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Chapter 1

Introduction

If you’re reading this book then I presume that you’re curious about infinity, set
theory, and its philosophy. Growing up I’d always been interested in philoso-
phy. Mathematics however, I found to be a necessary but tiresome part of the
curriculum, especially through my teenage years. I had great teachers, but the
focus on exam preparation that inevitably took up the bulk of our time was just
plain boring—solving dreary computational problems using known algorith-
mic methods (a task that I’m not especially good at to this day). This didn’t fit
so well with what my mother Jeanne (a mathematics teacher) had always told
me—that at a certain point mathematical study can feel like “doors opening left
and right”. It was at university that I saw Cantor’s Theorem and Gödel’s The-
orems for the first time. Suddenly I understood what my mum had meant—
mathematics was an area where new ideas and methods could result in a com-
plete shift in one’s perspective on theworld, and your ability to solve problems is
only bounded by your creativity and the constraints of logical space. The doors
were verymuch open, and I became increasingly interested in notions of infinity
in mathematics. To understand infinity, it’s very natural to start by considering
our best mathematical theories of it. Set theory, as a theory of infinite collec-
tions and what we can do with them, was the obvious choice. Understandably,
philosophers have showed a lot of interest in set theory since its beginnings in
the late 19th and early 20th century. There was already plenty of philosophical
material to get my teeth into, and I tucked in with gusto.

What I discovered, however, was that the buffet was far richer than I’d an-
ticipated. In particular, several philosophical and mathematical advances have
been made in the philosophy of set theory since the early 2000s. Both math-
ematicians and philosophers have closely examined ideas concerning whether
there is an all-encompassing domain for set theory, and how the tools of contem-
porary set-theoretic practice might bear on philosophy. This has tied the study
of the philosophy of set theory very closely to issues in metaphysics, including
the nature of possibility and absolute generality. However, I think it’s fair to say
that these developments (with some notable exceptions) have been passed over
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formainstreamphilosophical consideration. Whilst this is understandable—the
mathematical barrier to entry is high and our time is finite—the philosophical
issues themselves are (in my opinion) understandable to anyone with some in-
troductory logic courses under their belt.

Many philosophers are aware of the paradoxes of set theory (e.g. Russell’s
paradox). Often people take these to be solved by the iterative conception of set
which holds that sets are formed in stages by collecting together sets available
at previous stages. This book will examine possibilities for articulating this so-
lution. In particular:

Main Aim. I will argue that there are different kinds of iterative concep-
tion, and it’s open which of them (if any) is the best.

Along the way, I hope to make some of the underlying mathematical and
philosophical ideas behind tricky bits of the philosophy of set theory clear for
philosophersmorewidely, andmake their relationship to other questions in phi-
losophy perspicuous.

Here’s the plan. Chapter 2 will lay down some reasons as to why we should
be interested in set theory as philosophers and mathematicians. This chapter
serves a dual purpose; first as a motivation for the reader less familiar with set
theory to get excited, and secondwe’ll see some desiderata that will be employed
later in the book when we come to assess set-theoretic conceptions.

Chapters 3, 4, and 5 set up a way of thinking of set-theoretic progress as
trading off inconsistent principles. Chapter 3 will go over the naive conception
of set and the paradoxes that brought it down. We’ll also provide a diagnosis of
the problem as involving a conflict of two inconsistent principles. This material
is well-worn, but I’ll explain a twist on the classic paradoxes that has been exam-
ined by philosophers recently (namely that we can think of these paradoxes as
paradoxes about the existence of functions) which will help integrate this mate-
rialwithwhat comes later. Chapter 4will present the emergence of the combina-
torial conception and logical conception of set, before Chapter 5 gives the iterative
conception as a further sharpening of the combinatorial conception. We’ll also
explain the standard ‘strong’ version of the iterative conception, and how it can
be given a modal formulation.

Chapter 6will then explain somemathematical ideas that have informed the
development of contemporary set theoryunder the iterative conception, namely
forcing (a way of adding subsets of sets to models). I’ll do my best to make these
mathematically tricky ideas palatable to philosophers.

Chapter 7 will explain two particular principles that we might take a very
‘rich’ conception of set to have and show them to be inconsistent. In particular
we’ll see how thePowerset Axiom is incompatiblewith the idea that there should
be saturation under forcing. We’ll note that there’s a similarity here with the
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situation we found ourselves in with respect to the naive conception, where a
particular conception of set generates two inconsistent principles.

Chapters 8 and 9 will identify a split in how we might move forward. Chap-
ter 8 will explain how there is a genuine choice between Powerset and forcing
saturation, and will show how forcing saturation can be viewed as arising from
kinds of set-construction method. Chapter 9 will explain how mathematics is
interpreted within each conception, and will contrast each in the light of the
theoretical virtues discussed in Chapter 2.

Finally, Chapter 10 will provide a concluding summary and identify some
further work that is needed in order to obtain greater clarity on these issues. In
particular, I’ll explain some salient objections that need addressing in order to
move forward. I hope that the reader comes awaywith a sense of how set theory
is philosophically interesting and the vastness of conceptual space.

Before we get going, however, a few remarks are in order. First, whilst I
hope that this book is of pedagogical value and can help people new to the phi-
losophy of set theory gain an understanding of some difficult mathematics, this
is not a textbook. My approach is one of conveying underlying ideas, rather than
giving everything in full rigorous detail. Where sensible I’ve tried to give formal
definitions and references for the interested reader in footnotes rather than the
body of the text.

Relatedly, the pacing of this book will feel slightly odd. There is a tension in
exposition in that I both want to get the newcomer interested but also accomplish
a significant research-oriented goal. I therefore run the risk of boring the reader
who has been studying these issues for years whilst outstripping what can be
expected of an early student (however talented). I’ve tried to present the known
material in such a way that it makes recent novel twists on old material clear,
and to keep the harder material as accessible as possible. However this book
is hard if you aren’t familiar with the relevant bits of mathematical logic. My
aim is to make things accessible and not, per impossibile, easy. To combat this
problem, the book runs along two tracks. The ‘standard’ track is intended for
those who do not necessarily have years of philosophy of set theory under their
belt. The ‘expert’ track is for thosewho already know a good bit of philosophy of
set theory. I denote sections/paragraphs/footnotes that are on the expert track
with a ‘blackbelt’ emoji (and often inside a box). I encourage everyone to read
all the book, after all it’s helpful to peek behind the curtain and see some of the
complicated workings of the machine. But readers should not feel disheartened
if -parts are tricky to follow—those are especially difficult and one shouldn’t
expect to get everything first try.

I’ll use the following conventions. Bits of language (e.g. syntax/utterances)
will be enclosed within double quotation marks. So “Toffee is a clever cat” can
be a sentence or an utterance, “cat” is a word or term of the English language,
and “Toffee” is a name (in this context), whereas Toffee is a (particular) cat who is
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also clever. Single quotation marks will be used as ‘scare quotes’ i.e. cases where
the enquoted phrase is not to be taken literally (though it may be illustrative). In
cases where such usage occurs in a formal context, single quotes often denote
an abbreviation for a formal claim (e.g. PA ` ‘There are infinitely many prime
numbers’, even though “There are infinitely many prime numbers” is a sentence
of English, not Peano Arithmetic). Italics are reserved for emphasis, or where
they occur in the scope of a definition, the definiendum. I allow definitions to
be informal and philosophical as well as formal, but I will clearly separate the
informal and formal definitions. With these conventions in hand, let’s get ready
to set out!
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Chapter 2

Why set theory?

Before we start getting into the iterative woods, I want to give some motivation
for studying set theory and its philosophy.

Question. Why do this, given that there’s so many good introductions into
these topics?

Answer. As well as providing a survey of some of the literature, this chapter
will lay down some theoretical virtues that we might think theories/conceptions
of set can have. These virtues will be important later when we come to assessing
our options.

What are sets? Here’s a rough-and-ready definition:1

Definition 1. (Informal) A set is a kind of collection that is:

(i) Extensional: Sets with differentmembers are non-identical, and sets with
the same members are identical.

(ii) Objectual: Sets are objects over and above their elements.

So, for example, I can consider the set of books currently on my table. This
is an object, in addition to the books themselves. If I take a book offmy table, the
term “the set of books on my table” now denotes a different set, since this new
set of books has different members.

Just given this bare bones story, it’s natural now to ask: Why be interested
in set theory at all? It’s useful first to consider a bad answer (but one that helps
us see the role of set theory more clearly):

1( ) It’s plausible that nowadays we think that sets are combinatorial too (in the sense of
being extensionally equivalent to pluralities of objects, irrespective of whether we can provide a
circumscribing definition). Later we’ll set up the difference between the logical conception and
combinatorial conception of set, and so I don’t want to commit to this just yet.
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Theory of Collections. Set theory provides our best theory of collections.

This is perhaps encapsulated by George Boolos’ claim that:

I thought that set theory was supposed to be a theory about all, “ab-
solutely” all, the collections that there were and that “set” was syn-
onymous with “collection” [Boolos, 1998, p. 35]2

The idea that the interest of set theory derives from “set” being synonymous
with “collection” or providing our best theory of collections is open to at least
two powerful criticisms:

First, there’s lots of different ways we talk about collections. To take two
simple kinds: (1.) Collection-like talk needn’t be objectual. As the vast liter-
ature on plural logic indicates3, we can talk about and quantify over objects in
the plural without thereby committing to a set of them. So, instead of talking
about the set of books on my table, I could just have talked about the books on
my table in the plural. (2.) Collection-like talk needn’t be extensional. Instead,
it can be taken intensionally, where identity is not taken to be governed by an
extensionality criterion. Presumably there’s a sense in which I don’t destroy my
beer coaster collection just by giving one of the (many) beer coasters to a friend.
My collection of beer coasters is just the kind of thing that can survive a loss (or
better yet, gain) of some members.

Second, even if set theory did provide our best theory of collections, there’s
much more to the story. Collections of beer coasters are a perfectly good sub-
ject matter for philosophical study, but this observation fails to explain why set
theory is often regarded as central to many areas (and especially mathematics).

Here’s what I take to be the core point: Objectual and extensional collections,
when augmented with the ‘right’ axioms, are powerful devices of representation. And
the ability to represent means that all sorts of problems, both philosophical and
mathematical, can be encoded within set theory.

Let’s look at this idea in a little more detail. This representational power
presents two interlinked aspects of set theory:

Foundation for Mathematics. Set theory provides a ‘foundation’ for mathe-
matics (and hence mathematical tools in philosophy).

Philosophical Repository. Set theory examines many philosophically inter-
esting subjects (e.g. paradoxes, infinity).

2( ) Boolos here is discussing the contrast between sets and proper classes, so perhaps the
quotation is intended for a slightly different context. Indeed, Boolos himself was key in the
development and philosophical study of plural logic (see [Boolos, 1984]) and so it’s likely that he
didn’t think all collection-like talk had to be encapsulated by set theory. Whatever the weather,
just putting the idea that set theory provides our best theory of collections out there is enough
to get the ball rolling at this stage.

3See [Florio and Linnebo, 2021] for a book-length treatment.
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This division is far from exclusive. Certainly there are cases where we might
think that set theory and philosophy are inextricably intertwined.4 Indeed, this
book emphasises the fact that mathematics and philosophy can become fruit-
fully intermixed, and I do not think it is either necessary or desirable to keep
these considerations separate. Nor do I think that every bit of set theory will be
entangled with philosophy, and there are set theorists who study solely mathe-
matical questions. Still, the distinction serves as a rough categorisation for dif-
ferent facets of set theory.

At this stage, we’ll keep things relatively informal, but a little precisionwill be
helpful. One set theory that’s proved to be of central interest isZermelo-Fraenkel
set theory with the Axiom of Choice (ZFC), whichwe’ll examinemore closely later.
For now let’s just content ourselves with the following rough characterisation:
ZFC tells you that there’s lots of sets (both finite and infinite) and let’s you do
many of the usual set-theoretic operations you want on those sets (e.g. take the
union of two sets).

Recently, Penelope Maddy has isolated some mathematical goals of set-
theoretic foundations built on ZFC.5 I’ll provide some examination of Maddy’s
ideas, and I’ll suggest somemodifications and additions ofmy own.6 These goals
serve a dual purpose. On the one hand, they motivate the consideration of set
theory for the interested reader. On the other, we will use them later to evaluate
particular conceptions of set.

Earlier I mentioned that set theory is a powerful device of representation.
Many of the desiderata we’ll consider are linked to this idea. For instance:

Observation. We can encode/represent all mathematical objects using sets.7

What do I mean by ‘encode/represent’ here? Let’s take a simple example
from high-school mathematics. We want to consider some geometric object in
two-dimensional (Euclidean) space, let’s say a straight line. By picking an origin
and imposing a coordinate system, we can represent this straight line by some
function f(x) = bx+c, and think of the straight line as composed of its graph of
ordered pairs 〈x, bx+ c〉. This can help us when, for example, trying to compute
the relative lengths of line segments (e.g. by using the Pythagorean theorem).

4See, for example [Rittberg, 2020] who argues that set-theoretic mathematical practice can
be metaphysically laden.

5See [Maddy, 2017] and [Maddy, 2019].
6For clarity’s sake, Generous Arena, Shared Standard, Metamathematical Corral, and

Risk Assessment are all explicitly identified by Maddy, and Theory of Collections, Foun-
dation for Mathematics, Philosophical Repository, Theory of Infinity, Independence,
Limits of Formalisation, and Testing Ground for Paradox are my own additions (though
many are implicit in much of the literature and Maddy’s work).

7See [Posy, 2020], Ch. 2, for a very concise survey of the classical situation (Posy sets up
the classical mathematician as a foil for intuitionism), as well as many set theory textbooks (e.g.
[Enderton, 1977]).
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But the ordered pairs aren’t (intuitively speaking) the same as the line, they just
encode it.

So with sets, but generalised to any mathematical object you’d care to con-
sider. Zero can be encoded by the empty set, natural numbers by the fi-
nite von Neumann ordinals8, rationals as pairs of natural numbers, reals as
Dedekind-cuts of rationals,9, ordered pairs as Kuratowski-ordered pairs10, and
functions/relations by sets of ordered pairs (i.e. the function f is encoded by
{〈x, y〉|f(x) = y}). Of course there’s lots of choices, and this is just an illustra-
tion of one way you might do things.11

Using similar tactics, any mathematical object we have come up with can
be encoded by sets (putting aside some controversial cases12). This has some
important consequences. First, set theory provides a:

Generous Arena. Find representatives for our usual mathematical structures
(e.g. N, R) using our theory of sets.

I think it is worth pausing for a moment to reflect on just how remarkable
Generous Arena is. Just using the membership relation and suitable axioms,
we can find a representative for almost any object you’d care to discuss—all the
vertiginous diversity we see in mathematics can be captured by that one little
relation of membership.13 Because we can encode mathematical objects as sets,
we have away of relating them to each otherwithin a single domain. ThisMaddy
argues, gives us:

Shared Standard. Provide a standard of correctness for proof inmathematics.

The thought here is that because we have Generous Arena and can view
mathematical objects as encoded/represented by sets, a proof about amathemat-
ical object can be regarded as correct if it could be (in principle) translated into

8These can be defined inductively with 0 =df ∅ and n+ 1 =df n ∪ {n}.
9A Dedekind cut is a partition of the rational numbers into two non-empty sets A and B,

whereA is closed downwards and does not contain a greatest element.
10The Kuratowski ordered pair is given by 〈a, b〉 =df {{a}, {a, b}}.
11See [Barton et al., 2022] for some of the formal details and further citations.
12( ) For example, one controversial objection (e.g. [Mac Lane, 1986], [Muller, 2001]) to set

theory goes something like this: “Everything in set theory has to be encoded by a set, and we
know that some categories like the category of all sets are too big to be encoded by sets. So set
theory cannot provide a foundation for category theory.” I do not find this objection convincing
for the following two reasons. (1.) set theorists certainly seem to talk about proper-class-sized
objects—the study of proper classes is in my (controversial) opinion a perfectly legitimate part
of set theory, and (2.) I don’t think that category-theoretic study of the sets is really directed at
the study of all the sets, but rather the study of the schematic first-order properties that all the
sets happen to satisfy. A full defence of this idea will have to be left for a different day, but amore
detailed explanation of this point can be found in [Barton and Friedman, 2019] (esp. §10.3).

13We’ll see how this formally plays out when we come to talk about the language of set
theory—see Definition 12 in §3.2.
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a proof in set theory about properties of the relevant mathematical code(s). Of
course, “in principle” is important here—outside of set-theoretic mathematics it
is very clunky to work with these codes, and we shouldn’t expect mathemati-
cians to actually go about their daily lives solely using the language of set theory.
The relevant language of the discipline in question is probablymore flexible than
working with just membership. (A desire for a foundation that “will capture the
fundamental character ofmathematics as it’s actually done, thatwill guidemath-
ematicians toward the truly important concepts and structures, without getting
bogged down in irrelevant details”Maddy termsEssentialGuidance, and since
all set theories we’ll consider here perform pretty badly in this respect, we’ll set
it to one side.)14

The ability to manipulate large infinite collections in ZFC-based set theory
yields the following:

Theory of Infinity. Set theory provides our best theory of infinite numbers.

Theory of Infinitywill be important later and so I’ve explicitly identified it
as a theoretical virtue in contrast to some of the literature that leaves it implicit
(it does not occur, for example, amongst the virtues identified by [Maddy, 2017]
and [Maddy, 2019]). To see its significance, we start by examining the two main
kinds of infinite number in set theory, namely ordinal and cardinal numbers. An
ordinal number can be thought of as an answer to the question of how long an
infinite ordering is. Call a set x (under a linear relation R) well-ordered by R iff
every subset of x has anR-least element. If x is well-ordered byR, then there’s
no way of descending infinitely in x alongR. This helps us think of performing
actions or operations into the infinite along a suitable infinite relation. Within
ZFC one can represent and develop an arithmetic for these orders, defining no-
tions of ordinal addition, multiplication, and exponentiation.15 This provides us
with ways of generalising normally finite operations (e.g. computation) into the
infinite. 16

Cardinal numbers, by contrast, can be thought of as answers to the question
of how many objects there are in a set. In particular, we say that two sets X
and Y have the same cardinality iff there is a bijection between them, where a
bijection f : X �→ Y is a function that ‘pairs off’ the members of X and Y ,
i.e. f takes no two elements of X to the same element of Y (f is injective) and
every element of Y is hit by f applied to some element ofX (f is surjective). By

14See [Maddy, 2017, p. 305].
15There’s lots of ways to do this, but one popular way is to use von Neumann ordinals, where

we let 0 = ∅, α+ 1 = α ∪ {α}, and limit λ =
⋃

β<λ β. Addition is represented by the ordered
disjoint union, multiplication by the lexicographical ordering on the product, and exponentiation
by iterated multiplication.

16( ) For example, we can consider infinite time Turing machines. See
[Hamkins and Lewis, 2000].
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representing cardinals using particular kinds of sets, ZFC provides a theory in
which the cardinal sizes of any sets can be compared and natural operations like
multiplication, addition, and exponentiation generalised and computed.17 The
success of ZFC is striking, it seemingly gives finite beings (e.g. us) the ability to
reason about large infinite objects. Many surprising facts can be thereby shown.
For example, we can prove that:

Theorem 2. There are as many natural numbers as there are squares of natu-
ral numbers (in particular f(x) = x2 is just such a bijection from the natural
numbers to the squares of naturals).

This is somewhat surprising since the squares of n and n + 1 get more and
more spread out as n gets larger. Indeed, similar results were even regarded as
kinds of ‘paradox’ by Thābit ibn Qurra and Galileo. We can even show:

Theorem 3. The set of all rational numbers—the numbers expressible by
fractions—is the same size as the set of all natural numbers.18

This is so even though there are infinitely many rational numbers between
any two natural numbers. We can also show:

Theorem 4. There are as many real numbers between 0 and 1 (or any two real
numbers for that matter) as there are in the real line, or in any n-dimensional
plane based on the real line (i.e. Rn).19

Despite these surprising results on sameness of size, we also discovered that
infinity comes in different cardinal sizes:

Theorem 5. (Cantor’s Theorem for the reals) The cardinality of real numbers is
greater in size than the cardinality of the natural numbers, in the sense that (i)
there is no bijection between the natural numbers and the real numbers, and (ii)
there is an injection from the natural numbers to the real numbers.

This phenomenon appears to be more general than merely comparing the
natural numbers and real numbers. We in fact discovered that:

Theorem 6. (Cantor’s Theorem) LetP(x) denote the power set of x, the set of all
subsets of x (that such a set always exists is one of the central axioms of ZFC).
Then the cardinality of P(x) is greater than that of x.20

17Again, there’s a variety of ways one might proceed, but here’s a typical one. The cardinality
of X can be represented as the least von Neumann ordinal bijective with X . Cardinal addition
can be computed as the cardinality of the disjoint union, multiplication as the cardinality of the
product, and exponentiationXY as the cardinality of the set of all functions from Y toX .

18See, for example, Chapter 2 of [Giaquinto, 2002] for an explanation of this result.
19Again, see Chapter 2 of [Giaquinto, 2002].
20We’ll discuss a proof of Cantor’s Theorem later, in particular as it relates to the paradoxes

in Chapter 3.
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Again, Cantor’s Theorem is striking. It seems to imply, on the basis of natu-
ral principles about sets, that if there’s one infinite set then there’s a never ending
hierarchy of infinite sets, since the power set of any set x is always bigger than x.
Moreover, it produces much of the interest of cardinal arithmetic—whilst ad-
dition and multiplication are trivial for infinite cardinal numbers (one can show
that both addition and multiplication just result in getting the larger of the two
back) cardinal exponentiation is not—one can show that 2κ > κ for any cardinal
κ.21

The ability to work with infinity plays out in various areas of philosophy,
including areas outside the philosophy of mathematics.22 Indeed, these argu-
ments are often regarded as a refutation of the time-honoured position in phi-
losophy and mathematics that infinity is completely beyond understanding and
intractable.23

However, this success must be tempered by the following phenomenon that
emerged in the 20th century:

Independence. There are sentences of set theory that can neither be proved
nor refuted using our ‘canonical’ theory of sets ZFC, assuming that ZFC is con-

21In particular, you can think of 2κ as the size of P(κ), since any member of P(κ) can be
correlated with a unique function from κ to 2 = {0, 1} via characteristic functions (where for
X ⊆ κ, f(α) = 1 iff α ∈ X ).

22( ) Here’s an example from infinite ethics showing how infinite assumptions can play out
with utility calculations (the example is due to [Cain, 1995]). Supposewe have people arranged at
all coordinates of the real plane indexed by integers (so there’s a single person at every (m,n) for
integersm andn). A circle slowly grows from the origin. In one scenario (the circle of happiness),
everyone starts at utility−1 and moves to utility+1000 (or any large finite amount) when they
fall inside the perimeter of the circle (and remains at this value forevermore). For the circle of neg-
ativity, each agent starts at+1 and goes to−1000when they get caught by the circle. With simple
cardinality arguments one can argue that the sumof the utility for the expanding sphere of nega-
tivity is positively infinite, whereas the expanding sphere of happiness is negatively infinite (one
needs to define these terms, but the rough idea is that there’s always boundedly many happy/sad
people in the circle of happiness/negativity, whereas infinitely many people of the opposite dis-
position). Cain argues that we should nonetheless prefer to be in the expanding happiness world
(since then we just have to wait long enough to be blissfully happy forevermore). Thanks to Joel
David Hamkins for communicating this example to me, see [Hamkins and Montero, 2000] for
some further discussion.

