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Introduction

The author considers the model-theoretic character of proofs and
disproofs by means of attempted counterexample constructions, dis-
tinguishes this proof format from formal derivations, then contraststwo
approaches to semantic tableaux proposed by Beth and Lambert-van
Fraassen. It is noted that Beth’s original approach has not as yet been
provided with a precisely formulated rule of closure for detecting

—tableau sequences terminating in contradiction. To remedy this
- deficiency, a technique is proposed to clarify tableau operations.

A Technique for Determining Closure in Semantic Tableaux

By the mid-1950's, contributions to natural deduction methods
exhibited a pronounced model-theoretic character. Building on the
work of Herbrand and Gentzen, Beth, Hintikka, Schiitte and others
developed techniques for finding a proof of a first-order formula by
demonstrating the impossibility of constructing a counterexample.!

1. (For works by Beth, see references.) /nter alla: Jaakko Hintikka, “Distributive Normal
Forms in the Calculus of Predicates,” Acta Philosophica Fennica, Fasc. V1. Helsinki.
1953; “Form and Content in Quantification Theory,” Acta Philvsophica Fennica, Fase.
V111, Helsinki, 1955: “Distributive Normal Forms in First-Order Logic,” in J. N. Crossley
and M. A. E. Dummctt, (Eds.), Formal Systems and Recursive Functions, Amsterdam:
North Holland Publishing Co., 1965, pp. 47-90. Kurt Schoute, “Schlussweisen-Kalkile
der Pridikatenlogik,” Mathematische Annalen (22, 1950; "Ein System des verknip-
fenden Schliessens.” Archiv fiir mathemarische Logik und Grundiagenforschung, 2, 1956,
S. C. Klcene, Introduction to Metamathematics, Princeton, N. J.: 1. Van Nostrand, 1932,
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Descriptions of a counterexample may literally be thought of as models
in which a falsifying instance of the formula in question is sys-
tematically forced. When a systematic exploration of the conditions
such a counterexample would have to satisfy necessarily terminates in
contradiction, the original formula is proved. ‘

The idea of conceiving of proofs and disproofs as attempted model
constructions may be one of the most philosophically interesting. Two
of the strongest techniques of argumentation in philosophy share
aspects of this approach: (i) reductio ad absurdum, applied to show that
a position, often denying the one endorsed, results in contradiction,?
and (ii) self-referential argumentation, serving to demonstrate that
positions conflicting with one’s own are self-defeating.’

As yet, there has been little explicit use made in philosophical
argumentation of recently developed techniques of proof and disproof
through counterexample construction. One of the reasons for this may
perhaps be that the best known of these techniques, Beth’s method of
semantic tableaux, has still to be formulated in a clear manner which
facilitates its use. It is one of the purposes of this paper to contribute to
this clarification.

An approach to proofs and disproofs by means of a systematic
construction of a possible counterexample differs in several ways from
formal derivations. A formal derivation of X from premisses A;, A,,
... is found when successive applications of available rules of in-
ference yield the conclusion X. Alternatively, a proof of X is found if it
can be shown that it is not possible without contradiction to construct a

2. See, c.p.. Gilbert Ryle, “Proofs in Philosophy,” Revue internationale de philosophie VIII,
1954; “Philosophical Arguments,” in A, J. Ayer, (Ed.). Logical Positivism, Glencoe,
Minois: The Free Press 1959, pp. 327-344: John Passmore, Philosophical Reasoning,
London: G. Duckworth, 1961; Warren J. Hockenos, An examination of Reductiv ad
Absurdion and Argumentunt ad Hominem Arguments in the Philosephies of Gilbert Ryle
and lleary W. Johnstone, Jr., Boston University, Ph.D. dissertation, 1968.

