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Abstract

A increasing amount of contemporary philosophy of mathematics
posits, and theorizes in terms of special kinds of mathematical modal-
ity. The goal of this paper is to bring recent work on higher-order
metaphysics to bear on the investigation of these modalities.

The main focus of the paper will be views that posit mathematical
contingency or indeterminacy about statements that concern the ‘width’
of the set theoretic universe, such as Cantor’s continuum hypothesis. In
the higher-order framework I show that contingency about the width of
the set-theoretic universe refutes two orthodoxies concerning the struc-
ture of modal reality: the view that the broadest necessity has a logic
of S5, and the ‘Leibniz biconditionals’ stating that what is possible, in
the broadest sense of possible, is what is true in some possible world.
Nonetheless, I argue that the underlying picture of modal set-theory is
coherent and has natural models.

A increasing amount of contemporary philosophy of mathematics posits,
and theorizes in terms of special kinds of mathematical modality.1 These
mathematical modalities are neither identical to, nor restrictions of the more
familiar notion of metaphysical necessity as it is normally understood.

The goal of this paper is to bring recent work on higher-order metaphysics
to bear on the investigation of these modalities. The main focus of the paper

1Examples include, but are not limited to: Shapiro (1985), Hellman (1989), Parsons
(1983), Fine (2006), Linnebo (2013), Studd (2013), Hamkins and Linnebo (2022), Scambler
(2021), Builes and Wilson (2022), Brauer (2020). This trend is certainly not limited to
contemporary philosophy of mathematics: there are, for instance, many connections between
intuitionistic mathematics and modal logic.
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will be views that posit mathematical contingency or indeterminacy about
statements that concern the ‘width’ of the set theoretic universe—a prime
example being Cantor’s continuum hypothesis. To this end, I will present
a recent higher-order theory of modalities—mathematical or otherwise—in
which we can frame questions about the structure of modality generally.2 With
this account I will draw some implications about the structure of modal reality,
and of properties and propositions, from the width contingency hypothesis. I
will show (in sections 5 and 6 respectively) that contingency about the width
of the set-theoretic universe refutes two orthodoxies concerning the structure
of modal reality: the view that the broadest necessity has a logic of S5, and
the ‘Leibniz biconditionals’ stating that what is possible, in the broadest sense
of possible, is what is true in some possible world. Nonetheless, I argue that
the underlying picture of modal set-theory is coherent: one can formulate, in
higher-order logic, the principle that every ‘forcing notion’ corresponds to a
possible way for the set-theoretic universe to be, and can provide it with some
natural models.3 While my focus will be contingency about the width of the
set-theoretic universe the framework itself can be fruitfully applied to other
forms of mathematical contingency, including contingency about the ‘height’
of the universe too.

1 Higher-Order Logic and Zermelo’s Theorem

We begin by setting out the framework of higher-order logic. We will then state
an important theorem of higher-order logic, due to Zermelo, that purports
to show that, in a certain non-modal sense, the width of the set-theoretic
hierarchy is fixed. This will be a useful place to begin our discussion of set-
theoretic contingency and indeterminacy.

Second-order logic contains devices that let us express generality in predi-
cate position. To explain what this means it is instructive to draw an analogy
with the first-order quantifiers, which express generality in name position. The
first-order claim ‘∀x, x talks’ expresses universal generality with respect to the
instances of this universal—the sentences obtained by replacing the variable
x in ‘x talks’ with particular names: ‘Socrates talks’, ‘Plato talks’, ‘Aristotle
talks’, and so on. We can pin down the logical role of the classical first-order
quantifiers uniquely by its logical relationship to these instances—a universal
claim logically entails each of its instances, and a proof that establishes an ar-
bitrary instance suffices to prove the universal. Harris (1982) has shown that

2The theory is essentially that of Bacon (forthcoming) chapter 10.
3These models will be presented in future work.
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any two quantifiers satisfying these two conditions are logically equivalent.4

Using the exactly same idea we can say what it means to express general-
ity in predicate position. The second-order claim ‘∀X, Socrates Xs’ expresses
universal generality with respect to the instances of this universal—the sen-
tences obtained by replacing the predicate variable X in ‘Socrates Xs’ with
particular predicates: ‘Socrates talks’, ‘Socrates walks’, ‘Socrates eats’, and
so on. The logical role of the classical second-order quantifiers also uniquely
determined by its logical relationship with these instances—a universal claim
logically entails each of its instances, and a proof that establishes an arbi-
trary instance suffices to prove the universal. These rules too pin down the
second-order quantifiers uniquely up to logical equivalence. By this same sort
of logical analogizing we can introduce devices that allow us to generalize into
any grammatical position, including sentence position, operator position, the
positions occupied by the first-order and second-order quantifiers themselves,
and so on. A language with these devices is called a higher-order language.
I am not here going to defend the view that this process of logical analogiz-
ing is successful; my remarks should be taken as merely explanations of the
meanings of the higher-order quantification on the assumption that it was.

Some authors introduce second and higher-order languages by providing
them with a set-theoretic semantics in which the domains of the second-order
quantifiers consists of sets of elements taken from the first-order domain. Oth-
ers take them to simply be a notation for quantifying over sets or proper-
ties. These interpretations of higher-order languages should be sharply dis-
tinguished from our own. On the set-theoretic interpretation, the claim that
‘Socrates talks’ does not logically secure the existential ‘∃X Socrates Xs’.
Logic doesn’t take sides on the existence of sets. By contrast, on my interpre-
tation a nominalist who believes that ‘Socrates talks’ should also accept the
existential ‘∃X Socrates Xs’. For predicate generalizations were introduced by
their logical relationship to their instances. If you believe there is a claim bear-
ing the right logical relationship to these instances—e.g. that is logically se-
cured by any one of the sentences of the form ‘Socrates talks’, ‘Socrates walks’,
‘Socrates eats’—then the second-order existential ‘∃X Socrates Xs’ is simply
our notation for expressing it. Similarly the second-order existential ‘∃X, ev-
ery set Xs if and only if it is non-self-membered’ is secured by the truth of any
sentence of the form ‘every set is ... if and only if it is non-self-membered’, and
so is secured by the logical truth ‘every set is non-self-membered if and only if
it is non-self-membered’. On a set-theoretic interpretation of the second-order

4If ∀1 and ∀2 are two first or second-order quantifiers, these logical rules let us prove the
biconditional ∀1X.A ↔ ∀2X.A.
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quantifier, by contrast, the existential sentence is false on pain of paradox.
(The property theoretic interpretation fairs no better, for we want by similar
reasoning ‘∃X, every property Xs if and only if it is non-self-instantiating’.)
On the present interpretation of higher-order languages it is, of course, hope-
less to try and provide the semantics of a higher-order language in a first-order
metalanguage, even if one that avails itself of high-powered set-theoretic ma-
chinery. But this is hardly surprising. We would never dream of attempting to
state the semantic clause for the first-order quantifier without using first-order
quantification in the metalanguage—why should we expect second-order and
higher-order quantification to be any different?

Having distinguished higher-order quantification from first-order quantifi-
cation over properties and sets, we face a more practical problem of expressing
claims like ‘∃X Socrates Xs’ in ordinary English, which is not a higher-order
language.5 It is convenient to simply use sentences like ‘Socrates has some
property’ or ‘Socrates bears some relation to Plato’ to indicate (without being
synonymous with) a higher-order generalization belonging to a proper higher-
order language. Having clarified the proper way to interpret higher-order
sentences no confusion should arise from this practice.

Let us begin by describing the sort of higher-order language we will work
in. We assume that every expression of our language has a grammatical type:
e is the type of names, t the type of sentences, and (σ → τ) the type of
expressions that combine with expressions of type σ to form expressions of
type τ (in accordance with standard conventions we will often omit outermost
brackets). Thus t → t is the type of operator expressions, e → t the type of
predicates, (e → t) → t the type of of a first-order quantifier, and so on. We
will also make use of logical expressions of different types. We will assume
the usual truth-functional connectives—→, ∧ and ∨ of type t → (t → t) and
¬ of type t → t—and for each type σ a higher-order quantifier ∀σ of type
(σ → t) → t that bears the same logical relationship to expressions of type σ
as the first-order universal quantifier (i.e. ∀e) bears to names, and a relation
=σ of type σ → (σ → t) that bears the logical relationship to expressions of
type σ as first-order identity (i.e. =e) bears to names.6 Complex expressions
may be created in accordance with the gloss we provided above. We can

5English is higher-order in the sense that it has devices that let us generalize in to some
non-nominal positions — see for instance Prior (1971), Rayo and Yablo (2001). But it does
not contain all the higher-order quantifiers: it appears to have no device for generalizing
into, say, sentence position.

6It is possible to define the identity symbol from the quantifiers as λxy.∀σ→tX(Xx →
Xy). However, it will be useful to have a primitive notion of identity in the language when
we consider weakenings of the classical quantifier laws (i.e. free logic) in section 7.
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apply expressions of type (σ → τ) to expressions of type σ, so for instance
given a predicate F (type (e → t)) and a name a (type e), we can form
the sentence (Fa) (with type t). We also will make use of Church’s device
of λ-abstraction, which roughly lets us create complex predicates from open
formulas, and performs similar jobs at other types. Thus, for each type σ, we
assume there are infinitely many variables of type σ, and when A is a term of
type τ and x a variable of type σ, (λx.A) is a term of type (σ → τ). So, for
instance, given a variable x of type e and ¬ and F as above, we can form the
predicate of being not F as λx.(¬(Fx)).

The most basic higher-order logic we call H. It is characterized by four sorts
of principles: (i) the axioms and rules of the propositional calculus (PC and
MP), (ii) the axioms and rules of quantificational logic (for first and higher-
order quantifiers alike—see UI and Gen), (iii) the axioms of identity (for first
and higher-order identity alike—see Ref and LL), and (iv) an axiom governing
the λ-device7 (see βη). These are listed in figure 1. By a theory we will mean
a set of formulas (i.e. expressions of type t) containing all instances of the five
axiom schemas and closed under the rules MP and Gen, and H itself refers
to the smallest theory. A noteworthy feature of H is that it is quite neutral
about the granularity of propositions, properties and so on. In particular it
does not imply that propositions, properties and relations are individuated by
their extensions. This assumption originates with Frege and has seeped its
way into many applications of higher-order logic in mathematics, but is also
very unfriendly not only to mathematical contingency, but to any contingency
whatsoever. If there are only two propositions, a true and a false one, all
operations must be truth-functional.

Higher-order logic is very useful for reasoning about sets. One can express
generalizations in the position of predicates — like the membership relation
— that are not coextensive with any set of ordered pairs, allowing us to talk
about structural features of the entire universe of sets that cannot be said,
or even approximated, using first-order quantification over sets. One can also
replace first-order schemas with infinitely many instances with single univer-
sally quantified axioms, allowing us to axiomatize large fragments of accepted
mathematics with finitely many axioms. In 1908 Zermelo gave us a higher-
order theory axiomatizing what we now know as the iterative conception of
sets (Zermelo (2010a)).8 According to the iterative conception of sets, sets are

7Two sentences, A and B, are immediately βη equivalent if one can be obtained from the
other by substituting (λx.M)N forM [N/x], providedN is free for x inM , or by substituting
λx.Mx for M , provided x is not free in M .

8I do not know whether Zermelo’s interpretation of the higher-order formalism matches
my own, but he certainly didn’t identify second-order quantification with quantification over
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PC A whenever A is a tautology.

UI ∀σF → Fa, where F : σ → t, a : σ

REF a =σ a

LL (a =σ b) → (Fa → Fb)

βη A → B where A and B are immediately βη equivalent.

MP If ⊢ A and ⊢ A → B, then ⊢ B.

Gen If ⊢ A → B, and x : σ does not occur free in A, ⊢ A → ∀σxB.

Figure 1: The axioms and rules H

built up in an increasing sequence of stages: V0, V1, V2, .... One starts with the
set containing no members at all, the empty set, and one constructs new stages
in one of two ways. Whenever you have some sets that were all constructed at
previous stages, one can form a set of them, and we can collect all sets formed
this way into a single set—the powerset of the previous stage. Alternatively,
one can collect all the sets appearing in a given sequence of stages of sets into
a single set provided that sequence can be indexed by a set that has already
been constructed. Zermelo provided (with an addition by Fraenkle) an ax-
iomatization of this iterative conception of set in a higher-order language. A
simplified version of these axioms are presented in figure 2.9 We employ the
abbreviation ∃ex ∈ y.A for ∃ex(x ∈ y ∧A), x ⊆ y for ∀ez(z ∈ x → z ∈ y), ∅ is
short for a definition description for the set with no elements, and x∪ {x} for
the set whose elements are x and the elements of x.

The language in which this theory is formulated has, apart from the higher-
order logical constants, one non-logical constant, ∈, meaning is a member of.
We will make one important adjustment: the standard axiomatization, pre-
sented in figure 2 assumes a restricted interpretation of the quantifiers as rang-
ing over pure sets, whereas we will adopt the logical unrestricted interpretation
of the quantifiers. This means that all occurrences of ∀ex . . . and ∃ex . . . in
figure 2 are replaced by explicitly restricted quantifiers ∀ex(Setx → . . .) and
∃ex(Setx∧ . . .), where being a pure set can be defined in terms of membership

sets. There is more evidence that Russell’s interpretation of higher-order logic matches that
given above, and Zermelo follows Russell in terminology for quantification into predicate
position as quantification over ‘propositional functions’, which indicates they are talking
about the same thing.

9For concision I have omitted some redundant axioms that are sometimes included.
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Extensionality ∀exy(∀ez(z ∈ x ↔ z ∈ y) → x =e y)

Union ∀ex∃ey∀ez(z ∈ y ↔ ∃w ∈ x.z ∈ w))

Powerset ∀ex∃ey∀ez(z ∈ y ↔ z ⊆ x)

Foundation ∀ex(∃ey.y ∈ x → ∃ey ∈ x¬∃z ∈ x.z ∈ y)

Replacement ∀e→e→tR∀ex(∀eyzz′(Ryz ∧ Ryz′ → z = z′) → ∃ez∀ey(y ∈ z ↔ ∃w ∈
x.Rwy))

Infinity ∃ex(∃y ∈ x(∀z.z /∈ y) ∧ ∀y ∈ x(y ∪ {y} ∈ x).

Figure 2: The axioms of ZF

by setting Set := λx∃ey(x ∈ y).10 The conjunction of these five axioms is a
single second-order sentence ZF∈. By replacing the constant ∈ with a binary
relation variable, R, and abstracting out, we get a definition belonging to the
language of pure higher-order logic:

ZF := λR.ZF∈[R/ ∈]

Now because higher-order languages have the ability to generalize into the
position that binary predicates, like ∈, occupy we may talk more generally
about ‘ZF-relations’, just as we might talk about other relations that have
other mathematically interesting properties, like being symmetric, a partial
order, and so on. Because this is all defined in purely logical terms, the study
of ZF relations is a purely logical one, and we can consequently use our theory
H to draw some substantive conclusions.