23See, for example, the paradoxes of the infinite given in the Introduction to [Moore, 1990].
The place of Cantor, his results, and other scholars in arriving at a final acceptance of infinity is
actually somewhat more subtle than is often acknowledged (see [Ferreirós, 2007], especially the
Introduction). ( ) In particular, it is somewhat unclear whether our notion of cardinality had
to be theCantorian one, orwemight have endedupwith a version of cardinality that respects the
idea that a proper part should always be smaller than thewhole. PaoloMancosu has championed
this idea; see his [Mancosu, 2009] for analysis and references to its mathematical development
(e.g. in the work of Katz, Benci, Di Nasso, and Forti). Gödel provides an argument that the
right notion of cardinality is Cantorian in the opening to his paper on the continuumhypothesis
([Gödel, 1947], with revisions in [Gödel, 1964]), which has in turn been critically examined by
Matthew Parker (see [Parker, 2019]).
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sistent. Nor can any ‘reasonable’ expansion of ZFC settle all questions formal-
isable in the language of set theory.24

Beforewe discuss this further let’s remark that themere fact of independence
is philosophically important. It shows that therewill be limits towhat any single
formal theory can capture. There are at least twokinds of independence thatwill
be relevant for us. To set things up, let’s start with the following:

Definition 7. We let the cardinal numbers be indexed by ordinals using a func-
tion we’ll call the ‘aleph’ function (or ℵ). ℵ0 is the smallest cardinal number
(which happens to be the cardinality of the natural numbers). ℵ1 is the next
smallest, and more generally ℵα is the αth cardinal number. We’ll denote the
ordinal corresponding to ℵα by ωα (we’ll often also let ω0 be denoted by “ω”).

A routine argument shows that 2ℵ0 > ℵ0 (by Cantor’s Theorem). But is
there anything in between? That is, does 2ℵ0 = ℵ1? Or are there intermediate
cardinalities, and in fact 2ℵ0 > ℵ1?

Definition 8. We will use the following for discussing the spread of cardinali-
ties:

• The Continuum Hypothesis (or CH) is the statement that 2ℵ0 = ℵ1.

• The Generalised Continuum Hypothesis (or GCH) is the statement that ‘For
every ordinal α, 2ℵα = ℵα+1’ (i.e. every jump in cardinality obtained by
applying the powerset operation to an infinite set just pushes you up one
cardinal number).

• The continuum function is defined by f(ℵα) = 2ℵα (i.e. the function that
takes an infinite cardinal to the cardinality of its powerset).

As it turns out, CH, ¬CH, GCH, and ¬GCH are all consistent with ZFC (as-
suming ZFC itself is consistent). We’ll explain how this works later (Chapter
6).

To discuss the other kind of independence, we first need a brief foray into
consistency strengths. Within arithmetic, and hence within ZFC, one can (com-
putably) encode syntactic notions like sentence, formula, proof, and consistency.
This allows you to formulate a sentence within ZFC expressing the idea that
ZFC is itself consistent (more precisely, you can formalise within ZFC the sen-
tence that there’s no proof of a contradiction derivable from the axioms of ZFC).
Call this sentence Con(ZFC). But now we can point to:

24( ) Here ‘reasonable’ means recursively enumerable and consistent.

16



Theorem 9. (Gödel’s Second Incompleteness Theorem) Assuming that ZFC is con-
sistent, then neither Con(ZFC) nor ¬Con(ZFC) are provable in ZFC. More-
over, this theorem holds for any (suitably nice25) theory that can represent arith-
metic.

Within set theory we can study a wide variety of sentences that have differ-
ent consistency strengths—one can often prove one extension of ZFC consis-
tent from another. As it turns out, CH and ¬CH are not like this (ZFC, ZFC +
CH, and ZFC + ¬CH are all equiconsistent in that one can prove each consistent
from the other). Obviously adding Con(ZFC) results in a consistency strength
increase. There are other principles—so called large cardinal axioms—that are
important here. These serve as the natural indices for consistency strength. They
postulate the existence of sets with a lot of closure properties and if they exist (or
are consistent) we can prove that many theories are consistent by finding models
of the relevant kind. Set theory has in fact discovered a whole hierarchy of these
cardinals with stronger and stronger closure properties.

( ) Here’s an example:

Definition 10. A cardinal κ is strongly inaccessible (or just inaccessible) iff:

(i) κ is uncountable (i.e. it’s bigger than the cardinality of natural num-
bers).

(ii) Given any set x smaller than κ, the cardinality of P(x) is also smaller
than κ. Such κ are called strong limit cardinals.

(iii) Given any set x smaller than κ, and any function f : x→ κ, the range
of f is bounded by some γ < κ. i.e. Given such an x and f : x → κ,
we always have some γ < κ such that for every y ∈ x, f(y) < γ.
Here, we say that κ is regular.

It’s instructive to think about what such an axiom says. Such a κ seems
very big—clause (i) ensures it’s bigger than N, (ii) says that you can’t catch
it with something smaller by taking our favourite size-increasing operation
(powerset), and clause (iii) says that you can’t catch it by mapping a smaller
object into it using a function. One can show that an inaccessible cardinal
κ suffices to produce a model for ZFC (and much more), and so by Gödel’s
Second IncompletenessTheoremyou can’t produce an inaccessible cardinal
from ZFC alone. We can strengthen this axiom by postulating that there is
a cardinal κ that is (i) strongly inaccessible, and (ii) has κ-many strongly

25( ) i.e. recursively enumerable and consistent.

17



inaccessibles beneath it. And these cardinals lie right at the bottom of the
large cardinal hierarchy.a

aSee, for example, the diagram on p. 472 of [Kanamori, 2009] for an idea of the extent
of the space.

Those are the two kinds of independence we’ll consider. One (the CH kind),
results in no increase in consistency strength andoften involves the relative sizes
of infinite cardinals. The other (the large cardinal kind) involves increases in
consistency strength, and one way to calibrate this is by considering sets with
ever greater and greater closure properties. These aren’t the only kinds of inde-
pendence (there are also strong axioms that don’t directly postulate the existence
of large cardinals26) but these are the ones we’ll focus on.

We should pause for a moment to reflect on what this independence tells
us about our ability to provide formalisations of theories of sets. Whilst ZFC
does give us the resources to prove a great many things about the infinite, it
does not yield information about the values of many cardinal computations nor
what kinds of set exist with certain closure properties. How we might respond
to this situation will be a central theme of this book, but it should be noted that
Independence is a reason for philosophers—i.e. not just mathematicians—to
be interested in set theory. Assessing the impact of independence is central for
understanding how our thought, language, and theories relate to the world and
what we can (and maybe can’t) do. I think it’s important therefore to isolate the
following philosophical aspect of set theory.

Limits of Formalisation. Set theory provides a natural place to examine the
limits of our formalisation, pushing the boundaries ofwhatmight be realistically
expected to be captured, and exploring where formalisations may finally give
out.

It’s a beguiling question to think what the implications of Limits of For-
malisationmight be. Does it imply that there are limits onwhat can be known?
Or that there is some kind of metaphysical indeterminacy in the world? These
are important questions for philosophers, and show that Independence is not
merely a mathematical curio.

From the mathematical perspective, set theory is one of the main theories in
whichwe study Independence. It provides uswith flexible toolswithwhichwe
can study models of different theories, how they can be built from one another,
and hence how relative provability works (given the Completeness Theorem).
We can thus (with Maddy) identify:

26( ) See, for example, so called “Axioms of Definable Determinacy” [Koellner, 2014].
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Metamathematical Corral. Provide a theory in which metamathematical in-
vestigations of relative provability and consistency strengths can be easily con-
ducted.27

As philosophers, we should be keen to assess whether the theories we work
in are consistent. Metamathematical Corral combined with the fact (as we’ll
see later) that set theory often comes with an attendant conception of what the
sets are like gives us:

Risk Assessment. Provide a degree of confidence in theories commensurate
with their consistency strength.

In particular, suppose that you come up with a wild new theory T (either
philosophical or mathematical). If I can use some set theory S to produce a
model of T, then I know that I can be at least as confident in the consistency
of T as I am in S.

Risk Assessment is especially important as many theories here are incon-
sistent. As many philosophers know, early set theory was subject to paradoxes
(e.g. Russell’s Paradox). However set theory can also yield inconsistency and
paradox when combined with other philosophical principles, such as when we
layer mereology on top of the sets (e.g. [Uzquiano, 2006]). I also want to point
out (in line with Philosophical Repository) that an enormous variety of set-
theoretic ideas can be extended to inconsistency. In particular when we push
ideas to their natural limit, they nearly always explode. Perhaps this constitutes
a kind of ‘paradox’ (maybe in a weak sense of the term). Some of these we’ll see
later, and some others I mention in a footnote for the reader who wants to look
further.28 One might think that this is a negative of the discipline—after all isn’t
inconsistency a (if not the) unforgivable sin? I disagree. Inconsistency can be
informative. Set theory gives us the tools to locate and diagnose these inconsis-
tencies, helping us to elucidate ourLimits of Formalisation and further giving
us a:

27( ) As experts will know there are other theories we might pick. One only really needs a
theory of syntax to study consistency (and weak theories of arithmetic suffice for such a theory).
Another salient field here is proof theory and the study of proof-theoretic ordinals. In a way, set
theory provides more than what is required for examining Metamathematical Corral. How-
ever, it is in the variety of models, and what one can build from them, where set theory really
shines. So it is perhaps better to say that set theory provides a piece of the puzzle for Meta-
mathematical Corral, rather than the whole picture. Thanks to Marcus Giaquinto and Daniel
Waxman for some further discussion here.

28( ) For example, the embedding template j : V → M for large cardinals explodes when
M = V . Forcing axioms can pop in various ways, either by admitting too many parameters,
allowing too many kinds of forcing, or not keeping a tight enough control on the sentences
allowed (see [Bagaria, 2005]). Standard reflection principles blow up at the level of third-order
reflection (see [Reinhardt, 1974] and [Koellner, 2009]) and modal reflection principles are pretty
flammable too (see [Roberts, 2019]).
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Testing Ground for Paradox. Set theory is very paradox prone, both in terms
of the principles that can be formulated within set theory and when combined
with certain philosophical ideas (e.g. absolute generality and mereology). In
this way, set theory provides a testing ground for seeing when and how ideas are
inconsistent.

So, there’s some interesting and nice features of set theory—not just a The-
ory of Collections, but a field that provides a Foundation for Mathematics
and Philosophical Repository, in particular by yielding a Generous Arena,
Shared Standard, Theory of Infinity, the example of Independence and its
use as a Testing Ground for Paradox, that help articulate the Limits of For-
malisation, give us a Metamathematical Corral, and Risk Assessment for
our theories. Before we move on, I want to identify one last important aspect
of set theory. Although many of these above constraints are simply reasons to
be interested in set theory, or are things that set theory has happened to be use-
ful for, there is a sense in which set theory was designed to fit these purposes.
Risk Assessment, for example, can’t go ahead without set theorists deliberately
studying Independence andMetamathematical Corral. In this way, many of
the above—notably Generous Arena, Shared Standard, Theory of Infinity,
Metamathematical Corral, andRisk Assessment—are not just pleasant fea-
tures of set theory, but constraints/desiderata on its development too. Indeed
this is one of the central points of [Maddy, 2017] and [Maddy, 2019] (though she
leaves Theory of Infinity implicit). Thinking about these virtues in this dual
light will help to illuminate some of the issues later, and in particular whether
different conceptions/theories of sets are virtuous. We’ll some see more virtues
in due course, and for ease they are collated in §9.3.
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Chapter 3

The naive conception of set and
the classic paradoxes

We’ve nowgot some virtues of set theory on the table (Chapter 2). In this chapter
I want to explain one role for conceptions of set (namely to motivate theories)
and revisit some well-known material on the naive conception of set and the
‘classic’ set-theoretic paradoxes. In doing so, I’ll present a way of looking at the
paradoxes in terms of functions.

3.1 Conceptions of set and motivating theories
One way into the problem of the paradoxes is by considering the following:

Question. What do we want out of a conception of set?

At least in this partly philosophical and partly mathematical context, what
we want out of a conception is a satisfying motivation for a good theory, and this
is what I’ll take the primary purpose of a conception of set to be in this booklet.
Let’s now clarify these notions a little.

Regarding the theory motivated: What we really want is a theory that can be
made suitably precise. For this, I’ll assume that we want to motivate an axiomatic
theory.1 I’ll presuppose that the reader has some understanding of formal ax-
iomatic theories (later we’ll use a little bit of first-order predicate logic, plural
logic, modal logic, and set theory). Where possible, I’ll provide informal para-
phrases and reference away the formal details.

Regarding the notions of a good theory and a satisfying motivation: We’ve seen
some constraints on a good theory in Chapter 2. For example, a good theory
should provide aGenerous Arena and enableMetamathematical Corral. As
we proceed, we’ll discuss the virtues from Chapter 2 in more detail with respect

1Here I am following some of the remarks in Ch. 1 of [Incurvati, 2020].
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to specific proposals for the theories we adopt. Motivations, on the other hand,
might take the form of a formalisation (as we’ll see later with various modal set
theories), but equally they could be something more informal. In particular, we’ll
talk of conceptions of set. These can be thought of as informal descriptions of
what the sets are like, which might then be formalised in various ways. There’s
lots to say about the nature of conceptions, but we’ll avoid getting into these
tricky issues here (thoughwewillmention some open questions inChapter 10).2

Whether these motivations on the basis of conceptions are satisfying also
presents a rather tricky cluster of problems. But some progress can be made
again by thinking about the goals from Chapter 2 and examining how the theo-
ries proposed enable set theory to fulfil its usual roles. But we’ll also be able to
isolate some further desiderata on conceptions of set as we proceed, aside from
Chapter 2’s virtues pertaining to set theory more broadly. This latter target we’ll
accomplish in Chapters 4 and 5.

3.2 The naive conception of set
Our first conception will be the naive conception of set:

Definition 11. (Informal) The naive conception of set holds that sets are exten-
sions of predicates, where the extension of a predicate is the collection of all the
things to which the predicate applies.3

We now want to consider what axioms the naive conception motivates. For
this, it will be helpful to set up an important language for us:

Definition 12. The language of set theory or L∈ is the first-order language with
one non-logical binary predicate “∈” and well-formed formulas formed in the
obvious way. (Note: We include identity as part of first-order logic throughout
this booklet.)

The naive conception clearly motivates adoption of the extensionality axiom
(which says that any two setswith the samemembers are equal) as it a conception
of set. Unfortunately, it also motivates:

Definition 13. The Naive Comprehension Schema asserts that for every one
place formula φ(x) in the language of set theory L∈, there is a set of all and
only the sets satisfying φ(x). Formally:

(∃y)(∀z)
(
z ∈ y ↔ φ(z)

)
Sadly, as we know, the Naive Comprehension Schema is inconsistent. Let’s

see how.
2See [Incurvati, 2020, p. 13] for discussion.
3This formulation is taken directly from [Incurvati, 2020, p. 24].
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3.3 The paradoxes
Why go over the paradoxes, when excellent introductions are available in a wide
variety of texts?4 Aren’t I just rehashing old material? Here’s why we’ll look at
them:

(1.) Part of what we will see later is a ‘new’ kind of paradox (the Cohen-Scott
Paradox) and we’ll discuss how it’s similar to the classic paradoxes. So get-
ting them on the table early is a good idea.

(2.) There has been a shift of focus in the philosophical literature towards view-
ing the paradoxes as concerned with the (non-)existence of particular func-
tions. Aside from the fact that these presentations are independently in-
teresting, this way of viewing the paradoxes will help us see the aforemen-
tioned similarities a little better.

In this book, I’ll only really consider Russell’s Paradox andCantor’s Paradox.
TheBurali-Forti Paradox is also interesting, however it is complicated by the fact
that one has to use set-theoretic codes for the ordinals (which otherwise could
be thought of as sui generis mathematical objects).5 Here they are:

Russell’s Paradox. Consider the condition x 6∈ x. By Naive Compre-
hension, this determines a set r. We ask: “Is r ∈ r?” If yes, then r 6∈ r
(since r is in the set of all x 6∈ x), contradiction. So instead assume r 6∈ r.
Then r satisfies the condition x 6∈ x, and so r ∈ r, contradiction. But then
r ∈ r ↔ r 6∈ r, a contradiction!

Cantor’s Paradox. Consider the condition x = x. Let {x|x = x} be
denoted by u (for “universal set”). Now consider P(u), i.e. the power set of
u. By Naive Comprehension, this is also a set. Now we show x = P(u)
by noting: (i) every element of P(u) is an element of u (trivially), and (ii) if
x ∈ u then x ∈ P(u) (since if x ∈ u, then ∀y ∈ x, y ∈ u (i.e. x ⊆ u) and
so x ∈ P(u)). So u = P(u).

Clearly then, there is a surjectiona f : u � P(u). Now consider the
set c = {x|x 6∈ f(x)}. Since f is surjective, there is a y ∈ u such that
f(y) = c. We now ask “Is y ∈ c?” If yes (i.e. y ∈ c), then y ∈ f(y), but
then y violates c’s defining condition, and so y 6∈ c, contradiction. So then
we assume y 6∈ c. But then y 6∈ f(y), and so ymeets c’s defining condition,
and y ∈ c, contradiction. So y ∈ c↔ y 6∈ c, a contradiction!

4See, for example, [Giaquinto, 2002], [Potter, 2004], and [Incurvati, 2020], for philosophical
introductions to the paradoxes, but almost any introductory text on set theory will cover them.

5For some discussion of these issues, see [Menzel, 1986], [Shapiro and Wright, 2006],
[Menzel, 2014], and [Florio and Leach-Krouse, 2017].
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In fact, this proof can be transformed into a proof of Cantor’s Theorem,
just by replacing u by any old set x and performing a reductio on the claim
that there is a surjection f : x� P(x).

aAs a reminder: A surjection f : x � y is a function such that for every y1 ∈ y, there
is an x1 ∈ x such that f(x1) = y1 (i.e. every member of y gets hit by f applied to some
element of x).

So far, sowell-known. Many introductory textbooks contain a presentation
of the paradoxes. However, something philosophers have paid more attention
to recently (though has been known for a long time) is that these paradoxes are
closely related:6

The Cantor-Russell Paradox. Define u and P(u) as in Cantor’s Paradox.
Consider the case where our surjection f : u � P(u) is the identity map
f(x) = x. Now the problematic set c = {y|y 6∈ f(y)} = {y|y 6∈ y} = r.
We’ll also refer to this a the Cantor-Russell reasoning.

The important thing to note is that in this context (where f is the identity
map) the contradictory set rwe get out is the problematic set for both the Cantor
and Russell reasoning (since f is the identity map here, the set {y|y 6∈ f(y)} just
is {y|y 6∈ y}). So the two are not just superficially similar, but in many contexts
come down to definition of exactly the same set, and the core issue is whether
there’s a surjection f : u� P(u).

This observation works in the other direction too, where we assume that
we have an injection7 f : P(u) � u. Without loss of generality, again this
can be the identity map (since P(u) = u). Now we can just consider the set
{y|y 6∈ f−1(y)} (this is well defined since f is an injection).

Cantor’s Paradox and Russell’s Paradox might still not be exactly the same
(Cantor’s Paradox uses a bit more machinery than Russell’s, e.g. injections),
but there are clearly strong similarities between the two. I’ll remain neutral on
whether they are really ‘the same’ in any deep sense. Important for later will just
be:

(1.) We can view each paradox as starting by postulating the existence of a par-
ticular kind of function (either a surjection or an injection).

(2.) We can then identify sets x and y such that x ∈ y ↔ x 6∈ y (in the case of
Cantor-Russell, x and y are both r).8

6See in particular, [Bell, 2014], [Whittle, 2015], [Meadows, 2015], [Whittle, 2018],
[Incurvati, 2020], [Scambler, 2021], and [Builes and Wilson, 2022].

7Another reminder: An injection f : x � y is a function such that for x1, x2 ∈ x, if
f(x1) = f(x2), then x1 = x2 (i.e. f doesn’t take any two distinct elements of x to the same
thing in y).

8Of course, strictly speaking, anything follows from the contradiction in classical logic. The
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3.4 Universality and Indefinite Extensibility
So, Naive Comprehension leads to contradiction. But why, and what options are
we left with? Many have been considered throughout the literature, surveys are
available in [Giaquinto, 2002], [Priest, 2002], and [Incurvati, 2020]. We’ll follow
Incurvati’s presentation here, since it will be instructive for making compar-
isons.

Let’s start by noting that theNaive Comprehension Schema encodes the fol-
lowing principle about the concept of set:

Universality. A concept/conception C is universal iff there exists a set of all
the things falling under C .9

Universality clearly follows from the naive conception, since the condition
x = x is a perfectly legitimate predicate of set theory and the naive conception
immediately licences the Naive Comprehension Schema. However, the follow-
ing is also a consequence:

Indefinite extensibility. A concept/conceptionC is indefinitely extensible iff
whenever we succeed in defining a set u of objects falling under C , there is an
operation which, given u, produces an object falling underC but not belonging
to u.10

Indefinite extensibility also follows from the Naive Comprehension
Schema. This is because any time we have a set x, the Naive Comprehension
Schema gives us the juice required for the Cantor-Russell reasoning, and we can
then diagonalise to find a set not in x (e.g. one of the members of P(x)).11

Clearly, any conception that validates both Universality and Indefinite
Extensibilitywill be inconsistent, since there both must and can’t be a set of all
objects falling under the conception. So in order to proceed, a natural way to go
is to examine conceptions of set that drop one of these fundamental principles.
And this is just what iterative set theories do. First though, we’ll look at a more
coarse-grained distinction between the logical and combinatorial conceptions of
set.

point is just that a natural way of reasoning to the contradiction is to note the contradictory
membership conditions.

9This is adapted from [Incurvati, 2020, p. 27].
10Again, adapted from [Incurvati, 2020, p. 27].
11This way of looking at things has clear affinities with [Priest, 2002]’s characterisation of the

Inclosure Schema and Domain Principle. Since we’re concentrating on set theory here, and
Priest’s framework is more general, I’ve chosen to go the Incurvati-route.
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Chapter 4

The logical and combinatorial
conceptions of set

We found ourselves in a tricky situation at the turn of the 20th century. The
burgeoning field of set theory was clearly useful, but the naive conception of set
was deeply flawed. How to respond to this state of affairs?

In this chapter I want to make a preliminary distinction between the logical
and combinatorial conceptions of set. This distinction will be pretty rough-and-
ready, but it will help to elucidate the strategy for the rest of the book when we
come to discuss iterative conceptions. Before we get going, I want to lay down
some further desiderata on conceptions of set, to complement the broader goals
of set theory presented in Chapter 2. These will help us in comparing different
conceptions moving forward.

