The Logic of Opacity

Andrew Bacon

Jeffrey Sanford Russell ©
August 19, 2017

Abstract

We explore the view that Frege’s puzzle is a source of straightforward
counterexamples to Leibniz’s law. Taking this seriously requires us to revise
the classical logic of quantifiers and identity; we work out the options, in the
context of higher-order logic. The logics we arrive at provide the resources
for a straightforward semantics of attitude reports that is consistent with the
Millian thesis that the meaning of a name is just the thing it stands for. We
provide models to show that some of these logics are non-degenerate.

1 Opacity and Export

Having incomplete knowledge of classical astronomy (and being unacquainted
with the literature on Frege’s Puzzle) Asher assents to ‘Hesperus is bright’, but not
to ‘Phosphorus is bright’. It’s natural, then, to describe Asher’s doxastic state like
this: Asher believes that Hesperus is bright, but Asher does not believe that Phos-
phorus is bright. But of course, Hesperus and Phosphorus are the very same thing:
the planet Venus. Taking this familiar story at face-value, we might formalize these
claims as follows:

l.a=5b

2. Ba

*Thanks to Peter Fritz, Jeremy Goodman, Cian Dorr, the participants in the Oslo Higher-Order
Metaphysics Workshop, and an anonymous referee for helpful comments.

3. Bb

(Here a stands for ‘Hesperus’, 4 stands for ‘Phosphorus’, and B stands for the predi-
cate ‘Ax (Asher believes x 1s bright)’.) These three claims together — we’ll call them
the Triad — conflict with an instance of Leibniz’s law:

L() a=b— Ba— Bb

(Here, and throughout, we associate arrows to the right.)

There are many well-known replies to this puzzle. Some say it rests on equiv-
ocation (see Dorr 2014). For instance, if ‘believes’ 1s context-sensitive, and this
sensitivity 1s resolved differently for each of the two belief reports, then it would be
inappropriate to represent both reports using a single predicate letter B in state-
ments 2 and 3 (e.g. Crimmins and Perry 1989). Alternatively, perhaps the term
‘Hesperus’ has a different denotation in the identity statement than in the belief
ascription, making it inappropriate to use a single constant symbol @ in both 1 and
2. (For instance, Frege 2010 claimed that, while ‘Hesperus’ ordinarily denotes a
planet, in the context of the sentence Asher believes Hesperus is bright’, ‘Hes-
perus’ instead denotes a certain sense.) Another reply is that, while it’s true that
Asher believes that Hesperus is bright, it doesn’t follow from this that Hesperus is
such that Asher believes i to be bright — or in other words, it doesn’t follow that
Ax (Asher believes x is bright) applies to Hesperus. In that case, our regimentation
of 2 in subject-predicate form would not accurately reflect the fact that Asher be-
lieves that Hesperus is bright. In general, philosophers who take this line hold that
f-reduction, which transforms the complex predication (Ax ¢p)a to the substitution
instance ¢[a/x], does not preserve truth-value (see Kripke 2005; Salmon 2010).

Let’s set these replies aside. In this paper, we’ll explore views that take this
argument against an instance of Leibniz’s law at face value. In particular, we’ll
suppose that the Triad perspicuously and univocally formalizes certain truths about
this situation. (We’ll also take f-reduction for granted more generally.) Taking
these things for granted, we must reject L(). The predicate B is opaque, in the sense
(derived from Quine 1960, sec. 30) that applying B to co-referential terms does
not always produce sentences with the same truth-value. We’ll be investigating the
logic of opacity.

While the canonical examples of opacity involve belief (or similar attitudes),
there are many other potential applications — though particular examples will of
course be controversial. Some hold that the statue Goliath just is the clay of which
it is made — and yet one would like to say that Goliath could not survive being
squashed, while the clay could (e.g. Gibbard 1975). Some hold that Kilimanjaro

2

just 1s a certain precise chunk of rock — and yet one would like to say that Kili-
manjaro is determinately a mountain, while that precise chunk of rock is not (e.g.
McGee 1997). Like Frege’s puzzle of belief, these other puzzles might also move
one to take at face value the apparent opacity of predicates involving possibility,
change, or determinacy. (If the data Saul 1997 presents is to be taken at face value,
involving an apparent contrast between ‘Clark Kent went into the phone booth,
and Superman came out’ and ‘Superman went into the phone booth, and Clark
Kent came out’, then opacity might turn out to be very pervasive indeed.) The log-
ical questions we are investigating are not parochial to any of these subject matters;
but for the sake of concreteness we’ll continue to focus on the example of belief.

We’ll be working in the context of higher-order logic: let’s begin with some
preliminaries about what that is. English has expressions of various grammatical
categories, such as nouns, adjectives, and articles. The formal language we’ll be
working in has a simplified hierarchy of grammatical categories — or fypes. The ba-
sic types are ¢, for singular terms (for first-order ‘entities’), and ¢ for truth-evaluable
expressions — sentences and formulas. A predicate, such as ‘Ax (x is bright)’ or
‘Ax (Asher believes «x 1s bright)’, has neither of these types, but it can be applied to
a type ¢ expression to produce a type ¢ expression. Accordingly, its type is called
¢ = (. In general, expressions of type o — 7 can be applied to expressions of type
o to yield expressions of type 7. For example, the first-order quantifer 3, has the
type (¢ = #) — t, which is to say that it can be applied to a predicate like Ax (Asher
believes x is bright) to produce the sentence 3,x (Asher believes x is bright). (As is
customary, in our notation we suppress lambdas immediately after quantifiers.)

The language of higher-order logic is so-called because it provides us with re-
sources not just for first-order generalization, but also for generalization at every
type. Besides the first-order quantifier 3,, we also have a quantifier 3, which allows
us to generalize in sentence position, a quantifier 3,_,, for generalization in predi-
cate position, and so on. Some philosophers have scrupled at this kind of expressive
promiscuity (e.g Quine 1986), but it seems to us that higher-order generalization is
both intelligible and salutary (following Frege 2000; e.g. Prior 1961; Shapiro 1991;
Williamson 2003). We’ll typically use capital letters for higher-order variables, and
suppress the type subscripts on quantifiers when it 1s clear in context how to fill
them in.

We are investigating the logic of identity: but just as higher-order logic allows
generalization at types other than e, it is natural to consider identity for types other
than e. For example, one might say that to be an attorney just is to be a lawyer. This

claim 1s readily formalized using an identity predicate for type ¢ — &
Ax(x 1s an attorney) =,_,, Ax(x 13 a lawyer)

(So the predicate =,_,, itself has type (¢ =) = (¢ =) = t.) Likewise, one may
think that since Hesperus just is Phosphorus, for Hesperus to be bright just is for
Phosphorus to be bright — which again we may readily formalize:

Fa =, Ib

(where F'stands for ‘bright’). Again, we will normally omit the type subscripts. As
with higher-order quantification, some philosophers might be inclined to scruple
over higher-order identities; but here too we think that expressive promiscuity is
nothing to be afraid of (following Rayo 2013; Dorr 2016). Indeed, in both cases
working with this kind of generality over types turns out to be very useful. (Fur-
thermore — though we shouldn’t prejudge this point here — it turns out there
are tight connections between identity at each type and quantification at higher
types. Thus even the theory of first-order identity is intimately tied to higher-order
quantification. But we will to come to this later on.)

The view we are considering is that the Leibnizian claim L() is false, because
the predicate ‘believed to be bright’ is opaque: it applies to Hesperus, but does
not apply Phosphorus, despite the fact that they are identical. In contrast, ‘bright’
is (plausibly) a transparent predicate: whether Hesperus is bright is simply a matter
of what a certain planet is like. If Hesperus is bright, then whatever is identical
to Hesperus 1s also bright. More generally, we can characterize this distinction as
follows:

Definition 1. A predicate ¢ of type ¢ — tis (materially) transparent ift
a=pf = da—Pp
1s true for all terms a, f of type 6. Otherwise ¢ is (materially) opague.

Opacity and transparency don’t just make sense for type ¢ — ¢ predicates,
but also for higher-order predicates. For example, perhaps Asher believes that
Cassandra is a lawyer, but not that Cassandra is an attorney. That is to say, the
higher-order predicate AX (Asher believes X(Cassandra)) is plausibly opaque. In
contrast, consider the predicate AX(there is an X) (that is, the existential quantifier
3,, which has type (¢ —) —). Plausibly this is like ‘bright’ rather than ‘believed

to be bright’: it follows from the fact that being an attorney is being a lawyer, and
the fact that there is an attorney, that there is a lawyer.

To better understand the Leibnizian claim L(), let’s examine how it can be
derived from a certain higher-order generalization.

LX) VaV)VX(x =y — Xk = Xy)
L(xy) VaVy(x =y — Bx — By)
L) a=b— Ba— Bb

Both steps of this argument involve applications of universal instantiation. The
step from L(xpX) to L(xy) instantiates the second-order variable X, and the step
from L(xy) to L() instantiates two first-order variables x and y. Accordingly, there
are three ways to reject L().

The first way departs most radically from a Leibnizian view of identity, by re-
jecting L(xy.X). It’s natural to worry that someone who takes this line has lost con-
tact with the original subject matter — for in this case there would be a relation
that seems even more identity-like than identity, namely that of Letbniz equivalence:

AxMVX(Xx — Xp)

T hus relation clearly does satisfy L(xy.X), in the sense that replacing = with Leibniz
equivalence in L(xpX) yields a logical truth. (Indeed, if one were to reject L(xp.X)
without tampering with universal instantiation, then Leibniz equivalence would
also satisty L() in the same sense, and thus precisely play the role of identity in
classical logic.) If rejecting L(xpX) is to amount to a solution to the puzzle, one
would also have to say that there are objects — Hesperus and Phosphorus — which
are identical, but not Leibniz equivalent. That is, although they are not different
objects, there are differences between them — there are properties that apply to
one but not the other. We find this view barely intelligible. So, while we will still
consider views that reject even L(xp.X), our main focus will be on views that accept
at least this much of the standard logic of identity: there is at least this much right
about the Leibnizian idea that one thing has the same properties as itself.

The second way of resisting the argument departs from the classical logic of
quantification, blocking the step from L(xy) to L() by rejecting the inference from
Vx ¢(x) to ¢(a) (or similarly for y and 4). Given the duality of existential and uni-
versal quantification, this is equivalent to saying that one cannot infer 3x ¢(x) from
¢(a). In this case we’ll say for short that a is not exportable.