3, Sece, for example, Frederic Brenton Fitch, “Self-Reference in Philosophy,” Mind 53,
1946; Henry W. Johnstone, Jr.,, Philosophy and Argument, Philadelphia, Pa.: Penn-
sylvania State University Press, 1959; John Passmore, Philosophical Reasoning, London:
Gerald Duckworth und Co., 1961, Chap. 4; J. L. Mackie, “Self-Refutation — A Format
Analysis,” The Philosophical Quarterly 14, 1964; Hockenos, 1968 (sce preceding note);
and the author’s “The 1dea of a Metalogic of Reference,” Methodology and Science 9,
1976; “Scll-Reference, Phenomenology, and Philosophy of Science™, Methodology and
Science, 13, 1980; and “Referential Consistency -as & Criterion of Meaning™, Synthése
52,1982,
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falsifying instance such that both {A,, A,, ...} and -X are affirmed. On
the other hand, if one wished to show that A}, A,, ... FX, it would be
difficult, to say the least, to investigate all formal derivations starting
from the premisses A,, A,,..., and thereby to determine that none
leads to the conclusion X. Alternatively, it would be enough to identify
an appropriate counterexample to A,, A,, ... FX. In short, from the
standpoint of formal derivability, a derivation of X from A,, A,, ...
may be attempted: if a derivation is found, then FX; if no such
derivation exists, then HX. Alternatively, we may try to construct a
counterexample; if none can be constructed without contradiction,
then FX; if a counterexample can be produced, then HX.

There are two principal but contrasting approaches to proofs and
disproofs by means of attempted constructions of counterexamples. (1)
Beth’s original method of semantic tableaux (Beth.1955, 1959, 1962.
and passim) enables one to explore exhaustively and in a systematic
manner all semantical conditions which must be satisfied in order for a
counterexample to be possible. If a tableau reveals that a
counterexample is logically impossible, then the original formula is
known to be a theorem. If, on the other hand, a counterexample is
constructed, the formula is known not to be a theorem.

(2) Lambert and van Fraassen (1972) have proposed a technique,
based on Beth (1962), in which a group of rules is formulated so as
explicitly to reduce formulas to disjunctive normal form, and thercby
make it possible to decide whether a formula is or is not a theorem.

The two approaches yield, in practice, identical results. The methods
are effective for the propositional calculus: if a propositional calculus
formula is a theorem, its semantic tableau will show the impossibility of
constructing a countcrexample. If the formula is not a theorem, cach
method will systematically yield a counterexample. For the first-order
predicate calculus, semantic tableaux will not. as one would expect.
serve to detect without fail all invalid inference forms or non-theorems.

The two approaches arc virtually the opposite of one another in
terms of procedure. In Beth’s presentation of his method of semantic
tablcaux, if an infercnce is analyzed, the formula(s) constituting the
premisse(s) is (are) placed on the left (True) side of the tableau, and the
formula comprising the conclusion is placed on the right (False) side. 1I

3
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a lormula. rather than an inference, is analyzed, the formula is placed
on the right side of the tableau. In either of these cases, applying Beth’s
tableau rules, if a contradiction is reached, then the contradiction
indicates (a) that the semantical conditions which a possible
counterexample must satisfy are mutually incompatible, hence a
counterexample is impossible; and therefore (b) that the inference or
formula is valid or is a theorem. If a contradiction is not reached, a
propositional calculus inference or theorem is shown to be invalid or to -
be a non-theorem. In the case of the predicate calculus, if a con-
tradiction is reached, validity or theoremhood is assured; if no con-
tradiction is reached, and the tableau sequence cannot be continued,
then the infercnce or formula is shown to be invalid or to be a non-
theorem. However, in those cases when the predicate calculus tableau
sequence cannot be terminated, one is unable to determine using
semantic tableaux whether the inference or formula is or is not an
invalid inference or is or is not a theorem.

in the Lambert-van Fraassen approach, if one wishes to determine
for a given formula whether it is a theorem, then the tableau sequence is
initiated with the negation of that formula. Applying the Lambert-van
Fraassen tableau rules, the negated formula is reduced to disjunctive
normal form. If the resulting disjunction is such that each and every of
its disjuncts is a conjunction of one or more pairs of contradictory
expressions, then the method leads to the conclusion that the original,
unncgated formula is a theorem. The contradictions expressed by all
the disjuncts reveal here, as in Beth’s approach, that a counterexample
cannot be constructed. Similarly, to determine whether a certain for-
mula is a non-thcorem, one begins the tableau sequence with that
formula, follows the tableau rules, and, if a contradiction is reached,
concludes that the formula is logically false.