Any two relations R and S that have the higher-order property of being
ordered like the rational numbers, are isomorphic, whereas two relations having
the property of being ordered like a tree need not be. How different, then, can
two ZF relations be? Zermelo (2010b) gives a precise answer to this question:
ZF relations can differ about their ‘height’—how long the iteration process
continues—but cannot differ about the ‘width’—what the sets are like at a
particular stage. If you take the series of stages V R

0 , V R
1 , ... of a ZF relation

R—constructed as above, except using R wherever I used membership—they
will be isomorphic to the stages V S

0 , V S
1 , ... of another ZF relation S, provided

10For this definition to be sensible we must interpret x ∈ y as meaning ‘x and y are pure
sets and x belongs to y’. So as we interpret it, urelements and impure sets do not bear
the ∈ relation to any other impure sets. A proper treatment of impure sets may require a
further primitive, but since the focus of this paper is the structure of the pure sets this is a
complication I want to background.
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those stages both are reached in the respective constructions. It follows that
the structure of the pure sets is pinned down uniquely up to any given stage:
the only freedom one has concerns how long the sequence of stages extends.
Using R ⪯ S to formalize the second-order statement that the stages of R are
isomorphic to an initial segment of the stages of S, we have:

Zermelo’s Quasi-Categoricity Theorem ∀RS(ZF(R)∧ZF(S) → R ⪯ S∨
S ⪯ R)

Note, again, that Zermelo’s theorem is a purely logical statement—it is formu-
lated entirely in the language higher-order logic without non-logical constants—
and is a theorem of our very minimal axiomatic higher-order logic H.It has as
good a claim as any higher-order sentence to being a ‘logical truth’.11

In some presentations Zermelo’s theorem is reformulated in terms of iso-
morphisms between set-theoretic models of ZF∈—specifically ‘full’ models—
and so formulated, Zermelo’s theorem is a sentence of set-theory itself and
not a sentence of higher-order logic.12 This version of the result not only
fails to be true to Zermelo, but underplays its significance. For one, it invites
an irrelevant set of concerns about the adequacy of full models in modeling
higher-order logic. More importantly, this version speaks only to ZF-relations
R that can be represented by a set of ordered pairs (in the sense of the partic-
ular ZF relation ∈), thus excluding from its range restrictions of ∈ like Gödel’s
constructible universe. While our version of Zermelo’s theorem closes off the
possibility of other binary predicates satisfying ZF describing an alternative
and very different hierarchy of stages, the model-theoretic version leaves this
possibility open.

A word of caution: there are various binary predicates definable in the
language of set-theory—‘inner models’—that are useful in the study of set-
theory (especially first-order set-theory), which will quite often turn out not
to be ZF-relations.13 One example would be the binary predicate ∈L obtained
by restricting ∈ to Gödel’s constructible sets. Assuming V ̸= L, we have

11The fact that the theorem is a second-order generalization is not as important as it
might at first seem: for most applications the schema one gets by deleting those quantifiers
and letting R and S be schematic variables is enough. For instance, there is an instance of
the theorem where R is ∈ and R′ is ∈L, where this is ∈ restricted to the constructable sets.
Of course, assuming V ̸= L, it’s not the case that ZF ∈L: indeed ∈L doesn’t even satisfy
all instances of the axioms of first-order ZFC, provided you include among the instances of
separation and replacement instances involving ∈. (Of course, L satisfies all instances of
separation and replacement that only involve ∈L.)

12See, for instance, Shapiro (1991) pp.188-189.
13Schepherdson 1952 part I-III gives a general theory of inner models. Bizarrely Shep-

herdson dismisses the significance of Zermelo’s theorem (p227).
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¬ZF(∈L)—the Separation axiom fails for ∈L because, if you can find a set x
in Vα \ Lα, then we cannot apply separation to the set Lα using the predicate
of belonging to x, λy y ∈ x. Note that L doesn’t even satisfy the unrestricted
first-order separation schema: λy y ∈ x is a first-order definable property —
what makes L an inner model is that it satisfies all the first-order sentences
of Separation that only involve the ∈L predicate; it will fail many first-order
instances of Separation that involve ∈.

2 Set-Theoretic Contingency: Height andWidth

I will begin our investigation of mathematical contingency by delineating some
different motivations for positing it. We will look at three different motivations
for positing contingency about the sets in the literature, and distinguish two
distinctive sorts of contingency which I’ll gloss as height and width contingency.

Motivations for positing height contingency can be traced back to Cantor
himself. Cantor’s view was that the transfinite ordinals—mathematical objects
representing the order-types of well-orders—continued indefinitely through the
operations of taking successors and limits. As we saw in the previous section,
up to isomorphism, ZF-relations differ from one another only regarding how
far the iterative process is continued along the ordinals. Zermelo’s picture,
like Cantor’s picture of the transfinite ordinals, was that this iterative process,
continued forever—the iterative hierarchy is ‘indefinitely extensible’.

Some have taken Zermelo’s remarks to suggest a kind of mathematical
contingency.14 Not any collection of sets form a set, on pain of Russell’s
paradox. But they nonetheless could have formed a set—a stage Vκ of a
possible larger set-theoretic universe. Charles Parsons (Parsons (1983)), and
several subsequent authors, have been more explicit about the modal in this
formulation.15 For now we’ll give this idea the following gloss:16

Height Extensibility Necessarily, the sets (whatever they may be) are pos-
sibly a proper initial segment of all the sets.

14[ANON].
15See Fine (2006), Linnebo (2013), Studd (2013).
16Actually Zermelo’s idea seems to be importantly different from that of Parsons’, and the

one given below. Zermelo above is concerned with the structure of ZF-relations generally,
without selecting any particular one for attention, so his form of indefinite extensibility is one
formulable in the language of pure higher-order logic alone (see [ANONYMIZED][?]). By
contrast set-theory is often taken to be the study of one particular ZF-relation, membership,
and Parsons, Linnebo and Studd each formulate their versions of indefinite extensibility in
terms of it.

9



Here the sense of possibility in play is, presumably, not metaphysical possibility
but a primitive kind of mathematical possibility in need of further explication
(I will offer some suggestions in section 4).

More recently there has been significant interest in a different kind of indef-
inite extensibility inspired by Paul Cohen’s method of forcing. Joel Hamkins,
in a number of papers, has suggested that, even when we restrict ourselves to
a particular infinite stage Vα—‘the sets of rank α’—one can always consider
a larger set theoretic universe that contains more sets of that rank.17 For in-
stance, the method of forcing lets one describe, within any given set-theoretic
universe, a larger one that contains more sets of natural numbers.18 We have
an explicitly modal articulation of related ideas in Scambler (2021), Pruss
(2020), Builes and Wilson (2022).19 Let’s give this idea the following gloss:

Width Extensibility Necessarily, the sets of rank α (whatever they may be)
are possibly properly contained in the sets of rank α.

Again, the notion of possibility here is a primitive mathematical one, which
may be identical to or orthogonal to the one appealed to above. These latter
authors are typically interested in Width Extensibility because they want to
make sense of the idea that all sets of countable in a strictly modal sense:

Countabilism Every set is ‘countable’ in the sense that for any set x, it is
possible that there is an injection from the natural numbers to x.

For some motivations for Countabilism see Meadows (2015) and Builes and
Wilson (2022).20 I myself am interested in this principle because it is equivalent
to the following principle:21

17See, for instance, Hamkins (2012).
18One can even describe what these new sets of natural numbers will have to look like,

although they will be in some sense ω-inconsistent from the perspective of the present
universe.

19Hamkin’s also uses modal logic in his work to spell out the multiverse view–Hamkins
(2003), Hamkins et al. (2015)–but it seems clear that his uses of the modal operator 2A
are really abbreviations for something quantificational: 2A means A holds in all forcing
extensions of the universe, where this is a statement that can be articulated in the extensional
language of first-order set theory.

20Builes and Wilson (2022) argue that while height extensibilism can be motivated by a
certain sort of attitude to Russell’s paradox—the non-self-membered sets do not in fact form
a set, they could have done—Countabilism follows from taking a parallel attitude toward
Cantor’s theorem.

21This principle is closely related to the principle HE from Scambler (2021). The proof
that Forcing Possibilism and Countabilism are equivalent are essentially theorems 3 and 4
of Scambler (2021) (see p.1092). One difference is that Scambler’s principle is formulated
using plural quantification.
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Forcing Possibilism For any partial order, P, and set D of dense subsets
of P, it is possible that there exists a filter on P that intersects every
element of D.

Forcing Possibilism legitimizes a certain practice that seems commonplace
among set-theorists. The set-theorist I have in mind sets out theorizing in
the language of set theory. They may then consider various partial orders P
belonging to the cumulative hierarchy, and its associated collection of dense
subsets D, and ask seemingly modal questions of the form ‘what would the
set-theoretic universe have looked like if there had been a filter that had in-
tersected every element of D?’. For instance, P might consist of finite bits of
information about a potential function from ω to {0, 1} ordered by informa-
tiveness, and the postulated filter then consists of a collection of these bits
of information that approximate a total function f : ω → {0, 1} which differs
from every actually existing function over some finite bit of information (since,
for any actual function, the set finite partial functions not contained in that
function is dense).22 Consequently, by positing the possibility of such a filter
we describe a possible set-theoretic universe containing a new function from
the naturals to {0, 1}. One might attempt to make sense of this practice by
interpreting the set-theorist’s quantifiers as initially ranging over a restricted
portion of the ‘real’ sets, and the possibility containing the new filter as sim-
ply arising from enlarging the range of those quantifiers. But this approach
assumes there is a background universe of ‘real’ sets—consisting of all the sets
there are—yet the procedure for describing new sets can be applied just as
readily to this background universe of sets as it can to any of its restrictions.
Granted, it is possible still to reduce this seemingly modal talk to extensional
quantification over possibilities, even when it is applied to the entire universe
of sets. Each element of P may be thought of as a ‘possibility’—in our run-
ning example, the possibility specifies the behaviour of a new function on ω
on finitely many of its arguments. In the language of set theory, one can de-
fine a relation of a sentence being ‘true at’ a possibility, from which we may
paraphrase any claims of possibility and necessity extensionally, in terms of
existential or universal quantification over possibilities. Nonetheless, I find the
idea that the set-theorist is describing genuine possibilities for the set-theoretic
universe to be deeply attractive.

22More precisely, P consists of the finite partial functions ω ⇀ {0, 1} ordered by inculsion.
Every actually existing function f : ω → {0, 1} determines a filter of finite partial functions
F (its finite subsets), but will also be disjoint from one of the actual dense subsets of P,
namely P \ F . Thus if there had been a filter of partial functions that intersected every
element of D, it’s union would have to be a totally defined function on ω that doesn’t
actually exist.
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Apart from Countabilism and Forcing Possibilism, contingency about the
width of the set-theoretic hierarchy can also be motivated by considerations
of set-theoretic indeterminacy. Cantor’s continuum hypothesis, which we will
abbreviate CH, is the claim that every infinite set of real numbers (identified
with a certain set in our iterative hierarchy) can either be put in one-to-one
correspondence with the set of all real numbers or can be put in one-to-one
correspondence with the natural numbers. This claim is, surprisingly, left un-
settled by presently accepted mathematics: no currently accepted axiomatic
theory (whether first-order or higher-order) implies CH or implies its nega-
tion.23 Perhaps this is a symptom of a deeper kind of indeterminacy about
the truth value of this statement. According to this picture, our state of igno-
rance about the continuum hypothesis is akin to our ignorance about whether
a borderline heap is a heap or not: there is simply no fact of the matter, and so
additional investigation would yield no headway. Indeterminacy seems to be a
kind of contingency, and in order for the continuum hypothesis to contingent
in this sense, it must be contingent what real numbers there are.

Do the motivations we have discussed above really require one to posit
mathematical contingency? Some authors have attempted to make sense of
indefinite extensibility and indeterminacy in extensional terms. I will set aside
attempts to make sense of height extensibility in extensional language, since
that is not our primary concern.24

On the face of it, Zermelo’s theorem makes it hard to see how one could
articulate the above ideas concerning the width in extensional terms. Let’s
begin with the motivation from mathematical indeterminacy. Most have taken
this kind of indeterminacy, like vagueness more generally, to involve the failure
of language to single out a unique meaning for the membership symbol ‘∈’. In
the language of classical supervaluationism:

The symbol ‘∈’, as used by mathematicians, has multiple admissible interpre-
tations. Under some such interpretations ‘CH’ is true, and under others
it is false.

‘Admissibility’ should be understood here as a higher-order predicate of type

23It is sometimes suggested that second-order set theory settles the continuum hypothesis
(see Kreisel (1967) p[REF]), but these authors have a semantically defined theory in mind
when they talk about by ‘second-order set theory’.

24One common approach is to deny possibility of unrestricted quantification, so that
whenever one attempts to say something about ‘all’ sets one only ends up talking about a
restricted universe (see, for instance, the papers collected in Rayo and Uzquiano (2006)).
I present a different extensional articulation of the indefinite extensibility idea, inspired by
some remarks of Zermelo, in [?][ANON].
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(e → e → t) → t—a property of binary relations that are candidates to be the
meaning of ‘∈’—so that the quantification in question is higher-order.

This formulation of indeterminacy is spelled out extensionally, for we are
just quantifying over admissible interpretations of the membership symbol.
But what relations are admissible interpretations of the membership predi-
cate? Presumably they should at least be ZF-relations, for these are over-
whelmingly more natural than any of the alternatives that accord with out
mathematical practices.25 But then the continuum hypothesis is not linguisti-
cally indeterminate: Zermelo’s theorem tells us that any two ZF-relations are
isomorphic up to the first inaccessible, and thus agree about the truth value
of the continuum hypothesis:

∀RS.(ZF(R) ∧ ZF(S) → (CH(R) ↔ CH(S)).

In order to explore a different diagnosis let us suppose, for the sake of argu-
ment, that there is no linguistic indeterminacy in the symbol ‘∈’: there are spe-
cial objects, sets, and a special relation, membership, about which set-theory
is unambiguously concerned. Nonetheless, there might still be indeterminacy
in the sets themselves, concerning how they are related to one another by the
membership relation.26 This indeterminacy would not be metalinguistic, but a
kind of contingency concerning the pattern of the membership relation among
the individuals. Here we must thus assume a notion of propositional indeter-
minacy that is not reduced or explained in terms of linguistic indeterminacy,
but is simply another propositional operator alongside the other more familiar
modal operators.27

Could it be that the sets are indeterminately arranged to the extent re-
quired for certain claims, like the continuum hypothesis, to come out indeter-

25A lot has been made of the fact one can find relations that accord with mathematical
practice—in particular that make all the sentences of ZF true—that are not ZF-relations in
our defined sense. It is pretty clear that in order for the predicate ‘is a ZF relation’ to apply
to something that isn’t a ZF relation, at least one of the logical constants in our purely logi-
cal definition of ‘is ZF relation’ has to have a non-disquotational interpretation. Skolem, and
several subsequent authors, have maintained that the words for universal quantification—
first and higher-order alike—can sometimes refer to restrictions of the universal quantifiers.
However, even if we concede that quantificational words can sometimes refer to these re-
strictions, the resulting relations are far less natural than ZF relations, and make unlikely
candidates for what we are talking about when we are doing set theory.

