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Abstract

Let mathematical justification be the kind of justification ob-
tained when we prove theorems. Are Gettier cases possible for
this kind of justification? At first sight we might think not: The
standard for mathematical justification is proof and, since proof
is bound at the hip with truth, there is no possibility of having an
epistemically lucky justification of a true mathematical proposi-
tion. In this paper, I challenge this idea by arguing that there is
conception of mathematical justification which is fallibilist (in ad-
dition to infallibilist accounts). I argue that for the fallibilist con-
ception, non-trivial Gettier cases are possible (and indeed actual).
I indicate some upshots for mathematical practice, in particular
regarding folklore theorems and pluralism.
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Introduction

Let mathematical justification be the kind of justification obtained when
we prove theorems (so the sort of thing that appears after the term “Proof.”
in a mathematics journal or textbook). This paper concerns the (epis-
temologically familiar) phenomenon of Gettier cases, how these might
relate to mathematical justification, and what the upshots for mathe-
matical practice might be.

A standard Gettier case is a situation in which an agent has justified
true belief in a proposition, but not knowledge. Often, this lack of
knowledge is tied to a kind of epistemic luck; the agent has a true belief,
but the warrant for the belief is lucky somehow. One might think that
Gettiering in this way is impossible for mathematical justification. If
one thinks that mathematical justification is obtained by knowing a
proof from axioms, epistemic luck is impossible since the axioms are
true and the rules of proof preserve truth. This is possibly what lies
behind Alvin Goldman’s remarks in the opening to ‘A Causal Theory
of Knowing’, where he writes:

My concern will be with knowledge of empirical proposi-
tions only, since I think that the traditional analysis is ade-
quate for knowledge of nonempirical truths. [Goldman, 1967,
p. 357]

However there do seem to be examples of Gettier cases in mathe-
matics. In [Voevodsky, 2014a], Vladimir Voevodsky (a 2002 winner of
the Fields Medal) relates the following episode from the development
of his work on motivic cohomology:1

The approach to motivic cohomology that I developed with
Andrei Suslin and Eric Friedlander [relied]2 on my pa-
per ‘Cohomological Theory of Presheaves with Transfers’,
which was written when I was a Member at the Institute in
1992–93. In 1999–2000, again at the IAS, I was giving a se-
ries of lectures, and Pierre Deligne (Professor in the School
of Mathematics) was taking notes and checking every step
of my arguments. Only then did I discover that the proof
of a key lemma in my paper contained a mistake and that

1I thank Lukas Koschat for pointing out that the talk [Voevodsky, 2014b] (a talk
upon which [Voevodsky, 2014a] is based) contained particularly acute examples of
the phenomenon I’ll discuss throughout this paper.

2In this excerpt Voevodsky is talking about the avoidance of a different problem-
atic ‘lemma’ (Bloch’s lemma), and I have suppressed this detail for clarity.
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the lemma, as stated, could not be salvaged. Fortunately, I
was able to prove a weaker and more complicated lemma,
which turned out to be sufficient for all applications. A cor-
rected sequence of arguments was published in 2006.

This story got me scared. Starting from 1993, multiple
groups of mathematicians studied my paper at seminars
and used it in their work and none of them noticed the mis-
take. [Voevodsky, 2014a, p. 8]

What we have here is, prima facie, an example of mathematical justi-
fication being Gettiered: The main results of Voevodsky’s ‘Cohomolog-
ical Theory’ (as I’ll abbreviate the paper from hereon out) were cor-
rect, but the original ‘proof’ was flawed. Both Voevodsky and the
scholars using his results in their proofs in the period when the er-
ror had not been diagnosed (1993–1999) seemed to have mathemati-
cally justified beliefs—they were using (true) results that were widely
accepted within the community they were a part of in proving more
theorems. Intuitively speaking, however, they did not have knowl-
edge since they were epistemically lucky that the relevant results (with
flawed ‘proofs’) from his cohomological theory paper were, in fact,
true.

There is a philosophical puzzle to be resolved here: How do we ex-
plain the apparent Gettier-phenomenon in mathematics whilst retain-
ing the close link between mathematical justification and something
like proof? Further, what might the upshots be of this phenomenon
for how we do mathematics? I will argue for the following claims:

Main Claims.

1. Whilst one conception of mathematical justification is infallibilist,
an important conception for understanding mathematics is falli-
bilist (i.e. not necessarily factive).

