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Wigner’s quantum-mechanical classification of particle-types in terms of irreducible representa-
tions of the Poincaré group has a classical analogue, which we extend in this paper. We study the
compactness properties of the resulting phase spaces at fixed energy, and show that in order for a
classical massless particle to be physically sensible, its phase space must feature a classical-particle
counterpart of electromagnetic gauge invariance. By examining the connection between massless
and massive particles in the massless limit, we also derive a classical-particle version of the Higgs
mechanism.

I. INTRODUCTION

The ingredients of classical physics are usually sim-
pler to visualize and understand than those of quantum
theory. It is therefore worthwhile to investigate which
seemingly quantum phenomena turn out to have classi-
cal realizations, if only to provide the kind of intuition
that can lead to discoveries.

As an important example, intrinsic spin is often re-
garded as fundamentally quantum in nature, but there
exists a fully classical description of relativistic point
particles with arbitrary masses and fixed spin. With
the eventual goal of describing and extending this
framework,[1] we begin in Section II by suitably gen-
eralizing the usual Lagrangian formulation of classical
physics to a more expressly Lorentz-covariant form. In
Section III, we review the classification of particle-types
in terms of transitive group actions (also known as homo-
geneous spaces) of the Poincaré group, expanding on ear-
lier work [2–4] and paralleling Wigner’s classification [5]
of quantum particle-types in terms of irreducible Hilbert-
space representations of the Poincaré group. We will be
most interested in the massless case, for which we present
new results that include the emergence of a classical-
particle form of electromagnetic gauge invariance. In
Section IV, we revisit this appearance of gauge invariance
from the perspective of the massive case in the massless
limit, along the way deriving a classical-particle version
of the Higgs mechanism, another novel result.

II. THE MANIFESTLY COVARIANT
LAGRANGIAN FORMULATION

Consider a classical system with time parameter t, de-
grees of freedom qα, Lagrangian L, and action functional

S[q] ≡
∫
dtL(q, q̇, t), (1)

where dots here denote derivatives with respect to the
time t. Before we apply this framework to classical rel-
ativistic point particles, we will find it useful to recast

these ingredients in a form that is more manifestly com-
patible with relativistic invariance.

To do so, we begin by replacing t with an arbitrary
smooth, monotonic parameter λ. Letting dots now de-
note derivatives with respect to λ, we can rewrite the ac-
tion functional in the reparametrization-invariant form[6]

S[q, t] ≡
∫
dλL (q, q̇, t, ṫ), (2)

where

L (q, q̇, t, ṫ) ≡ ṫ L(q, q̇/ṫ, t). (3)

We introduce a raised/lowered-index notation according
to

qt ≡ c t, qt ≡ −c t,
qα ≡ qα,
pt ≡ H/c, pt ≡ −H/c,
pα ≡ pα.

(4)

where pα are the system’s usual canonical momenta, H is
the system’s usual Hamiltonian derived from the original
Lagrangian L in (1), and c is a constant with units of
energy divided by momentum. The quantities pt and pα

are then expressible in terms of the function (3) as

pt =
∂L

∂q̇t
, pα =

∂L

∂q̇α
, (5)

and one can show that the Euler-Lagrange equations take
the symmetric-looking form

ṗt =
∂L

∂qt
, ṗα =

∂L

∂qα
. (6)

Moreover, the action functional (2) now takes a form
that resembles a Lorentz-covariant dot product involv-
ing a square matrix η ≡ diag(−1, 1, . . . ) that naturally
generalizes the Minkowski metric tensor from special rel-
ativity,

S[q] =

∫
dλ
(
ptq̇

t +
∑
α

pαq̇
α
)

=

∫
dλ
(
pt pα

)
η

(
q̇t

q̇α

)
,

(7)
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despite the fact that the degrees of freedom qα are not
assumed at this point to have anything to do with phys-
ical space. The action functional is then invariant under
transformations(

qt

qα

)
7→ Λ

(
qt

qα

)
,

(
pt

pα

)
7→ Λ

(
pt

pα

)
(8)

for square matrices Λ satisfying the condition ΛTηΛ = η.
Thus, this reparametrization-invariant Lagrangian for-

mulation motivates the introduction of phase-space vari-
ables qt, qα, pt, pα that transform covariantly under a gen-
eralized notion of Lorentz transformations. We therefore
refer to this framework as the manifestly covariant La-
grangian formulation of our classical system’s dynamics.