4.1 Further desiderata on conceptions of set
Earlier, we remarked that we want a conception of set to motivate a good theory
of sets, and do so in a satisfying way. It’s now time to elucidate a little more what
we’d like out of these notions.

For starters, it’s desirable for a conception to have the following feature:

Naturalness. Provide a reasonably natural account of what the sets are like,
one which avoids ad hoc restrictions.

For example, if I tweak the naive conception of set to say that wherever an
instance would lead to inconsistency it should be rejected, I have made a purely
ad hoc restriction that is not clearly motivated by the underlying conception.
According the desideratum of Naturalness, we should avoid these kinds of
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move—the needed restrictions should flow naturally from the underlying in-
formal idea provided.1

We want more than merely the underlying picture to be natural though, we
should want it to motivate a good theory of sets (where ‘good’, as discussed in
Chapter 2, is likely to need some spelling out). So we identify:

Interpretation. A conception should motivate a good theory of sets.

Given the background of classical logic, inconsistent theories of sets are triv-
ial (everything follows by the principle of explosion). In motivating a good the-
ory, it’s thus a clear constraint that the resulting theory be consistent. However,
it’s one thing to block and inconsistency, and another to diagnose it. Sam Roberts
has recently identified the following challenge:

Some conditions, like the condition of being non-self-membered,
fail to determine sets. Nevertheless, set theory tells us that many
conditions do determine sets. The axiom of pairing, for example,
says that the condition of being a or b determines a set whenever
a and b are sets. We are thus faced with a challenge: to provide
an account of the dividing line between the conditions that deter-
mine sets and those that don’t which explains why there are many
of the sets there are—enough for the purposes of set theory—but
not problematic sets like the Russell set. [Roberts, MSb, p. 2]2

Roberts refers to this problem of identifying which conditions do/do not
determine sets and explaining why as the explanatory challenge. On this basis we
can identify the following desideratum on a conception of set:

Paradox Diagnosis. Respond to the explanatory challenge: Explain why the
paradoxical collections aren’t sets and which conditions do (and do not) deter-
mine sets.3

To sum up: We want to find a conception of set of that provides a picture of
the sets exhibiting Naturalness, is rich enough to provide an Interpretation
for a good theory of sets (allowing us also to fulfil the goals of Chapter 2), and

1Though see [Goldstein, 2012] for a view that tries to advocate this position. The view has
roots at least far back as Quine, and something like it may even have been held by Zermelo (see
here [Maddy, 1988a]). ( ) There are also mathematical difficulties in actually carrying out this
project due to the existence of mutually incompatible maximally consistent sets of instances of
naive comprehension. See [Incurvati and Murzi, 2017].

2See also [Roberts, 2016] (pp. 9–11).
3Closely related is the challenge of making a metaphysical distinction between sets and

proper classes (e.g. by identifying different ontological kinds). See here [Maddy, 1983] and
[Barton, 2017, Ch. IV].
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provides us with a Paradox Diagnosis by responding to the explanatory chal-
lenge and telling us which conditions are problematic, and why they don’t de-
termine sets. In a moment (§5.3) we’ll see a further desideratum—what I’ll call
Capture—that applies specifically to iterative conceptions of set. Before we get
there though, I want to consider a couple of more coarse-grained approaches.
Examining them will help us see better the ways in which iterative conceptions
can make progress.

4.2 The logical and combinatorial conceptions of
set

We can begin by considering the the distinction between:

Definition14. (Informal)The logical conceptionof set holds that sets correspond
to well-defined predicates.

and:

Definition15. (Informal)The combinatorial conception of set holds that sets cor-
respond to acceptable pluralities (possibly without there being any non-trivial
defining predicate).4

Clearly, these conceptions are pretty rough-and-ready, certainly they are
not fully precise. As we’ll see shortly, each admits of multiple different sharp-
enings. Moreover, we might not think that the distinction between the two
is sharp—perhaps there are some conceptions of set that borrow a little from
each.5 We’ll see one such conception—the constructibilist conception—in just a
moment, and there may well be others.6 Still, I think they’re useful to think
about as they highlight the following:

(1.) When faced with mutually inconsistent principles about the sets, we can
very naturally move forward by developing a conception that rejects (at
least) one of them.

(2.) Conceptions are often imprecise and/or underspecified, and further develop-
ment of the conceptions may be needed for progress.

Let’s examine these two points in more detail.
4[Incurvati, 2020, p. 31] talks about the combinatorial conception as holding that sets are

characterised via “reference to their members”. I wish to avoid awkward metasemantic issues
surrounding reference, and so I’ve used pluralities instead.

5See [Incurvati, 2020] (especially §1.8) for further discussion and references.
6( ) For example, there are versions predicativism seem to combine a notionof ‘good’ defini-

tions with successive set formation from available pluralities. See [Linnebo and Shapiro, 2023]
for such a view.
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4.3 Responding to paradox and sharpening con-
ceptions

The consideration of the distinction between the logical and combinatorial con-
ceptions of set indicates the following germof a response to the paradoxes. Many
ways ofmaking the logical conception precisewill hold that the predicatex = x
is ‘well-defined’. Thus, under the logical conception, Universality is likely to be
validated and Indefinite Extensibility violated. Conversely, versions of the
combinatorial conception will make the notion of ‘acceptable plurality’ precise
in a variety of ways, and in doing so can make it the case that the plurality of
all sets is not an ‘acceptable plurality’. So it is Universality and not Indefinite
Extensibility, that is often identified as the culprit. We thus seem to have the
beginnings of a ParadoxDiagnosis; explanations of what the sets are like might
be used to explain why it is that one of the two principles fail. So when faced
with paradox, an attractive move is to modify our conception of set in response,
attacking one of the two conflicting principles.7

Moreover these two conceptions correspond to reasonably Natural con-
ceptions. Returning to the example of my collection of beer coasters; let’s sup-
pose I want to think about the set of all objects in this collection. I may talk
about the relevant set of beer coasters as the set of everything that is both a beer
coaster and currently in a certain shoebox in my bedroom (thereby using the
logical conception). But there is also a certain plurality of objects—the individ-
uals b1, ..., bn considered in the plural—each of which just happens to be a beer
coaster in that particular shoebox. And it seems that there’s no obstacle to me
considering the set of them (thereby thinking of the relevant set combinatori-
ally).

Though useful both for beginning to sharpen our conception of set and pro-
viding a preliminary classification, the logical and combinatorial conceptions
are still rather imprecise in a number of ways, and this leads to them being defec-
tive (without further sharpening). For example, let’s consider Interpretation.
What formal theory is motivated by either the logical or combinatorial concep-
tion alone? There seems to be little that one can say when thinking about either
as stated above. We first need explanations of what well-defined predicates are,
or what it is to be an acceptable plurality. And without a formal theory we can’t
achieve lots of the nice goals from Chapter 2.

7It should be noted that this diagnosis isn’t completely neat. One might make the case that
there are logical conceptions of set that violate Universality and combinatorial conceptions
that violate Indefinite Extensibility. [Incurvati, 2020], for example, characterises the limita-
tion of size conception as logical, but that doesn’t allow for all the self-identical sets forming a
set. It’s not clear to me that the limitation of size conception is in fact logical, but in any case
we can view those (more precise) conceptions that validate Universality as the relevant con-
trast cases for what we’re doing here. We’ll see throughout this booklet that the classifications
amongst the conceptions might not be sharp.
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This brings us on to our second point: When faced with some defective-
ness in our conception of set, it’s attractive to develop the conception in order
to make progress. This could be in the face of paradox, but we also might be
galvanised to do so by given other deficiencies (e.g. a failure to address Inter-
pretation). For example, in order to improve the logical conception, we need to
say what “well-defined” means. There are a number of ways of doing this. One
(the stratified conception) holds that there are certain formulas that are appro-
priately stratified, and that comprehension should be restricted to these formu-
las.8 Another (the iterative property conception) holds that there is a way of iter-
atively individuating those formulas that can be used in comprehension (this
is the approach of the property theories of [Fine, 2005], [Linnebo, 2006], and
[Roberts, MSa]). On each of these, as it happens, the predicate x = x is well-
defined and individuates an extension, validating acceptance of Universality
over Indefinite Extensibility.

The combinatorial conception, by contrast, needs to make precise what it is
for a plurality to be acceptable. One way is to say that some sets are acceptable
iff they can be depicted as part of a particular kind of graph (the graph concep-
tion). This conception also conforms to our diagnosis above, validating Indefi-
nite Extensibility but rejectingUniversality.9 Iterative conceptions (the foci of
this book) also refute Universality whilst accepting Indefinite Extensibility.
They hold that a plurality is acceptable if it can be formed from other sets using
set-construction methods. Let’s now turn to these conceptions.

8( )The stratified conception is proposed by [Quine, 1937] and its history is nicely outlined
in [Incurvati, 2020]. One starts with the following definition:

Definition 16. A formula φ in the language of set theory is stratified iff there is an assignment
of natural numbers to variables such that:

(i) For any subformula of φ the form x = y, the natural number assigned to x is the same as
the number assigned to y.

(ii) For any subformula of φ the form x ∈ y, the natural number assigned to y is one greater
than the number assigned to x.

By restricting comprehension to stratified formulas we obtain a system known as NF.
9Sincewewon’t discuss thismuch,we’ll set it aside, but see [Incurvati, 2020], Ch. 7 for details.

( ) The relevant notion is an accessible pointed graph, a kind of directed graph where there’s a
distinguished top node (this is the ‘pointed’ part of the definition, and you can think of this ‘point’
as the set we want to code), the edges code the membership relations, with accessibility meaning
that it’s possible to reach each node of the graph by some finite chain of edges starting from the
point.
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Chapter 5

Iterative conceptions: First
examples

In this chapter, I want to present the emergence of several conceptions of set
and the eventual rise of what I’ll call the “strong iterative conception”. We’ll see
that this idea can be formalisedmodally and there’s a close affinitywith ZFC. This
conception also performswonderfully with respect to the desiderata we’ve con-
sidered. But I also want to indicate that the strong iterative conception, though
it may be the default, isn’t the only conception on the market.

5.1 Some iterative conceptions of set
We’ll consider a kind of combinatorial conception known as the iterative con-
ception. We’ll keep things rough and imprecise to begin with (this imprecision
will be helpful later when we separate out different versions of it):

Definition 17. (Informal) The iterative conception of set holds that sets are
formed in stages, and new sets are formed from old by collecting together sets
formed at previous stages. There are no other sets than those found at the stages.

The rough idea can be filled out as follows. We (or better yet a suitably ide-
alised being) start at an initial stage with some initially given collection of ob-
jects. These could be a bunch of non-sets (often called Urelemente), or some an-
tecedently given sets that we take to be acceptable (e.g. the empty set).1 We then
begin forming new sets out of what we have using some given operations, and
in this way obtain the sets. So long as our operations guarantee that new sets

1( ) Depending on what set-construction methods we allow, we have to be careful that
we don’t start with a proper class. If we do, some modification is needed, see for example
[Menzel, 1986] and [Menzel, 2014].
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can always be formed, we have an explanation of why Indefinite Extensibil-
ity holds and Universality fails—there will never be a stage at which we can
use an operation to collect all the sets into a set.

The iterative conception of set as I’ve given it can in fact be split into two
conceptions, a strong one and a weak one:2

Definition 18. (Informal)The strong iterative conception of set holds that sets are
obtained in stages. At each additional stage we form every possible subplurality
of the current stage as a set. There are no other sets beyond those obtained this
way.

Definition 19. (Informal) The weak iterative conception of set holds that sets are
formed in stages. Sets are formed by collecting together sets existing at previous
stages using some set-construction methods. We leave it open whether or not
we get every possible subplurality ofwhatwe have at a stage as a set immediately
after the current one. There are no other sets beyond those obtained this way.

I want to suggest that the weak iterative conception is really prior to the
strong iterative conception (conceptually, if not chronologically). Key to the
weak iterative conception are:

(i) A description of what counts as a starting domain.

(ii) A description of some construction methods for forming new sets from
old.

The strong iterative conception says (i) can be any set of objects, but the
empty set will do, and (ii) that the operations that form new sets consist solely of
powerset (i.e. taking all possible subsets). (Note: As we’ll see below, we also take
unions at limits. No new sets are formed in the limit, however, it just consists in
‘bundling together’ everything we constructed previously.) It thus sharpens the
weak iterative conception; there are other methods of set-construction that we
might have chosen. Let’s see an example of the difference by going into more
detail on each.

The strong iterative conception is perhaps the simplest version of the weak
iterative conception, so we’ll explore it first. It is also perhaps the ‘default’
version—as of writing, if you put the terms “iterative conception of set” into
a search engine, you’ll get back results about the strong iterative conception.
Whilst I won’t enter into historical details too much here, an excellent descrip-
tion of its emergence is available in [Kanamori, 2007], and [Button, 2021a] im-
pressively charts its formal (stage-theoretic) development.

Often the idea of the strong iterative conception is formalised within ZFC
with the following definition using ordinal numbers:

2This distinction emerged in discussion with Chris Scambler, and I’m grateful to him for the
suggestion of separating out the two.
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Definition 20. The Cumulative Hierarchy of Sets or V is defined as follows:3

(i) V0 = ∅

(ii) Vα+1 = P(Vα), where α + 1 is a successor ordinal.

(iii) Vλ =
⋃

α<λ Vλ (if λ is a limit ordinal)

The structure of theVα thus captures the idea thatwe take all possible subsets
at each additional stage (i.e. iterate powerset) and collect them together at limits
(i.e. take a union). The often given visual representation is provided in Figure
5.1.

The weak iterative conception is in some ways less well studied than the
strong iterative conception, possibly partly because the latter is seen as the de-
fault. However, since the weak iterative conception is more general and will be
important later, it will be worth getting it on the table.

We’ll see a few examples of the weak iterative conception in this book, but
some will have to wait until we have a couple of set-theoretic constructions un-
der our belt. For now, here’s an easier example to get a feel for it. Suppose we
want to build the hereditarily finite sets (i.e. finite sets that are built up out of
only finite sets all the way down—formally we say that the empty set is heredi-
tarily finite, and any other set is hereditarily finite just in case it is finite and all
its members are hereditarily finite). In standard set theory, we can get these sets
just by taking powersets from the empty set (i.e. moving up through each Vn for
every natural number n). But there are other ways we might build these sets.
Suppose we individuate sets in stages by starting with the empty set at stage 0
and forming at stage n + 1 all sets of size at most n. As we continue through
all the stages up to ω (the first infinite stage), we’ll eventually get every heredi-
tarily finite set. But we won’t get every possible subset at a successor stage. For
instance you can check that stage 4 has eight members, so you’ll miss out some
subsets of stage 4whenmoving to stage 5 (you’ll have towait until stage 8 before
you can form all subsets of stage 4). So this procedure is weakly but not strongly
iterative—there are possible sets that don’t get formed at the next stage.

We can also have processes that are not even linearly ordered, for instance
by having two or more set forming operations. For example, let the operation
Even! form the subsets of a stage with an even number of elements. The other
Odd! forms the odd numbered subsets of a given stage. By interleaving Even!
andOdd! finitely many times we can get any hereditarily finite set. But the pro-
cess is not linearly ordered, for instance we could choose to do Even! a bunch

3For simplicity, I am giving the version for pure sets, if you want to include Urelemente
then clause (i) should be replaced with V0 = {x| ‘x is an Urelement’}, and clause (ii) by
Vα+1 = P(Vα) ∪ Vα. The situation can get tricky depending on what Urelmente one allows,
see [Menzel, 1986], [Menzel, 2014] and [Button, 2021a] for discussion.

33



Figure 5.1: A visual representation of the cumulative hierarchy. Each additional
stage is obtained by applying the powerset operation, and at limit stages we
union together the previous stages. Thefigure contains only a tiny fraction of the
beginnings of the hierarchy, as we go further and further each ordinalα indexes
some Vα, and ω + ω is a comparatively small countable ordinal.
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of times in a row. One doesn’t even have a guarantee that you get every heredi-
tarily finite set using these processes (say if you just head off only iteratingEven!
over and over again).

There are more mathematically interesting kinds of weak iterative concep-
tion. Here’s a more difficult (but important) example:

Definition 21. (Informal) The constructibilist conception holds that sets are
formed in stages. At subsequent stages we form into sets those pluralities of
previous stages that are definable (i.e. can be picked out by a formula) over that
stage. There are no other sets beyond those obtained this way.

Is conception weakly or strongly iterative? We can show that there are ver-
sions of it that are only weakly iterative.

( ) Often set theorists will talk about the constructible universe (or L) and
constructible hierarchy. L is formed by taking definable powersets. A subset
x of the domain of a structure M is definable over M iff x is the unique set
containing all and only the y in the domain ofM satisfying φ(y) (inM) for
some condition φ(y) in the language ofM.a For a structureM, let’s call the
collection of all suchM-definable subsetsDef(M). ThenL can be defined
as:

Definition 22. The constructible hierarchy (or just L) is defined as follows:

(i) L0 = ∅

(ii) Lα+1 = Def(Lα) for successor ordinal α + 1

(iii) Lλ =
⋃

α<λ Lα for limit ordinal λ.

The axiom that every set is constructible (i.e. ‘For every x there is an α
such that x ∈ Lα’) is called the Axiom of Constructibility or V = L.

Now the constructible hierarchy clearly satisfies theweak iterative con-
ception and the constructibilist conception. But it doesn’t satisfy the strong
iterative conception. This is because often new subsets of previous levels get
formed as we climb. For example, new subsets of ω coding new real num-
bers get formed as we move up through the first few stages above Lω . To
see this, note that a satisfaction predicate for Lα is definable over Lα+1, and
aboveVω thesewill codenew subsets of natural numbers. This phenomenon
(the slow growth ofL) is quite general. Since there are only as many formu-
las as there are parameters available (the usual formula-building operations
are trivial at infinite cardinals) we have that the cardinality ofLα is the same
as the cardinality ofLα+1 for every α (in stark contrast to the Vα-hierarchy
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where Vα+1 is always bigger than Vα). So the Lα hierarchy does not sat-
isfy the strong iterative conception, there are possible subsets that don’t get
picked up when we move to a subsequent stage. I represent this visually in
Figure 5.2.

Moreover, we could make the iteration more fine-grained and non-
linearly-ordered. I could take each formula to provide its own set-forming
operation, and think of successively forming subsets for specific formulas,
instead of taking the whole definable powerset. This would still qualify as
weakly iterative.

Note: Sometimes you can recover a version of the strong iterative con-
ception from the weak one. In the case of our n-sized-set-forming opera-
tion, we could eventually recover the Vn-hierarchy if we wait long enough.
This holds for the Lα-hierarchy too, for example if L satisfies ZFC, it can
recover its own version of the Vα-hierarchy.

However, one can still see the difference between the two hierarchies,
even when we assume that V is equal to L. For, even if ZFC holds, it is not
the case that Vα = Lα for every α. Rather the Lα-hierarchy grows slower
than the Vα-hierarchy, it is just that the Lα-hierarchy can ‘catch up’ at limit
stages.

aThis is fiddly to formulate. See Chapter 3, §5 of [Drake, 1974].

Remark 23. An important but somewhat orthogonal side remark: I mentioned
earlier that the combinatorial and logical conceptions of set were pretty rough-
and-ready. I think that the constructibilist conception provides a good example
to showcase how the two might be neither neatly separable nor incompatible.
On the one hand, the constructibilist conception is clearly combinatorial, we
have an explanation of when a plurality is available; namely when it is definable
after iterating the formation of definable powersets. But notice also that under
the constructibilist conception the existence of sets is intimately tied to defining
conditions—given the formation of some setx, it must comprise exactly the sat-
isfiers of some condition from a previous stage. So it’s very unclear whether it’s
correct to characterise the constructibilist conception as either combinatorial
or logical; it seems to borrow ideas from each.

To sum up: There aremultiple sharpenings of theweak iterative conception.
One is the strong iterative conception. But others (e.g. the constructibilist con-
ception) aremathematically interesting and not strongly iterative. Clearly, some
of these conceptions can be used to motivate certain axioms (for example, the
constructibilist conception motivates the axiom that every set is constructible).
But can we lend formal precision to this idea of motivating theories? Let’s see
how this can be done with the strong iterative conception.

36



Figure 5.2: The constructible universe sitting inside the cumulative hierarchy.
In the case where every set is constructible, we still do not have Vα = Lα for
every α, rather the Lα-hierarchy can catch up at limit stages before continuing
to grow slower than the Vα-hierarchy.

Vω = Lω

Lα-hierarchy
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5.2 ( )Modal set theory and the strong iterative
conception

We want our conceptions of set to motivate virtuous theories. Later (Chapter
8) we’ll see how versions of the weak iterative conception other than the con-
structibilist conception can be used to do just this. For now, we’ll focus on the
‘default’ strong iterative conception and ZFC. In particular, I’ll:

(1.) Explain ZFC set theory.

(2.) Show how ZFC can be motivated on the basis of a modal axiomatisation of
the strong iterative conception.

So, let’s start by setting up ZFC:

Definition 24. Zermelo-Fraenkel Set Theory with the Axiom of Choice (ZFC) is
formulated in the language of set theory L∈. It comprises the following axioms
(we just give informal statements, formal definitions are available in many set
theory textbooks):

(i) Axiom of Extensionality. Sets with the same members are identical.

(ii) Axiom of Pairing. For any two sets x and y there is a set containing just x
and y.

(iii) Axiom of Union. For any set x, there is a set of all members of members of
x.

(iv) Powerset Axiom. For any set x, there is a set of all subsets of x.

(v) Axiom of Foundation. Every set contains an element that is disjoint from
it. The axiom both rules out self-membered sets and also the existence of
infinite descending membership chains.

(vi) Axiom of Infinity. There’s a non-empty set x such that for any member y
of x there is another member z of x such that y is a member of z. (This
guarantees that there’s an infinite set.)

(vii) Axiom of Choice. (AC) For any non-empty set of pairwise-disjoint non-
empty sets, there is a set that picks one member from each. (Note: ZFC
without AC is just denoted by “ZF”. In the presence of ZF this is equivalent
to the Well-Ordering Principle that every set can be well-ordered.)
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(viii) Axiom Scheme of Replacement. If a formula φ(x, y) is function-like (i.e. for
any x, there is exactly one y such that φ(x, y)) then the image of any par-
ticular set under φ(x, y) is also a set.

The following are provable ZFC, normally using Replacement. They will
be relevant later when we consider dropping the Powerset Axiom (in that
context, they can’t be proved from Replacement) and so we’ll include them
as part of ZFC:

(ix) Axiom Scheme of Separation. If φ(x) is a formula in one free variable x,
then if y is a set, then there’s a set of all the x in y such that φ(x) (i.e.
{z|z ∈ y ∧ φ(z)} exists).

