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Abstract Wigner’s quantum-mechanical classification of particle-types in terms
of irreducible representations of the Poincaré group has a classical analogue,
which we extend in this paper. We study the compactness properties of the
resulting phase spaces at fixed energy, and show that in order for a classical
massless particle to be physically sensible, its phase space must feature a
classical-particle counterpart of electromagnetic gauge invariance. By examining
the connection between massless and massive particles in the massless limit,
we also derive a classical-particle version of the Higgs mechanism.
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1 Introduction

The ingredients of classical physics are usually simpler to visualize and understand
than those of quantum theory. It is therefore worthwhile to investigate which
seemingly quantum phenomena turn out to have classical realizations, if only
to provide the kind of intuition that can lead to discoveries.

As an important example, intrinsic spin is often regarded as fundamentally
quantum in nature, but there exists a fully classical description of relativistic
point particles with arbitrary masses and fixed spin. With the eventual goal of
describing and extending this framework,1 we begin in Section 2 by suitably
generalizing the usual Lagrangian formulation of classical physics to a more
expressly Lorentz-covariant form. In Section 3, we review the classification
of particle-types in terms of transitive group actions of the Poincaré group,
expanding on earlier work [1,8,5] and paralleling Wigner’s classification [11] of
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1 For a more comprehensive treatment of the results in this paper, see [2].
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quantum particle-types in terms of irreducible Hilbert-space representations of
the Poincaré group. We will be most interested in the massless case, for which
we present new results that include the emergence of a classical-particle form
of electromagnetic gauge invariance. In Section 4, we revisit this appearance of
gauge invariance from the perspective of the massive case in the massless limit,
along the way deriving a classical-particle version of the Higgs mechanism,
another novel result.

2 The Manifestly Covariant Lagrangian Formulation

Consider a classical system with time parameter t, degrees of freedom qα,
Lagrangian L, and action functional

S[q] ≡
∫
dtL(q, q̇, t), (1)

where dots here denote derivatives with respect to the time t. Before we apply
this framework to classical relativistic point particles, we will find it useful
to recast these ingredients in a form that is more manifestly compatible with
relativistic invariance.

To do so, we begin by replacing t with an arbitrary smooth, monotonic
parameter λ. Letting dots now denote derivatives with respect to λ, we can
rewrite the action functional in the reparametrization-invariant form2

S[q, t] ≡
∫
dλL (q, q̇, t, ṫ), (2)

where

L (q, q̇, t, ṫ) ≡ ṫ L(q, q̇/ṫ, t). (3)

We introduce a raised/lowered-index notation according to

qt ≡ c t, qt ≡ −c t,
qα ≡ qα,
pt ≡ H/c, pt ≡ −H/c,
pα ≡ pα.

(4)

where pα are the system’s usual canonical momenta, H is the system’s usual
Hamiltonian derived from the original Lagrangian L in (1), and c is a constant
with units of energy divided by momentum. The quantities pt and pα are then
expressible in terms of the function (3) as

pt =
∂L

∂q̇t
, pα =

∂L

∂q̇α
, (5)

2 For an early example of this technique, see [4]. For a more modern, pedagogical
treatment, see [3].
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and one can show that the Euler-Lagrange equations take the symmetric-
looking form

ṗt =
∂L

∂qt
, ṗα =

∂L

∂qα
. (6)

Moreover, the action functional (2) now takes a form that resembles a Lorentz-
covariant dot product involving a square matrix η ≡ diag(−1, 1, . . . ) that
naturally generalizes the Minkowski metric tensor from special relativity,

S[q] =

∫
dλ
(
ptq̇

t +
∑
α

pαq̇
α
)

=

∫
dλ
(
pt pα

)
η

(
q̇t

q̇α

)
, (7)

despite the fact that the degrees of freedom qα are not assumed at this point
to have anything to do with physical space. The action functional is then
invariant under transformations(

qt

qα

)
7→ Λ

(
qt

qα

)
,

(
pt

pα

)
7→ Λ

(
pt

pα

)
(8)

for square matrices Λ satisfying the condition ΛTηΛ = η.
Thus, this reparametrization-invariant Lagrangian formulation motivates

the introduction of phase-space variables qt, qα, pt, pα that transform covariantly
under a generalized notion of Lorentz transformations. We therefore refer to
this framework as the manifestly covariant Lagrangian formulation of our
classical system’s dynamics.