In short, the two approaches to semantic tableaux may be contrasted

as follows:
Beth Lambert-van Fraassen

To show that a formula A is a theorem:
I
Place 4 in False Column, | Initiate tableau sequence with — 4.
" .
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If the tableau sequence terminates with a I

contradiction, A cannot consistently be fal-
sified, hence A is a theorem.

If the tableau sequence terminates with a
contradiction, 4 is a theorem.

If the tableau sequence does not terminate in

a contradiction, but cannot be continued.

then a counterexample has been identified,
hence A is not a theorem.

To show that a formula A is not a theorem:
Place 4 in False Column | Initiate tableau sequence with 4.
I .

If the tableau sequence terminates without a | If the tableau sequence terminates with a
contradiction, A can be falsified, hence 4 is | contradiction, 4 isnot a theorem (although
not a theorem. : —A is shown to be).

The original approach to semantic tableaux of Beth and the later

version due to Lambert and van Fraassen can both be formulated
algorithmically in terms of their respective sets of tableau rules: i.c.,
both approaches are programmable on a logic machine. The principal
difference between the two approaches, which results in the contrasting
proof strategies we have noted, lies of course in differing formulations
of the tableau rules. (For a statement of these rules, the reader is
_ referred to Beth (1955, 1959) and van Fraassen (1972).)
"~ Beth’s original method has the decided advantage of more closcly
approximating natural reasoning patterns. The technique enables one
to analyze explicitly and systematically the semantical conditions which
a falsifying instance must satisfy. Where the Lambert-van Fraassen
approach may be thought of as a set of rules to reduce formulas to
disjunctive normal form, Beth’s method offers a procedure for
undertaking what might be termed a presuppositional analysis of the
semantical structure of formulas.

Unfortunately, Beth’s method requires some procedure to determine
closure, the statement of which has suffered from imprecision and
ambiguity. A technique for determining closure is needed to make clear
when a tableau sequence terminates in contradiction. We recall that a
tableau sequence will either (i) terminate in contradiction, (ii) ter-
minate not in contradiction but because it cannot be continued, or (iii)
not terminate at all, In the first case, the tableau sequence reveals the
logical impossibility of constructing a suitable counterexample. In the

5
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second case, a suitable counterexample is described. In the third case,
the tableau fails to reveal whether a formula is or is not a logical truth.
A lechmque for determining closure is needed to decide between the
case in which a counterexample is not constructible and the case in
which a counterexample has been described. For these cases are by no
means always readily distinguished in complex tableaux.

In an effort to gain the needed clarity, the following formulation of a
rule of closure was proposed: “A contradiction is reached when (i) there
are no subcolumns and a symbol appears on both sides of the tableau,
or (ii) there are subcolumns, and for each subcolumn on one side of the
tableau there are symbols occurring in it such that at least one of them
occurs in every corresponding subcolumn on the other side of the
tableau.™

Determining closure is straightforward when neither side of a
tableau divides into subcolumns. Difficulties arise only in connection
with the existence of subcolumns on one side or both sides of a tableau.
The tableaux with which we are here concerned are of this latter
variety. To give some idea of the difficulties these tableaux pose we will
consider several examples:

The above rule questionably covers certain cases (see, e.g., tableau
(i), below), and is ambiguous when applied to certain others (tableaux
(ii), (iii), (iv)).

~

Tableau (i). To prove that (P A Q) = (P V Q) is not a theosem.