III. TRANSITIVE GROUP ACTIONS OF THE
POINCARÉ GROUP

Wigner showed in [5] that classifying the different
Hilbert spaces that provide irreducible representations of
the Poincaré group yields a systematic categorization of
quantum-mechanical particle-types into massive, mass-
less, and tachyonic cases.[7] As shown in various treat-
ments, such as [2–4], there exists a classical analogue of
this construction, one version of which we review here.
Toward the end of this section and in the next section,
we will present fundamental new results concerning pre-
viously unexamined features of the massless case.

A. Kinematics

We start by laying out a formulation of the kinematics
of a system that we will eventually identify as a classical
relativistic particle.

Given a classical system described by a manifestly co-
variant Lagrangian formulation, we say that its phase
space provides a transitive or “irreducible” group action
of the Poincaré group (or serves as a homogeneous space
of the Poincaré group) if we can reach every state (q, p)
in the system’s phase space by starting from an arbitrary
choice of reference state (q0, p0) and acting with an ap-
propriate Poincaré transformation (a,Λ) ∈ R1,3oO(1, 3),
where aµ is a four-vector that parametrizes translations
in spacetime and Λµν is a Lorentz-transformation ma-
trix. The Poincaré group singles out systems whose phase
spaces consist of spacetime coordinates

Xµ ≡ (c T,X)µ ≡ (c T,X, Y, Z)µ (9)

and corresponding canonical four-momentum compo-
nents

pµ ≡ ∂L

∂Ẋµ
≡ (E/c,p)µ, (10)

where we identify H ≡ E as the system’s energy. We will
see that such a system formalizes the notion of a classical
relativistic particle.

To be as general as possible, we allow the system to
have an intrinsic spin represented by an antisymmetric
spin tensor,

Sµν = −Sνµ, (11)

in terms of which we can define a proper three-vector S̃
and a three-dimensional pseudovector S according to

Sµν ≡


0 S̃x S̃y S̃z
−S̃x 0 Sz −Sy
−S̃y −Sz 0 Sx
−S̃z Sy −Sx 0


µν

. (12)

Hence, the system’s phase space consists of states that we
can denote by (X, p, S) and that, by definition, behave
under Poincaré transformations (a,Λ) according to

(X, p, S) 7→ (ΛX + a,Λp,ΛSΛT). (13)

Taking our reference state to be

(0, p0, S0) (14)

for convenient choices of pµ0 and Sµν0 that will be made
on a case-by-case basis later, we can therefore write each
state of our system as

(X, p, S) ≡ (a,Λp0,ΛS0ΛT), (15)

so aµ and Λµν effectively become the system’s fundamen-
tal phase-space variables.

To keep our notation simple, we will refer to aµ as
Xµ in our work ahead, keeping in mind that these vari-
ables are independent of the Lorentz-transformation ma-
trix Λµν . We will therefore express the functional depen-
dence of the system’s manifestly covariant action func-
tional as S[X,Λ].

It is natural to introduce several derived tensors from
the system’s fundamental variables Xµ, pµ, Sµν . The sys-
tem’s orbital angular-momentum tensor is defined by

Lµν ≡ Xµpν −Xνpµ = −Lνµ, (16)

and Lµν together with Sµν make up the system’s total
angular-momentum tensor:

Jµν ≡ Lµν + Sµν = −Jνµ. (17)

Defining the four-dimensional Levi-Civita symbol by

εµνρσ ≡


+1 for µνρσ an even permutation of txyz,

−1 for µνρσ an odd permutation of txyz,

0 otherwise

= −εµνρσ, (18)
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the system’s Pauli-Lubanski pseudovector is

Wµ ≡ −1

2
εµνρσpνSρσ = (p · S, (E/c)S− p× S̃)µ. (19)

The following quantities are then invariant under proper,
orthochronous Poincaré transformations, and therefore
represent fixed features (or Casimir invariants) of the sys-
tem’s phase space:

−m2c2 ≡ pµpµ, (20)

w2 ≡WµW
µ, (21)

s2 ≡ 1

2
SµνS

µν = S2 − S̃2, (22)

s̃2 ≡ 1

8
εµνρσS

µνSρσ = S · S̃. (23)

In the analogous quantum case, the third of these in-
variant quantities, the spin-squared scalar s2, would be
quantized in increments of ~ (or, more precisely, ~2). In
our classical context, we are essentially working in the
limit of large quantum numbers, in which the correspon-
dence principle holds and these quantities are free to take
on fixed values from a continuous set of real numbers.
Note, in particular, that the invariance of s2 is entirely
separate from issues of quantization, just as the invari-
ance of m2 does not require quantization.