3 Transitive Group Actions of the Poincaré Group

Wigner showed in [11] that classifying the different Hilbert spaces that provide
irreducible representations of the Poincaré group yields a systematic categorization
of quantum-mechanical particle-types into massive, massless, and tachyonic
cases.3 As shown in various treatments, such as [1,8,5], there exists a classical
analogue of this construction, one version of which we review here. Toward the
end of this section and in the next section, we will present fundamental new
results concerning previously unexamined features of the massless case.

3.1 Kinematics

We start by laying out a formulation of the kinematics of a system that we
will eventually identify as a classical relativistic particle.

Given a classical system described by a manifestly covariant Lagrangian
formulation, we say that its phase space provides a transitive or “irreducible”
group action of the Poincaré group if we can reach every state (q, p) in the
system’s phase space by starting from an arbitrary choice of reference state
(q0, p0) and acting with an appropriate Poincaré transformation (a, Λ) ∈ R1,3o

3 See [10] for a pedagogical review.
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O(1, 3), where aµ is a four-vector that parametrizes translations in spacetime
and Λµν is a Lorentz-transformation matrix. The Poincaré group singles out
systems whose phase spaces consist of spacetime coordinates

Xµ ≡ (c T,X)µ ≡ (c T,X, Y, Z)µ (9)

and corresponding canonical four-momentum components

pµ ≡ ∂L

∂Ẋµ
≡ (E/c,p)µ, (10)

where we identify H ≡ E as the system’s energy. We will see that such a
system formalizes the notion of a classical relativistic particle.

To be as general as possible, we allow the system to have an intrinsic spin
represented by an antisymmetric spin tensor,

Sµν = −Sνµ, (11)

in terms of which we can define a proper three-vector S̃ and a three-dimensional
pseudovector S according to

Sµν ≡


0 S̃x S̃y S̃z
−S̃x 0 Sz −Sy
−S̃y −Sz 0 Sx
−S̃z Sy −Sx 0


µν

. (12)

Hence, the system’s phase space consists of states that we can denote by
(X, p, S) and that, by definition, behave under Poincaré transformations (a, Λ)
according to

(X, p, S) 7→ (ΛX + a, Λp, ΛSΛT). (13)

Taking our reference state to be

(0, p0, S0) (14)

for convenient choices of pµ0 and Sµν0 that will be made on a case-by-case basis
later, we can therefore write each state of our system as

(X, p, S) ≡ (a, Λp0, ΛS0Λ
T), (15)

so aµ and Λµν effectively become the system’s fundamental phase-space variables.
To keep our notation simple, we will refer to aµ as Xµ in our work ahead,

keeping in mind that these variables are independent of the Lorentz-transformation
matrix Λµν . We will therefore express the functional dependence of the system’s
manifestly covariant action functional as S[X,Λ].

It is natural to introduce several derived tensors from the system’s fundamental
variablesXµ, pµ, Sµν . The system’s orbital angular-momentum tensor is defined
by

Lµν ≡ Xµpν −Xνpµ = −Lνµ, (16)
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and Lµν together with Sµν make up the system’s total angular-momentum
tensor:

Jµν ≡ Lµν + Sµν = −Jνµ. (17)

Defining the four-dimensional Levi-Civita symbol by

εµνρσ ≡


+1 for µνρσ an even permutation of txyz,

−1 for µνρσ an odd permutation of txyz,

0 otherwise

= −εµνρσ, (18)

the system’s Pauli-Lubanski pseudovector is

Wµ ≡ −1

2
εµνρσpνSρσ = (p · S, (E/c)S− p× S̃)µ. (19)

The following quantities are then invariant under proper, orthochronous Poincaré
transformations, and therefore represent fixed features (or Casimir invariants)
of the system’s phase space:

−m2c2 ≡ pµpµ, (20)

w2 ≡WµW
µ, (21)

s2 ≡ 1

2
SµνS

µν = S2 − S̃2, (22)

s̃2 ≡ 1

8
εµνρσS

µνSρσ = S · S̃. (23)

In the analogous quantum case, the third of these invariant quantities,
the spin-squared scalar s2, would be quantized in increments of ~ (or, more
precisely, ~2). In our classical context, we are essentially working in the limit of
large quantum numbers, in which the correspondence principle holds and these
quantities are free to take on fixed values from a continuous set of real numbers.
Note, in particular, that the invariance of s2 is entirely separate from issues
of quantization, just as the invariance of m2 does not require quantization.

