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Abstract

We introduce and study a variety of modal logics of parallelism, orthogonality, and affine geometries,
for which we establish several completeness, decidability and complexity results and state a number of
related open, and apparently difficult problems. We also demonstrate that lack of finite model property
of the modal logics for sufficiently rich affine or projective geometries (incl. the real affine and projective
planes) is a rather common phenomenon.

1 Introduction

The formal treatment of geometry goes back to Euclid’s epic work “Elements” which was also the first
systematic application of the azxiomatic method in mathematics, which is at the heart of the logical enterprise.
Meanwhile, the discovery of non-Euclidean geometries, which showed inter alia the independence of Euclid’s
‘fifth postulate’ from the other axioms of the Euclidean geometry, was an impressive demonstration of the
strength and usefulness of formal logical approach in mathematics. Hilbert, the most influential proponent
of the axiomatic method in mathematics, illustrated its power by re-doing Euclid’s work into a precise and
rigorous modern treatment which eventually put geometry on sound axiomatic foundations (see [Hilbert, 71]).
The logical aspects of the foundation of geometry were advanced further by Tarski and his students. In
particular, Tarski developed the axiomatic theory of Euclidean planes over arbitrary real-closed fields, and
embedded the first-order theory of the former into the first-order theory of the latter, using the method of
analytic geometry, thus showing the decidability of the Euclidean geometry (see [Tarski, 59]). Furthermore,
he showed how the whole analytic geometry can be developed systematically using just two geometric
relations, viz. betweenness and equidistance. Also, Tarski and Szczerba obtained a complete elementary
characterization of the first-order theory of betweenness alone (see [Szczerba and Tarski, 79]).

While Tarski’s methods work for geometric models whose logical languages are rich enough to express metric
and ordering properties, there are weaker, yet important geometric structures, viz affine and projective
geometries, in which this is not possible, and their elementary theories are considerably less studied.

Affine geometry studies the relations of incidence, collinearity, parallelism etc. between points and lines in
a real or abstract geometric space. Unlike projective geometry, in which every two lines are incident, the
affine geometry admits non-incident, i.e. parallel, lines, and thus comes closer to what we believe to be
the “real geometry”. Affine geometry also partly deals with other relations on points, such as betweenness
(and therefore ordering) of points on lines, but not with distances, angles or related metric notions. Thus,
while affine spaces are too general to allow development of analytic geometry in them, provided they satisfy
some natural properties they are still amenable to algebraic treatment by means of coordinatization. That



enables study of affine models by studying respective algebraic structures called ternary rings (see e.g.
[Szmielew, 83]). While this algebraic treatment is not instrumental in the present paper, we mention it
as a tool for algebraic investigation and characterization of the logical theories of affine spaces which, for
instance, can be used to establish various logical properties such as finite model property or the lack thereof,
decidability and complexity results of these theories.

The present paper continues and extends the research on modal logics for geometries initiated with [Balbiani et al, 97],
[Balbiani, 98] and [Venema, 99], where modal logics for projective geometries have been studied. The tran-

sition from projective to affine models turns out to complicate the modal logics substantially, and standard
techniques such as canonical model completeness and filtration no longer work readily in the presence of the
Euclidean and other natural properties of affine structures.

While the paper does not offer many surprises or technical novelties, it establishes the basic facts in the field
and outlines several open problems which seem to be hard to resolve with the currently available techniques.
Some of these open problems are related to finite model property and decidability results but, as indicated in
the paper, lack of finite model property in such logical systems for rich enough affine or projective geometries
becomes a rather common phenomenon.

Finally, a comment on the utility of this enterprise. While the study of weak geometric models and their
logical theories has limited mathematical value, it is additionally justified from applied perspective since
these logical systems can be used to formalize various aspects and modes of practical spatial reasoning,
such as reasoning on street charts, bus or metro schemes, geographic maps, etc. Depending on the level of
abstractness or precision, these structures could range from very weak affine models, where little, if anything,
from the real Euclidean geometry still holds, to real Euclidean planes and spaces. From this perspective
we view the present paper as not only an exercise in modal logic and geometry, but also as an initial effort
towards developing suitable modal logical machinery for spatial reasoning in such situations. In that respect
the present work is close in spirit to [Aiello and van Benthem, 2001].

The paper is organized as follows: in the preliminary section we introduce the models of incidence, parallelism
and orthogonality, and affine geometries which will be considered in the paper. In the following two sections
we introduce and study the modal logics of incidence, parallelism (in abstract spaces, as well as R") and
orthogonality in the real plane, for which we establish complete axiomatizations and decidability results.
Section 5 deals with modal logics for affine geometries with strict (irreflexive) parallelism. There we introduce
two modal systems, for standard and general affine models, and establish their completeness. It is still
unknown to us whether these two systems are equivalent, with respect to standard affine models is still
an open problem, neither if they have the finite model property, nor if they are decidable. In section 6,
respectively, we study the affine modal logic of weak (reflexive) parallelism. Due to the weaker language,
so far we have only been able to establish its completeness with respect to general models (in which two
lines may intersect in more than one point), but its completeness for the standard semantics is still open.
We have also established the finite model property and decidability of that logic by interpreting it into the
modal logic of projective geometry with a distinguished line. In the last section we have demonstrated that
lack of finite model property of some modal logic for affine and projective geometry, incl. the modal logics
of the real affine and projective planes.

2 Preliminaries: models of incidence, parallelism, orthogonality,
and affine geometries

2.1 Affine geometries

Definition 1 A two-sorted incidence frame is a structure < Po,Li,I > where Po and Li are non-empty

sets and I C Po x Li. A parallelism frame is a structure < Li, ||> where || is a binary relation over a

nonempty set Li. An affine frame is a structure < Po,Li, I, ||> where < Po,Li,I > is an incidence frame

and < Li, ||> is a parallelism frame.

The elements of Po will be called points and the elements of Li will be called lines. We shall use metavari-



ables X, Y, Z, etc. for points, and metavariables x, y, z, etc. for lines. If the relation I holds for a point
X and a line z then we will use expressions like “X and z are incident” or “X lies on z” or “z passes
through X”. The intended meaning of sentences like “line  connects points X and Y” will be that both
X and Y lie on  whereas the intended meaning of sentences like “point X is at the intersection of lines x
and y” will be that both z and y pass through X. We say that “lines x and y are intersecting” if there is a
point at the intersection of z and y. As for the relation ||, if it holds for two lines z and y then we will use the
phrases “z is parallel to y” or “x and y are parallel”. Recall that, until otherwise assumed, parallelism
will be an irreflexive relation on lines, and its reflexive version will be referred to as weak parallelism.

Let us consider an arbitrary affine frame < Po,Li, I, ||>. Clearly, many highly complex affine relations
between points and lines can be expressed via I and ||. We introduce special notations for the following
relations which will be used further:

e Collinearity of 3 points: Col(X,Y, 7) := Jz(XIx A Y1z A ZIz);

e Concurrency of 3 lines: Con(z,y, z) := 3X(XIz A XIy A X1z);

e Incidence of 2 points with a line: Inc(X,Y,z) := X1z A Vz;

e Intersection of 2 lines at a point: Int(z,y,X) = XIz A X1y;

e Parallelism relation between 4 points: ||(X,Y,Z,T) == X =YV Z = TV dzJy(Inc(X,Y,z) A
Inc(Z,T,y) A (z =y Vzly));

e Parallelogram relation of 4 points: Par(X,Y,Z,T) := -Col(X,Y, Z) N|(X,Y, Z,T) A (X, Z,Y,T);

e Trapezoid relation of 4 points with respect to a point of reference: Tra(O,X,Y,Z,T) := 0 # XANO #
Z N-Col(X,Y, Z) A Col(O, X,Y) A Col(0, Z,T) A ||(X, Z,Y,T).

For every positive integer n > 0, let Dif,(Xy, ..., X;;) be the abbreviation for N7 2Xi # X, and

n; 2,j=0,...
likewise, Dif,, (zo, ..., z,) be the abbreviation for A:f]:()n:rz # x;. Since we look for axioms of affine
geometries, we shall express these axioms in terms of I and ||. Firstly, let us consider parallelism

frames. There are several degrees of freedom in the choice of the minimal model of parallelism. For a
start, let us consider the following conditions.

