =, when it is clear from context; and we shall
write, for example, Vx; ...z, A for Vi ...Vx,A.

Sometimes we will provide English glosses on expressions in higher-order languages. For
example, we may gloss VX (WX — Xp) as ‘every operator X having the property W applies
to the proposition p’. This talk should not be understood as providing any translation from a
higher-order language to English; rather, it should only be understood as a way of indicating
a particular sentence of higher-order logic.” Another thing we should clarify here is that in
the interest of readability, we will not distinguish carefully between use and mention. For
instance, when the context is clear enough, we may use X of type ¢t — t for an operator
expression which is a term but in other contexts we may use X for the corresponding
operator which is a wordly matter.

Theories will be treated as sets of formulae — i.e. terms of type t. An axiomatic system
of higher-order logic is a collection of axioms and rules, and it determines a theory as the
smallest set containing those axioms and closed under those rules. Given, for example, a
theory T, a (schematic) formula A and an inferential rule R, we’ll use T @& A @ R for the
result of adding A to T and closing under R plus the original rule(s) of T.

The weakest axiomatic system of higher-order logic studied in this paper, Hg, has the
following axioms and rules:

PC All theorems of propositional calculus;
Ul V. F — Fa;
BE ()\.’El . ZL’nA)Nl ...N, < A[Nl/.’ﬁl, A ,Nn/xn];

example, an extension of Hg containing «, a principle about grain, which says that a-equivalence suffices for
identity (see below).

6Two terms are immediately a-equivalent if one of them is Az.M and the other is A\y.M[y/z] for some
M, where y is not free in M. Two terms are a-equivalent if one can be gotten from the other by replacing
immediately a-equivalent terms for zero or more times. It can be proved that two terms are a-equivalent
only if they are fn-equivalent. (Hint: Since it is required that y is not free in M, Az.M is immediately
n-equivalent to Ay.(Az.M)y and (Az.M)y is immediately S-equivalent to M[y/x].)

"The indication relation may not preserve meaning, or even truth: the sentence ‘Alice possesses some
property’ indicates the sentence 3X Xa, but we understand the latter sentence in such a way that it would
be true if there were no properties. For more discussions, see Prior [27] and Williamson [35], ch. 5.9.



mp If F A — B and - A, then - B;
Gen If H A — Fzx, then F A — V,F, provided z is not free in A.

Note that by our definition of =, the reflexivity of identity and Leibniz’s Law are theorems
of H()Z

Ref M =, M:
LL M =, N — A[M/z] — A[N/z].

The system Hg can be given a sound and complete semantics using the model theory of
Muskens [23]. Hg is equivalent to Muskens sequent calculus ITL, which has a sound and
complete semantics, in the sense that one can derive the sequent I' = ¥ in ITL iff one can
derive a contradiction in Hg from I', =%, where =% = {-=A | A € ¥}.8

Ho is fairly neutral about how fine-grained reality is; for instance the only identities it
implies are trivial self-identities.? It can be strengthened by adding axioms or rules reflecting
certain assumptions of grain. Consider the following one:

6n A < B whenever A and B are n-equivalent.

Let H be the result of replacing g in Hp with 87. H is an extension of Hy because Sg can
be derived from 7 in H.'19 Also note that within H, 57 is equivalent to such a seemingly
stronger principle:!!

Bn* M = N whenever M and N are Sn-equivalent.

So the extended system H says something about grain: gn-equivalence implies identity. For
instance, the proposition that Mary loves Mary, formalized Lmm, is therefore identical to
(Az.Lzm)m, (Az.Lmzx)m, (Az.Lzx)m and (Ax.Lmm)m. Someone who adopted a very fine-
grained account of propositions might reject these identities on the grounds that they each
ascribe different properties to Mary: loving Mary, being loved by Mary, loving oneself and
being such that Mary loves Mary respectively.

Still, Bn is a relatively modest grain constraint. There are rules reflecting some more
contentious ideas:

EIf- A<« B, thent+ A=, B;
¢ If- Mz =, Nz, then - M =,_,, N.12

8Roughly each sequent rule in ITL, from I' = ¥ to IV = ¥/, is admissible in the sense that if I', =% is
inconsistent in Hg then so is IV, —X/. Conversely, for each axiom A of Hg, the sequent I' = A is derivable in
ITL, and the rules of mp and Gen correspond to admissible sequent inferences, e.g. if ' = Aand "= A — B
are derivable in ITL then so is I' = B.

9But note that the notorious Russell-Myhill argument can be run within Hp, which means that certain
structural views about grain (for example, those asserting the claim VXYzy(Xe =Yy > X =Y Az =1y))
are ruled out by Hg. See e.g. Uzquiano [33], Dorr [8], §6 or Goodman [14]. But the Russell-Myhill argument
can be run in many different logics provided certain plausible assumptions. So we tend to think that the
structural views ruled out are themselves very unattractive.

10To give the derivation precisely requires one get into the fine mechanics of the definition of a-equivalence
(see note 6); we omit the argument for brevity.

1By Leibniz’s Law, A = B only if A +> B. Conversely, when M and N are fn-equivalent, so are M = M
and M = N.

12The name comes from the ¢ rule for the equational A-calculus (see Hindley and Seldin [17]).



Let HE = H® E and HEC = HE & (. HE straightforwardly articulates the idea that logical
equivalence suffices for identity between propositions, and HEC does the same for arbitrary
relations.’® In Bacon and Dorr [4] it is shown that it can be equivalently axiomatized by a
set of closed equations, comprising some equations imitating the theory of Boolean algebras
governing the truth functional connectives, and some equations capturing an adjunctive
relation between the quantifiers and the k& combinator Axy.xz. (If we are in a restricted
setting where all non-basic types end in ¢, it can be even shown that closing Hyg under E and
¢ yields HEC as well: the rough idea is that with E and ¢, Sg allows one to prove the identities
that were previously only provable with 87; see Proposition 6.2.) We will henceforth also
refer to HEC as Classicism (following [3], [4]).

By the arguments in Bacon [1], we can see that in HE (and thus HE() the operator
Ot := Ap.(p = T) has the behaviour of a broadest necessity satisfying a logic of at least
S4. But the systems HE and HE( are not grain neutral: the rule E, for instance, ensures
identities like ANB = BAA, A =--A, (AANB)V A = A and so on. Moreover, these
theories contain many intensionalist theses to the effect that propositions and properties are
individuated by necessary equivalence:

Propositional Intensionalism Ov(A <+ B) - A = B;
Property Intensionalism OtVz(Fz < Gx) — F =G.

For instance, since HE is closed under the rule E, we know it contains the identities (i)
(A< B) - A)=((A<+ B) — B), (ii) (T — A) = A and (iii) (T — B) = B (since the
corresponding biconditionals are tautologies, and thus belong to HE). If (A <> B) = T and
given (i), we may use Leibniz’s Law to infer that (T — A) = (T — B) and thus that A = B
using (ii) and (iii), thus establishing Propositional Intensionalism. Property Intensionalism
is established in a completely parallel fashion, using E and ¢ to turn open propositional
equivalences into property identities.'*

2 Being a necessity

In this section we present, informally, some constraints for being a necessity operator, which
will provide a basis for the formal axiomatization of our theory of necessities. Our axioms
will be guided by a liberal conception of what a necessity is: roughly, any operator that
is formally well-behaved in a sense to be spelled out below. Some philosophers will no
doubt maintain that some formally well-behaved operators do not really express a sense in
which things couldn’t have been otherwise (for instance, in the course of our investigation
we will encounter ‘gruesome’ necessities that are defined disjunctively). We are doubtful
that the distinction between ‘real’ necessity and the merely formally well-behaved ones is

13Here logical equivalence is taken to include not only all provable equivalences in the background theory
H, but also logical equivalences one can derive using these two further rules. However, in Bacon and Dorr
[4] it is shown that there isn’t really any distance between these ideas: merely adding identities between
things provably equivalent in H would yield the same theory as closing under our stronger rules.

M Using the rules E and ¢, we can show (i) \y.(Vz(Fx <> Gx) — Fy) = M\y.(Vz(Fz <> Gz) — Gy), where
y is free in neither F' nor G. This is because (A\y.(Vz(Fz <> Gz) — Fy))y <> (Ay.(Vz(Fz < Gz) — Gy))y is
derivable in H, with the help of Sn. Similarly, by using 7, E and ¢, we can get (ii) Ay.(T — Fy) = A\y.Fy
and (iii) Ay.(T — Gy) = Ay.Gy. So given the assuming that Vz(Fz <> Gz) = T we can infer that
Ay.Fy = Ay.Gy from (i)-(iii), and thus that F' = G by 1. A more general version of Property Intensionalism,
OrVz(Rx1...Zn <> ST1...2n) & R =5, can be proved in a similar way.



in good standing. But those who have it may still find our notion useful as a backdrop for
formulating their more demanding theory.

Our theory will be formulated in the language of higher-order logic with a further con-
stant, Nec of type (t — t) — ¢, representing our primitive notion of being a necessity
operator. In what follows we will refer to the language of pure higher-order logic by £, and
the augmented language with £Ne°,

2.1 Conditions for being a necessity

Let us begin with some necessary conditions for an operator to be a necessity. According to
a widely accepted modal intuition, a necessity operator satisfies, at least, the normal modal
logic K. Within a propositional modal language, this logic can be axiomatized by extending
the propositional calculus with one modal axiom plus one rule of proof:

K OA— B)—»U0A— 0OB;
N If - A, then - OA.

They suggest two plausible necessary conditions that an operator must satisfy if it is a
necessity operator. We will, moreover, posit that together they are sufficient.

The K axiom suggests that we should demand that necessity operators are closed under
modus ponens. This just means that if p and ¢ are propositions, and X is a necessity
operator that applies to p — ¢ and p, then X must apply to ¢ too. But this is not enough.
An operator can be closed under modus ponens for all sorts of contingent reasons. For
instance, the operator Alice said that might be closed under modus ponens because Alice
has said nothing (so that what she has said is vacuously closed under modus ponens). We
shouldn’t count this operator as a necessity: even though it is in fact closed under modus
ponens it is possible (physically possible, say) that Alice failed to say all the consequences
of things she’s said that can be inferred using modus ponens. More generally, if an operator
possibly fails to be closed under modus ponens in any other sense of ‘possibly’, it will not
count as a necessity either. Thus we require necessities to satisfy a more robust condition
we will call being Closed, namely that the operator should be not only closed under modus
ponens, but necessarily closed under modus ponens, for any candidate notion of ‘necessity’:

Closure Every necessity operator is Closed.

The principle plausibly is true for any of the candidate notions we mentioned in the intro-
duction, and we assert that it is true more generally of all necessity operators.

Because higher-order logic affords us the ability to quantify into sentence position, we
can formulate the property of being an operator X that is closed under modus ponens,
or, in other words, being an operator obeying the modal axiom K, with a single universal
generalization:

K :=XXVpg(X(p—q) — Xp— Xq).

And since we can also quantify into operator position, we spell out what it means for a
proposition p to be necessary in every sense as VX (Nec X — Xp). Indeed, this notion of
being necessary in all senses is so important, we shall introduce a shorthand for it:

L:= VX (Nec X — Xp).
Thus our definition of being Closed becomes:

Closed := AX.(KX AN LKX).



Closure can then be formalised by the principle Nec X — Closed X, which ought to be a
consequence of our theory of necessities. One might wonder why we appeal to both K X and
LK X when formalising the condition Closed. Shouldn’t being necessary in every sense imply
being true? Yes, we believe so. But also note this means that at least some necessities are
factive in the sense that whenever Xp it is the case that p. At the current stage, we haven’t
introduced enough information about necessities to guarantee this, so we will simply bake it
into the definition for now. It will turn out in our complete theory that being necessary in
every sense implies being true; so the putative difference between LA and AA LA disappears
(see section 2.2).

The necessitation rule N ensures that OA is a theorem of the logic K whenever A is a
theorem of K. Those who accept the rule of necessitation often do so by way of a more
general principle stating that whenever A is a logical truth, then so is A — the rule of
necessitation then being justified by the fact that the axioms of K are logically true and
other rules of inference preserve logical truth. The notion of logical truth is a feature of
sentences not propositions, but we have a natural worldly analogue of logical truth, namely:
being necessary in every sense of necessity.'> So the worldly analogue of this principle about
logical truth is that a necessity X must satisfy the principle that if p is necessary in every
sense, then so is Xp. However, as with Closure, a necessity shouldn’t contingently satisfy
this principle, thus we say that an operator X is Logical just in case it is necessary in every
sense that if p is necessary in every sense, so is Xp, and then endorse the requirement:

Logicality Every necessity operator is Logical.
We may similarly define what it is for an operator to be Logical in higher-order language:

N = XVp(Lp — LXp);
Logical := AX.(NX AN LNX).

We propose that these two conditions are in fact not only necessary conditions, but
sufficient for being a necessity operator. In our previous notation, this can be formalised:

Necessity Nec X > Logical X A Closed X.

Indeed, this will be the central axiom of our theory of necessities.

At this juncture we must emphasize the difference between giving necessary and sufficient
conditions for an operator to be a necessity, and giving a definition of what it is to be a
necessity. Our principle Necessity does not provide us with a definition of Nec because it
involves the term L and therefore the term Nec on the right-hand-side (contained in our

150ne may try to directly define an operator applying to all and only propositions with the form of a
logical truth without appealing to Nec. Under the assumption of Classicism (i.e. HE(), for example, only
one proposition, namely T, has the form of a theorem of HE(, so Ot := Ap.(p = T) is such an operator. But
if propositions are structured this project will be harder. We can, for instance, characterize the operator
being of the form of some theorem of propositional calculus, using a complex term of pure higher-order logic:

PC:= VX ((VpgX(p — q—Dp)A
VparX((p—=q—=7) = (=9 =>p—=>7)A
VpgX((—g = —p) = p — @) A
Vpg(X(p = q) = Xp — Xq)) — Xp).
However, a finite definition of the theorems of higher-order logic is not possible because there are infinitely

many logical constants — V. for each o. This same limitation applies to wider conceptions of logical truth
that extend the theorems of higher-order logic (such as the theorems of our theory of necessities).



definitions of Closed and Logical). If we could give a definition without invoking Nec on
the right-hand-side, we would have succeeded in giving a definition of Nec!®; a project we
suspect is impossible in a completely grain-neutral setting.!”