3.2 Dynamics

We now turn to the system’s dynamics.
In the absence of intrinsic spin, Sµν = 0, the system’s manifestly covariant

action functional is, from (7), given by

Sno spin[X,Λ] =

∫
dλ pµẊ

µ =

∫
dλ (Λp0)µẊ

µ. (24)

We will eventually need to establish a definite relationship between the system’s
four-momentum pµ and its four-velocity Ẋµ ≡ dXµ/dλ.
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First, however, we will extend the action functional (24) to include intrinsic
spin. We begin by introducing the standard Lorentz generators:

[σµν ]αβ = −iδαµηνβ + iηµβδ
α
ν . (25)

Using the composition property of Lorentz transformations applied to the case
of infinitesimal shifts λ 7→ λ+ dλ in the parameter λ,

Λ(λ+ dλ) = Λ(dλ)Λ(λ)

= (1− (i/2)dθµν(λ)σµν)Λ(λ), (26)

where dθµν is an antisymmetric tensor of infinitesimal Lorentz boosts and
angular displacements, we have

Λ̇(λ) ≡ Λ(λ+ dλ)− Λ(λ)

dλ

= − i
2
θ̇µν(λ)σµνΛ(λ). (27)

Invoking the following trace identity satisfied by antisymmetric tensors Aµν =
−Aνµ,

1

2
Tr[σµνA] = iAµν , (28)

we can express the rates of change θ̇µν(λ) according to

θ̇µν(λ) =
i

2
Tr[σµνΛ̇(λ)Λ−1(λ)]. (29)

By an integration by parts, we can then recast the action functional (24) (up
to an irrelevant boundary term) as

Sno spin[X,Λ] =

∫
dλ

1

2
Lµν θ̇

µν . (30)

With the alternative form (30) of the action functional in hand, we can
straightforwardly introduce intrinsic spin into the system’s dynamics by making
the replacement Lµν 7→ Jµν ≡ Lµν + Sµν . Converting the term involving Lµν
back into the form (24), we thereby obtain the new action functional

S[X,Λ] =

∫
dλL =

∫
dλ

(
pµẊ

µ +
1

2
Tr[SΛ̇Λ−1]

)
, (31)

which now properly accounts for intrinsic spin.
The equations of motion derived from this action functional are

ṗµ = 0, (32)

J̇µν = 0, (33)

and respectively express conservation of four-momentum and conservation of
total angular momentum, in keeping with Noether’s theorem and the symmetries
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of the dynamics under Poincaré transformations. It follows that the Pauli-
Lubanski pseudovector (19) is conserved, Ẇµ = 0, and that the scalar quantities
−m2c2 and w2 defined in (20)–(21) are guaranteed to be constant, as required.

As shown in [7], constancy of the spin-squared scalar s2 defined in (22)
requires the imposition of an important Poincaré-invariant condition on the
system’s phase space. To see why, we make use of the equation of motion (33)
to compute the rate of change of s2:

d

dλ

(
1

2
SµνS

µν

)
= Sµν Ṡ

µν = 2ẊνpµSµν = 0.

Keep in mind that without a definite relationship between the four-momentum
pµ and the four-velocity Ẋµ, this condition is nontrivial. Because it establishes
a constraint on all solution trajectories in the particle’s phase space, we conclude
that the following Lorentz-invariant condition must hold:4

pµS
µν = 0. (34)

Combined with the system’s equations of motion (32)–(33), this condition
yields a pair of basic relationships between the system’s four-momentum pµ

and its otherwise-unfixed four-velocity Ẋµ:

p · Ẋ = ±mc2
√
−Ẋ2/c2, (35)

m

√
−Ẋ2/c2 pµ = ∓m2Ẋµ. (36)

The equations (32)–(36) complete our specification of the system’s dynamics.

3.3 Classification of the Transitive Group Actions

Specializing to the orthochronous Poincaré group, classifying the different
systems whose phase spaces give transitive group actions is a straightforward
exercise that parallels Wigner’s approach in [11]. As derived in detail in [2],
one finds that each such system can describe a massive particle m2 > 0 or a
massless particle m2 = 0 with either positive energy E = ptc > 0 or negative
energy E = ptc < 0, or a tachyon m2 < 0, or the vacuum pµ = 0. Furthermore,
the relations (35)–(36) imply that for each of these cases, the four-momentum
is parallel to the four-velocity, pµ ∝ Ẋµ. It then follows immediately from the
equations of motion (32) and (33) that Lµν and Sµν are separately conserved.