Definition 2 A quasi-model of parallelism is a parallelism frame < Li,||> satisfying the following
conditions:

(SYM) Symmetry: VaVy(z ||y = vy || z);
(PTRAN) Pseudo-transitivity: VaVy¥z(z ||y Ay ||z 2>z =2V z || 2).

However we can choose between quasi-models where the notion of parallelism is strict and models where
self-parallel lines are allowed.

Definition 3 A model of (strict) parallelism is an irreflexive quasi-model of parallelism.

Thus, models of strict parallelism are isomorphic to disjoint unions of relational structures of the form
< W, #> where # is the difference relation over the non-empty set W. In models of strict parallelism, it is
still possible for a line to be parallel with no other line.

Definition 4 Given n > 0, we say that a parallelism frame < Li, ||> is n-rich if every line in it is parallel
to more than n lines: Yx3yg...3yn(x || yo A .- Az || yn A Dif(yo, -, Yn))-

Now, let us consider affine frames. In any affine frame, there might exist self-parallel lines as well as lines
having more than one common point with another line. This observation inspires the following definition.



Definition 5 In an affine frame < Po,Li, I, ||>:

a line is standard if it is not self-parallel;
e g point is standard if it is not incident with a non-standard line;
e g line is normal if it has no more than one common intersection point with every other line;

e q point is normal if it is not incident with a non-normal line.

Hence, standard points are those, which are not incident with any self-parallel line and normal points are
those which have no more than one common incident line with every other point.

Since we are looking for affine models of space, the relation of parallelism may be defined in terms of incidence
in a very simple way: 2 lines x and y should be parallel iff they do not pass through a common point. Whence,
the following definition:

Definition 6 An affine frame < Po,Li, 1, ||> is said to be a basic affine model if the following conditions
are satisfied:

(BAM1) < Li,||> is a model of parallelism;
(BAMZ2) Parallel lines do not have common points: VaVy(z|ly — -3X (Int(z,y,X)));

(BAMS3) every two distinct points have not more than one common incident line (normality):
VXVYVaVy(Ine(X,Y,z) Anc(X,Y,y) > X =YV =y).

Note that the latter also implies that every two distinct lines have not more than one common intersection
point: VaVyVXVY (Int(z,y, X) A Int(z,y,Y) 2z =yVX =Y).

In other words, in a basic affine model parallel lines in a basic affine model do not intersect, whereas all
lines, and hence all points, are standard and normal. Note that basic affine model are defined by universal
conditions only.

It is still possible, however, in basic affine model that two points are non-incident with a common line and
two lines are both non-intersecting and non-parallel, so we have to add some universal-existential conditions,
too.

Definition 7 A basic affine model < Po,Li, I, ||> is:
e Line-connected if every two points are incident with a common line: YXVY 3z (Inc(X,Y,x)). In

particular, every point in a line-connected model is incident with at least one line.

e Point-connected if every two non-parallel lines are incident with a common point: VaVy(—-3X (Int(z,y, X)) —
z || y). In particular, every line in a point-connected model is incident with at least one point.

e Connected if it is both line-connected and point-connected.

e FEuclidean if every point not incident with a given line is incident with at least one line parallel to
the given line: VeV X (- X1z — Jy(XIy A z||ly)). Note that the uniqueness of y follows in basic affine
models from the pseudo-transitivity of the parallelism. This uniqueness property is known as Fuclid’s
aziom of parallelism.

e Point-rich if every line has a non-incident point: Ve3X~(X1z).

e Line-rich if every point has a non-incident line: VX 3z—(X1x).



e Parallel-rich if every line is parallel to some line: Yx3y(x||y).

Note that every connected and parallel-rich model is also point-rich and line-rich. Moreover, every
Euclidean and point-rich model is also parallel-rich.

e Standard if it is connected, Euclidean, and parallel-rich.
Our definitions yield the following consequences:

e In every connected model every line is incident with a point and every point is incident with a line.
The smallest connected model has just 1 line and 1 point incident with that line.

e Every point-rich, line-rich, and connected model has at least 3 non-collinear points and 3 non-concurrent
lines.

e The smallest parallel-rich and connected model has at least 4 points, no 3 of which are collinear, and 6
lines, every line connecting exactly 2 points. It can be visualized by a tetrahedron where the vertices
represent points and the edges represent lines. Note that this model is standard.

Remark 8 Standard models hold the central position among the basic affine models not only due to the
consequences considered above. In fact, they represent the most general models of affine space for which
the algebraic treatment by means of affine coordinatization is possible, which can be proved by means of
representation theorems (see [Szmielew, 83] for details).

Note also that Hilbert’s azioms for incidence in the plane require line-connectedness, normality, existence
of at least 3 non-collinear points, and existence of at least 2 points on every line (see [Hilbert, 71]). These
properties are satisfied in every standard model.

However, there exist elementary (even, universal) properties concerning incidence and parallelism in the
Euclidean affine plane that are not satisfied in some standard models. Notable examples are Desargues’
properties. These properties follow from Hilbert’s axioms for incidence in the space, Hilbert’s axioms for
betweenness and the Fuclid’s axiom of parallelism. They, however, do not follow from Hilbert’s axioms for
incidence in the plane alone plus Hilbert’s axioms for betweenness and the Euclid’s axiom of parallelism. In
fact, they are necessary and sufficient conditions for a model of plane geometry to be embeddable in a model
of space geometry satisfying the respective azxioms.

Definition 9 A basic affine model < Po,Li, I, ||> is:

e Weakly Desarguesian if it satisfies the property:

VXVYVZYTVUVV (=Col(Z,T,U) A Par(X,Y, Z,T) A Par(X,Y,U,V) = Par(Z,T,U,V);

e Strongly Desarguesian if it satisfies the property:

YOYXVYVZYTVUVV (=Col(Z,T,U) A Tra(O, X,Y, Z,T) A Tra(O, X,Y,U, V) — Tra(O, Z,T,U, V).

Proposition 10 ([Szmielew, 83]) Every strongly Desarguesian standard model is weakly Desarguesian.
Another property that is not satisfied in all standard models is the property of Pappus:

Definition 11 A basic affine model < Po,Li, 1, ||> is said to be Pappian if it satisfies the following con-
dition:

VXVYVZYTYUYV(Col(X,Y, Z) A Col(T,U, V) A ||(X,U,Y,T)A||(X,V, Z,T) = ||(Y,V, Z,U).



Proposition 12 ([Szmielew, 83]) Every Pappian standard model is strongly Desarguesian.
Proposition 13 ([Szmielew, 83]) Every finite strongly Desarguesian standard model is Pappian.
Important examples of Pappian (hence also Desarguesian) standard affine models are introduced below.

Definition 14 A model of strict parallelism is real if it consists of lines in the real plane with the usual
relation of strict parallelism. A basic affine model is real if it consists of points and lines in the real plane
with the usual incidence and strict parallelism relations. The Euclidean parallelism plane is the model
of strict parallelism consisting of all lines in the real plane with the usual strict parallelism relation. The
Euclidean affine plane is the basic affine model consisting of all points and lines in the real plane with
the usual incidence and strict parallelism relations.

Note that every real basic affine model satisfies all universal first-order properties of the real plane. Since
on standard models the properties of Desargues and the property of Pappus are equivalent to universal
conditions, every real standard model is Desarguesian and Pappian. The first-order theories of the Euclidean
parallelism plane and the Euclidean affine plane are decidable, since both of them are embedded in elementary
geometry [Tarski, 59]. However, little seems to be known about their axiomatizations!.

2.2 Orthogonal geometries

Definition 15 An orthogonality frame is a structure < Li, L > where L is a binary relation over a non-
empty set Li.

Again, the elements of Li will be called lines, we shall use metavariables z, y, z, etc. for lines, and if the
relation L holds for lines # and y, we will say that “z is orthogonal to y* or that “z and y are orthogonal”.
So far, parallelism frames and orthogonality frames differ only by the notation for the relation.

Definition 16 A quasi-model of orthogonality is an orthogonality frame < Li, L> satisfying the follow-
ing conditions:

(SYM) Symmetry: VaVy(zLly — yLlz);
(BTRAN) 3-transitivity: VeVyVaVi(zr Ly AyLlz A zLlt — z12).

Note that quasi-models of orthogonality behave rather simply concerning self-orthogonal lines: if z is self-
orthogonal then L is the universal relation over the set of lines orthogonal to z.

This observation motivates the following definition.
Definition 17 A model of strict orthogonality is an irreflexive quasi-model of orthogonality.