B. Dynamics

We now turn to the system’s dynamics.

In the absence of intrinsic spin, Sµν = 0, the system’s
manifestly covariant action functional is, from (7), given
by

Sno spin[X,Λ] =

∫
dλ pµẊ

µ =

∫
dλ (Λp0)µẊ

µ. (24)

We will eventually need to establish a definite relation-
ship between the system’s four-momentum pµ and its
four-velocity Ẋµ ≡ dXµ/dλ.

First, however, we will extend the action functional
(24) to include intrinsic spin. We begin by introducing
the standard Lorentz generators:

[σµν ]αβ = −iδαµηνβ + iηµβδ
α
ν . (25)

Using the composition property of Lorentz transforma-
tions applied to the case of infinitesimal shifts λ 7→ λ+dλ
in the parameter λ,

Λ(λ+ dλ) = Λ(dλ)Λ(λ)

= (1− (i/2)dθµν(λ)σµν)Λ(λ), (26)

where dθµν is an antisymmetric tensor of infinitesimal
Lorentz boosts and angular displacements, we have

Λ̇(λ) ≡ Λ(λ+ dλ)− Λ(λ)

dλ

= − i
2
θ̇µν(λ)σµνΛ(λ). (27)

Invoking the following trace identity satisfied by antisym-
metric tensors Aµν = −Aνµ,

1

2
Tr[σµνA] = iAµν , (28)

we can express the rates of change θ̇µν(λ) according to

θ̇µν(λ) =
i

2
Tr[σµνΛ̇(λ)Λ−1(λ)]. (29)

By an integration by parts, we can then recast the action
functional (24) (up to an irrelevant boundary term) as

Sno spin[X,Λ] =

∫
dλ

1

2
Lµν θ̇

µν . (30)

With the alternative form (30) of the action functional
in hand, we can straightforwardly introduce intrinsic spin
into the system’s dynamics by making the replacement
Lµν 7→ Jµν ≡ Lµν + Sµν . Converting the term involving
Lµν back into the form (24), we thereby obtain the new
action functional

S[X,Λ] =

∫
dλL =

∫
dλ

(
pµẊ

µ +
1

2
Tr[SΛ̇Λ−1]

)
,

(31)
which now properly accounts for intrinsic spin.

The equations of motion derived from this action func-
tional are

ṗµ = 0, (32)

J̇µν = 0, (33)

and respectively express conservation of four-momentum
and conservation of total angular momentum, in keep-
ing with Noether’s theorem and the symmetries of the
dynamics under Poincaré transformations. It follows
that the Pauli-Lubanski pseudovector (19) is conserved,
Ẇµ = 0, and that the scalar quantities −m2c2 and w2

defined in (20)–(21) are guaranteed to be constant, as
required.

As shown in [8], constancy of the spin-squared scalar
s2 defined in (22) requires the imposition of an important
Poincaré-invariant condition on the system’s phase space.
To see why, we make use of the equation of motion (33)
to compute the rate of change of s2:

d

dλ

(
1

2
SµνS

µν

)
= Sµν Ṡ

µν = 2ẊνpµSµν = 0.

Keep in mind that without a definite relationship be-
tween the four-momentum pµ and the four-velocity Ẋµ,
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this condition is nontrivial. Because it establishes a con-
straint on all solution trajectories in the particle’s phase
space, we conclude that the following Lorentz-invariant
condition must hold:[9]

pµS
µν = 0. (34)

Combined with the system’s equations of motion
(32)–(33), this condition yields a pair of basic relation-
ships between the system’s four-momentum pµ and its
otherwise-unfixed four-velocity Ẋµ:

p · Ẋ = ±mc2
√
−Ẋ2/c2, (35)

m

√
−Ẋ2/c2 pµ = ∓m2Ẋµ. (36)

The equations (32)–(36) complete our specification of the
system’s dynamics.

C. Classification of the Transitive Group Actions

Specializing to the orthochronous Poincaré group, clas-
sifying the different systems whose phase spaces give
transitive group actions is a straightforward exercise that
parallels Wigner’s approach in [5]. As derived in detail
in [10], one finds that each such system can describe a
massive particle m2 > 0 or a massless particle m2 = 0
with either positive energy E = ptc > 0 or negative en-
ergy E = ptc < 0, or a tachyon m2 < 0, or the vacuum
pµ = 0. Furthermore, the relations (35)–(36) imply that
for each of these cases, the four-momentum is parallel to
the four-velocity, pµ ∝ Ẋµ. It then follows immediately
from the equations of motion (32) and (33) that Lµν and
Sµν are separately conserved.