2. Such a fallibilist account indicates several actual instances of the
Gettier-phenomenon concerning mathematical justification, and
different kinds of luck at play.

3. These Gettier cases indicate two dimensions in which mathemat-
ical justification can vary: (i) An internal dimension (for the epis-
temic agent to have understood the conceptual dependencies of
their justification) and (ii) an external dimension (the parts of the
justification to fit the mathematical facts).

4. In turn, these dimensions help to explain certain upshots for
mathematical practice.
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Here’s how I’ll argue for these claims: §1 outlines the different ap-
proaches one might take to mathematical justification. In particular, I’ll
point to the fact that there are both infallibilist and fallibilist concep-
tions. I’ll press the point that the fallibilist conception is important for
understanding mathematical practice. We’ll see that this kind of jus-
tification can be understood as underwritten by simil-proofs: Mathe-
matical arguments that can be shared with and checked by the rest of
the community. §2 provides some mathematical Gettier cases on the
basis of this kind of justification via non-trivial errors or gaps (§2.1),
difficulties with selection of the axioms (§2.2), and the use of lemmas
in simil-proofs as ‘black boxes’ (§2.3), as well as isolating the differ-
ent kinds of epistemic luck at play. I then argue (§3) that the manner in
which these cases are generated suggests two dimensions in which an
agent’s understanding of a simil-proof can vary, an internal dimension
of understanding the conceptual dependencies and interrelationships
of the resources involved in a simil-proof, and an external criterion
of how well the steps taken in a simil-proof fit with the mathematical
facts. These criteria, I argue, highlight some upshots for mathematical
practice (§4), in particular concerning folklore theorems and pluralism
in theory choice. I then conclude (§5) with a summary and some open
questions for moving forward.

1 Mathematical Justification

No account of Gettier cases is complete without a thorough character-
isation of the notion of justification. Before we get into the details of
the cases we thus have to tackle the important and difficult question:
What is mathematical justification?

This is a tricky problem: Say too much and one risks making one’s
arguments too narrow, too little and we run the risk of vicious im-
precision. Rather than settling on one account, I’ll examine two rough
conceptions—fallibilist and infallibilist—and argue that each is impor-
tant for understanding mathematical justification.

With this in mind, let’s start by demarcating mathematical justifica-
tion from justification of a mathematical proposition. The latter is an ex-
ceptionally broad notion that admits of easy Gettiering in a manner not
tremendously interesting for mathematical practice. For instance, sup-
pose that a close mathematician friend tells me that Goldbach’s Con-
jecture is true. I trust them, and so I believe the conjecture. As it turns
out, let’s suppose that Goldbach’s Conjecture is true but my friend was
just playing a prank on me (and they had no idea whether Goldbach’s
Conjecture is true). Then I have justified true belief in a mathematical
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proposition, but intuitively speaking I don’t have knowledge.3

Whilst much epistemology focusses on this kind of example, it is
however not what I am interested in here. My focus is rather on the
kind of epistemic justification conferred when a mathematician takes
themselves to have proved a theorem and/or possess or know a proof of
said theorem. My interest is thus in the kinds of justifications agents
take themselves to have after working through arguments that occur
after the term “Proof.” in mathematics texts.

1.1 Warm up: Mathematical justification as possession
of a proof

One historically prevalent conception of mathematical justification has
been the following:

Assumption of Proof-Theoretic Justification. (APT) A subject S has
mathematical justification for a believed proposition P just in case they
have/know a proof of P from axioms for the relevant mathematical
subject matter.

This assumption was widely taken to be the ‘default’ for much of
the 20th century.4 This assumption seems to vitiate the possibility of
Gettier cases concerning mathematical justification. Since axioms are
true, and since logical inferences preserve truth, it is hard to see how
a mathematical justification could be lucky. By definition, it seems,
the standards of mathematical justification prohibit the possibility of a
Gettier case.

The problem is brought into sharper focus if we consider a stan-
dard template for generating a Gettier case due to Linda Zagzebski.5

As long as there is a gap between justification and truth, Gettier cases
are possible. One simply takes a case in which a proposition is justified
but false, and via epistemic luck modifies the case to make the propo-
sition true. This makes it harder still to see how we might generate a
mathematical Gettier case, since on the usual understanding of math-
ematical truth propositions are true or false by necessity. It is thus not
possible to use the Zagzebski inescapability template to start with a
false mathematical belief and then modify the situation to make it true.