(x) Axiom Scheme of Collection. For any formula φ(x, y) in two free variables,
if φ(x, y) defines a relation, and for some set a and for every x ∈ a there is
always a y φ-related to x, then there is a set z ‘collecting’ together at least
one ‘φ-witness’ for every x ∈ a. Since this axiom scheme may be a little
less familiar, we’ll include it’s formal statement:

(∀a)
(
(∀x ∈ a)(∃y)φ(x, y) → (∃b)(∀x ∈ a)(∃y ∈ b)φ(x, y)

)
As noted earlier (Chapter 2) ZFC is a very nice theory of sets with many

theoretical virtues. But can it be motivated using the iterative conception?
There’s different ways to do this. One way is to axiomatise the notion of

a stage directly.4 Whilst this meshes very well with the ‘stage-theoretic’ termi-
nology employed earlier, I want to take a slightly different approach here. In-
stead, we’ll think of the iterative conception as describing how new sets can be
formed from old using set-construction methods, and in this way giving us a
kindofmodal framework. There’s a few reasons for this choice that I’ll just briefly
mention. First, the modal approach makes some questions regarding Interpre-
tation a little more tractable using existing technology (we’ll see how shortly).
Second, thinking of things modally provides an easy integration with other ar-
eas of philosophy. For example, if we think that sets are specified as part of a
modal framework, then the nature of this framework and the modalities em-
ployed may well be of interest to the modal metaphysician.5 Third, there is an
easy way to view these modal theories in stage-theoretic terms—we can simply
think of the corresponding worlds as the stages and our chosen set-constuction
methods as providing the accessibility relation. Fourth, it’s the modal approach
to the weak iterative conception that’s been better developed in the literature
thus far (indeed, developing properly stage-theoretic accounts of the weak iter-
ative conception will be left as an open question in Chapter 10).

4See here [Button, 2021a] for a recent article on the state of the art.
5A friendly introduction to these issues is available in [Menzel, 2021].
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This said, this choice is controversial.6 We might think that the modal ap-
proach deviates somewhat from the stage-theoretic account of the iterative con-
ception, suggesting different kinds of philosophical question. Moreover, as we’ll
explore later (Chapter 10), there’s some substantial open questions about how
well the modal approach formalises either the weak or strong iterative concep-
tions.7 For now I’ll put these questions to one side, but I don’t want to overstate
my position. Iterative conceptions are informal accounts of the nature of the
sets. There are choices to be made in how to formalise these ideas. Some may
be better than others, and there is significant philosophical work to be done in
contrasting the different approaches.

The idea to view the iterative conception modally is relatively old, going
back to [Parsons, 1983], but has been fruitfully applied recently. In particular,
[Linnebo, 2013] shows how one can give modal axioms motivating ZFC. Giv-
ing the full details would take up too much space, but a flavour of the approach
will be useful.8

As is clear from the way I’ve presented the iterative conception informally,
we’ll want to talk about reifying pluralities into sets, and for this Linnebo uses
a plural logic. Really though, any extensional second-order variables would do.
Since much of the literature (e.g. [Scambler, 2021]) follows this convention of
using plurals, we’ll stick with it. Again we’ll leave the plural logic relatively in-
formal, the reader wishing to see a concise presentation of the details is directed
to [Linnebo, 2014] or [Oliver and Smiley, 2013] for textbook treatments. Plural
logic has new variables xx that range over ‘some things’ (e.g. the books on my
table), a binary relation symbol ≺ (where x ≺ xx is to be read as “x is one of
the xx”), with the expected definition of well-formed formula. We’ll denote the
language obtained by adding these resources to L∈ by “L∈,≺”. We’ll routinely
abuse singularisation and speak of “a plurality” (a standard move in this field).

For our plural axioms (here we’re mostly following the presentation in
[Scambler, 2021]) we’ll take the following:

Definition 25. Plural logic (over set theory) has as axioms (we’ll give these ax-
ioms informally, see [Linnebo, 2018, Ch. 12] for the formal details):

(i) A principle of extensionality for plurals (that if two pluralities xx and yy
comprise the same things, then anything that holds of the xx also holds of
the yy and vice versa).9

6I am grateful to Davide Sutto and Chris Scambler for some discussion of this point.
7( ) For example, aswe’ll see, somemodal approaches yield non-well-founded accessibility

relations. But let’s defer a more thorough examination of this issue until later.
8Details can be found in [Linnebo, 2013] and [Scambler, 2021], and different modal ap-

proaches are given by [Studd, 2013] and [Button, 2021b].
9I’m suppressing some subtleties here about how one formulates the extensionality axiom,

see [Roberts, 2022] for details.
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(ii) Additionally, impredicative plural logic has the following Impredicative
Comprehension Scheme:

∃xx∀y
(
y ≺ xx↔ φ(y)

)
for any φ in L∈,≺ not containing xx free.

(iii) Predicative plural logic does not contain the Impredicative Comprehen-
sion Scheme but rather has the following Predicative Comprehension
Scheme:

∃xx∀y
(
y ≺ xx↔ φ(y)

)
for any φ in L∈,≺ not containing xx free and not containing any plural
quantifiers.

We then need a background modal logic to talk about what’s possible after
constructing new sets. For this we’ll add a modal operator ♦ to L∈,≺ to get a
language L ♦

∈,≺, with well-formed formulas as normal. We’ll also use the modal
operator �, and in this context �φ can be treated as shorthand for ¬♦¬φ. For
modal axioms we’ll use:

Definition 26. Classical S4 is the modal logic with the operator ♦ and the ax-
ioms:

(i) The necessity of identity and distinctness (these are sometimes optional,
but we’ll include them):

• x = y → �(x = y)

• x 6= y → �(x 6= y)

(ii) K: �(φ→ ψ) → (�φ→ �ψ) (this holds for any normal modal logic).

(iii) T: φ→ ♦φ (this holds if the accessibility relation is reflexive).

(iv) 4: ♦♦φ→ ♦φ (holds if the accessibility relation is transitive).

To obtain S4.2 we add:

(v) G (sometimes called .2): ♦�φ→ �♦φ (holds if the accessibility relation is
directed).

The logic S4.3 is obtained by adding:
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(vi) .3: (♦φ ∧ ♦ψ) → ♦
(
(♦φ ∧ ψ) ∨ (φ ∧ ♦ψ)

)
(holds if the accessibility

relation is linear).

Throughout, we will also assume:

(vii) The Converse Barcan Formula (CBF): ∃x♦φ→ ♦∃xφ (this can be thought
of as capturing the idea that domains only grow).

Because we have S4.2 you can think of the space of worlds as a kind of
branching time structure, butwhere you can always bring together any two pos-
sibilities (this is the content of the G/.2 axiom). Thus �φ can be though of as
saying “in all future worlds φ” and ♦φ as “there is a future world such that φ”.
And S4.3 makes it so that there’s a kind of inevitability to how the possibilities
unfold.10

Beforewe give ourmodal axioms, we should clarify howwe’ll interpret non-
modal set theory. Mostly mathematicians will just want to work with a non-
modal axiomatisation of sets, without paying attention to finicky modal details
about how the sets are formed. Sowe can ask: Is there away of interpreting non-
modal set theories in L∈ into our modal language L ♦

∈,≺? Given the iterative
conception, how should we interpret the ‘usual’ quantifiers ∀ and ∃? Well, one
natural thought is that ∀xφ should hold if no matter how you form sets, φ will
always hold, and ∃xφ tells you that you can go on to form sets such that φ. We
can then provide:

Definition 27. Given a sentence φ in L∈, the potentialist translation of φ (de-
noted “φ♦”) is obtained by replacing every universal quantifier “∀” by “�∀”, and
every existential quantifier “∃” by “♦∃”.

We can then define a version of the modal axioms that is extracted from
[Linnebo, 2013]:11

Definition 28. [Linnebo, 2013], [Linnebo, 2018] (here we follow
[Scambler, 2021]’s presentation) Lin is the following theory in L ♦

∈,≺:

(i) Classical first-order predicate logic.

(ii) Impredicative plural logic.

10( ) It should be noted that the converses of (v) and (vii) do not hold (i.e. there are frames
that are not directed that satisfy G/.2, and non-linear frames satisfying .3).

11I’m basically following the presentation in [Scambler, 2021], with a few extra tweaks that
will be useful later. Scambler uses “L” to denote Lin, I’ve opted for syntax that avoids possible
confusion of Lin with the constructible hierarchy L. Strictly speaking [Linnebo, 2013] doesn’t
include the plural version of the Axiom of Choice (he is looking for interpretation with ZF) but
[Scambler, 2021] does (but he throws it in as part of the plural logic, I include it as a hybrid plural-
cum-set-theoretic axiom). With these systems you get as much Choice out as you’re willing to
throw in, and since we’re primarily interested in ZFC in this book, I’m happy to throw it in.
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(iii) Classical S4.2 with the Converse Barcan Formula added.12

(iv) The Axiom of Foundation (rendered as normal using solely resources from
L∈).13

(v) Extensionality (again using solely resources from L∈).

(vi) Modal Collapse. Theprinciple that any things (at a stage) could form a set:

�∀xx♦∃y�∀x(z ∈ y ↔ z ≺ xx)

(vii) Stability axioms for ≺ and ∈ (these mirror the necessity of identity/dis-
tinctness):14

• x ∈ y → �(x ∈ y)

• x 6∈ y → �(x 6∈ y)

• x ≺ yy → �(x ≺ yy)

• x 6≺ yy → �(x 6≺ yy)

(viii) Two principles of plural definiteness:

• PluralMembershipDefiniteness is givenby the following scheme:

(∀x ≺ yy)�φ(x) → �(∀x ≺ yy)φ(x)

• Subplurality Definiteness: Say that xx � yy holds just in case the
xx are a subplurality of the yy, i.e. for every x such that x ≺ xx we
have x ≺ yy. Then the Subplurality Definiteness scheme states
that:

(∀xx � yy)�φ(xx) → �(∀xx � yy)φ(xx)

(ix) Modal Infinity. The axiom that there could be some things comprising all
and only the possible natural numbers.

(x) Modal Powerclass. The axiom that there could be some things that are all
and only the possible subsets of a given set.

12( ) Normally the Converse Barcan Formula comes for free (one must take steps to block
it), see [Linnebo, 2018] (p. 207). I’ve added it for the sake of explicitness andmaking the ‘growing
domains’ conception of potentialism clear. I’ll make no further mention of this complication.

13( ) Another nice option here is to use ∈-induction. Thanks to Øystein Linnebo for some
discussion of this point.

14( ) It should be noted that a choice point here concerns whether to use the quantified or
free-variable, forms of these axioms, since the free-variable versions seem stronger. Thanks to
Chris Scambler for some discussion of this point.
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(xi) Modal Replacement. Every potentialist translation of the Replacement
Scheme of ZFC.

(xii) Plural Choice. A plural version of the Axiom of Choice ‘For any pairwise-
disjoint non-empty sets xx, there are some things yy that comprise exactly
one element from each member of the xx’.15

Together, these get us some way to providing a modal axiomatisation of the
strong iterative conception. Let’s discuss the Naturalness of these axioms. Of
course the extent to which a modal set theory is natural and/or not ad hoc will
likely be somewhat imprecise and a matter of degree. Given any set x, there
could be (by Modal Powerclass) a plurality of all possible subsets of x. Using
Modal Collapse, this plurality can then be reified into a set. Thus there’s a clear
picture of how the sets are formed—our set-construction method turns plural-
ities of the domain into sets. I’ll refer to such methods as “Reify! commands”,
and talk about using Reify! to turn pluralities into sets.

From this picture, we also get a Paradox Diagnosis. It explains why In-
definite Extensibility holds and Universality fails—the universal set never
gets formed because at no stage is there a plurality of all possible sets; we can
always form something new. In particular, the Russell plurality of all non-self-
membered sets at a world will be formed (via Reify!) as a set at a later world.

Unfortunately, we don’t quite yet get the full strong iterative conception. Al-
though the modal set theory Lin axiomatises an uncountabilist conception of set
(in that it implies that there could be a set that is necessarily uncountable), the
axiomatisation does not exactly correspond to the formation of the universe via
powersets and union. The problem lies in the fact that though Modal Power-
class andModal Collapse entail that the full powerset of a set could exist, there
is no guarantee that it is formed immediately. It might take some time and there
might be some intermediate worlds before the relevant powerset appears.16

Though we won’t go into too much detail on this, here’s how you can en-
force the strong iterative conception. Whilst I am not aware of any axiom in
L ♦

∈,≺ that guarantees that the powerset gets formed immediately, one can use
bimodal operators to enforce the immediate collapse of every possible plural-
ity of a world into a set. James Studd provides one such axiomatisation (in
[Studd, 2013]), with subsequent examination and a further approach by Tim
Button (in [Button, 2021b], I’ll largely follow Button). Here we have two modal

15Strictly speaking Linnebo does not include AC, but I’m happy to throw it in. Some other
authors (e.g. [Studd, 2013]) do so. Nothing hangs on it for the results we have here, other than
the fact that if Lin is run without a form of AC, the that gets interpreted will also not include AC
(it will be ZF rather than ZFC).

16( ) In fact one can (with a little work) obtain a Kripke model for Lin from the Lα of a
model of ZFC, and as noted before the Lα don’t get you the strong iterative conception. See
[Barton, MSb] for discussion and a sketch.
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operators and that capture the ‘timelike’ feature of forming sets; φ is in-
tended to mean that it was the case that φ (or “previously φ” if you like), and φ
is intended to mean that it will be the case that φ (or “eventually φ”), with the
usual dual necessity operators. Tweaks to the modal logic are needed to incor-
porate these resources (in particular Button and Studd both work in a free logic)
but we won’t dwell on that here. The important point is that one can use these
modal operators to ensure that every plurality is formed into a set at subsequent
worlds via an axiom asserting that if every possible φ existed earlier, then there
is a set comprising exactly the φs. In the context of plural logic (or a suitable
second-order logic) we immediately get the result that every plurality xx forms
a set at all worlds after each of its members exists.17

For the sake of simplicity (and in particular avoiding the complications of
free logic) I’ll stick with Lin, but we could run the same points using Button or
Studd’s systems too. Moreover, the Vα can be used to obtain a Kripke frame for
Lin (as we’ll discuss shortly), so Lin is satisfied under the strong iterative concep-
tion (even if there are other conceptions that satisfy Lin).

5.3 Mirroring and Capture
Let’s now look at Interpretation. The core conceptwill be the idea ofMirroring
Theorems. These tell you how you can go between the modal theories and the
non-modal theories favoured by mathematicians. In particular we can show:

Theorem 29. [Linnebo, 2010], [Linnebo, 2013] ZFC proves φ iff Lin proves φ♦.

This theorem shows that the modal idea of reifying all pluralities into sets at
a stage (and continuing this into the transfinite) motivates ZFC concerning the
sets. And as we noted in Chapter 2, ZFC is a very nice set theory! Moreover, it
shows how Lin is strongly faithful to ‘normal’ set theory under the potentialist
translation.18

Interestingly, the relationship goes back the other way too. Earlier, wemen-
tioned that the strong iterative conception suggests that the universe is formed
via the Vα-hierarchy. But one can also show:

17( ) Formally: If E(x) is the relevant existence predicate in free logic, one can formalise
the claim as follows (we use the formulation in second-order logic rather than plural logic, as in
[Button, 2021b]):

(∀F )(∀x : F ) E(x) → (∃a)(∀x)(F (x) ↔ x ∈ a)

18( ) Indeed, this result can be strengthened to apply to very weak theories, Tim Button (in
[Button, 2021a] and [Button, 2021b]) has shown that one can go back and forth between tremen-
dously weak (i) theories of sets, (ii) theories of stages, and (iii) modal stage theories (the theories
in question do not even imply there are any sets!).
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Theorem 30. [Linnebo, 2013] Over a model of ZFC, the Vα under ⊆ provide a
model for Lin.19

This shows that not only does Lin motivate ZFC, but if you accept ZFC then
you can also get a model for the modal set-construction methods axiomatised
by Lin. This shows that although Lin doesn’t perfectly capture the notion of the
strong iterative conception, it certainly fits very well with it.

One final piece of the puzzle ties everything together:

Theorem 31. (ZF) For every set x there is an ordinal α such that x ∈ Vα.

This theorem shows you that not only does ZFC allow you to define the Vα,
but you can prove that every set is contained therein. I think that this highlights
the following desideratum on modal axiomatisations of conceptions of set:

Capture. Let T♦ be a modal theory of sets interpreting a non-modal theory T
via the potentialist translation. Then we say that T♦ satisfies Capture iff, given
a modelM of T, we have a general way of extracting a Kripke frameKM

T♦ |= T♦

from M such that for every x ∈ M there is a world W ∈ KM
T♦ such that

x ∈ W .20

The statement of Capture is a little complicated. But the core point is the
following: Not only does our modal theory (in this case Lin) motivate a nice
non-modal theory of sets (namely ZFC), but our non-modal theory (ZFC) also
‘thinks’ that there is a model of the modal theory (Lin) such that every set lives in
said model. Perhaps it would be too strong to say that they are sides of the same
coin, but they certainly pair very well.21

5.4 Preliminary conclusions
We’re now in a positionwhere (i) the strong iterative conception isNatural (giv-
ing us a clear picture of what the sets are like), (ii) it gives us a Paradox Diag-
nosis (Reify! can always produce new sets), (iii) when axiomatised by Lin, it
Interprets a good theory of sets (namely ZFC), and (iv) and we have aCapture-
theorem; ZFC allows you find a Kripkemodel for Lin and ZFC proves that every

19( ) Specifically a Kripke frame validating S4.3. In order to interpret the plural logic,
strictly speaking we should think of worlds as pairs of the form (Vα,P(Vα)), with≺ just inter-
preted by ∈.

20( ) Of course, as I’ve set things up here, the model in question (gotten from all the Vα)
is proper-class-sized, so not a ‘model’ in the ordinary sense of the term. I handle this in
[Barton, MSb] by restricting to arbitrary set-sized models, but let’s suppress these metamath-
ematical details here.

21( ) See [Button, 2021b] for some examination of the extent to which there are definable
formal relationships between modal theories of the strong iterative conception and non-modal
set theory.
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set lives in said model. For these reasons, I think it’s fair to say that the strong
iterative conception is a very satisfying conception of set. Modal set theory, suit-
ably formulated, pushes the idea that ZFC should be true of the sets, and if ZFC
is adopted, we can show that a sensible modal theory is a mathematical fact of
life—if you have ZFC you also have the strong iterative conception and all the
sets live within some stage/world so described.

Whilst I don’twant to deny how good a conception of sets the strong iterative
conception of set is, I do want to press the point that it might not be the only
optionout there. Later, we’ll see some examples of theweak iterative conception
of set that I think are also in the running. In order to see their appeal though,
we’ll have to learn a little about how one can use forcing to build more sets.
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Chapter 6

Forcing as a construction method

In this chapter, I want to outline forcing in set theory; a way of adding subsets to
models. Thorough presentations are available in a wide variety of mathematical
texts and full detail would just bog down the reader in a book of this kind, so my
focus is on giving the informal ideas.

There’s two main reasons to go into depth on this topic. First, we’ll use forc-
ing to articulate the further versions of the weak iterative conception that we’ll
consider later. Second, forcing is tremendously important for understanding
much of the contemporary literature on the philosophy of set theory and the
intuitions that underlie much work in this field. So, having a good grasp of it is
no bad thing.

6.1 Forcing: The rough idea
Ahelpful way to understand forcing is by analogywith field extensions. Consider
the relationship between the fields of real numbers R and complex numbers C.
One way of thinking of obtaining C from R is via the idea of algebraic closure.
Intuitively speaking, we throw in solutions for

√
−1, and then by closing under

the field operations, obtain C.
Forcing is very similar. In fact, according to Paul Cohen (a father of the tech-

nique), this analogy was part of his discovery.1 To see this analogy, let’s start by
considering the problem forcing was developed to solve. In particular, we were
trying to prove that the continuum hypothesis is independent from ZFC. Since
we knew that given a modelM of ZFC, CH is true in the constructible universe
of M (a fact proved in [Gödel, 1940]) one way to proceed was to find a way of
making a model of ¬CH from one satisfying CH. (One could then infer by the
CompletenessTheorem that neither CH nor its negation followed from ZFC, as-
sumingZFC consistent.) Sincewe also knew that (again proved in [Gödel, 1940])

1See [Cohen, 1963, p. 113] and [Cohen, 2002, pp. 1091, 1093]. Thanks to Carolin Antos for
some discussion of the history here.
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Lwas the smallest innermodel (i.e. transitivemodel containing all ordinals) un-
der inclusion, the natural idea was to break CH by adding sets—much like we
could find a root for−1 by moving from R to C. And this is just what Cohen did
in [Cohen, 1963].

In order to figure out what we need to break CH, it’s helpful to think about
what CH and ¬CH say about sets of reals and functions. CH recall, says that
every set of reals (i.e. something with cardinality no bigger than 2ℵ0 ) is either
countable or the same size as 2ℵ0 . In this way, it says that there are lots of kinds of
function compared with the kinds of sets of reals—every infinite set of reals has a
function that either bijects it withℵ0 (the cardinality of N) or 2ℵ0 (the cardinality
ofR). ¬CH by contrast, says that there are lots of kinds of sets of reals as compared
with kinds of function—there’s some infinite set of reals x for which there’s no
bijection between x and ℵ0, but also no bijection between x and 2ℵ0 .

Let’s suppose then that we’re given a model M of ZFC + CH. What could
we do to break CH? Well, we need to (i) add some set x toM , whilst (ii) making
sure that we preserve the axioms of ZFC when we add x, and (iii) having a set of
reals y in the new model such that there’s no bijection between either y and the
new set of all reals or natural numbers. This what Cohen showed was possible
with forcing: Assuming ZFC is consistent, there’s a modelM satisfying ZFC (by
Completeness). Either (i)M satisfies ¬CH (in which case we’re done) or (ii)M
satisfies CH. If (ii), we can then add a bunch of reals G to M , and close under
definable operations to form an extension M [G] satisfying ZFC. In this new
modelM [G], you can show that the old set of reals fromM is a set of reals that
is neither bijected with ℵ0 nor 2ℵ0 inM [G].

If you haven’t encountered forcing much before, I want the reader to now
stop and pause to think about how, given the rough idea of forcing, we might be
able to take a model of ¬CH and make CH true again by adding sets. What kind
of set could we add to a model of ¬CH in order to restore CH again (and what
would we have to simultaneously avoid adding)? (Bear in mind that you can’t
add natural numbers by forcing—a student oncemade the ingenious suggestion
to me that we bump up the size of ℵ0. Alas, this doesn’t work since forcing
keepsmodels transitive, and the natural numbers are isomorphic in all transitive
models of set theory.)

The answer is that we need to add functions that provide the relevant bijec-
tions between the old sets of reals and either ℵ0 or 2ℵ0 , and do so (i) without
adding reals, and whilst (ii) preserving ZFC. Again, Cohen showed that forcing
lets you do this. Given anM satisfying ¬CH, one can collapse the cardinals be-
tweenℵ0 and 2ℵ0 toℵ0 by adding a setH that allows you to get surjections from
the naturals numbers to these cardinals. In the new model M [H], CH is true,
since there are now bijections between ℵ0 and the old ‘cardinals’ between 2ℵ0

andℵ0 (i.e. things that were cardinals betweenℵ0 and 2ℵ0 in the ground model).
These two kinds of forcing are sufficient to show the following:
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Theorem 32. Given a modelM of ZFC, so long as we can do forcing overM ,
thenM has:

(1.) An extensionM [G] such thatM [G] satisfies ¬CH. This can be done using
forcing that collapses no cardinals—it does not add new bijections that make
any set look smaller than before.