For a massive particle, we can take the reference state (14) to describe the
particle at rest, with reference four-momentum

pµ0 = (mc,0)µ. (37)

4 This condition is a classical-particle analogue of the Lorenz equation ∂µAµ = 0 that
appears both in the Proca theory of a massive spin-one bosonic field and as the Lorenz-
gauge condition in electromagnetism. As in those field theories, the condition (34) serves to
eliminate unphysical spin states.
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The condition (34) then eliminates unphysical spin degrees of freedom and
implies that the particle’s spin tensor (12) reduces to the three-dimensional
spin pseudovector S, whose possible orientations fill out a compact, fixed-
energy region of the particle’s phase space.

On the other hand, for massless particles and tachyons, the little group of
Poincaré transformations that preserve the particle’s reference four-momentum
pµ0 dictates that the particle’s phase space at any fixed energy is seemingly
noncompact, leading to infinite entropies and other thermodynamic pathologies,
besides problems that arise in the corresponding quantum field theories.5 For
a tachyon, the only way to eliminate this noncompactness is to require that the
spin tensor vanishes, Sµν = 0, meaning that tachyons are naturally spinless.

For a massless particle, by contrast, the story is more interesting. We can
take the massless particle’s reference four-momentum to be

pµ0 = (E/c, 0, 0, E/c)µ, (38)

and the condition (34), pµS
µν = 0, then implies the corresponding reference

spin tensor

Sµν0 =


0 S0,y −S0,x 0

−S0,y 0 S0,z −S0,y

S0,x −S0,z 0 S0,x

0 S0,y −S0,x 0


µν

. (39)

The most general little-group transformation preserving the reference four-
momentum (38) consists of a Lorentz-transformation matrix Λ of the form6

Λ(θ, α, β) = R(θ)L(α, β), (40)

where

R(θ) ≡


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 (41)

is a pure rotation by an angle θ around the z axis and where

L(α, β) ≡


1 + ζ α β −ζ
α 1 0 −α
β 0 1 −β
ζ α β 1− ζ

 (42)

is a complicated combination of Lorentz boosts and rotations. One can show
that

R(θ1)R(θ2) = R(θ1 + θ2), (43)

L(α1, β1)L(α2, β2) = L(α1 + α2, β1 + β2), (44)

5 See, for example, , but also [6] for a more optimistic take.
6 For a derivation, see, for example, [2,10].
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so rotations R(θ) around the z axis and the Lorentz transformations L(α, β)
respectively form a pair of commutative subgroups of the particle’s little group.
Noting that

R(θ)L(α, β)R−1(θ)

= L(α cos θ + β sin θ,−α sin θ + β cos θ), (45)

we identify the little group as ISO(2), which is the noncompact group of
rotations and translations in the two-dimensional Euclidean plane.

These little-group transformation act nontrivially on the particle’s reference
spin tensor (39):

L(α, β)S0L
T(α, β)

= S0 +


0 −βS0,z αS0,z 0

βS0,z 0 0 βS0,z

αS0,z 0 0 −αS0,z

0 −βS0,z αS0,z 0

 . (46)

Hence, the only way to ensure that the massless particle has a compact phase
space at fixed reference energy while still allowing for nonzero spin is to impose
the following equivalence relation on the particle’s phase space:

(X, p, S) ∼= (X, p, S′). (47)

This equivalence relation is a new result. It is a classical-particle manifestation
of the gauge invariance that arises for the gauge potentialAµ in electromagnetism,
and it cuts the particle’s phase space at fixed energy down to a compact extent.
The distinct physical states of the massless particle are then characterized by
a spacetime position Xµ, a four-momentum pµ, and a helicity σ ≡ (p/|p|) ·S.7

4 The Massless Limit

We can better understand the origin of the novel equivalence relation (47)
by starting with the massive case m > 0 and then taking the massless limit
m→ 0.

Our original reference state (37) degenerates for m→ 0, so we instead take
the massive particle’s reference four-momentum to be

p̄µ ≡ (p̄t, 0, 0, p̄z)µ =
(√

(p̄z)2 +m2c2, 0, 0, p̄z
)µ
. (48)

This choice has the correct m→ 0 limit (38):

lim
m→0

p̄µ = (E0/c, 0, 0, E0/c)
µ, E0 ≡ p̄zc. (49)

7 Note that if we permit parity transformations, which map σ 7→ −σ, then we must require
that the equivalence relation (47) hold only for states that share the same helicity σ.



