
Information, learning and falsification

David Balduzzi
Max Planck Institute for Intelligent Systems, Tübingen, Germany.
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There are (at least) three approaches to quantifying information. The first, algorithmic information
or Kolmogorov complexity, takes events as strings and, given a universal Turing machine, quantifies
the information content of a string as the length of the shortest program producing it [1]. The
second, Shannon information, takes events as belonging to ensembles and quantifies the information
resulting from observing the given event in terms of the number of alternate events that have been
ruled out [2]. The third, statistical learning theory, has introduced measures of capacity that control
(in part) the expected risk of classifiers [3]. These capacities quantify the expectations regarding
future data that learning algorithms embed into classifiers.

Solomonoff and Hutter have applied algorithmic information to prove remarkable results on uni-
versal induction. Shannon information provides the mathematical foundation for communication
and coding theory. However, both approaches have shortcomings. Algorithmic information is not
computable, severely limiting its practical usefulness. Shannon information refers to ensembles
rather than actual events: it makes no sense to compute the Shannon information of a single string
– or rather, there are many answers to this question depending on how a related ensemble is con-
structed. Although there are asymptotic results linking algorithmic and Shannon information, it is
unsatisfying that there is such a large gap – a difference in kind – between the two measures.

This note describes a new method of quantifying information, effective information, that links algo-
rithmic information to Shannon information, and also links both to capacities arising in statistical
learning theory [4, 5]. After introducing the measure, we show that it provides a non-universal ana-
log of Kolmogorov complexity. We then apply it to derive basic capacities in statistical learning
theory: empirical VC-entropy and empirical Rademacher complexity. A nice byproduct of our ap-
proach is an interpretation of the explanatory power of a learning algorithm in terms of the number
of hypotheses it falsifies [6], counted in two different ways for the two capacities. We also discuss
how effective information relates to information gain, Shannon and mutual information.

Effective information

Any physical system, at any spatiotemporal scale, is an input/output device. For simplicity, we only
model memoryless systems with finite input X and output Y alphabets. The probability that system
m outputs y P Y given input x P X is encoded in Markov matrix pmpy|xq.

The effective information generated when system m outputs y is computed as follows. First, let
the potential repertoire punif pXq be the input set equipped with the uniform distribution. Next,
compute the actual repertoire via Bayes’ rule

p̂pX|yq :� p
�
y|dopxq

�
�
punif pxq

pmpyq
, (1)

where pmpyq �
°
x pm

�
y|dopxq

�
� punif pxq and dop�q refers to Pearl’s interventional calculus [7].

Effective information is the Kullback-Leibler divergence between the two repertoires

eipm, yq :� D
�
p̂mpX|yq

�� punif pXq
�
. (2)

For a deterministic function f : X Ñ Y , the actual repertoire and effective information are

p̂f px|yq �

"
1

|f�1pyq| if fpxq � y

0 else
and eipf, yq � log2 |X | � log2 |f

�1pyq|. (3)
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The support of the actual repertoire is the pre-image f�1pyq. Elements in the pre-image all have
the same probability since they cannot be distinguished by the function f . Effective information
quantifies the size of the pre-image relative to the input set – the smaller (“sharper”) the pre-image,
the higher ei.

Algorithmic information

We show that effective information is a non-universal analog of Kolmogorov complexity. Given
universal Turing machine T , the (unnormalized) Solomonoff prior probability of string s is

pT psq :�
¸

ti|T piq�s
u

2�lenpiq, (4)

where the sum is over strings i that cause T to output s as a prefix, where no proper prefix of i outputs
s, and lenpiq is the length of i. Kolmogorov complexity is Kpsq :� � log2 pT psq. Kolmogorov
complexity is usually defined as the shortest program on a universal prefix machine that produces s.
The two definitions coincide up to additive constant by Levin’s Coding Theorem [1].

Replace universal Turing machine T with deterministic system f : X Ñ Y . All inputs have
lenpxq � log2 |X | in the optimal code for the uniform distribution on X . Define the effective
probability of y as

pf pyq �
¸

tx|fpxq�yu

2�lenpxq �

#
|f�1pyq|

|X | if y P fpX q
0 else.