(2.) An extensionM [H] such thatM [H] satisfies CH. This can be done by forc-
ing whilst adding no new reals—we don’t add any new subsets of the natural
numbers.

In this sense CH is like a set-theoretic light switch as regards forcing—we
can flip it on and off at will by successively forcing to add new sets, and all whilst
preserving ZFC.2 Indeed, forcing is incredibly flexible. An example that will be
important for us is the following:

Theorem 33. Assume that we can always force over M . Then for any set x in
M , there is a forcing extensionM [G] in which x is countable.

As above, the idea for proving this theorem is just to add a surjection from
ℵ0 to x.

Forcing thus provides us with a very controlled way of adding subsets to
models. We’ll discuss this a little in a -section below (§6.2), but it will be help-
ful to indicate the shape of what is to come. Forcing, I want to contend, can be
thought of as a method of set construction for adding subsets to a universe and in
particularmight be away of generating sets under theweak iterative conception.
Using this idea, we’ll end up with the motivation of a concept of set on which
every set is countable, since given a set x at some stage/world, we could always
add a surjection from the natural numbers to x by forcing.

6.2 ( ) A little more depth on forcing
In this section I add a little more mathematical detail and provide an intuitive
characterisation of forcing. This whole section is a -section, so the reader
shouldn’t get bogged down in the details unless they really want to. Still, the
section will help inform the idea that we can think of forcing as a way of con-
structing new sets from old, so I recommend at least giving it a go. Good
introductions to this material can be found in [Kunen, 1980] and its update
[Kunen, 2013] (a wonderful pair of books explaining a range of issues in de-
tail), [Drake and Singh, 1996] (a nice concise introduction), and [Weaver, 2014]
(a much easier-going introduction before the applications starting in Ch. 14).

2This terminology of ‘switches’ is from [Hamkins and Loewe, 2008].
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Many set theory texts contain an introduction, however, and the reader should
feel free to shop around.

We’ll start with an example that will help us follow what comes later a bit
better. We’ll take the idea of adding a Cohen real. Let’s suppose that you’re in
a model of ZFC. For now, we’ll assume that the model is countable (and tran-
sitive) and so (by Cantor’s Theorem for the reals) misses out a whole bunch of
real numbers. For our purposes, you can think of a real number as an infinite
ω-length sequence of 0s and 1s (this, in turn, can be thought of as a function
from the natural numbers into {0, 1}, which says whether there’s a 0 or a 1 in
the nth place). I want to now add in a new real number, and do so in such a way
that ZFC is satisfied. So I slowly go through deciding on what I want in the nth

place of my new real for eachn (perhaps not in order). I need to do two things (i)
make sure I’m avoiding the reals ofM (i.e. I don’t get something I already have),
and (ii) make sure that when I’m done I close under new definable operations
to ensure ZFC is true. This is what forcing lets you do. Such an object (a new
ω-length sequence of 0s and 1s) is our new real number (our ‘Cohen real’).

Let’s now take a little peek into the tricky machinery of how we do this. The
way I suggest thinking of forcing is as a way of talking about descriptions of
collections that can change their members as we make certain decisions. In the
end, if we make decisions in exactly the right way, we’ll end up defining a new
object that isn’t currently in the universe we start in, and fill in all the needed
sets to make ZFC true. The rough ingredients of forcing are the following (i) a
partial order P = (P,<P) with certain nice properties that make it sufficiently
‘interesting’. You can think of P as the space of possible ‘decisions’ that we might
take. (ii) P-names, these are descriptions of collections that can change their
membership depending on what decisions we take from P, (iii) dense sets, these
are like advisors, no matter what decisions you’ve taken, they’ll always recom-
mend at least one more you might go on to take, and (iv) a generic filter, this you
can think of as a complete description of all the decisions that were taken in the
limit, consistent with every recommendation given by an advisor. Let’s look at
these in more detail.3

First, we need the notion of a forcing partial order (P,≤P). Before we give
the definition, a couple of notes are in order:

• Note 1: We often refer to elements of the partial order as ‘conditions’.

• Note 2: Here the partial order grows ‘downwards’—the intuition being
that if p <P q, you’ve got a smaller range of possible decisions after p

3Note: Often authors (e.g. [Drake and Singh, 1996], [Weaver, 2014]) write in information-
theoretic terms, P is a space of information, and we slowly get more and more fine-grained in-
formation as we move through P. The way I’m expressing things is essentially equivalent, but a
bit easier to think about philosophically, and brings the ‘variable set’ way of thinking to the fore
a little more.
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as compared to q. Some people write p >P q to indicate the same state
of affairs, the intuition being that you’ve get more information from p as
compared to q.4

We now define:

Definition 34. A forcing partial order P = (P,≤P) is a partial order P such that:

(i) P has a maximal condition 1P

(ii) P is atomless—any element of p of P has incompatible extensions (i.e.
there’s q ≤P p and r ≤P p such that there’s no swith s ≤P q and s ≤P r).

The way I’m going to suggest one thinks about this partial order is as an
information space of possible decisions for settlingmembership facts. Aswe’ll see,
we can define a class of ‘names’ for possible sets (these are called P-names). These
we can think of as having their membership facts settled as we take decisions
through P. The conditions of being atomless one can think of as a condition
on P being sufficiently interesting or non-trivial—there’s always incompatible
decisions one couldmake aboutwhere to go, and there’s no part of P that admits
of ‘inevitability’.

In the specific case of adding aCohen real, we candefine the followingpartial
order:

Definition 35. Given some modelM , the forcing partial order to add a Cohen
real has as its domain (in M ) all finite partial functions from ω into {0, 1} and
p ∈ P extends q (i.e. p ≤P q) iff p extends q as a function (i.e. q’s domain is a
proper subset of p’s, and they agree on all arguments from q’s domain).

This order gives us a way of thinking of settling the nth place of a new real—
as we move down through P we settle more and more values for a new real to
be defined. In the limit, we’ll have settled every bit of the real.

How to get a handle on this idea of ‘settling values’? For this we’ll need the
definition of a P-name. The definition looks somewhat complicated, but it can
be given an intuitive backing.

Definition 36. A P-name is a relation τ such that ∀〈σ, p〉 ∈ τ(‘σ is a P-name
and p ∈ P ’).

The definition looks circular, but in fact is not since the empty set is trivially
a P-name. You can think of the P-names as relations where other P-names are
related to conditions in P.

The intuition to have in mind is that a P-name is the name for a possible set.
Given a bunch of good ‘decisions’ from P (we’ll talk about this idea of ‘a bunch of

4See [Drake and Singh, 1996], p. 155, Warning 8.8.2 for discussion.
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good decisions’ in a second, the key notion is that of a generic filter) we’ll evaluate
the P-names to different sets in the extension. The way this works is given a P-
name σ, we’re going to rule in or out other (already evaluated) P-names in the
domain of σ according to whether or not they’re related to a condition in our
newobject. SoP-names are kind of ‘variable collections’—they can change their
mind as to what they contain as we move about in P.5

The next notion we need is:

Definition 37. We say thatD ⊆ P is dense iff for every p ∈ P, there is a q ∈ D
such that q ≤P p.

The way of thinking about a dense set D is that it’s kind of like a advisor.
No matter where you are in P, and what decisions you’ve taken,D can come up
with at least one decision you could take to continue.

Next we need the notion of a generic filter:

Definition 38. G ⊆ P is a filter on P iff:

(i) G is non-empty.

(ii) p ∈ G and q ≥P p implies that q ∈ G (i.e. G is closed upwards).

(iii) p ∈ G and q ∈ G implies that there is an r ≤P p, q with r ∈ G (i.e. G
brings any two elements together).

We furthermore say thatG isM-P-generic (for some modelM ) iffG inter-
sects every dense set of P inM . (We’ll often just abbreviate this to ‘generic’ and
let context determine the values of P andM .)

The way to think of such a G is that it is a kind of ‘maximal’ collection of
‘good decisions made’. If you include a decision p ∈ G, then you’ve got to in-
clude any earlier decisions that could have lead there, and you’ve also got to be
able to bring together any two decisions together later (there’s no including in-
compatible decisions allowed). You’ve also got to be ‘good’ in that you agree
with every advisor (i.e. dense set) in at least one place. Part of what genericity
ensures is that you genuinely add something by avoiding sets already in your
starting model, but you also don’t encode any ‘extra’ information in what you
add.

We can then talk about what happens to a P-name when presented with a
genericG.

Definition 39. We evaluate P-names by letting the value of τ underG (written
‘val(τ,G)’ or ‘τG’) be {val(σ,G)|∃p ∈ G(〈σ, p〉 ∈ τ)}.

5( ) Interestingly the idea of ‘variable collection’ correspondswell to the category-theoretic
approach to forcing. See the Appendix to [Bell, 2011] .
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Again, this looks complicated, but the intuition is as follows. Remember
that a P-name can be thought of as a kind of ‘variable collection’ or ‘name for
a possible set’. When we give some G to a P-name τ , we evaluate stepwise by
analysing the valuation of all the names in the domain of τ and then we add
them to τG according to whether they’re related to some p ∈ G. In particular, if
σ is a P-name in the domain of τ , then we put σG into τG if there is a 〈σ, p〉 ∈ τ
for which p ∈ G (and do nothing otherwise). So you can think of us running
through the p ∈ G and throwing in already evaluated P-names according to
whether a name is related to some p ∈ G.

Let’s return to our example of adding a Cohen real. Consider the following
conditions from the poset to add a Cohen real:

• f is defined by:

– f(0) = 1

– f(3) = 0

• g is defined by:

– g(0) = 0

– g(3) = 0

Now consider the following names:

• τ = ∅

• σ = {〈τ, f〉}

• µ = {〈τ, f〉, 〈σ, g〉}

• ν = {〈τ, f〉, 〈τ, g〉, 〈σ, f〉, 〈σ, g〉, 〈µ, f〉, 〈µ, g〉}

Let’s suppose that f ∈ G but g 6∈ G. So this says that the first bit of our new
real is 1, and the third bit is 0. What happens to our P-names underG? Well, τ is
trivial and so remains unchanged. We now have a value τG for τ , so the values σ,
µ, and ν will contain τG = ∅ (since we have 〈τ, f〉 ∈ σ, µ, ν). The evaluation of
σ is now complete, and we know that σG = {∅}. For µ, since we know g 6∈ G,
we don’t throw in the evaluation of σ into µG, and so µG = {τG} = {∅}. For ν ,
whilst we do have a bunch of P-names correlated with g (and so the evaluation
of those names don’t make it in via any ordered pair of the form 〈ξ, g〉) we also
have that ν contains 〈τ, f〉, 〈σ, f〉, and 〈µ, f〉 and so the interpretation of these
names gets thrown in. So νG = {τG, σG, µG} = {∅, {∅}}.

Of course things are much more complicated when we move to names with
more structure (in particular once you have big infinite names things are going
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to get more subtle), and start to consider further partial functions inG. The fact
that f ∈ G told us only about the values of bits in the 0th and 3rd spots. But
there will be many more functions, since G has to hit every dense set, you can
think aboutG as filling in more and more spaces in our real to be defined as we
hit more and more dense sets, whilst preserving filter-hood. So we might also
have the partial function h ∈ G such that:

• h is defined by:

– h(0) = 1 (note that h has to agree with f , since we assumed f ∈ G)

– h(1) = 1

– h(2) = 1

– h(3) = 0 (again because h has to agree with f )

– For every n such that 3 < n < 9001, h(n) = 0

This function tells us that our new real will have a 1 in the 0th place, a 1 in the
1st place, a 1 in the 2nd place, and 0s all the way up to the 9000th place (it leaves it
open what happens over 9000). Correspondingly, the evaluation of names will
get quite complex as we have to evaluate across all the relevant P-names, also
bearing in mind that if h ∈ G, there must be a lot more conditions also inG (e.g.
since G is a filter, f is also going to have to be in there if h is, since h extends
f ). Even if h ∈ G, there will always be a dense setD which doesn’t contain any
conditions p ≥P h, and soG will have to contain a function settling more than
h does, thereby fixing the values of more P-names, and so on. Once we’ve hit
every dense set whilst preserving filter-hood, we’ll have our generic G settling
every bit of a new real, and this can be used to evaluate every P-name, giving us
our new extensionM [G].

These ideas are very difficult when one first encounters them, and should be
paired with a text that goes through forcing in full mathematical detail. How-
ever, I hope the rough idea is clear. We have a ‘space of possible decisions’ (the
partial order P), a bunch of names that can change their mind about what they
contain when presented with some ‘decisions’ from P (i.e. the P-names), and a
bunch of ‘advisors’ (the dense sets) each ofwhich can always present to you away
of continuing after some point in P. We’re then given a ‘maximal good bunch
of decisions’ (the genericG), that agrees with every dense set at some point and
lets you find your way through P by giving you conditions from P. G tells each
P-name who they are by ruling in evaluations of P-names based on whether the
names in the domain of a P-name are related to the decisions inG.

Other partial orders that are especially important are:

Definition 40. Forcing to add κ-many Cohen reals.

• P is the collection of all finite partial functions (inM ) fromκ×ω to {0, 1}
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• p ≤P q iff p extends q as a function.

A generic for this partial order doesn’t just add a Cohen real and then close
under definability, it adds κ-many. One can then show that you don’t destroy
any cardinals by adding a generic for P (this is a non-trivial lemma6). This then
let’s you infer (picking big enoughκ) that¬CHholds inM [G], even ifM satisfies
CH, all the cardinals between ω and κ in M are now cardinalities between ω
and κ (which is now the cardinality of the continuum) of different sets of reals
inM [G].

As mentioned earlier, any cardinal can be collapsed to the countable using
forcing. This is done using:

Definition 41. The forcing to collapse κ to ω is defined by:

• P is the collection of all countable partial functions from ω into κ.

• p ≤P q iff p extends q as a function.

A generic for this partial order allow us to get a surjection from ω to κ, and
collapse the cardinality of κ (and any sets bijective with κ) to ω.

These represent just a taste of some of the possibilities available using forc-
ing. As Joel-David Hamkins writes (about model-building methods including
forcing):

Set theorists build models to order. [Hamkins, 2012, p. 417]

So forcing is a flexible tool that gives us a way of adding sets to models.
There’s two points we should note. First:

Fact 42. If P is a forcing partial order in a model M of ZFC, and G is P-M-
generic, thenG 6∈M . In particular P −G = {p|p ∈ P ∧ p 6∈ G} is dense (and
clearly missed byG).

This fact will be a little important later when we relate ‘paradoxes’ related to
forcing and the Cantor-Russell reasoning (I relegate a proof to a footnote7).

Fact 43. LetM be a transitive model satisfying ZFC and letM [G] be the model
obtained by evaluating all the P-names for a forcing partial order P andM-P-
genericG. ThenM [G] also satisfies ZFC, and in particularM [G] is the smallest
transitive model of ZFC containing both every element ofM andG.8

6See, for example, [Weaver, 2014, p. 50], Theorem 13.3.
7Proof. Suppose p ∈ P. We must show that there is q ∈ P − G such that q ≤P p. The

only non-trivial case is where p ∈ G. Because P is non-atomic, there are incompatible r and
s extending p. But then one of r and s isn’t in G—all elements of G are compatible with one
another.

8See [Kunen, 2013], Lemma IV.2.19.
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The strategy for proving this is to ‘cook up’ P-names that you know (by the
genericity of G) will ensure that ZFC is satisfied. But the fact that you get the
smallest possible extension is is important: It shows that you can think of the
addition of a forcing genericG and evaluating theP-names as throwing inG and
closing under definable operations—i.e. you don’t get any ‘extra’ sets than what
is required to get ZFC by throwing in G so long as G is generic. For example,
one can show that you don’t add any ordinals when you force. In this way, the
P-names and evaluation procedure conspire to make sure the construction of
M [G] is very tightly controlled. This further reinforces the similarity between
forcing and more mathematically familiar constructions like obtaining the field
of complex numbers from the field of real numbers. There, we take R, throw in i,
and close under the usual field operations to get C. Indeed, C is the smallest such
field. So with forcing, M [G] is the smallest model of ZFC you get by throwing
inG and closing under every operation you can define.

Moreover, there’s a sense in which finding such a G can be thought of as a
set-construction method in its own way. If we’re given a forcing partial order P
and a family of dense setsD (let’s let each dense setDi inD be indexed by some
i in an index set I ), we can think of successively hitting each Di in such a way
that we extend our previous choices. In particular, if we start with someM and
D is the collection of all dense sets available inM , what we obtain in the limit
(hitting eachDi) will be anM-generic filterG. It’s a substantive assumption to
assume that this can always be done, but not one without intuitive pull. And if
we can always perform this action for any given P and D, then we can always
force. We can see a visualisation of this idea in Figure 6.1.

6.3 Philosophical upshot
I hope that the reader finds the above helpful, and in particular it can serve as a
road-map if you want to learn forcing in detail (alongside an introductory text).
However, it’s understandable if readers newer to set theory didn’t pick up ev-
erything. I therefore want to quickly identify the following:

Main Philosophical Upshot. You can think of moving fromM toM [G]
by forcing as a way of constructing new sets.

Before we move on, we should note that this is a somewhat controversial
claim. [Brauer, MS], for example, raises some queries about whether one can
really think of forcing as a way of generating new sets. I hope I’ve addressed
these worries here (I argue this case further in [Barton, MSb]). For now, I’m
happy to take the Main Philosophical Upshot as an assumption from hereon
out, but we will raise some open questions about it in Chapter 10.
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Figure 6.1: Forcing: (1.) We start with a forcing partial order P ∈ M . (2.) As-
suming that we can meet every dense set of P inM , we can get a genericG ⊆ P
such that G 6∈ M . Finally (3.) We add G to M , and then by evaluating the P-
names, close under definable operations to obtain the forcing extensionM [G].

(1.) Start with forcing partial order P ∈M

V M
ω

P

(2.) Meet every dense set inM to get genericG ⊆ P such thatG 6∈M

V M
ω

P
G

(3.) Close under the evaluation of P-names to obtainM [G]
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ω = V
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G
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Chapter 7

A ‘new’ kind of paradox?

In this chapter I want to argue that there’s a tension at the heart of set theory.
We’ll then (Chapter 8), explain how this can be resolved into different concep-
tions, much as we saw with the naive conception of set.

7.1 The forcing-saturated strong iterative con-
ception of set

A popular thought in set theory is that richness is an essential part of set the-
ory; there should be as many sets as possible.1 Given this thought, it’s natural to
want the universe to be closed under lots of different kinds of set-construction
method. Sincewe just saw that forcing is one suchmethod, andwe already know
that the strong iterative conception is a good conception of sets, the looks attrac-
tive:

Definition 44. (Informal) The forcing-saturated strong iterative conception of set
holds that new sets are formed from old by either (i) forming each possible plu-
rality of sets over that stage into a set, or (ii) adding in a generic for a partial
order and a family of dense sets.

So, we have two main set-construction methods (plus union, which allows
us to bundle limit stages together). We can either add in a forcing generic, or we
can form the powerset of a set. Clearly then, we have:

Powerset. The Powerset Axiom holds.

We’re going to shortly see some conflicts with Powerset. We therefore de-
fine:

Definition 45. ZFC with the Powerset Axiom removed will be called ZFC−.

1See [Incurvati, 2017] for a survey of this idea in set theory.
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( ) Note: Dropping the Powerset Axiom is a slightly subtle business.
Whenwe formulate ZFC solelywith Replacement (and treat Separation and
Collection as theorem schemas), then deleting the Powerset Axiom results
in a theory weaker than one would like (the version with Separation and
Collection has more consequences than with Replacement alone). Since we
included Separation and Collection as separate axiom schemas when for-
mulating ZFC earlier, we avoid this complication. See [Zarach, 1996] and
[Gitman et al., 2016] for discussion.

Since we can also introduce a generic for any forcing partial order and fam-
ily of dense sets under the forcing-saturated strong iterative conception, we’ll
introduce the following axiom:

Definition 46. (ZFC−) The Forcing Saturation Axiom or FSA is the claim that
for any partial order P and set D consisting solely of dense sets for P, there is a
genericG intersecting every member ofD.2

The forcing saturated strong iterative conception then motivates:

Forcing Saturation. The Forcing Saturation Axiom holds.

Readers familiar with forcingmay already see the problemwith the forcing-
saturated strong iterative conception. For the reader that isn’t, I suggest briefly
pausing to think about what Powerset entails (especially in light of Cantor’s
Theorem) and what follows from Forcing Saturation (especially given collapse
forcings).

7.2 The Cohen-Scott Paradox
Here’s the problem: The forcing-saturated strong iterative conceptionmotivates
both Powerset and Forcing Saturation, but they’re inconsistent with one an-
other. Thismirrors how the naive conceptionwas brought down byUniversal-
ity and Indefinite Extensibility. I’ll refer to the paradox I’ll give as the Cohen-
Scott Paradox as it originates with the mathematical work of Cohen, and Scott
was one of the first to propose the tension I’ll identify. The paradox is thus not
really that ‘new’, and the idea that there might be a tension between having un-
countable sets and always being able to force has been around since at least the
1970s. However, recent work has developed the philosophy and mathematics
of these ideas substantially.3

2See [Barton and Friedman, MS], Definition 9.
3See, for example, [Meadows, 2015], [Scambler, 2021], [Builes and Wilson, 2022], and

[Barton and Friedman, MS]. Naming the problem “The Cohen-Scott Paradox” is taken from
[Barton and Friedman, MS].
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Letting “Powerset” denote the Powerset Axiom, the current theory moti-
vated by the forcing-saturated strong iterative conception is ZFC− + Powerset
+ FSA. But we can now note that because we can produce a generic for any
forcing partial order and family of dense sets, for any set x we like we can use
collapse forcing to add a generic making x countable. In fact, we can note the
following:

Fact 47. (ZFC−) The forcing saturation axiom is equivalent (modulo ZFC−) to
the axiom “Every set is countable”.4

We can now present the Cohen-Scott Paradox:

The Cohen-Scott Paradox. Simply put, ZFC− + Powerset + FSA implies
that there are uncountable sets (by Cantor’s Theorem and the Powerset Ax-
iom) but also that every set is countable (by the Forcing Saturation Axiom).
Contradiction!