* %k ok ok ok

Before moving on, let us make a few brief methodological remarks. In presenting this theory,
we do not conceive of ourselves as doing conceptual analysis on the word ‘necessity’ as it is
used in philosophy. For one thing, it is a technical term, and has slightly different uses in
different parts of philosophy. For instance, in metaphysics ‘necessity’ seems to be reserved for
operators that are at least factive, i.e. obey the T axiom (Op — p) of modal logic, whereas in
linguistics and philosophy of language the word ‘necessity’ is used more liberally to include
non-factive deontic modalities, such as those expressed by ‘ought’ in some contexts. Our
view is that this is an entirely terminological issue: we just see our target to be the notion of
a normal operator — the worldly analogue of an operator expression governed by the modal
logic K. Other starting points would be equally acceptable to us. For instance, Bacon [1]
works with an even weaker notion that builds in Logicality, but does not require Closure.
Similarly, one might take as a starting point a stronger notion. For example, some
philosophers postulate a more demanding notion of objective necessity, from which deontic
and epistemic necessities are excluded. (Williamson [36] and Roberts [30].) In which case
one might wish to add the requirement that every necessity is factive, and necessarily so in
every sense of necessity.!® (But someone may disagree since the ‘actuality’ operator, and
the operator of having an objective chance of 1 appear to be objective but possibly non-
factive necessities.) Another particularly salient option in this direction is to strengthen the
Closure condition. This condition ensures that given finitely many propositions, if each of
them is X-necessary, so are their logical consequences. It’s worth noting that we do not
impose the stronger condition that necessities are closed under infinitary consequence since
no analogous principle follows from our two principles of the modal logic K. (And as with
the case of factivity, one might wish to include operators like having an objective chance
of 1 among the necessities, which are not closed under infinitary consequence.!?) If we
wished instead to characterize the worldly analogue of the stronger notion of an infinitely
closed normal operator, we could similarly add a stronger condition Closed®™ X, capturing
a stronger form of closure.?2’ However, we see little reason to take those stronger notions of
being a necessity as primitive, as we can simply define them in the present theory (on the

160r at least, a definition of a predicate whose extension is just the necessity operators, which is good
enough for most purposes.

17 Again, if we assume Classicism, the operator O1 would suffice to serve all functions of L. This is
basically because all theorems of higher-order logic express the same proposition according to this theory.
So replacing all occurrences of L in Logical X A Closed X with O+ would give us a definition of Nec X (see
more discussion in section 6.1). The same strategy doesn’t work in a grain-neutral setting. As we have
explained in note 15, since we can’t define, in the pure language £, an operator applying to exactly all
theorems of higher-order logic, we take L-truth as an analogue of logical truth. But if we could characterize
L in L, we would de facto define an operator applying to exactly all theorems of higher-order logic in L.

180ur theory, as we will see, does not entail that every necessity is factive; indeed it proves the existence
of non-factive necessities such as Ap.T.

19This operator is not closed under infinite conjunction introduction: the chance of a point-sized dart
missing a given point on a unit disc is 1, but the chance of it missing every point (the conjunction of these
propositions) is 0.

20The rough idea can be understood as follows. Say that a collection of propositions represented by a
propositional property X of type t — t entails p if every proposition entailing every member of X entails p,
and say that X is Closed®® if X applies to any proposition entailed by X relative to every sense of necessity.
We will have more discussion on infinite closure in sections 3.1 and 3.4.



other hand, our weaker notion of necessity could not be defined in a theory that builds in
factivity or infinite closure at the start).

2.2 Necessitation

Let us explore some further elements that we think should be part of our theory of necessities.
Like the rule N for the logic K, we might demand that anything derivable in the theory of
necessities should itself be necessary in any given sense of necessity. We can ensure this by
demanding that our theory of necessities be closed under a rule of necessitation:

Necessitation If - A, then - Nec X — X A.

As with the rule N, this rule may be given a similar justification. Given the rule Gen,
and the axiom Ul, - Nec X — XA is equivalent to - VX (Nec X — XA), or given our
notational conventions, just  LA. Restated this way, the rule takes on a more familiar
form of necessitation for the operator L.

The combination of Necessity and Necessitation already makes substantial claims about
necessities. Let TNy be the theory Hg & Necessity & Necessitation. One theorem of TNy is
that the operator L is Closed.

Proposition 2.1. F1y, Closed L.

Proof. By Necessity, we know that Nec X — Vpg(X(p — ¢) = Xp — Xq) for each X. Tt is
not hard to see this implies VX (Nec X — X(p — q)) = VX (Nec X — Xp) = VX(Nec X —
X¢q), which amounts to L(p — ¢q) — Lp — Lq, for all p and q. Once we get K L, Necessitation
will then give us LK L. O

Another important theorem of TNy is the principle below, which states that the operator
it is true that is a necessity (we adopt the convention of writing I for the identity combinator

Ap.p):
Identity NeclI.

In Hg, every A is provably equivalent to IA. I is therefore a trivial operator. However,
although [ is intuitively a necessity, this requires some justification:

Proposition 2.2. 1y, Identity.

Proof. By applying Necessitation to the Hyg theorem p — Ip we have L(p — Ip). We just
showed that L is closed under modus ponens, thus we can get Vp(Lp — LIp). Also note
that I is closed under modus ponens. So by Necessitation again, we have Logical I and
Closed I. Thus, according to Necessity, I is a necessity. O

Recall that when we formalise, for example, the idea that one operator is Closed, we
appeal to both LKX and KX. Seemingly this is redundant because it is tempting to
think that L is factive. But we pointed out for L to be factive, there must be some factive
necessities. We’ve seen above that Identity proves the existence of a factive necessity and
therefore the factivity of L. So now we can derive the following principle in TNg as well:2!

210ne tricky thing is that if we replace Necessity with Necessity’ as an axiom, we cannot directly get
Identity. However, in a great many contexts Identity turns out to be derivable even if we have only Necessity’.
For instance, assume the principle 87 of section 1 is accepted. Then note that Lp and LIp are 8n-equivalent.
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Necessity’ Nec X <+ LNX ANLKX.

Let’s see one more theorem of TNp, which will be invoked later. It says that if X and Y
are necessities, then their composition Ap. XY p is also a necessity.

0: = AXYAp.XYp.
Proposition 2.3. Fy, Nec X — NecY — Nec(X o Y).

Proof. From N X, we have LY p — LXYp. By Necessitation and the closure of L, we have
LYp — L(X oY)p. So given NY, we have Vp(Lp — L(X o Y)p) and hence N(X oY).
If we necessitate this reasoning and distribute L, we can get LNX — LNY — LN(X o
Y). Moreover, observe that the conjunction of KX and XKY implies K(X oY). So by
Necessitation and the closure of L, we have LKX — LXKY — LK(XoY). Next, note that
from NX, we have LKY — LXKY. So we can get NX ALKX — LKY — LK(X oY).
Therefore, Necessity lets us conclude that if both X and Y are necessities, sois X oY. [

Finally, note that TNy allows us to talk about possibilities. We may define a term Pos
of type (t — t) — t, which means being a possibility operator, as follows:

Pos := AX.3Y (NecY A LVp(Y—p + =Xp)).

This definition guarantees that the dual operator of a necessity (possibility) must be a
possibility (necessity).?2 Whenever X is a necessity, we may use X for the possibility
Ap.—X—p.

Although the theory TNy is strong enough, it is not our final theory. One more axiom
is needed. We motivate it in the following section.

2.3 L-Necessity, Mix-and-Match and 4,

We will give three equivalent statements of our final axiom, each highlighting a different
aspect of it. The first way of formulating the axiom is easiest to understand: it simply says
that being possible in some sense of possibility is itself a way of being possible, or dually,
that being necessary in every sense of necessity is itself a way of being necessary.

L-Necessity Nec L.

While we find this the simplest axiom to state and justify there are, given TNy, other
equivalent ways of formulating it which also provide alternative routes of justification.

The second way of formulating this axiom has the form of a closure condition on neces-
sities. As emphasized at the beginning of this section, we are attempting to capture a very
liberal conception of necessity in which any operator with the right sort of formal behaviour
counts as a necessity. Thus, for instance, if X and Y are necessities, then the operator being

So pn will give us Lp — LIp and therefore LNI. Even if you're the sort of person who rejects 8n because
you believe propositions are structured somehow, we think you should accept the principle that necessarily
p if and only if necessarily it is true that p: Nec X — (Xp <> XIp). This also suffices to prove Identity:
Because Lp implies Nec X — Xp, this principle helps us to get Nec X — X Ip, from which LIp follows. So
we can have LNI.

22If X is a necessity, then it directly follows from the definition that its dual Ap.—X—p is a possibility. If
X is a possibility, observe that by our definition, Ap.—X—p is L-necessarily coextensive with some necessity
Y. It is easy to check that by Necessity’, when two operators are necessarily coextensive in every sense, one
is a necessity only if the other is also a necessity.
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X -necessary if snow is white and Y necessary if snow isn’t white is also a necessity. In fact,
this result is already a consequence of the theory TNg.2? The second formulation generalizes
this idea: whenever W is necessarily a property of necessities, the operator of possessing all
the W -necessities, \p.¥X (WX — Xp), is a necessity too. Adopting the notation

Ly := \pvVX (WX — Xp),
our principle may be formalised as follows:

Mix-and-Match LVX (WX — Nec X) — Nec Ly .

Although the principles of TNy encode a liberal conception of necessity, neither L-Necessity
Mix-and-Match does not follow from them. The reason is that, for all we have said so
far, it is possible, in some sense of possible, for there to exist new necessities — necessities
which do not actually exist, as well as their dual possibilities. And moreover, it might
be possible for things to be possible in these new senses of possibility that are not in fact
possible for any actually existing kind of possibility. Now if W were a property of necessities
which possibly contains new kinds of necessity like this, then there would be things that are
possible according to some W-possibility but not possible according to any actually existing
notion of possibility. Roughly, Mix-and-Match (or equivalently L-Necessity) ensures that if
something is possible according to a merely possible sort of possibility, it is in fact possible
in some sense.

We can leverage these observations to find other assumptions from which Mix-and-Match
can be derived. A strong assumption like this is the assumption that there simply cannot
be any new necessities. We may formulate this principle in terms of the Barcan formula
restricted to necessities:

BFyec VX (NecX — LA) —» LVX(Nec X — A).

The informal reason that this principle entails Mix-and-Match should be clear from the
above.?4

However, we think this is an overly restrictive assumption: if there could have been
‘alien’ fundamental properties, there could be new laws and nomic necessities corresponding
to them (see our discussion in section 5). An alternative and less contentious route to Mix-
and-Match is simply the idea articulated above — that if something is possible according to
some merely possible notion of possibility it is possible according to some actual possibility.
Reformulating this in its contrapositive form allows us to state this principle with our
preferred primitive, Nec, will be our third equivalent of the axiom:

4;, Vp(VZ(Nec Z — Zp) - VX (Nec X — XVY (NecY — Yp))).

23We prove that the operator O := A\p.((¢ — Xp) A (-g — Yp)) is a necessity whenever both X and Y
are necessities: Given the tautology Xp — ¢ — Xp, by Necessitation, we have LXp — L(¢g — Xp) and
therefore (Lp — LXp) — Lp — L(q — Xp). The same reasoning applies to Ip — —g — Ip and we can
therefore get (Lp — LYp) — Lp — L(—~q — Yp). So we have (Lp — LXp) A (Lp — LY p) — Lp — L(q —
Xp) A L(—q — Yp). Observe that L(¢ — Xp) A L(—g — Yp) implies LOp. Then by Necessitation again,
Logical X A Logical Y implies Logical O. A similar strategy can be employed to show that X and Y are
Closed only if O is Closed.

24 A formal deduction from the L-necessitated version of BFnec to Mix-and-Match can be run in TNg:
Suppose Lp holds. By Necessity, it implies VX (Nec X — LXp). Then BFec lets us derive LVX (Nec X —
Xp), which amounts to LLp given the closure of L. So by Necessitation LBFne. implies LVp(Lp — LLp).
See note 25 for the proof that the latter implies Mix-and-Match.
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This of course just has the form of the 4 axiom (Op — OOp) for L.

Treating 47 as an axiom will provide us with our third equivalent axiomatization of
our theory. By treating it as an axiom we may apply Necessitation to infer the principle
LVp(Lp — LLp), which we will abbreviate L4y, which in turn is equivalent in TNy to L-
Necessity and Mix-and-Match. To establish Mix-and-Match from L4p, suppose that W is
necessarily a property of necessities. We must show that Ly, is also a necessity. Ly is
easily seen to be Closed, since W necessarily consists only of Closed operators. It is also
Logical because Logical L is LVp(Lp — LLp) A Vp(Lp — LLp) which follows directly from
our assumption of L4, (i.e. LVp(Lp — LLp)). This means it is necessary, in every sense,
that p possesses every W-operator, since, necessarily, W-operators are necessities.2’

On the other hand, Mix-and-Match clearly entails L-Necessity: by letting W be Nec,
we get that Lyec is a necessity, which of course is just L. And clearly L-Necessity entails
L4y, since if L is a necessity, L must be Logical (by Necessity), but by definition Logical L
has L4y as a conjunct. So we have a circle of entailments — L4; = Mix-and-Match =
L-Necessity = L4; — and so our three axioms must be equivalent in TNg.

The connection to the 4 axiom for L does bring to salience a competing picture —
suggested in Fritz [13], Clarke-Doane [7], Roberts [28] — in which the space of possibilities
is indefinitely extensible in something analogous to the way that the set-theoretic hierarchy
is sometimes alleged to be. Roberts [30], for instance, formulates the idea as follows, where
X <Y stands for Roberts’ notion of a necessity X being as broad as Y (we introduce the
notion in the present framework in section 3):

Extensibility LVX (NecX — -L-3Y (NecY AY < X AX £7Y)).

So understood, Extensibility says that it’s necessary in every sense that for any necessity,
it’s possible in some sense that there is a strictly broader notion of necessity. In such a
picture, the 4 axiom for L is not valid, because it can be possible that there’s a new sort of
possibility in which p is true without there being any actual sense of possibility in which p
is true.

Extensibility is not merely the view that there could have been new sorts of necessity
— a view we find eminently plausible. It is much more radical: it entails, for instance, that
there could have been new necessities strictly broader than any actually existing necessities.
But we feel there is a direct argument against such a view, from our opening intuition (i.e.
L-Necessity). For consider the operator of it being possible, in some sense of ‘possible’, that
p. We contend that being possible in some sense of possibility is itself a kind of possibility.
However Extensibility entails that it’s possible, in some sense of possibility, that there is a
notion of possibility strictly wider than it. That is to say, it’s possible, in some sense, that
there’s a proposition p, and a notion of possibility, X, such that (i) it’s X-possible that p,
and (ii) it’s not possible in any sense that p. But this strikes us as clearly incoherent.

Let us end with one final thought on the view that modal notions are indefinitely exten-
sible. In our motivating discussion we often appealed to the idea that a genuinely Closed
(or Logical) operator shouldn’t contingently have the property AX.Vpg(X(p — ¢) = Xp —
X¢q), namely K, and we secured this by requiring that it be necessary for every actual ne-
cessity that the operator in question has K. We have seen that necessities are closed under
composition (Proposition 2.3), so that this condition also ensures that if a proposition is
necessary in every sense, then the result of prefixing any finite string of necessities to that

25Here’s the formal argument in TNp: From VX (WX — Nec X), we have Lp — Ly p. Therefore by
Necessitation and 47, LYX(W X — Nec X) implies LVp(LLp — LLywp), which then implies LVp(Lp —
LLwp) L4, and this amounts to Logical Lyy .
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proposition is also true. But if your view is that not only could there have been necessities
that don’t in fact exist, but there could have been necessities broader than any actual neces-
sity, conditions stated in terms of being necessary for every actually existing necessity (or
even every finite string of actually existing necessities) seems insufficiently strong. If X is a
necessity, it shouldn’t be possible, in some sense, that it is contingent in some sense that it is
closed under modus ponens (i.e. has K). For X to be truly Closed, on this picture, it should
be the case, speaking crudely, that for any string of necessities Z1, Zs, Z3, ... which may not
all actually exist, but are such that Z; exists, Zo Zy-possibly exists, Z3 (Z; o Z3)“-possibly
exists, etc, that it be (Z; o --- o Z,)-necessary that X is closed under modus ponens. One
way to capture this more demanding condition on a proposition p is to say that p is not
only necessary in every sense, but necessary in every sense that it’s necessary in every sense,
necessary in every sense that it’s necessary in every sense that it’s necessary in every sense,
and so on ad infinitum. We can encode this using Church’s numerals: a Church numeral is
an operation n of type (t — t) — (¢t — t) that takes an operator X as its argument, and
returns the operator that applies X to a proposition n times, Ap. X ... X p

0:=AX.X;
suc := AnAX Ap.(nX) Xp;
ChurchNum := An.YW (W0 AVm(Wm — W(sucm)) — Wn).