(5)

Note that pf pyq is a special case of pmpyq, as defined after Eq. (1). The effective distribution is thus
a non-universal analog of the Solomonoff prior, since it is computed by replacing universal Turing
machine T in Eq. (4) with deterministic physical system f : X Ñ Y .

In the deterministic case, effective information turns out to be eipf, yq � � log2 pf pyq, analogously
to Kolmogorov complexity. Effective information is non-universal – but computable – since it de-
pends on the choice of f .

Statistical learning theory

This section uses a particular deterministic function, learning algorithm LF,D, to connect effective
information and the effective distribution to statistical learning theory.

Given finite set X , let hypothesis space ΣX �
 
σ : X Ñ �1

(
contain all labelings of elements of

X . Now, given a set of functions F � ΣX and unlabeled data D P X l, define learning algorithm
(empirical risk minimizer)

LF,D : ΣX ÝÑ R : σ̂ ÞÑ ε � min
fPF

1
l

ļ

k�1

I rfpdkq � σ̂pdkqs . (6)

The learning algorithm takes a labeling of the data as input and outputs the empirical risk of the
function that best fits the data. We drop subscripts from the notation L below.

Define empirical VC-entropy in [3]) as VpF ,Dq :� log2 |qDpFq| where qD : F Ñ Rl : f ÞÑ�
fpd1q . . . fpdlq

�
. Also define empirical Rademacher complexity as

RpF ,Dq � 1
|Σ|

¸
σPΣ

�
sup
fPF

1
l

ļ

k�1

σpdkq � fpdkq

�
.

These capacities can be used to bound the expected risk of classifiers, see [8, 9] for details. The
following propositions are proved in [5]:
Proposition 1 (effective information “is” empirical VC-entropy).

eipL, 0q � � log2 pLp0q � l � VpF ,Dq
Proposition 2 (expectation over pLpεq “is” empirical Rademacher complexity).

Erε | pLs �
¸
εPR

ε � pLpεq �
1
2
�
1 �RpF ,Dq

�

2



Thus, replacing the universal Turing machine with learning algorithm LF,D we obtain that our
analog of Kolmogorov complexity, the effective information of output ε � 0, is essentially empirical
VC-entropy. Moreover, the expectation of the analog of the Solomonoff distribution is essentially
Rademacher complexity.

The two quantities eipL, 0q and Erε | pLs are measures of explanatory power: as they increase, so
expected future performance improves. By Eq. (3), the effective information generated by L is

eipL, 0q � log2 |Σ|loomoon
total # hypotheses

� log2 |L
�1p0q|loooooomoooooon

# hypotheses L fits

�
�

# hypotheses L falsifies
	
, (7)

where hypotheses are counted after logarithming. Effective information, which relate to VC-entropy,
counts the number of hypotheses the learning algorithm falsifies when it fits labels perfectly, without
taking into account how often they are wrong. Similarly, see [5] for details, the expectation is°

ε pLpεq � ε �
°
ε

�
fraction of hypotheses L falsifies

	
�
�

on fraction ε of the data
	
. (8)

Expected ε, which relates to Rademacher complexity, looks at the average behavior of the learning
algorithm, averaging over the fractions of hypotheses falsified, weighted by how much of the data
they are falsified on.

The bounds proved in [3,8,9], which control the expected future performance of the classifier mini-
mizing empirical risk, can therefore be rephrased in terms of the number of hypotheses falsified by
the learning algorithm, Eqs (7) and (8), suggesting a possible route towards rigorously grounding
the role of falsification in science [6].

Shannon information

We relate effective information to Shannon and mutual information.

Suppose we have model m that generates data d P D with probability pmpd|hq given hypothesis
h P H . For prior distribution ppHq on hypotheses, the information gained by observing d is

D
�
pmpH|dq

�� ppHq
�
. (9)

Kullback-Leibler divergence Drp}qs can be interpreted as the number of Y/N questions required to
get from q to p. Thus, Eq. (9) quantifies how many Y/N questions the model answers about the
hypotheses using the data.