Before we continue, I want to emphasise: No reasonable classical set theo-
rist has ever accepted bothForcing Saturation andPowerset in this generality.
Perhaps someone learning forcingmight unwittingly fall into the trap of accept-
ing the forcing-saturated strong iterative conception, or perhaps it’s appealing
to theorists of a dialethic persuasion. But set theorists are a clever bunch, and
they are able to see this contradiction coming a mile off. In fact, this tension has
been noticed for a while. Discussing forcing in the introduction to Bell’s book
on the subject, Dana Scott writes:

I see that there are any number of contradictory set theories, all ex-
tending the Zermelo-Fraenkel axioms: but the models are all just
models of the first-order axioms, andfirst-order logic isweak. I still
feel that it ought to be possible to have strong axioms, whichwould
generate these types of models as submodels of the universe, but
where the universe can be thought of as something absolute. Per-
hapswewould be pushed in the end to say that all sets are countable
(and that the continuum is not even a set) when at last all cardinals
are absolutely destroyed. [Scott, 1977, p. xv]

So the Cohen-Scott ‘Paradox’ is certainly not new, and was noticed from the
inception of forcing. Onemight then ask: If it’s so obviously bad, why even con-
sider the forcing-saturated strong iterative conception? The reason to do so is
not that individual agents hold it, but that it forces us to face a possible choice.
Much as we saw with the naive conception, there’s different ways we could go.

4This is a well-known folklore result, but see Fact 10 of [Barton and Friedman, MS] for de-
tails.
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We could adopt a version of the logical conception that validates Universal-
ity. Or we could adopt a version of the combinatorial iterative conception on
which Indefinite Extensibility holds. Similarly, we could now adopt Power-
set (for example by holding the strong iterative conception) or we could adopt a
conception that validates Forcing Saturation. We’ll explore this in more detail
shortly (in Chapter 8). For now I want to consider the relationship between the
Cohen-Scott Paradox and diagonalisation.

7.3 ( )The Cohen-Scott Paradox and diagonali-
sation

To see the link with ‘diagonal’ arguments, we start with the question:

Question. What (if any) is the link between the Cantor-Russell reasoning and
the Cohen-Scott Paradox?

We have already seen a tight link between Russell’s Paradox and Cantor’s
Paradox in Chapter 3—in the case where we first take the universal set, then
consider the identity surjection/injection, and then run the standard proof of
Cantor’s Theorem, we get the Russell set.

There is a superficial similarity here, in that the (un)countability of some set
x can be viewed as a claim about the (non-)existence of a surjection from ω to x.
But is there any deeper similarity?

As mentioned earlier, the assumption that every set is countable (i.e. for any
set x there is a surjection fromω to x) is equivalent (over ZFC−) to the claim that
for any forcing partial order and any set-sized family of dense sets D, there is a
generic intersectingD (i.e. the Forcing SaturationAxiom).5 We can nowpresent
the following ‘diagonal’ version of the Cohen-Scott Paradox.

The Cohen-Scott Paradox, Diagonal Version. If the Powerset Axiom is
true, then the family D∗ of all dense sets for a forcing partial order P is
a set-sized family. By the Forcing Saturation Axiom, there is a generic G
intersecting every member of D∗. Now consider E = {p|p 6∈ G}. It’s an
exercise to show thatE is dense, the interested reader can go back and find
the proof in Chapter 6. SinceG is generic for D∗ andE is dense, we know
that G intersects E at some point p. But then we have p ∈ G ↔ p ∈ E
(by choice of p), but p ∈ E ↔ p 6∈ G (by the definition of E), and so

5( ) See [Barton and Friedman, MS], Fact 16.
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p ∈ G↔ p 6∈ G (putting together the biconditionals), contradiction!a

aSee here also [Meadows, 2015] for emphasis of this diagonal version of the Cohen-
Scott Paradox

The point to note here is that there is a similarity to the Cantor-Russell rea-
soning. There we had the assumption of the existence of a particular surjection
leading to contradictory claims about (non-)self-membership. Here we have the
existence of an surjection, whilst not leading to contradictory claims about self -
membership, we do have the contradictory p ∈ G↔ p 6∈ G. Sowhilst the anal-
ogy is not perfect, we have a diagonal-style contradiction obtained by assuming
the existence of a particular surjection. We’ll discuss a possible significance of
this in §10.4.

7.4 Summing up
To sum up, we’ve seen that:

(1.) There is a tension between Forcing Saturation and Powerset

(2.) This can be put in terms of a diagonal argument, with similarities to the
Cantor-Russell reasoning.

So, what to do about this state of affairs?
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Chapter 8

Countabilist conceptions of
iterative set

We’ve identified a tension between Forcing Saturation and Powerset, in anal-
ogy with Universality and Indefinite Extensibility. And just as before, we
can move forward by dropping one of the two. One way is to just hold that
Forcing Saturation should be dropped and Powerset accepted. The result of
doing so is the strong iterative conception, and is perhaps the ‘default’ position.
We can then (as noted in Chapter 5) provide a modal theory of this conception
using Lin (perhaps with some resources added to guarantee that we really do
get all pluralities formed as sets at every subsequent world). This yields the ex-
treme form of uncountabilism that is standardly associated with set theory with
an unending hierarchy of uncountable cardinals. But might there be a way of
going forward with Forcing Saturation instead of Powerset? In this chapter
we’ll see some modal theories that validate Forcing Saturation. Later (Chapter
9) we’ll discuss how these conceptions interpret mathematics, and compare the
two approaches in light of the theoretical virtues adumbrated in Chapters 2, 4,
and 5.

8.1 Countabilist stage theories
As we’ve seen , if you’re going to have Forcing Saturation, then every set is
going to be countable. For the sake of brevity, it will be helpful to introduce
some terminology:

Definition 48. The countabilist axiom (or Count) is the axiom ‘Every set is
countable’.

Definition 49. (Informal) We will refer to the view that holds Count as count-
abilism (with countabilist the corresponding adjective), and uncountabilism as the
position that there are uncountable sets.
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It’s fair to say that countabilist options for the (weak) iterative conception
have been a lot less studied than the ‘standard’ strong iterative conception, and
so we will have to proceed with a little more care in articulating the alternative.
This way of viewing the sets is still somewhat nascent with muchwork still to be
done, and we will have to be cautious in our conclusions. Certainly it is less so-
lidified than the standard strong iterative conception, and I don’t want to over-
state my case. I do want to identify, however, that it’s an attractive alternative.
This section, then, will have the flavour of explaining a promising road of inquiry,
rather than the more established picture of the strong iterative conception we
saw in Chapter 5.

SincewehaveCount for the countabilist, we can’t have uncountable sets. For
this reason, we’re going to have to drop the Powerset Axiom and adopt ZFC− +
Count. Since we don’t have the Powerset Axiom (indeed we have its negation)
we don’t have the Vα, and so we’re going to have to adopt the weak iterative
conception, rather than the strong iterative conception. So the question then
becomes: Given that the Vα are out, what could our stages/worlds be, and how
are they constructed? Recall that for any weak iterative conception we need:

(i) A description of what counts as a starting domain.

(ii) A description of some methods for forming new sets from old.

Can we come up with weakly iterative theories for the countabilist, and
thereby give a story along the lines of (i) and (ii)? And, in particular, is there
a modal theory of sets that can function for the countabilist much like Lin did
for the uncountabilist; providing a good modal theory of set construction that
upholds their view?

8.2 Reify! and Generify!
I want to argue that there are proposals in the literature that can be viewed as
providingNaturalmodal theories for countabilist versions of theweak iterative
conception.

Regarding (i): What might the set-construction be? Well, one possibility is
familiar—given some stage/world we want a notion of forming sets out of the
pluralities available at that stage (i.e. Reify!). This is what the Powerset Axiom
codifies—every possible class at some stage Vα is reified into a set (if it didn’t
already exist) at Vα+1 (this can be partially formalised modally by Lin, and by
using bimodal operators guaranteed). But note, we don’t have to turn every pos-
sible class in a set at a subsequent stage. This is made clear by the constructibilist
conception and the constructible hierarchy, at Lα+1 we reify those classes de-
finable over Lα into sets. In this sense, taking the definable powerset is a kind
of Reify! set-construction method, but it’s not the maximal such (that would be
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powerset). For example, in theLα-hierarchy we’ll get the ‘universal plurality’ of
the previous stage at the next one, since x = x is a perfectly good formula. To be
a Reify! command you only need take some possible pluralities of the domain
and reify them into sets, you don’t have to take all possible pluralities.

However, as I hope I convinced the reader in Chapter 6, another kind of
set-construction method is forcing. We can thus think of having, in addition to
whatever Reify! commands we employ, a class of Generify! commands which
will take in a partial order P and family D of dense sets, and spit out a generic
for P andD. Closely linked is the set-construction method I’ll callEnumerate!,
this adds an enumeration between a set and the natural numbers. There are a
class of Enumerate! commands that can be thought of as special cases of the
Generify! operation, in particular the specific case of the forcing that adds a
surjection from the natural numbers to a set.1 If we think that the stages should
support Generify!, then Enumerate! will always be executable. This idea has
been advocated recently by a few authors. For example, Chris Scambler writes:

The guiding idea...is to introduce another way of extending a given
universe of sets as an option at each stage of the process. Specifi-
cally, we will imagine we are capable not only of introducing sets
whose members are among already given things..., but also of in-
troducing new functions between already given (infinite) sets, and
in particular of introducing functions defined on the natural num-
bers and whose range contains any set as a subset [Scambler, 2021,
p. 1088]

Jessica Wilson and David Builes express a similar idea (partly drawing on
[Scambler, 2021]):

Recall that any set-theoretic universe is ultimately generated by
two sorts of processes: the powerset operation and the length of
the ordinals. Proponents of height potentialism maintain that the
length of the ordinals is indefinitely extensible: necessarily, for
any ordinals, there could always be more. The modal approach
to [Cantor’s Theorem] simply extends this line of thought to the
powerset operation: necessarily, for any subsets of an infinite set,
there could always be more. This is width potentialism. For any
set-theoretic structure, there is both a taller one and a wider one.
[Builes and Wilson, 2022, p. 2212]

1( ) There might be other Enumerate! commands. A set being generic entails that you
don’t add in ‘extra information’, and an arbitrary enumeration might add in much more. For
example, 0] can be thought of as a particular kind of countable set (and hence an enumeration),
but can’t be added by standard forcing techniques. See [Barton, MSb] for discussion.
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Recall how we could use Even! and Odd! to obtain the hereditarily finite
sets. Can we think of interleaving Reify! and Generify! to obtain a modal
theory for countabilist set theories? The answer is yes.

8.3 ( ) A reifying and generifyingmodal theory
[Scambler, 2021] has provided a modal theory of sets that can be used for count-
abilist versions of the weak iterative conception. He starts with the background
of L ♦

≺,∈ but adds two modal operators 〈v〉 (for ‘vertical’ modality—reifying the
pluralities of the model into sets) and 〈h〉 (for ‘horizontal’ modality—adding in
subsets via forcing). Call this language L ♦,〈h〉,〈v〉

∈,≺ . Boxes [h]φ and [v]φ are de-
fined as ¬〈h〉¬φ and ¬〈v〉¬φ as usual. In this context, the general ♦ can be
thought of as ‘possible through some combination of 〈v〉 and 〈h〉’.

Scambler then provides the following axioms:2

Definition 50. Sca consists of the following axioms in L ♦,〈h〉,〈v〉
∈,≺ (again

I’ll focus on giving more informal statements, the reader should go to
[Scambler, 2021] for the formal details):3

(i) Classical first-order logic.

(ii) Impredicative plural logic.

(iii) Classical S4.2 with the Converse Barcan Formula for every modality.

(iv) Plural Membership Definiteness (which is, recall, the scheme):

(∀x ≺ yy)�φ(x) → �(∀x ≺ yy)φ(x)

(v) The necessity of distinctness and stability axioms for≺ and ∈.

(vi) Foundation. The Axiom of Foundation (the standard one from ZFC).

(vii) Extensionality. Extensionality for sets (again, no different from ZFC).

(viii) Weakening Schemas. 〈h〉φ→ ♦φ and 〈v〉φ→ ♦φ, for every φ.

(ix) Vertical collapse. 〈v〉∃y�∀z(z ∈ y ↔ z ≺ xx).
2See [Scambler, 2021, p. 1091]. I’m following the presentation in [Barton, MSb].
3Scambler uses the term “M” (for Meadows) to denote Sca, as he takes inspiration for his

view from [Meadows, 2015]. As we’ll see below, Meadows’ work (drawing on [Steel, 2014]) is
slightly different (he considers proper class models), therefore I’ve chosen “Sca”.
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(x) Modal Infinity. The axiom that there could vertically be some
things that necessarily comprise all and only the natural numbers:
〈v〉∃xx�∀y(y ≺ xx↔ ‘y is a natural number’).

(xi) Vertical Modal Powerclass. The axiom that its vertically possible to
have some things that are vertically necessarily all the subsets of a set:
∀z〈v〉∃xx[v]∀y(y ≺ xx↔ y ⊆ z).

(xii) PossibleGenerics. Theaxiom ‘IfP is a forcing partial order anddd is some
dense sets of P, then it’s horizontally possible that there is a filter meeting
each dense set that is one of the dd’.

(xiii) Choice. The plural version of the Axiom of Choice ‘For any pairwise-
disjoint non-empty sets xx, there are some things yy that comprise exactly
one element from each member of the xx’.4

(xiv) Modal Collection, Separation, and Replacement. i.e. Potentialist
translations of the axiom schemas of Collection, Separation, and Re-
placement under each modality.5

Some of these axioms deserve a mention. The Weakening Schemas are
meant to capture the idea that if I could get a set by either reifying pluralities
into sets or forcing, then such a set is possible simpliciter. Vertical Collapse ax-
iomatises the idea, as with Lin, that I could reify any plurality over a world into a
set. PossibleGenerics corresponds to the idea that I could always add a generic
for any partial order. One issue then isVerticalModal Powerclass: Notice that
the version of powerclass—the axiom asserting that it’s possible to have a world
with all possible subsets of a set—is restricted to the vertical modality. This will
not hold with the broader modality since one can always add subsets along the
horizontal modality, and so there’s no world containing every possible subset of
an infinite set.

I think that there’s a good case to be made that Sca satisfies Naturalness.
We have a picture of how sets are formed; given some sets we can either Reify!
pluralities into sets (the vertical modality) or Generify! to add forcing generics
(the horizontal modality).6

Moreover, we again get a Paradox Diagnosis; since pluralities can always
be reified into sets, exactly the same points about the Russell plurality (the plu-
rality of all non-self-membered sets over a given world/stage) as in the case of

4Scambler throws this in with the plural logic, but we’ll keep it separate.
5Strictly speaking, Replacement is redundant given Separation andCollection. The reason to

separate these out is that Collection and Separation are strictly stronger thanReplacementwhen
Powerset is removed (see [Zarach, 1996] and [Gitman et al., 2016]). [Scambler, 2021] works only
with the potentialist translations of Replacement.

6I discuss the Naturalness of Sca (in particular going through the axioms one by one) in
[Barton, MSb].
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Lin still apply. Moreover, there are other conditions that can be shown to not
determine sets. For example, since any set can always be collapsed to the count-
able using Generify!, more sets can always be made countable, and there is no
set of all countable sets. Not only does this conception reject Universality and
accept Indefinite Extensibility (for resolving the standard set-theoretic para-
doxes), but explains why its proponent should accept Forcing Saturation and
reject Powerset too (for a resolution of the Cohen-Scott Paradox).

Regarding Interpretation, two theorems are especially important. First we
have:

Theorem 51. [Scambler, 2021] Sca interprets ZFC− + Count under the poten-
tialist translation (the potentialist translation, recall, takes a formula φ in L∈ to
a corresponding one in L ♦,〈h〉,〈v〉

∈,≺ by replacing every occurrence of ∀ with �∀
and every occurrence of ∃with ♦∃).7

So there’s a sense in which when we have the full modality, thinking of the
sets as constructed in a manner consonant with Sca gets us ZFC− + Count. This
is a pretty nice set theory in which one can do much of the usual constructions.
However, it’s at least desirable to have contexts in which ZFC is true (for inter-
preting the higher reaches of ‘standard’ set theory). For this we also have:

Theorem 52. [Scambler, 2021] Sca interprets ZFC when we restrict to the ver-
tical modality (i.e. when we do the potentialist translation but replace � and ♦
by [v] and 〈v〉 throughout).

So when we restrict to the vertical modality we are able to interpret ZFC
(this is basically just because the vertical modality obeys Lin). However, we have
to ignore the horizontal modality that would allow us to collapse any given un-
countable set (and hence break the Powerset Axiom in the non-modal theory).

The intuition behind Sca is thus the following. We have the verticalmodality
that will allow us, starting with the empty set, to obtain ZFC by successively
reifying classes of worlds. However, we could, at any point, choose to introduce
a generic for a given partial order and family of dense sets. And, by interleaving
Reify! and Generify! we can get ZFC− + Count. Note that, unlike the strong
iterative conception or the constructibilist conception, the stages provided by
Sca need not be well-ordered. Instead, much like Odd! and Even!, we have to
think of applying Generify! and Reify! appropriately. Just as if you spin out
applying one of Odd! or Even! you won’t get all the hereditarily finite sets, so

7( ) Scambler actually shows that Sca interprets ZFC with the Powerset axiom merely re-
moved. However a trivial modification (adding the modal versions of Collection and Separation
instead of Replacement) to his system gets you full ZFC−, so we state this stronger form of the
theorem. See [Barton, MSb] for details. Recent work by Scambler shows that one can get more,
in particular that a regularity property for reals—the

˜
Π1

1-Perfect Set Property—holds under
Sca. See [Scambler, MS] for details.
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withGenerify! andReify!. If you head off applyingReify! over and over again,
you’ll just get ZFC. And there are lots of ways of applying Generify! badly too
(e.g. by just adding single Cohen reals over and over again). But, if we apply
Generify! and Reify! just right, we will get ZFC− + Count.

The status of Capture is the one thing left outstanding for Sca. Recall that
Capture requires us to be able to produce a Kripke model for our modal theory
using the non-modal interpreted theory. Recent work by Scambler can be used
to show that there is aCapture-theorem available for Sca.8 Since the statement
is a little more involved and there are still some questions open, I’ll defer its
consideration until later.

8.4 ( ) Doing without Reify!
It’s worth mentioning here that one does not need the vertical modality in order
to get a conception of set that motivates ZFC− + Count. Although not intended
for this purpose (his focus is more linguistic) John Steel has proposed a theory
of worlds and sets that will do the job without needing a vertical modality. He
proposes (in [Steel, 2014]) a two-sorted theory with variables for sets x0, x1, ...
and variables for universesW0,W1, ...with the following axioms (here I follow
the presentation in [Maddy and Meadows, 2020]):

Definition 53. Steel’s Multiverse Axioms are as follows:

(i) The axiom scheme stating that ifW is a world, and φ is an axiom of ZFC,
then φ holds atW .

(ii) Every world is a transitive proper class.

(iii) IfW is aworld andP is a forcing partial order inW , then there is a universe
W ′ containing a generic forW .

(iv) IfU is a world, andU can be obtained by forcing over some worldW , then
W is also a world.

(v) Amalgamation. If U andW are worlds then there are G andH that are
generic over them such that U [G] = W [H].

A discussion of these axioms, explicitlymaking the linkwith countabilism, is
available in [Meadows, 2015]. Steel wants to use his theory to isolate the ‘forcing
invariant’ part of set theory, regarding some sentences (likeCH) as indeterminate
‘pseudo-questions’ [Steel, 2014, p. 154]. Further analysis of Steel’s project on
its own terms is provided by [Maddy and Meadows, 2020]. However, I think

8See [Scambler, MS] for the result, and [Barton, MSb] for the application to Capture.

70



we can use Steel’s multiverse axioms as inspiration for a modal theory of sets
for a version of the weak iterative conception. We start with some proper class
model(s) of ZFC, and our method of set-construction is just Generify!.

Formally, we can provide the following axioms:9

Definition54. [Barton, MSb]SteMMe (forSteel-Maddy-Meadows) comprises
the following axioms in L ♦

≺,∈:

(i) Classical first-order logic.

(ii) Predicative plural logic.10

(iii) Classical S4.2 with the Converse Barcan Formula for ♦.

(iv) The necessity of distinctness and stability axioms for ∈ and≺.

(v) Plural Membership Definiteness (which we repeat here for ease):

(∀x ≺ yy)�φ(x) → �(∀x ≺ yy)φ(x)

(vi) The Ordinal Definiteness Schema: This is the schema of assertions of
the form:

∀x
(
‘x is an ordinal’ → �φ(x)

)
→ �∀y

(
‘y is an ordinal’ → φ(y)

)
(vii) The necessitation of every axiom of first-order ZFC.

(viii) Possible Set-Generics. The axiom ‘If P is a forcing partial order andD is
a set of dense sets of P, then it’s possible that there is a filter meeting each
dense set that is a member ofD’.

(ix) Modal Separation, Replacement, and Collection. The potentialist
translations of every instance of the Separation, Replacement, and Col-
lection schemas.11

Regarding Naturalness: The idea of the SteMMe is to take some proper-
class-sized model of ZFC as our starting sets and Generify! as our sole way
of forming new sets from old. There is no Reify! operation. .2 axiomatises

9For more details about SteMMe, and a comparison with Sca, see [Barton, MSb].
10I adopt predicative plural logic since we will only need to talk about definable classes and it

will make some of the model-theoretic analysis easier. One can modify the approach to make
the underlying plural logic impredicative, if one so desires. See [Barton, MSb] for discussion.

11There are redundancies here, but we separate them out in order to aid philosophical discus-
sion.
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the idea that any two possibilities can be brought together, in line with Steel’s
Amalgamation axiom. Stability axioms and Plural Membership Definite-
ness are required again to ensure that neither ∈ nor ≺ (nor subplurality-hood)
can behave badly as new sets come into existence. The Ordinal Definiteness
Schema essentially posits the Barcan Formula for the ordinals, axiomatising the
principle that the ordinals can’t get longer. This captures the idea that our stages
are all proper-class-sized andwe add the necessitation of first-orderZFC to cap-
ture the idea that ZFC holds in each of these proper class models. Possible Set
Generics is motivated by the idea that our set-construction method is forcing,
and is the axiom corresponding to Generify!

Regarding Interpretation, we can note:

Fact 55. [Barton, MSb] SteMMe interprets ZFC− + Count under the potential-
ist translation.12

and:

Fact 56. [Barton, MSb] SteMMe interprets the potentialist translations of the
scheme asserting that every axiom of ZFC holds for the constructible sets.

So, just as in Sca, we have the nice theory ZFC− + Count, and we have ZFC
holding in some restricted contexts. We’ll critically examine how nice this the-
ory is (especially with respect to the goals of Chapter 2) in Chapter 9.

Concerning Paradox Diagnosis, we should note that, in stark contrast to
both the strong iterative conception and the version of the weak iterative con-
ception axiomatised by Sca, our worlds/stages are proper classes. There is a
possible puzzle here—why can’t we collect together the sets from one of these
proper class worlds to form a set? After all, all the members of some proper
classes (e.g. the ordinals) are ‘available’ for collection at every world. The answer
is that the collection forming operation—set forcing—does not allow them to
be collected. So we still have ParadoxDiagnosis (though one that merits some
serious philosophical scrutiny).13 Although there are worlds containing proper
classes, we avoid contradiction by having a suitably ‘weak’ operation of set for-
mation. This provides an explanation for the advocate of SteMMe as to why
the problematic classes like the Russell plurality do not form a set, though in
a manner somewhat different from Sca. We are, however, given an explana-
tion of why Indefinite Extensibility holds (one can always use Generify! to
add more sets), and which of Forcing Saturation and Powerset fails (Forcing
Saturation holds because any set can be made countable, and Powerset fails
because one can always use Generify! to add more subsets of a given set).