Definition 18 An orthogonality frame < Li, L> is orthogonal-rich if every line is orthogonal to some
line: YxIy(z Ly).

We introduce the relation of weak parallelism by means of orthogonality:

e Parallelism of 2 lines: z||ly := 3z(zLz A z_Ly).

ITo confirm this claim (while revealing our ignorance): we have not been able to find an explicit reference on the first-order
theory and the universal theory of the real affine or projective plane. Still, in [Balbiani and Goranko, 2002] we provide an
axiomatization of the first-order theory of the parallelism in Euclidean spaces.



In orthogonal-rich models of strict orthogonality || is an equivalence relation. Thus, these models are disjoint
unions of pairs of mutually orthogonal classes of weakly parallel lines.

Definition 19 An orthogonality frame < Li, L> will be called n-rich, where n > 2, if every line is parallel
to at least n different lines: VxIy,...3yn(z || y1 A . Az || yn A Difr (Y1, ooy Yn))-

Important examples of models of strict orthogonality are introduced below.

Definition 20 A model of strict orthogonality is real if it consists of lines in the real plane with the
usual relation of orthogonality. The Fuclidean orthogonality plane is the model of strict orthogonality
consisting of all lines in the real plane with the usual orthogonality relation.

Again, decidability of the elementary theory of the Euclidean orthogonality plane can be obtained via em-
bedding into elementary geometry [Tarski, 59]; its axiomatization is given in [Balbiani and Goranko, 2002].

3 The modal logic of incidence

3.1 Basic logical framework

The modal logic of incidence considered by Balbiani [Balbiani, 98] and Venema [Venema, 99] is based on
a two-sorted propositional modal language L£([€],[3]) with sorts for points and lines together with unary
modalities of incidence [€] and [3]. The sets of point formulas PFOR (with metavariables «, 3, v,
etc.) and line formulas LFOR (with metavariables o, 7, p, etc.) in this language are defined by mutual
recursion over sets of point variables PV ={P;, P,, ...} and line variables LV ={p,ps, ...} as follows:

e PFOR :=P; | ~a | (a A B) | [€]o;
e LFOR :=p; | =0 | (6 AT) | [3]a.

The diamond modalities (€) and (3) are defined as duals of [€] and [3].

The semantics of incidence modal logics is based on incidence frames in the expected way. More precisely,
an incidence model is a structure of the form < Po,Li,I, m > where < Po,Li,I > is an incidence frame
and m is a valuation on < Po,Li,I >, i.e. a function associating with each point variable P; from PV
a set m(P;) of points in Po, and with each line variable p; from LV a set m(p;) of lines in Li. Given an
incidence model M =< Po, Li,I, m >, the truth-relation between geometrical entities in M and formulas
is defined as follows by induction, via the clauses:

e M, X F [€]o iff for all lines z in Li, if XIz then M,z F o0, and
e M, z F [3]« iff for all points X in Po, if XIz then M, X F a.

The following definitions are standard. A point formula « (respectively, a line formula o) is satisfiable in
an incidence frame if it is true at some point (respectively, some line) in some model based on this frame.
Given a class C of incidence frames, a point formula « (respectively, a line formula o) is C-valid, in symbols
Fc «a (respectively, Fc o), if it is true at every point (respectively, every line) in every model based on a
frame of C.

The main classes of incidence frames in the papers of Balbiani and Venema are the classes Copr and Cpr.
Copr is the class of all incidence frames < Po,Li, I > such that:

e Every two points are incident with a common line. In particular, every point is incident with a line.



e Every two lines are intersecting. In particular, every line is incident with a point.

e There are at least 4 points such that no 3 of them are collinear.

The elements of Cgpr are referred to as quasi-projective frames, while Cpr is the class of a projective
frames, i.e. quasi-projective frames < Po, Li, I > satisfying the following normality condition: every two
distinct points have not more than one common incident line.

Note that in every projective frame:

e Every two distinct lines have not more than one common intersection point.

e There are at least 4 lines such that no 3 of them are intersecting with a common point.

This follows from the well-known duality principle between points and lines in projective frames, which has
its counterpart in the incidence modal logic formulated by Balbiani and Venema and presented in section
3.2.

3.2 Modal logic for projective geometry

The main principle of projective geometry states that every two lines are incident with a common point, and
it distinguishes projective geometry from affine geometry.

Thus, in a quasi-projective frame the relation IoI~! is universal over Po and the relation I=! oI. is universal
over Li. Hence, the modal logic of incidence in projective geometry can be axiomatized as the calculus PG
which is obtained by adding to the minimal normal tense logic in the language £([€], [3]) the S5 axioms for
the modalities [€][3] and [3][€]. Derivability of a formula ¢ in PG is denoted by Fpa ¢. Every generated
subframe of the canonical frame for PG is a quasi-projective frame, but it may not satisfy the normality
condition. However, it gives us the starting point to establish the completeness of PG with respect to the
classes Copr and Cpr.

Proposition 21 ([Venema, 99]) Every generated subframe of the canonical frame for PG is a p-morphic
image of a projective frame.

As a consequence, in [Venema, 99] Venema obtains the following completeness result.

Proposition 22 Let ¢ be a formula in the language L([€],[3]). Then Fcypr ¢ iff Fcpr ¢ iff FPa ¢.

4 Modal logics of parallelism and orthogonality

4.1 Modal logics of parallelism
Our modal logics of parallelism are based on a propositional modal language £([||]) with one unary modality

of parallelism [||]. The formulas of L([[|]) are line formulas LFOR (with metavariables o, T, p, etc.) defined
by recursion over a set of line variables LV ={p, pa, ...} as follows:

e LFOR :=p; | =0 | (¢ A7) | [||]o-

The diamond modality (||} is defined as the dual of [||]. By length(c) we will denote the number of occurrences
of symbols in a formula o.



The semantics is based on parallelism frames in the expected way. More precisely, a parallelism model?
is a structure of the form < Li,||,m > where < Li,||> is a parallelism frame and m is a valuation on
< Li, ||>, i.e. a function associating with each line variable p; from LV a set m(p;) of lines in Li. Given a
parallelism model M =< Li, ||, m >, the truth-relation between lines in M and line formulas is defined by
induction, via the clause:

e M, z F [||]o iff for all lines y in Li, if z||y then M,y F o.

In the same way as in section 3.2, we define truth, satisfiability and validity of formulas in parallelism models.

Let Comp be the class of all quasi-models of parallelism and Cp;sp be the class of all models of strict
parallelism.

Predictably, the modal logic of parallelism PAR is obtained by adding to K the following axioms:

Lo = [l o3

2. o Allle = [IN[]]e-

These axioms are also known as the modal axioms for inequality, see [de Rijke, 1992]. Besides the usual
rules of modus ponens and necessitation, we can add the irreflexivity rule for [||]:

([INlp A ~p) — o, for some line variable p not occurring in o

a

thus obtaining PAR™. This rule, however, is admissible in PAR, so it will not be used hereafter.

Derivability of a formula ¢ in PAR will be denoted by Fpagr o.
Proposition 23 Let o be a formula in the language L([||]). Then Ecguyp o iff FCyse o iff FPAR 0.

Proof. The proof repeats the completeness proof for the modal logic of inequality DL, see [de Rijke, 1992].
]

Although suggested in [de Rijke, 1992], it is not known whether PAR (or just the modal logic of pseudo-
transitivity) admits filtration. However, using the fact that in generated models < Li, ||> of strict parallelism,
|| is just the inequality relation, Demri has proved in [Demri, 96] the following complexity result3.

Proposition 24 The satisfiability problems in any of the classes Coyp and Cyrsp is NP-complete.

Remark 25 Another interesting question, related to the complexity result above, is the complexity of the
satisfiability problem in the class Cpr of all frames < W, R > where R is just pseudo-transitive. We know
from [Ladner, 77] that the satisfiability problem in the class Cpr is PSPACE-hard. However, there is no
upper bound for this complexity problem, known to us. Since the satisfiability problem in Cpr is of rather
technical than geometrical interest, we will not study it further.

Now, we introduce the logic of parallelism in the Euclidean plane PARY by adding to PAR the following
infinite set of axioms:

(PAR,,) For every positive integer n > 0, A {||) (=pi; A [|llp:) = (I} A pi-
=1 i=1

2To be distinguished from “model of parallelism” as introduced earlier. This terminological clash is unfortunate, but benign.
3This result is also stated without proof for the modal logic of inequality in [de Rijke, 1992], with a reference to an unpublished
manuscript of B. de Smit and P. van Emde Boas.