Effective information, Eq. (2), quantifies the information gained when physical system m outputs
y. Rather than inferring on hypotheses, the system, by producing an output, specifies probabilistic
constraints on what its input must have been. Effective information uses the uniform (maximum
entropy) prior since any other prior would insert additional data not belonging to the system – the
prior is something else, on top of m. However, this restriction is not essential and will be dropped
for the remainder of this section.

Consider the following scenario. We have X and X 1 are isomorphic, and a deterministic physical
system c : X Ñ X 1 that copies its inputs, mapping xk ÞÑ x1k for example. Given prior ppXq, the
effective information generated is

ei
�
ppXq, c, x1k

�
:� D

�
pcpX|x1kq

�� ppXq
�
� D

�
δxk

�� ppXq
�
� � log2 ppxkq,

the surprise of xk. It follows that Shannon information is expected effective information

HpXq � E
�
ei
�
ppXq, c, x1k

� ��� pcpX 1q
�
.

More generally, if we are given noisy memoryless channel m from X to Y with distribution ppXq
on X , then mutual information is the expectation

IpX;Y q � E
�
eipppXq,m, yq

��� pmpY q
�
,

where pmpyq �
°
x pm

�
y|dopxq

�
�ppxq is the effective distribution on Y . Thus, Shannon and mutual

information are simply averages of effective information, our non-universal analog of Kolmogorov
complexity.

Finally, interpreting effective information as information gain, Eq. (9), and combining with results
from the previous section shows that pl � empirical VC-entropyq is the information we gain about
the set ΣX of hypotheses when told that learning algorithm LF,D fit the labeled data perfectly.
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Discussion

This note starts from the observation that all physical systems classify inputs and thereby gener-
ate information. A deterministic physical system f : X Ñ Y implicitly categorizes its inputs by
assigning them to outputs: the category assigned to output y is the set of inputs in the pre-image
f�1pyq � X . The intuition carries through in the probabilistic case after replacing pre-images with
actual repertoires. Effective information then quantifies the sharpness of categories: the sharper a
category, the more informative the corresponding output. Alternatively, effective information quan-
tifies causal dependencies: outputs with high ei are extremely sensitive to changes in the input.

Effective information is a concrete, computable analog of Kolmogorov complexity. The Kol-
mogorov complexity of a string quantifies the “work” required to produce it; roughly, the length
of the programs that output it. Since universal Turing machines require infinite storage space and
are therefore impossible to construct, it is unclear how relevant they are to processes actually oc-
curring in nature. Effective information substitutes a deterministic model of a physical system in
place of the universal Turing machine, and quantifies the “work” required to produce an output as
the number of Y/N decisions required to choose it.

Both Shannon and mutual information arise as expectations of effective information after tweaking
to get rid of the uniform prior. The difference between Kolmogorov complexity and Shannon infor-
mation reduces to: (i) replacing a universal Turing machine with a specific system (channel) and (ii)
computing the average information gain over all outputs, rather than a single one.

When the physical process under consideration is empirical risk minimization, the effective infor-
mation it generates contributes to bounds on expected risk. In particular, the work (the number of
Y/N decisions) required to fit data D using functions in F essentially is the empirical VC-entropy.
Since finding the optimal classifier in F requires computing LF,D in some way or another, thereby
implementing it physically, it follows that the effective information generated while fitting data has
implications for the future performance of classifiers, see [3, 8, 9].

Effective information and the expected risk over the effective distribution also provide new inter-
pretations of VC-entropy and Rademacher complexity in terms of falsifying hypotheses, see Eq. (7)
and (8) – and also [10] for a comparison of falsification with VC-dimension. Viewing empirical
risk minimization as a physical process that classifies hypotheses according to fit ε thus directly
links VC-entropy and Rademacher complexity with Popper’s proposal that the power of a scientific
theory lies in how many hypotheses it rules out, rather than the amount of data it explains [6].

The links with Kolmogorov complexity, learning theory, information gain and falsification shown
above suggest it is worth investigating whether the effective information generated while optimizing
quantities other than empirical risk (e.g. margins) has implications for future performance.
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