26Compare Goodsell (2022) on the possibility of non-linguistic arithmetical indetermi-
nacy“On this conception, for arithmetic to be indeterminate is for the numbers themselves
to have an indeterminate structure, independently of how we speak about them”.

27Bacon (2018b) defends a propositional account of vagueness more generally. See also
Goodsell (2022) for a discussion of a propositinal account of mathematical indeterminacy
specifically.

13



minate? One might have thought not. After all, we have just argued that CH
cannot be linguistically indeterminate, and how could the case of propositional
and linguistic determinacy be so different? Matters are in fact quite different,
however. Zermelo’s theorem applies to simultaneously existing relations (‘from
the same possibility’), which is to say, necessarily, any two ZF relations are
isomorphic up to any rank they have in common. Let us imagine trying to for-
mulate a “trans-world” version of Zermelo’s theorem. Let us suppose we could
rigidly pick out to the things which are in fact sets and rigidly pick out the
membership relation. Call this rigid relation ∈∗. One might hope to argue, as
above, that necessarily, ∈∗ must be isomorphic to an initial segment of ∈—i.e.
that the actual sets are isomorphic to the sets under the membership relation,
whatever that might be at the relevant possibility—or, conversely, that ∈ be
isomorphic to an initial segment of ∈∗. In which case ∈ and ∈∗ would agree
about CH, and of course the value of CH according to ∈∗ is not contingent
given ∈∗ is by stipulation rigid. However, in order to apply Zermelo’s theorem,
we need that ∈∗ is not only a ZF relation in actual fact, but necessarily a ZF
relation. But ∈∗ could fail to satisfy the separation axiom, especially if we
consider possibilities at which there are new properties for the second-order
quantifier to range over. For instance, if it is possible, in the new determinacy
theoretic sense, that there be a set, x ⊆ N, of natural numbers that don’t in
fact exist (as one would expect for the contingency of CH) then there is a new
property, λy.y ∈ x, which does not define a subset∗ of N according to ∈∗.

Similar morals may be drawn for the Width Extensibilist. What we ob-
serve, firstly, is that the possibility of a ZF relation containing more sets of
rank α cannot be actually witnessed, for by Zermelo’s theorem any two ZF
relations are isomorphic up to a given rank (provided they both extend that
far). Nonetheless, Width Extensibility is on first-looks consistent with Zer-
melo’s theorem because the actual sets of rank α, whatever they might be,
could possibly fail to contain all the sets of rank α, assuming there could have
been more properties and thus more conditions with which to define subsets
of sets with rank below α. We see then that both sorts of width contingency
require the possibility not merely of ‘new’ type e entities, but also of ‘new’
type e → t properties.

3 The Structure of Modal Reality

The sorts of mathematical contingency posited will have implications for the
structure of modal reality. In this section and the next three we articulate
some of these connections.
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Several things require untangling before we can draw these implications.
For a start, what do we mean by the structure of modal reality? Often meta-
physicians mean by this various theses formulated in terms of a particular kind
of modality, Kripke’s notion of ‘metaphysical necessity’. But as this modality
is used by Kripke and subsequent philosophers, mathematics is metaphysically
necessary (see Kripke (1980) p36). It follows that the mathematical contin-
gency and indeterminacy appealed to above cannot be explained in terms of
metaphysical contingency, and the possibilities on which mathematical inde-
terminacy and extensibility theses are predicated are not metaphysical possi-
bilities. These theses concern the structure of modality in general, but not the
structure of metaphysical necessity.

To theorize about the structure of modal reality in its entirety, we must
be able to talk about all the modal notions there are, metaphysical modality
and otherwise, and talk about the logical relationships between these modal
notions. Crucial to this enterprise is the ability to specify what it means for
an operator to be a modality, and to specify the logical relationships between
modalities—when one modality is as broad as another. (For instance, we
have seen above that metaphysical necessity is not as broad as mathematical
necessity or determinacy.28) Indeed, higher-order logic provides us with the
perfect framework to carry this out, for in the language of higher-order logic
one can quantify directly into the positions occupied by sentences and by
sentential operators allowing one to formulate definitions of these notions.
Once this is done it is possible to then introduce a notion of broad necessity,
an operator defined as possessing every necessity. We will argue that the
study of the structure of broad necessity has a good claim to being the study
of the ‘structure of modal reality’ simpliciter.29 The possibilities posited by
this notion can be seen, by definition, to subsume the determinacy-theoretic
possibilities and mathematical possibilities. It follows that any possibilities
in which the continuum hypothesis has a different truth value, or in which
there are more ordinals than there in fact are, will automatically be broad
possibilities. So principles about the structure of broad necessity can have a
direct bearing on the question of mathematical contingency and vice versa.

In order to start theorizing about modalities we face a choice. If we assume
a certain thesis about the granularity of reality—roughly, that propositions,
properties and relations are individuated relatively coarsely, by provable equiv-

28The case that metaphysical necessity is not as broad as determinacy can be made even
with respect to non-mathematical claims of vagueness, given the supervenience of the vague
propositions on the precise; see Bacon (2018a), Bacon (2018b).

29Certainly it has a better claim to this than the study of metaphysical necessity, given
the remarks above.
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H The axioms and rules of H (see figure 1).

RE If ⊢ Px ↔ Qx, then ⊢ P =σ→t Q.

Figure 3: Axiomatization of C

alence in H—it is possible to give completely reductive definitions of being a
modality, being as broad as, and broad necessity. If we wish to be neutral on
the matter of propositional granularity, we appear to need another primitive.
A higher-order predicate, Nec, being a necessity, of type (t → t) → t, is a
natural primitive for this purpose.30 We will take the former route of pursuing
a logicist account of modality at the expense of neutrality of grain, but if you
do not accept this theory of granularity everything I say can in a precise sense
be translated into the latter framework by disregarding our definition of ‘Nec’,
and replacing subsequent uses of it with the primitive.31

The system we will work in, Classicism, or simply C, adds to H the Rule of
Equivalence, which ensures that the theory proves the claim that two propo-
sitions, properties or relations R and S are identical whenever it can prove
that R and S are coextensive. C it is thus the smallest theory closed under
the Rule of Equivalence: See figure 3.32 It is the last rule that that distin-
guishes Classicism from more structured theories of granularity: it implies, for
instance, that being old and wise and being wise and old are the very same
property (λx.(Fx∧Gx) =e→t λx.(Gx∧Fx)) on account of their being provably
coextensive from the laws of classical logic.

Using the purely logical language of higher-order logic it is possible to
say that a given operator, X of type t → t, has a ‘normal modal logic’.
Roughly, it is normal if the smallest collection of propositions containing (i)
the tautologies, (ii) closed under modus ponens, (iii) containing the claim
that X satisfies the normality axiom, and (iv) closed under X-necessitation

30One could instead take broad necessity as the primitive, an approach taken in Dorr et al.
(2021). However, by taking being a necessity as primitive we can provide a justification for
the posit of a broadest necessity, rather than imposing that assumption by fiat.

31The logicist account is spelled out in more detail in Bacon (2018a) and Bacon (forth-
coming) chapter [REF], and the theory with a primitive necessity predicate, Nec, in Bacon
and Zeng (2022). The latter shows that the theory Classicism used in Bacon (2018a) and
Bacon (forthcoming) is interpretable in their theory, and that their theory is indeed neutral
about the granularity of reality.

32Other axiomatizations of this system can be found in Bacon (2018a) and Bacon and
Dorr (forthcoming).
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are all true. Because we can quantify into sentence position we can state
what it means for an operator to be closed under modus ponens with a single
generalization:

MP-Closed := λX.∀p(X(p → q) → Xp → Xq)

Given a modal operator 2, we can similarly say what it means for a ‘collection’
of propositions, represented by an operator Y of type t → t, to be closed under
necessitation for 2: ∀p(Y p → Y (2p)).

Nec-Closed := λXY.∀p(Y p → Y (Xp))

We can then state that p is in the normal modal logic for 2 by saying that p
belongs to any collection of propositions that contains the tautology, is closed
under modus ponens and necessitation for X, and contains the claim that X
is closed under modus ponens (i.e. the K axiom):

InNormalModalLogicOf := λXp.∀Y (Y⊤ ∧MP-ClosedY ∧
Y (MP-ClosedX) ∧ Nec-Closed(X, Y ) → Y p)

Definition 3.1 (Weak Necessity). An operator, X, is a weak necessity iff
every proposition in its ‘normal modal logic’ is true.

WNec := λX.∀p((InNormalModalLogicOfX)p → p)

The notion of a weak necessity is sufficient for applications of normal modal
logic: if one considers an interpreted propositional modal language in which
‘2’ is interpreted by a weak necessity, then every theorem of the smallest nor-
mal modal logic, K, will be true. For instance, in epistemic logic it is common
to assume we are studying the knowledge of a logically perfect agent who also
knows they are logically perfect, knows they know this, and so on. This agents
knowledge will satisfy the conditions for being a weak necessity, but even this
highly idealized kind of knowledge is not a necessity in the metaphysically rel-
evant sense. It is physically possible, say, that the agent sustain a head injury
and fail to be logically omniscient. A true necessity, by the metaphysicians
lights, is necessarily, in all the relevant senses of ‘necessarily’, a weak necessity.

Definition 3.2 (Strong necessity). An operator X is a strong necessity iff,
for every weak necessity Y , it is Y -necessarily a weak necessity.

Nec := λX.∀Y (WNecY → Y (WNecX))
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We can now spell out what it means for one necessity to be as broad as
another: there must be a strict implication from one necessity to the other. It
would be arbitrary to single out any particular necessity to articulate this strict
implication, so we require the implication to be strict in every possible sense.
In fact, broadness is a special case of the more general notion of entailment.
In the below we write x for a sequence of varibles x1...xn, σ for a sequence of
type σ1...σn, and σ → τ for the type σ1 → ... → σn → τ .

Definition 3.3 (Entailment). Given two relations, R and S, of type σ → t,
R entails S iff for every necessity Z, it’s Z-necessary that any things standing
in R stand in S.

≤σ:= λRS.∀t→tZ(NecZ → Z∀x(Rx → Sx))

We can also introduce ‘multi-premise’ entailment. If X of type (σ → t) → t
represents a collection of propositions, properties or relations we say it entails
another proposition, property or relation R iff anything entailing everything in
X entails R, and we write this X ≤ R:

≤:= λXR∀S(∀T (XT → S ≤ T ) → S ≤ R)

Given two necessity operators, X and Y , we say that X is as broad as Y
iff, X entails Y , i.e. X ≤t→t Y .

We modeled our notion of a necessity on the idea of a normal modal oper-
ator. In a normal modal logic one can prove that if some finite list of proposi-
tions, p1, ..., pn, are each necessary, so is anything that they jointly entail. The
analogous infinitary principle, that anything entailed by an arbitrary collection
of necessary propositions is also necessary by contrast, cannot be proven from
the principles of normal modal logic.33 Arguably there are necessities, such as
having an objective chance of 1, that do not satisfy this further principle, so
we do not build it in to our definition. At any rate, we can specify this further
property:34

Definition 3.4 (Infinitely closed necessity). A necessity, X, is infinitely closed
iff, whenever a proposition is entailed by the collection of all necessary propo-
sitions, that proposition is also necessary: ∀q(X ≤ q → Xq).

Nec∞ := λX(NecX ∧ ∀q(X ≤ q → Xq))
33If we add infinite conjunctions to propositional modal logic, this strengthening is valid

in the usual Kripke semantics, but not in variant semantics such as the topological semantics
for S4, and so is not derivable from K augmented with the logical laws governing infinitary
conjunction.

34See Bacon and Zeng (2022) p[?].
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Finally, we define broad necessity as being necessary in every sense of
necessity

Definition 3.5 (Broad Necessity). p is broadly necessary iff it’s X-necessary
for every necessity X

2 := λp.∀X(NecX → Xp)

In order to justify the title ‘broad necessity’ one must show that 2 does
indeed meet our criteria for being a necessity, and that it is as broad as any
other necessity. These are verified by the following theorem.35

Theorem 1. The following are theorems of Classicism

1. Nec2

2. Nec∞ 2

3. 2(∀X(NecX → 2 ≤ X)

Next we list some theorems of Classicism that concern the logic of broad
necessity.

Theorem 2. The following are theorems of Classicism or rules under which
it is closed:

K ∀tp∀tq(2(p → q) → 2p → 2q)

T ∀tp(2p → p)

4 ∀tp(2p → 22p)

CBFσ ∀σ→tF (2∀σxFx → ∀σx2Fx)

NEσ ∀σx2∃σy.x =σ y

Necessitation If A is a theorem of Classicism, so is 2A

Note that the first three axioms and Necessitation ensures the theorems of
S4 for 2 belong to Classicism. The first three axioms straightforwardly fall
out of the fact that 2 is the broadest necessity. K is guaranteed by the fact
that 2 is a necessity. T follows from the fact that the truth operator (λp.p) is a

35Proofs of all the theorems to follow may be found in Bacon (forthcoming) chapter
[REF]).
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necessity, and 2 is as broad as it; 4 follows from the idea that the composition
of two necessities is a necessity, so that 2 must be as broad as λp.22p.

The converse Barcan formula and the necessity of existence correspond to
instances of CBFσ and NEσ where σ is e. They are both consequences of the
idea that the theorems of classical logic are necessary. They are consequently
theorems of modal logics based on classical logic, Classicism included.36 The
latter principles apparently tells us that whatever exists does so necessarily.
When applied to concrete individuals this is, of course, a contentious thesis.37

It seems that I could have failed to exist—for instance if my parents had never
met. This is true in many senses of ‘could’, and so must be true for the
broadest kind of possibility. Some authors—‘contingentists’—have attempted
to avoid this consequence by weakening the principles of classical quantifica-
tional theory those of free logic.38 I am myself sympathetic to the idea that
quantificational expressions in English rarely express the sort of quantifier for
which the classical laws are necessary (and consequently for which the necessity
of existence and CBF are true). But the classical quantifiers are nonetheless
incredibly useful for the sort of general theorizing distinctive to disciplines
such as logic, mathematics and and metaphysics, and can often be introduced
by definition. For instance, if we have an actuality operator and I want to say
that every possible individual is F I can say ‘necessarily, everything is F in
actuality’. The formula 2∀ex@Fx thus simulates “possibilist quantification”
over all possible individuals provided at the actual world. While this para-
phrase is materially adequate, this fact is, of course, highly contingent: had
different things been F , that paraphrase would still evaluate with respect what
is actually F and deliver incorrect results.39 Kit Fine (Prior and Fine (1979)
p144) thus paraphrases quantification over all possible F s by saying ‘the true
world proposition w (whatever it might be) is such that necessarily everything
is entailed by w to be F ’. So a candidate classical quantifier Π might be:

Π := λX.∃w(Worldw ∧ w ∧2∀x2(w → Xx))

We will refine this idea in section 7, and in appendix B show that in the dialec-
tical context in which it will be employed, this quantifier is indeed classical.40

36NEe, for instance, can be proven from these principles as follows. ∃ey.x =e y is a
theorem of Classical logic, and so is necessary: 2∃ey.x =e y. Applying the principle of Gen
we can infer ∀ex2∃ey.x =e y.