For a massive particle, we can take the reference state
(14) to describe the particle at rest, with reference four-
momentum

pµ0 = (mc,0)µ. (37)

The condition (34) then eliminates unphysical spin de-
grees of freedom and implies that the particle’s spin ten-
sor (12) reduces to the three-dimensional spin pseudovec-
tor S, whose possible orientations fill out a compact,
fixed-energy region of the particle’s phase space.

On the other hand, for massless particles and tachyons,
the little group of Poincaré transformations that preserve
the particle’s reference four-momentum pµ0 dictates that
the particle’s phase space at any fixed energy is seem-
ingly noncompact, leading to infinite entropies and other
thermodynamic pathologies, besides problems that arise
in the corresponding quantum field theories.[11] For a
tachyon, the only way to eliminate this noncompactness
is to require that the spin tensor vanishes, Sµν = 0,
meaning that tachyons are naturally spinless.

For a massless particle, by contrast, the story is more
interesting. We can take the massless particle’s reference
four-momentum to be

pµ0 = (E/c, 0, 0, E/c)µ, (38)

and the condition (34), pµS
µν = 0, then implies the cor-

responding reference spin tensor

Sµν0 =


0 S0,y −S0,x 0

−S0,y 0 S0,z −S0,y

S0,x −S0,z 0 S0,x

0 S0,y −S0,x 0


µν

. (39)

The most general little-group transformation preserving
the reference four-momentum (38) consists of a Lorentz-
transformation matrix Λ of the form[12]

Λ(θ, α, β) = R(θ)L(α, β), (40)

where

R(θ) ≡


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 (41)

is a pure rotation by an angle θ around the z axis and
where

L(α, β) ≡


1 + ζ α β −ζ
α 1 0 −α
β 0 1 −β
ζ α β 1− ζ

 (42)

is a complicated combination of Lorentz boosts and ro-
tations. One can show that

R(θ1)R(θ2) = R(θ1 + θ2), (43)

L(α1, β1)L(α2, β2) = L(α1 + α2, β1 + β2), (44)

so rotationsR(θ) around the z axis and the Lorentz trans-
formations L(α, β) respectively form a pair of commuta-
tive subgroups of the particle’s little group. Noting that

R(θ)L(α, β)R−1(θ)

= L(α cos θ + β sin θ,−α sin θ + β cos θ), (45)

we identify the little group as ISO(2), which is the non-
compact group of rotations and translations in the two-
dimensional Euclidean plane.

These little-group transformation act nontrivially on
the particle’s reference spin tensor (39):

L(α, β)S0L
T(α, β)

= S0 +


0 −βS0,z αS0,z 0

βS0,z 0 0 βS0,z

αS0,z 0 0 −αS0,z

0 −βS0,z αS0,z 0

. (46)
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Hence, the only way to ensure that the massless particle
has a compact phase space at fixed reference energy while
still allowing for nonzero spin is to impose the following
equivalence relation on the particle’s phase space:

(X, p, S) ∼= (X, p, S′). (47)

This equivalence relation is a new result. It is a classical-
particle manifestation of the gauge invariance that arises
for the gauge potential Aµ in electromagnetism, and it
cuts the particle’s phase space at fixed energy down to
a compact extent. The distinct physical states of the
massless particle are then characterized by a spacetime
position Xµ, a four-momentum pµ, and a helicity σ ≡
(p/|p|) · S.[13]

IV. THE MASSLESS LIMIT

We can better understand the origin of the novel equiv-
alence relation (47) by starting with the massive case
m > 0 and then taking the massless limit m→ 0.

Our original reference state (37) degenerates for m→
0, so we instead take the massive particle’s reference four-
momentum to be

p̄µ ≡ (p̄t, 0, 0, p̄z)µ =
(√

(p̄z)2 +m2c2, 0, 0, p̄z
)µ
. (48)

This choice has the correct m→ 0 limit (38):

lim
m→0

p̄µ = (E0/c, 0, 0, E0/c)
µ, E0 ≡ p̄zc. (49)

Moreover, (48) is related to our original choice (37) of
reference four-momentum for the massive particle by a
simple Lorentz boost Λ̄ along the z direction,

p̄µ = Λ̄µνp
ν
0 , (50)

and the new reference value S̄µν of the massive particle’s
spin tensor is related to its original reference value Sµν0
according to