Definition 2. A term a of type o is exportable ift
Vx ¢px — ¢a
is true for every predicate ¢ of type o — &

Failures of exportability are familiar territory for philosophers working on at-
titude reports. It’s commonly held that quantifying into intentional contexts can
be treacherous (e.g. Quine 1956; Kaplan 1968). For example, even if the inspector
believes that Jack the Ripper committed the Whitechapel murders, many are re-
luctant to admit that there is some person that the inspector believes to have committed
the murders. If this inference is invalid, then Jack the Ripper’ is not an exportable
name. Similarly one might think that ‘Hesperus’ and ‘Phosphorus’ fail to export
from contexts involving belief, thus blocking the move from L(xy) to L().

We should contrast this kind of exportability failure with another kind that
arises from non-being. While it seems as though one can truly assert that Zeus is
a mythological god, it’s dubious to conclude that there is some being which is a
mythological god — since it’s dubious that there is any such being as Zeus. But the
kind of exportability failure presently under consideration is not like this: it’s not
dubious at all that there is such a thing as Hesperus — that is, the planet Venus.
And even if we assume that there is such a person as Jack the Ripper, this does not
make the conclusion that the inspector has beliefs about him more plausible. If
‘Hesperus’ and Jack the Ripper’ are not exportable, this i1s not due to non-being,
In general, we must distinguish exportability from exustence.

The third way of resisting the argument for L() makes the analogous move for
the second-order generalization: that is, one might say that ‘Ax (Asher believes x is
bright)’ is not an exportable predicate. As in the case of first-order export failures,
one way to motivate this higher-order exportability failure would be by appeal to
non-being. For example, plausibly there are no such properties as being dephlo-
gisticated, or being absolutely at rest. One might similarly say that there is no such
property as being believed to be bright. But this is not forced on us. We’ll explore
the alternative, where ‘believed to be bright is treated uniformly with with terms
like ‘Hesperus’ and ‘Phosphorus’. While ‘believed to be bright’ may not in general
be exportable, this is not because there is no such property as being believed to be
bright. Rather, we shall assume that there is such a property, and see where this
assumption leads.

These responses raise the possibility of two distinct varieties of export failure
(besides the non-being kind). First, there is ‘Hesperus’-type export failure, where
certain expressions fail to export from within an opaque context. Second, there

6

may be export failure for expressions which create opaque contexts, like ‘believed to
be bright’. Does opacity require both kinds of export failure, or can we get by with
just one of them? It appears that either failure on its own would block the route to
L() we just considered: ‘Hesperus’-type export failure could block the move from
L(xy) to L(), or ‘belief’-type export failure could block the move from L(xy.X) to
L(xy). But in fact, we can argue for the existence of both kinds. (These arguments
deploy some quantificational reasoning which we will discuss in detail in section 3.
For now, we will keep those details in the background.)

First, we will argue that ‘belief’-type export failure is insufficient on its own.
The argument turns on the following fact. Consider a transparent predicate, such
as ‘bright’. Since Hesperus is something, and Hesperus is bright, it does follow that
something is bright. This inference is fine even if ‘Hesperus’ is not exportable in
general. More generally, the key observation is that as long as a is something, then
even if @ 1s not generally exportable, it is still always possible to export a from a
transparent context. That is to say, we can prove that if ¢ is transparent, then

dxx=a—> Vxgx = ¢a

is true — whether or not a is exportable in general.! Note that this holds at every
type: for example, it holds when « is not a name but rather a predicate of type
¢ =, and ¢ 1s a transparent higher-order predicate of type (¢ =) = 1.

Now, note that to make the move from L(xyX) to L(xy), we instantiate the
second-order variable X with the predicate B in a context that involves nothing
but logical vocabulary:

AXVAVY(x =y = Xx — Xp)

Plausibly, purely logical predicates like this one are transparent. If this is so, then
we can apply our observation: even if B is not exportable in general, it can still be
instantiated in transparent contexts, and so it is still legitimate to move from L(xp.X)
to L(xy), given our assumption that there is such a property as B. So this argument

! Proof sketch. 1f ¢ is transparent, we have Vx(x = @ — ¢x — ¢a). Then the quantificational
logic we present in section 3 guarantees

Vx(px = x=a — ¢a)

and subsequently
Vxgx —» Ixx =a — ¢a

L0
a=b— Ba— Bb

-~ ~
L(w) L)
VaVy(x =y = Bx — By) VX(a=b— Xa — Xb)
~ 7
LX)

VaVH)VX(x =y = Xx = Xp)
Figure 1: Two routes from the generalization L(xy.X) to the instance L().

for L.() cannot be blocked by ‘belief’-type export failure after all: it must be blocked
by ‘Hesperus’-type export failure instead.’

Is ‘Hesperus’-type export failure enough on its own? It is not, because there is
another route from L(xy.X) to L() which also must be blocked.

L(xyX). VaV)VX(x =p — Xx — Xy)
LX). VX(a = b — Xa — Xb)
L). a=b — Ba — Bb.

This argument differs from the first regarding the order in which the variables are
instantiated: in this case, first we instantiate the first-order variables, and then the
second-order variable. (See figure 1.)

Again, it initially seems that either instantiation step may fail. But again, trans-
parency considerations push us to the view that the step from L(xy.X) to L(X) 1s
legitimate, regardless of whether the names a and 4 are exportable in general. For
again, we can move from L(xy.X) to L(X) while only instantiating predicates which
are purely logical, and thus plausibly transparent.® The upshot is that, if purely
logical predicates are transparent, then this second route to L() cannot be blocked

2We’ll also consider an independent route to L(xy) in section 3.
5The argument in this case is a bit more delicate, because it involves instantiating two variables
rather than one. But we can get around this with a bit of trickery. This predicate 1s purely logical:

AV (x =y = Xx — Xy)

So we can instantiate it with a:
VWXa=y - Xa— Xy) (1)

by appeal to ‘Hesperus’-type export failure. If L(xpX) is true and L() is false, the
culprit must be ‘belief’-type export failure in this case. In other words, even if Hes-
perus is believed to be bright and Phosphorus is not, it doesn’t follow that there 1is
some property that Hesperus has but Phosphorus lacks. This conclusion is inde-
pendent of whether ‘Hesperus’ and ‘Phosphorus’ are exportable in general.

To sum up, the route to L() through L(xy) must be blocked by ‘Hesperus’-type
export failure, and the route through L(X) must be blocked by ‘belief’-type export
failure. So we need both kinds of export failure to save opacity.

Note that in general these two types of export failure need not apply only to
type ¢ and type ¢ — ¢ expressions, respectively. Rather, ‘Hesperus’-type export
failure can arise for expressions of any type. An example we considered earlier
1s that Asher might believe Cassandra is a lawyer without believing Cassandra is
an attorney. Even so, there may be no property which Asher believes Cassandra
to have and not have. So ‘lawyer’ and ‘attorney’ are examples of higher-order
‘Hesperus’-type export failure. Likewise, ‘belief’-type export failures can arise for
expressions of any predicative type. For example, this plausibly applies to the t = ¢
operator ‘Ap (Asher believes that p)’. In section 4 we will argue that for any non-
exportable name a, the higher predicate AX Xa of type (¢ =) — ¢1is another
example. A key contrast is that ‘belief’-type export failure arises only for opaque
predicates, whereas one could in principle have a completely transparent predicate
that 1s subject to ‘Hesperus’-type export failures — such as ‘attorney’. (We will
argue 1n section 4 that for any non-exportable name a, the predicate Axx = a 1s
transparent, but not exportable.)

So far we have been specifically discussing the Leibnizian principles L(), L(xy),
L(X), and L(xyX) that involve the names ‘Hesperus’ and ‘Phosphorus’ and the
predicate ‘believed to be bright’. Obviously this is just one example of opacity:
in what follows we’ll consider the general schemata of which those principles were
instances. From here on out, we’ll use the label L(X) for the general schema VX(a =
p — Xa — Xf), where a and f are schematic letters that can be instantiated with

We can apply similar reasoning to 4, to also derive:
VaVX(x =b — Xx — Xb) 2)
By unobjectionable quantificational reasoning (see section 3) we can combine (1) and (2):
ViVX(a=2 = Xa—=» X)A(z=b = Xz— XD)) (3)

Furthermore, if @ = 4 and « is something, then there is something which is both a and b: that is,
dz(a = z A z = b). Putting this together with (3), we can deduce L(X).

LO

a=p— da—¢p
|
Lx), L(X)
/ \
L(v) L(X)
VaVy(x = p = ¢px =) VX(a = f = Xa - XPp)
~ —
L(xX)

VaVHiVX(x =y — Xx — Xp)

%]

Figure 2: Leibnizian schemata partially ordered by strength.

arbitrary terms. (In other words, the L(X) schema says that each exportable predicate
is transparent. If ¢ is exportable, then by definition it can be used to instantiate L(X).
This yields @« = f = ¢a — ¢p, which is to say that ¢ is transparent.) We can
similarly generalize the other three Leibnizian principles (see figure 2).

We will not only treat the terms in these principles as schematic, but also their
types. For example, the L(X) schema has instances where a and f have type (¢ — ?)
and the variable X has type (¢ =) — ¢ Thus one instance of L(X) says that if
being a lawyer is the same as being an attorney, then every higher-order property
of lawyerhood is shared by attorneyhood. (But as always, we should be cautious
about mstantiating this generalization. For example, we ought not instantiate ‘every
higher-order property’ with AX (Asher believes X(Cassandra)).)

These schematic principles are partially ordered by strength as in figure 2. We
can move from each node in the diagram to lower nodes by universal generalization
— which we suppose 1s valid — and to higher nodes by universal instantiation —
which we do not. (The obvious exception to this is the upper ‘junction’ node. As
we mentioned earlier, we will comment on details of the quantificational logic in
section 3.)

10

2 Opaque Semantics

Frege’s puzzle is often taught as part of the philosophy of language. When en-
countered in this context, it’s natural to describe it as a puzzle about how to assign
semantic values to certain sentences — belief reports. People coming at it this way
naturally take up a ‘semantics first’ methodology: the primary job is to engineer the
right gizmos to serve as semantic values for names, predicates, and operators like
‘believes’, which when finally assembled and running will spit out the right pattern
of felicity for sentences including ‘Asher believes Hesperus is bright” and the rest of
the Triad. Thus much of the debate over Frege’s puzzle centers on questions about
the nature of propositions, the relation of names to what is named, and so on.

In contrast, our approach is ‘logic first’. The primary questions we are asking
are not semantic questions about linguistic expressions, but rather logical questions
about planets and what is believed about them. But while semantic engineering is
not our primary concern, logic does have implications for semantic theorizing —
as indeed it does for all theorizing

A common thought (received from Frege 2010) is that the phenomenon of
opacity calls for ‘fine-grained’ semantic values: for example, the proposition ex-
pressed by ‘Hesperus is bright” must be distinct from that expressed by ‘Phosphorus
is bright’, and accordingly the semantic value of ‘Hesperus’ is distinct from that of
‘Phosphorus’. Here’s a way of unpacking this idea (see also McDowell 1977).