37For a thorough defense of this thesis, see Williamson (2013).
38Specifically by restricting the principle of universal instantiation. See Kripke (1963),

Lambert (1963).
39See the discussion in Williamson (2010) p685-686.
40[ANONYMIZED].
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But even if, for whatever reason, we cannot define the classical quantifiers,
they can at least be introduced as primitives, pinned down by their introduc-
tion and elimination rules. Even skeptics of CBF and NE concede all this,
and will often avail themselves of ‘outer quantifiers’ which range over ‘merely
possible individuals’. According to Kit Fine, for instance, outer quantification
is perfectly ‘legitimate but not basic’.41 Since CBF and NE are valid for these
quantifiers, we may proceed to use these quantifiers to interpret the theorems
of Classicism. At any rate, we will give the free logicians and contingentists a
fair shake in section 7 so, for the time being, let us set them aside.

4 Mathematical Necessity

This concludes our general theory of modality in higher-order logic. In order to
apply it to the present topic of mathematical modality and indeterminacy we
must introduce new non-logical operator constants to the logical language to
stand for these operations. I will use the symbol ■, and we will read it as the
relevant sort of mathematical necessity or as determinacy depending on the
application, although for convenience we will use the terms ‘mathematically
necessary’ and ‘mathematically possible’ in a way that is neutral between these
interpretations. Call the language of pure higher-order logic L, and the result
of adding ■ to it L■.

We must, of course, assume ■ is a necessity. However, it seems plausible
that it is also closed under arbitrary logical consequences so we will make the
stronger assumption:42

Mathematical Necessity Nec∞ ■

Let C■ be the theory obtained by adding this principle to Classicism.
There is a long standing question for the modal extensibilists about the

interpretation of mathematical modality (see §2.3 of Studd (2013)). Øystein
Linnebo simply writes:

41See Prior and Fine (1979) pp118-119). See also Forbes (1985) and Pollock (1985).
42Hartry Field (Field (2003)) has suggested that rejecting the closure of determinacy un-

der infinitary consequence is key to making sense of the paradoxes of higher-order vagueness,
but I am not convinced. The assumption that determinacy is closed under infinitary conse-
quence is explicitly argued for in Bacon (2020b) section III and another route to avoiding
those paradoxes is given there. Roughly put, since the operation of conjunction (finitary or
infinitary) is precise, then a conjunction of precise truths must also be precise. This can be
used to show that a conjunction of determinate truths is determinate, and thus that any
consequence of those determinate truths is determinate.
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This is not metaphysical modality in the usual post-Kripkean sense.
Rather, the modality [...] is related to that involved in the ancient
distinction between a potential and an actual infinity. (Linnebo
(2013)p207)

But this tells us very little, and different authors have posited all sorts of
modalities to fill this role. Fine (2006), for instance, posits, an ‘interpreta-
tional’ modality, whereas Scambler a dynamic one relating to the abilities of
an ideal reasoner (Scambler (2021) p1100). Studd (2013), rejects these propos-
als, and likens the mathematical modalities more to tense operators, although
does not find an interpretation he fully happy with. To my mind, these re-
placements offer no more clarity.

The present framework, however, has an alternative to offer, namely that
the relevant sort of necessity is just broad necessity. Any charge of unclarity
here is easily met, for the notion of broad necessity is as clear as the logical
operations from which it is defined — quantification and the truth-functional
operations.

The Broad Necessity of Mathematics ■ =t→t 2

Under this hypothesis, the subsequent discussion would be greatly simplified.
Nonetheless, there are some philosophical views we wish to remain neutral
about that require us to keep them separate. Clearly any mathematical pos-
sibility is possible in the broadest sense, so it is the converse entailment that
is at stake: is every broad possibility mathematically possible? One might
worry that broad possibility is too broad. For instance, some authors have
entertained the hypothesis that there is a notion of logical necessity in which
even mathematical theories, such as ZF∈, could be contingent.43 One might
also want to accommodate views in which distinct individuals can be broadly
possibly identical, which would cause trouble for the attractive idea that it’s
mathematically necessary which elements a set has.44 But the failure of our
hypothesis above doesn’t rule out precisely defined notions filling the roles that
we care about. For instance consider:

2ZF := λp.ZF∈ ≤ p

2 ̸= := λp.∃tq(q ∧3q ≤ p)

43These ideas can be formulated precisely in the present higher-order framework of Clas-
sicism — see, for instance, Bacon (2020a), Bacon and Dorr (forthcoming) section [REF],
Bacon (forthcoming) chapter [REF].

44Using Set Rigidity, stated below, one can prove by transfinite induction that sets are
mathematically necessarily distinct. See Lemma 21 in appendix A.
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The former builds in the necessity of ZF∈, whereas the latter the necessity of
distinctness.45 The latter also has the virtue that it can be reductively defined
in purely logical terms, and even someone who believed in logical possibility
could maintain the necessity of ZF∈ with the force of 2 ̸=.

Once we have singled out a suitable closed necessity ■, we can formulate
various theses about the interaction of mathematical necessity with mathe-
matical primitives. Let us add to the language of pure higher-order logic, L,
a binary predicate ∈ of type e → e → t and a modality ■. Call the resulting
language L∈■. We will firstly assume that it is mathematically necessary that
∈ satisfies the axioms of higher-order ZF.

The Necessity of Set Theory ■ZF∈

As we noted before, this is compatible with the view that ZF∈ is logically
contingent, and so contingent in the broadest sense.

We will assume, in addition to this, that sets are ‘rigid’ in the sense that
they cannot gain or lose members. We can require rigidity with respect to
many different modalities. Rigidity with respect to the broadest modality
implies rigidity with respect to any weaker modality. Since we wish to re-
main neutral about logical contingency, including logical contingency about
the make up of a set, we will require sets only to be rigid with respect the
mathematical modality/determinacy operator ■. Here is how we say that a
set, x, cannot gain members: if any property, F , possibly applies to some
member of x then there is in fact a member of x to which F possibly applies
(for otherwise x could have members that are not among its actual members).
Here is how we say that it cannot lose members: if, for any property F , there
is some member of x that is possibly F , then it’s possible that some member
of x is F (for otherwise there is some actual member of x that is possibly not a
member of x). This means we want ∀e→tF (∃y ∈ x∧♦Fx ↔ ♦∃ey(y ∈ x∧Fx)).
This is essentially the dualized form of the Barcan formula for the quantifiers
restricted to ∈ x. In general we will define what it means for a relation
R : σ1 → ... → σn → t to be rigid as follows, writing x for a sequence
of varibles x1, ..., xn, Rx for Rx1...xn, ∀x for ∀σ1x1...∀σnxn, and σ → t for
σ1 → ... → σn → t.

Rigid■ = λR■∀σ→tS(■∀x(Rx → Sx) ↔ (∀xRx → ■Sx))

So we can now state our principle that sets are rigid:

Sets are Rigid ∀ex(Setx → Rigid■ λy.y ∈ x)

45See Dorr et al. (2021) and Bacon and Dorr (forthcoming).
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Mathematical Necessity Nec∞ ■

The Necessity of Set Theory ■ZF∈

Set Rigidity ∀ex(Setx → Rigid■ λy.y ∈ x)

Figure 4: C■∈ adds these axioms to Classicism.

Rigidity here is stated with respect to ■, although there is a stronger notion
of rigidity stated in terms of broad necessity.

Observe that this principle is not the claim that the binary membership
relation is rigid: it is the claim that, for each set x, the unary property of
belonging to x is rigid. If membership were rigid there could be no contingency
in the pattern of membership claims. Let me head off one potential confusion.
If x is the set of all sets of rank α, the claim Sets are Rigid implies that x
cannot gain or lose elements. However, this does not mean that there couldn’t
have been more sets of rank α, it rather implies that if there had been more
sets of rank α x wouldn’t have contained them all. This confusion becomes
particularly tempting when we start using putative singular terms like Vα or
P (N) to refer to sets. Vα is not itself a term in the language of set theory, it is
really a definite description and so the property of belonging to Vα, λx.x ∈ Vα,
can fail to be rigid consistently with the principle Sets are Rigid.46.

We will call the system we get by adding these principles to Classicism
C■∈, C5■∈ is the result of also include 2B. They are summarized in figure 4

Of course, theses we have considered earlier can now be formulated pre-
cisely:

Indeterminacy of CH ♦CH∧♦¬CH

Countabilism ∀ex(Setx → ♦∃ef : N → x(∀ezw(fz =e fw → z =e w)))

Forcing Possibilism ∀exy(POx∧Dense(y, x) → ♦∃ez(Filter z∧∀eu ∈ y(u∩
z ̸= ∅)))

here f : N → x means that f is a function from N to x, POx states that x is
a partial order, Dense yx the claim that y is the set of all dense subsets of x,
and Filter z the claim that z is a filter on x. These further principles will not
be part of our neutral theory of mathematical necessity and sets.

46Observe too that our principle entails that individuals with no members — the empty
set and urelements–necessarily have no members. It doesn’t quite imply that urelements
are necessarily urelements: for all we’ve said an urelement might become identical to the
emptyset because the system we are in does not rule out the necessity of distinctness
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5 Brouwer’s principle and the Barcan formula

We noted in the previous section that Classicism proves that, in any sense of
‘necessary’, every individual is necessarily identical to something—∀ex■∃ey.x =e

y. This is true in at least the stipulated sense of ∃ as the classical existen-
tial quantifier, if not the ordinary quantifiers of English. Whatever qualms
you might have about this general consequence, there are a number of in-
dependent arguments for the necessary existence of pure sets. One route to
this conclusion flatly appeals to the necessary existence of abstract objects in
general. But even if we allow, in general, for contingently existent abstract
objects we have special reasons to think that sets exist necessarily. Sets are
commonly thought to be constituted by their elements: some say they are
nothing over and above their elements, others that they are entirely grounded
by their elements—their existence is entirely determined by the existence of
their members. As a special case, if the members of a set exist necessarily,
then so does the set. We might formalize this as follows:

∀ex(Setx → ∀ey ∈ x■(∃ez.z = y) → ■(∃ez.z = x))

Within the sort of free logic that is friendly to contingent existent in general,
a straightforward transfinite induction establishes, from this principle about
set existence, that every pure set exists necessarily. We defer the argument for
our discussion of free logic in section 7.

Now according to the standard view of metaphysical necessity, not only
do mathematical objects exist necessarily the truths of mathematics are are
necessary. Do these two theses—concerning mathematical existence and math-
ematical truth—stand or fall together? Since we are at present concerned with
the view that there are wider kinds of possibility in which the truths of set-
theory are contingent, we must reconcile this with the necessary existence of
sets.

The two kinds of set-theoretic contingency we discussed in section 2 both
involve the idea that there could have been new sets that don’t in fact exist,
either by there being more stages of sets or by a given stage containing more
sets than it in fact contains. Both of these ideas are consistent with the
necessary existence of sets. Sets that didn’t previously exist can come into
existence, but once they exist they do so necessarily. However, in order for
this package to be consistent we must reject the necessity of the Brouwerian
principle—that what is true is necessarily possible. Indeed, we must reject
the Brouwerian principle not just for the sense of ‘could’ in which ‘there could
have been new sets’ is true, but also for the broadest sense of ‘could’.

B ∀tp(p → 23p)
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Brouwer’s principle for broad necessity is a part of the ‘orthodox’ package
of views about modal reality, exemplified in, for instance, Lewis (1986) and
Stalnaker (1976), and in the explicitly higher-order context Williamson (2013),
Fritz (2022), and Goodsell and Yli-Vakkuri (MS). This package usually comes
along with the view that metaphysical necessity is the broadest necessity, and
its logic is S5. Of course, this picture holds that B is not only true, but
broadly necessary. This is equivalent to saying that truth entails being possibly
necessary:

B≤ λp.p ≤t→t λp.23p

Let us write C5 for the result of adding 2B, or B≤, to Classicism. C5 contains
all the theorems of the modal logic S5 for broad necessity.

Why does the possibility of new individuals require the failure of Brouwer’s
principle? The usual model theoretic explanation of this rests on a certain
possible worlds model theory in which worlds are possible relative to other
worlds, and the Brouwerian principle corresponds to the symmetry of this
relation of relative possibility.47 If one world, w, considers another world, v, to
be possible and to contain individuals in its domain that do not belong to ws
domain, then every world possible relative to v must contain those individuals
(since individuals exist necessarily). This means the original world w cannot be
possible according to v, so the relation of relative possibility is not symmetric.

This explanation is unsatisfactory due its reliance on a particular model
theory, as well as possible worlds assumptions that we will have reason to
question shortly. But we can provide another argument that is entirely inde-
pendent of the existence of possible worlds, due in essence to Arthur Prior.48

We will represent our talk of ‘new individuals that don’t in fact exist’ by some
property, F , that is possibly instantiated by some individual but such that
no actual individual possibly instantiates it—whatever possibly falls under F
must be ‘new’ or ‘non-actual’ in the relevant sense. But if it’s possible that
something is F , then it’s possible that something is necessarily possibly F
(appealing to the necessity of the principle that whatever is true is necessarily
possible). If there is some individual x that is necessarily [possibly F ], x must
necessarily exist by the necessity of existence: so it’s necessary that something,
namely x, is [possibly F ]. Thus, if it’s possible that something is necessarily
possibly F , it’s possible that necessarily, something is possibly F . But then
it follows that something is possibly F , for whatever is possibly necessary is

47See Cresswell and Hughes (1996) pp17-21.
48I offer an informal argument below, the formal version of this proof is found in Prior

(1967) p146 and attributed to E.J. Lemmon. It is based on an earlier argument due to Prior
(1956).
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true, by the contrapositive form of Brouwer’s principle. So there cannot be
new individuals in the relevant sense.

We have effectively established ∀e→tF (3∃exFx → ∃ex3Fx). By taking
the contrapositive and applying the duality of 2 and 3 we get what is known
as the Barcan formula, which we take to be our official way to articulate
the idea that there can’t be new individuals. Like with the converse Barcan
formula there is a version of it at each type, but I state here the version for
type e:

BFe
2 ∀e→tF (∀ex2Fx → 2∀exFx)

This style of argument can be run at any type whatsoever. In fact, we ap-
pealed no nothing special about broad necessity in this argument. For any
necessity, X, let us write BFσ

X and BX for the Barcan formula and Brouw-
erian principle concerning X (i.e. ∀σ→tF (∀σx.X(Fx) → X(∀σxFx)) and
∀tp(p → X¬X¬p)). Prior’s argument establishes that, for any necessity
whatsoever, the X-necessity of Brouwer’s axiom for X, i.e. XBX , implies
the Barcan formula for X, BFσ

X . So to summarize:

Theorem 3 (Prior).