Emphatically not every accepted mathematical argument satisfies
the APT, however. The example of Voevodsky from the introduction

3See [Paseau, 2015] for some examples of justification of mathematical proposi-
tions that are not directly mathematical justification.

4See [Giaquinto, 2002, p. 5] for discussion.
5See [Zagzebski, 1994].
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shows that there are often mathematical arguments that are accepted,
and indeed become central in an area, that are not strictly proofs (in
the sense of correct arguments from the accepted axioms). Work in
mathematics journals is fundamentally fallibilist in nature: It is possible
for accepted arguments to exhibit minor errors (e.g. typos), significant
gaps, and even major errors. With this in mind, let’s turn to a fallibilist
conception of mathematical justification.

1.2 Fallibilist mathematical justification and simil-
proofs

The core idea at the centre of fallibilist conceptions of mathemat-
ical justification is that an agent can produce a convincing and
subsequently accepted mathematical argument without it being a
bona fide proof from true mathematical axioms (see [Dove, 2003],
[Davis and Hersh, 1999], and [De Toffoli, 2021]). As we’ll see, we can
have mathematical Gettier cases for fallibilist accounts.6

Probably the most developed fallibilist account is Silva De Toffoli’s
[De Toffoli, 2021], and we’ll use this to illustrate how fallibilist justi-
fication can lead to Gettiering. The key notion for us will be that of
simil-proof, and the idea of knowing or possessing a simil-proof. Roughly
speaking, a simil-proof is an argument that has been accepted by mem-
bers of the community and meets certain minimal standards.

Before we explicitly define simil-proofs, we need the notion of
shareability of a mathematical argument. De Toffoli characterises it as
follows:

An argument is shareable if its content and supposed cor-
rectness could be grasped by relevantly trained human
minds from a (possibly enthymematic) perceptible instance
of a presentation of it. [De Toffoli, 2021, p. 830]

A simil-proof can then be defined as follows:

Simil-Proofs. An argument is a Simil-Proof (SP ) when it is [(i)] share-
able, and [(ii)] some agents who have judged all its parts to be cor-
rect as a result of checking accept it as a proof. Moreover, [(iii)] the
argument broadly satisfies the standards of acceptability of the math-
ematical community to which it is addressed. [De Toffoli, 2021, p. 835,
(i)–(iii) added]

6Some readers may feel uneasy already and hold that such arguments do not
constitute ‘real’ mathematical justifications. I will return to this point shortly (in
§1.3).
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We should immediately note that not every simil-proof is a proof.
A mathematical argument can satisfy all of (i) to (iii), but ultimately be
fallacious.

De Toffoli defines an agent possessing a simil-proof (or having a simil-
proof) in the following manner:

Having-SP . S has an SP of C if and only if, when prompted to artic-
ulate a reason for her belief in C, in the appropriate context, S would
(in good faith) share the SP . Moreover, S would be able to appropri-
ately reply to challenges and hold related dispositions. For instance,
if the validity of an inferential step of her SP is questioned, S would
be disposed to abandon it if she cannot defend it. [De Toffoli, 2021, p.
839]

Often we talk of knowing a simil-proof in addition to having a simil-
proof, and so I will use these terms (and their cognates) interchange-
ably. De Toffoli then defines mathematical justification as follows:

SP -Justification. A subject S’s belief that mathematical claim C (in
need of a proof) is mathematically justified if and only if S has an SP .
[De Toffoli, 2021, p. 837]

We should note that SP -justification is compatible with many
views on the nature of mathematical justification. [Rav, 1999] consid-
ers a view of mathematical practice that is irreducibly semantic, and
the job of a mathematical justification is to indicate these semantic
connections. [Azzouni, 2004] considers a view on which proofs indi-
cate the existence of derivations (see [Avigad, 2020] for a recent de-
fence). Another view holds that (at least some) simil-proofs are akin
to recipes for reconstructing reasoning ([Tanswell, F] provides a re-
cent proposal). We can also consider Catarina Dutilh Novaes’ view on
which mathematical justification is conceived of via particular dialog-
ical games played between a prover and a sceptic (see [Novaes, 2020]).
The account of mathematical justification in terms of knowing/having
simil-proofs is compatible with each of these ways of spelling out
mathematical justification. We can take simil-proofs to be presen-
tations of semantic relations, indicating the existence of derivations,
providing recipes for reconstructing reasoning, or particular prover-
sceptic games.