12( ) You in fact get a version of the Perfect Set Property too, but I’ll suppress this detail for
now. See [Barton, MSb].

13For example [Linnebo, 2010] and [Studd, 2019] would not take this response to be satisfac-
tory. They think that there are good grounds for asserting that whenever we have a plurality, we
can turn it into a set, and so they won’t find the picture provided by SteMMe appealing.
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Discussion of Capture I will defer until Chapters 9 and 10. Like with Sca,
there is a Capture-theorem available, but it is somewhat more complicated and
its philosophical import is still open.

8.5 Summing up
There are many details to be ironed out with these proposals (I will discuss some
in the next couple of chapters). For now it suffices to note that though they are
somewhat nascent, there are theories like Sca and SteMMe that provide amodal
theory for the weak iterative conception that validates Forcing Saturation and
Count. That’s all well and good, but we might ask at this point: Which is better
out of the strong iterative conception and the forcing-saturated weak iterative
conception when we bear in mind the goals of set theory?
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Chapter 9

Mathematics and philosophy
under the different conceptions

This chapter will examine whether one of the strong iterative conception or the
above countabilist versions of the weak iterative conception is best. We’ll do
this by looking at how mathematics is interpreted under each conception of set,
and examine each with respect the theoretical virtues we discussed in Chapter
2. We’ll first provide an explanation of how each handles mathematics, before
contrasting them side-by-side with respect to our theoretical virtues.

9.1 Mathematics under the strong iterative con-
ception

Let’s first recap the situation with the strong iterative conception. As we noted
in Chapter 2, ZFC and the strong iterative conception does an extremely good
job of interpreting mathematics. A couple of extra things should be mentioned
though at this point.

One core problem for the advocate of the strong iterative conception is to
resolve questions about Theory of Infinity. For, whilst they do have ZFC, this
theory tells us vanishingly little about the behaviour of infinite sets, and in par-
ticular the values of the continuum function f(ℵα+1) = 2ℵα or whether large
cardinal axioms hold. More has to be done to substantiate new axioms for set
theory, and there’s a rich literature on the topic.1

One kind of mathematics that the advocate of the strong iterative concep-
tion has to interpret are the modal countabilist theories we’ve discussed here.
On her view, these modal theories can be construed as about the hereditarily
countable sets (i.e. sets built up only from countable sets—formally we say that

1See, for example [Maddy, 1988a], [Maddy, 1988b], [Koellner, 2014], and [Incurvati, 2017]
among many others.
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a set is hereditarily countable if it is a countable set containing only hereditar-
ily countable sets). In this way, the advocate of the strong iterative conception
holds that theorists advocating forcing-saturatedweak iterative conceptions can
be interpreted as talking about structures that miss out a great many large sets
(and in particular all the uncountable ones).

9.2 Mathematics under our countabilist concep-
tions

Things are a little more challenging under the forcing-saturated weak iterative
conceptions. Because we don’t have Powerset, we can’t just piggy-back off the
‘standard’ account of mathematics available under the strong iterative concep-
tion.

We’ve seen two versions of the weak iterative conception (given by SteMMe
and Sca) that validate Forcing Saturation. However, in this context we don’t
have the Powerset Axiom, and hence can’t build many of the usual representa-
tions of structures that we want. So there’s a number of questions we can ask
about the forcing-saturated countabilist interpretation of mathematics:

(1.) How should we understand the study of theories based on ZFC?

(2.) What does ‘mainstream’ mathematics look like under this conception?

(3.) What does our Theory of Infinity look like?

How should we understand the study of theories based on
ZFC?
The quick answer is that you can still have ZFC in a restricted domain you just
can’t have all subsets of the sets in those domains (since for any set x, there’s a
collapsing function from x to ω). If you want to have ‘uncountable sets’ you just
have to leave out the subsets that witness bijections with the natural numbers.

(A parenthetical remark that should be included at this point: The idea that
sets might be small but ‘appear’ large in some model appears in the work of
Skolem, especially [Skolem, 1922]. Often, however, Skolem’s position is cashed
out via a scepticism and/or referential indeterminacy by asking the question
“How do I know I’m not living in/speaking about a countable model?”. The
present family of views does not have this flavour; it is compatible with the idea
that we can refer to the universe without an issue, it is just that the level of Forc-
ing Saturation is so strong that we can only talk about ‘uncountable’ sets by
missing out functions.)
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One can have very natural looking models here. For example, as well as
countable transitive models, it’s possible to have transitive models of ZFC con-
taining all ordinals (so called ‘inner models’) within a model of ZFC− + Count.
Recall that, for example, Sca interprets ZFC under the vertical modality and
SteMMe can get ZFC in the constructible universe. So any countabilist theory
based on Sca or SteMMe has inner models of ZFC.

Aside from the use of the modal theories presented here, there are also nat-
ural axioms that get us inner models for ZFC plus large cardinals. Since the
axioms are somewhat complex, I’ll provide them in a -box:

( ) I’ll mention some in passing, but I won’t go into details since the
mathematics starts to get tricky. The interested reader is directed to
[Scambler, MS], [Barton, MSb], and [Barton and Friedman, MS] for further
references and a fuller discussion of these examples. One way is to assert
the existence of ‘sharps’—these imply that there are self-embeddings from
many inner models and can be used to get ZFC plus large cardinals in inner
models within ZFC− + Count.a Another (related) kind are regularity prop-
erties for sets of reals. In fact, both Sca and SteMMe can interpret a scheme
corresponding to a version of the perfect set property (for the cognoscenti;
the

˜
Π1

1-Perfect Set Property) which implies that there are many inner mod-
els of ZFC.b Other regularity properties for sets of reals (e.g. Projective De-
terminacy) can be (schematically) rendered in ZFC− + Count, and also im-
ply that there are inner models of ZFC plus many large cardinals. Finally in
[Barton and Friedman, MS] we propose an axiom (the Ordinal Inner Model
Hypothesis), which implies that every set is countable but also that ZFC with
large cardinals addedholds in innermodels (again for the cognoscenti—one
can get 0]).

aSee Regula Krapf’s PhD thesis [Krapf, 2017] for details of handling sharps in the count-
abilist context.

bSee here [Scambler, MS] and [Barton, MSb]. Defining the
˜
Π1

1-Perfect Set Property
would take us too far afield, see for example, [Kanamori, 2009] (§§11-12) for details.

There is thus a kind of ‘symmetry’ between the strong iterative concep-
tion and the forcing-saturated weak iterative conception. Under the forcing-
saturated weak iterative conception, the theories motivated by the strong itera-
tive conception should be understood as holding in transitive models that miss
out subsets (in particular all the collapsing functions). But under the strong iter-
ative conception, the theories motivated by the forcing-saturated weak iterative
conception seem to miss out large sets (in particular all the uncountable ones).2

2In [Barton, MSa] I’ve argued that this symmetry can be used to claim that uncountabilism
is in fact restrictive.
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Mathematics for the countabilist
The picture of mainstream mathematics is much different when we have Forc-
ing Saturation. Whilst arithmetic remains unchanged (one can have Vω exactly
as under the strong iterative conception), there are no uncountable set-sized
structures. Rather, all uncountable collections are proper-class-sized. The study
of all the real numbers thus becomes the study of a large proper class.3 Since
there are exactly continuum-many continuous functions between the reals, we
can also think of the study of all continuous functions f : R → R as examining
a proper class. But whilst the real numbers and class of all continuous functions
are proper classes, yet highermathematics for larger uncountable cardinals can-
not be interpreted as about the sets without the use of even higher-order logic.
For example the classical study of the space of all functions f : R → R (a key
structure for functional analysis), cannot be interpreted even by a proper class.
One might ask oneself at this point, whether this is bad or just merely different.
We’ll return to this issue below (§9.3).

What does our Theory of Infinity look like?
How is Theory of Infinity handled? There are (at least) two different kinds of
question one could ask:

(1.) How should we understand the Theory of Infinity provided by ZFC?

(2.) What is the Theory of Infinity simpliciter?

The former question is easily handled under the forcing-saturated weak it-
erative conception. Since ZFC is only true relative to a model that misses out
sets, the behaviour of the continuum function (as well as other independent sen-
tences) should be understood via the diverseworld-to-world informationwe get
out of the different models of ZFC. This has affinities with some so called ‘mul-
tiverse’ views in the philosophy of set theory (we’ll discuss these later in Chapter
10, for our purposes now one can simply read ‘multiverse’ as the collection of
all countabilist worlds). For example, Joel-David Hamkins writes:

...the continuum hypothesis is a settled question; it is incorrect to
describe the CH as an open problem. The answer to CH consists of
the expansive, detailed knowledge set theorists have gained about
the extent to which it holds and fails in the multiverse, about how
to achieve it or its negation in combination with other diverse set-
theoretic properties. [Hamkins, 2012, p. 429]

3( ) In fact, since you can think of a real number as coding a countable set, the study of set
theory is in a way just the study of real numbers under ZFC− + Count. This is supported by the
fact that second-order arithmetic and ZFC− + Count are bi-interpretable. See §5.1 of Regula
Krapf’s PhD thesis [Krapf, 2017] for a nice presentation of this result.
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Since there is no maximal ZFC structure for the forcing-saturated weak it-
erative conception, we have an answer to the question of CH in ZFC-based set
theory. Simply put, it is to be found in how CH behaves across structures that
satisfy ZFC. No further answer is needed or possible.

This answer only concerns the impoverished ZFC models for the count-
abilist. So what is their Theory of Infinity simpliciter? This question is an-
swered for sets—every set is either finite or countably infinite. So, in a sense, the
countabilist has a comprehensive (albeit slightly boring) answer for the relative
sizes of sets. However, there are still some interesting questions to be had. Since
the continuum is a proper class, CH is now a claim aboutwhat proper classes exist
coding bijections between classes of sets and the universe. Is every infinite class
of reals either countable or the size of the universe? This is the open question
that the countabilist must address.

( ) One very interesting fact is that in this context CH is equivalent to the
claim that the universe is bijectable with the ordinals. So we have an imme-
diate link with CH and versions of Global Choice. Moreover, CH is equiv-
alent for the countabilist to the ‘limitation of size’ principle that all proper
classes are the same size.a If the advocate of the forcing-saturatedweak iter-
ative conception couldmotivate this limitation of size principle, theywould
then have a complete story for Theory of Infinity. Simply put, every col-
lection would be either (a) finite, (b) infinite, or (c) proper-class-sized, and
the continuum hypothesis (rendered as a claim about proper classes) would
be true.

aSee here [Holmes et al., 2012], §3.4.

9.3 Contrasting the conceptions
Is one of the two conceptions better? Both have different ways of responding to
Theoryof Infinity and advocate apparently distinct pictures of the foundations
of mathematics. And both have some open questions that remain outstanding.

This all raises the issue of what will become of the different conceptions,
especiallywhenwe bear inmind the criteria outlined inChapter 2. I won’t come
down one way or the other here—I think there are many questions that should
be left open for the future. The main point I want to press is the following: Both
are attractive conceptions of set.

I do think it’s pretty clear that the strong iterative conception, with the rich
understanding we have of it and theories motivated on its basis, is well in the
lead in the race. This is to be expected, we’ve only recently starting looking se-
riously at the forcing-saturated weak iterative conception, and so the strong it-
erative conception had an enormous head start (a good 50 years or so). Races
that seemed one-sided can get more competitive over time though. For exam-
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ple the logical conception is experiencing something of a resurgence due to its
possible application in formal semantics having previously been regarded as al-
most dead-in-the-water (or at least deeply problematic).4 So it’s worth thinking
of how each responds to the desiderata outlined in Chapter 2, contrasting the
two, and considering whether the forcing-saturated weak iterative conception
might catch up. For the sake of ease, we repeat our theoretical virtues here:

Generous Arena. Find representatives for our usual mathematical structures
(e.g. the natural numbers, the real numbers) using our theory of sets.

Shared Standard. Provide a standard of correctness for proof inmathematics.

Limits of Formalisation. Set theory provides a natural place to examine the
limits of our formalisation, pushing the boundaries ofwhatmight be realistically
expected to be captured, and exploring where formalisations may finally give
out.

Testing Ground for Paradox. Set theory is very paradox prone, both in terms
of the principles that can be formulated within set theory and when combined
with certain philosophical ideas (e.g. absolute generality and mereology). In
this way, set theory provides a testing ground for seeing when and how ideas are
inconsistent.

Metamathematical Corral. Provide a theory in which metamathematical in-
vestigations of relative provability and consistency strengths can be conducted.

Risk Assessment. Provide a degree of confidence in theories commensurate
with their consistency strength.

We also added (on conceptions of set):

Naturalness. Provide a reasonably natural account of what the sets are like,
one which avoids ad hoc restrictions.

Interpretation. A conception should motivate a good theory of sets.

Paradox Diagnosis. Respond to the explanatory challenge: Explain why the
paradoxical collections aren’t sets and which conditions do (and do not) deter-
mine sets.

Capture. Let T♦ be a modal theory of sets interpreting a non-modal theory T
via the potentialist translation. Then we say that T♦ satisfies Capture iff, given
a modelM of T, we have a general way of extracting a Kripke frameKM

T♦ |= T♦

fromM such that for every x ∈M there is a worldW ∈ KM
T♦ such that x ∈ W .

4See [Linnebo, 2006], [Linnebo and Shapiro, 2023], and [Roberts, MSa].
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Generous arena is handled very differently by the two approaches. But
each has their own answer. The strong iterative conception can essentially
piggy-back off the standard account of Generous Arena given in Chapter 2.
Little more needs to be said here.

The case of the forcing saturated weak iterative conception is more con-
troversial. Here the reals are a proper class (at least in the non-modal theory).
Set theory here is directly akin to second-order arithmetic, and analysis can be
thereby interpreted (so long as we allow talk of proper classes). But third-order
arithmetic is out of reach, standardly interpreted. However, since we have ZFC
plus large cardinals in inner models, proofs using resources from third-order
arithmetic and above can be interpreted in restricted contexts. Whether this con-
stitutes a hobbling ofmathematical practice or just a different approach is a ques-
tion I leave open for philosophical examination.5

This has implications for Shared Standard. Both the strong iterative con-
ception and forcing-saturated weak iterative conception provide their own
Generous Arena, and hence their own account of when a proof is legitimate.
Each standard is very different though, if we have Forcing Saturation, third-
order resources are not legitimate for reasoning about the reals. So both have an
account of Shared Standard, but the forcing-saturated weak iterative concep-
tion deviates substantially from the currently accepted norm. This said, under
this countabilist approach, proofs in third-order arithmetic and/or ZFC are not
wrong, they just need to be interpreted in restricted contexts. Again, I leave it open
whether or not this should count against the position or it is simply merely dif-
ferent.

Regarding the Limits of Formalisation, both are able to handle Gödelian
incompleteness in much the same way (claims about relative provability can be
construed as claims about first-order arithmetic, and the first-order arithmetic
provided by the two conceptions are not significantly different6). However since
both provide very different pictures of the role of the continuum and indepen-
dence, they provide quite different answers to the question of our knowledge
of the continuum. The strong iterative conception has several questions to an-
swer about large cardinal independence and the the behaviour of the continuum
function. The forcing-saturated version of the weak iterative conception, on the

5See, for example, the debate between Solomon Feferman and John Steel in
[Feferman et al., 2000], as well as Tatiana Arrigoni and Sy-David Friedman’s take on the
matter in [Arrigoni and Friedman, 2013]. Relevant here is the aforementioned multiverse view
provided by John Steel (in [Steel, 2014]) with subsequent development by Penelope Maddy
and Toby Meadows [Maddy and Meadows, 2020]. See also [Barton and Friedman, MS] (for an
argument that many of the usual foundational roles for large cardinals can be performed in the
countabilist setting).

6Really, all one gets is that the different theories proposed will yield more/less information
about the natural numbers. But any theory of arithmetic compatible with one conception is
compatible with the other.
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other hand, answers basically all questions about sets. Every set is countable, and
there are no large (or even uncountable) cardinals, even if there are large cardi-
nals and uncountable cardinals in inner models. Since all sets are countable,
it’s perhaps somewhat unsurprising that we can answer questions about them
more easily. Still, the continuum hypothesis is pushed to a question about class
theory, and in particular is connected with global well-orders for the universe
(whether there’s a proper-class-sized bijection F : V �→ Ord) . As we noted
above, if such a countabilist can motivate the claim that all proper classes are the
same size, then CH is solved too. But perhaps one can argue that whilst the sets
are relatively easily known, the continuum/proper classes are not, and so we
leave this question open. But there are at least avenues for making philosophical
progress on this question.

Moreover, both provide interesting perspectives as a Testing Ground for
Paradox. This is in two ways. First, the incompatibility between Powerset and
Forcing Saturation and the two conceptions we’ve discussed provides for an
interesting kind of ‘paradox’ in its own right (this is part of what was at play in
the Cohen-Scott Paradox). Interestingly, although each denies the full general-
ity of the other’s principles, one can incorporate partial amounts thereof. The
proponent of Powerset can add in limited amounts of Forcing Saturation, for
restricted kinds of partial order and families of dense sets (this yields a class of
axioms known as forcing axioms). Interestingly, the addition of such restricted
Forcing Saturation into the strong iterative conception tends to yield a reso-
lution of CH in the negative, with 2ℵ0 = ℵ2.7 It is not known how to generalise
these axioms for higher values of the continuum function. For the proponent
of the forcing saturated weak iterative conception of set, we can begin by not-
ing that axioms postulating the existence of uncountable cardinals are a bit like
large cardinal axioms—they (incorrectly!) assert the existence of sets closed un-
der various kinds of operation. For example, the least uncountable cardinal can
be thought of as a set that is closed under the formation of hereditarily countable
cardinals. Over ZFC−, an uncountable cardinal behaves a bit like an inaccessible
cardinal does in ZFC.

( ) For example, letκ be the least inaccessible andω1 be the least uncount-
able cardinal. Both are regular, and both provide a natural model for the
base theory—Vκ provides a model for ZFC (in fact second-order ZFC), and
H(ω1) provides a model for ZFC−.

Moreover, one can postulate the existence of sets with closure under count-
abilism (just not enough to get you an uncountable cardinal). Here’s a slightly
tricky example:

7For example the Proper Forcing Axiom implies that 2ℵ0 = ℵ2. For a survey of the Proper
Forcing Axiom, see [Moore, 2010].
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( ) Consider the following schematic reflection principle (for any φ in the
language of set theory):

∀x∃a(x ∈ a ∧ ‘a is transitive’ ∧ φ↔ φa)

i.e. for any set x there is a transitive set a such that x ∈ a and φ is abso-
lute betweena and the universe. ZFC− with this added is known asZFC−

Ref .
This theory is very weak—still far below the consistency strength of ZFC
(and so is consistent if ZFC is). But it adds in sets with closure, in particular
if φ holds in the universe then φ holds restricted to some transitive set a.
And since the universe exhibits various closure properties, this version of
reflection will imply that there are sets with those closure properties too.

So whilst we know that we’ll have to get rid of one of Forcing Saturation
or Powerset, whichever way we go, we can add back in some restricted versions
of whatever we rejected.

Metamathematical Corral can be dealt with immediately. Both concep-
tions motivate theories that can handle talk of set-theoretic models easily, and
so there is no particular difference here. Similarly for Risk Assessment, whilst
there might be small fluctuations dependent upon which theory is eventually
picked, both conceptions can motivate theories with a good deal of strength on
an independently plausible conception. We alsomight think that there’s no need
to settle on a single conception forRiskAssessment, so long as the conceptions
seem cogent and coherent, we can have confidence in the consistency of theories
that are proved consistent on each picture. In particular, if a theory U is proved
consistent by theories motivated under each conception, then more power to
U—its consistency is converged upon by two distinct cogent conceptions of set.

Each of Naturalness, Interpretation, and Paradox Diagnosis has been
discussed earlier, and so I won’t repeat myself. Suffice to say, all of Lin, Sca, and
SteMMe perform fine with respect to these desiderata. However, we owe the
reader an explanation of Capture. The strong iterative conception and Lin per-
forms perfectly here, one can use the Vα to quickly provide a Kripke model for
Lin, and then (using the theorem that every set belongs to someVα) get the result
that every set lives there. For the countabilist versions of theweak iterative con-
ception, there are Capture-theorems available, but since the details are a little
fiddly, I relegate their discussion to a -box (even then though, giving all the
gory details would get us too deep in the weeds, so I direct the interested reader
to the relevant papers). The core point is that though one can get a Capture-
theorem for these theories, it is still somewhat unsatisfying.

( ) The core observation used to get Capture-theorems for Sca and
SteMMe is that both are able to interpret the schemas corresponding a
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regularity property known as the
˜
Π1

1-Perfect Set Property (I won’t define
it here, many introductory texts on descriptive set theory contain the de-
tails).a [Scambler, MS] provides the result for Sca, and Scambler’s strat-
egy can be used for SteMMe too (see [Barton, MSb]). This, in turn implies
that there are many inner models of ZFC (in fact, the

˜
Π1

1-Perfect Set Prop-
erty implies that L[x] satisfies ZFC for every real x, see [Solovay, 1974] and
[Taranovsky, 2004]). This regularity property can then be used to get Kripke
models for Sca and SteMMe containing every set (basically using the vari-
ous L[x]).

The slight dissatisfaction results from the fact that in the case of Lin, the
Kripke model we obtain meshes very nicely with the informal description
of the way sets are formed (namely via powerset and union). Indeed, the
accessibility relation we get out of the Vα exactly matches some applica-
tion of powerset and union-bundling. However, for the cases of Sca and
SteMMe, there may be countable sets that are in the Kripke model that are
not added by forcing. One might find this slightly dissatisfying—after all
aren’t the modal theories supposed to be telling us how the sets are formed?
Coming up with a modal theory that better meshes with the informal set-
construction methods describes represents an open question for the advo-
cate of forcing-saturated versions of theweak iterative conception thatwe’ll
explicitly identify in Chapter 10.

aSee, for example, [Kanamori, 2009], esp. §§11–12.

For these reasons I think that both the strong iterative conception and the
forcing-saturated weak iterative conception are each viable conceptions of set.
The strong iterative conception clearly fits better with current orthodoxy, but
that’s not a good reason to discount the forcing-saturated weak iterative con-
ception out of hand. In the end, I think that a careful analysis is needed, either
to choose one of the two or to learn to live with the pluralism they offer. For this
to be done successfully, more development of these two (and other) conceptions
is required, especially on the side of the juvenile weak iterative conception.
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Chapter 10

Conclusions, open questions, and
the future

A short summary of what I’ve argued in this book: I think that set theory pro-
vides an interesting case study and tool for both philosophers and mathemati-
cians. I think that progress in set theory often involves trading off different prin-
ciples (e.g. Universality and Indefinite Extensibility,Powerset andForcing
Saturation). I think that this is the situation we find ourselves in now (at least
to some degree).