First, some notation. For any expression a of type o, let (a) be the quotation
name for the expression a, and let [{a)] be the semantic value of this expression.
We’ll take advantage of our background type theory here: let’s suppose that the
semantic value of a name has type ¢, the semantic value of a predicate has type
¢ = t, and in general [(@)] has the same type as a.

A natural view — sometimes called the Millian Thesis — says that the semantic
value of a name just is the thing it names, rather than anything intensional, fine-
grained, or otherwise fancy.

Disquotation.

()] =a
[{6)] =5

(Here again a and 4 stand for ‘Hesperus’ and ‘Phosphorus’.) But as attractive as this
simple picture 13, many have been deterred from it by something like the following
reasoning. First, and most obviously,

11

Identity.
a=b

Whether or not semantics is fancy, there is just one planet Venus. Second, though,
if both belief reports in the Triad are correct, then it seems that we should also
accept

Difference.

[(Ba)] # [(Bb)]

(Here B again stands for the predicate ‘believed to be bright’.) For (we are suppos-
ing) the first sentence Ba 1s true and the second sentence Bb is false, and surely this
reflects some difference between their semantic values. But these three claims ap-
pear to conflict with a standard assumption of semantic theorizing: Frege’s doctrine
that the meanings of the parts determine the meaning of the whole. In particular,

Compositionality.

[(Ba)] = [(B)][{a)]
[KBb)] = [BIH)]

(Recall that we are taking semantic values to respect types, so the semantic value
of the predicate B is itself predicable.) For by Identity and Disquotation, it follows
that

[Ka)] = [o)]

(This 1s supposing that identity is at least an equivalence relation — a point to
which we will return in section 4.) Then by Leibniz’s law,

[KBNKa] = [BIKH)]

So, by Compositionality (and again the fact that identity is an equivalence),

[(Ba)] = [{Bb)]

This contradicts Difference.

In light of this kind of argument, many theorists reject Disquotation. For in-
stance, the denotation of a name might be an individual concept — a function
from worlds to individuals — or it might be something like a word, or a rule, or
a mental image. (In a sense, neo-Fregeans about meaning fall in this camp, but

12

the classification is delicate because, following Frege 2010, these theorists typically
hold that expressions have more than one kind of semantic value, none of which
is privileged. For Frege, ‘Hesperus’ and ‘Phosphorus’ have different (customary)
senses, despite having the same (customary) referent. See also e.g. Chalmers 2006,
sec. 3.5.)

If we are to maintain Compositionality and Identity, failures of Disquotation
will have to be pervasive, rather than isolated to the case of names. For according
to this view, @ = b, but [{a)] # [(b}]. But also, by another instance of Composi-
tionality (this time for the identity predicate = rather than the predicate B),

[{a = £)] = (=) [(]<6)]
So, given Identity, [(=)] holds between [{a)] and [(5)], even though [{(a)] and

[{b)] are distinct. So it would follow by similar reasoning that

[((=)]# =)

That 1s, the semantic value of the identity predicate 1s not just being identical.

But for those who take opacity seriously, there is another way. The argument
for Difference relied on taking the Triad at face value: it is really #ue that Asher
believes Hesperus is bright, and false that Asher believes Phosphorus is bright. Any-
one who accepts this much — and who also accepts that Hesperus just is Phospho-
rus — 13 committed to giving up the form of Leibniz’s law we have called L().
But the semantic argument above relies on precisely this form of Leibniz’s law.
(In particular, it relies on the instance that says that if [(a)] = [(b)], then since
[(BI[a)] = (B, it follows that [(BY][(@)] = [(BI[(4)].) So anyone who
is persuaded that Difference is true should also hold that the argument against
Disquotation is invalid. Thus no one should be persuaded that the argument is
sound.

Anyone who takes opacity at face value concedes that the property of being
believed to be bright applies to Hesperus but not Phosphorus, even though they
are identical. It’s not clear why someone who concedes this much would resist
the analogous claim about the semantic value of ‘believed to be bright’. (Indeed,
one might reasonably think that the property of being believed to be bright just us
the semantic value of the predicate.) Semantic theorizing is governed by the same
logic as anything else. It is natural to take the above argument to show that se-
mantic expressions can be just as opaque as their corresponding object language
predicates. Disquotation, Compositionality, Identity, and Difference are not in-
consistent: rather, together they imply that [(B)] is opaque.

13

Taking opacity seriously thus opens up the possibility of a distinctive kind of
semantic theory: one that upholds the Millian Thesis that the semantic value of
a name 1s exhausted by its referent, without giving up Compositionality, Identity,
or Difference. The key idea of this approach is that what’s good for the object
language is good for the meta-language: not only is there opacity in what a person
believes, but also in what a word means.

A more general moral is that opacity 1s independent of fineness of grain. One might
be tempted by the thought that a theory of propositions that are tightly coupled
to the cognitive significance of sentences would somehow get one off the hook
for violations of Leibniz’s law, while still allowing one to affirm the Triad. This
thought can’t be right: the Triad is inconsistent with L(), and this inconsistency
won’t magically go away just because we go on to say many other things about
what propositions are like. Here’s one form this tempting thought might take.
Perhaps the proposition that Hesperus is bright is distinct from the proposition that
Phosphorus is bright (though Hesperus and Phosphorus are one and the same);
in that case Asher could believe one of these propositions without believing the
other, and not thereby fall into a violation of Leibniz’s law. But the violation has
already been committed: if @ = b, then another instance of L() says that, since Fa =
Fa, Fa = Fb as well. That is, since Hesperus is Phosphorus, L() implies that the
proposition that Hesperus is bright is identical to the proposition that Phosphorus
1s bright. Whatever your theory of propositions, you have take your lumps: either
there 1s something wrong with the Triad or there is something wrong with L().

Fine-grained propositions don’t provide a way of keeping L(), but neither are
they required for views that give up L(). Indeed, opacity is compatible with propo-
sitions being very coarsely individuated: for example, propositions might be sets of
metaphysically possible worlds, or even just truth-values. This point will be justi-
fied more fully in what follows. (But it is a bit delicate when further constraints on
identity are imposed; see our qualification at the end of section 4.)

Since fineness of grain is largely independent of opacity, we will remain officially
neutral on the question of what propositions are like, and whether or not there are
many distinct logically equivalent propositions.

3 Leibnizian Logics

As we discussed in section 1, accepting opacity means rejecting L(), as well as the
classical rules of universal instantiation and existential generalization. But if we
knock out these pillars of classical logic, is there any structure left that can stand on

14

its own? In this section we’ll identify a minimal core logic that is acceptable to the
opacity-lover; in the following section we’ll consider a natural way of strengthening
this.

We’ll begin with the quantifiers. Since we can’t allow arbitrary instances of
universal instantiation or existential generalization, a natural starting point is free
logic, which admits exceptions to these principles. Rather than the classical instan-
tiation principle

Vxdx = ¢pa 4)

we make use of the following weaker version of universal instantiation (from Lam-
bert 1963 and Kripke 1963):

V(Vx px = ¢y) ()

While free logic is usually discussed in the context of first-order logic, we intend
our discussion to apply equally to the higher-order quantifiers; here, for example,
x and y may be variables of any type. Note that (5) does not imply the classical
principle (4): deriving it would require an instance of the very principle of universal
instantiation that we repudiate.

We should be careful to distinguish (5) from an alternative version of universal
instantiation that some systems of free logic take for granted: if @ is something and
everything is ¢, then a 1s ¢.

dx(x = a) = Vxpx = da (6)

In the presence of Leibniz’s law L(), (6) is a consequence of our other quantifica-
tional principles.” But of course, we are not assuming L() — nor should we assume
(6). Earlier we mentioned cases like ‘Jack the Ripper’ that seemed like they might

*The following is obtained by universal generalization from L():
Vx(x =a — ¢x > ¢a)
Rearranging the conditionals and distributing the quantifier,
Vx¢x = Va(x = a — ¢a)
Then, distributing the quantifier again and using duality,
Vxgx - Ivx =a - xdpa

The last existential quantifier is vacuous, so we can drop it, leaving us with something obviously
equivalent to (6).

15

be counterexamples to (6). Given that we are rejecting L(), we also have a more
theoretical reason for rejecting (6). In section 1 we argued for L(xy) (and we shall
give a second argument below):

VaVy(x =y — Bx — By) (7)

Hesperus and Phosphorus are each something (indeed, the same thing), so if (6)
were correct we could instantiate (7) with ‘Hesperus’, and then instantiate the re-
sult with ‘Phosphorus’. Since Hesperus is Phosphorus, this would imply that if
Hesperus is believed to be bright then so is Phosphorus, contradicting the original
Triad. In general, if L(xp) is true but L() has false instances, then (6) also has false
instances.

In fact, we will assume each instance of this schema:

Being. dxx =«

(where a may have any type). With (6) this would obviously entail (4), collapsing
back to classical logic; but without (6) there is no such danger. Plausibly Being has
counterexamples: for plausibly there is no such thing as Zeus and there is no such
property as being dephlogisticated. Even so, we are setting aside these cases to
focus on the distinctive logical issues raised by opacity.

Even for those who are suspicious of Being, another related principle is very
plausible. For instance, someone might doubt that there is any such property as
being believed to be bright; even so, it is still natural to think that there is at least a
property coextensie with being believed to be bright. Suppose the only things that
Asher believes to be bright are the sun, the moon and Venus. Surely there is at least
the property of being one of those three things.” (Does Asher really believe Venus
1s bright? This is not settled by things we have said so far.) This is an instance of a
more general principle: for each predicate in our language there is a coextensive

property.6

Comprehension. 3XVy(Xy < ¢y)

>That is,

AxIyFz(x = Sun Ay = Moon A z = Venus A XX = Aw(w =xVw =y Vw = 2)))

®We might also assume versions of this principle that apply to relations of arbitrary arity. We
don’t need these here, and in fact they will follow from principles we introduce in section 4.

16

We will also assume Comprehension in what follows. (Note that in the current
context Comprehension does not obviously follow from Being: for in fact, we have
not yet shown that if X = ¢ then X and ¢ are coextensive. Don’t worry — we’ll
get this in section 4.)

Comprehension has an important consequence for the Leibnizian principles:
given Comprehension, L(xy.X) implies the superficially stronger principle L(xp). Let
¢ be an arbitrary predicate. By Comprehension there is some property X which 1s
coextensive with ¢. By L(xyX), for any x and y that are identical, if x has X then so
does y. Since ¢ is coextensive with X if ¢px then Xx; and likewise, if Xy, then ¢y.
So, chaining this together, if x and y are identical, then if ¢x, then ¢y. This 1s just
what L(xy) requires.