So we think the view under consideration should not be giving the operator L the theoretical
role we have been assigning it here, but instead the operator of having all finite iterations
of L:

L* := Ap.¥n(ChurchNumn — (nL)p).

Indeed, if you simply replace L with L* in TNy, and make a modest modal assumption
about the Church numerals — roughly that there couldn’t have been any ‘non-standard’
Church numerals (i.e. Church numerals that don’t in fact exist) — you can prove that L*
satisfies the 4 axiom. Since L* is easily seen to be Closed in the modified sense, and the
4 axiom guarantees its Logicality, we can directly show that L* is a necessity: so in this
reinterpreted theory there is no need to make this extra assumption.

The modest assumption about the Church numerals is simply this: the property of being
a Church numeral is modally rigid, which we can spell out in terms of the Barcan formula
and its converse for quantifiers restricted to the Church numerals:

Numerical Rigidity Vn(ChurchNumn — L*X) <> L*¥n(ChurchNumn — X).

The reason this principle is necessary is slightly surprising. It is easy to prove, by induction
on the Church numerals, that if something is a Church numeral it is L* necessarily so, and
so this property cannot shrink across modal space. However using the model theory in [1],
we were able to find models in which the Church-numerals expand: in the actual world
they consist of the standard Church numerals, but there are non-actual worlds in which
you can iterate an operator a ‘non-standard’ number of times.2% At any rate, we think the
availability of the operator L*, and the fact that it behaves like a genuine modality, provides
us with a powerful argument against the modal indefinite extensibilist.

26The reader may wonder why we did not take this route over the one we have presently taken. The reason
is that, although we think the assumption of Numerical Rigidity is extremely plausible, it is a substantive
metaphysical principle, and by assuming it we would no longer be able to prove all of our conservativity
results. For instance, we wouldn’t be able to show that our theory is interpretable in Classicism (since that
theory also does not prove the rigidity of the Church numerals).
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3 The theory of necessities

Putting this together we are now in a position to state our theory of necessities. As noted,
we adopt the following definitions:

L:=XpVX(NecX — Xp);

K = XX.Vpq(X(p — q) — Xp — Xq);

N :=AX.Vp(Lp — LXp);

Closed := AX.(KX AN LK X);

e Logical ;= AX.(NX ALNX).
Let TN be Hg & Necessity & L-Necessity @& Necessitation:
Necessity Nec X < Logical X A Closed X;
L-Necessity Nec L;
Necessitation If - A then - LA.

Before we start to explore our theory TN, let’s define a useful notion. Say that a propo-
sition p entails a proposition ¢ if the former necessarily implies the latter relative to all
senses of necessity, i.e. L(p — ¢). This notion of entailment can be naturally generalized so
that it can apply to any item of a type that ends in ¢:

<= AXY IVxy o (X2y oo = Yy .o xy),

where 0 =01 — -+ = 0, — t and z1,...,x, are of types o1, ..., 0, respectively.

3.1 Basic results

We will begin by proving some basic results involving the notion Nec, which we introduced
informally as being a necessity. Given L-Necessity, being necessary according to everyway of
being necessary is itself a way of being necessary.

What general principles govern L? Here, we show that the modal logic governing L is
at least as strong as S4. In section 6.1, it will be shown that no non-theorem of S4 can be
derived in the modal fragment of TN (although it is consistent with TN that the theorems
of stronger modal logics are in fact true). Given our axiom Necessity, it is an immediate
consequence of L’s being a necessity that it obeys the modal axioms K and 4. The fact that
L obeys T is just an immediate corollary of I's being a necessity, which has already been
shown in section 2.2. Finally anything that can be derived from these using modus ponens
and necessitation may also be derived in TN using modus ponens and Necessitation (see
Proposition 3.4) so all theorems of S4 may be derived in TN.

An important consequence of our theory TN is that L is not only a necessity, but the
broadest necessity. One necessity can be broader than another. For instance, philosophers
typically judge metaphysical necessity to be broader than physical necessity, and this in
turn to be broader than various kinds of practical necessities. But what does it mean, in
general, for one necessity operator to be broader than another? Let’s turn to the notion of
being as broad as, since the notion of being broader than can be easily understood in terms
of it: X is broader than Y if X is as broad as Y but not vice versa.
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Certainly if necessity X is as broad as necessity Y, then a proposition is X-necessary
only if it is also Y-necessary. However, this relation between necessities could obtain just
by coincidence. If X were genuinely broader than Y, it wouldn’t be contingent that every
X-necessary proposition is a Y-necessary proposition: the inclusion should be necessary.?”
So we say that X is as broad as Y if, in every sense of necessity, it is necessary that a
proposition is X-necessary only if it is Y-necessary: LVp(Xp — Yp); in other words, X
entails Y: X <,; Y.?® A broadest necessity is a necessity that is necessarily as broad as
all necessities in every sense of necessity:

BroadestNec := AZ.(Nec Z A LVX (Nec X — Z < X)).
Theorem 3.1. 1y BroadestNec L.

Proof. We know L is a necessity. Then observe that Vp(Lp — LXp) — Vp(Lp — Xp) is a
theorem of TN because L is factive. So by Necessitation and the closure of L, LVp(Lp —
LXp) - L < X. Given Necessity, we have Nec X — L < X, and by using Necessitation
again, we have LVX (Nec X — L < X)). O

It’s worth noting that there might be many equally broadest necessities. Such necessities
will be L-necessarily coextensive, but they might differ by involving different constituents,
for instance. However it strikes us that there is something especially natural about the
definition of L — namely that it is nearly built into the definition that it is as broad as
any necessity — so that the title of ‘the broadest necessity’ seems particularly apt for this
operator.

Let’s continue to prove more results concerning L. Because L is closed under modus
ponens, it follows that L is closed under finite entailment. Given finitely many propositions
D1, - --,Pn, they jointly entail the proposition p just in case p1 A---Ap, <¢ p. So if every p; is
L, we can get L(p1 A+ - -Ap,) and then derive Lp.?? As we discussed in section 2.1 however, to
deal with cases of infinite entailment, we need a more general characterization of entailment.
Say a collection of propositions represented by a propositional property X entails p if every
proposition entailing every member of X entails p, i.e. Vg(Vr(Xr — ¢ < 1) — q¢ < p).%°
Accordingly, there is a stronger notion of being closed: an operator X is closed in this
sense just in case X necessarily applies to every proposition entailed by X in every sense of
necessity:

Closed™ = AX.LVp(Vq(Vr(Xr = g <r) = g < p) = Xp).

27Consider the operator O := Ap.((A — Ometap) A (A — Ip)), where Ometq is metaphysical necessity
and A is the proposition that Biden is the President of the U.S. It is a necessity (since we have shown in
section 2.3 that Ap.((¢ = Xp) A (-g — Y'p)) is a necessity whenever X and Y are necessities). Moreover, in
the actual world, every proposition which has O is metaphysically necessary. But O might, in many possible
circumstances, apply to some propositions which are not metaphysically necessary (in those circumstances).
We are reluctant to think O is as broad as Opetq-

28Here we deviate slightly from Bacon [1], where the following definition of the as broad as relation
is presented instead AXY.VZ(NecZ — VpZ(Xp — Yp)). They are equivalent, in that paper, given the
Functionality principle (or the Barcan formula for L). But in the context of the weaker principle Modalized
Functionality (discussed in the appendix of that paper), and in the context of this paper, they are not
equivalent. Roughly, in these contexts there could have (in some sense of ‘could have’) been more propositions
than there in fact are: our definition requires that according to every possibility, all existing X-propositions
are Y, whereas the definition in [1] only requires the inclusion to hold for the actually existing propositions.
But intuitively, an operator cannot be as broad as another if it’s possible that a proposition falls under the
first but not the second.

29Thus Necessity and Theorem 3.1 jointly imply that every necessity is closed under finite entailment.

30This definition performs well because it guarantees, by the transitivity of <, that p’s being entailed by
X is inconsistent with its entailing a proposition which is not entailed by X.
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Surprisingly, we can prove that L also satisfies Closed™ (a fact that cannot be proven of an
arbitrary necessity in TN alone).?!

Proposition 3.2. F1y Closed™ L.

Proof. Suppose we have Vq(Vr(Lr — ¢ < r) — ¢ < p). An instance of it just amounts
to Vr(Lr — L(T — r)) = L(T — p). Since r — T — r is a tautology, by Necessitation
and the closure of L, we have Vr(Lr — L(T — r)). Then we get L(T — p). Lp will be
derived from L(T — p) plus LT. The whole reasoning can be necessitated, which will give
us Closed™ L. O

Another important property of L is that it satisfies the converse Barcan formula for each
type o:

CBF, LV,z A —V,x LA.

The type e instance of this principle is a well-known theorem of first-order modal logic. The
derivation at other types is entirely parallel: since an instance of Ul yields V,xA — A, by
Necessitation and the closure of L, LV,xA — LA and then by Gen, we have LV,zA —
VoxLA3?

The converse Barcan formula tells us that if something exists, it does so necessarily.
This is one of the surprising consequences of combining quantificational logic with modal
logic. It effectively boils down to the fact that we have chosen classical logic, rather than
a free logic, as our basic quantificational theory. Some philosophers may wish to avoid this
consequence by weakening the theory Hg along the lines of a free logic, although we will not
pursue that line of inquiry here.3?

One particular consequence of the converse Barcan formula for type (¢t — t) — ¢ is that
necessity operators necessarily exist. But you may wonder whether necessity operators are
necessarily necessity operators, as the principle below states:

Persistence Nec X — L Nec X.
The answer is “Yes”.
Proposition 3.3. -1y Persistence.

Proof. We have Necessity’: Nec X ++ LNX A LKX. Given the closure of L, this amounts
to Nec X <» L(NX A KX). Necessitating it and then distributing the L operator will give
us LNecX <> LL(NX A KX). By the 4 axiom for L, we also have L(NX A KX) —
LL(NX NKX). O

310ne can construct a model of Classicism, which turns out to be a model of TN due to Theorem 6.1
below, in which the propositions are arbitrary subsets of some infinite set of worlds, and operators are
arbitrary functions on those subsets. The function which maps each cofinite set to the set of all worlds, and
everything else to the empty set can be shown to witness the existence of a necessity that isn’t Closed™°.

32Indeed, this reasoning works for any necessity — one can show by analogous reasoning that Nec X —
XVox A — Vox XA is a theorem of TN.

33For more discussion of this in the context of first-order modal logic, see Linsky and Zalta [21], Williamson
[34]. Bacon and Dorr [4] contains discussion of these issues in higher-order logic in the context of Classicism.
There it is shown — given certain background assumptions, the most important of which is the assumption
that being true entails being entailed by a truth — that even if the official quantifiers of the theory obey a
free logic, one can still define ‘unrestricted’ quantifiers satisfying Ul, and by extension the converse Barcan
formula. So the necessity of existence is hard to avoid when one is explicitly talking about existence in the
unrestricted sense.

17



As in the case of basic first-order modal logic, our theory does not prove the Barcan
formula:3*

BF, V,2LA — LY, zA.

This means that, although once something exists it does so necessarily, new things can come
into existence. Prior [25] noted that given the B axiom (p — O-0-p) one can derive the
Barcan formula from the converse Barcan formula. However the B axiom for L is not a
theorem of TN either.3® Another observation due to Prior is that the B axiom guarantees
the necessity of distinctness, but again, without it the necessity of distinctness is not a
theorem.?¢ So in our theory we cannot prove such a principle:37

ND, z #,y = L(z #5 y)-

We will consider strengthenings of the theory with principles such as the B axiom for L in
section 4.

We may also derive forms of the converse Barcan formula for quantifiers restricted by
certain properties, including both of the following;:

CBF, LVp(Lp — A) — Vp(Lp — LA);
CBFpec LVYX(Nec X — A) — VX (Nec X — LA).

Intuitively, CBF says that the extension of L cannot shrink and CBFpe. says that the
extension of Nec cannot shrink. They follow, given our previous observations, from the 4
axiom for L and the persistence of necessities.?

3.2 Necessities and modal logics

In this section we will introduce, for every finitely axiomatizable modal logic, a corresponding
notion of necessity satisfying that logic. It will turn out that for some logics, but not all
logics, there exists broadest necessities satisfying that logic. In particular, we will see that
the operator of possessing all S5-necessities is itself an S5-necessity, and is thus a broadest
such necessity among that class.

Let £ be the higher-order language equipped with a necessity operator constant O of
type t — t and L3 the propositional modal fragment of £73% so £3 amounts to a propo-
sitional modal language. For every A € L5 where py,...,p, are all propositional variables

34This may be shown using the model theory of Bacon [1] and our later interpretability result. See also
note 35.

35This can be established as follows. Theorem 6.1 provides us with a translation of £Ne¢ to £, that takes
theorems of TN to theorems of Classicism, and that maps any modal principle involving L to something
equivalent in Classicism to the corresponding modal principle involving O+. But by the model theoretic
techniques in Bacon [1], any modal sentence that can be refuted in a transitive reflexive Kripke frame can
be refuted in a corresponding model of Classicism built over that frame. So the B axiom for O+ is not a
theorem of Classicism, and thus not a theorem of TN.

36Prior’s original observation in [25] is presented in the context of the system S5. He later presents an
argument, attributed to E. J. Lemmon that uses only the B axiom [26] p.146.

37The model theory of [1] refutes the necessity of distinctness so we can apply the same reasoning as note
35 again.

38In fact, we have Frng CBFL < Vp(Lp — LLp) and 1y, CBFiNec ¢ Persistence.

39More precisely, LE may be defined as the smallest set containing | (:= V;—+V¢), —, O plus infinitely
many t-type variables p,q, ..., and closed under the term-forming rule of application: if M : ¢ — 7 and
N : o, then (MN) : 7

18



that occur in it, let A% be LVp; ...p,A. Given a normal modal logic M C L5, an operator
expression O is said to be an M-necessity if A*[0/0] is true on its intended interpretation
for all A € M, where A*[O/0] is the result of substituting O for each occurrence of O in
A! 40 This natural idea can be captured in our theory of necessities so long as the logic M
is finitely axiomatizable. By a ‘finitely axiomatizable’ normal modal logic, we simply mean
one that can be obtained by adding finitely many axioms, A1, ..., A, € L5, to K and closing
under the rules of K. The property of being an M-necessity, M, can then be defined in this
way:
M :=AX.(LNX ALKX A A X/O] A --- A AL [X/0)).