Note that axiom (PARy) is the formula (||) T, and that for all positive integers n > 0, (PAR,,) is derivable
from (PAR,;1). We also define the calculus PARY, for each n > 0, as the extension of PAR. obtained by
adding the axiom (PAR,,).

Let CZ)/p (respectively, C37qp) be the class of all quasi-models of parallelism (respectively, all models of
strict parallelism) in which every line is parallel to infinitely many lines. For each positive integer n > 0,
let C¢yrp (respectively, Cliysp) be the class of all n-rich quasi-models of parallelism (respectively, all n-rich
models of strict parallelism).

Proposition 26 Let o be a formula in the language L([||]). Then Fcg,,, o iff Fog,, o iff Fpare 0.

Proof. The soundness is straightforward. Since all axioms of PARY are of Sahlqvist type, hence canonical,
every consistent formula is satisfiable in a quasi-model of parallelism in which every line is parallel to infinitely
many lines. The self-parallel lines in such model can be replaced by arbitrarily many mutually parallel but
not self-parallel copies, thus producing a model of strict parallelism in which every line is parallel to infinitely
many lines. m

For all positive integers n > 0, the completeness proof for PARf is quite similar.

Proposition 27 Let n > 0 and o be a formula in the language L([||]). Then Fepup 0 f Fony, o if
FPARE ag.

For every positive integer d > 2, the Euclidean parallelism space of dimension d is the model P? of
strict parallelism consisting of all lines in the real space R? with the usual strict parallelism relation.

We will show that PARF axiomatizes the strict parallelism in any Euclidean parallelism space P by using
the following representation result, proved in [Balbiani and Goranko, 2002].

Lemma 28 Every model of strict parallelism of cardinality not greater than the continuum is isomorphic to
a real one.

Lemma 29 For each positive integer d > 2, every model of strict parallelism in which there are continuum
many equivalence classes of parallel lines and each of them has the cardinality of the continuum is isomorphic
to the Euclidean parallelism space P?.

Let Crarsp be the class of all real models of strict parallelism. As a consequence of lemmas 28 and 29 we
obtain:

Theorem 30 Let o be a formula in the language L([||]). Then Fcpysp 0 iff FPAR 0.

Proof. The soundness is straightforward. Completeness follows immediately from proposition 23 and lemma
28 since the canonical frame for PAR has the cardinality of the continuum. m

Theorem 31 For each positive integer d > 2, the logic PARY is sound and complete for the Euclidean
parallelism space P?.

Proof. The soundness is straightforward, again. As for the completeness, it suffices to note the following:

(i) By Lowenheim-Skolem theorems, if a formula o is satisfiable in some model of strict parallelism by a
line parallel to infinitely many distinct lines, then o is satisfiable in some model of strict parallelism
by a line parallel to continuum many distinct lines, since satisfiability of a modal formula in a given
model is a first-order property. A generated submodel of such model would consists of one class of
continuum many parallel lines.

10



(ii) A disjoint union of continuum many such models would produce, by lemma 29, a model of strict
parallelism isomorphic to the Euclidean parallelism space of dimension d.

]
Proposition 32 The logic PARY is not finitely aziomatizable.

Proof. Tarski’s argument applies here. Assuming that PARY has a complete finite set of axioms A, then
all formulas from A can be derived from finitely many axioms of PARY, hence they can be derived in
some PARE for a large enough positive integer n > 0. But this is clearly impossible, because the formula
(PAR,,11), being false in the model of strict parallelism consisting of exactly n + 2 parallel lines, is not
derivable in PARY. m

Of course, there is no finite model property of PAR with respect to the classes COump and Cfygp. However
it can be proved that:

Proposition 33 The satisfiability problem in each of the classes Cgy)p and Cigp is NP-complete.

Proof. Let o be a line formula and M =< Li, ||, m > be a model of strict parallelism in which every line is
parallel to infinitely many lines. Suppose that for some line z, M, z F 0. We can assume that M is generated
and therefore || is nothing but the inequality relation over Li. Now, let Sf(o) be the set of all subformulas
of o. Note that Card(Sf(0)) <length(c). Let =gs(,) be the binary relations over Li defined as follows:

® Y=g, 2 iff for all formulas 7 in Sf (o), M,y F 7 iff M, 2 F 7.

Notice that =gy (,) is an equivalence relation. For every line y, we will denote its equivalence class by Cl(y).
Since Sf (o) is finite, there are finitely many equivalence classes modulo =g (,). Since Li is infinite, there
exists a line y such that its equivalence class Cl(y) is infinite. Let:

o A ={[|[]r: [|l]r is in Sf(o) and there is exactly one line z such that M, z ¥ 7};
e A ={[||]7: [ll]7 isin Sf(¢) and there are at least two different lines z and ¢ with M, z ¥ 7 and M, t ¥ 7}.
Notice that A and A are disjoint subsets of Sf(o). For every [||]7 in A, let z, be the unique line in Li with

M, z; ¥ 1, and for every [||]7 in A, let z, and ¢, be two different lines in Li with M, z, ¥ 7 and M, ¢, ¥ 7.
Let

Li' = {2}UCl(y) U {2z,: [|]]7 is in A} U {z,: [||]7 is in A} U {t,: [||]7 is in A}.

If || and m’ are the restrictions of || and m to Li’ then, obviously, the structure M’ = < Li’, ||',m’ > is a
model of strict parallelism in which every line is parallel to infinitely many lines. By induction on 7 one can
prove that if 7 is in Sf(o) then for every line z in Li’ the two following conditions are equivalent:

e M, zET;
e M,z ET;

Therefore, M',x F o. Hence, the satisfiability problem in each of CZ)/p and C3j5p can be solved in
non-deterministic polynomial time. m
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4.2 Modal logics for line orthogonality

Unlike parallelism, the modal logics of line orthogonality are different for Euclidean spaces of different
dimensions. In fact, the dimension of the space can be determined as the greatest number of pairwise
orthogonal lines. Here we will only introduce the modal logics of line orthogonality in the plane (i.e. 2-
dimensional space). They are based on a propositional modal language £([L]) with a unary modality of
orthogonality [L1]. Line formulas are interpreted in orthogonality models, i.e. structures of the form
< Li, L,m >, in the expected way. Let Cgpro be the class of all quasi-models of orthogonality and Cpss0
be the class of all models of strict orthogonality. Predictably again, the modal logic of line orthogonality
ORT in the plane is obtained by adding to K the following axioms:

1. 0 = [L] (L) 0;
2. [L]o = [L][L][L]e.

Besides the usual rules of modus ponens and necessitation, we can add the irreflexivity rule for [L]:

([L]p A =p) — o, for some line variable p not occurring in o

a

which, however, is admissible again, as seen from the completeness result below.
Proposition 34 Let o be a formula in the language L([L]). Then Fcgyyo 0 iff FCuso 0 iff ForT 0.

Proof. The soundness is straightforward. Concerning completeness, one can prove using a canonical model
argument that ORT is complete with respect to the class Cgao. Every quasi-model < Li, L > of orthog-
onality is a p-morphic image of a model < Li’, L'> of strict orthogonality. To prove this, one has just to
consider the new set of lines Li’ = Li x {0,1} and the new relation L' defined over Li’ by (z,i)L'(y, ) iff
rly and i#j. =

Proposition 35 ORT has the finite model property and is decidable.

Proof. Let ¢ be a formula and M =< Li, L, m > be a quasi-model of orthogonality. Suppose that for some
line z, M,z F 0. We can assume that M is generated. Now, let Sf(c) be the smallest set of line formulas
containing the set of all subformulas of o and such that for every formula 7, if [L]r is in Sf(o) and 7 is
not a formula of the form [L]p, then [L][L]7 is also in Sf(c). Note that Card(Sf(o)) < 2xlength(c). Let
sf(s) be the equivalence relation over Li defined as in the proof of proposition 33. Again, for every line y,
we will denote its equivalence class by Cl(y). And again, since Sf(o) is finite, there are only finitely many
equivalence classes modulo =g;(,). Now we define Li’ to be the set of all equivalence classes modulo 22 Sf(o)-
For all lines y, z in Li, let us say that Cl(y)L'Cl(z) iff for all formulas [L]7 in Sf(c), the two following
conditions are satisfied:

o If M,y E [L]7 then M,z E 7 A[L][L]T;
o If M,z E [L]r then M,y E 7 A[L][L]r.
Notice that the binary relation L' is symmetric and 3-transitive over Li’ and that < Li’, L, V' > is a

filtration of M through Sf (o). Hence, ORT has the finite model property and, being finitely axiomatizable,
is decidable. m

As usual, the filtration argument presented above implies that the satisfiability problem in each of the classes
Como and Cyrso is in NEXPTIME. However, we obtain below a stronger complexity result.