This said, there’s a lotmore research to be done in this direction. Some areas I
have already identified, but some are new and so I want to close with a summary
and consolidation of what I take to be themost interesting questions formoving
forward. Importantly, we’ll also be able to identify further connections with
philosophy more broadly (e.g. absolute generality and modal metaphysics). It
will also be helpful to present some objections to what I’ve argued, and mention
how they could be answered. This will make this ‘conclusion’ longer than usual,
and I hope the reader will indulge me in this.

10.1 Capturing the sets
We finished the previous chapter by identifying a major issue for countabilist
versions of the weak iterative conception, namely the status ofCapture. Whilst
Capture-theorems are available, there is much work to be done here, in par-
ticular finding a conception, modal theory, and Capture-theorem on which the
informal description of the set-construction methods matches up with the ac-
cessibility relation on the relevant Kripke frame (as is the case with Lin and the
Vα). So we simply ask:

Question. Is there a reasonable presentation of a modal theory T♦ that moti-
vates an extensionTofZFC− +Count, butwhere one can (inT) recover aKripke
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model of T♦ and prove that every x is a member of some stage, and have the rel-
evant accessibility relation conform to the informal description of how the sets
can be constructed?

As remarked earlier (Chapter 9) there is some progress here, but the Cap-
ture-theorems for Sca and SteMMe are not as good a match as we get with
Lin and the Vα. We can also ask similar questions about non-modal theories
of the weak iterative conception. Positively resolving this question would go
some way to cementing countabilist weak iterative conceptions as genuine con-
tenders, rather than up-and-coming prospects.

10.2 The weak iterative conception needs work
Earlier (Chapter 8) I remarked that the strong iterative conception is further
ahead in the race as compared to other versions of theweak iterative conception
(and in particular countabilist ones). I want to address some concerns onemight
have that these countabilist conceptions more problematic than I’m letting on
(perhaps they should not even be regarded as qualifying entrants).

There are a few reasons one could give to substantiate this claim. The strong
iterative conception, one might contend, is well-developed. We have an account
of what theworlds are (theVα). By contrast the weak iterative conception seems
rather underspecified, and clearly in need of sharpening by a further conception.
But what are the constraints here? What is to count as a legitimate method of
set-construction? These are all left unanswered by theweak iterative conception
and we might worry that the weak iterative conception is not sufficiently well-
formulated to provide enough constraints.

Here’s a somewhat silly example of a description of an iterative process.

Definition 57. (Informal) The trivialising conception of set holds that sets are
formed in stages. There are just two stages. At stage 0we have nothing. At stage
1 we perform the following operation Form all the sets!. There are no other
stages.

What’s wrongwith this as a version of theweak iterative conception? I think
it’s important to recall (Chapter 3) what we want out of a conception of set. We
want a conception that satisfies Naturalness, Interpretation, Paradox Diag-
nosis, and Capture.

This trivialising conception does not performwell here. Whilst I’m not quite
sure how to assess it for Naturalness (and Capture will likely be trivially sat-
isfied should one be able to provide a suitable theory) it performs very poorly
with respect toParadoxDiagnosis and Interpretation. It doesn’t explainwhy
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paradoxical collections don’t get into its second stage. Wehaveno explanation—
beyond wielding a contradiction as a Dummetian ‘big stick’—of why the oper-
ation Form all the sets! doesn’t form paradoxical ones. And it is totally unin-
formative about the theory we should adopt. So, yes, it is a legitimate version of
the weak iterative conception. But it is also rubbish. We can thus safely kick it to
the kerb. By contrast the countabilist versions of the weak iterative conception,
with their attendant axioms and modal theories, look promising, even if slightly
less developed than the strong iterative conception.

That’s not to say that there aren’t some important questions here that need
to be answered under for these countabilist conceptions. An important issue
is to work out the details of the modal theories for the weak iterative concep-
tion. One of the major differences between the strong iterative conception and
these is that the modal theory of the former is pretty much fully worked out (be-
yond Theory of Infinity—there will be potentialist translations of sentences
independent of ZFC that are up for grabs). For the latter things are less settled
(though there are options as discussed in Chapter 8). I want tomake a few points
about moving forward with the project of isolating appropriate modal theories,
and the challenges that need to be overcome.

First, I think that the weak iterative conception is extremely broad. This is
evidenced by the fact that the trivialising weak iterative conception is a legit-
imate version of it, even if terrible as a conception of set. Moreover, there are
very many disparate conceptions that also fall under this banner (e.g. the con-
structibilist conception and the forcing-saturated conception don’t seem to have
a whole lot in common beyond their weak iterativity). So I don’t think we are
going to get a lot of informativeness out of the weak iterative conception alone.

However, one thing we do get is the idea that there be some sort of descrip-
tion of the universe as unfolding as new sets are built. And I think the following
is true: Legitimate ways of constructing sets should be well-founded.

Here lies the a challenge for coming up with a more detailed account of the
stages and/or modal theories for the weak iterative conception: Many of the
possible candidates for modal theories considered in Chapter 8 are not well-
founded in the sense that the corresponding frames don’t have a well-founded
accessibility relation. The problem concerns forcing: It’s pretty rare—though
not impossible—to have forcing extensions that are minimal in any interesting
sense.1

( ) Here’s an example: Imagine I’m adding a single Cohen real to some
structureM . Given such anM , there are always non-interdefinable Cohen
realsG andH , and so there is a choice to be made about which to add. So
such a way of adding sets is not well-ordered (under inclusion, at least).

1A good example of a partial order in which one does have an interestingly ‘minimal’ exten-
sion is Sacks forcing. See [Geschke and Quickert, 2004] for a survey.
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Nor is it well-founded under inclusion; one can get denseness in the
ordering. Start by identifying that for any Cohen real G, there is a Cohen
real H from which G can be defined but not vice versa. Moreover, if G
is definable from H but not vice versa, there is also a Cohen real I that (i)
G is definable from I , (ii) I is not definable from G, and (iii) I is definable
from H . Thus, given any two single-Cohen-real forcing extensions M [G]
andM [H] such thatM [G] (M [H], there is also a dense ordering ofM [I]
between them.

Is this knock-down? I think not. The point I wish to make is that although
accessibility is non-well-founded in the relevant Kripke model, the notion of a
set-construction method might still be well-founded. One just needs it to be inde-
terminate what set gets added.

To see this, here’s a simpler non-set-theoretic example. Let’s suppose that
we’re given a finite line segment l ⊂ R. Suppose further that I have a single con-
struction method Extend! that allows me to extend l in a single direction. Now
I could extend l to the left, or I could extend l to the right. Moreover, if I extend
l left, I don’t get what I get if I extend l right (let’s assume that l1 and l2 have to
comprise exactly the same points to be identical). Moreover, any time I extend l
in one of the two directions to a line l′, there’s a dense ordering of smaller lines
that I could have extended to (with length greater than l but smaller than l′). But
this seems to me like a perfectly fine way of constructing new lines from old.
Indeed, one could formalise this modally if one so desired, and a correspond-
ing Kripke frame could have a non-well-founded accessibility relation. But the
method of construction isn’t non-well-founded, it’s just indeterminate.2 This has
been recognised since at least the time of Euclid and Aristotle (indeed, there is a
more-than-superficial resemblance to Zeno’s dichotomy paradox). What I sug-
gest is that one looks at thewell-founded subrelationsof the accessibility relation.
These will correspond to ways we can legitimately construct new objects from
old. For the strong iterative conception, it is just their luck that their accessi-
bility relation is well-founded and matches their specification of the processes
involved in their version of the weak iterative conception. But this needn’t be
the case. It’s then open to us to say that, whilst I can force to aworld (and thereby
see a descending sequence in the accessibility relation), theway I get to anyworld
has to be doable in a well-founded way. But this suggestion, though promising,
is very far from being worked out in detail, and represents a substantial open
question that needs to be answered for modal theories like Sca and SteMMe.
So we ask:

Question. Is there an account (possibly formal) of the weak iterative concep-
tion that makes clear the notion of a legitimate method of set construction?

2See also [Barton, MSb] for this argument.
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A separate question that should be addressed when developing the weak it-
erative conception (and one I’ve largely sidelined in this booklet) is whether it is
better to cash things out in modal or stage-theoretic terms. It is very natural, as
I’ve done throughout this book, to think of modal theories as implicitly giving
us some notion of stage, where a stage can just be identified with a world. This
move isn’t clearly forced on us, however. For example, we might instead choose
to formulate the notion of stage directly (as in much work in the latter half of
the 20th century).3 So we ask:

Question. How do modal theories of sets and stage theories philosophically
relate to one another? Shouldwe think of themas differentways of talking about
the same subject matter?4

10.3 The story is too neat, and ignores much
Throughout this booklet, I’ve presented the idea that we can view different at-
tractive conceptions of set as arising out of trading off Forcing Saturation and
Powerset. But I want to emphasise that whilst I do think this is a fundamen-
tal tension, there are many more options out there, some of which are weakly
iterative. What about, for instance, inner model theory and the Ultimate-L pro-
gramme [Woodin, 2017]? I won’t go into detail about this here, but the rough
idea is to come upwith an ‘L-like’ model that is able to give a good structure the-
ory for V and still incorporate large cardinals (V = L implies that many large
cardinals don’t exist). There are even iterative-style set theories on which every
set has a complement (see here [Forster, 2008] and [Button, 2022])! And what
about the cornucopia of proposals for motivating set-theoretic axioms under
the strong iterative conception (e.g. Freiling’s darts, determinacy, forcing ax-
ioms, reflection principles)? Aren’t I presenting an all-too-narrow view of the
state of the art?

Yes! It is absolutely too narrow, and space doesn’t permit me to go into
the full details of every possible direction in set theory. My point here was not
to propose Powerset and Forcing Saturation as the two possibilities for set-
theoretic development (though I do think they might be especially attractive to
philosophers). My focus was rather to articulate the idea that in certain con-
texts we can see conceptions as emerging from trading off inconsistent princi-
ples, and thereby highlight some similarities between our own predicament and
that of our intellectual ancestors. In particular, I made simplifying assumptions
there too—there’s far more out there than the conceptions I concentrated on.

Really the space of conceptions should be far broader and the dis-
tinctions not as conceptually neat as these pages might seem to indicate.

3See [Button, 2021a] for a summary of the history.
4I thank Davide Sutto and Chris Scambler for pressing this point.
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I’ve said little about other—possibly non-iterative—conceptions of set. We
might have examined the graph conception (e.g. [Incurvati, 2020]). There
are conceptions based on non-classical logics, such as paraconsistent (e.g.
[Priest, 2002], [Jockwich et al., 2022]) or constructivist/intuitionist approaches
(e.g. [Feferman, 2010], [Bell, 2014], [Scambler, 2020]). Others use an idea of
predicativity (e.g. [Feferman and Hellman, 1995], [Linnebo and Shapiro, 2023]).
Some of these may fit into the weak iterative conception mould, but there’s no
requirement to do so.

The point is just the following: This book isn’t meant to be providing a clas-
sification for every conception of set. My point is just that by considering (i) the
interrelations between different conceptions, and (ii) how we trade off incon-
sistent principles, we can come to understand better the space of possibilities
for articulating the mathematically fertile notion of collection. There is a huge
amount of work to be done in developing many more conceptions of set, and
thinking about their relationships to philosophical questions. We should start
broadening our horizons now.

10.4 Potentialism, actualism, and absolute gen-
erality

Throughout this book, we’ve been discussing modal theories of sets. An impor-
tant question in the philosophy of mathematics concerns how we should think
of these modalities. I want to put on the table three possible answers to this
question:

Actualism/Universism. There is a single universe of sets and a definite plu-
rality of all sets.

Potentialism. There is a single universe of sets, but it is modally indefinite.
There is no definite plurality of all sets.

Multiversism. There is no single universe of all sets, rather many universes.

(Note: It may be that we should relativise these questions to a given con-
ception, with different questions of how the stages/worlds/modalities are inter-
preted for different conceptions.)

These views do not exhaust the logical space (e.g. we could have a universe
that is indefinite, but not modally so, e.g. [Feferman, 2010], [Scambler, 2020])
but they are the main ones that are relevant for iterative conceptions. Each view
suggests a different way of philosophically interpreting the relevant modalities.
Let’s start with the modalities involved in the theories we’ve considered. The
actualist regards the use of modality as a mere heuristic for talking about the
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stage-theoretic structure of the universe. The potentialist takes the modality se-
riously, and thinks that it is somehow indicative of the fundamental nature of
reality. The multiversist also thinks that the modality is a mere heuristic but in
a very different way from the actualist, for them it is a way of talking about in-
terrelationships between the different universes on offer, and ways of moving
between them.

Each view has its own idiosyncrasies and suite of problems to be addressed.
One aspect of each is how we regard the determinacy of truth concerning math-
ematical claims (in particular in the language of set theory). The universist
will likely assert that every sentence of set theory has a definite truth value—
assuming we can refer to their universe without issue, the truth or falsity of
claims should just be understood as the truth or falsity of claims there. Likewise
the multiversist will likely assert that there are set-theoretic claims of indeter-
minate truth value—true in some worlds and false in others. The potentialist
(given mirroring) is likely to fall on the side of determinacy, at least insofar as
‘normal’ mathematical claims go (which should be understood under the po-
tentialist translation). Whilst this is perhaps somewhat broad-brush—there are
possibilities for modifying the conception of truth for each view—those at least
seem like the main options.

For the universist, there is also the old problem of the nature of proper
classes. For example, Øystein Linnebo writes:

Since a set is completely characterized by its elements, any plu-
rality...seems to provide a complete and precise characterization
of a set... What more could be needed for such a set to exist?5

[Linnebo, 2010, p. 147]

The problem is as follows. Given the stages of any version of the weak iter-
ative conception, the universist holds that there is a determinate totality of all
the sets in the stages. This can be cashed out in plural terms; there are some sets
xx such that that could be no set of all the xx (for ease, let’s just assume that the
xx comprise every pure set). But what is it then that stops us forming these sets
into a new set? Wehave a definite plurality of them, and so could characterise the
relevant membership relation. One response is to say that contradiction would
ensue. But this only holds if you assume that the xx contain every possible pure
set. So, the universist has to come up with a meaningful explanation of proper
classes that makes it clear why they’re different from sets, and why the seeming
ability to talk about such collections isn’t an issue.

Similarly, many see the generality and flexibility of forcing as evidence that
a given domain of sets can be expanded. Here’s Hamkins on the subject:

5[Linnebo, 2010] is especially concernedwith the semantics of plural quantification here, and
I’ve suppressed this detail for clarity.
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A stubborn geometer might insist—like an exotic-travelogue
writer who never actually ventures west of seventh avenue—that
only Euclidean geometry is real and that all the various non-
Euclidean geometries are merely curious simulations within it.
Such a position is self-consistent, although stifling, for it appears to
miss out on the geometrical insights that can arise from the other
modes of reasoning. Similarly, a set theorist with the universe
view can insist on an absolute background universe..., regarding
all forcing extensions and other models as curious complex simu-
lations within it. (I have personally witnessed the necessary con-
tortions for class forcing.) Such a perspective may be entirely self-
consistent, and I am not arguing that the universe view is incoher-
ent, but rather,mypoint is that if one regards all outermodels of the
universe as merely simulated inside it via complex formalisms, one
may miss out on insights that could arise from the simpler philo-
sophical attitude taking them as fully real. [Hamkins, 2012, p. 426]

So, an open question for the universist is how we should interpret the use of
forcing over the universe (including how natural these interpretations are).6

As noted above, the multiversist faces no such difficulties. However they
find themselves in hot water concerning the usual problems of generality rela-
tivism. They assert that there is no absolute universe, but then immediately seem
to make claims about all universes. The immediate question is: “Why can’t we
just understand this domain as the absolute universe?”. Since the literature here
is enormous, I’ll say no more about it, but merely point out that it remains open.7

The potentialist does not face these problems. If one believes that one can
always Reify! and Generify! over any definite plurality, and talk about these
processes modally, one does not face the same difficulties. Any definite plural-
ity forms a set, and any definite plurality can be forced over.8 Since the uni-
verse is not modally definite, they may contend that there is no definite plural-
ity of all sets that could be Reified! into a set, and no necessarily uncountable
partial orders that could be fed into Generify!. This is the response of both
[Linnebo, 2010] (for proper classes only) and [Scambler, 2021] (for both). Given
that their modality is legitimate, a response can be made out along these lines.
An important question is thus whether that modality can be given an accept-
able gloss, or is parasitic on other (unavailable) notions.9 The multiversist and
universist can both explain the modality by reducing it to other notions (direct

6This is a literature I’ve contributed to in [Barton, 2021] and [Antos et al., 2021].
7For further reading see [Rayo and Uzquiano, 2006], [Florio and Linnebo, 2021] (esp. Chap-

ter 11), and [Studd, 2019].
8There is a question of whether the motivations for these different positions are satisfactory,

see [Roberts, MSb].
9See [Linnebo, 2018], Chs. 3 and 12 for some discussion.
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quantification over universes for the former, restricted quantification over the
stages for the latter). So there is a real question of whether the potentialist has
just exchanged one suite of problems for another, and whether one is especially
worse.

A final question regarding absolute generality concerns the similarity be-
tween the reasoning involved inCantor-Russell andCohen-Scott. Some authors
have argued that the similarity between the two suggests that if one is a Reify!
potentialist/multiversist, then one should be aGenerify! potentialist/multiver-
sist too.10 Really substantiating this thesis would require a more detailed analy-
sis of the similarities between the two pieces of reasoning, and is an open philo-
sophical problem.

Note: This seems like a difficult issue to address, since any such response
will have to distinguish both Cantor-Russell and Cohen-Scott from other kinds
of ‘diagonal’ argument where an ‘indefinite extensibility’ response is not so at-
tractive (e.g. the halting problem, see [Meadows, 2015]). I do not see an easyway
to answer this question, in particular because it is not clear to me if there if there
is a sharp characterisation of the notion of diagonal argument (perhaps instead it
is a more ‘family resemblance’ concept?).11

10.5 Connection to conceptual engineering
One salient point to be noted is that what I’ve argued here is closely linked to
conceptual engineering. This field concerns itself with the evaluation, design, and
implementation of our concepts.12 There are affinities between what we’ve dis-
cussed here and this literature. For example, Kevin Scharp has argued that our
naive concept of truth is inconsistent, and should be replacedwith two concepts
(ascending truth and descending truth) which validate each direction of the Tarski
biconditionals separately, but there is no consistent concept that validates both
[Scharp, 2013]. There are clear similarities with the way in which Universality
and Indefinite Extensibility can be traded off, and how Forcing Saturation
conflicts with Powerset. There is a natural project here to view these moves
in the light of conceptual engineering. Indeed [Incurvati, 2020] explicitly makes
this connection for Indefinite Extensibility and Universality. So we ask:

Question. Should we view the project of trading off features of concepts/con-
ceptions of set as an exercise in conceptual engineering? If so, how should we
construe the details?

10See [Meadows, 2015], [Scambler, 2021], and [Builes and Wilson, 2022] for discussion.
11I thank Toby Meadows for some discussion of this point. See also [Simmons, 1990].
12See here [Chalmers, 2020] for a survey.

92



10.6 Plato and friends
The next objection comes from the staunch set-theoretic realist/platonist, who
thinks that there’s just a world of sets ‘out there’ where every set-theoretic sen-
tence has a definite truth value. Conceptions of set are great and all, but at the
end of the day the theories they motivate are either true or false about this uni-
verse, and this is the only arbiter of correctness we need. All this talk of theo-
retical virtues and conceptions of set is a mere red herring.

I don’t find this line of argument very persuasive at all. I think the history of
set theory, with all its twists and turns, false starts, and possible choice points,
indicates that this just isn’t a very fruitful way to look at things. To see this, let’s
grant for the sake of argument that there is such a platonic realm. What should
we think of our talk concerning it? There is a pessimistic probabilistic argument
available here: Do we really think, out of all the possible conceptions we might
have and all the ways we might have gone and continue to go, that we will really
select the ‘right’ one? I think it entirely possible what we’ve discussed here is
probably a very small snapshot of what is quite a large space. The conceptions
we’ve come across may well just constitute a fraction of all the possible con-
ceptions available to humans and gods. What is the probability (given our lack
of perceptual interaction with this universe) that we happen to pick the right
conception? I would say low.13

One could, as a response, say that we do have some sort of perception of the
universe of sets. I don’t have much to say here, beyond the well-worn point that
this seems like mysticism to me. Another option is simply a fatalistic pessimism
about our chances. But I see a better way out—to regard the interesting ques-
tions as ones concerning what we do with our conceptions and the theories they
motivate, and how they interact with our knowledge as a whole. This strikes me
as an area where we can learn and make progress, rather than simply arguing
about whose mystical eye sees the farthest.14

10.7 Pluralism?
I’ve argued that we now find ourselves at a fundamental choice point, do we go
with Forcing Saturation, Powerset, or something else entirely? There is, how-
ever, a different option: We might end up in a situation in which the various
conceptions perform better with respect to certain criteria and/or in different
contexts. It’s possible that we might be led to a strong kind of pluralism, where

13I also make a version of this argument in more detail in [Barton, 2022].
14This way of thinking has some affinities with Penelope Maddy’s naturalism [Maddy, 1997],

second philosophy [Maddy, 2007], and thin realism [Maddy, 2011]. I perhaps differ from her
in that I think that an appealing underlying conception is more than a mere “useful heuristic’
[Maddy, 2011, p. 136].
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claims using the term “set” need to be relativised to a particular kind of concep-
tion in order to be assessed for truth. There’s a special challenge for analysing
mathematical practice here. Normally (at least within ZFC set theory) the ‘spec-
tre’ of pluralism does not too radically alter the typing of mathematical objects
(e.g. within different theories extending ZFC the reals are always a set). How-
ever here we do have significantly different types—the continuum might be a
proper class under for the countabilist but a tiny accessible set under the strong
iterative conception. To me, it seems philosophically open which route we take,
or even if we need to pick one. So we ask:

Question. What are the prospects for a set-theoretic pluralism arising out of
the different conceptions of set discussed here?

10.8 Not the final word
I hope to have convinced the reader that there’s a host of interesting philosophi-
cal and mathematical questions to be found within contemporary philosophy of
set theory. I want to close with a word on the methodology of progress in this
field. We can only hope to make serious advances on these issues by thought-
ful and meticulous examination of different conceptions. A full study of these
problems will thus require a massive effort from historians, philosophers, and
sociologists of mathematics, as well as philosophically interested mathemati-
cians, and so there’s a real opportunity for collaboration from people working
in many fields. Even then though, it’s not clear how much control we have over
our semantic whims.15 It may be that significant set-theoretic activism is needed
in order to get conceptions accepted as legitimate and under consideration. In
this way, though mathematics has its own norms and methods of reasoning, the
present study suggests a radical anti-exceptionalism about mathematics as con-
tiguous with other human endeavours. The future is open and exciting, with a
good deal of work to be done in understanding the world(s) of infinite sets.

15The idea that we don’t have much control is advocated by [Wilson, 2006] and
[Cappelen, 2018].
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