One final logical note concerns A-abstraction. At the outset we took it for
granted that Ax (Asher believes that x is bright) applies to Hesperus if and only
if Asher believes Hesperus is bright. In fact, we will suppose even more. Not only
are these two claims materially equivalent, but in fact they are the very same propo-
sition; even further, they are intersubstitutable, in the sense that whatever may be
asserted of one may be asserted of the other. In general we are supposing that
pn-equivalent expressions are intersubstitutable. That is: (Ax ¢)a is intersubsti-
tutable with the substitution instance ¢[a/x] (f-reduction), and, when x is not free
in ¢, Ax ¢« 1s intersubstitutable with ¢ (n-reduction). Note that this is a fairly strong
principle; some might be interested in exploring how thing go without it. For ex-
ample, some structured-proposition-theorists might wish to distinguish the propo-
sitions that John loves Mary (Lab), that the loving relation applies to John and Mary
((Ax Ay Lxy)ab), that John has the property of loving Mary ((Ax Lxb)a), and so on. But
at this stage of our investigation the simplifying power of full-fledged fn-reduction
is to be welcomed.

To sum up, in what follows we will rely on the following Background Logic.

pn-Reduction. ¢[a/x] = ¢[p/x], whenever @ and f are frn-equivalent.

Propositional Logic All substitution instances of propositional tautologies.

17

LO
Lo
L(xX), L(x)
.

Figure 3: Leibnizian schemas, given Comprehension.

Free Logic. ’

Vx(Vy ¢y — ¢x) (Quantified Instantiation)
Vx(gp = w) > Vagp > Vxy (Normality)
VaVy p — Vy)Vx ¢ (Quantifier Exchange)

)

¢ = Vx¢ when x does not occur free in ¢ (Vacuous Quantification

Being. Ixx =«
Comprehension. IXVy(Xy & ¢y)

Note that instances of these schematic principles can contain free variables. When
we affirm such an instance, that should be taken as an affirmation of its universal
closure (that is, the result of prefixing it with enough universal quantifiers to bind
every free variable). We also suppose that modus ponens preserves truth.

With this background logic in place we are in a position to precisely describe the
relationship between our different Leibnizian principles. In section 1 we presented
a lattice of six different forms of Leibniz’s law. Given Comprehension (and our
background logic of quantification) you can’t have L(xy.X) without L(xy), and so
these six positions collapse to four: see figure 3. Again, each of the higher principles
implies those below it in the diagram.

To show that there are really even four different positions, it is useful to provide
models. It is important to distinguish the models that we will introduce here from
the project of giving realistic semantics (of the sort we briefly discussed in section 2).

In the presence of L(), the Quantifier Exchange axiom is derivable from the other axioms of
first-order free logic. However, since in the absence of L(), it is not derivable, it must be taken as an
axiom (see Fine 1983). The situation with the higher-order quantifiers is analogous.

18

We are regarding these models instrumentally as devices for demonstrating certain
facts about logical consequence — in particular, the logical independence of some
of our Leibnizian principles from L() and from one another. We are not taking
them to exhibit what our language is really ‘about’. For example, we can have an
identity sentence @ = b which counts as true in a certain model, even though a and
b denote-in-the-model certain mathematical objects that are really distinct.

Here is the basic idea for how these models will work. In models of classical
logic one standardly uses a domain — a certain set — for two purposes. First, the
domain includes the objects over which the quantifiers are taken to range; second,
it includes the objects which are available to be denoted by terms. In free logic
one standardly separates these two purposes: one introduces an inner domain as well
as a more inclusive ouler domain. The quantifiers range over the inner domain, but
terms can denote arbitrary objects in the outer domain. Thus if ¢ is a predicate
that is satisfied by just those things in the inner domain, and a denotes some outer
element, then Vx ¢px will come out true in the model, while ¢a still comes out false.

We’ll extend this idea by also providing non-standard truth conditions for iden-
tity statements. Standardly, an identity statement ¢ = b is taken to be true in a
model if and only if @ and b denote the very same element of the domain. We will
relax this condition, and instead provide some equivalence relation on the outer
domain which suffices for the truth of identity statements. For each outer element
d there will be some equivalent inner element d’, guaranteeing the truth of Being.

We also need to extend these two ideas to higher-order logic. Standard mod-
els of higher-order logic provide a whole family of different domains, one for each
type. Since we also allow counterexamples to higher-order instantiation, we ex-
tend the ‘outer domain’ idea from the first-order domain to arbitrary types. Thus
for every type ¢ a model will include an inner domain M¢ and an outer domain
No. Likewise, to interpret higher-order identities, we will provide an equivalence
relation on each domain Ne. Depending on which Leibnizian principles we want
the model to capture, we will need to impose certain constraints on how identity is
related to higher-order domains. For example, if a model is to satisty L(X), then the
inner domain M(e — t) should not include any properties that distinguish between
an outer object d and its ‘identical’ inner object d'.

To be more specific, for any types ¢ and 7, the outer domain Mo — 7) will
consist of functions from No to N7 (though not necessarily all such functions).® The
inner domain M(c —) will be some subset of M — 7): so note that the inner
functions don’t just take inner objects as arguments. (This is important for making

8Thus Nis a ‘Henkin model’ (Henkin 1950).

19

sense of expressions like ‘there 1s some property that Hesperus has’.)
Theorem 1. There exist Leibniz models that satisfy our Background Logic, as well as:
(1) L(xX), L(xy), and L(X) but not L().
(1) L(xyX) and L(xp), but not L(X) or L().

As we discussed above, given Comprehension, we cannot have L(xy.X) without
L(xy). It is also straightforward to construct models that satisty none of the Leib-
nizian principles, by interpreting the identity symbol as some arbitrary relation,
but we won’t bother to spell out the details.

The proof (together with more explicit definitions) is given in appendix A; but
here’s one point about our strategy worth highlighting. In order to construct mod-
els it is helpful to consider some apparently stronger Leibnizian principles. L()
implies that the proposition that Hesperus is bright 1s materially equivalent to the
proposition that Phosphorus is bright. But (as we mentioned in section 2) it implies
more: the proposition that Hesperus is bright s the proposition that Phosphorus is
bright. In general L() implies:

LO™ a=p - ¢a=¢p

(Recall: since ¢pa = ¢a, we can apply L() to the predicate Ax(¢pa = ¢x).) We can
also go the other direction, from L()~ to L(), if we assume that identical proposi-
tions have the same truth value:

Truth Value. ¢ =y — (¢ © y)

(In section 4 we will derive this principle from something more general.) One
reason this principle L()~ is technically useful is that, unlike L(), it straightforwardly
generalises to the case where ¢ has some type other than ¢ — ¢ In general, L()~
makes sense when ¢ has any type of the form ¢ — 7 (where the identity on the left
side of the conditional is =, and the identity on the right side is =,).

Likewise each of our other Leibnizian principles has a corresponding ‘strict’
principle which is not about material equivalence but about identity:

L(xpX)™ VaV)VX(x =y — Xx = Xy)
LX)~ VX(a = f - Xa = XP)

L)~ VaVy(x =y — ¢x = @)

20

Again given Truth Value each of these principles about identity entails the corre-
sponding principle about material equivalence. The converse implication also goes
through similarly for L(xy)~. The cases of L(xyX)™ and L(X)~ are a bit more deli-
cate: our derivations of these principles from L(xp.X) and L(X) rely on ideas we will
introduce in section 4.” But we can ignore these niceties if we make a simplifying
assumption:

Extensionality. (p o w) > dp=y

Of course propositions might be finer grained than this — there might be more
than two of them. In general, there are models of our Background Logic that do
not satisfy Extensionality. The inner domain for type ¢ can be an arbitrary set,
representing arbitrary proliferation of distinct but equivalent propositions. The
only special feature that we generally require of the domain of type ¢ is that it
has some distinguished subset of elements representing #ue propositions, as well as
interpretations of the logical constants that have the right truth-functional profile.
For example, there is a negation element in M¢ — ¢) which, applied to any true
element of Vi, produces an element which is not true, and vice versa. These general
models are compatible with propositions being highly structured, like sentences,
or very unstructured, like sets of worlds of truth values. But for the purpose of
providing models that separate these Leibnizian principles from one another, it is
enough to provide extensional models, with the special feature that any pair of true
elements is in the extension of the identity symbol, and likewise any pair of untrue
elements.

Each of our identity principles correspond to a natural constraint on models.
Let ~, be the equivalence relation on No representing identity. Then, for example,
L(X)~ corresponds to the following constraint:

For any inner function f € M(6 — 7), and any outer elements d,d’ € No, if

d~y d then fi ~, fil

That is to say, L(X)™ requires that each inner function preserves identities.

Thus, to prove Theorem 1, it is enough to provide extensional models of our
Background Logic that satisfy (1) both L(xy)™ and L(X)™ without L()~, and (i1)
L(xy)~™ without I(X)~. To do this, it is enough to ensure that the corresponding
model-theoretic constraints hold. We show how to do this in the appendix.

9The case of L(xpX) relies on the assumption that the logical predicate Ay(Xx = Xy) is exportable:
this is an instance of the principle Pure Export that we will introduce later. The case of L(X) is
trickier, since even Pure Export does not guarantee that Ax(Xa = Xx) is exportable — since it
includes the non-logical expression a.

21

4 Purity

At this point many questions about identity remain open. We’ve noted that our
Background Logic does not settle which of the Leibnizian principles L(), L(X),
L(xp), and L(xpX) are true; more generally it settles very little indeed about what
identity can be like. Is identity even an equivalence relation? Could a true proposi-
tion be identical to a false one? Could identical properties apply to different things?
Is the property of being Hesperus identical to the property of being Phosphorus?
In fact, while the answers to these questions would be settled by L(), what we have
put forward so far leaves these questions unanswered. Similarly, we’d like to get
a clearer view of the logic of exportability and transparency. If a is exportable, is
Axx = a? Is AX Xa? Is the constant function Axa? Are these transparent?

In this section we will make some advance from this state of ignorance: there is
a natural position that not only settles the questions we just raised, but also entails
all but the strongest of our Leibnizian principles. The key idea 1s that purely logical
expressions have a special status. While certain ‘cognitively thick” expressions, like
‘believes’, ‘attorney’ or ‘Hesperus’, may be contaminated by intentionality, the lan-
guage of pure logic — things we can say using variables, A-abstraction, quantifiers
and so on — are immune from this contamination. The general idea is that even
if we go so far as to deny L(), we would rather not be pushed into tampering with
familiar facts of pure logic as well. This idea — which we’ll call Purity — will be
elaborated in three different ways.