For instance, the property of being an S5-necessity is just AX.(LNX A LKX A THX/0] A
5¢(X/0]), where T#[X/0] is LVp(Xp — p) and 5¢[X/0] is LYp(=X—-p — X—X-p). The
adequacy of our definition is secured by the following result, which says, roughly, that for
any theorem of M, TN proves the corresponding theorem about any particular M-necessity.

Proposition 3.4. Given a normal modal logic M C LJ which is finitely aziomatizable, if
Fm A, thenFryn MX — Aﬁ[X/D]

Proof. By induction on the length of a derivation in M. In particular, when A is derived from
some B through N, A[X/0]* amounts to LVp; ... p, X B[X/0O]. M X implies LNXALK X, so
by Necessity’, it implies Nec X. Then by Theorem 3.1, M X and LVp; ...p, B[X /0] jointly
imply Vp; ... p, X B[X/0O]. Given the 4 axiom for L, M X and B*[X/0] imply A*[X/0]. So
the induction hypothesis M X — B*[X/0] will let us conclude that M X — A*[X/0]. O

So every necessity is a K-necessity. Consequently Lx and L are L-necessarily coextensive
and L is itself a K-necessity.*! In fact it can be shown that Ly; is an M-necessity for any
finitely axiomatizable M included in S4:

Proposition 3.5. Given a normal modal logic M C S4 which is finitely aziomatizable,
Frn M Ly

Proof. Note that L is an S4-necessity and, since M C S4, an M-necessity. So Ly entails L by
definition. Conversely, Ly is a necessity by Mix-and-Match (an equivalent of L-Necessity),
so L entails Ly too. Since L and Ly are necessarily coextensive in every sense of necessity
and the former is an M-necessity, so is the latter. O

Could such a result hold for all finitely axiomatizable normal modal logics? The answer is
negative. Consider for example S4.2, axiomatized over S4 by adding the G axiom (-0O-0Op —
O-0-p). There’s no way to prove that Lgs o satisfies G. Indeed, there are models in which
there is no broadest S4.2-necessity at all: there are two maximally broad but incomparable
S4.2 necessities.*? A similar result can be achieved for the modal logic Grz (characterized
by the axiom O(O(p — Op) — p) — p), but in this case one can find models where, for each

40The precise definition of this substitution is similar to the one in note 5.

41Note that in a fine-grained setting Lk may not be identical to L because AX.(LNX A LK X) may not
be identical to Nec. But it’s still easy to see that they are necessarily coextensive in every sense.

42To show this negative result, we may exploit reasoning about ordinary Kripke models as outlined
in note 35. The rough idea is this: suppose that the structure of the broadest necessity, L, can be
represented by a Kripke frame that consists of three worlds in a forking structure — W = {0,1,2},
R = {(0,0),(0,1),(0,2),(1,1),(2,2)}. G characterises convergent frames, and the only reflexive conver-
gent subrelations of R are the identity relation, R\ {(0,1)} and R\ {(0,2)}. In this model, there are two
maximal but incomparable S4.2-necessities, given by R\ {(0,1)} and R\ {(0,2)}, and so there is no broadest
S4.2-necessity.
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Grz-necessity, there is a strictly broader Grz-necessity, precluding the existence of a broadest
Grz-necessity in a different way.*

The good news, however, is that this result indeed holds for both B and S5. Ly and Lgs
obey N and K because they are necessities; they obey T because I is an S5-necessity. The
big task to show that L obeys the B axiom and Lgs obeys the 5 axiom.

Proposition 3.6. -ty p — Lg—Lp—p.

Proof. Suppose p is true. For each B-necessity X, we can get X—X—-p from p. Due to
the 4 axiom for L, X is necessarily a B-necessity in every sense of necessity. So we have
LB X A X—=X-p, from which, by Theorem 3.1, we can get X B X A X=X -p and therefore
XIX(BX A—-X-p). O

But to finish the whole proof for Lgs, we have to make a detour. Let’s start with the
following definition:

S5 1= AZVYW(VX(S5X = WX)AVYY (WY AWY' = W(Y o Y')) = WZ).

Intuitively S5* mimics the smallest collection containing all S5-necessities and closed under
the composition of operators: so basically the finite strings of compositions of S5-necessities.

Proposition 3.7. b1y S5* X AS5*Y — S5"(X oY).

Proof. Let’s fix a W. Assume that VX(S5X — WX) and VYY' (WY AWY' — W(Y o
Y")). Given that S5 X and S5"Y, we can derive WX as well as WY. By appealing to
VYY' (WY AWY' — W(Y oY”)) again, we have W(X oY). O

The definition of S5 allows us to prove things about S5* by induction: for any W, if
W applies to every Sh-necessity, and is closed under composition (of things in S5), we may
conclude that S5* X — WX for all X.

Proposition 3.8. (i) bty S5* X — Nec X; and (ii) Frn S5 X — LS5" X.

Proof. (i) It is trivial that all S5-necessities are necessities. Proposition 2.3 tells us that Nec
is closed under composition.

(ii) Recall that we have Necessitation and the closure of L. It is trivial that S5 X —
S5* X. So by the 4 axiom for L, S5 X — LS5 X. Further, according to Proposition 3.7,
the property of being L-necessarily an S5* is closed under composition. O

Let’s define the notion of reversal here. It will help us to present our core idea involved in
the next proof. Fix a necessity X. A reversal of it is a necessity Y such that the composition
of X and Ap.=Y —p applies to every true proposition; more intuitively, the reversal Y brings
us back to the actual world from any accessible X ©-possibility.#* For example, the tense
operators it will always be the case that and it was always the case that are reversals of each
other.

Rev := AXY.Vp(p — XY —p).

Proposition 3.9. Fry S5* X — 3Y(S5"Y A LRev XY).

43The frame that establishes this is the frame (N, <). The Grz necessities are modeled by transitive
reflexive subrelations of < that have no strictly increasing infinite chains. Each such relation is a proper
subrelation of another such relation, so there cannot be a maximal one.

44Recall that we’ve shown in section 2.2 that X is a necessity only if X, namely Ap.(—X—p), is the dual
possibility.
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Proof. If X is an Sh-necessity, it obeys the B axiom, so it’s a reversal of itself necessarily.
Suppose X1 and X5, which belong to S5*, have reversals Y7 and Y5 necessarily, which belong
to S5 too. From LVp(p — X3—Ys—p), we can get L(—Y;—p — Xo—Yo—(=Y;-p)). Since Xo
belongs to S5, it is a necessity by Proposition 3.8-(i). So we have L(=Y;—p — Xo— (Y50
Y7)—p). Since X7 is also a necessity, we then have X1-Y;—p — (X7 0X2)—(Yo0Y7)—p. From
LV¥p(p — X1-Y1—p), we have p — X71-Y1—p. Therefore, Rev(X; o0 X2)(Y2 0 Y7). Then by
Proposition 3.8-(ii) and the 4 axiom for L, we can conclude that L Rev(X; o X5)(Y3 0 Y7).
Finally, note that according to Proposition 3.7, Y5 o Y7 belongs to S5™. O

Proposition 3.10. (i) bty S5X — Lgs+ < X; (4) brn —Lgs<—p — Lgs«—Lgs-—p; and
(iii) Frn S5 Ls-

Proof. (i) Just recall that S5 X implies S5* X.

(ii) Suppose we have =X —p for some X belonging to S5*. For all Y in S5%, it is guaranteed
by Proposition 3.9 that it has a reversal Y’ in S5*. Hence, =X —p implies Y=Y’ X —p, which
then implies Y—(Y” o X)-p. Note that Y’ o X belongs to S5*. So we can conclude that
3Z(S5* Z AN Y-Z-p). Given Proposition 3.8-(ii), it is not hard to derive such a converse
Barcan formula restricted to necessities in S5*: NecY — YVZ(S5" Z — A) - VZ(S5* Z —
Y A). Because Y is indeed a necessity, we have YVZ(S5*Z — A) — VZ(S5"Z — Y A).
Replace A with A — 3Z(S5* Z A A). Note that we have YVZ(S5*Z — A — 3Z(S5" Z A
A)). Thus, we can get VZ(S5"Z ANYA — Y3IZ(S5" Z A A)), which turns out to imply
3Z(S5* Z ANYA) — Y3Z(S5* Z A A). Then from 3Z(S5* Z A Y -Z-p), we are allowed to
infer that Y3Z(S5" Z A =Z-p).

(iii) By Proposition 3.8-(i) and Mix-and-Match, Lgs- is a K-necessity. It obeys T for
I is an S5-necessity. Since we have also proved that Lgs~ obeys 5, Lgs+ is itself an S5-
necessity. O

Proposition 3.11. Fyy = Lgs—p — Lgs—Lgs—p.

Proof. Suppose that =X —p for some S5-necessity X. Given an S5-necessity Y, notice that
by Proposition 3.10, =X —p implies ~Lgs+—p and then implies Lgs+—Lgs+—p, which turns
out to imply Y —Lgs-—p; moreover, it’s the case that S5 Lgs«. So by the 4 axiom for L,
we have L S5 Lgs+ A Y —Lgs+—p, and by Theorem 3.1, we have Y S5 Lgs A Y= Lg5-—p and
therefore Y3Z(S5Z ANY —Z-p). O

In fact, it can be further shown that if A € £p is not derivable in S5, then A[Lgs/0]
cannot be derived in TN either (see section 6.1). We believe this conclusion has some
philosophical significance. Kripke famously introduced the notion of metaphysical necessity
in [20]. There he introduced it as necessity “in the highest degree”. But Kripke, and early
commentators, also said many specific things about it which have since become to be taken
as constitutive of the notion, for instance facts about the necessity of origins, or that it
is governed by a logic of S5. The former idea of necessity in the highest degree can be
straightforwardly captured using our notion of broad necessity, L.*> However, we have
taken seriously the idea that there might be notions of necessity broader than metaphysical
necessity, and also the idea that the logic of L might not include the 5 axiom.*® The

45Williamson [36] and Roberts [30] recently put forward an alternative interpretation: according to them,
metaphysical necessity should be the broadest objective necessity but may not be a broadest necessity. See
section 5 for more discussion.

46See Bacon [1], §5 for a positive argument that it is weaker than S5. Although those arguments are
originally run under the assumption of Classicism, they can be smoothly moved into our current grain-
neutral setting without any loss of argumentative power, so we won’t repeat them here.
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existence of the broadest S5-necessity Lgs provides us with a natural fall-back for playing
the role of metaphysical necessity, as it appears in post-Kripkean modal metaphysics.

3.3 The pre-lattice of necessities

At the beginning of section 3, we defined the entailment relation <. In the current sub-
section, we investigate the logic of < over the space of necessity operators. For instance,
it is fairly easy to show that < is a preorder over necessities: that is, it is a reflexive and
transitive order.*” Given our present assumptions, < cannot be shown to be a partial order:
that is to say, we do not have that if X <Y and Y < X then X =Y. The reason is that
our theory is consistent with many very fine-grained conceptions of operators, in which two
operators may be necessarily coextensive, in every sense of necessity, but still be distinct
— perhaps because they are structured differently. (Later we will consider an axiom, In-
tensionalism, which forces < to be a partial order.) When X and Y are just as broad as
each other, we will write X ~ Y. ~ is clearly an equivalence relation, given the reflexivity
and transitivity of <. Indeed, modulo ~, we talk as though < is partial order, and freely
employ lattice-theoretic notions, like meets and joins.

Given that < satisfies the constraints of the familiar mathematical notion of being a
preorder, one might wonder what other lattice-theoretic properties it has. For instance,
does it have a top and a bottom element? We have already shown that there are necessities
that are as broad as any necessity: L (and any other necessity exactly as broad as L). And
it is easy to see that there are necessities that are no broader than any necessity: Ap.T (and
any other necessity that is exactly as broad as Ap.T). (In the case that < is a partial order,
L and Ap.T are the unique broadest and narrowest necessities respectively.) We might also
ask whether the necessities have finite meets and joins under <, making it a pre-lattice. And
if so, whether the resulting pre-lattice is distributive. We will answer the former question
in the affirmative. The main theorem of this subsection is thus:

Theorem 3.12. According to TN, necessities form a bounded pre-lattice under <.

In other words, all of the following principles can be derived within our theory of necessities:
Reflexivity Nec X — X < X;

Transitivity Nec X ANecY ANecZ - X <Y Y <7 - X <7

Minimum 3IX(Nec X AVY (NecY — X <Y));

Maximum 33X (Nec X AVY (NecY - Y < X));

Meets Nec X ANecY - 3Z(NecZANZ < XANZ <Y AVZ' NecZ'NZ' < XNZ' <Y —
7' < 7))

Joins Nec X ANecY - 3Z(Nec ZANX <ZANY < ZAVZ'(NecZ NX < Z'NY < Z' —
Z < 7).

We have described how to get Reflexivity, Transitivity, Minimum and Maximum above.
The existence of meets may be established by showing that if X and Y are necessities then

47Since we have Persistence, Reflexivity can be established by necessitating the trivial truth Nec X —
Vp(Xp — Xp) and Transitivity can be established by necessitating the trivial truth Nec X ANec Y ANec Z —
Vp(Xp — Yp) = Vp(Yp — Zp) = Vp(Xp — Zp).
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the conjunctive operator Ap.(Xp A Yp) is a necessity and satisfies the conditions for being
a meet:
M:=AXY\p.(XpAYp).

Proposition 3.13.
(i) Frn Nec X ANecY — Nece(X MY);
(ii) Frn Nec X ANecY - X MY < XAXNY <Y;
(iii) Frn Nec X ANecY = VZ(NecZANZ < XANZ<Y - Z<XNY).

Proof. (i) Clearly, if X and Y are necessities, then we can get Vp(Lp — LXp A LYp),
which amounts to Vp(Lp — L(X MY )p). So by the 4 axiom for L, we can infer LVp(Lp —
L(XNY)p), which amounts to LN (X MY), from Nec X and NecY. For similar reasons, we
can derive LK(X MY) as long as X and Y are necessities.

(ii) Just observe that (X MY )p — Xp and (X MY )p — Yp are theorems of Hg.

(iii) Note that (Zp — Xp) A (Zp — Yp) — Zp — (X MY )p is a theorem of Ho. O

The meet of two necessities is the obvious generalization of the meet operation on propo-
sitions under the entailment ordering: conjunction. One might have naively thought that the
join of two necessities would be defined similarly as their disjunction, i.e. AXY Ap.(XpVYp).
But this is not so. The disjunction of two necessities need not be closed under modus po-
nens: for instance p might be X-necessary but not Y-necessary, p — ¢ might be Y -necessary
but not X-necessary, allowing ¢ to be neither X nor Y-necessary. But the join of X and
Y will be given by the operator representing the smallest collection containing all X and
Y -propositions and closed under modus ponens:

U:=AXYWVZ(Vg(XqVYq— Zqg)NKZ — Zp).
Proposition 3.14.
(i) Frn Nec X ANecY — Nec(X UY);
(ii) Frn Nec X ANecY - X < X UYAY <XUY;
(ii) Frn Nec X ANecY - VZ(NecZANX < ZANY <Z - XUY <2Z).