True False

I PAQ=  (PV Q)

' PAO | PVQ

I~PV Q) (MPAQ)

AR
B T A

Comment: The tableau sequence nptcan to meet condition (ii) of the rule, yet, clearly, the
furmula in question is not a theorem, Some revision of the rule of closure in question is needed.

4. Brody, 1973, p. 128,
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Tubleau (ii). To prove that the inference (x) (Fx — Gx). (3x) (Fx A Hx) F (3x) (Gx A Hx) is
valid.

True False

(x) (Fx = Gx)

(3x) (Fx A Hx)
(3x) (Gx A Hx)
(x) ~ (Gx A Hx)

T
f
]
i
]
FaA Ha :
Fa :
Ha H
Fa — Ga :
1]
: : :
~Fa ! Ga | !
: i Fa
~ (Ga A Hay ~(Ga A Ha] 1
! i GaAHa | GaAHa
1 , T H T
E ! Ga E Ha | Ga i Ha
' ] 1 1

Comment: The tableau sequence terminates in contradiction: a counterexample is impossible.
However. Brody’s formulation of the rule of closure is unclear for this case.

Tableau (iii). To prove that the inference (x) (Fx — (Gx V Hx)), (x)(Gx — Ix),(x) ~ Ix }
{x) (Fx — Hx) is valid.

True \ False
(x) (Fx = (Gx V Hx)) E
(x) (Gx — 1x) !
(x) ~ Ix !
| (x) (Fx — Hx)
(3x)~ (Fx — Hx) !
~ (Fa — Ha) : F H
! H R 4 a
Fa i Ha
Fa — (Ga V Ha) !
Ga—la !
~ la ! la
|
i ‘ !
~ Fa GayHa Fay
H ! ) :
H Ga i Ha ! ! —
~ G :T laE's- Ga%lu:ﬁ(}u:la: (iui voGa :(hi
! i ' ! .

] 3
Comment: Same as for Tablcau'(ii).
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Tableau (iv). To prove that the inference (x) (Fx — ~ Gx), (3x)(GxV Hx)F(3x)(~ FxV Hx)
is valid. -

True » False

(x) (Fx = ~ Gx)
(3x) (Gx V Hx)
(3x)(~ Fx V Hx)
(x) ~ (~ Fx V Hx)

1
]
1
]
]
'
GaV Ha i
Fa— ~ Ga !
~ (~ Fa V Ha) !
] ~FaV Ha
! ~ Fa ‘
1 Ha
Fa !
Ga Ha !
T M 1
~Fai~Ga~Fu!~Ga i
] 1] [
! i :
i Fa Ga Fa Ga
i
]
]

pUORpSp—

Comment: Same as for Tableau (ii).

There has yet to be formulated a clearly stated technique for
dctermining closure when, using Beth’s approach, tableau sequences
terminate in contradiction. That such a technique is needed should be
cvident from the presence of ambiguity in the few sample illustrations
above. Semantic tablcaux constitute a logically important technique,
but one that is of little value if it is uncertain what conclusion is to be
drawn from a given tableau sequence. .

To determine whether a tableau sequence that involves subcolumns
terminates in contradiction, it is helpful to proceed as follows: First
determine whether the True- and False- sides of the tableau contain the
same number of subcolumns. If one side contains more subcolumns
than the other, subdivide further the side with fewer subcolumns, until
both sides contain the same number of subcolumns, and in corre-
sponding positions. The subcolumns of the tableau will now be bi-
laterally symmetrical with respect to the vertical midline of the tableau.
Now, reproduce, below the last line of the tableau sequence, a summary
of all elementary expressions which have occurred earlier in the
sequence, placing these expressions in all appropriate subcolumns, as
llustrated.
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Tableau (v). To prove that the inference Q —» R F (PY Q) — (PV R) is valid.

True . False
O0=R i (PYQ)> (PVR)
PVQ ! PVYR

P_ i Q ; P
~QI R =Q7T K R

P ‘ T o1

! ' ' ‘ Q; :Q:

! ] . ! i : !