Importantly: On each reconstruction of the role of simil-proofs we
can have a fallibilist account. A simil-proof may fail to indicate se-
mantic relations that really hold, it may fail to provide an appropriate
indication of a derivation, the recipe may be fundamentally flawed, or
the prover and sceptic may have failed in their duties.

7



A few clarifications are in order. First, it is unclear whether the
‘agents’ who are judging the parts of a simil-proof to be correct can
be identical with the agent(s) who produced the proof. We might not
want to rule out that a pioneer or isolated mathematician can be math-
ematically justified7 or that justification is obtained at the point of dis-
covery rather than acceptance of the mathematical argument. This point
need not detain us—the cases we shall consider concern mainstream
mathematical arguments that have been widely accepted.

Next, we might worry about the extent to which acceptability
standards are addressed to specific communities. For instance, we
might want communities to be able to criticise one another if they
think that the standards are too lax (or perhaps too strict). In this
case, we want to be able to say that one community should be accept-
ing fewer (or more) mathematical arguments as simil-proofs. Mak-
ing such criticisms seems to require acceptability standards that go
beyond community-relative ones. This said, mathematics is quite a
broad church, and acceptability standards can vary substantially from
community to community. It may be that there is a ‘core’ of values
shared across mathematics and hence an ‘absolute’ notion of what is to
count has a simil-proof, or it may be that whether or not an argument
is a simil-proof is an essentially community-relative matter.8 Again,
whilst this is a subtle issue, it need not detain us further: Whether or
not an agent is mathematically justified is ‘community-relative’ or ‘ab-
solute’, we will still be able to generate certain kinds of Gettier cases
and analyse their upshots relative to a specific given standard.

Finally, we should identify an issue that will be important later (es-
pecially in §3 and §4): being shareable and possessing a simil-proof can be
viewed as matters of degree.

Let’s start with shareability. Arguments vary according to how eas-
ily they can be checked by suitably trained agents. Some simil-proofs
are relatively hard to check or very gappy, others are clearer and eas-
ier to follow. Whilst we can still speak of a simil-proof as definitively
shareable when it clears a certain bar, it’s important to note that this is
a dimension along which a simil-proof can vary (this will be important
when we come think of what the upshots of the Gettier phenomenon).

7De Toffoli in fact considers this notion (see, p.830 of her [De Toffoli, 2021]).
8 We should note that in really egregious cases, there definitely could be argu-

ments published in mathematics journals that do not count as simil-proofs on any
reasonable standard. For example, a corrupt editor who accepts a mathematician’s
request to have their (wholly error strewn) paper sent to a friend can result in the
publication of a non-simil-proof mathematical argument, since the purported simil-
proof might fail to meet the standards acceptable to any reasonable mathematical
community.
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Having or knowing a simil-proof can also be spoken of as a matter
of degree—more or less effort might be required to defend particu-
lar steps. A familiar feeling to many mathematicians is that of simil-
proofs beginning to fade in memory if they have not been checked or
prepared recently. We might then say that we know or possess a simil-
proof to different degrees dependent upon how easily we can defend
particular steps. Again, we can take some bar to be cleared when we
want to say that an agent has a simil-proof simpliciter. However, the
modal form of simil-proof possession in De Toffoli’s characterisation is
somewhat tricky to articulate, in particular regarding the level of ide-
alisation permitted. I do not, for instance, have or know a simil-proof
of the Poincaré Conjecture simply by carrying around a copy of Perel-
man’s proof with me wherever I go, and being prepared to defend the
relevant steps if prompted (perhaps after several years or lifetimes of
study). I do think that there is a reasonable sense in which there are
simil-proofs for which I could articulate particular steps given enough
time (e.g. I would probably have to revisit a textbook to refresh my
memory for the proofs of the incompleteness theorems) and others
which I could not (e.g. Perelman’s proof is currently out of reach for
me). It’s important to note though that even in cases where it’s very
plausible that I know a simil-proof of a proposition (e.g. the incom-
pleteness theorems) this might not be backed up by perfect simil-proof
possession, and there are others where my understanding of the rele-
vant simil-proof is middling at best.

At this point, some readers may feel that fallibilist justification
strays too far from the classic APT-based account of justification. In the
rest of this section, I want to return to infallibilist accounts and suggest
that both conceptions are interesting for mathematical practice.