Proof. (i) Note that both Xp and Yp can imply (X UY)p. So LVp(XpVYp — (XUY)p) is
derivable. If X and Y are necessities, then by the 4 axiom for L, we can derive LVp(Lp —
L(XUY)p), which amounts to LN (XUY), from the conjunction of LVp(XpVYp — (XUY)p)
and LNX/LNY . The case of LK (X LUY) is obvious; we leave the proof as an exercise.
(ii) Just observe that Xp — (X UY)p and Yp — (X UY)p are theorems of Hg.
(iii) Note that (Xp — Zp) A (Yp — Zp) - XpV Yp — Zp is a theorem of Hy and Z’s
being a necessity implies its being closed under modus ponens. O

There is a question that we have not been able to settle: is this ordering distributive?4®

481n fact, if X, Y and Z are all necessities, it is not difficult to prove (X MY)U (XN Z) < XN (Y U Z):
Suppose we have (X MY)U (X MZ). It suffices to show Xp and VZ'(Vq(YqV Zq — Z'q) AVqr(Z' (¢ = 7) —
Z'q = Z'r) — Z'p). To show them, just notice these two theorems of Ho: (Xp A YD)V (XpA Zp) — Xp
and Vq(YqV Zq — (XqANYq)V (XqV Zq)). What we are not able to show is the other direction, and we
suspect it doesn’t generally hold.
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Distributivity Nec X ANecY ANecZ - XM (YUZ)~ (XNY)U (XN Z).

It is worth emphasizing that this principle is non-trivial even under the assumption of
Classicism, even when the operators as a whole form a distributive lattice under <. The
reason is that while the meet of two necessities in the lattice of all operators is the same
as their meet in the lattice of necessities, the join of two necessities in the lattice of all
operators, namely their disjunction, is in general distinct (indeed <-lower than) their join
in the lattice of necessities.

We do not claim that the above is an exhaustive list of the distinctive features of the
lattice of necessities, but feel it is enough to motivate this investigation. Let us end the
section by posing a question of completeness. Could there be an equational theory in the
operators of M and U which is complete for the lattice of necessities? More specifically,
consider the algebraic language in variables, M and LI. An individual term s in the alge-
braic theory can be translated into an operator term of higher-order logic by mapping the
individual variables z1,...,z, in s to operator variables, X1, ..., X, and translating " and
U into the expressions by the same name defined above. An equation s = r may then be
translated to a corresponding formula of the form M ~ N, which may then be prefixed by a
string of restricted universal quantifiers, VX7 ... X, (Nec X; A---ANec X,, — ...) to obtain
a closed sentence which we’ll call (s = r)*. Let the equational theory of necessities be the
set of equations s = r such that (s = r)* is a theorem of TN. Question: can the equational
theory of necessities be axiomatized by a finite or recursive set of equations?

3.4 Relative necessities

Sometimes one sort of necessity is a restriction of another. For instance, it is widely be-
lieved that physical necessity is a restriction of metaphysical necessity. By contrast, Kripke
is sometimes read as having demonstrated that neither metaphysical necessity nor a priori
truth is a restriction of each other. A number of authors have tried to provide a general
definition of what it means for one necessity to be a restriction of another. Suppose, for ex-
ample, that a physical necessity is a proposition metaphysically entailed by laws of physics.
Following this line of thought, Smiley [31] proposed that being a physical necessity could be
analysed in terms of metaphysical necessity and a sentential constant P, denoting the con-
junction of the physical laws in the actual world (we use Oypeq and Oppy s for metaphysical
necessity and physical necessity respectively):

Dphys = Ap~|:‘meta(P — p)

However, Humberstone [18] raised a number of problems for this account.*® For example,
it is widely accepted that the logic of metaphysical necessity is not weaker than S4. But
if so, it directly follows that Oppys defined by Smiley also obeys the 4 axiom no matter
what physical laws are.’® Physical necessity may or may not obey the 4 axiom. Even if it
obeys the 4 axiom, this is due to the nature of physical laws, not its being a restriction of
metaphysical necessity.>!

49The problems are attributed to Kit Fine in that paper.

50Proof: Given the 4 axiom for Ometa, We have Ometa (P = p) = OmetaOmeta (P — p) for any p. Since
Ometa(P — p) = P = Opmeta (P — p) is a tautology, by the rule of necessitation and the K axiom for Opeta,
we have DmetaDmeta(P — p) — Dmeta(P g Dmeta(P — p))

51In the present context, Ophys defined by Smiley would not even obey T in every sense of necessity, if
there is some possibility in which P is metaphysically necessarily false: for then Ometo (P — p) would be
vacuously true whatever p is.

24



Hale and Leech [16] rightly point out the problem is that Smiley’s definition fails to track
which propositions are the laws of physics at different worlds, and propose a definition in
terms of a property of propositions, Law, which characterises the propositions that are laws
of physics, and suggest that

Ophys == Ap.3q1 - .. gn(Law g1 A - - ALaw gp A Opera (g1 A -+ A g — D).

But as Roberts [29] emphasizes, this account faces some different problems. A nearly un-
controversial idea in modal philosophy is that if necessity X is a restriction of necessity
Y, then it should be (at least) Y-necessary that every Y-necessary proposition is also an
X-necessary proposition. Hale and Leech’s definition of relative necessity, however, is in
conflict with this idea. Just imagine a metaphysical possibility according to which there
are no physical laws. At this possibility, Opnys applies to nothing but O,y still applies to
something. Consequently, 3p(Tyetap A "Ophysp) turns out to be metaphysically possible.

Roberts [29] then put forward a novel account which overcomes all of these problems. But
he doesn’t work in a grain-neutral picture — his assumption about grain implies the Propo-
sitional Intensionalism we mentioned in section 1; and he works with a narrower conception
of necessity according to which every necessity is closed under infinitary consequence, which
goes beyond the minimal assumptions we are making here.??

In our theory TN, we can define a natural candidate of O,s to be the restriction of
O,mete by Law and prove that it is a necessity. More generally, suppose that we have an
operator Y. Then given any necessity X, we may define a restricted necessity X as follows:

XY .=Xxuy.
Proposition 3.15. Fry Nec X — Nec XV

Proof. See the proof of Proposition 3.14-(i). Note that in that proof, we assume the two
operators X and Y are both necessities. But the same conclusion can be achieved even if
Y is not. O

Since we directly define XY as X LIV, one would expect the notion of a restriction of a
necessity to be somehow related to the ordering of <. Here’s a nice result:

Proposition 3.16. Fry NecY = (X <Y <Y ~ XY),
Proof. Suppose X < Y. Note that XY = X LY. We have proved Y < X LI'Y (see

Proposition 3.14-(ii)). Consider the converse direction: Since we have X ; Y, we have
LYq(XqVYp— Yp). Since Y is a necessity, we have LKY. Finally, suppose Y ~ X UY.

We have also proved X < X UY (see Proposition 3.14-(ii) again). O

As a corollary, all necessities are necessarily coextensive with some restriction of L because
L is as broad as all necessities.

To see that our account does provide an appropriate characterization of a restriction of a
necessity, we may turn back to the case of Oppys and Operq. Now, Oppys is defined as D%f*evza.
Our definition captures the idea that a physical necessity is a proposition metaphysically
entailed by zero or more laws of physics. Suppose B is metaphysically entailed by the

conjunction of laws Aq,..., A,. Since Aq,..., A, are laws, we get Oppys A1 A~ A OppysAn

52As we briefly discussed in the end of section 2, it is easy to capture such a narrower conception of
necessity within our framework: just let Closed® X be a necessary condition for Nec X.
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by our definition of Oypys. According to Proposition 3.15, Oppys is a necessity and hence
closed under modus ponens. So we can derive Oppys(A1 A -+ A A,). Because we have
assumed Oypeq(A1 A -+ A A, — B), by Proposition 3.16, Oppys(A1 A--- A A, — B) and
thus OppysB. Moreover, our account doesn’t suffer from any problems mentioned before.
What the logic of Oppys is remains an open question. And our definition predicts that in
a metaphysically possible world where there are no physical laws, Oppys is just coextensive
with O,,etq; in general, if necessity Y is a restriction of necessity X, it follows that X <Y
and therefore XVp(Xp — Yp).

One limit of the current account, as we saw above, is that it only characterizes those
physically necessary propositions that are metaphysically entailed by a finite set of laws.
Perhaps this is not a real limit — perhaps there are only finitely many laws (at least in the
actual world) or the set of laws is compact in the sense that a proposition is O, c¢q-entailed by
it only if the proposition is O,,.t4-entailed by a finite subset of it. But to provide a sufficient
characterization for those who insist there are physical necessities only 0O,,.¢,-entailed by
infinitely many laws, we may redefine the restriction of a necessity as follows:

XY = M VZ(Vg(XqVY q — Zq)NVq(Vr (V! (Zr' — X(r — 1)) = X (r — q)) — Zq) — Zp).

Given this new definition, we can still prove that so long as X is a necessity, XY is also
a necessity.”®> Now, suppose B is O,,ctq-entailed by infinitely many laws. This means it is
O,neta-entailed by the set of all laws. Recall that we imitate the entailment relation between
a set of propositions and a single proposition by using propositional operators: p is entailed
by a set corresponding to X just in case Vq(Vr(Xr — ¢ < r) — ¢ < p). Similarly, we can
formulate the idea that B is O,,e-entailed by laws in this way: Vq(Vr(Law r — Opera(q —
7)) = Opmeta(¢ = B)). Then we can show it follows from our new definition that II!physB.54

However, with this new characterization of a restriction of a necessity, we cannot prove
the result stated by Proposition 3.16, so we cannot guarantee that every necessity is neces-
sarily coextensive with a restriction of L. The reason is that not all necessities are closed
under infinitary consequence, as we emphasized before, although we can still prove for in-
stance Closed™Y — (X <Y + Y ~ XY). If one wants to insist that every necessity is
equivalent to a restriction of L as well as our new characterization at the same time, one can
always adopt Roberts’ conception of necessity according to which all necessities are closed
under infinitary consequence.

3.5 Conservativeness

We have proved some results about the structure of necessities, and we have claimed to
do so without taking on any grain-theoretic commitment. But this latter claim of grain-
neutrality is in need of justification. While it is known that one cannot derive, for example,
the Boolean identities in Hp, we need some guarantee that one cannot derive them in our
stronger theory of necessities. In this section we will in fact show that any theorem of

53The proof of LN XY is similar to the proof of Proposition 3.15 and thus the proof of Proposition 3.14-(i).
To show LK XY | it is crucial to observe that given the closure of X, Vr(Vr/(Zr' — X(r — 7)) = X(r —
q)) — Zq implies the closure of Z.

54Proof: Suppose for any Z, we have (i) Vp(Ometap V Law p — Zp) and (i) Vp(Vq(Vr(Zr — Ometa(q —
7)) = Ometa(¢ — p)) — Zp). Suppose further that we have (iii) Vg(Vr(Lawr — Ometa(q — 7)) —
Ometa(q = B)). Our target is to show ZB. From (ii), we can get Vg(Vr(Zr — Ometa(¢ = 7)) = Ometa(q —
B)) — ZB. So it suffices to show that (iii) implies Vg(Vr(Zr — Ometa(q — 7)) = Ometa(q — B)).
Consequently, it suffices to show that Vr(Zr — Ometa(q — 7)) implies Vr(Law r — Ometa(q — 7)). Then it
turns out to be sufficient to show that Law r implies Zr, which has already been guaranteed by (i).
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TN that can be stated in the language £ of pure higher-order logic (i.e. not including the
primitive Nec) is already a theorem of Hg. That is to say, TN is conservative over Hg. So
principles of granularity, like pAq = gAp, cannot be proven from TN unless they are already
theorems of the minimal system Hg.%>

Lemma 3.17. TN is interpretable in Ho via the translation i which replaces Nec with
AX.(Vp(p — Xp) N KX):

i LNee — [
For all A € LN, 1y A only if by, i(A).

Proof. We only need to show that given the translation i, all the axioms of TN become
theorems of Hg and the rule Necessitation preserves theoremhood.

Note that i(L) = Ap.VX (Vg(q — Xq) N KX — Xp) and hence i(L)A <+ A is provable in
Ho for all A € £. So it is an admissible rule of Hy that if F A then F i(L)A. Moreover, to
show that i(Necessity) and i(L-Necessity) are theorems of Hg, it suffices to prove that the
following two statements are theorems of Hg:

(i) Vp(p = Xp) N KX < Vp(p — Xp) N KX
(ii) Vp(p — i(L)p) A Ki(L).

(i) is trivial and the proof of (ii) is immediate given the previously established fact that
i(L)A < A. O

Theorem 3.18 (Conservativeness). TN is conservative over Hy.

Proof. Let A € L and suppose that there is a derivation of A in TN. Given the lemma

above, it is easy to see i(A) is derivable in Hg by induction. But since A belongs to L,
A=1i(A). O

3.6 Interpretability

The conservativeness result of the last section provided an interpretation of TN in Hg in
which L became equivalent to the truth operator I. More generally, it is possible to interpret
TN in any theory augmented with an operator expression governed by a logic of S4 and vice
versa (so by using the truth operator I, we obtain our previous result as a special case).

Recall the higher-order language £L” with the operator constant 0. Let HoS4 C L" be
the theory Ho @ S4. Clearly, HoS4 can be interpreted in TN: since we have shown in section
3.1 that the logic of L is at least S4, we may just interpret O as L. Now, let’s see the
converse direction. Define:

Logical” := AX.0OVp(Op — OXp);
Closed” := AX.0(Vpq(X (p — q) = Xp — Xq));
Nec” := AX.Logical® X A Closed” X.

55Conservativity is not the only dimension of grain-neutrality one might demand. For instance, con-
servativity does not tell us whether TN implies any distinctively grain-theoretic identities involve the new
predicate Nec itself. An identity like Nec = AX.—— Nec X, for instance, is distinctive to theories like Clas-
sicism, but since it involves Nec, conservativity offers no guarantee as to its unprovability. The stronger
requirement is that if TN proves an identity (possibly involving Nec) then that identity is provable in Hg as
formulated in the same language £N°¢. We believe this stronger result is true, but it would take us too far
afield to prove it here, as we suspect it would require a model theoretic argument.
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Theorem 3.19. TN is interpretable in HoS4 via the translation i° that replaces Nec with
Nec” :

8 . gNec _y rB
For all A € LN, b1y A only if Fusa i7(A).

Proof. Given that O obeys principles of S4, for all A € £7, i"(L)A <+ OA is provable
in HoS4. Thus, by the rule N of HyS4, we have the rule that = A only if - i”(L)A.
Moreover, it is obvious that i” (Necessity) is a theorem of HyS4. To show that HoS4 proves
7 (L-Necessity), we must show that i”(L) satisfies Logical” and Closed”. But since we
have shown that i”(L) is provably equivalent to O in HoS4, it suffices to show that O is
Logical® and Closed” (since both of these predicates are clearly permit the substitution of
necessary equivalents, given S4). Thus we must prove following statements are derivable in
HoS4: OVp(Op — OOp), and OVpg(O(p — ¢) — Op — Og). These are clearly theorems of
HoS4. O

4 Strengthenings

The theory TN is not only neutral about questions of grain, but is also neutral about many
classical debates in the philosophy of modality. The preceding arguments — about the
existence and logic of the broadest necessity, on the pre-lattice of necessities, and so on
— therefore can be accepted without taking a stance on these questions. However, as a
metaphysical theory TN is weak. Further axioms about necessities can be added to provide
a more fleshed out theory.