! E ' Sum'mary E E
IR ' V r ] 2y e
——— ’ R
P P Q1 Q PIlPLI P! P
! R! ‘R R I1R?! R IR

boQ Q

It will be noted that only elementary cxpressions are listed in the tableau summary: negations
of elementary expressions are not summarized. ’

Having summarized in this fashion all tableau occurrences of
elementary expressions by reproducing them in appropriate subcol-
umns, three cases may arise:

In the first, the subcolumns on the left side each containsonly a single
elementary expression. For example:

Tableau (vi). To prove that the inference Py Q + P A Qs invalid.

True \ ~ False
PV Q ! PAQ
i Y
'

P!Q Pgo

If this is the case in question, a contradiction occurs in the tableau
sequence if, and only if, each of the elementary expressions on the lefi can
be paired with an identical expression in every subcolumn on the right.
(Rule A) In the example above, no contradiction is reached, since ‘P’
and ‘Q’ do not appear in both subcolumns on the right; hence the
inference in question is invalid.
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A second case is also possible when the subcolumns on the left side
contain multiple elementary expressions. For example:

Tableau (vii). To prove that (P A- Q) = (Q A P)is a theorem.

True False
(PAQ=(QAP)
PAQ QAP
~(QAP) ~PA Q)
QAP | PAQ
Q i P ‘
' Q 1 T T
: : PLQi QY P
i 1 \

: H 1
1225354, 1’52' ¥4
[ H ' 1
PP i PP PI Qi Qi P
Q1 Q! Q. Q ' : '

If this is the case in question, a contradiction occurs in the tableau
sequence if and only if every subcolumn on the right contains at least one
of the expressions found within each corresponding subcolumn on the lefi.
(Rule B) Or, equivalently stated, and referring to the example: ‘P’, ‘Q’
appear in the leftmost subcolumn. One or the other of these appears in
cach corresponding subcolumn on the right. This is true for each of the
other subcolumns on the left side of the vertical mainline; hence the
equivalence (P A Q) = (Q A P)is a theorem.

In more complex tableau sequences, both of the above cases will be
encountered together. In such *“mixed” tableaux, rule A is weakened as
follows: Identify every subcolumn on the True-side, each of which
contains only a single elementary expression. Those subcolumns on the
False-side that correspond in position are termed ‘related subcolumns’,
Then, a contradiction occurs in this portion of the tableau sequence if and
only if each of the elementary expressions on the left can be paired with an
identical expression in every related subcolumn on the right. (Rule A”)

For example, to analyze the expression (P A Q) = (P V Q), which is
clearly not a theorem:

10
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Tableau (viii),

True False
(PAQ)=(PVQ)
[}
PAQ ! PVQ
~(PVQ ~(PA Q)
PVQ PAQ :
P s
—_ | :
Pi1Q | Q ! !
! ;_______E
PP Q ! P
! PoQ
i |
Summary i
| 3 4 E II H 2 § 31 E 41
' H ) H
P! Qy P{ PiPiIQ:iPIl P
Qi Q; i 1 Qi Q
! : | '

Subcolumns 1 and 2 exhibit case 1; subcolumns 3 and 4 belong to
case 2. Although a contradiction is partially shown by inspecting sub-
columns 3 and 4 (*P’ or ‘Q’ appears in corresponding subcolumns 3’ and
4’}, a contradiction is not revealed in checking subcolumns | and 2 (‘P’
does not occur in both related subcolumns 1’ and 2, nor does ‘Q’
appear in both related subcolumns 1’ and 2°.) Therefore, the expression
in question, (P A Q) = (P V Q), is not a theorem, since the tableau
sequence does not terminate in contradiction.

A third, quasi-limiting case may also arise, one that is less frequently
met with, and easily treated. It is possible that one or more subcolumns
in the tableau summary may be empty. When an empty subcolumn
occurs on one side of a tableau, it will be found that the corresponding
subcolumn on the other side of the tableau is not empty, but rather
effectively identifics a counterexample. To illustrate this:

11
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Tubleau (ix). To show that the inference P = Q + P A Q is invalid.