First, we would like to affirm all the truths of classical higher-order logic which
contain only logical vocabulary. It would be very odd if our views on Frege’s puz-
zle forced us to take a heterodox stand on points of pure mathematics, and many
mathematical facts are statable in purely logical terms. For example, there are in-
finitely many prime numbers. Indeed, the formalization of this claim is a logical
consequence of the second-order Peano axioms, which provides us with a corre-
sponding truth of pure higher-order logic.

VX(PA X — Primes X)

(Here X'is a relation variable of type ¢ = ¢ — ¢, PA is a pure predicate of type (¢ =
¢ = t) = t which formalizes the standard properties of the ordering of the natural
numbers, and similarly Primes formalizes the claim that this structure includes
infinitely many primes.) It would be a shame to give up these arithmetical and
logical insights. Similar considerations apply to many claims from group theory,
analysis, and so on.

22

In section 3 we introduced the idea of models for type theory. Classical models
have several distinctive features. (For details see the appendix.) First, there is no
distinction between an inner and outer domain: there is just one domain for each
type. Second, the domains for higher types are full: the domain of type ¢ —
7 includes every function from the domain of type o to the domain of type 7.
Third, the identity predicate receives a standard interpretation: namely, the same
denotation as Leibniz equivalence, AxQHVX(Xx — Xy). A sentence is a classical
logical truth if and only if it is true in all classical models, in this sense. An expression
is purely logical if and only if it contains no non-logical constants.

The preceding considerations motivate the following principle:

Pure Truth. Each purely logical classical logical truth is true.

So, for example, our formalization of the claim that there are infinitely many
primes in any natural-number structure comes out true. This says nothing, though,
about impure logical truths. So Pure Truth 1s still consistent with failures of uni-
versal instantiation, L(), L(X) and L(xy). On the other hand, observe that L(xy.X)
is a purely logical statement

VaVH)VX(x =y = Xx = Xp)

and so it is settled in the affirmative by Pure Truth.!'?

Our simple statement of Pure Truth belies hidden complexity. For in fact (un-
like the schematic principles we have been discussing) there is no systematic way
of enumerating precisely what the classical logical truths are. This follows imme-
diately from the incompleteness of higher-order logic (which in turn follows from
Godel’s first incompleteness theorem; see Shapiro 1991, ch. 4). The classical log-
ical truths are not recursiwely axiomatizable; accordingly, the purity package we are
outlining is not recursively axiomatizable either: the set of sentences it comprises is
highly complex. That’s just how it goes: the truth about any sufficiently complex

1Tt should be noted that there may be counterexamples to Pure Truth that have nothing to do
with opacity, but rather with very general issues concerning set-theoretic semantics for higher-order
languages. For example, there is a pure sentence of higher-order logic that states that the universe
has the size of the first inaccessible cardinal; if this sentence were true, it would be false in every
classical model. (Roughly, this is because classical models are set-theoretic entities, and thus they all
have domains that are strictly smaller than the total number of things.) The principle that says that
these sorts of scenarios do not arise is called Areisel’s principle, and it is highly non-trivial: it implies
the existence of many large cardinals (see Shapiro 1987). Since these issues concerning the size
of the universe aren’t our direct concern here, we will simply take Kreisel’s principle for granted
without further argument.

23

subject matter is complex, and as it turns out the logic of properties is sufficiently
complex in the relevant sense. This has nothing special to do with opacity; it is just
a feature of working in a higher-order context.

Our formulation of Pure Truth has the consequence that identity just ¢s Leibniz
equivalence:

The Identity Identity. (=) = AxHVX(Xx — Xy)

Some might take exception to the Identity Identity on the grounds that propo-
sitions, properties, and relations are highly structured, ‘fine-grained’ entities. For
example, one might think that ‘snow is white and grass is green’ expresses an equiv-
alent but distinct proposition from ‘grass is green and snow is white’. So likewise
in this case one might think that while identity 1s equwalent to Leibniz equivalence
— 1n the sense that they each apply to the same pairs of elements of any classical
model — they are distinct relations even so.

In a sense, we hard-coded the Identity Identity into our formulation of the
Pure Truth principle, in our definition of a ‘standard interpretation’ for the identity
symbol. This could be avoided by suitably modifying the Pure Truth principle; for
instance we might allow intepretations of identity with the standard application
conditions, without wentifying the interpretation of identity with the interpretation
of Leibniz equivalence.!! But while this move is available, it does not seem well-
motivated: even for those with fine-grained views of relations, it’s hard to see what
the value of drawing this particular distinction would be. If there are indeed many
different relations that are all logically equivalent to Leibniz equivalence and to
one another, it’s hard to see the question of which of these relations is really identity
as deep and important. From this vantage, using the label ‘identity’ for the relation
of Leibniz equivalence seems like a natural and unobjectionable choice.

In addition to Pure Truth, considerations of purity motivate another princi-
ple. We have distinguished between exportable and non-exportable expressions;
for instance ‘Hesperus’ and ‘Jack the Ripper’ do not always license existential gen-
eralization or universal instantiation, but other expressions do — variables, par
excellence. 'The second Purity idea is that, just as variables are exportable, so are all
other purely logical expressions as well.

"n the context of the general model theory for higher-order logic introduced in section 3, the
type ¢ domain, representing the set of ‘propositions’, is an arbitrary set, with some subset repre-
senting the ‘true’ propositions. So in general there will be many different functions that take each
identity-pair (4, d) to some ‘true’ element of the type-¢ domain, and each non-identity pair (d, d") to
some ‘false’ element. Leibniz equivalence denotes one of these functions, but one might interpret
the identity symbol as any other such function.

24

Pure Export. Vx ¢px = ¢a, where a 1s purely logical.

Note that (as before) we are affirming instances of Pure Export where @ may have
any type. Note also that (as before) by affirming this schema, we are also affirming
the universal closure of each instance. For example, the expression AX Xy 1s ex-
portable, which is to say that every instance of Vy(Vx ¢px — ¢p(AX Xy)) is true. (To
put that a bit more roughly: for any thing, the higher-order property of applying to
that thing is exportable.) Our principle of Quantified Instantiation Vy(Vx gpx = ¢y)
1s another instance of Pure Export, where @ 1s simply the variable y. Indeed, we can
think of Pure Export as an alternative principle of universal instantiation, which 1s
intermediate between the classical principle and the weaker quantified principle.

Another consequence of Pure Export is that exportability is closed under ap-
plication: if ¢ (of type ¢ — {) and a (of type o) are each exportable then so is
¢a (of type 7).'? One more consequence that will prove important is that Leibniz
equivalence itself, being purely logical, is exportable. '

Let w be a predicate (of type 7 — #). This is an instance of Pure Export:
VXV)(Vxyx = w (X))
If ¢ is exportable, we can instantiate it for X:

Vy(Vxwx — w(dy))

Likewise, if & is exportable, we conclude:

Vxwx — y(pa)

That 1s, ¢a is exportable.

Alternatively, we could treat this fact as an axiom, and then derive Pure Export from some basis
for the logical expressions. For instance, suppose that the combinators S and K are each exportable
(that 1s AxAyAzxz(yz) and AxAy x), as are the logical constants. Suppose further that exportability
1s closed under application. Then Pure Export follows. (Note that these combinators are really
an infinite family of terms of various types. There 1s an §' combinator for each type of the form
(p >0 —>1)—> (p = 0) > p — 7, and similarly a A combinator for each type of the form
c—=>7T->0.)

¥Recall that L(xy) says that exportable co-denoting terms are intersubstitutable. If we combine
this principle with Pure Export, we can conclude that logical co-denoting terms are intersubsti-
tutable: that is, for pure terms @ and g, if « = f and ¢a then ¢f. One might worry that this
would commit us to logical omniscience: anyone who believes one logical truth believes them all. But
this does not follow. It would follow from the principle that logically equivalent terms are intersubsti-
tutable. But to be logically equivalent is not to be logical, and equivalent (that is, co-denoting). Both
parts are wrong, First, there are many logical truths which are not purely logical sentences (like ‘if
snow is white then snow is white’) and many purely logical sentences which are not logical truths

25

Our third Purity principle is an idea we invoked in section 1: namely, that
purely logical predicates are transparent. As we noted earlier, while being believed to
be bright may apply to Hesperus without applying to Phosphorus, whether Hespe-
rus 18 bright 1s simply a matter of what a certain planet is like: ‘bright’ is transparent.
The 1dea here is that logical predicates are like brightness rather than belief.

Pure Transparency. a = f — ¢a — ¢f, where ¢ is a purely logical predicate.

In section 1 we appealed to this principle to argue for L(xy) and L(X): purely logical
predicates are transparent.

For example, since Ap p is purely logical, we can derive for any sentences ¢ and
v

b=y = (pp)p — (Appw
So by f-reduction,
b=y —>d->y
In other words, if ¢ is true and y is not they are distinct, which answers one of
the questions we raised earlier: the Truth Value principle follows from Pure Trans-
parency.

Pure Transparency is closely related to the Leibnizian principle L(X). Indeed,
L(X) follows from an instance of Pure Transparency where ¢ is simply the variable
X. (We also gave an alternative argument in section | that only relied on the trans-
parency of closed pure terms.) We can also go in the other direction, if we assume
Pure Export: in that case we can instantiate the higher-order variable X in L(X)
with an arbitrary pure predicate.

Note that Pure Transparency only applies to predicates of one argument (terms
of type 0 —). In striking contrast, a parallel principle for binary predicates (of
type ¢ — 7 — {) is untenable:

a=a — f=p > ¢af - ¢pa’p’ where ¢ is purely logical (8)

This principle is incompatible with opacity. Just consider this instance, where the
binary logical predicate is application, AXAy Xy

p=¢ = a=p - (AXhX)pa = (AX Xy)pp

(like ‘there are exactly three things’). Pure Export is not concerned with logical truths, but with
expressions which only involve logical vocabulary. Second, for all we’ve said, logically equivalent
sentences (whether or not they are pure) need not express the same proposition. This would be to

take a stand on a question on which we have been officially neutral — the question of fineness of
grain.

26

By f-reduction this implies the strongest Leibnizian principle L().

In general we should take care to distinguish between cases that involve ap-
plication to one argument and those that involve multiple arguments. One might
think that the two-argument principle (8) could be derived by applying Pure Trans-
parency twice.

a=a' — paf ~ pa'p
p=F — ¢a'f~ pa'

But in fact neither of these is an instance of Pure Transparency, because neither
of the corresponding predicates Ax ¢pxf or Ax ¢pa’x are pure. Once a pure binary
predicate has had one of its arguments filled with an impure term, the resulting
monadic predicate is no longer pure — and thus it is not suitable for instantiating
Pure Transparency.