1. C proves ∀X(NecX → XBX → BFσ
X)

2. C5 contains 2B and thus proves BFσ
2.

If mathematical contingency requires failures of BFe
2, as we have been sug-

gesting, it means we must reject the orthodox logic of C5. Luckily Classicism
on its own includes neither the Barcan formula or Brouwer’s principle, and
there very are natural models in which they fail.49

Theorem 4. The following are not theorems of Classicism

B ∀tp(p → 23p)

5 ∀tp(3p → 23p)

BFσ
2 ∀σ→tF (∀σx2Fx → 2∀σxFx)

For the free logicians and contingentists who are following all of the above
in terms of stipulatively defined or primitive outer quantifiers, the crucial point
is this. While the stipulations guarantee that CBFσ (and consequently NEσ)

49Several sorts of models are described in the appendices to Bacon (2018a) and Bacon
and Dorr (forthcoming) and in chapters [REF] of Bacon (forthcoming).
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are true when the quantifiers are interpreted stipulatively as outer-quantifiers,
they do not ensure that BFσ

2 holds. For these contingentists that admit failures
even of the outer Barcan formula, there is an important distinction between
properties of mere possibilia (properties that are possibly instantiated but
for which there is actual thing which possibly instantiates it). Sometimes a
possibly instantiated property will be such that there is nothing ‘within the
inner domain’ that possibly instantiates it, but will there will be something in
the outer sense that possibly instantiates the property. In other cases—when
the property characterizes ‘true’ mere possibilia—the property will be possibly
instantiated when nothing, even in the outer sense, possibly instantiates it.50

How do these principles about broad necessity relate to other modalities,
like mathematical modalities and determinacy? Intuitively, if there couldn’t
be new things in the broadest sense of ‘could’, then there couldn’t be new
things any more restrictive sense. One might naively take this to mean that
the broad Barcan formula implies the Barcan formula for any modality. But
this is not quite true. Some counterexamples to the Barcan formula have
nothing to do with the possibility of new individuals, but to do with the
failure of the necessity to be closed under infinite conjunctions. For every
individual there’s a chance of 1 that if it’s a point on the dartboard the dart
won’t land on it, but it doesn’t follow that there’s a chance of 1 that the
dart won’t land on any point on the dartboard; so if having chance 1 is a
necessity, it doesn’t respect the Barcan formula irrespective of the status of
the broad Barcan formula. However, the Barcan formula for broad necessity
implies the Barcan formula for any necessity that is infinitely closed. It follows,
too, that Brouwer’s axiom for broad necessity implies the Barcan formula for
every necessity that is infinitely closed. We summarize this with the following
theorem of the orthodox system C5

Theorem 5.

1. BFσ
2 → ∀X(Nec∞ X → BFσ

X)

2. In C5, ∀X(Nec∞ X → BFσ
X)

50The question naturally arises whether it is possible to stipulatively introduce an even
wider quantifier that ensures that even BFσ

2 is valid. A full treatment of this question is
beyond the scope of this paper. One can introduce ‘free quantifiers’ governed by a free
logic, but they will be proper restrictions of the outer quantifier (restricted by a ‘rigid’
property). On the other hand, in certain free higher-order logics one can prove there is at
most one classical quantifier. These questions will be treated in more detail in future work
with [ANONS].
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The proof is included in appendix A. As a straightforward corollary, we
see that the behaviour of mathematical modalities and determinacy are tightly
constrained by the behaviour of broad necessity:

Corollary 6 (C■). 2B and BFσ
2 both imply BFσ

■.

So we are now in a position to state our first implication.

Width contingency requires failures of the ‘orthodox’ theory of modality
according to which the broadest kind of modality is governed by a logic
of S5.

The first-order of business is to define the property Vα: being a set whose
rank is no greater that α. This is done by transfinite recursion:51

V0 := λx.⊥

Vα := λx∀y(y ∈ x → ∃β ∈ αVβy).

Where α is an ordinal (i.e. a transitive set that is totally ordered by mem-
bership: ∀ββ′ ∈ α(β ̸= β′ → β ∈ β′ ∨ β′ ∈ β)). It is usual in set-theory
texts to use Vα as a name for a set, whereas here it is a predicate. Our choice
discourages the temptation to think of Vα as automatically rigid in virtue of
being a set, as we earlier cautioned against.

The claim that there is no contingency about the width of the universe,
then, is the claim that for every ordinal α, Vα is rigid. Note that everything
we say here is entirely consistent with height contingency: for all we say, there
could be new ordinals γ and as a result new sets belonging to Vγ.

Theorem 7 (C■∈). Given BFe
2 (for broad necessity), being of stage α (i.e.

Vα) is rigid for every ordinal α.

It is shown by transfinite induction. The crux of the proof involves showing
that, for any F , if it’s possible that some Vα set is F then some Vα set is
possibly F . If it’s possible that some Vα set is F , then BFe

■ (a consequence
BFe

2 ond Nec∞ ■) ensures that some actual individual, x, is possibly Vα and
F . It suffices to show that x is in fact Vα. We can use the fact that x has its
members rigidly (if it is a set), the inductive hypothesis that Vβ is rigid, and
the rigidity of being an ordinal less than α, to show that xs members are all
Vβ for some β < α.

51This can be made into an explicit definition in the usual way V = λγx(∀Y (∀y¬Y 0y ∧
∀α(Ordα ∧ ∀y∀β ∈ α(y ⊆ Y β → Y αy)) → Y γx).
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The significance of this result is that, for any ordinal α, there cannot be
new sets of rank α. Among other things, this implies the non-contingency of
the continuum hypothesis, and thus its determinacy on one way of reading ■.
For in order for it to be indeterminate whether the continuum hypothesis is
true one has to introduce new sets with small ranks (ω + n for finite n): new
sets of natural numbers, or new bijections between sets of reals and reals. One
can similarly refute countablism: if there is no injection from N to x then, this
fact is necessary, for there cannot be any new injections given BFe

2. To make
these remarks precise we introduce some useful concepts and propositions,
which are proven in appendix A.

A formula of first-order set-theory is absolute with respect to a model iff
(i) when it is satisfied by the same objects of the initial models it is satisfied
in all extensions of that model and (ii) if it is not satisfied by those objects it
is not satisfied by them in any extension of the model. This has an obvious
modal analogue:

Definition 5.1 (Modal Absoluteness). A formula A(x, y) is modally absolute
iff the formulas

� ∀ex(Setx ∧ A(x) → ■Ax)

� ∀ex(Setx ∧ ¬A(x) → ■¬Ax)

are both true, where x is short for a sequence of variables x1...xn, and Setx is
short for the conjunction Setx1 ∧ ... ∧ Setxn.

A sufficient condition for a formula of first-order set-theory to be absolute
is if all of the quantifiers in the formula are restricted by formulas that are
not only absolute, but do not change their extensions across models. The
modal analogue of this stronger property is rigidity. In the present higher-
order setting, we can similarly define a class of first-order sentences that are
provably modally absolute: the smallest set of sentences containing x ∈ y and
containing ¬A, A ∧ B, ∀ex(C → A) whenever A and B are in the set, and C
is a rigid property of sets (Rigid■(λx.C) and λx.C ≤e→t Set are true).

Theorem 8 (C■∈). Suppose A(x) is a first-order set-theoretic formula with
free variables x. If all the quantifiers in A(x) are restricted to rigid properties
of sets, then A is modally absolute.

The proof of this theorem is provided in the appendix. In practice we could
dispense with the metalinguistic notion of modal absoluteness: cases where we
apply theorem 8 to a particular formula A(x) can be replaced by proving the
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rigidity of a finite number of particular properties in the object language (those
restricting the quantifiers in A). But we need the concept to state theorem
8, and the theorem provides useful perspective on what we are actually doing
when carry out an argument that a particular formula defines a rigid property
because it is general, whereas these particular arguments are not. There too
the metalinguistic ascension is often dispensible, and harmless.

Given theorem 8 and Set Rigidity, any formula that’s provably equivalent
to one whose quantifiers are all restricted by set membership will be modally
absolute. This lets us derive the following useful facts:

Theorem 9 (C■∈). For any ordinal α, the following conditions are modally
absolute.

1. being an ordinal less than α.

2. being a limit ordinal less than α.

3. being the smallest limit ordinal, the successor of the smallest limit ordi-
nal, the successor of the succcessor of the smallest limit ordinal...

moreover, the properties in 3. are rigid.

Corollary 10 (C■∈).

1. BFe
2 → ■CH ∨■¬CH.

2. BFe
2 → ∀ex(Uncountablex → ■Uncountablex)

where Uncountablex := ∀ex(∀ef : N → x¬ Injection f)

The consequents of these conditionals are thus outright theorems of C5:

Corollary 11 (C5■∈).

1. ■CH ∨■¬CH.

2. ∀ex(Uncountablex → ■Uncountablex)

The reason this is true, roughly, is that CH is about sets of rank Vω+2: it’s
equivalent to a formula whose quantifiers are restricted to Vω+2. But given the
modal absoluteness of Vα and of ω + 2 (proven above) it follows by theorem 8
that CH is modally absolute. Note that the modal absoluteness of CH implies
CH → ■CH and ¬CH → ■¬CH, so ■CH ∨■¬CH follows from an instance
of excluded middle.
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More generally, by 7, any set theoretic statement that is equivalent to a
sentence that can be formulated using quantifiers restricted to Vα for some α
will be determinately true or false, and non-contingent in other senses of con-
tingency. Thus these arguments extend straightforwardly to other contentious
axioms of set theory such as the generalized continuum hypothesis up to some
cardinal κ, Martin’s axiom for partial orders up to cardinality κ, and so on.
They do not extend to claims about the ‘height’ of the universe, such as large
cardinal hypotheses.

It’s also worth taking a moment to look at the limitations of our theorem.
Our result does not rule out contingency about the height of the universe.
While, for a given ordinal α, there could not be any new sets belonging to Vα,
we have said nothing to rule out the possibility of new ordinals, and thus new
sets belonging to new stages indexed by these sets. For while the property
of being an ordinal is modally absolute, we have not shown that it has the
stronger property of being rigid. If a set is an ordinal it is necessarily so, and
if a set is not an ordinal it is necessarily not an ordinal—but this leaves room for
something that is not a set possibly becoming an ordinal, or becoming a set of
some other kind. However, while this leaves room for height contingency even
with the Barcan formula, but it is a fairly weak kind. There could have been
more stages of sets, but the new sets must already exist in actuality as non-sets.
It is only by denying the Barcan formula can we get the stronger kind of height
contingency. (On the other hand, contingentists and free logicians who are not
interpreting our symbol ‘∃’ in terms of the ordinary quantificational idioms,
but in terms of the stipulated outer quantifiers, can take some solace in this,
for these possible sets do not actually exist in the philosophically interesting
sense.)

Might one take this to be an argument against width contingency? After
all, isn’t S5 in some sense the standard logic of necessity? I am not persuaded.
If there ever was an implicit decision within the philosophical community about
which logic of necessity is ‘standard’ it happened before mathematical modal-
ities and determinacy operators were being discussed widely, and most likely
was made with Kripke’s notion of metaphysical necessity in mind. The failures
of Brouwer’s principle posited here are entirely compatible with its holding for
the more restricted notion of metaphysical necessity. It follows too that the
Barcan formula may be valid for metaphysical necessity, and that the contin-
uum hypothesis is either metaphysically necessarily true or necessarily false.
And this too is entirely compatible with our diagnosis of the continuum hy-
pothesis as indeterminate and thus contingent in the broadest sense. When it
comes to positive arguments for the S5 principle, they are thin on the ground.
Some considerations are abductive, and come from the relative simplicity and
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power of S5—the only schemas of propositional modal logic it doesn’t imply
are clearly invalid, whereas S4 leaves the validity of many modal principles
open.52 To this I say the theoretical virtues of simplicity and power must
be weighed against the countervailing virtue of truth—after all ⊥ is simple
and very powerful. The theorist already convinced of the indeterminacy of
the continuum hypothesis will find much less mileage in these abductive con-
siderations. Other arguments for the S5 principle are far less compelling, for
they often appeal to the model theory of modal logic in a patently illegitimate
way—e.g. appealing to the idea that to be the broadest necessity it must
quantify over ‘all’ possible worlds in some set-theoretic model, without taking
into account that in the intended model (if there is one!) what worlds in the
model represent genuine possibilities could well be contingent.53 Finally, we
should also emphasize that broad necessity, as it has been introduced here,
is not necessarily a notion we had pretheoretically—intuitions about how it
should behave should be taken with a generous pinch of salt, and it is gener-
ally better to simply work with its formal definition, being necessary for every
necessity, and see where our philosophical theorizing takes us.

6 The Leibniz Biconditionals

Let us now turn to another pervasive idea in modal metaphysics, the notion of
a possible world. Possible worlds can be wielded as a purely model theoretic
tool for establishing metalogical properties like consistency and invalidity. In
a model of a modal language sentences might be interpreted by arbitrary
sets of possible worlds, and these might serve as the domain for quantifiers
binding sentence variables if the language has them. In the present higher-
order setting, this ensures various theorems of Classicism are valid—Boolean
identities, like ∀tpq((p ∧ q) =t (q ∧ p))—but also ensures validities beyond
Classicism. Because there are propositions modeled by the singleton of a
possible world, {w}, every consistent proposition is entailed by one of these
special world propositions, leading to distinctive validities. World propositions

52Several broadly abductive arguments are made in Williamson (2013). Scroggs (1951)
shows that the only modal logics extending S5 contain schemas to the effect that there are
only n possibilities, for some finite n. Fine (1974) shows there are continuum many modal
logics extending S4.

53See Bacon (2018a) §5.4 for a critical discussion of these arguments. The point here is
that the mathematical objects of the relevant model that in fact are representing genuine
possibilities may not represent genuine possibilities had things been sufficiently different.
We should also keep track of the fact that if there is mathematical contingency, the model
itself might change its mathematical structure.
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are special because they are either fully contained or disjoint from any other
set of possible worlds.

However, metaphysicians often take possible world talk to be more than
a mere model theoretic tool. Someone taking the possible world model of
propositions metaphysically seriously should believe that these special world
propositions exist.54 Given our previous observation that singletons are consis-
tent, and contained or disjoint from (i.e. contained in the complement of) any
other proposition, we will adopt the following definition of a world proposition:

World = λw.(3w ∧ ∀tp(w ≤t p ∨ w ≤t ¬p))

World propositions are broadly possible propositions such that any other
proposition is either entailed by it or inconsistent with it. The latter condi-
tion ensures that worlds settle all questions. The possible worlds metaphysics
ought, then, to subscribe to the Leibniz Biconditionals : that something is
possible if and only if it is entailed by a world proposition.

LBt ∀tp(3p ↔ ∃w(Worldw ∧ w ≤t p))

As with Brouwer’s principle, we might also consider the necessitation of the
Leibniz biconditionals, 2LBt. The necessitation is stronger and equivalent to
the claim that being possible is the same as being true at a possible world.