Proposition 36 The satisfiability problem in each of the classes Coypro and Cprso is NP-complete.
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Proof. Indeed, we show that every formula o satisfiable in a model of strict orthogonality is also satisfiable
in a model of strict orthogonality of size O(length(c)). Let o be a line formula and M =< Li, L ,m > be a
model of strict orthogonality. We can assume that M is orthogonal-rich, otherwise the proof is immediate.
Suppose that for some line z, M,z F o. If M is generated, the sets:

e Liy ={y: yisin Li and z 1y}, and

e Li; = {z}U{y: y is in Li and z||y};

constitute a partition of Li where || is the relation over Li defined by y||z iff there is a line ¢ such that yL¢
and tLz. Notice that for all lines y, z in Li, y 1z iff either y € Li; and z € Li; or y € Li; and z € Li;. If
Sf (o) is the set of all subformulas of o, then let:

e Ay = {[1]r: [L]7 is in Sf(o) and there exists y in Li; such that M, y¥ [L]|7};
e Ay = {[L]r: [L]7 is in Sf(o) and there exists y € Li, such that M, y¥ [L]r}.

Note that Card(A;) <length(c) and Card(Az) <length(c). Moreover, for all formulas [L]r € A,, there
exists at least one line y in Liy (let us choose and denote y, one such line) such that M,y¥ 7, and for all
formulas [L]T € A,, there exists at least one line y in Li; (again, let us choose and denote y, one such line)
such that M,y¥ 7.

Let Li' = {z} U {y,: [L]7r €A }U{y,: [L]T €As}. Note that Card(Li') < 2xlength(s). Let L' and m’ be
the restriction of 1 and m over Li'.It can be easily verified that M’ =< Li’, L', m’ > is a model of strict
orthogonality. By induction on 7 one can prove that if 7 is in Sf(c) then for every line y in Li’, the two
following conditions are equivalent:

e M,y F 7;
e M,y kT,

Therefore, M,z F ¢. Hence, the satisfiability problem in Cgomo and Causo can be solved in non-
deterministic polynomial time. m

Let Cfjio be the class of all orthogonal-rich quasi-models of orthogonality and C37’s,, be the class of all
orthogonal-rich models of strict orthogonality. Recall that the relation of weak parallelism is defined by
means of orthogonality in the following way:

e z||y iff there is a line 2z such that Lz and z Ly.

Obviously, in orthogonal-rich quasi-models of orthogonality, || is reflexive. Since [||]o is the abbreviation for
[L][L]o, every formula of the form [||[Jc — o is valid in the classes C{51o and Cif'so. Therefore, if n > 1,
the axiom (PAR,,) is also valid in Cgj,, and C3fsp, hence the only extension of ORT that makes sense is

the logic ORTY obtained by adding to ORT the axiom (PARy), i.e. the seriality axiom (L) T. As proved
below, the logic ORTY is the logic of line orthogonality in the Euclidean plane.

Let CZ)ro (respectively, C375) be the class of all quasi-models of orthogonality (respectively, all models
of strict orthogonality) in which every line is parallel to infinitely many lines.

Proposition 37 Let o be a line formula in the language L([L]). Then Fcg,,, o iff Fcs,, o iff Forrr 0.

Proof. Soundness is straightforward. The completeness can be proved using a canonical model argument
that ORTY is complete with respect to the class CGhro- Furthermore, every orthogonal-rich quasi-model

< Li, L > of orthogonality is a p-morphic image of a model < Li’, L'> of strict orthogonality in which
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every line is parallel to infinitely many lines. To prove this, one has just to consider the new set of lines
Li' = Li x Z x {0,1} and the new relation L’ defined over Li’ by (z,m,i)L'(y,n,j) iff Ly and i # j. m

The Euclidean orthogonality plane is the model of strict orthogonality consisting of all lines in the real
plane R? with the usual orthogonality relation. We will show that ORT? axiomatizes orthogonality in the
Euclidean orthogonality plane by using the following representation results, proved in [Balbiani and Goranko, 2002].

Lemma 38 FEvery model of strict orthogonality of cardinality not greater than the continuum is isomorphic
to a real one.

Lemma 39 Every model of strict orthogonality in which there are continuum many equivalence classes of
parallel lines and each of them has the cardinality of the continuum is isomorphic to the Euclidean orthogo-
nality plane.

Let Cgrarso be the class of all real models of strict orthogonality. As a consequence of lemmas 38 and 39 we
obtain:

Theorem 40 Let o be a line formula in the language L([L]). Then Fcpyso 0 if FORT 0.

Proof. The soundness is straightforward. Completeness follows immediately from proposition 34 and lemma
38 since the canonical frame for ORT has the cardinality of the continuum. m

Theorem 41 The logic ORTY is sound and complete for the Euclidean orthogonality plane.

Proof. The soundness is straightforward. As for the completeness, the argument runs as in the proof of
theorem 31, using lemma 39. =

By simple modifications of the proofs of propositions 35 and 36, one can easily obtain the following results.

Proposition 42 ORTY has the finite model property and is decidable.

ser

Proposition 43 The satisfiability problem in the classes Cy o and Cifso is NP-complete.

5 Modal logics of affine geometries

The logic AFF introduced here is meant to axiomatize validity in the class of standard affine models, while
GAFF captures the validity in a slightly more general models, viz. those described by the axioms.

5.1 Syntax and semantics
The syntax of GAFF and AFF is based on a two-sorted propositional language £([€],[3],[||]) with unary

modalities of incidence [€] and [3] and a unary modality of parallelism [||]. The sets of point formulas
PFOR and line formulas LFOR of £([€],[3],]|]]) are defined by recursion in the expected way:

e PFOR :=P; | ~a | (a A B) | [€]o.
e LFOR :=p; |~ | (o A7) | Bla | [[o-

Definition 44 An affine frame < Po,Li, I, ||> is said to be a general affine model if it satisfies the
following conditions:
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1. Line-connectedness: VXVYx(Inc(X,Y,x)).
Point-connectedness: VaVy(=3X (Int(z,y, X)) = z || y)-
Point-line connectedness: YXVz3y3Y (XIy A Int(z,y,Y)).
Parallel-richness: Va3y(z||y).

Symmetry of ||: VaVy(zlly — yl|).

Pseudo-transitivity of ||: VaVyVz(zlly A yllz = = = 2 V z||2).

Distinct points are incident with parallel lines: VXVY (X =Y V 323y(XIz A YIy A z||y)).

® RS & N

For every two distinct lines, either one is parallel to a line incident with the other:
VaVy(zr =y V 323X (z||z A Int(y, z, X))).

9. If a point is not incident with a line then it is incident with a line parallel to it:
VXVz(XIz Vv Iy(XIy A y||z)).

10. (Weak normality) Every standard point is normal.
Obviously every standard affine model is also a general affine model. Let Cgas be the class of all standard

affine models (i.e. structures of the form < Po,Li, 1, ||> satisfying the conditions formulated in definition
7), and Cgys be the class of all general affine models.

The semantics of AFF is based on standard affine models, while the semantics of GAFF is based on general
affine models, combining the semantics of the modal logic of incidence and the modal logics of parallelism.

Some modalities definable in affine frames:

o [0]o :=lllo Ao

e Apa := [€][3]a, and its dual Epa := (€) (3) a. In line-connected affine models these represent the
universal modality and the existential modality on points.

e Ao :=|||]o A[3][€]o, and its dual Ero := (||)o V (3) (€) 0. In point-connected affine models these
represent the universal modality and the existential modality on lines.

e Apro = [€][3][€]c and Arpa := [3][€][3]a. In connected models these represent accordingly the
universal modality between points and lines and the universal modality between lines and points.
In every Euclidean affine model:
e Dpa := [€][||][3]« represents the difference modality on points, saying that “a holds of every point
different from the current one”.
e Likewise, Dro := [||][3][€]o represents the difference modality on lines.

e Accordingly, Opa := a A Dp—a says that “a only holds of the current point”, and Oypo := 0 ADy—o
says that “o only holds of the current line”.

e Finally, Spa := EpOpa says that “a holds of a single point” and Sy,0 := Er,Orpo says that “o holds
of a single line”.
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5.2

Axiomatic system for GAFF and AFF

The modal logic GAFF is obtained by adding to K([€], [3],[||]) the following axioms.