10 Jacob A. Barandes

Moreover, (48) is related to our original choice (37) of reference four-momentum
for the massive particle by a simple Lorentz boost Λ̄ along the z direction,

p̄µ = Λ̄µνp
ν
0 , (50)

and the new reference value S̄µν of the massive particle’s spin tensor is related
to its original reference value Sµν0 according to

S̄µν ≡ (Λ̄S0Λ̄
T)µν

=



0
p̄z

mc
S0,y −

p̄z

mc
S0,x 0

− p̄z

mc
S0,y 0 S0,z − p̄t

mc
S0,y

p̄z

mc
S0,x −S0,z 0

p̄t

mc
S0,x

0
p̄t

mc
S0,y −

p̄t

mc
S0,x 0



µν

. (51)

For m → 0, we have p̄t, p̄z → E0/c, so the components of S̄µν involving
p̄t/mc or p̄z/mc diverge. Furthermore, there is a discrete mismatch in the
particle’s spin-squared scalar (22) between the massive case and the massless
case:

s2 = S2
0,x + S2

0,y + S2
0,z (massive)

6= S2
0,z (massless). (52)

These discrepancies are hints that the massive case includes spin degrees of
freedom that need to be removed before taking the massless limit.

Our approach for removing these ill-behaved spin degrees of freedom is
motivated by a corresponding procedure in quantum field theory that was
originally developed by Stueckelberg in [9]. We start with the redefinition(

S̄x
S̄y

)
7→ mc

p̄t

(
S̄x + p̄tϕx
S̄y + p̄tϕy

)
=
mc

p̄t

(
S̄x
S̄y

)
+mc

(
ϕx
ϕy

)
, (53)

where ϕx(λ) and ϕy(λ) are arbitrary new functions on the particle’s worldline.
The particle’s spin tensor (51) then has the decomposition

S̄µν =



0
p̄z

p̄t
S0,y −

p̄z

p̄t
S0,x 0

− p̄
z

p̄t
S0,y 0 S0,z −S0,y

p̄z

p̄t
S0,x −S0,z 0 S0,x

0 S0,y −S0,x 0



µν

+


0 p̄zϕy −p̄zϕx 0

−p̄zϕy 0 0 −p̄tϕy
p̄zϕx 0 0 p̄tϕx

0 p̄tϕy −p̄tϕx 0


µν

, (54)
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and the spin-squared scalar (22) becomes

s2 =

(
1−

(
p̄z

p̄t

)2)(
(S0,x + p̄tϕx)2

+ (S0,y + p̄tϕy)2
)

+ S2
0,z. (55)

The particle’s spin tensor (54) is now invariant under the simultaneous transformations(
S̄x
S̄y

)
7→
(
S̄x
S̄y

)
− p̄t

(
fx
fy

)
, (56)(

ϕx
ϕy

)
7→
(
ϕx
ϕy

)
+

(
fx
fy

)
, (57)

where fx(λ), fy(λ) are arbitrary functions on the particle’s worldline.
Our massive particle’s original phase space, with states labeled as (X, p, S),

is therefore equivalent to a formally enlarged phase space consisting of states
(X, p, S, ϕ) under the equivalence relation (X̄, p̄, S̄, ϕ) ∼= (X̄, p̄, S̄− p̄tf, ϕ+f),
suitably generalized from the reference state (X̄, p̄, S̄, ϕ) to general states
(X, p, S, ϕ) of the system. Indeed, one can check that the specific choice (fx, fy) ≡
−(ϕx, ϕy) yields (X̄, p̄, S̄ + p̄tϕ, 0), which gives back the state (X̄, p̄, S̄) after
undoing the redefinition (53) of S̄µν .

We can now safely take the massless limit of the system’s redefined spin
tensor (54):

lim
m→0

S̄µν =


0 S0,y −S0,x 0

−S0,y 0 S0,z −S0,y

S0,x −S0,z 0 S0,x

0 S0,y −S0,x 0


µν

+
E

c


0 ϕy −ϕx 0
−ϕy 0 0 −ϕy
ϕx 0 0 ϕx
0 ϕy −ϕx 0


µν

, (58)

and
lim
m→0

s2 = S2
0,z. (59)

The degrees of freedom describing spin components perpendicular to the particle’s
reference three-momentum p̄ no longer contribute to the particle’s spin-squared
scalar s2. If we remove these ancillary degrees of freedom by setting ϕx, ϕy
equal to zero, then the particle’s spin tensor (58) reduces correctly to the
reference spin tensor (39) for a massless particle, and our equivalence relation
(56) reduces to the gauge invariance (47). We have therefore completed our
recovery of the massless case from the m→ 0 limit of a massive particle.

Furthermore, if we run these arguments in reverse, then we see that we
can transform a massless particle with nonzero spin into a massive particle by
introducing additional spin degrees of freedom, a classical counterpart of the
celebrated Higgs mechanism.
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