The combination of these three principles — Pure Truth, Pure Export and
Pure Transparency — we call Purity. Purity 1s powerful: it can be used to settle the
questions about identity, exportability and opacity raised at the beginning of this
section, and it implies each of the Leibnizian principles other than L(). In fact we
don’t need all three principles as independent assumptions. Given our background
logic, Pure Truth and Pure Export suffice on their own, and alternatively so do
Pure Truth and Pure Transparency. In either case we can derive the third Purity
principle, thus showing that they are not independent, but rather form a mutually
supporting package.

Call the following schematic principles the Nice Principles:

Pure Truth. Each purely logical classical logical truth.

Pure Export. Vx¢gx — ¢a, where a is a purely logical expression.

"Sometimes one simulates binary predication by applying suitable monadic predicates to ordered
pairs. Suppose we enrich our type theory with ordered-pair types ¢ X 7, with a pairing term pair
of type 0 = 7 — o X 7, and projection terms z; and &, of types 6 X 7 = cand o X 7 — T,
respectively. If these pairing operations also count as logical, then Purity demands that we reject a
standard principle about the identity of ordered pairs:

a=a — f=p — pairaf = pair a’p’

If we accepted this principle, then given B = B and a = b we would have pair Ba = pair Bb. But
then, consider the expression Ax ((;x)(;,x)) (which applies the first element of a pair to the second
element). If this is logical, and thus transparent, it would follow that Ba = Bb, contradicting the
Triad.

27

Pure Transparency. a = f — ¢a — ¢f, where ¢ is a purely logical predicate.

Equivalence.

a=a (Reflexivity)
a=f > a=y - =y (The Euclidean Property)

Truth Value. a = - a > f
Functionality. ¢ =y < Vx(¢x = wx)

Leibniz. L(x.X), L(X), L(xy), L(x»X)~, L(X)~, and L(xy)~.

The only principle we have not yet discussed is Functionality. Informally, this says
that the inhabitants of functional types are completely determined by their behav-
ior with respect to application. If ¢ and y, both of type ¢ — 7, produce equal
values for each input, then they are themselves equal, and conversely, if ¢ and y
are the same, they produce the same values for each input. (In classical contexts
the left-to-right direction is not typically stated explicitly, since it follows from L().)
The above principles aren’t anything like a complete and independent set of
axioms. (Indeed, we’re about to show that they are very far from independent.)
Rather, these principles make a handy starter kit for reasoning in this quasi-Leib-
nizian setting. Moreover, we need not go on carefully distinguishing each of these
variant forms of Leibniz’s law, since all of them follow from our Purity principles.

Theorem 2. Pure Truth and Pure Export together imply each of the Nice Principles (given our
Background Logic, stated in section 3).

Theorem 3. Pure Truth and Pure Transparency together imply each of the Nice Principles
(gwen our Background Logic).

These are proved in appendix B.

Recall that in section 1 we argued for L(X) and L(xy) from L(xy.X) and the idea
that logical predicates are transparent — that 1s, the idea of Pure Transparency.
So Theorem 3 reinforces and extends this point: each of the Leibnizian principles
L(xX), L(xp), and L(X) follows from Purity.

Answering the questions we raised at the beginning of this section — for exam-
ple whether AX Xa is exportable whenever a is, and likewise whether this is trans-
parent — is now an easy exercise. (In fact, this is both exportable and transparent.)

28

Another application is that, if Hesperus 1s Phosphorus, then the property of be-
ing Hesperus is the property of being Phosphorus. This follows from instantiating
the higher-order variable in L(X)~with the purely logical predicate AyAxx = y:

a=b —» (Mxx=a)=(Axx=0)

We can thus make good on our promise from section 1 to give an example of a
predicate which is transparent but not exportable. Suppose that Asher believes
Hesperus 1s Hesperus, but does not believe Hesperus is Phosphorus; or to put it
another way, Asher believes Axx = a applies to a, but Asher does not believe Axx =
b applies to a. But these are the same property: so atleast one of Axx = ¢and Axx =
b 1s not exportable, since otherwise they would be intersubstitutable (by L(xp)). On
the other hand, they are both transparent. This follows from Equivalence:

a=f - (Mx=aa - (xx=a)f

(Likewise for Axx = b.)

Let’s highlight one further perspective on Purity: we can generalize Pure Truth
from sentences to monadic predicates. Say that a predicate ¢ (of type ¢ —) is
unwersal 1Y 1t 1s purely logical and and applies to every element in the 6-domain of
every classical model.

Pure Properties. ¢a, where ¢ is a universal predicate.

Pure Properties turns out to be a consequence of Purity (see appendix B). But also,
conversely, Pure Properties encapsulates the entire package on its own:

Theorem 4. Pure Properties implies the Nice Principles, giwen our Background Logic.

In fact, this result relies on much less of our Background Logic than the other
purity results, because much of our Background Logic immediately follows from
Pure Properties. Specifically, each of the principles that have only one schematic
variable immediately follows from Pure Properties, because each of them follows
by f-reduction from the application of a universal predicate to one arbitrary term.
This covers everything except for fn-Reduction, Propositional Logic, and Normal-
ity. Thus, Pure Properties together with just these three additional assumptions
suffice to derive all of our Background Logic, Purity, and the Nice Principles.

Note that one should resist the temptation to generalise even further: the prin-
ciple which is analogous to Pure Properties for universal relations is inconsistent with
opacity. Consider this two-place universal relation:

AAXVy(x =y = Xx = Xp)

29

L0
|
L(xvX), L(xy), L(X)

Figure 4: Leibnizian schemas, given Purity.

If this applied to every @ and ¢, then L() would follow. This is an instance of the
general issue that we raised earlier: broadly speaking, while it is compatible with
opacity that each particular term taken on its own has every classical property, the
same does not go for pairs of terms taken together.

Given Purity, then, our original six positions on the lattice of Leibnizian prin-
ciples have collapsed to two (figure 4): the classical position that takes on board all
of the Leibnizian principles including L(), or the position that takes on board all of
the Leibnizian principles except L(), allowing for opacity.

As 1n section 3, to demonstrate that there are really even /wo distinct positions
here, we would like to provide a model of the Purity principles in which L() is not
true. Doing this would establish the following conjecture:

Conjecture 1. L() does not follow from Pure Properties (given our Background Logic).

At one point we believed we had produced a heroically complicated proof of
this conjecture. Heartbreakingly, this turned out to be mistaken. The general strat-
egy (which we still think might work) was to use the same idea we discussed in sec-
tion 3, using a family of ‘inner’ and ‘outer’ domains and a non-standard interpre-
tation of identity. The extra challenge is to construct a model which satisfies Pure
Properties without being fully classical. We hoped to do this by letting the ‘inner’
higher-order domains constitute a classical substructure of the whole model. That
1s, the inner domains would make up a classical model of higher-order logic, and
each purely logical term would receive the same denotation in the ‘inner model’
as it does in the ‘outer model’.

This turns out to be difficult for a couple of reasons. You might hope that an
arbitrary classical model could be extended to some other full model, or at least
that especially simple models could be extended this way. This hope is vain. In
fact, no classical model with finite domains is a substructure of any full model. We
include a proof in the appendix. Thus, for any pair of an inner and outer model
of the sort we are looking for, either the inner model is infinite, or the outer model
1s not full. Either case raises complications.

The second reason things get difficult is that the combination of Purity and

30

opacity seems to require (somewhat to our dismay) that propositions and relations
are fine-grained. We can illustrate the problem by supposing that relations are
very coarse-grained: suppose that there are no distinct coextensive (higher-order)
relations. Since L(xy.X) tells us that the relation

Ay AX(x =y = Xx = Xy) 9)

1s coextensive with

Ax Ay AXT (10)

if relations are determined extensionally then these relations are identical. But as
we’ve shown, Purity implies that for purely logical terms a and S, if « = f is true
then a and f are intersubstitutable. So (9) and (10) are intersubstitutable. For
any terms «, f, and ¢, we know that AL {af¢ applies to (10), so it also applies to
(9). But then (by f-reduction) it follows that there is no opacity at all. Moreover,
this same kind of argument goes through using assumptions much weaker than
extensionality. Indeed, if we think of L(xp.X) as a logical truth, then in a natural
sense Purity and opacity require us to distinguish logically equivalent relations.

At this point, then, it remains an open question whether the full Purity package
is really compatible with opacity.

So far we’ve been using the terms ‘exportable’ and ‘transparent’ as metalin-
guistic predicates of expressions. One may wish to introduce these notions to the
object language, using a predicate £, of type o — ¢such that £, a is true whenever
@ 1s an exportable expression of type o. Similarly one could introduce a trans-
parency predicate 7, of type (6 —) — t. We see no obstacle to enriching the
language in this way, but one must take care: the predicates £ and 7 are themselves
neither exportable nor transparent, if there is any opacity at all. Suppose a is not
exportable. By Being there is some x such that x = a. Furthermore by Pure Export,
x 13 exportable. So ‘exportable’ is not transparent. Similarly, suppose that /'is not
transparent. By Being there is some property X such that X = F. By Pure Trans-
parency X is transparent. So ‘transparent’ is not transparent. Finally, L(X) says
that exportable predicates are transparent, so neither £ nor 7 is exportable either.
One consequence of these observations is that if there 1s any opacity, then neither £
nor 7 is definable in purely logical terms (since by Pure Export any such definition
would be exportable, and similarly by Pure Transparency it would be transparent).
Of course, the existence predicate Ax 3y y = x won’t do to define exportability — as
we have discussed, being something does not suffice for being exportable. What
this shows 1s that no other logical predicate will do, either.

31

One question we have not attempted to answer is, in general, which predicates
are opaque, and which are transparent? The reader may feel unsettled by this
silence. Applications of Leibniz’s law are pervasive in the sciences and in ordinary
reasoning, but these applications are not sanctioned as logically valid insofar as
they involve logically impure expressions. Since Pure Transparency doesn’t help
us in these cases, how are we to know when we are reasoning with transparent
predicates? According to the view defended in this paper, this is not a question
of logic, but of philosophy. By analogy, the free logician tells us that existential
generalization 1s not generally valid — but that isn’t to say that one can’t conclude
from the fact that seven is a prime number that there are prime numbers; for in fact
seven 1s something, unlike Zeus or Pegasus. This contrast between what 1s (such as
seven) and what is not (such as Zeus) is not given to us by logic alone. The same goes
for the contrast between transparent and opaque predicates. The question of which
predicates are ‘worldly’, rather than ‘representational’, is important and difficult.
Some cases seem relatively clear — belief belongs on one side and mathematics on
the other — but many cases are contested, such as contingency, vagueness, chance,
or value. The logic of opacity provides a framework for asking these questions, but
does not answer them.

A Leibniz Models

Definition 3. The (relational) types are inductively defined as follows: ¢is a type,
and o; — ... = 0, — tisatype for any relational types oy, ..., 6,. (For n = 0, this
is the type) Let 6" — ¢ abbreviate the type 60 — ... > 0 — L.