Let us consider one extreme position in the philosophy of modality, which we shall call
Spinozism:

Spinozism Nec X — (p <> q) = (Xp < Xq).

We have named this principle after Spinoza, who famously thought there was no-contingency.
But we feel it articulates an anti-modal sentiment found in many more recent philosophers,
including Quine and Davidson.

This axiom says that every necessity is truth-functional. In particular, given that neces-
sities are closed under modus ponens, this leaves only the truth operator and the vacuously
true operator: thus every necessities is coextensive with one of these two truth-functional
operators. So there is no contingency. Given Lemma 3.17, it follows from Spinozism that I
is coextensive with L and is therefore a broadest necessity.

The simplest way to accept Spinozism is to accept a stronger principle we will call:

Fregeanism VXY (Vz1...2,(Xz1...2, © Y21 ...2,) > X =Y),

where the n = 0 case tells us that materially equivalent propositions are identical. Unlike
Spinozism, Fregeanism is not a principle about necessity (it does not involve the primitive
Nec), rather it is a pure principle of granularity. It is easily seen that Fregeanism entails
Spinozism (in TNp).56 But crucially, Spinozism does not entail Fregeanism. In fact, implicit
in our proof of the conservativeness result in section 3.5 was an argument that any theory of
granularity consistent with Hg is consistent with Spinozism. This highlights an important

56By Fregeanism we can show that L = I. Then the axiom Necessity become equivalent to Nec X <«
Vp(p — Xp) A KX, from which Spinozism follows.
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issue, namely one can accept a very fine-grained picture of reality — perhaps even some
sort of structured picture — but still embrace Spinoza’s anti-modal scruples.®”

Other principles of granularity formulated in the pure language of higher-order logic
can be added into our theory of necessities as well. (We will explore some systematic and
deep connections between necessity and granularity in section 6.) But we can even use our
theory of necessities itself to formulate principles about granularity. For instance, consider
the following view:

Intensionalism VXY (LVz;...2,(X21...2, © Y21...2,) 2 X =Y).

Unlike Fregeanism, Intensionalism is stated using our distinctive primitive predicate Nec
(through L). Once we add Intensionalism to TN, the axiom L-Necessity will become redun-
dant.’® More interestingly, the resulting theory is in a certain sense, exactly the same as
Classicism: the theorems not involving Nec are exactly the theorems of Classicism, and Nec
itself is provably identical to a predicate in the language of Classicism (i.e. the language of
pure higher-order logic), so even the theorems involving Nec do not extend Classicism in an
interesting way. We’ll return to this result in section 6.1.

One might wonder if it is possible to strengthen our theory in the opposite direction
than Spinozism. For instance, are there any axioms that would force there to be as much

contingency as possible? One option in this direction is to adopt a schema of this form:°

Logical Necessity LA(ci...c,) <> Var ...z, A(z1 ... 2),

provided A involves no free variables, ci, ..., c, enumerate all the distinct non-logical con-
stants in A, and A(z; ...z, ) denotes the result of replacing them with distinct free variables.
(For the purposes of formulating the schemata we count Nec as a logical constant.) Roughly
speaking, the principle tells us that the logical predicate A(z ...x,) is satisfiable for some
x1,...,%, just in case it is L-possible that ¢, ..., ¢, instantiate this predicate.

The notion of satisfiability involved in the principle Logical Necessity could be replaced
by other notions of consistency, for instance, one could consider the schema

Humeanism —L—A,

whenever A is a consistent formula of TN.%° So long as we are formulating this schema in
a fundamental language, where every non-logical constant denotes a distinct fundamental
entity, this principle goes some way to capturing the Humean maxim that there are no
necessary connections between distinct fundamental entities. Unlike Logical Necessity, which
is compatible with a coarse-grained theory like Classicism, Humeanism implies a very fine-
grained picture of reality. For instance, since TN is conservative over Hp, anything consistent
in the latter will be possible. For instance pAq # ¢/Ap is consistent in Hg, and so its possibility

57There are some theories of granularity that sit less comfortably with Spinozism: for instance one might
accept HE or HE(, whilst rejecting the Fregean view that there are only two propositions. Within these
theories, one can prove the existence of operators that formally behave like necessities (such as Ap.(p = T)),
which will not count as necessities by the lights of Spinozism. We view this as a consistent, but highly
unattractive position to take; see section 6 for more discussion.

58Consider the result of adding Intensionalism to the theory TNg and closing under mp, Gen and Necessi-
tation. Suppose that Lp is true. Then we have L(p <> T). By Intensionalism, p is identical to T. We know
that Necessitation allows us to get LLT. So by Leibniz’s Law, we also have LLp. This reasoning gives us
the 4 for L and its necessitated version. We have shown in section 2.3 that L-Necessity follows from 4 for L.

598ee the principle Logical Necessity from [3].

60We do not know whether Humeanism is consistent.
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is an instance of Humeanism. But since we can also prove L(p A ¢ = p A q) in TN, we may
infer that in fact p A ¢ and g A p are distinct.

A surprising consequence of adding Logical Necessity or Humeanism to our theory TN
is that no necessities are fundamental. Consider Logical Necessity, and suppose we're
working in a language where every non-logical constant denotes a distinct fundamental
entity. Assume for reductio that C' is a fundamental necessity. Note that since Nec
is counted as a logical constant in the current context, NX A KX is a logical predi-
cate, so "L(NC A KC) < 3X-(NX A KX) is an instance of Logical Necessity. Since
IX-(NX AKX) is true,%* we have ~L(NC A KC). Then by Necessity, C is not a necessity.
A contradiction. The argument involving Humeanism proceeds similarly.

We’ve discussed several ways to strengthen our theory by saying something more about
necessities. Another natural dimension to strengthen the theory is to extend the modal logic
of the broadest necessity L. Spinozism indirectly does so — it makes the modal logic of L
be Triv, whose characteristic axiom is:

Trivy p < Lp.

But there is a great number of strengthenings of the modal logic S4 that are less extreme
than this one.%? Any one of these modal principles provides a potential way in which to
strengthen the theory we have presented above. Perhaps the most famous such axiom is
Brouwer’s axiom, B, yielding the logic S5 when added to S4:

By p— L-L—p.

This principle could simply be added to our system as a way of strengthening it. But
unlike the B axiom of modal logic, the principle By, is really a shorthand for something
stated explicitly in terms of the operator predicate Nec, and therefore By so understood
states something very non-obvious about the domain of necessity operators. It would be
nice to have a more transparent principle directly about necessities that corresponds to
By. Williamson [36] suggests the principle that every necessity has a reversal, which in our
system corresponds to the principle:

Reversal Nec X — JY (NecY A Rev XY').

Recall that we defined the relation Rev in section 3.2 as AXY.¥p(p — X—-Y —p). Reversal
is far from an obvious principle: while some tense operators, for example, evidently have
reversals, it is far from obvious what the reversal of, say, physical necessity is. As it turns
out, Reversal and By, are equivalent.

Proposition 4.1. 1y By, < Reversal.%

Note that once By, (or equivalently Reversal) is added into TN, CBF e will imply BF ..
Of course, one may directly add BF e to strengthen the theory.

Another well-known modal logic between S4 and Triv is S4.2, the result of extending S4
by adding G:

Gy ~L-Lp — L-L—p.

61Consider the operator Ap.L. If it has the property N, then we have LT — L1 and therefore L L. But
since L is factive, we’ll then derive L.

62Indeed, there are continuum many between S4 and Triv; see Fine [10].

63 A proof of this proposition can be extracted from the proof Proposition 4.2 below.
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As with By, this indirectly imposes a constraint on necessity operators. We can make that
constraint on necessities explicit as follows:

Convergence Nec X ANecZ — FYU(NecY ANecU AVp(=X-Yp — Z-U-p)).
Proposition 4.2. -ty G < Convergence.

Proof. Suppose we have Gr,. Because L is itself a necessity, we have 3YU(NecY A NecU A
Vp(=L—Y — L-U-p)), which amounts to YU (NecY ANecU AVp(—~L—Y — VZ(Nec Z —
Z-U=-p))) or equivalently, 3YU(NecY A NecU AVZ(Nec Z — Vp(—=L-Y — Z-U-p)). As
a consequence, we have VZ(Nec Z — YU (NecY ANecU AVp(=L-Yp — Z-U-p))). Note
that - X-Yp implies -L—Yp whenever X is a necessity. So we can get VXZ(Nec X A
Nec Z — YU (NecY A NecU AVp(~X-Yp — Z-U-p))).

Conversely, suppose we have Convergence. Suppose further that - X-VY (NecY — Yp)
for some necessity X. Then it is not difficult to infer that VY (NecY — —X-Yp) by
Persistence. Now, let Z be an arbitrary necessity. According to Convergence, we have
Vp(=X-Yp — Z-U-p) for some necessities Y and U, so by NecY, Z-U-p follows. This
means we can infer from 3X (Nec X A—=X—-VY (NecY — Yp)) that VZ(Nec Z — FU(Nec U A
Z-U=p)), which then implies VZ(Nec Z — Z3U (Nec U A —~U-p)) by Persistence again. [

Curiously, adding Reversal or Convergence to TN does not create any more Nec-free conse-
quences: it is also conservative over Hg.5

5 Comparison with other theories

In this section we compare our approach to other theories of necessities. Here we begin
with some ideas articulated in Williamson [36]. Related ideas, formulated in the present
framework of higher-order logic can be found both in unpublished work of Roberts [30] and
Dorr, Hawthorne and Yli-Vakkuri [9], ch. 8.4.5

Like our approach, Williamson takes the notion of being a necessity as basic, and sub-
jects it to some natural closure conditions. Let’s begin with the following two,% which he
introduces informally as

The composition of any two necessities is a necessity;
The conjunction of any collection of necessities is a necessity.

Unlike us, Williamson formulates these principles in an algebraic language instead of a
higher-order one. However, they have natural analogues in this framework, as other authors
mentioned above have shown. Recall that we defined the composition of two operators X
and Y as X oY := Ap.XYp, so the first principle becomes:

Composition NecX — NecY — Nec(X oY).

64The argument is the same as given in section 3.5, simply check that Reversal and Convergence are also
true under the interpretation of Nec provided there.

65 Although Williamson and Roberts assume HE and HE( in their works respectively, their ideas concerning
necessities can be formulated against the background of a grain-neutral theory like Hg. In fact, Dorr,
Hawthorne and Yli-Vakkuri do just so.

66Williamson endorses other closure conditions but only the following two are relevant here.
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The formulation of the second principle is somewhat delicate. For finitely many operators
X1, ..., Xn, we may define their conjunction simply as Ap.(X1pA---AX,p). But a collection
of necessities might be infinite. So we need a more general notion of conjunction. We know a
collection can be represented by a property. Someone may therefore suggest the conjunction
of all operators with the property W is just the greatest lower bound (henceforth, GBL) of
W under the entailment relation:

GLB := AXW.(WY(WY = X < Y)AVZ(VWY(WY = Z<Y) = Z < X)).

However this condition does not suffice for X to count as a conjunction of the W-operators,
since an actual greatest lower bound could fail to be a greatest lower bound if there had been
new necessities (i.e. necessities which do not actually exist) between X and the W-operators
in strength. In this case the thing that is in fact the greatest lower bound of the W's possibly
violates the conjunction introduction rule: if there could be an operator Y strictly weaker
than X but entailing each member of W, then Y is analogous to the possible existence of
a sentence A which entails py,ps, p3 et cetera, without entailing their conjunction. Thus
the notion of a conjunction is strictly stronger than that of a greatest lower bound of some
propositions. A conjunction, thus, is necessarily a greatest lower bound of W, in every sense
of necessity.
Conj := AXW.L GLB XW.

The next problem is that in order to talk about the same collection of operators across
different possibilities we need some way to pick out those operators rigidly. (Indeed, a non-
rigid property of operators most likely won’t have anything that is necessarily a GLB.) But
so long as a property is rigid, the existence of its GLB is guaranteed. Here we say that a
property W is rigid iff the extension of it doesn’t expand or shrink between worlds, which
we cash out in terms of the Barcan formula and its converse holding for the quantifiers
restricted to W:67

Persistent := \AWVX (WX — LIWX);
Inextensible := \WNVU(VX (WX — LUX) - INX(WX — UX));
Rigid := AW.(Persistent W A Inextensible W).

It is fairly easy to show that if W is rigid, then Ly (i.e. Ap.VX(WX — Xp)) is a GLB of
W .58 Thus, in order to talk about the conjunction of the W operators, we shall require that
W be a rigid property of operators in every sense of necessity. Then the second principle
listed above may be formulated in this way:

Conjunction LRigid W A LVX (WX — Nec X) — Nec Ly .

Of course, even though W is not necessarily rigid, one may still talk about the conjunction
of W in a derivative sense, by assuming there is a necessarily rigid property W' coextensive

67See Bacon and Dorr [4]. Persistence is also equivalent to the condition that YU(LYX (WX — UX) —
VX (WX — LUX)), corresponding to the converse Barcan formula.

68This can be shown in a pretty weak theory. Just suppose we have Hg and L obeys the modal logic
K — so the background theory is even weaker then TNg. Fix a rigid property W. By definition, we have
WX — Vp(Lwp — Xp). By the rule N and the axiom K for L, we get LWX — Ly < X. So given the
persistence of W, Lyy is a lower bound of W. Next, suppose that VY (WY — Vp(Zp — Yp)) for an arbitrary
Z. Tt follows that Vp(Zp — Lwp). By N and K again, we can have LY(WY — Vp(Zp — Yp)) - Z < Ly .
Note that by the inextensibility of W, VY (WY — Z <Y) implies LV(WY — Vp(Zp — Yp)), so Ly is a
greatest lower bound of W.
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with W and then regarding the conjunction of W’ as the conjunction of W.%?

From here Williamson and Roberts attempt to define the broadest necessity as follows.
They firstly note that by Conjunction, the conjunction of all necessities, Cnec (assuming it
exists), is itself a necessity. They then argue that the conjunction of all necessities entails
each necessity:"°

VX (Nec X — CNee < X).

Secondly, like us, they show that the ‘broadest necessity’ so defined satisfies the 4 axiom.
Since necessities are closed under composition, and Cyec is a necessity, Cnec © CNec IS &
necessity. Since Cnec entails each necessity, Cnec entails Cnec © CNec, Which we are spelling
out as LVp(Lp — LLp), the 4 axiom.”!

Dorr, Hawthorne and Yli-Vakkuri adopt the same definition of Cyec, but they do not
claim that the result of the definition is a broadest necessity. They more cautiously call it
an “extensionally minimal” necessity (see below).

Recall that our theory of necessities is very liberal concerning what counts as a neces-
sity: any operator that is Logical and Closed. By contrast, the Williamson-Roberts-DHY
approach is consistent with a much narrower conception of necessity. It should be empha-
sized that their project is not necessarily opposed to ours: one could simply view them as
theories of two different notions. For instance, Williamson and Roberts are explicit that
their are theories of objective necessities, which may be a subclass of a broader class of
necessities, including epistemic, deontic and vagueness theoretic operators.