True False
P=Q PAQ
P i ~P p
Q t ~Q Q
: .
i PiQi P 0
t 1
b2 p3 e dor oyl oyiow
: : 1 i (]
pPiP Lt trpiaqirir
@ e i Poiege

Subcolumns 3 and 4 are empty, but their corresponding subcolumns 3’
and 4’ are not emply, hence a counterexample is possible, and thus the
inference in question is invalid. The counterexample is constructed by
assigning to the sequent the values P=F and Q=F (the values in-
dicated by subcolumns 3’ and 4’, which correspond to the empty sub-
columns 3 and 4).

The tableau for + (P — Q) — ~ P illustrates the opposite
asymmetry:

Tableai(x).
True False
P—Q | P=Q—~P"
P i ~P
H 2 A
~P 0 : P
1 !
! Summary
{
) ] L z
! L
P i P ' P
o Q '

Here, the counterexample is constructed by assigning to the expression,
(P—Q) — ~ P, the values P=T and Q=T (the values indicated by
subcolumn 2, which corresponds to the empty subcolumn 2°).

Such considerations suggest a third rule of closure: No subcolumns in

12
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the tableau summary are to be empty. (Rule C) For, as we have observed,
the occurrence of an empty subcolumn immediately identifies a
counterexample.

The closure rules A, A’, B, and C together establish a technique for
determining closure in semantic tableaux. To be perfectly clear, the
technique requires that the meta-rule, that all pertinent closure rules
must be satisfied, itself must of course be in force.

To illustrate the proposed method for determining closure somewhat
further, let us again look at tableau (iii), which provides a more
complex example.

(x) (Fx = (Gx y Hx)). (x) (Gx — Ix), (x) ~Ix F (x) (Fx — Hx)

True False

(x)(Fx— (Gx V¥ Hx) |
(x) (Gx — Ix) !

{(x) ~ Ix
(x) (Fx — Hx)
(3x) ~ (Fx — Hx)
~ (Fa - Ha)
Fa— Ha
Fa Ha
Fa— (Ga V Ha) :
Ga—1la
~ la
la
~Fa ! GaV Ha H
\ Fa
—_——
Ga | Ha
~Gajla | ~Gaila | ~Garla ! Ga| Ga| | Ga
| ! H
Summary E
]
1'234561'2‘3'4'55’6'
Pa iPa | Fa Fa | Fa 1Fa] Ha! Ha| Ha | Ha! DA| U
Il + G4 (Ga s BE& 1HA] la ! W Ia M} M
AR I Mi pat B6] GA1 | Gl
(I i 1 Ga ! '

Each elementary expression is reproduced in all subcolumns in the
tableau sequence, below its occurrence — i.e., in the example, *Fa’ is
placed in all True-subcolumns 1-6 since ‘Fa’ occurred prior to the

13
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appearance of subcolumns in the tableau. Similarly, *Ga’ is written in
subcolumns 3 and 4 since “Ga’ occurred above the subdivision of these
subcolumns. ‘la’ is reiterated in subcolumns 2, 4, and 6. The process is
continued for ‘Ha’ in subcolumns § and 6, ‘Ha’ and ‘la’ in False-sub-
columns 1’-6’, and ‘Fa’ in subcolumns 1’ and 2°. *‘Ga’ is reiterated in 1’,
3 and 5. ‘

Now, on the left side of the tableau, only subcolumn 1 contains a
single clementary expression. Subcolumn 1’, the related subcolumn on
the right side, contains the same expression, satisfying the rule A’.
Subcolumns 2-6 each contains one of the expressions listed in corre-
sponding subcolumns 2’-6’, satisfying rule B. Rule C is satisfied. Ex-
pressions with a slash through them identify those which conform to
tableau rules A’ and B, and which recur within corresponding subcol-
umns. The tableau summary for (iii) indicates clearly and graphically
that the sequent in question is valid.