A typed family of sets is a function from types to sets.

If X and Y are typed families of sets, a typed family of functions / : X — 1
1s a function from types o to functions from Xo to 1o.

Definition 4. Let I"be a typed family of countably infinite sets: the variables.
Let €' be a typed family of sets: the constants. The terms (based on () are
the elements of a typed family of sets L, inductively defined as follows, using the
shorthand a : ¢ to mean that a 1s a term of type o:

c.0o for each constant ¢ € Co
X.0 for each variable x € Vo
ab . T fortermsa : 6 > tandb : o
Aaioc—-1 for each variable x € Vo and terma @ 7

32

We assume in what follows that the constants include the following logical
constants:

> >l
Voi(c—=0)—>1t for each type o

=,:0->0—>1 for each type o

We assume for simplicity that the other logical connectives, such as conjunction,
negation, and the existential quantifier, are defined in terms of these in some stan-
dard ways; this allows us to interpret arbitrary formulas of higher-order logic. For
the sake of verifying the #uth of the principles we are interested in, it doesn’t re-
ally matter which of the various available definitions we use, as long as they are
truth-conditionally standard.'” A term is purely logical iff it does not contain
any non-logical constants.

In section 3 we said that the higher-order domains of our models contained
functions; but in fact, it is technically convenient to use a slightly broader notion of
things that can be ‘applied’ (as in, e.g. Benzmiiller, Brown, and Kohlhase 2004, p.
1033).

Definition 5. An applicative structure (for constants () consists of

1. A typed family of sets M — the domains,
2. An operation *,_,, : M(c — t) - Mo — M~ for each types ¢ and 7,

3. Yor each variable assignment — cach typed family of functionsg : /' —
M from variables to domains — a typed family of functions M, : L - M
that takes each type-o term to an element of the type-oc domain. These are
required to have the following properties:

Mg(x) = gx for each variable x
M(c) = M,y (c) for each constant ¢ and any assignments g and g’
]\/[g(ab) =Mga>l<2\/[gb fora:oc—>tandb : o
Z\/[g(/lx a) % d = Mg[xr—)d]a fora : Tand x : o, for each d € Mo

Here g[x — d] is the assignment that agrees with g on all variables other than
x, and maps x to d.

5To see that this is a complete basis, note that =¢ can be defined as ¢ — Vpp. For some of
the systems we will discuss, identity could be defined in terms of Leibniz equivalence, rather than
taken as an additional primitive constant.

33

For a closed term a, let Ma be M,a for an arbitrary assignment g.
Definition 6. Let M be an applicative structure.

» M is functional iff the operation * is injective (considered as a function from
M(c — 7) to the set of functions Mo — Mr).

» M is full iff * is surjective (in the same sense).
* M is non-trivial iff Mo contains at least two elements for each type o.
* M is extensional iff Mi = {0,1}.
Definition 7. A Leibniz structure consists of
1. An applicative structure .V, the outer structure,
2. A typed family of subsets Mo C No, the inner domains,

3. A typed family of functions r : N — M, the representative functions,
and

4. A function v : Mt — 2, the valuation (where 2 = {0, 1} with the usual
ordering).

These are required to obey the following constraints. We say p € M is true iff
o(rp) = 1; we say p < g iff o(rp) < v(r,g). Wesay a ~; biff rpa = 1r,b.

1. For each inner element ¢ € Mo,

2. For each outer function F € Mo — 7) and inner element d € Mo,

Too ' xd~ Fxd

3. Yorp,q € M,
M=) * p*qistrueiff p < ¢

4. For each outer function F € Mo — 1),

MV,) * Fis true iff FF'* d is true for every inner element d € Mo

34

5. Fora,b € No,
M=,)*a*xbistrueiffa ~, b

As we discussed in section 3, a Leibniz structure includes a family of equiva-
lence relations for each type; these correspond to object-language identity accord-
ing to constraint 5. Here we define these equivalence relations in terms of a family
of representative functions r : N = M. This approach kills several birds with one
stone. It guarantees that ~ is an equivalence relation just from the structure of'its
definition. It guarantees the Being condition, since each outer element d is equiva-
lent to its representative inner element r;d. It guarantees L(xy), since no two inner
elements are equivalent to one another. (If d and ¢’ are each inner elements such
that d ~ d', then in fact d = d'; so for an arbitrary outer element F € Mo — 7),
clearly F % d ~ F =« d'.) In combination with our definition of truth in terms of
a valuation function on the mner domain of propositions, this approach also auto-
matically guarantees the Truth Value condition, that truths are only equivalent to
truths.

Condition 2 of the definition guarantees one direction of Functionality: for
any outer function, its equivalent inner function is_functionally equivalent to it. This
in turn implies Comprehension. Conditions 3 and 4 of the definition have the
effect of ensuring that classical propositional logic and standard free logic hold.

We can make these points more precise with the following lemmas.

Definition 8. A term ¢ . {1is true in a Leibniz structure (M, N, r, v) iff for each
variable assignment g, the element J\Q,d) € Mt is true. That is, v(rt(]\(g(;b)) =1.

Lemma 1. For any Letbniz structure S, truth-in-S ts closed under modus ponens, as well as
unwersal generalization in the following form: if ¢ — y is true in S and x is not free in P, then
¢ — Vxy is true in S.

Proof” 'This follows straightforwardly from conditions (3) and (4) of Definition 7. [
Lemma 2. Let S be a Letbniz structure.

1. Each Background Logic principle (section 3) s true in S.

2. Each instance of L(xyX)™ and L(xy)~ is true in S.

3. Each instance of L(X)~ is true in S ff

Fxrd~_ Fxd foreeryFe€ M — {)andd € No (LX)

35

4. Extensionality ts true in S ff M is extensional.

Lemma 2 is straightforward to prove from the definitions. Note that property
(LX) says that each inner function F preserves equivalence.

Lemma 3. There exist Letbniz structures that have property (LX), and there exist Letbniz
structures that do not have property (LX). In particular, there exist extensional Leibniz structures
of these two sorts.

Proof. Let Nbe any full and functional applicative structure such that Ve and Nt each
have at least three elements. We will simultaneously define M/ € Nandr : N - M
by induction on types. For the base types, let Me and Mt be arbitrary proper subsets
of Ne and M that each contain at least two elements. Let r, : Ne — Me and
7, Nt = Mt be any functions that fix Me and M¢, respectively.

For any types ¢ and 7, we will define as follows. For each function F :

Yooz
Mo — Mz, there are many elements /' € Mo — 7) that extend F, in the sense that
Fxd = Idfor any d € Mo. We will pick one such element F'in one of two ways —
depending on whether we want to guarantee that (LX) holds or that it does not.

To guarantee (LX), we choose F such that
Fxd~_Fr,d) foreveryd€ No

For the alternative, we ensure that for at least one function £, the extension F does
not satisfy this. Then, for any function G € Mo — 7), let7,_, .G be F, where Fis
the function that takes each d € Mo to r,(G * d). Let M(c — 7) be the range of
75—, Or in other words, the set {77| F: Mo — Mrt}.

It’s straightforward to check that » meets conditions (1) and (2) of Definition 7.

We also need to define the valuation function v : Mt = 2. We can let v be
any such function such that at least one element is mapped to 0 and at least one is
mapped to 1. Finally, we can define the interpretations of the logical constants: for
each pair of propositions p, ¢ € M, we can pick some arbitrary element p — ¢ € M
with the appropriate truth-value, and likewise for the quantifiers (using the fact that
the outer model Nis full, and so appropriate elements of M¢ = ¢ — ¢) and M(c —
) = t) exist). This guarantees conditions (3), (4), and (5) of the definition. U

Theorem 1 in section 3 immediately follows from Lemmas 1, 2, and 3.

36

B Purity Theorems

In section 4 we stated that certain Nice Principles are derivable from each of three
variations on the Purity package. Here we will show how this can be done.

First, let’s give the precise definition of the notion of a classical structure we
adverted to in section 4.

Definition 9. An applicative structure M is classical iff M is full and functional,
and additionally, for each type o,

M=, = MGV, XXx - Xp))

o—1
(This constraint corresponds to the Identity Identity.)
Theorem 2. Pure Truth and Pure Export together imply each of the Nice Principles.

Proof Sketch. We noted above that L(xyX) 1s an immediate consequence of Pure
Truth. We have also already shown in section 3 that given Comprehension (part of
our Background Logic), L(xyX) implies L(xy). This means that if « and 4 are each
exportable terms, and a = b, then a and b are intersubstitutable: if ¢pa, then ¢b.

Recall that Pure Truth (as we have formulated 1t) also implies the Identity Iden-
tity: the identity relation = is identical to Leibniz equivalence AxApVX(Xx — Xp).
Furthermore, Pure Export says that identity and Leibniz equivalence are each ex-
portable. Using this fact together with L(xy) lets us prove that identity is well-
behaved. For instance, AX Xaa applies to Leibniz equivalence (this just says that a
has any property that a has). It then follows by L(xy) that this also applies to iden-
tity, which (using f-reduction) implies that ¢ = a. A similar argument shows that
identity has the Euclidean property, by considering higher-order properties of the
form AX(Xab — Xac — Xbc). This proves Equivalence.

The same style of argument also lets us prove L(X) from L(xy) and the Identity
Identity, this time using the property AY'VX(Yab — Xa — Xb). Again, Leibniz
equivalence has this property as a matter of straightforward quantificational logic,
so by L(xy) and Pure Export, identity has it as well, which is what L(X) requires. As
we mentioned earlier, L(X) (given Pure Export) also suffices for Pure Transparency.
We also already noted that Pure Transparency implies Truth Value.

Next we will prove Functionality:

b=y o Vx(dx=yx)

We can start by applying Pure Transparency to the pure predicate A7Vx (Yx = Xx),
to conclude:
VX(¢ = X = Va(¢px = Xx)) (11)

37

By Being, there is some property X equal to ¢ and some property ¥ equal to y.
Then (11), with Equivalence, implies:

Vx(px = wx) < Vx(Xx = Tx)

Furthermore, by Equivalence ¢ = y iff X = 7, which in turn holds iff Va(Xx = ¥x)
(the latter 1s an instance of Pure Truth). Putting these biconditionals together gives
us Functionality.

Deriving the strict Leibnizian principles L(xpX)~, L(xy)™ and L(X)~ is left as
an exercise.'® [

Theorem 3. Pure Truth and Pure Transparency together imply each of the Nice Principles.