However, we think even on a narrower conception of what a necessity is, the two principles
identified above are not enough to deliver a broadest necessity in an interesting sense. In
fact, it is worth noting that all of the above reasoning concerning Cyec, the conjunction of
all the actually existing necessities, can also be carried out in our present theory, without
invoking L-Necessity.”> But we believe this is not sufficient for proving the existence of
a broadest necessity. To be a real broadest necessity, it’s not sufficient that you simply

69For example Dorr, Hawthorne and Yli-Vakkuri assume in their background theory that every property
is coextensive with a necessarily rigid property (see [9], ch. 1.5). But note that our theory TN is neutral
about this idea. If W is a property that isn’t coextensive with a necessarily rigid one, then, surprisingly, it
doesn’t really make sense to talk about the conjunction of the Ws. We have no way to even state what it
means for the conjunction of the W's to have no possible failures of the analogues of conjunction elimination
and introduction.

70ONote, however, that entailment in Williamson’s framework is being taken as primitive, or at least, taken
to fall out of the algebraic structure of propositions. We take it to be a significant advantage of our approach
that we can simply define entailment in terms of necessity itself, via L-strict implication. Note also that
because Williamson is working in an algebraic framework, he defines operator entailment proposition wise
— for each proposition p, Cnecp entails Xp — so the force of the L in front of Vp(CNecp — Xp) in our
formulation is lost.

"1 The two closure conditions discussed here cannot guarantee that the logic of Ciec is at least S4. More
principles are needed. For example, Roberts adds a principle similar to Closure (Nec X — Closed X) to
guarantee the K axiom for Cnec and the principle Identity (Nec I) to guarantee the T axiom for Cnec. Since
Roberts assumes HE(, the rule N for Cnec becomes admissible once he accepts some modest claim. (For
instance, it sounds every intuitive that the operator Ap..L is inextensible in the sense that Vp((Ap.Ll)p —
LA) — LVp((Ap.L)p — A) for all A. Note that Vp((Ap.L)p — LA) is a theorem of Hp. So we can get
LVp((Ap.L)p — A) and therefore CnecVp((Ap.L)p — A). Since Vp((Ap.L)p — A) is also an Hg theorem,
every derivable B, which is provably equivalent to it, turns out to be identical with it due to HE(, so by
Leibniz’s Law CnecB is derivable too.) But in a grain-neutral setting, one may add this rule by hand.
Williamson also adds the principle Reversal of section 4. We earlier showed that Reversal is equivalent to
the Brouwerian principle for L in our theory, and Williamson argues that it implies something similar for
ChNec in his framework as well, so for him Cyec satisfies a logic of S5.

72 As we just saw, the reasoning relies on Composition and Conjunction. We have shown that Composition
is derivable in TNp (see Proposition 2.3). Let’s turn to Conjunction. Suppose W is a rigid property of
necessities. Then by Necessity, it follows that Vp(Lp — VX (WX — LXp)). Given the rigidity of W, we
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be a necessity which entails every other necessity, for this could be true only contingently.
Specifically, Cnec Wwill clearly entail all the actually existing necessities, but if there could
have been new necessities, then Cye. need not entail them: a conjunction doesn’t entail
anything not already entailed by the conjuncts.

To circumvent these issues, Roberts entertains a further axiom which says that the prop-
erty of being a necessity is rigid; in other words, he embraces the conjunction of Persistence
(or equivalently CBFne.) and BFye. of section 2.3. So there can’t be new necessities, avoid-
ing the above problem.”™ (Williamson implicitly imposes the same constraint since in his
algebraic framework the domain of necessities is constant.) The persistence of Nec is a
theorem of our theory. But why should we accept the assumption that there can’t be new
necessities? It is natural to think that there could have been. For instance, imagine a pos-
sibility with alien physical properties and new laws governing them: one would expect the
resulting physical necessity to not exist in the actual world, in virtue of its involving prop-
erties that don’t actually exist. Even Roberts’ preferred background theory of Classicism
allows for the possibility of new necessary operators. Indeed, there is a close relationship
between Classicism and our theory TN: TN is interpretable in Classicism in the sense that
there is a translation from the former into the latter such that the theorems of Classicism
include the translates of theorems of TN. By contrast, the translation in question maps
the principle BF e to a non-theorem of Classicism. (The details of this interpretation are
spelled out in the next section.)

Our strategy to guarantee the real broadest necessity without any loss of generality is to
endorses the axiom L-Necessity, which is equivalent to Mix-and-Match. But Mix-and-Match
is a very strong closure condition. In what follows, we suggest another closure condition on
necessities: a principle strictly between Conjunction and Mix-and-Match in strength. So
the resulting view retains the sort of neutrality we have sought in the present investigation;
but it is in the same spirit as Williamson and Roberts, because it is still consistent with
narrower conceptions of necessity and doesn’t commit you to the liberal conception encoded
by principles like Necessity.

Our principle states that whenever W is L-necessarily a persistent property of necessities,
the operator possessing all W necessities is itself a necessity:

Modalized GLB L Persistent W A LYX (W X — Nec X) — Nec Lyy.

Notice the principle is a weakening of Mix-and-Match because we have strengthened the an-
tecedent to require that W is necessarily persistent. And it is a strengthening of Conjunction
because we have weakened the antecedent by requiring that W is necessarily persistent, but
not necessarily rigid.

To explain why Modalized GLB is a natural principle, it’s necessary to make a little
detour. We motivated the definition of a conjunction from the order theoretical notion
of a GLB, where the background theory of mathematical objects is set theory. However
properties are not extensional, like sets are, and we saw that we needed special assumptions

then have Vp(Lp — LVX(WX — Xp)) which amounts to NLy . So by Necessitation and the closure of
L, if W is L-necessarily a rigid property of necessities, we have Logical Ly,. Moreover, it’s easy to see that
Closed Ly follows from that W is L-necessarily a property of necessities.

"3More technically, Cxee must be the conjunction of some W such that L Rigid W AVX (WX <« Nec X).
By L Rigid W, we have LYX (WX — CNec < X). If Nec is also inextensible, from VX (Nec X — W X) we can
derive VX (Nec X — LW X) and then LVX (Nec X — W X), which will give us LVX (Nec X — Cnec < X).
(If Nec is necessarily rigid, we can even directly show that L is the conjunction of Nec, by the proof in note
68.)
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to talk about the GLB (or the conjunction) of the W-entities — for instance, that there
exists a (necessarily) rigid property coextensive with W.

Category theory has allowed us to formulate abstract definitions of notions like being a
partial order, or being a GLB, in a way that’s applicable within other realms of mathematical
objects that behave relevantly like sets, but are not necessarily as ‘extensional’ as sets. Since
quantification into predicate and operator position need not be extensional, we believe these
generalizations are helpful both for obtaining intuitions about higher-order logic and for
constructing models of it.

Of particular interest is the realm of ‘modalized’ sets. A modalized set is effectively a
family of sets indexed by worlds in a transitive reflexive Kripke frame.”® The elements of a
modalized set necessarily persist, in the sense that if you have an element at world w and
w’ is accessible from w, then that element exists there too.”® We may informally think of
them as necessarily persistent properties: a property such that necessarily if something has
it, it necessarily has it. And among these modalized sets are modalized partial orders that
roughly stand to the background realm of modalized sets as partial orders stand to sets in
set theory: a family of partial orders indexed by worlds, with similar persistence properties.
Just as a GLB of a set of elements from a partial order is defined in the realm of sets, one
can define the modalized GLB of any modalized set of objects contained in the modalized
partial order.

Translating this into the present setting, we may introduce a more general relation
between an operator and a property of operators, being the modalized GLB of that property.
Roughly, the modalized GLB of W is something which is necessarily a lower bound of W,
and necessarily as great as anything else that’s necessarily a lower bound of W.

MGLB := AXW.L(VY (WY = X <Y)AVZ(IVY (WY = Z<Y) = Z < X)).

As you can see, it is different from a conjunction in a couple of ways. Firstly, one can
take the modalized GLB of any necessarily persistent property of operators, even if it is
not necessarily rigid. Secondly, you don’t need to be, necessarily, a greatest lower bound of
the Ws, you need only be, necessarily, a lower bound that is greater than anything that is
necessarily a lower bound of the Ws. It is also not an extensional notion: W and W’ might
be coextensive, yet have different modalized GLBs. Just as we were able to show that for a
necessarily rigid W, Ly is a conjunction of W, it is possible to show that if W is necessarily
persistent, then Ly is a modalized GLB of W.7® When understood this way, the principle
Modalized GLB just states that necessities are closed under the more general operator of
modalized GLB. From a mathematical perspective, we feel the notion of a modalized GLB
is far more natural than the notion of conjunction, as a generalization of GLB, and thus the
principle Modalized GLB is far more natural than the principle Conjunction.

Now, consider the theory TN™ = Hg @ Closure & Identity ¢ Persistence & Composition &
Modalized GLB @ Necessitation. It looks like our theory TN in many formal aspects; in
particular, the operator L is still a broadest necessity in the interesting sense and it is still
obeys principles of S4.

74We are talking here about the functor category Set" of functors from a transitive reflexive Kripke frame
(W, R) to Set.

75Note that the accessibility relation at issue is transitive.

"6Like the proof in note 68, this argument can be run in a pretty weak theory — Hg plus a logic K for
L: Suppose W is necessarily persistent. Since Persistent W implies VY (WY — Ly < Y), L Persistent W
implies LYY (WY — Lw < Y). Moreover, since for any Z, VY (WY — Z <Y) implies Vp(Zp — Lwp),
LYY (WY — Z <Y) implies Z < Ly, and we therefore have L(VZ(LVY (WY — Z <Y) = Z < Lw)).
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Proposition 5.1. (i) Fyy- BroadestNec L; (ii) according to TN™, the modal logic of L
contains S4 and the modal fragment of TN~ contains no non-theorems of S4.

Proof. (i) By Closure, L is closed under modus ponens. By Persistence and Modalized
GLB, L is a necessity. It follows from the definition of L that Nec X — Vp(Lp — Xp), so
by Necessitation and the closure of L, we have L Nec X — L < X. By Persistence again,
Nec X — L < X, and by Necessitation again, LVX (Nec X — L < X).

(ii) We have shown the closure of L, and we also have the rule Necessitation. Provided
the result in (i) above, the T axiom for L follows from Identity and the 4 axiom follows from
Composition. Moreover, it is easy to see that all theorems of TN™ are also derivable in TN.
By Corollary 6.5 of section 6.1, no non-theorem of 5S4 can be derived in the modal fragment
of TN™. O

However, since Necessity is not a theorem of TN™, one may take TN™ as theorizing a
narrower conception of necessity.

6 Necessity and granularity

In this section, we explore some connections between necessity and granularity. We explained
in section 2.1 that to provide a comprehensive theory of necessities in a grain-neutral setting,
it is inevitable to take some modal notion(s) as primitive. For example, in our theory TN, we
take the predicate Nec, representing the notion of being a necessity, as primitive, and due to
the interpretability theorem in section 3.6, it is equivalent to start with a primitive operator
expression O for the broadest necessity. But once we strengthen the background logic Hy by
adding principles of granularity, we may provide a reductionist account of being a necessity
and of the broadest necessity — TN can then be reinterpreted in the resulting theory. In
fact, we have already seen an instance in section 4: once we add the principle Fregeanism
to Hg, we can get a Spinozian interpretation of TN by our conservativeness result of section
3.5. But we also noticed that the Spinozian interpretation is a trivial one, since according
to it all necessities are truth-functional operators, so the resulting reductionist theory is not
very interesting. If we add some more modest constraints of granularity in Hy however, we
may end up with a non-Spinozian interpretation of TN. One existing theory of this sort is
developed by Bacon [1]. Let’s begin with his account.

6.1 Classicism

Bacon operates with a more liberal notion of necessity than we are employing here; for
instance, his notion needn’t be Closed. Perhaps it is more appropriate to use the term
modality for that notion.”” His background theory of higher-order logic is HE(, namely
Classicism, which admits rules ensuring that provably equivalent things are identical.
However, it is possible to offer a reductive account of our notion of a Logical and Closed
necessity in that theory too. Recall that we write O for the operator Ap.(p = T). The

77For instance, as we showed in the end of section 2.2, if X is a modality (either a necessity or a possibility),
its dual operator Ap.—X—p is also a modality, but this does not hold for necessities.
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reductive definitions can be given as follows:

Logical’ := AX.O1Vp(Otp — O XDp);
Closed’ := AX.O1Vpq(X (p — q) — Xp — Xq);
Nec’ := AX. Logical’ X A Closed’ X.

It is quite easy to see that according to HE(, namely Classicism, the modal logic of O is
at least S4.7® Thus, by Theorem 3.19 we have:

Theorem 6.1. TN has a non-Spinozian interpretation in HEC wvia the translation j that
replaces Nec with Nec':

jiLNee s ¢
For all A € LN, Fuge A only if Frn j(A).

By this interpretation, O+ turns out to be the broadest necessity.

Of course, Classicism proves a lot of sentences about grain that are translations of non-
theorems of TN. But one might conjecture a much tighter connection between TN and
Classicism: that once one blurs the distinction between L-necessarily equivalent entities
within TN, the theories coincide. We will consider a couple of ways of making this precise.

As a preliminary, we prove an important lemma. The result is also interesting in itself.
It says that closing the system Hp under E and ¢ yields HEC as well. But we have to restrict
attention to the theories as formulated in the language of relational types.™ Let HoE¢ be
Ho @ E @ ¢. Then we have:80

Proposition 6.2. HoE( = HE( when they are formulated in the language of relational types.

Proof. We only show that HE( C HgE( since the converse direction is trivial. This amounts
to showing that all instances of Sn* mentioned in section 1 are theorems of HoEC. To get
the intended conclusion, it suffices to prove that if M is 8n-reducible to M’, then M = M’
is derivable in HoE(.3!

So suppose that M is Bn-reducible to M’. By induction on the complexity of M. If M is
a variable or a constant, then M’ must be the same variable or constant. When M is A\z.N,
either M’ is Az. N’ for some N’ where N is An-reducible to N' or M is M'x where x is not free
in M’. The former case can be easily dealt with by I.H. As to the latter case, we suppose that
the of type M’ is 0 — 7 — t for brevity. So z is of type o. Moreover, let y be a variable of
type 7 not free in M’. Note that M’xy is immediately S-equivalent to both (Ay.M’zy)y and

80+ obeys K: if (p — ¢) = T and p = T, then by Leibniz’s Law (T — ¢) = T and therefore ¢ = T,
since ¢ and T — ¢ are provably equivalent and, by the rule E, are identical. O+ obeys T: it is obvious that
O+ is factive. O1 obeys 4: note that (T = T) = T is provable in HE(, so if p = T then by Leibniz’s Law,
(p=T) = T. Finally, the rule N for O is admissible in HEC. This is because A is derivable only if A <> T
and hence A = T are derivable.

" Both e and t are relational types; and whenever o, T are both relational types and 7 # e, (c—>7)isa
relational type.

Since Hp has no principles governing identities between terms with types ending in e, we cannot even prove
(Az.z)a = a where z and a are of type e, and we don’t have anything analogous to Sg for non-relational
types, so we certainly can’t recover HEC.

80Thanks to Cian Dorr for discussing the proof of this proposition.