10.
11.

12.

. The seriality axioms: (€)1, (3) T and (||} T

The tense axioms: a = [€](3) « and 0 = [3] (€) 0.

The S5 axioms for [{j], which reduce to:

o = [[IJ{Il) o, and

o Alllle = [llllllle. (Note that on standard models this axiom expresses the uniqueness part of the
Euclidean property.)

The axioms of the universal modality (see [Goranko and Passy, 91]) for Ap with respect to point
formulas, which reduce to:

Apa — ApApa, (This implies line-connectedness).

Apa — Dpa.

The axioms for the difference modality for Dp, which reduce to:

aANDpa — Apa

The axioms of the universal modality for Ay, with respect to line formulas, which reduce to:

ALO' — DLO'.

The axioms for the difference modality for Dy,, which reduce to:
o ADro — [3][€]o.
Appa < ([3]la Al][3]a).

Apro & ([elo Ale]lllo).

(The two axioms above express the existence part of the Euclidean property.)

aA(€) (oA {3)Op—a)— [€]([2]a V o). (Normality.)

The rules of inference for GAFF are the standard ones: modus ponens and necessitation.

The logic AFFextends GAFF with the following pair of rules for the difference modalities for point formulas
and for line formulas:

OpP — a for some P not occurring in @ Opp — o for some p not occurring in o

’
« g

These rules obviously preserve validity in the class Cgpy.
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5.3 Completeness

Theorem 45 Let ¢ be a formula in the language L([€],[3],[|]). Then Ecey ¢ iff FGAFF ©-

Proof. We only need to note that all axioms of GAFF are Sahlquist formulas and that their correspondent
first-order conditions are exactly the conditions defining general affine models. m

Theorem 46 Let ¢ be a formula in the language L([€],[3],[|]])- Then Ecgy ¥ iff FaFF ¢.

Proof. Soundness is straightforward. As for completeness, we build a special canonical model M =
< Po,Li, L ||,m > from maximal consistent sets of point formulas (respectively, maximal consistent sets
of line formulas) which are closed under the infinitary versions of the respective irreflexivity rules (for details
see e.g. [Gargov and Goranko, 93] or [Blackburn, de Rijke, and Venemal). Let, for any box-modality, i.e.
string of boxes, B in the language, R(B) denote the relation in M corresponding to B. Since all axioms are
Sahlqgvist formulas and the language is versatile, they are all di-persistent, and since the language contains
difference modalities, the underlying frame of M is discrete, hence all axioms are valid in it. For more details,
see [Venema, 93] or [Blackburn, de Rijke, and Venema]*.

Now, given a consistent set of point formulas (respectively, a consistent set of line formulas ) we choose a
maximal consistent (MC) set I' which contains it and then we take the submodel Mr of M generated by I'
as follows:

e If I' is a point set, we take the family Po(T") of all MC point sets in M reachable from I' via R(Ap)
and then the family Li(T") of all MC line sets in M reachable from any of the points in Po(I") via the
relation R(APL)

The axioms guarantee that the Li(T") will contain all line sets reachable from T' via R([€]) and that R(Ar)
will be the universal relation on Li(T"), while R(Arp) will be Li(I') x Po(I'). The construction in the case
when I' is a line set is analogous. Furthermore, the relations corresponding to Dp and Dy, in Mr are the
standard inequality relations on the respective sets, due to the axioms and the irreflexivity rules. Therefore,
R([|]])) is irreflexive and all first-order conditions corresponding to the axioms in standard affine models,
including the normality condition, hold in My, hence My is a standard affine model. =

Remark 47 We do not know yet whether the rules for the difference modalities are admissible in GAFF
and the completeness of GAFF with respect to standard affine models is still an open problem, as well as
the finite model property and decidability of GAFF and AFF (but see further, and section 7).

5.4 Some variations of AFF

The logic AFF axiomatizes the class of standard models. For various practical reasons (see the introduction)
one may be interested in weaker systems, such as the logics of basic, connected, parallel-rich or Euclidean
basic affine models. These can be axiomatized by selecting the relevant axioms from AFF and modifying
appropriately the completeness argument. On the other hand, since the language L([€],[3],[||]) contains
difference modalities, and hence it can simulate nominals, for any universal condition ® on the relations I
and || there is a uniformly definable formula g in the language such that the logic AFF + g, obtained by
adding to AFF the axiom ¢4, is sound and complete with respect to the class C‘g u of all standard models
verifying ® (see e.g. [Gargov and Goranko, 93] or [Blackburn, de Rijke, and Venema] for more details).

Since the properties of Desargues and Pappus are equivalent to universal conditions on standard affine
models, there are formulas ¢, pe, Yspe and pp, such that:

Theorem 48 1. The logic AFF + p,pe is sound and complete for the class Cg’]\[/)f of all weakly Desar-
guesian standard models.

4Although the relevant results there have been established for one-sorted modal languages, their extension to two-sorted
languages is straightforward.
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2. The logic AFF + psp, is sound and complete for the class CLR¢ of all strongly Desarguesian standard

models.

3. The logic AFF + @p, is sound and complete for the class CES, of all Pappian standard models.

Important further extensions of AFF are the logic of all real basic affine models and the logic of the Euclidean
affine plane, which are yet to be axiomatized.

Finally, a natural extension of L([€],[3],[||]) involves an additional modality [Xx] of line intersection, with
semantics:

e M,z = [x]o iff for every line y, if ¢ and y are different and intersecting then M,y |= o.

The new modality is locally definable within the class Cgys in the language of AFF by the following formula
(see [Gargov and Goranko, 93]):

Owp = ([x]o < [Bl[€](o V p))

Therefore, the above formula, added as an axiom to AFF, axiomatizes completely the validity of £L([€], [
I, 1], [x])-formulas in the class Cgy.

5.5 On the complexity of AFF

The truth is that we do not know yet whether the satisfiability problems in the classes Cgy and Cgpy
are decidable or not. The best of our current knowledge is that the satisfiability problem in the class
Csyr is NEXPTIME-hard. To demonstrate this, we use the following argument, suggested by Venema
in [Venema, 99]. Let us consider the one-sorted language £(0;,0s) with unary modalities O; and Os.
The semantics is based on frames of the form < W,R;,R,> in the expected way. Let Ci» be the
class of all such frames where R; and Ry are two commuting equivalence relations over W. The satis-
fiability problem SAT(L£(O;,0s),Cy2) of £(O;,0s)-formulas in the class Cpz, is NEXPTIME-hard (see
[Marx and Venema, 97] for details). Marx and Venema also show that if a formula in £(0;,0,) is satisfiable
in the class Cj», it is also satisfiable in a model based on the rational square < Q?,=;,=>> where 7 is the
set of all pairs of rational numbers and =; and =; are the binary relations over Q? defined in the following
way:

* (q1,42) =1 (01, 03) i @1 = g¢i;

o (q1,42) =2 (01, 93) iff @2 = 5.
Our aim is to demonstrate that SAT (£(0;,0z), C12) is reducible to SAT(L([€],[2], [|l]), Csar). To this end,
we associate with every £(O;, Oy)-formula « a point formula «® in L£([€], [3],[||]). To simulate the relations

R, and R, we use two line variables, p, and p,. The definition of a® is by induction on the construction of
a:

aV p) :=a®V 3%

Oya)® == [€](pe V (I]) P2 = [2]°);

Daa)® := [€](py V () py = [Bla®).
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Lemma 49 If the £(O;, 0s)-formula « is satisfiable in a model based on the rational square < Q?,=;,=2>
then the point formula a® A Ep((€) OrLpy A (€) OLpy) A Ap[€]-(ps A py) in L([€],[3],[ll]) is satisfiable in
the class Cgyy.