1.3 Infallibilist mathematical justification: redux

Of course some authors will reject the claim that possession of a
flawed simil-proof provides mathematical justification. There are var-
ious infallibilist accounts. This includes infallibilist accounts of math-
ematical justification (e.g. the earlier discussed APT) but also infalli-
bilist accounts of justification more widely (e.g. Littlejohn’s account in
[Littlejohn, 2012]). For such accounts, SP -justification does not match
up with mathematical justification, since the former is fallible and the
latter is not.

There are some attempts to support such an account of mathemat-
ical justification. In [Gödel, 1953], Kurt Gödel describes a proof as “a
sequence of thoughts convincing a sound mind” [Gödel, 1953, p. 341].
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This suggests a conception of mathematical justification on which it
is not enough that we merely have a simil-proof, but rather that the
agent has understood the relevant steps in the argument. Developing
this idea, Leitgeb writes:

the mathematical community’s sense of proving a state-
ment from other statements involves connecting the latter
statements to the former by intermediate steps (i) which
preserve truth and (ii) which make it evident why truth is
preserved from one step to the next. [Leitgeb, 2009, p. 270]

This conception of mathematical justification is related to the
APT—it provides a sharpening of what it is to have (provided) a math-
ematical justification. For Leitgeb, a mathematical justification is pos-
sessing an argument where it is evident why each step preserves truth.
Clearly such an account of mathematical justification is infallibilist
(presuming that we start from true principles).

Whilst adjudicating the debate between fallibilist and infallibilist
conceptions of mathematical justification won’t be possible here, some
remarks are in order. Really, I think that there are two legitimately
interesting conceptions of justification in play, and each deserves at-
tention. Part of what I will do by specifying Gettier cases is to try and
draw some relationships between the two. Let’s start by noting that
SP -justifications are clearly interesting for understanding mathemati-
cal practice. This is because the kinds of artefacts that we are actually
confronted with as epistemic agents practising mathematics are falli-
bilist (as the example of Voevodsky neatly illustrates). Indeed, it may
well be that infallibilist mathematical justification is rather inscrutable.
But obviously the infallibilist conception is important too; some even
take this kind of self-evidence of understood arguments to be a hall-
mark of mathematical practice. When relating the two, we would like
as many cases of fallibilist justification to be instances of the infalli-
bilist conception. And as I’ll show, by examining the Gettiering of the
fallibilist conception of mathematical justification, we can learn about
possible desiderata for increasing the likelihood that we have an in-
stance of the infallibilist conception too. With this in mind, let’s move
on to the cases.

2 Some mathematical Gettier cases

How do fallibilist accounts of mathematical justification lead to actual
kinds of Gettier case? In a sense, the existence of such cases is un-
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surprising given fallibilism. But it isn’t just their existence that’s impor-
tant, but also their nature and the upshots we might draw therefrom.9

The Gettier cases will divide into three main kinds: (§2.1) significant
gaps/errors, (§2.2) the selection of axioms, and (§2.3) the use of lem-
mas as black boxes. On the way, I’ll make explicit the different kinds
of luck at play in each case. First though, we need to make a couple
of preliminary comments dealing with motivating the consideration
of Gettier cases (as opposed to merely mathematically justified false be-
liefs).

Simil-proofs can, of course, lead to falsehoods. However, such
falsehoods are often diagnosed relatively quickly. For example, in set
theory [Džamonja and Shelah, 1999] claimed to have shown that there
are models of set theory in which both ♣ (a statement about the com-
binatorics of sets) is true but there are no Suslin trees. Their results, it
was subsequently discovered, contradicted a well-established theorem
(namely Miyamoto’s Theorem) and so the simil-proof was recognised
to be flawed.

The Gettier phenomenon is importantly different, in that the error
might be harder to diagnose in virtue of the truth of the conclusion.
Since the proposition in question is true, contradictions will not show
up in the rest of our mathematical reasoning. It is far harder to spot an
error in a simil-proof (by and large) than to simply realise that a simil-
proof must be flawed (without knowing where) because it leads to a
falsehood.10