LBt= 3 =t→t λp∃w(Worldw ∧ w ≤t p)

It is worth noting that the possible worlds metaphysics encoded in LBt is a
substantive further commitment—it is not already a theorem of Classicism.
Indeed, it doesn’t follow from the Barcan formula, or even the Brouwerian
axiom.55

Theorem 12. LBt is not a theorem of C5.

I have here brushed over an important choicepoint that arises in contexts
where the propositional Barcan formula, BFt

2, fails. In this setting there could
be ‘new’ questions concerning the truth of propositions that do not in fact
exist: in that case, we might want to consider a strengthening of our definition

54Whether world propositions simply are possible worlds, as Prior and Fine maintained
(Prior and Fine (1979)), or simply guaranteed by the existence of possible worlds will not
be important in what follows. Once you have taken enough possible world machinery seri-
ously, including notions like possible world and true at, then for any world w, there is the
proposition that every proposition true at w is true simpliciter. Propositions of this form
can play the role of world propositions in what follows.

55See the first model described in appendix D of Bacon and Dorr (forthcoming).
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of World ensuring that worlds necessarily settle all the questions, even new
ones. This strengthening can be obtained by prefixing a 2 to the second
conjunct in our definition: a strong world is possible and necessarily settles
every question.56

SWorld := λw.(3w ∧2∀tp(w ≤t p ∨ w ≤t ¬p))

Anything that’s a strong world is a world, and the result of replacing world
with strong world in LBt yields a strengthening we will call the Strong Leibniz
Biconditionals:57

SLBt ∀tp(3p ↔ ∃w(SWorldw ∧ w ≤t p))

I myself am of the view that stronger notion of world better fits the notion
at issue in possible world metaphysics. But since the results I prove here do
not need the full strength of the strong Leibniz biconditionals, I’ll work with
the weaker notion in this section. Theorems we prove later from the Leibniz
biconditionals thus can also be proven with the strong Leibniz biconditionals
so that nothing turns on our choice about how to define world.

Like other principles we have encountered, such as the Barcan formula,
there are generalizations of the Leibniz biconditionals to other types. For
instance, a property theoretic version states that a property is possible (i.e.
possibly instantiated) iff it is entailed by a world property. In general:

LBσ ∀σ→tR(3σR ↔ ∃σ→tW (Worldσ W ∧W ≤σ→t R)

where these notions are defined as follows.

Definition 6.1. Let x be a sequence of variables x1...xn of types σ = σ1, ..., σn.

3σ := λR3∃xRx

¬σ := λRλx¬(Rx)

Worldσ := λW (3σW ∧ ∀σ→tS(W ≤σ→t S ∨W ≤σ→t ¬σ→tS))

For those used to thinking in the possible worlds framework, an intension
of type e → t (i.e. a function from worlds to extensions) is a world property
at a given world w if it has a non-empty extension at exactly one world that’s

56See Bacon (forthcoming) chapter [REF].
57The right-to-left direction of LBt is in fact a theorem of Classicism, since anything

entailed by a possible proposition (such as a world proposition) must be possible. The left-
to-right direction of LBt follows from SLBt, for if p is possible it is entailed by a strong world
it is entailed by a world, since every strong world is a world.
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possible relative to w, and at that world its extension contains exactly one
individual. Thus LBe→t is valid in model theories where the second-order
quantifiers range over arbitrary functions from worlds to extensions.

I take it that the Leibniz biconditionals are also part of the ‘orthodox’ view
about modal reality, found in, for instance, Lewis and Stalnaker.58 We are now
in a position to state our second connection between width contingency and
the structure of modal reality:

Width contingency requires possible failures of the Leibniz bicondition-
als.

What implications do the Leibniz biconditionals have for mathematical modal-
ities? Firstly we can show that if something is mathematically possible then
it is true at a mathematically possible world.59

Theorem 13 (C■). Given LBt, ♦p ↔ ∃w(Worldw ∧ w ≤ p ∧ ♦w)

Since C■ only adds to Classicism the assumption that ■ is an infinitely
closed necessity, it is a quite general theorem of Classicism with the Leibniz
biconditionals that for any infinitely closed modality, X, a proposition is X-
possible iff it is true at an X-possible world. (It does not hold for necessities
that are not infinitely closed. Supposing, again, that having chance 1 is a
necessity, then one can have chance-possible propositions that are not true
at any chance-possible world propositions. For instance, its chance-possible
that our dart hits the dartboard, because it has non-zero chance. But each
broadly possible world where it hits the dartboard has chance 0, since a broadly
possible world will settle the exact point that that the dart lands.)

We can now prove that the Leibniz biconditionals imply the rigidity of each
stage of sets.

Theorem 14 (C■∈). LBt→t and LBt imply that Vα is rigid for every ordinal
α.

There is a way of glossing this argument with quantification over ‘possible
sets’, which is strictly speaking inaccurate but which nonetheless gives an
intuition for what is going on. The idea is to find, for any possible set, x, a
world property W that applies to just that set. From W we can define an
actual set, y, containing just those actual things that would have belonged

58They are explicitly postulated, or derived, in the theories of Williamson (2013), Fritz
(2022), Goodsell and Yli-Vakkuri (MS).

59Unless otherwise stated, proofs of all numbered theorems and propositions to follow
may be found in appendix A.
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to the W set, if W had been instantiated. Now the members of y are all
of lower rank, so we may assume for induction that the actual sets of that
rank are in fact the only possible sets of that rank, so x and y have the same
members, are identical, and thus that x actually exists. The proof in appendix
A is essentially an attempt to make this informal idea precise without any
illegitimate quantification.

As before, we can obtain as two straightforward corollaries from the rigid-
ity of Vα the determinacy of the continuum hypothesis, and the necessity of
uncountability (and so a refutation of Countabilism).

Corollary 15 (C■∈).

1. LBt ∧ LBe→t → ■CH ∨■¬CH.

2. LBt ∧ LBe→t → ∀ex(Uncountablex → ■Uncountablex)

Corollary 16 (C■∈LBσ).

1. ■CH ∨■¬CH.

2. ∀ex(Uncountablex → ■Uncountablex)

Observe that our proof rested not only on the existence of world proposi-
tions, but also on a slightly less familiar consequence of näıve use of the possi-
ble worlds framework — the existence of world properties. The propositional
Leibniz biconditionals do not appear to entail the property Leibniz bicondi-
tionals. In light of this, I offer another route to property Leibniz biconditionals
using a strengthening of the axiom of choice. An ordinary second-order choice
principle can be formulated by saying that the universe of individuals can be
well-ordered. By necessitating this principle we ensure that there is a well-
order of the universe at every possible world, although it might witnessed by
‘new’ well-orders—that is to say, a world w might entail that there is a global
well-order, while there is no relation such that w entails that it is a global
well-order. The strengthening of necessitated choice we will investigate is the
idea that for each world, there is a relation which that world entails to be a
well-order

Strong Modal Choice ∀tw(Worldw → ∃e→e→tRw ≤ WOR)

With this principle we can close the gap between the propositional and prop-
erty Leibniz biconditionals.

Theorem 17 (Classicism). Strong Modal Choice and LBt entail LBσ→t.
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It should be noted that there could be width contingentists who reject the
necessity of the axiom of choice on the grounds that it, like the continuum hy-
pothesis, is indeterminate or mathematically unsettled. This would, of course,
be grounds to reject the stronger principle of De Re Modal Choice. However
this is a minority view, and most mathematicians take the axiom of choice to
be settled and in as good a standing as other principles of set theory. The
necessity of choice is validated, for instance, in the framework of Hamkins,
where 2 is interpreted as meaning truth in all generic forcing extensions, since
the truth value of the axiom of choice (unlike CH) is preserved in generic
extensions.

7 Free logic

Our theory C■—Classicism plus the claim that ■ is a necessity that is closed
under infinitary consequence—has lead us to some striking results. First, Clas-
sicism, in virtue of being closed under classical quantificational logic and neces-
sitation for broad necessity, proves the broad necessity of existence, NNEe, and
a closely related principle, CBFe. Second, supplementing Classicism with the
principles of S5 for the broadest necessity lets us derive the non-contingency
of the set theoretic universe up to a given stage given some modest assump-
tions of modal set-theory. Third, supplementing Classicism with the Leibniz
biconditionals lets us do the same.

Could the lover of width contingency restore orthodoxy in the second and
third respects, by rejecting it in the first respect? That is, could they retain S5
and the Leibniz biconditionals by weakening quantificational logic and adopt-
ing instead a free logic for the quantifiers? Unlike in classical logic, it is not
possible to derive the necessity of existence or the converse Barcan formula in
free logic. Moreover, the Prior-Lemmon proof of the Barcan formula within
S5 is not sound in free logic. In short, things can come and go into existence
freely once classical quantificational logic is weakened, giving us more options
for making sense of mathematical contingency about which sets exist.

Classicism individuates propositions, properties and relation by provable
equivalence in classical higher-order logic. So in order to explore this idea, we
should look into the parallel theory that individuates entities instead by prov-
able equivalence in free logic. That is we weaken the quantificational axioms
of H along the lines of a free logic and close under the rule of equivalence. Call
this system Free Classicism, or FC—it is defined in appendix B. Within this
framework one can provide definitions of broad necessity and other notions of
section 3. Strengthening this system with the principles of S5 and the Strong
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Leibniz Biconditionals yields the system being proposed, which we can call
FC5(SLB). The reader can find the details in appendix B.

There is a vast literature on the topic of contingent existence in the frame-
work of higher-order logic that I will not attempt to contribute to.60 I will limit
myself instead to a couple of local points about its application to mathematical
contingency.

First, the view under consideration must not only reject the necessity of
existence, but must do so for mathematical objects like sets in particular. But
we can now show that this is inconsistent with the pervasive—and I think in-
dependently attractive—idea that a set is determined by its members (which
we alluded to in section 5). This idea is articulated in various ways in con-
temporary philosophy — sometimes it is the idea that the existence of a set is
completely grounded in the existence of its members, or that a set is ‘nothing
over and above’ its members.61 According this idea, while a set could fail to
exist at a world if one of its members fails to exist, if all of its members at that
world exist, the set itself must exist. More generally, if a proposition (a world
proposition or otherwise) entails the members of x exist it must also entail x
exists:

∀ex(Setx → ∀tp(∀ey ∈ x(p ≤ ∃ez.z = y) → p ≤ ∃ez.z = x))

If the proposition is tautologous, we can infer that if the members of a set
necessarily exist, then so does the set

∀ex(Setx → ∀ey ∈ x2(∃ez.z = y) → 2(∃ez.z = x))

We can derive the inconsistency as follows. Suppose that there is a set, x, that
doesn’t necessarily exist. By the well-foundedness of membership, we may as-
sume without loss of generality that x is a possible non-existent of minimal
rank, so that all of its members necessarily exist. But then we have a contin-
gently existing set whose members necessarily exist. Assuming the necessity
of our principles about set existence, and the well-foundedness of member-
ship, this reasoning can be necessitated so necessarily every set necessarily
exists. Given the principles of S5 this lets us derive the Barcan and converse
Barcan formulas for quantification restrict to sets, allowing us to reconstruct
our arguments from section 5 and prove the non-contingency of set-theoretic
claims.

60See Fine (1977), Williamson (2013), Stalnaker (2012), Fritz and Goodman (2016), Fritz
(2018a), Fritz (2018b).

61See Fine (1994). Roberts (2022) also articulates precisely the related idea that pluralities
are nothing over and above their members.
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My second point relates to the previously mentioned fact that we can define
‘outer-quantifiers’ in Free Classicism along the lines Fine’s definition (see the-
orem 24 in appendix B). The assumptions built into FC5(SLB)—specifically
the assumption that every possible proposition is entailed by a strong world—
ensures that they are classical quantifiers. This means, among other things,
that they satisfy the converse Barcan formula and prove the necessity of ex-
istence. As have observed already, we need additional modal assumptions
about the modal logic of 2 to show that classical quantifiers satisfy the Bar-
can formula—the S5 principles—but these are built into FC5(SLB) as well.
Indeed, not only is every theorem of Classicism derivable with respect to the
outer quantifiers in FC5(SLB), but also the theorems we get by adding S5 and
the Strong Leibniz Biconditionals to Classicism.

Theorem 18. FC5(SLB) interprets C5(SLB).

Thus, for every theorem of C5(SLB) there is a corresponding a theorem
(under translation) of FC5(SLB).

Now, as we have pointed out in section 3, the free logician can read this
paper by interpreting our uses of the quantifiers ∀ and ∃ stipulatively, so that
they satisfy classical laws, severing any connection between these symbols
and ordinary quantificational idioms of English, like ‘all’ and ‘some’. But
in doing so, they may find the non-logical assumptions we appealed to—like
Set Rigidity and The Necessity of Set theory—to be no longer motivated or
appealing. Free logicians who accept the ‘being constraint’ maintain that an
individual ceases to have any properties or stand in any relations when it
doesn’t exist. They may, then, object to Set Rigidity on the grounds that a
possible set that does not actually exist does not actually have any members
(even if those members actually exist), although had it existed it would have
had members.

Note this is a problem for Set Rigidity even interpreted in terms of the
inner quantifiers. For as we pointed out earlier if there are sets that exist con-
tingently (in the free logicians sense of ‘exist’) and one cannot have members
unless you exist, then such sets contain their members only contingently. I am
myself inclined to apply modus tollens to this argument and conclude that, if
we are to hold fixed the being constraint, we should simply accept the neces-
sary existence of sets for the idea that sets are rigid is non-negotiable. This
is not the place to offer a full discussion of the being constraint. Here I will
just observe that it’s generally acknowledged that it must be restricted when
it comes to logical words if we wish to preserve other aspects of classical logic
whilst accommodating contingent existence in various logical types.62 Already

62This point is made in Fritz and Goodman (2016), footnote 14.
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in the first-order case we see some proponents of the being constraint relaxing
it for the identity relation, in order to preserve the necessity of the reflexivity
of identity, ∀ex2x =e x. In the higher-order setting, these sorts of consid-
erations carry over to the truth functional connectives and quantifiers: if we
want, for instance, the conditional axiom p → p to be necessarily true, even
if p had not existed, i.e. ∀tp2(p → p), standing in the → relation should not
require existence. Systems that relax classical propositional logic are unwieldy
and not within the scope of this discussion.63 Exceptions to the being con-
straint are infectious. It would be arbitrary to allow exceptions for the logical
words we happened to take as primitive, like → and ∀σ, but not the logical
words we didn’t like existential quantification and conjunction (λF (¬∀ex¬Fx)
and λpq.¬(p → ¬q)).So the being constraint should really be relaxed for any
closed term that is defined in purely logical terminology—including familiar
logical operations, like existential quantification, and less familiar ones that
can nonetheless be defined in purely logical terms, like ternary conjunction,
‘there are finitely many F s’, and so on.