Proof. Let m be a valuation on the rational square < Q*,=;,=,>. Suppose that « is satisfiable in the
model M =< Q*,=;,=2>. Let < Po,Li, 1, ||> be the standard model defined as follows:

* Po=(Q;
e Liis the set of all lines with rational coefficients in the real plane;
e I is the restriction to Po and Li of the usual incidence relation in the real plane;

e || is the restriction to Li of the usual parallelism relation in the real plane.
Let m' be a valuation on < Po,Li, I, ||> such that:

e For every point variable P, m'(P) is m(P);

e m'(p,) is the line with equation z = 0 in the real plane;

e m/(p,) is the line with equation y = 0 in the real plane.
(€) Orp, is obviously true at the point (0,0) in model M’ =< Po,Li, I, ||, m’ >, since the unique line in Li
satisfying line variable p, is the line with equation = 0. Likewise, one can verify that M’, (0, 0) F (€) Orp,.
Since no line in Li satisfies both p, and py, [€]-(py A py) is true at any point (g1, ¢2). By induction on j

one can prove that if 8 is a subformula of « then for every point (g1, ¢2), the two following conditions are
equivalent:

b M: (q1>q2) ':B)
b Ml:(qlan) ':BO;

Since « is satisfiable in M, then a° is satisfiable in M'. m

Lemma 50 If the point formula o® A Ep((€) OLp. A (€) OLpy) A Ap[€]=(ps A py) in L([€],[2],[l]) is
satisfiable in the class Cgyy then the £(Oy1,0s)-formula « is satisfiable in the class Cia.

Proof. Suppose that a® A Ep((€) Orp, A (€) OLpy) A Ap[€]-(p: A py) is satisfiable in the class Cgps in
the model M =< Po,Li, I, ||,m >. Then there is a point O in Po lying on two distinct lines zo and yo
such that these lines are the unique lines in Li satisfying, respectively, p, and p,. Let < W, R, R,> be the
frame defined as follows:

e W = Po;

e R, is the binary relation over W defined by XR,Y iff there is a line = such that Inc(X,Y,z) and
x = zo or z||zo;

¢ R, is the binary relation over W defined by XRo,Y iff there is a line y such that Inc(X,Y,y) and
Y =yo or yllp,-

Let m’ be the restriction to W of m. Ry and Ry are obviously two commuting equivalence relations over
W. By induction on 8 one can prove that if 8 is a subformula of « then for every point X in Po, the two
following conditions are equivalent:
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o M, X 8%
e M/, X E 5.

Since a° is satisfiable in M, then « is satisfiable in M'. m
Corollary 51 The satisfiability problem in the class Cgpr is NEXPTIME-hard.

Remark 52 The translation used above does not work for GAFF and at present we have no complexity
results about it.

6 Modal logics of projective geometry and the affine modal logic
of weak parallelism

We now turn to study the affine modal logic of weak (reflexive) parallelism. Using the connection between
projective and affine structures, it can be interpreted into an appropriate projective modal logic, and thus
some ideas and results from [Balbiani, 98] and [Venema, 99] can be transferred here.

6.1 The modal logic PG, of projective geometry with distinguished infinite
line

A natural extension of the two-sorted propositional modal language L([€],[3]) introduced by Balbiani

[Balbiani, 98] and Venema [Venema, 99] within the context of projective geometry involves an additional

designated variable (actually, nominal) oo of line type, the infinity line nominal. We denote the extended

language by L([€],[3], o).

Definition 53 An incidence model with infinity is a structure of the form M =< Po,Li,I,w,m >

where < Po,Li,I > is an incidence frame, w is a designated line in Li (called the infinite line) and m is

a valuation on < Po,Li,I > such that m(co) = {w}. A point in M is finite if it is not incident with the

infinite line. A line in M is finite if it is different from the infinite line.

Therefore, for every line  in Li, M,z F oo iff z = w.

Definition 54 Let Cgp), be the class of all incidence models < Po,Li,I,w > with infinity such that:

e < Po,Li,I > is a quasi-projective frame;
e Every finite line is incident with at least one finite point.

e The infinite line w is normal in < Po,Li, I >.
Elements of Cgyp,, are called quasi-projective models with infinity.

Definition 55 Let C%,, be the class of all projective models with infinity, i.e. incidence models
< Po,Li, I,w > with infinity such that < Po,Li,I > is a projective frame.

The axiomatic system PG, extends the one for PG from [Balbiani, 98] and [Venema, 99] with the following
additional axioms for oo:

1. (3) (€) o0;
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2. 0o Ao = [3][€](c0 — 0);
3. [3](€) 00 = o0
4. (3) (aA(€)x) A (D) (ma A (€) 00) = 0.
The first two are the well-known axioms for nominals (see [Gargov and Goranko, 93]), while the last one

claims normality of the infinite line. Canonical completeness of PGo, with respect to the class Cgp), is
straightforward.

Proposition 56 Let ¢ be a formula in the language L([€],[3],00). Then Fcg,, ¢ iff Fpa., ¢
Remark 57 Completeness of PG, with respect to the class C¥),;, however, remains so far open.
Decidability of PG, on the other hand, follows easily by filtration.

Proposition 58 PG, has the finite model property and is decidable.

Proof. Let ¢ be a formula and M = < Po,Li,I,w,m > be a quasi-projective model with infinity. Now,
let Sf(p) be the smallest set of formulas containing ¢, closed for the subformulas and such that for every
point formula a, if « is in Sf(yp), then [3](a — [€]—00) and [3](—a — [€]-0c0) are also in Sf(p). Note that
Card(Sf(¢)) = O(length(p)). Let =gz () be the equivalence relation over Po U Li defined as follows:

o X=g: Y iff for all point formulas o in Sf(¢), M, X F o iff M,V F o

o =g,y iff for all line formulas o in Sf(p), M,z F o iff M,y F 0.
Note that Cl(w) = {w} since oo belongs to Sf(¢). Now we define Po’ to be the set of all equivalence classes
of points and Li’ to be the set of all equivalence classes of lines. For all points X in Po and for all lines z in
Li, we put CI(X)I' Cl(z) iff there exists a point Y in Po and there exists a line y in Li such that X=g(,)Y,
=57y and YTy. Note that the incidence model < Po’,Li’,I',Cl(w) > with infinity is a filtration of M

through Sf(a). It can be easily proved that it verifies all the conditions required to be a quasi-projective
model with infinity. Hence, PG, has the finite model property and is therefore decidable. m

As usual, the filtration argument presented above implies that the satisfiability problem in the class C3p ),
is in NEXPTIME. Using Venema’s result in [Venema, 99] about the complexity of PG,we obtain:

Corollary 59 1. The satisfiability problem in the class C3yp ), is NEXPTIME-complete.
2. The satisfiability problem in the class C¥,, is NEXPTIME-hard.

Remark 60 The precise complezity, and even decidability, of the satisfiability problem in the class CFy,,
remain open.

6.2 The affine modal logic of weak parallelism WAFF

Now, we consider again the two-sorted propositional modal language L£([€],[3],[||]) with formulas interpreted
in standard affine models, and introduce the affine modal logic of weak parallelism WAFF, in which, unlike
AFF, the line formulas of the form [||Jo are now interpreted in the following way:

e M,z F [||]o iff for all lines y in Li, if z = y or z||y then M,y F 0.
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Hence, the modality [||], corresponding to the reflexive closure of parallelism, is an S5 modality. This change
makes the language essentially weaker, as the difference modalities are no longer definable and their deductive
machinery cannot be applied here. In fact, the logic WAFF can be regarded as the affine counterpart of
PG in a sense which will be made precise further.

The axiomatic system for WAFF is obtained by adding to K([€],[3],[]|]) the following axioms

1. The seriality axioms: (€)1 and (3) T1;

2. The tense axioms: a — [€](3) a and o — [3](€) 7;
3. The S5 axioms for [[|]:

4. Apa — ApApaq;

5. Apa — Dpa.

6. Ao - AL ALo.

7. [€]llle — ApLo.

The rules of inference now only include modus ponens and necessitation. Every axiom of WAFF is clearly
Cgsr-valid, hence WAFF is sound with respect to its standard semantics.

Remark 61 The completeness of WAFF with respect to Csyr, is still open.

Definition 62 An affine frame < Po,Li, L, ||> is a weak affine model whenever the following conditions
are satisfied:

e Seriality of I: VX 32(X1Ix) and V23X (X1z).

Reflexivity of ||: Vz(z||z).

Symmetry of [|: YaVy(z|ly — yl|z).