Proof. In light of Theorem 2, it suffices to prove Pure Export from these assump-
tions. Let ¢ be an arbitrary predicate, and let @ be an arbitrary pure term. Note
that in this case the predicate

AY(Vx Tx = Ta) (12)

1s pure and thus transparent by Pure Transparency. By Being, there 1s some prop-
erty X identical to ¢. Note also that X has the property (12), by Pure Truth. So,
since X = ¢ and (12) is transparent, it follows that this predicate also applies to ¢.
By p-reduction we can then conclude

Vx gpx — ¢pa
which is just what Pure Export says.]

Call a predicate ¢ : ¢ — ¢ universal iff it is purely logical and applies to
every element in the o-domain of every classical structure. Consider the following
schema:

Pure Properties. ¢a, where ¢ : 0 — fis universal and @ : o.
Theorem 4. Pure Properties is equivalent to the Nice Principles.

Proof First we show that Pure Truth and Pure Transparency imply Pure Properties.
Suppose ¢ : ¢ — tis universal, and @ : o is arbitrary. By Pure Transparency we
have Vx(x = @ = ¢x = ¢a), and then by quantificational logic Vx ¢px — Fx(x =

"Hint: the case of L(X)~ is the trickiest. Use the fact that Being impliesa = f — Jn(x =
a A x=p).

38

a) — ¢a. Since ¢ is universal, Vx ¢hx 1s true in every classical model, and thus true
by Pure Truth; and 3x x = a 1s true by Being. Thus ¢a is true.

For the converse, it suffices to show that Pure Properties implies Pure Truth
and Pure Export. These immediately follow from applying Pure Properties to the
following universal predicates:

Ax ¢ where ¢ is a purely logical sentence true in all classical structures (13)
AX(VMy Xy —» Xa) where « is purely logical (14)
[

C Models of Purity

Our final ambition is to provide models for Purity without L(). Unfortunately, we
have not yet succeeded in this ambition, but here we provide some notes on our
progress which we hope will be helpful.

First, note that Pure Export requires that each purely logical expression denotes
something in the #ner domain of our structure. Thus the inner domains aren’t just
an arbitrary family of sets, but rather A/ s itself a smaller applicative structure living
within the larger structure V. Furthermore, since exportability is preserved under
application, this means that application within this smaller structure A agrees with
application on the larger structure N. That is, Purity requires that M is a substructure
of N, in the following sense.

Definition 10. Let M and . Nbe applicative structures. Then M is a substructure
of Niff

1. Mo C No for each type o

2. Each application operation *_,
operation in N to M(c — 7) and Mo

in M is the restriction of the corresponding

3. For each term a and assignment g of values in M, M,a = N,a.

Our strategy has been to construct a pair M and N where M is a classical proper
substructure of V.!7 Tt is helpful to understand a constraint that makes this task a
bit more difficult than it might otherwise seem.

"Note, though, that this is not the only way in which we might proceed. An alternative would
be to use an inner model which is not classical, but still satisfies Pure Truth. There are such models,
by the Lowenheim-Skolem Theorem.

39

Definition 11. An applicative structure M is finitary ift Mo is finite for each type
c.

Theorem 5. No finutary, full, and functional applicative structure is a proper substructure of
any full structure.

Proof Consider the Church numerals, which are terms of type (t =) = t = ¢
given as follows:

¢ = AXAxx
Cpy1 = AXAx X(c, Xx)

That is, the nth Church function takes a ¢ — ¢ function and composes it with itself
n times.

If the domain of type ¢is infinite, then these terms each denote distinct functions
(in which case they are useful for the purpose that Church put them to, of encoding
arithmetic using expressions of the pure A-calculus). But if the /~domain is finute,
then the denotations of some of these numerals collapse: there are infinitely many
terms, and only finitely many functions for them to denote. Furthermore, which of
these numerals collapse depends on the size of the type-f domain. For any numbers
0 < m < n, there are functions ¢; and ¢ that denote the same function (Mt — Mi) —
Mt — Mt when |Mt| = m, but are distinguished when |M¢| = n.18

Now suppose that M is a full, functional, and finitary applicative structure,
which is a proper substructure of a full structure N. Since Nis full and 0 < |M¢] <
| Vi, it follows that there are ¢; and G such that M(c;) = M(cj), but Mc;) # N(cj-).
But since M is a substructure of N, M(¢;)) = Mc;) and M(¢;)) = Mc)). This is a
contradiction. U

The upshot is that any model of Purity without L() has to have one of two
features: either the outer model is not full, and thus not simply given by the space
of functions, or else the inner model is infinite.

Definition 12. A purity structure is a Leibniz structure (M, N, r,v), where M
does not just provide a family of subsets of the N-domains, but rather M is a classical
substructure of NV, and which furthermore satisfies this constraint:

r,(I'xd)=F+r,d foreachinner '€ M(c —) and outer d € No (*)

®Thanks to Eric Wofsey for a proof of this: see http://math.stackexchange.com/q/
2208850/ . In particular, for 0 < m < n, we can leti andjbe n —2 and m! +n — 2.

40

http://math.stackexchange.com/q/2208850/
http://math.stackexchange.com/q/2208850/

Constraint (*) says that the representative function r commutes with inner pred-
icates. This is a simplified form of the property (LX) that encodes L(X)™: it reflects
the object-language claim that for exportable X and y, if @ = y, then Xa = Xy. This
alternative formulation is possible because we are now also assuming that exporta-
bility is closed under application (since the inner domains, Mo, form a model). So
since [" and r;d are each ‘inner’ elements, it follows that F * 7, is also an inner
element; thus it is not merely equiwalent to the inner element » (/" * d), but the very
same model-theoretic object.

Note that of the original five conditions in the definition of a Leibniz structure
(Definition 7), conditions 3, 4, and 5 follow from assigning classical denotations to
—, V,, and =; in the inner structure A, and condition 2 follows from (*) together
with condition 1 of Definition 7."Y Thus to construct a purity structure, it will
be enough to construct a classical substructure M of an applicative structure N,
with a family of functions » : N — M that satisfies (*) and fixes M (condition I of
Definition 7).

Lemma 4. If S is a purity structure, then each instance of Pure Properties is true in S. Thus
S satisfies each of the Nice Principles.

Proof Suppose ¢ 1s a universal predicate, and let ¢« = Na and FF = M¢p = Ng.
Since ¢ 1s universal and M 1s classical, o(F * d) = 1 for each d € Mo. In particular,
ry,a € Mo, and so

o(r,(M@a))) = v(r(F'* a)) = v *r,a) = 1
That is, ¢pa 1s true in S. 0

Conjecture 2. There exists a purity structure.

References

[1] Christoph Benzmiiller, Chad E. Brown, and Michael Kohlhase. “Higher-
Order Semantics and Extensionality”. In: Journal of Symbolic Logic 69.4 (2004),
pp. 1027-1088.

“For d € Mo, consider G = M, ;(AX Xy). For any F € Mo — 7), F* d = G * F. Thus using
(*), the fact that M is closed under application, and the fact that 7, fixes each element of M_,

r(Fxd) =1 (GxF) = Gxr, F=r, Fxd=1.

=T

Fd)

41

2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]
[12]

[13]

[14]

[13]

[16]

David J. Chalmers. “Two-Dimensional Semantics”. In: Oxford Handbook of
the Philosophy of Language. Ed. by E. Lepore and B. Smith. Oxford University
Press, 2006.

Mark Crimmins and John Perry. “The Prince and the Phone Booth: Re-
porting Puzzling Beliefs”. In: Journal of Philosophy 86.12 (1989), pp. 685—711.

Cian Dorr. “To Be F Is To Be G”. In: Philosophical Perspectives 30.1 (Dec. 1,
2016), pp. 39-134.

Cian Dorr. “Transparency and the Context-Sensitivity of Attitude Reports”.
In: Empty Representations: Reference and Non-existence. Ed. by Manuel Garcia-
Carpintero and Genoveva Marti. Oxford University Press, 2014, pp. 25—
66.

Kit Fine. “The Permutation Principle in Quantificational Logic”. In: Journal
of Philosophical Logic 12.1 (1983), pp. 33—37.

Gottlob Frege. Conceptual Notation and Related Articles. Trans. by Terrell Ward
Bynum. 1 edition. Oxford: Clarendon Press, 2000. 306 pp.

Gottlob Frege. “On Sense and Reference”. In: Arguing About Language. Ed. by
Darragh Byrne and Max Koélbel. Routledge, 2010, pp. 36-56.

Allan Gibbard. “Contingent Identity”. In: Journal of Philosophical Logic 4.2
(1975), pp. 187—222.

Leon Henkin. “Completeness in the Theory of Types”. In: Journal of Symbolic
Logic 15.2 (1950), pp. 81-91.

David Kaplan. “Quantifying In”. In: Synthese 19.1-2 (1968), pp. 178-214.

Saul A. Kripke. “Russell’s Notion of Scope”. In: Mind 114.456 (2005), pp. 1005—
1037.

Saul A. Kripke. “Semantical Considerations on Modal Logic”. In: Acta Philo-
sophica Fennica 16.1963 (1963), pp. 83—-94.

Karel Lambert. “Existential Import Revisited”. In: Notre Dame fournal of For-
mal Logic 4.4 (1963), pp. 288-292.

John McDowell. “On the Sense and Reference of a Proper Name”. In: Mind
86.342 (1977), pp. 159-185.

Vann McGee. ““Kilimanjaro’”. In: Canadian fournal of Philosophy 27 .sup1 (1997),
pp. 141-163.

42

[17]

[18]
[19]

[20]
[21]

[22]

[23]

[24]

[23]

[26]

A. N. Prior. “On a Family of Paradoxes”. In: Notre Dame Journal of Formal
Logic 2.1 (1961), pp. 16-32.

W. V. Quine. Philosophy of Logic. Harvard University Press, 1986.

W. V. Quine. “Quantifiers and Propositional Attitudes”. In: Journal of Phi-
losophy 53.5 (1956), pp. 177-187.

W. V. Quine. Word and Object. The MIT Press, 1960.

Augustin Rayo. The Construction of Logical Space. Oxford University Press,
2013.

Nathan Salmon. “Lambda in Sentences with Designators”. In: Journal of

Philosophy 107.9 (2010), pp. 445—468.

Jennifer M. Saul. “Substitution and Simple Sentences”. In: Analysis 57.2
(1997), pp. 102-108.

Stewart Shapiro. Foundations Without Foundationalism: A Case_for Second-Order
Logic. Oxford University Press, 1991.

Stewart Shapiro. “Principles of Reflection and Second-Order Logic”. In:
Journal of Philosophical Logic 16.3 (1987), pp. 309-333.

Timothy Williamson. “Everything”. In: Philosophical Perspectives 17.1 (2003),
pp- 415—465.

43

	Opacity and Export
	Opaque Semantics
	Leibnizian Logics
	Purity
	Leibniz Models
	Purity Theorems
	Models of Purity