We may observe the following general result concerning the
proposed technique for determining closure: If, and only if, in each
non-empty subcolumn in the tableau summary at least one expression
is slashed, then the tableau sequence terminates in contradiction,
revealing that no counterexample is constructible.

At this point, the reader may wish explicit justification for the set of
rules that has been introduced. To assuage any doubts concerning the
effectiveness of these rules, the following informal proofs are given:

Each of the rules is to be applied after a tableau sequence has been
summarized in the manner described. (With some practice, of course,
this summary need only take place mentally.) Each of the rules
describes conditions which must be satisfied if the tableau sequence is
to terminate in contradiction. A proof that each rule succeeds in iden-
tifying such conditions therefore must show that the attempt to con-
struct a countcrexample becomes impossible because, for cach
alternative occurring on the True-side of the tableau, pairs of seman-
tically incompatible, i.¢., contradictory, propositions must be asserted.

Each of the rules focuses on the status of subcolumns that appear on
the left side of the tablegu summary,

Rule A refers to the case in which every subcolumn on the left each
contains but a single clementary expression, We recall that each left-

14
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hand subcolumn expresses a (non-exclusive) semantical alternative. If
a lefthand subcolumn contains the expression ‘P*, and ‘P’ occurs in all
righthand subcolumns, this indicates that P is truc in the given
alternative, but that P is also false in all alternatives which appear on
the righthand side of the tableau. When this situation occurs in con-
nection with every alternative on the lefthand side, a counterexample
cannot then be constructed without forcing a logical inconsistency.

Rule B refers to the case in which the summary subcolumns on the
lefthand side of a tableau contain more than only a single expression.
Each subcolumn expresses a semantical alternative in which all the
expressions occurring in that subcolumn are true — i.e., the expressions
comprise a conjunction which is true in that alternative. If a lefthand
subcolumn contains the expressions ‘P’, *Q’, and one or the other of
these occurs in the corresponding alternative on the righthand side,
then clearly a contradiction, e.g., P A~ Q, ~ P, is entailed. When this
situation occurs in connection with every alternative of this conjunctive
variety on the lefthand side, a counterexample cannot then be con-
structed without contradiction.

Rule A’ refers to the so-called “mixed” case: some lefthand subcol-
umns contain only single expressions, some are conjunctions of two or
more expressions. Some alternatives will thus involve conjunctions,
whose status in the tableau is determined by attempting to match at
least one conjunct with an expression in a corresponding false alterna-
tive. If Rule B is satisfied, then it is sufficient to match the single
alternative expressions with identical expressions in their related false
subcolumns. In effect, this demonstrates that every non-conjunctive
alternative is contradicted by every falsc alternative that remains to be
considered provided that Rule B is satisfied. All alternatives, which
under Beth's method of semantical analysis must be true (if a
counterexample is to be possible), are then shown to entail inconsist-
ency.

Rule C, which states the condition that there are ta be no empty
subcolumns in a tableau summary, is easily justified. Only if rule C is
satisfied, is it possible for tableau sequences to terminate in con-
tradiction, The occurrence of an empty subcolumn will correspond to a
non-cmpty subcolumn on the other side of the tableau and therefore
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identifies a counterexample which is constructible without con-,
tradiction. The empty subcolumn expresses the fact that no semantical’
conflict can obtain for the value(s) lndlcated by the corresponding’
non-empty subcolumn.

It should be evident that a non-empty subcolumn will always corre-
spond to an empty one, since two empty corresponding subcolumns
cannot appear in a tableau sequence. Corresponding subcolumns ex-
press the semantical conditions associated with each half of paired
disjunctions. If two corresponding subcolumns werg empty, this would
be lantamount to requiring that there exist a disjunction without a first
(or, a second) disjunct, which is impossible.

Rules A, A’, B, and C define a systematic technique for determining
closure: With a little practice, one is able to work efficiently and
without ambiguity in the context of Beth’s original method of semantic
tableaux.
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