Transitivity of ||: YaVyVz(z|ly A yl|z — z||2).
e Line-connectedness: VXVY3z(Inc(X,Y, x)).
e Point-connectedness: VaVy(-3X (Int(z,y, X)) = x || y).

e Every point is incident with a line parallel to a given line: VXVz3y(X1y A z||y).
Let Cy s be the class of all weak affine models.
Proposition 63 Let ¢ be a formula in the language L([€],[3],[|]). Then Ecy . ¢ iff FwAFF ¢.
Proof. Straightforward, since every axiom of WAFF is a Sahlqvist formula. m
Proposition 64 WAFF has the finite model property and is decidable in NEXPTIME.

Proof. Let M = < Po,Li, I ||,m > be a weak model. Our aim is to obtain the finite model property
of WAFF using the finite model property of PG, and the well-known correspondence between affine
geometry and projective geometry. To this end, we associate to every L([€],[3], [||])-formula ¢ a formula ©*
in £([€],[3],00). The infinity line variable co is needed to simulate the relation ||. The definition of ¢* is
by induction on the construction of ¢:
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e P’ := P; and p} := p;;

(3

*

—a)* = —a* and (—0)* = 0¥

aApB) :=a*ANB* and (6 AT)* :=0* AT™;

= [€]o™;

[ ]
e N e e T e N
—
m
\_/

[3la)” = [3]([€]-00 — a);

[llo)* := [3]({€) 00 = [€](mo0 = 7))

The projective extension of M is the quasi-projective models M+ =< Po™, Li", I w, mt> with infinity

defined as follows:
e Pot = PoU{Cl(z): = is in Li} where CI(x) denotes the equivalence class of 2 modulo |;
e Li" = LiU {w} where w is a new line;
o I" =TU{(Cl(z),y): # and y are in L and z || y }U{(Cl(z),w): =z is in L};
e m*(P;) = m(P;), m*(p;) = m(p) and m*(c0) = {w}.

The reader can easily prove by mutual induction on the L([€],[3], [||])-formulas & and o that for every point
X in Po, the following conditions are equivalent:

e M X F q;
e Mt Xk a*;

and for every line z in Li, the following conditions are equivalent:

e M,z F o;

e Mt zFo*.

Now take any L([€],[2], [||])-formula ¢ which is true in M. Suppose, for the sake of the argument, that
¢ is a point formula. Then the point £([€], [3], 0o)-formula, [€]=00 A ¢* is true in M. Now let us now
apply filtration to M with respect to Sf([€]-00 A ¢*) as was done in the proof of proposition 58. We
obtain a finite quasi-projective models Mt =< Pot, Lif, Ii,wi, m!> with infinity in which the point
L([€],[3], o0)-formula, [€]-0c0 A ¢* is still true. Now, using again the correspondence between affine
geometry and projective geometry, we associate to M?* the weak model M' =< Po’,Li',T’, ||',m'>
defined as follows:

e Po' = Po*\ {X: X is in Pof and XTtwt};

e Li' =Li\ {w};

o I' =TIN(Po’ x Li');

e |'={(z,y) : = and y are in Li’ and there is a point X in Pof such that XTw!, XTfz and XTiy};
e m'(P;) = m!(P))NPo’ and m’(p;) = m?*(p;)NLi'.

Again, the reader can easily prove by mutual induction on the £([€], [3], [||])-formulas a and ¢ that for every
point X in Po’, the following conditions are equivalent:

e M X Ea*;
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e M' X F q;
and for every line z in Li’, the following conditions are equivalent:

e Mt zEo*;
e M' zFo.

Hence WAFF has the finite model property and, being finitely axiomatizable, is decidable. Since the
translation is polynomial, it preserves the complexity of PG.,. ®

7 On the failure of finite model property in affine and projective
modal logics

As we have already seen, the decidability of a number of systems introduced here is still open. The most
common method for proving decidability of a finitely axiomatizable modal logic is by establishing its finite
model property, by means of filtration or otherwise. It seems, however, that finite model property for logics
of affine and projective geometries can be easily lost, and here we will illustrate that phenomenon with a
few negative results using two different ideas of the same spirit.

The first idea (also used in [Stebletsova, 2000] to establish lack of finite model property for logics of projective
geometries of dimension > 3) revolves around the relationship between algebraic and geometric structures, as
already discussed. Recall proposition 13 that every finite strongly Desarguesian standard model is Pappian.
Its proof, based on a well known algebraic result, can be sketched as follows. A standard affine model is
strongly Desarguesian iff the corresponding ternary ring obtained by affine coordinatization is a skew (i.e.
non-commutative) field, while the model is Pappian, iff that ring is a (commutative) field. Now, conversely,
with any skew field < I', 4+, x,0,1 > one can associate an affine frame < Po, Li, I, || > in the same way as one
associates the Euclidean affine plane with the field of reals. Then, < Po,Li, I, || > is strongly Desarguesian
and if x is commutative over I, then it is Pappian as well. A well known algebraic result is Wedderburn-
Artin’s theorem that every finite skew field is commutative, i.e. a field, which implies that every finite
strongly Desarguesian standard affine model is Pappian. On the other hand, every infinite non-commutative
skew field produces an infinite strongly Desarguesian standard affine model which is not Pappian. Thus, we
have established the following;:

Proposition 65 The logic AFF + psp. does not have the finite model property with respect to standard
affine models.

Proof. The formula —pp, is satisfiable in the class CLR¢ but not in any finite model from that class. m

Remark 66 The result above does not imply that AFF + psp. does not have the finite model property with
respect to the class of general affine models. This question is still open.

The second idea uses some combinatorial-geometric results implying that certain configurations of points
and lines in a plane (space) can only be infinite. Two of the most popular such results are the following:

Sylvester’s theorem (see e.g. [Chakerian, 70]): Given a finite number of non-collinear points
in the plane, there is a line in the plane which passes through exactly two of them.

and

Motzkin’s theorem (see [Motzkin, 67] or [Chakerian, 70]): Given a finite non-collinear set of
points in the plane, each coloured in either black or white, there is a monochrome line (i.e. containing
only points of the same colour) passing through at least two of these points.

24



It is know that both theorems hold in the real affine and projective planes, and in a number of planes over
fields of finite characteristics, but for instance, Sylvester’s theorem fails in C? (where C is the complex field),
while the truth of Motzkin’s theorem there is still open. Most of the known proofs use metric notions, but
there are ones (e.g. in [Chakerian, 70]) using only combinatorial or topological characteristics such as Euler’s
formula, which suggests that these results may still hold in very general affine or projective models.

Properties like those state above could be expressed in appropriate modal languages. For instance, Motzkin’s
theorem can be expressed in the language of incidence as follows: Consider the point formula

p=(€)pr(e)-pA[€][3][€]((3) P A(3)=P).

It is easy to see that p is satisfied in an affine or projective model (of a most general nature) iff that model
contains a point-line configuration contradicting the one described in Motzkin’s theorem (where P and —P
represent the two colours). Therefore, in geometries where Motzkin’s theorem holds, the formula p can only
be satisfied in an infinite model. Thus, in particular, we have established the following;:

Proposition 67 Let C be a class of real basic affine or projective models which contains at least one model
satisfying Motzkin’s property. Then the modal logic of incidence of the valid formulae in C does not have
the finite model property.

Corollary 68 The following modal logics of incidence do not have the finite model property:

The logic of all real basic affine models.

The logic of all real projective models.

The logic of the real affine plane.

The logic of the real projective plane.

8 Concluding remarks

In this paper, which is a natural continuation of the research initiated in [Balbiani et al, 97], [Balbiani, 98],
and [Venema, 99] we have introduced and studied various modal logics for parallelism, orthogonality, affine
and projective models and have discussed their metamathematical properties. We hope to have established
the basic results and provided a good background for further development in the topic. On the other hand, we
have left a number of open, and seemingly difficult to resolve (at least with the currently available techniques)
problems, indicating that the area is at least technically challenging. We have also left unexplored a wide
range of more or less expressive combinations of the basic geometric relations of incidence, parallelism,
orthogonality, betweenness, equidistance etc. and the subject is still to take off the plane and fly into the
3-dimensional space and beyond.

Finally, we wish to reiterate that we see the value of the this research not only within the abstract realm of
logic and geometry, but hope that it will find applications to practical spatial reasoning in the Real World.
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