Exceptions to the being constraint are therefore pervasive in the language
of pure higher-order logic. I will take this as an excuse to set it aside, at
least when we are reasoning in a purely logical language. It is striking how
much can be stated in purely logical terms. In this paper we have concerned
ourselves with the set-theoretic continuum hypothesis, which is stated in terms
of the non-logical predicate ∈. However, there is another purely logical claim
that is closely related to the set-theoretic continuum hypothesis. Let’s call it
the higher-order continuum hypothesis. It is possible in higher-order logic to
say that a property’s extension is (i) countably infinite, (ii) that is has the
size of the first uncountable infinity (there is a bijection between it and the
well-orders-up-to-isomorphism on a countably infinite property) and (iii) has
the size of the continuum (there is a bijection between it and subproperties-
up-to-extension of a countably infinite property). We call these properties ℵ0,
ℵ1 and Continuum. See Shapiro (1991) p105. Then we may formulate the
continuum hypothesis as follows:

Higher-Order CH ∀e→tX(ContinuumX ↔ ℵ1X)

Higher-order CH entails the set-theoretic continuum hypothesis, since if x is
an uncountable set of real numbers, the property of belonging to x, λy.y ∈ x,
must be at least ℵ1 sized, and at most continuum sized, and so Higher-Order
CH implies it is continuum sized.

63The only developed system I am aware of that takes this route is Prior’s system Q (see
Prior (1955)); some fairly decisive problems are discussed in Menzel (1991).
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What does our free logician say about higher-order CH? Of course in Free
Classicism, properties and relations, like sets, can exist contingently: what
subproperties a countably infinite property has may exist contingently, and
the relevant bijective relations could also fail to exist making it very plausible
that one could construct models in which Higher-order CH is contingent. But
suppose we consider yet another variant of the continuum hypothesis, now
formulated using the classical outer quantifiers. Let us write A∗ for the result
of replacing each occurrence of the free quantifiers in A with the corresponding
outer quantifier. We are now concerned with (Higher-Order CH)∗.

One might reasonably ask what relation this sentence bears to the math-
ematical question of the continuum hypothesis. For that is formulated in
familiar quantificational terms, whereas we have granted that the outer quan-
tifiers may bear no relation to ordinary quantificational words, as they ap-
pear in ordinary English or in mathematics. I won’t insist that we refer to
(Higher-Order CH)∗ as a ‘version of the continuum hypothesis’. However, the
question of whether it is true or not is nonetheless something that can be
raised and investigated in the pure language of higher-order logic. And, like
the set-theoretic continuum hypothesis and its vanilla higher-order variant,
it does not seem to be something we can settle using any mathematical or
logical methods presently available to us. The reasons we have to think that
Higher-order CH is indeterminate extend to (Higher-Order CH)∗.

The problem we are presented with is this. If we add to Classicism the
principles of S5 and the Leibniz biconditionals (or the Strong Leibniz Bicon-
ditionals) one can prove the following schema, stating that there is no broad
contingency in things stated in purely logical terms:

No Pure Contingency P → 2P , where P is closed and contains no non-
logical vocabulary.

If purely logical statements cannot be broadly contingent, they cannot be
mathematically contingent either. The argument for this is due to Zach Good-
sell.64

Theorem 19 (Goodsell). C5(LB) proves No Pure Contingency.

But given theorem 19, for every theorem of C5(LB) translates to a theorem
of FC5(SLB) implying that (Higher-Order CH)∗ is not broadly contingent (and
consequently is not indeterminate or mathematically contingent).

64A proof is presented in Bacon and Dorr (forthcoming)[REF].
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8 Conclusion

I have argued that certain kinds of set-theoretic contingency require surrender-
ing two pieces of modal orthodoxy: that the broadest necessity has a logic of
S5, and the Leibniz biconditionals connecting what is possible with what holds
at some maximally specific possibility. Both of these modal doctrines deserve
some scrutiny. The simplest kind of model of modal logic employs possible
worlds, and treats the broadest necessity as quantifying over unrestrictedly
over all worlds in the model, so it is easy to see where the orthodoxy may have
originated. But model theory alone does not make for a positive argument.
We now know how to model modal logic without building in either of assump-
tions.65 One of these generalizations, possibility semantics—which replaces the
complete worlds of possible world semantics with incomplete possibilities—was
in fact implicit in Cohen’s original papers introducing the forcing method of
the independence.66 Indeed, there are several positions in higher-order meta-
physics that require rejecting S5 for the broadest necessity—the philosophical
terrain here is still largely unexplored.67 But before we can sign off on width
contingency, we need some guarantee that there aren’t any unforeseen in-
consistencies in the view. A strong version of width contingency maintains,
putting it informally, that all forcing extensions of the set-theoretic universe
are mathematically possible—the principle I earlier called Forcing Possibilism.
I conclude, then, with the following theorem ensuring that no such inconsis-
tency can be found.68

Theorem 20. Forcing Possibilism is consistent with C■∈.

65Sometimes it is argued that the broadest necessity must be modeled by a universal
accessibility relation (see for instance Lewis (1986)). A similar argument can be made in
the possibility framework. But this appeal to model theory is questionable, and ignores the
possibility that which ‘worlds’ of the model represent genuine possibilities might itself be
contingent, and so depend on what world you are evaluating at. For further discussion of
these sorts arguments, see Bacon (2018a) §5.4.

66Work on possibility semantics for modal logic was initiated in Humberstone (1981), and
has been continued more recently by Holliday and coauthors (see, for instance, Holliday
(forthcoming)). Prior even to possible world semantics, we had the algebraic approach to
modal logic, found in Bjarni Jonsson (1953), that makes no assumptions akin to possible
worlds.

67Bacon (forthcoming) chapter [REF], and Bacon and Dorr (forthcoming) section 2.4-2.6
overview some of the options here.

68The proof of this theorem will have to wait until a future occasion.
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A Appendix: Proofs of Theorems

Theorem 5. (C5)
∀X(Nec∞ X → BFσ

X)

Proof. C5 contains the broad Barcan formula, BFσ
2.

Suppose that X is infinitely closed and that ∀σxX(Fx). We want to
show that X(∀σxFx). Since X is infinitely closed, it suffices to show that
anything entailing every X-necessary proposition also entails ∀σxFx. Suppore
r entails every X-necessary proposition. Since Fx is X-necessary for every
x, ∀σx.2(r → Fx). By the broad Barcan formula, 2∀σx(r → Fx) and so
2(r → ∀σxFx). Thus r entails ∀σxFx as required. Since X is closed under
entailment, X(∀σxFx).

Theorem 7. (C■∈)
Given BFe

2 (for broad necessity), being of stage α (i.e. Vα) is rigid for every
ordinal α.

Proof. As we have noted (theorem 5), BFe
2 for broad necessity implies the

Barcan formula for ■, BFe
■. Subsequent uses of the word ‘possibly’ and ‘nec-

essarily’ in the proof refer to ♦ and ■.
The proof is by transfinite induction. V0 is necessarily empty, and so vac-

uously rigid.
Suppose that α is an ordinal, and for each β ∈ α, Vβ is rigid. We want

to show that Vα is rigid. Suppose there could have been an F set of stage α
(♦∃x(Vαx ∧ Fx)). We must show there is in fact a set of stage α that could
have been F (∃x(Vαx ∧ ♦Fx)). By the Barcan formula there is some x that
is possibly of stage α and F , so it suffices show that this set is in fact of stage
α. That is, we must prove that if y ∈ x, ys rank is less than α, so suppose
y ∈ x. By Set Rigidity, y is necessarily in x, and since x is possibly of stage α,
y is possibly of stage β for some β ∈ α: ♦∃β ∈ α.Vβy. Since, by Set Rigidity,
belonging to α is a rigid property, for some β < α y possibly is of stage β. But
by the inductive hypothesis being of stage β is rigid, so y is in fact of stage β.

For the converse direction we must show that if something, x say, of stage
α is possibly F , then it’s possible that something of stage α is F . It would
suffice to show that x is necessarily of stage α. Every y ∈ x is of a stage β for
β < α, and so by the inductive hypothesis, y necessarily of stage β. Since β is
necessarily less than α, every y ∈ x is necessarily of stage less than α. By Set
Rigidity this implies that, necessarily, every y ∈ x is of stage less than α, i.e.
necessarily x is of stage α.
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Lemma 21 (C■∈). Sets are mathematically necessarily distinct: ∀exy(Setx∧
Set y → x ̸= y → ■x ̸= y)

Proof. Suppose the claim is false for contradiction. Choose x to be ∈-minimal
such that x possibly identical to some set it is distinct from. Choose y to be
∈-minimal such that it is distinct from, but possibly identical to x.

Since x and y are distinct we may suppose, without loss of generality, that
there is some set z belonging to x but not belonging to y. By Set Rigidity,
■z ∈ x. So ♦z ∈ y, since ♦x = y. Since ♦∃z′ ∈ y.z′ = z it follows by Set
Rigidity that ∃z′ ∈ y♦z′ = z. Since x is an ∈-minimal failure of the necessity
of distinctness, z cannot be possibly identical to anything distinct from it. It
follows that whatever member of y that is possibly identical to z is in fact
identical to z, so that z is a member of y after all, a contradiction.

Theorem 8. (C■∈)
Suppose A(x) is a first-order formula with free variables x. If all the quantifiers
in A(x) are restricted to rigid properties of sets, then A is modally absolute
with respect to the parameters y.

Proof. By Set Rigidity, x ∈ y is modally absolute, since if y is a set and
x ∈ y then by Set Rigidity x is necessarily in y. And if x ̸∈ y and y is a
set, then by the necessity of distinctness of sets x could not be identical to a
member of y. The necessity of identity and distinctness for sets ensures the
modal absoluteness of x = y. Suppose A and B are modally absolute. If
for any sequence of sets x, A(x) and B(x, then the modal absoluteness of A
and B ensures that ■A(x) and ■B(x) and so ■(A(x) ∧ B(x)). Similarly if
¬(A(x)∧B(x)) either ¬A(x) or ¬B(x) and so given the modal absoluteness of
A and B we have either ■¬A(x) or ■¬B(x) and in either case ■¬(A∧B) as
required. The disjunction case is a dualization of the above, and the negation
case is trivial.

Now suppose B(yx) is modally absolute, and λy.A(yx) is a rigid prop-
erty of sets (λy.A(yx) entails Set). We will show the modal absoluteness of
∀ey(A(yx) → B(yx). Let x be a sequence of sets, and suppose ∀ey(A(yx) →
B(yx). By the modal absoluteness of B we can conclude ∀ey(A(yx) →
■B(yx)), and by the rigidity of A we can get ■∀ey(A(yx) → B(yx). On
the other hand, if ¬∀ey(A(yx) → B(yx) then for some set y, (A(yx)∧¬B(yx).
By the modal absoluteness of B, ■¬B(yx) and by the rigidity of A, ■A(yx)
so ■∃ey(A(yx)∧¬B(yx)), as required. The existential case involves dualizing
this argument.

Theorem 9. (C■∈)

45



Given the truth of the theorems of C■∈, the following formulas are modally
absolute.

1. being an ordinal.

2. being a limit ordinal.

3. being the smallest limit ordinal, the successor of the smallest limit ordi-
nal, the successor of the succcessor of the smallest limit ordinal...

moreover, the properties in 3. are rigid.

Proof. α is an ordinal if and only if α is (i) transitive ∀x ∈ α∀y ∈ x.y ∈ α) and
(ii) linearly ordered by membership (∀x ∈ α∀y ∈ α(x ̸= y → x ∈ y ∨ y ∈ x).
All the quantifiers in these definitions are restricted by conditions of the form
∈ z, which is rigid by Set Rigidity, and entails sethood (by the definition of
Set as λy∃x.y ∈ x). Thus they are all modally absolute.

α is a limit ordinal if it is an ordinal and additionally ∀x ∈ α∃y ∈ α(x ∈ y)
and ∃x ∈ α. These have the same property. α is the smallest limit ordinal
iff it is a limit ordinal, and for every x ∈ α x is not a limit ordinal. α is the
successor of the smallest limit ordinal iff every member of α is either belongs
to the smallest limit ordinal or is identical to it. Again, all quantifiers are
restricted by membership to some set.

Finally we can show that the properties in 3 are rigid. Let ω be the set
that is actually the smallest limit ordinal. By the modal absoluteness, ω is
necessarily the smallest limit ordinal, and uniquely so, since is a theorem of
ZF that if two sets are the smallest limit ordinal they are identical. Suppose
it is possible that something is the smallest limit ordinal is also F . Then it
is possible that ω is F , and thus there is an actual smallest limit ordinal, ω,
which is possibly F . Similar strategies apply to the other properties listed in
3.

Theorem 11. (C5■∈)

1. ■CH ∨■¬CH.

2. ∀ex(Uncountablex → ■Uncountablex)

Proof. Let Vω+2y be the property ‘λy.for some set α, α is the successor of the
successor of the smallest limit ordinal, and y is Vα’. Using the results above,
it is easily seen that this property is rigid.
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The continuum hypothesis can be formulated in such a way that all quan-
tifiers are restricted by the predicate Vω+2. Since this predicate is rigid, CH is
modally absolute: CH → ■CH and ¬CH → ■CH. This establishes 1.

Let x be an uncountable set, and suppose that α is an ordinal such that
x ∈ Vα. Then the claim that x ∈ Vα and is uncountable is equivalent to the
claim that x ∈ Vα and there is no set of ordered pairs belonging to Vα+3 that is
an injective function from the smallest limit ordinal to x. All of the quantifiers
in this claim are similarly restricted to rigid properties.

Theorem 13. (C■)
Given LBt, ♦p ↔ ∃w(Worldw ∧ w ≤ p ∧ ♦w)

Proof. Mathematical Necessity states that anything entailed by the■-necessities
must be itself ■-necessary. So any ♦-possibility is such that its negation is
not entailed by the ■-necessities.

Thus if ♦p, ■ ≰ ¬p. That is, for some r such that ∀q(■q → r ≤ q), r ≰ ¬p.
This means 3(r∧p), so by LBt, there is a world proposition w that entail r∧p.
We finally can see that w must be ♦-possible. For if not, then ■¬w, and since
r entails every ■-necessity, r ≤ ¬w. But since w ≤ r, w ≤ ¬w, contradicting
the assumption that w is a world.

The right-to-left direction is obvious.

Theorem 14. (C■∈)
LBt→t and LBt imply that Vα is rigid for every ordinal α.

Proof. The proof is by transfinite induction. V0 is necessarily empty, and so
vacuously rigid.

Suppose that α is an ordinal, and for each β ∈ α, Vβ is rigid. We want to
show that Vα is rigid. Suppose ♦∃x(Vαx∧Fx). We must show ∃x(Vαx∧♦Fx).