We should start by setting aside some easy and trivial Gettier cases.
Consider a case where computer assistance is being used to prove a
theorem. This now occurs often, as can be seen with the proofs of the
Four Colour Theorem or Kepler Conjecture, and the pervasive use of
GAP in classification problems in group theory.11 However, we don’t
need anything so complicated, one can see such uses as roughly analo-
gous to the use of an electronic calculator in computing steps in a stan-
dard high-school class. Let’s suppose that the relevant computational
device is malfunctioning in some way, but complementary malfunc-
tions just happen to cancel each other out or be tailored to the problem
at hand. Here we might say that intuitively speaking we do not have
knowledge despite having relevant mathematical justification. It is not
that there is anything wrong with our mathematical justification per se,

9Thanks to an anonymous reviewer for pressing this issue.
10Indeed this is the structure of some of the dialectic in [Voevodsky, 2014a], a coun-

terexample to a simil-proof was found, but nowhere was the specific error identified.
11GAP is a system for computational discrete algebra, and in particular is used

to computer check properties of finite groups. Thanks to Ben Fairbairn for helpful
discussion and bringing this example to my attention.
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but rather that something has gone wrong with extraneous empirical
facts upon which that justification depends for verification. The up-
shots of this kind of error are relatively obvious (e.g. where possible
run software verification on multiple different pieces of hardware) and
so I won’t consider these kinds of case any further.12

2.1 Non-trivial gaps and hard-to-detect errors

More interesting are situations in which an agent has a simil-proof of
a true proposition, but where the simil-proof is defective in some way.
It might, for example, contain a gap that requires significant patch-
ing, or perhaps even a non-trivial flat-out error. One such example
of this kind was mentioned in the introduction concerning some of
Voevodsky’s results in his ‘Cohomological Theory’ paper: Voevodsky
himself had a simil-proof, but not knowledge since it turned out to be
lucky (in virtue of the error) that many of the propositions contained
therein were in fact true. Examples can easily be multiplied, espe-
cially by looking at long or complicated proofs. In the enormous lit-
erature proving the theorem classification of finite simple groups into
various kinds, several substantial gaps were found across the history
of specific results involved in establishing the theorem.13 These gaps
were significant and required fixing—in contrast to the present day
where many agents are regarded as having mathematical justification
of some of these results, even if small and trivial errors in the simil-
proofs remain.14,15

However, flaws in SP -justification aren’t always the result of ex-
travagant complexity. Another recent example concerns the use of the

12These kinds of examples, and a modification of the safety criterion to deal with
them, are considered by [Pritchard, 2012].

13See [Solomon, 1995] for discussion.
14We should note that whilst there is a simil-proof of the classification of finite

simple groups, no one individual knows the proof—it’s just too large. This will
become relevant in §2.3.

15Another example identified by Voevodsky:

The groundbreaking 1986 paper “Algebraic Cycles and Higher K-
theory” by Spencer Bloch was soon after publication found by Andrei
Suslin to contain a mistake in the proof of Lemma 1.1. The proof could
not be fixed, and almost all of the claims of the paper were left unsub-
stantiated.
A new proof, which replaced one paragraph from the original pa-
per by thirty pages of complex arguments, was not made public un-
til 1993, and it took many more years for it to be accepted as correct.
[Voevodsky, 2014a]
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theory “ZFC without Powerset”. This is often used with ultrapower
constructions (for example in the theory of iterated ultrapowers).
However, many authors (including some in textbooks) describe this
theory as “ZFC with the Powerset axiom removed/deleted”. However
for many simil-proofs using this theory there is an inferential gap—the
sequence of propositions (so written) does not constitute a proof of the
relevant proposition.16 In particular, this theory (simply removing the
Powerset Axiom from the usual formulation of ZFC) does not suffice
for many applications, notably there are models of ZFC with Powerset
just deleted in which the Łoś Theorem fails (an essential theorem for
the ultrapower construction). One instead requires that the Replace-
ment Scheme be substituted by the schemes of Collection and Sepa-
ration, and the usual formulation of the Axiom of Choice be replaced
with the principle that every set can be well-ordered (these various
formulations are equivalent in the presence of Powerset). Thankfully,
many of the usual models one wants to perform iterated ultrapowers
with do satisfy this stronger theory. In this way, many simil-proofs
constructing ultrapowers without the awareness of these subtleties
can be construed as Gettier cases—the relevant ultrapowers can be
constructed, but only because the usual models happen to satisfy the
stronger theory and not because they satisfy ZFC with the Powerset
Axiom simply deleted.17 But here the case is relatively simple (cer-
tainly in contrast to motivic cohomology or the classification of finite
simple groups).