810ne term is said to be immediately 3/n-reducible to another if they are immediately §/n-equivalent, the
former is of the form (A.M)N/Az.Nz, and the latter is of the form M[N/z]/N. One term is Sn-reducible to
another if the former can be gotten from the latter by replacing one term with another which is immediately
[ or n-reducible to it for 1 time.
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(Axy.M'zy)xy. Therefore by using Sg, E and ¢, we have M'z = A\y.M'zy = (Azy.M'xy)x.
Further, by Leibniz’s Law and ¢, we can get M’ = Az.M'z. When M is NiNs, either M’
is N{Nj for some N; and N} where Ny/Ns is fn-reducible to Ni/Nj or Ny is Ax.N for
some N and M’ is N[Ny/x]. Again, the former case can be dealt with by I.H. In the latter
case, we suppose the type of N is 0 — ¢ for brevity. Let y be a variable of type o not
free in N. Note that N[Ny /z]y is immediately S-equivalent to (Azy.Ny)Nay. So we have
N[Ny/x] = (Azy.Ny)Na2. According to the last inductive step, N = Ay.Ny. Hence, we can
get N[Na/x] = (Az.N)Na. O

Now, we can introduce two ways to make the connection between TN and Classicism
tighter. One is simply that adding the thesis Intensionalism of section 4 to TN yields a theory
such that the Nec-free theorems of it are exactly the theorems of Classicism. Moreover, the
sense in which this theory extends Classicism is uninteresting, since one can prove the
identity Nec = Nec’ showing that even TN’s new primitive is identical to something already
definable in the base language of Classicism. We use Lz be the language of pure higher-
order logic based on relational types and £ the corresponding language equipped with
the primitive predicate Nec. Let TNI denote the theory TN & Intensionalism. Then we

have:82

Theorem 6.3. (i) For all A € Lg, Frni A iff Fuee A; (i) Frwi Nec = Necd', so for all
A€ LN there is a B € L such that v A < B.

Proof. (i) Given Proposition 6.2, to show that a formula A € Lg is derivable in HE(
only if it is derivable in TNI, it suffices to show that E and ( are both admissible rules of
TNI. If A & B is provable in TNI, so is L(A < B). Then by Intensionalism, we have
A = B. Moreover, suppose M and N are of type 0y = -+ = 0, — t and Max = Nx is
provable in TNI. Let yo,...,y, be distinct variables free in neither M nor N. Note that
LVzys .. .yn(Mzys ... yn <> Nzys...y,) is also provable. So by Intensionalism again, we
have M = N.

To show the converse direction, recall the translation function j introduced in Theorem
6.1, which translates all theorems of TN as theorems of HE(. So it suffices to show that
j also translates Intensionalism to a theorem of HE(. According to j, j(Intensionalsism)
is provably equivalent, in HE(, to VXY (O1Vzy...2p(X21...2n © Y21...2,) =2 X =Y),
which is clearly a theorem of HE(.33

(ii) Given Intensionalism, to prove Nec = Nec’ we just need to show that Nec X < Nec’ X
is provable in TNI. By Necessity’, it suffices to show that LNX A LKX <« O¢Vp(Otp —
Ot Xp) AO7KX is provable, and this claim follows from the observation that LA <> O A
is provable for all A: if O+A holds, which means A = T, then since L applies to T, by
Leibniz’s Law, it applies to A as well; conversely, if we have LA, then we can get L(A <> T)
and therefore A = T by Intensionalsim. O

Another way of making this connection tighter is to ask for a converse interpretability
result, allowing us to interpret Classicism in our theory of necessities. The rough idea is
to translate the vocabulary of Classicism in such a way that identity gets reinterpreted as
necessary equivalence in TN, and thus the broadest necessity according to Classicism, O,
corresponds to Ap.L(p +> T), which is evidently necessarily equivalent to L. Of course, we

82Note that in the second claim we don’t need the restriction that the theories at issue are formulated in
the language of relational types.

83This is just a version of Property Intensionalism we introduced in section 1. We have proved it in note
14.
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didn’t take identity or O as primitive in our axiomatization of Classicism, rather we de-
fined both in terms of the truth-functional connectives and the higher-order quantifiers. Our
strategy, then, will be to reinterpret the quantifiers by restricting them to higher-order enti-
ties that preserve necessary equivalence. We can make this precise by introducing a notion,
~,, within the language E%ec of TN which simultaneously defines necessary equivalence at

each type, and removes operators that do not preserve necessary equivalence:

o .. =

o ~yi= Apq.L(p < q);
o ~y = AXY.IVry(z ~, y = X =, Yy).

Such a relation is symmetric and transitive but not reflexive: it generates a partition of a
subcollection of entities. An operator X of type o preserves necessary equivalence when it
stands the relation =, to itself, so we may define our restricted quantifiers as follows:

VE = AX Vou(x =, z — X1).

We may now establish the following correspondence between Classcism and TN. It states
that this reinterpretation of the quantifiers is a faithful interpretation of Classicism.

Theorem 6.4. HE( has a faithful interpretation in TN via the translation j* that replaces
each V, with V7 :

J* i Lr — LR
For all closed A € Lr, Fuec A iff Frn j*(4).

Proof. To establish the claim that HE( is interpretable in TN via j*, we prove a more general
claim for open formulae A. If Fyge A, then iy =~ T — j*(A), where T = z1,...,z, are
the variables free in A.

Let’s begin with the following two rules corresponding to E and ( respectively:

FA<+ Bonlyif+ A= B;
Fr~y— Mz~ Nyonlyif- M ~ N.

Clearly, they are admissible in TN. Given these two rules, since TN is also closed under mp
as well as Gen, our task is to show that Z ~ Z — j*(A) is derivable in TN for each axiom A
of HEC.

The case of #n can be dealt with because we have the previous mentioned rules and
Proposition 6.2. Thus, the remaining non-trivial case is that A is an instance of Ul, so
Z~T— j*(A) amounts to T = T — Va(z ~ x — j*(F)x) — j*(F)j*(a). To prove that this
is derivable in TN, it suffices to show by induction that if ¥ = v, ..., ¥y, enumerate the free
variables in a term M, then § = Z — M ~ M|[z/y] is a theorem of TN where zZ = 21, ..., 2.

When M is a variable, the proof is trivial. When M is a logical constant, it is also
easy to check that M =~ M is a theorem of TN. When M is the predicate Nec, Nec ~ Nec
holds because (i) X ~¢_+ Y amounts to LVpq(L(p < q¢) — L(Xp < Yq)) and therefore
implies LVp(Xp < Yp) and (ii) every operator necessarily coextensive with a necessity is
itself a necessity. When M is N1 No, by I.H., we have § = Z — Ny =~ Ni[Z/g] A Na =~
Ny[z/y). Note that Ny ~ Ni[zZ/y] amounts to LVyy'(y =~ v — Ny = N1[Z/7]y’), so
N1 ~ Nl[z/g] A NQ =~ NQ[E/@] implies N1N2 ~ (NlNg)[E/yj] When M is AIN, by IH,
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we have § = Z = x = 2’ — N = (N[z/y])[z'/x]. Note that N is S-equivalent to (A\x.N)z
and (N[z/g])[x'/z] is B-equivalent to (Az.N[Z/7])z’. Moreover, since we now have 87, both
grzZzorzrczr > MNzxNand j= 2z — a2 — (Ae.N[zZ/g)2’ =~ (N[zZ/7])[x'/z]
are derivable. So we can get § &~ z — =z ~ &’ — (Az.N)x =~ (Az.N|[z/g])z’ and therefore
g~ ZzZ— Ax.N =~ (Ax.N)[z/y]. (Note that we use the necessity of identity and the 4 axiom
for L repeatedly. In model theoretic terms, this result is related to the ‘basic lemma’ for
Kripke logical relations (see Mitchell [22]).)

Conversely, given Theorem 6.1, to show that Frn j*(A) only if Fnge A, it suffices to
show that for each M € Lg, Fygc M = j(5*(M)), where j replaces Nec with Nec’. Consider
the unique non-trivial case in which M is V. Since j(j*(¥,)) is AX.Vox(j(z =» ) = Xx),
let’s directly prove that Fnge j(N ~ N) =T for all N, by showing that Fngc j(N =~ N') <
J(N) =j(N').

By induction on the type of N. When N is of type e or type t, it’s easy to see that
the result holds. When N is of a non-basic relational type ¢ — 7, N ~,_,, N’ amounts
to LV,za'(x =, 2" — Nz =, N'z’'), so j(N =,_, N’) amounts to OtV zz'(j(z =, 2') —
J(Nz =, N'z')), which is in fact equivalent to O1V,z2'(j(z) = j(2') — j(Nz) = j(N'z’))
given L.H. Then, it turns out that j(N ~,_, N’') + j(N) = j(N') is equivalent to the
principle Modalized Functionality: VXY (O1Vz(Xz = Yz) - X =Y), which is a theorem
of HE¢.34 O

We promised in previous sections to show that the modal logic of L is cannot be proven
to be stronger than S4 in TN, and the modal logic of Lgs cannot be proven to be stronger
than S5 in TN. Given the interpretability theorem 6.1 established in this section, we can
fulfill our promise.

Corollary 6.5. For all A € L3, if ¥sa A, then ¥ty A[L/O].

Proof. Suppose that there is some A € Lp such that Fss A. Since A is not derivable in
S4, it must be false in some Kripke model 9t with a reflexive and transitive accessibility
relation. But given Corollary A.6 in Bacon [1], 9t can always be used to generate a model
My for HE(C falsifying A[O+ /0], which means that A[O+ /0] cannot be derived in HEC.
So by Theorem 6.1, it follows that (A[O+/0])[L/O7], namely A[L/O], is not derivable in
TN. O

To get the result for Lgs, the first step is to observe that since TN is interpretable in
HE(, it is interpretable in any theory stronger than HEC. In particular, let HE¢(T = HEC @
—O1—p — O7—-O1—p. Clearly, TN can be interpreted in HECT via the same translation
function j. The next step and also the most crucial step is to show that for every A € L,
j(Lss)A +» O7A is provable in HECT. This is warranted by the fact that Ot is an S5-
necessity according to HECT. So by a proof similar to the one of Corollary 6.5, we can
conclude that the modal logic of Lgs cannot be proved to be stronger than S5 in TN.

6.2 Other theories of granularity

We have seen that given a background of Classicism one can offer completely reductive
definitions of necessity and the broadest necessity, and moreover, do so in a way that is
distinct from the Spinozian interpretation of Nec and allows for contingency.

84We omit the proof for Modalized Functionality because it is very similar to the proof for Property
Intensionalism we’ve given in note 14. In the current setting of relational type theory, HE( can even be
equivalently axiomatized by adding Modalized Functionality to HE.
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This possibly because, within this theory of granularity, there is only one logical truth,
so that the condition of being Logical may be defined reductively. However we believe that
non-Spinozian reductive definitions of necessity should be possible in a wide range of more
fine-grained theories.

Our discussion here will be far from comprehensive, however. We consider a theory T
extending Hg that contains all instances of the following schema as theorems, where Con(M)
denotes the set of non-logical constants in M, and FV(M) the set of free variables:

Excision (ANC)VA = (BAC)V B) - A = B, provided Con(A) = Con(B) and
FV(A) = FV(B).

And moreover, suppose T is closed under the following rule of proof:

Strong Equivalence If + A < B, then F A = B, provided Con(A) = Con(B) and
FV(A) = FV(B).

Classicism satisfies both of these conditions, however many more fine-grained theories do
as well. For instance, consider views in which, roughly, propositions may be thought of
as ordered pairs of logical contents (e.g. sets of possible worlds) and non-logical contents
(e.g. the set of individuals that proposition is about). The theory of agglomerative algebras
of Goodman [15] and the theory of Berto [5] have this form. We also suspect that Kit
Fine’s truthmaker semantics [12] could also fall under this general class of views. Excision
effectively states that we can excise redundant non-logical contents: the only way for (A A
C)V A and (BAC)V B) to be identical is if A and B share the same Boolean logical content
(in a Boolean algebra this identity only holds when A and B are identical). Moreover,
if A and B contain the same free variables and constants, they must have the same non-
logical contents and thus be identical. We assume here that logical constants and A do not
contribute non-logical contents; they are not about any individuals for instance. So A and
B are identical. The rule of Strong Equivalence can be motivated similarly: if A and B
are provably equivalent in the theory, one ought to expect them to have the same logical
contents, and if they involve the same non-logical constants and variables, they are alike in
non-logical content as well.

We may interpret TN in any theory T' O Hg satisfying these two properties in such a way
that the operator O* := Ap.(p = (p = p)) turns out to be a broadest necessity. Before we
continue, let us note a remarkable property of this operator. Without assuming any logic
beyond Leibniz’s law and propositional logic, we may show an analogue of the 4 axiom:

Proposition 6.6. Fr (p=(p=p))=(p=(p=p)) =(p=(p=p))), where T is a theory
containing propositional logic and Leibniz’s Law.

Proof. Suppose that p = (p = p). By Leibniz’s law, we may replace all of the ps in this
assumption with p = ps, getting (p = p) = ((p = p) = (p = p)). Again, using Leibniz’s law,
we may replace the second, fourth and sixth ps with p = ps to obtain (p = (p=p)) = ((p =
(p=p)=@={@=p)): O

Notice that if we had Sn our proposition would be equivalent to the 4 axiom for O*:
O*p — O*O*p. However, even without fn we can justify this move using the rule of
Strong Equivalence, since by fg, O*A is equivalent to A = (A = A) for all A, and they
involve the same free variables (and non-logical constants).

We may also show that O* satisfies other principles of S4.
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Lemma 6.7. According to T, the modal logic of O is at least S4, where T is any extension
of Ho & Excision & Strong Equivalence.

Proof. We just showed that O* satisfies the 4 axiom in such a theory. It satisfies the T axiom
because the reflexivity of identity is provable, so whenever we have p = (p = p) we can infer
p. Moreover, the rule of necessitation is admissible: If A is derivable, so is A < (A = A).
Then by Strong Equivalence, we have A = (A = A).

Let’s turn to the K axiom: Suppose O*(p — ¢) and O*p. So we have (i) (p = ¢) = ((p —
q) = (p— q)) and (ii) p = (p = p). By applying the identity in (ii) and Leibniz’s Law to
(i), we obtain ((p=p) = q) = ((p = q) = (p = q)). (p = p) — ¢ is provably equivalent to
(gAp)V g, and they involve the same propositional variables, so by Strong Equivalence they
are identical. Similarly, (p — ¢q) = (p — q) is provably equivalent to ((¢ = q) Ap) V (¢ = q),
and they involve the same propositional variables and are identical, so we may conclude
that ((g Ap)Vq) = (((g =q) Ap)V q = q). Finally, by Excision, we obtain ¢ = (¢ = ¢),
which amounts to 0%¢.8° O

We may now interpret Nec in any such theory T as follows:
Logical® := AX.O0*Vp(O*p — O* Xp);

Closed™ := AX.O0"Vpq(X(p — q) = Xp — Xq);
Nec* := AX. Logical® X A Closed” X.

Given the lemma above and Theorem 3.19, the following interpretability result is a routine
corollary:

Theorem 6.8. TN has a non-Spinozian interpretation in T via the translation h that re-
places Nec with Nec™, where T is any extension of Hy ® Excision @ Strong Equivalence:

h:LNee 5 [
For all A € LN, -p A only if Frn h(A).
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