Since λx(Vαx∧Fx) is broadly possibly instantiated, it follows by the Leib-
niz Biconditionals, LBe→t, that there is a world property W that that entails
it, and by proposition 13 it will be a world property that is mathematically
possibly instantiated.69 We can use this world property to define the actual
member of Vα that’s possibly F explicitly:

x′ := {y ∈
⋃
β∈α

Vβ | ■∀x(Wx → y ∈ x)}

69♦∃x(Vαx ∧ Fx) implies by theorem 13 that there is a mathematically possible world
proposition w ≤ ∃x(Vαx ∧ Fx), and since 3∃x(w ∧ Vαx ∧ Fx) there is a world property W
entailing λx(w ∧ Vαx ∧ Fx).
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RoughlyW singles out a merely possible set. x′ is the set of ys in Vα that would
have belonged to the merely possible object picked out by W if it had existed.
We can now show that x′ is identical to the merely possible W : i.e. we show
■∀x(Wx → x = x′). Given the mathematical necessity of Set Extensionality
and the mathematical possibility of W it suffices to show that necessarily
whatever is W is coextensive with x′: ■∀x(Wx → ∀y.(y ∈ x ↔ y ∈ x′). We
break this up into two claims:

1. ■∀x(Wx → ∀y(y ∈ x′ → y ∈ x)

2. ■∀x(Wx → ∀y(y ∈ x → y ∈ x′)

We establish 1 first. From the definition of membership in x′, we immediately
have ∀y ∈ x′■∀x(Wx → y ∈ x). Since Sets are Rigid, it follows that x′-
restricted quantification satisfies BF, so we can infer ■∀y ∈ x′∀x(Wx → y ∈
x). By applying first-order logic under the scope of ■, this is equivalent to 1.

To establish 2, we first show ∀β ∈ α∀y(Vβy → ■∀x(Wx → (y ∈ x → y ∈
x′)). Let β ∈ α and let y be an arbitrary set of rank β. Now either y ∈ x′

or y /∈ x′. Suppose the former. Then by the rigidity of set membership y is
necessarily in x′ and so ■∀x(Wx → (y ∈ x → y ∈ x′)) follows. Suppose then
that y /∈ x′. By the condition for belonging to x′, this means that W doesn’t
entail the property of containing y. Since W is a world property, it must
entail the property of not belonging to y, and thus must also mathematically
necessitate it: ■∀x(Wx → y /∈ x). So this means ■∀x(Wx → (y ∈ x → y ∈
x′)), by applying some straightforward logic under the ■ (namely that y /∈ x
entails y ∈ x → y ∈ x′).

This completes the argument that ∀β ∈ α∀y(Vβy → ■∀x(Wx → (y ∈
x → y ∈ x′)). By the inductive hypothesis, Vβ is rigid, and so we can infer
∀β ∈ α■∀y(Vβy → ∀x(Wx → (y ∈ x → y ∈ x′)). Since α is a set and sets
are rigid, we can also infer ■(∀β ∈ α∀y(Vβy → ∀x(Wx → (y ∈ x → y ∈ x′)).
Thus ■∀x(Wx → ∀y(y ∈ x → ∃β ∈ α.Vβy → y ∈ x′))) applying first-order
logic under ■. Recall that necessarily whatever the W set is, it’s Vα: thus,
necessarily, whatever the W set is, if y belongs to it, y is in Vβ for some
β ∈ α (by the definition of Vα ). That is we have (a) ■∀x(Wx → Vαx), (b)
■∀x(Vαx ∧ y ∈ x → ∃β ∈ α.Vβy) (by definition of the V relation and the
mathematical necessity of ZF). So putting this together ■∀x(Wx → ∀y(y ∈
x → y ∈ x′))) as required.

SinceW mathematically necessitates being identical to x′ (■∀x(Wx → x =
x′), and W is mathematically possible, it follows that ♦Wx′. Finally, since
W entails F it follows that ♦Fx′. By construction Vαx

′ so ∃x(Vαx ∧ ♦Fx) as
required.
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Theorem 16. (C■∈LBσ)

1. ■CH ∨■¬CH.

2. ∀ex(Uncountablex → ■Uncountablex)

Theorem 17. (C)
De Re Modal Choice and LBt entail LBσ→t.

Proof. We show LBe→t, since that is the instance required for theorem 14,
however the proof generalizes trivially.

Suppose that 3∃xFx. By LBt, there is a world proposition w such that
w ≤t ∃xFx. Let R be a relation which is necessarily a well-order, and consider
the property of being the R minimal F while w is true: W := λx(w∧MinRFx)
where Min = λRFx(Fx ∧ ∀y(Fy → Rxy ∨ x = y)). Clearly W entails F . Let
G be another property. Since there is at most one minimal F of a well-order,
we know that 2(WOR → ∀x(MinRFx → Gx) ∨ ∀x(MinRFx → ¬Gx)),
and since 2WOR, 2(∀x(MinRFx → Gx) ∨ ∀x(MinRFx → ¬Gx)). Since
w settles every question it either entails every R-minimal F is G, or that
it’s not, 2(w → ∀x(MinRFx → Gx)) ∨ 2(w → ∀x(MinRFx → ¬Gx)).
Rearranging a little and appealing to the definition of W this is 2∀x(Wx →
Gx) ∨2∀x(Wx → ¬Gx)

B Appendix: Free Logic

In this appendix we provide the necessary background for the results discussed
in section 7.

Free logic replaces the law of universal instantiation with its universal clo-
sure, ∀σy(∀σxFx → Fy). We must then also add the principle that universal
quantification distributes over conditionals. We of course, may apply the anal-
ogous substitutions at other types.

Free Instantiation ∀σy(∀σxFx → Fy) provided y is not free in F .

Quantifier Normality ∀σx(A → B) → (∀σxA → ∀σxB)

The remaining principles of H—Gen, and the laws governing the truth-functional
connectives and λ—remain the same. Let FH, ‘free higher-order logic’, be the
result of making these substitutions to H, ad Free Classicism, FC, the result
of closing FH under the rule of equivalence.
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Because the logic of the quantifiers in Free Classicism is weaker than
Classicism, notions we defined using the quantification over all necessities—
entailment, broad necessity, world, etc—may behave in undesirable ways. For
example, a natural quantificational definition of property entailment in Free
Classicism, 2∀ex2(Fx → Gx), is consistent with pathological situations where
F entailsG, a is F but a is notG.70 However, in Classicism many of the notions
that we defined in terms of the classical quantifiers can be given equivalent
definitions in terms of identity, and because the logic of identity in Free Clas-
sicism is classical, we can recover the desired behaviour by using the identity-
theoretic definitions instead. For instance, there is a long tradition in logic,
tracing back to George Boole, of defining entailment in terms of identity. For
properties F and G, F entails G when the property conjunction of F with G
(i.e. λx(Fx ∧ Gx)) just is F .71 The pathological situation mentioned above
cannot arise, for if F entails G and then F = (λx.Fx ∧ Gx). So by Leibniz’s
law Fa → (λx.Fx ∧Gx)a, and thus Fa → Ga by β and propositional logic.

Proposition 22. In Classicism, the following identities are derivable:

1. 2 = λp.p =t ⊤

2. ≤σ= λRS(R ∧σ S =σ→t R)

3. SWorld = λw((w ̸=t ⊥) ∧ (λp(w ≤ p ∨ w ≤ ¬p) =t→t λp.⊤))

Proofs of 1 and 2 may be found in Bacon (forthcoming)p[?]. The first
conjunct of the RHS of 3, w ̸=t ⊥, is equivalent to 3w by 1, and the second
conjunct is equivalent to 2∀tp(⊤ → (w ≤ p ∨ w ≤ ¬p)) by 2, and thus to
2∀tp(w ≤ p ∨ w ≤ ¬p).

Perhaps it is possible to augment Free Classicism with further principles
that would rule out these pathological situations, but we will avoid the need
for any further assumptions by adopting the identity theoretic definitions of
these three notions listed in proposition 22 as our official ones when working
in Free Classicism.

We can now define a possibilist quantifier along the lines of Fine’s definition
discussed in section 3:

Πσ := λF∃tw(SWorldw ∧ w ∧ (λx.w ≤σ F )

70Models of this will interpret a with an individual that does not belong to the domain
of quantification at any world. It is quite easy to generate an extensional model of Free
Classicism in which ∀ex(Fx → Gx) (and thus 2∀ex2(Fx → Gx)), Fa and ¬Ga are all
true.

71Boole (1847), p20 project Gutenberg.
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where F has type σ → t and x has type σ. ΠeF means that, when w is
the true strong world proposition, the vacuous property of being such that
w entails F . We have replaced Fine’s 2∀σx2(w → Fx)—the potentially
ill-behaved notion of entailment mentioned above—with the corresponding
identity theoretic entailment for reasons detailed above.

We are now in a position to formulate the orthodox possible worlds meta-
physics within Free Classicism. We can do this by adding to FC the Strong
Leibniz Conditionals and the B schema and closing under the rule of equiv-
alence as well as the background logical rules, remembering, of course, that
SWorld, ≤, 3, etc are now given in identity theoretic terms.

SLBt 3A ↔ ∃tw(SWorldw ∧ w ≤ A)

B A → 23A

We will call the result FC5(SLB). Note that because necessitated quantifica-
tional claims are weak in Free Classicism, merely adding the necessitations of
the universal closures of these principles to Free Classicism would fail to de-
liver identities that one could obtain from the result of closing under the rule
of equivalence. We could acheive the same effect as closing under the rule of
equivalence by adding a pair of identities to Free Classicism. The claim that
to be possible is to be true at some possible world, and the claim that to be true
entails to be necessarily possible.

SLBt
λ 3 =t→t λp(∃tw(SWorldw ∧ w ≤ p)

Bλ λp.p ≤t→t λp.23p

FC5 and FC(SLB) stand for the result adding, in the same way, only one of
these principles.

Lemma 23. FC5(SLB) contains A → ∃w(SWorldw ∧ w ∧ w ≤t A).

Proof. First we show SWorldw → 2 SWorldw∧2(∃tp.w = p). Since SWorldw
is the conjunction of a distinctness claim and an identity claim, the necessity of
the first conjunct follows from the necessity of distinctness and the necessity
of identity both of which are well-known theorems of S5 with the classical
axioms of identity.72 Using SLB, and the fact that w is necessarily possible,
2∃tv(SWorld v ∧ v ≤ w). It’s also necessary that for any strong world v ≤
w, w ≤ v. For w is necessarily a strong world, and so must entail v or

72For the necessity of identity see Kripke (1971), for the necessity of distinctness see Prior
and Prior (1955), pp. 206–7.
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¬v for any strong world v ≤ w, and it couldn’t entail ¬v since otherwise
v ≤ ¬v by the transitivity of entailment, contradicting the fact that v is
possible. So necessarily, any strong world entailing w is identical to w, thus
2∃tv(SWorld v ∧ v =t w).

Now we argue that every strong world, w, entails (i) w, (ii) that w is an
existent strong world, and (iii) A → (w ≤ A). (i) is trivial, (ii) is established
above. For (iii), λp.w ≤t→t λp.(w ∧ (p → (λp⊤)p) since p → ⊤ is a tautology.
And since λp.⊤ =t→t λp(w ≤ p∨w ≤ ¬p) (since w is a strong world) we have
λp.w ≤ λp(w ∧ (p → (w ≤ p ∨ w ≤ ¬p))). We also have λp.w ≤ λp(w ∧ p →
w ≰ ¬p) since w∧p → w ≰ ¬p is a theorem of Free Classicism. Since operator
entailment is closed under propositional logic, λp.w ≤ λp(p → w ≤ p). Apply
both these operators to A and using β we get w and A → w ≤ A, and since
the former operator entails the latter, w ≤ (A → w ≤ A).

Putting (i),(ii) and (iii) together, we have that for every strong world, w,
w ≤ (w∧SWorldw∃tp(p = w)∧(A → w ≤ A)). Using the fact that entailment
is closed under free logic we get w ≤ (A → ∃tw(w ∧ SWorldw ∧ w ≤ A))).
Since every strong world entails A → ∃tw(w ∧ SWorldw ∧ w ≤ A)) we can
infer 2(A → ∃tw(w ∧ SWorldw ∧ w ≤ A))) by SLB.

Theorem 24. FC5(SLB) interprets C5(SLB)

Proof. We map each term M of L to M∗, the result of substituting each free
quantifier ∀σ with Πσ. We wish to show that whenever A is a theorem of
Classicism, A∗ is a theorem of Free Classicism+.

Each tautology, instance of B, and instance of βη are mapped to tautologies
instances of B or instances of βη. Uses of modus ponens and the rule of
equivalence are similarly mapped to themselves. It remains to show that UI∗

and SLB∗ are theorems of FC5(SLB), and, for Gen, that if (A → B)∗ is a
theorem of Free Classicism+, so is (A → ∀xB)∗.

Let’s begin with UI. We will show generally that ΠσF → Fa. Suppose
ΠσF , so that there is some truth, p, such that λx(p ∧ Fx) =σ→t λx.p. Want
to show Fa. (λx.p)a =t p by β, and since p is true, we can conclude (λx.p)a.
By the above identity, λx(p ∧ Fx)a, so p ∧ Fa, and finally, Fa as required.

For the right-to-left direction of SLB∗ we show the dualized contrapos-
itive version. We will suppose that Πtw(SWorldw → w ≤ A) and show
2A. Expanding the definition of Π, the true strong world, v, is such that
λw.v ≤ λw.(SWorldw → w ≤ A). Applying ∀t to both sides we see that
the claim that everything is such that v (i.e. ∀tp.v)) entails that every strong
world is entails A (i.e ∀tw(SWorldw → w ≤ A)). Since v is true, every-
thing is such that v, and so every strong world entails A. By SLB, 2A.
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For the converse of SLB∗ suppose Σtw(SWorldw ∧ w ≤ A)—i.e. λw.v ≰
λw(Sw → w ≰ A) where v is a true strong world. We want to show 3A.
It suffices to show ∃tu(SWorldu ∧ u ≤ A). Suppose for contradiction that
∀tu(SWorldu → u ≰ A). By lemma there is a strong world v that is true and
entails ∀tu(SWorldu → u ≰ A), delivering also the corresponding entailment
between vacuous operators: λw.v ≤ λw∀u(SWorldu → u ≰ A). Since being
a strong world entails existence, we have λw.v ≤ λw(SWorldw → ∃tr.r = w).
Since the right-hand-sides of entailments are closed under free logical con-
sequences, we have λw.v ≤ λw(SWorldw ∧ ∃tr.r = w → w ≰ A) and so
λw.v ≤ λw(SWorldw → w ≰ A). This contradicts our assumption.

For Gen it suffices to show that whenever we have a proof of A → B where
x is not free in B there is also a proof of A → ΠσxB. Since we can prove
A → B, we can prove (λx(A → B))y ↔ (λx.⊤)y using β and so by the rule
of equivalence we then have λx(A → B) = λx.⊤.

Now we will show that A → ∃w(w ∧ SWorldw ∧ λx.w ≤ λx.B. Suppose
A, and let w be the true strong world entailing A (appealing to lemma 23).
So w ∧ ¬A =t ⊥. Clearly λx.w ≤ λx(A → B) since λx.w ≤ λx.⊤.

λx(w∧(A → B)) =σ→t λx.w. The left-hand-side is λx.((w∧¬A)∨(w∧B))
using Boolean equivalences that can be obtained from the Rule of Equivalence.
Since x isn’t free in A and w ∧ ¬A = ⊥ we can infer the the left-hand-side is
λx.(w ∧B) by Leibniz’s law and Boolean equivalences. So λx(w ∧B) = λx.w
as required.
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