S̄µν ≡ (Λ̄S0Λ̄T)µν

=



0
p̄z

mc
S0,y −

p̄z

mc
S0,x 0

− p̄z

mc
S0,y 0 S0,z − p̄t

mc
S0,y

p̄z

mc
S0,x −S0,z 0

p̄t

mc
S0,x

0
p̄t

mc
S0,y −

p̄t

mc
S0,x 0



µν

. (51)

For m→ 0, we have p̄t, p̄z → E0/c, so the components
of S̄µν involving p̄t/mc or p̄z/mc diverge. Furthermore,
there is a discrete mismatch in the particle’s spin-squared
scalar (22) between the massive case and the massless
case:

s2 = S2
0,x + S2

0,y + S2
0,z (massive)

6= S2
0,z (massless). (52)

These discrepancies are hints that the massive case in-
cludes spin degrees of freedom that need to be removed
before taking the massless limit.

Our approach for removing these ill-behaved spin de-
grees of freedom is motivated by a corresponding proce-
dure in quantum field theory that was originally devel-
oped by Stueckelberg in [14]. We start with the redefini-
tion(

S̄x
S̄y

)
7→ mc

p̄t

(
S̄x + p̄tϕx
S̄y + p̄tϕy

)
=
mc

p̄t

(
S̄x
S̄y

)
+mc

(
ϕx
ϕy

)
,

(53)
where ϕx(λ) and ϕy(λ) are arbitrary new functions on
the particle’s worldline. The particle’s spin tensor (51)
then has the decomposition

S̄µν =



0
p̄z

p̄t
S0,y −

p̄z

p̄t
S0,x 0

− p̄
z

p̄t
S0,y 0 S0,z −S0,y

p̄z

p̄t
S0,x −S0,z 0 S0,x

0 S0,y −S0,x 0



µν

+


0 p̄zϕy −p̄zϕx 0

−p̄zϕy 0 0 −p̄tϕy
p̄zϕx 0 0 p̄tϕx

0 p̄tϕy −p̄tϕx 0


µν

, (54)

and the spin-squared scalar (22) becomes

s2 =

(
1−

(
p̄z

p̄t

)2)(
(S0,x + p̄tϕx)2

+ (S0,y + p̄tϕy)2
)

+ S2
0,z. (55)

The particle’s spin tensor (54) is now invariant under the
simultaneous transformations(

S̄x
S̄y

)
7→
(
S̄x
S̄y

)
− p̄t

(
fx
fy

)
, (56)(

ϕx
ϕy

)
7→
(
ϕx
ϕy

)
+

(
fx
fy

)
, (57)

where fx(λ), fy(λ) are arbitrary functions on the parti-
cle’s worldline.

Our massive particle’s original phase space, with states
labeled as (X, p, S), is therefore equivalent to a formally
enlarged phase space consisting of states (X, p, S, ϕ) un-
der the equivalence relation (X̄, p̄, S̄, ϕ) ∼= (X̄, p̄, S̄ −
p̄tf, ϕ+ f), suitably generalized from the reference state
(X̄, p̄, S̄, ϕ) to general states (X, p, S, ϕ) of the system.
Indeed, one can check that the specific choice (fx, fy) ≡
−(ϕx, ϕy) yields (X̄, p̄, S̄ + p̄tϕ, 0), which gives back the
state (X̄, p̄, S̄) after undoing the redefinition (53) of S̄µν .

We can now safely take the massless limit of the sys-
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tem’s redefined spin tensor (54):

lim
m→0

S̄µν =


0 S0,y −S0,x 0

−S0,y 0 S0,z −S0,y

S0,x −S0,z 0 S0,x

0 S0,y −S0,x 0


µν

+
E

c


0 ϕy −ϕx 0
−ϕy 0 0 −ϕy
ϕx 0 0 ϕx
0 ϕy −ϕx 0


µν

, (58)

and

lim
m→0

s2 = S2
0,z. (59)

The degrees of freedom describing spin components per-
pendicular to the particle’s reference three-momentum p̄
no longer contribute to the particle’s spin-squared scalar
s2. If we remove these ancillary degrees of freedom by
setting ϕx, ϕy equal to zero, then the particle’s spin ten-
sor (58) reduces correctly to the reference spin tensor
(39) for a massless particle, and our equivalence relation
(56) reduces to the gauge invariance (47). We have there-
fore completed our recovery of the massless case from the
m→ 0 limit of a massive particle.

Furthermore, if we run these arguments in reverse,
then we see that we can transform a massless particle
with nonzero spin into a massive particle by introducing
additional spin degrees of freedom, a classical counter-
part of the celebrated Higgs mechanism.
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