We can use these cases to identify different kinds of epistemic luck
at play. We first isolate:

Logical luck. We say that agent S’s mathematical justification of a true
proposition φ exhibits a higher degree of logical luck iff more of the im-
portant steps in the simil-proof do not logically follow from the previ-
ous steps and/or these mistakes are less easily fixed.

The example of ZFC-Powerset is a clear case of logical luck. Whilst
for the many of the relevant structures of interest the relevant proposi-
tions do follow from the premises, it is not the case that the conclusions
(e.g. the Łoś Theorem) follow from the premises (ZFC with the Pow-
erset Axiom simply deleted). So it is lucky that the desired theorems
actually do hold in the relevant contexts.

16This is [Fallis, 2003]’s definition of an inferential gap.
17See [Gitman et al., 2016] for a description of the situation with ZFC-Powerset,

including some identifications of where the incorrect theory is stated. I thank Jonas
Reitz for pointing out this example to me.
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It may be, however, that whilst the various steps do follow logically
from one another there is still a kind of luck at play, as when a difficult-
to-fill non-trivial gap is left unintentionally. This is indicative of:

Enthymematic luck. We say that agent S’s mathematical justification
of a true proposition φ exhibits a higher degree of enthymematic luck iff
unbeknownst to S, important steps are missed (even if all the steps do
follow logically from one another) and it is harder to fill in the details
of these steps.

Not every instance of enthymematic luck is an instance of logi-
cal luck. A simil-proof that leaves a gap where there should be fur-
ther mathematical justification of a key lemma (say because it is as-
sumed that the lemma is obvious when it needs proof) might exhibit
enthymematic luck but no logical luck.

Does the existence of these kinds of luck suffice to establish Gettier
cases for the fallibilist conception? Here is an objection one might raise
(for which I’m grateful to an anonymous reviewer). One might think
that an agent can be in one of two situations:

The Good Situation: The agent’s mistake is small. The main ideas of
the simil-proof are correct, but some details of the implementation are
slightly wrong.

The Bad Situation: The agent’s mistake was much larger, the main
ideas of the simil-proof are incorrect, and correction depends on sub-
stantially changing the proof and rethinking the topic.

If these two situations exhaust the possibilities (perhaps with some
gradations in between the two extremes) then the following line of
thinking is attractive: In the Good Situation, presumably we don’t
want to say that minor errors vitiate knowledge, lest we throw away
a bunch of mathematical results that depend on a small amount of
luck. So it’s reasonable to think that in the Good Situation we don’t
have a Gettier case, since the proposition is known. But if we’re in the
Bad Situation, then because of the scale of the mistake, it’s plausible
to think that either the proof fails to “broadly satisfy the standards of
acceptability of the mathematical community to which it is addressed”
(definition of simil-proof) or the agent would not be “disposed to re-
spond to challenges” (definition of simil-proof possession), no matter
if the author managed to get it accepted. And so the Bad Situation also
fails to provide a Gettier case.

I think we can respond by pointing out that the Good and Bad situ-
ation don’t exhaust the available options. For example, we might also
identify:
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The Nuanced Situation: The agent’s proof does not need to be com-
pletely reworked. Still, a deep but subtle feature of the relevant math-
ematics (unknown to the community) was missed, and material that
fills in these details needs to be provided for the proof to be satisfac-
tory.

The Nuanced Situation highlights that enthymematic luck can be
significant, even though the sequence of steps is logically correct (or
close to), and broadly speaking the proof strategy works. And I think
that in this situation, it’s fair to say that knowledge was lacking. It
may be that the deep feature missed by the community is important
in understanding the relevant mathematics. Of course (as with any
Gettier case) we could dig in our heels and say that such either that
(i) the Nuanced Situation isn’t possible, or (ii) we still get knowledge
even in the Nuanced Situation, or (iii) the Nuanced Situation isn’t one
in which the agent has SP -justification. None of these options strikes
me as attractive.

(i) ignores how widespread and diverse the phenomenon is.
Flawed proofs of true theorems are fairly common. For instance,
MathOverflow (a forum for research mathematicians) has an entire
community wiki on flawed simil-proofs that were accepted for a long
time, and another devoted specifically to correct results discovered with
flawed simil-proofs.18 We require just one case of mathematically justi-
fied true belief without knowledge. So whilst one can always disagree
on this or that case, it’s a very strong position to hold that the Nuanced
Situation isn’t possible.

(ii) I think fails to appreciate how much must often be filled in,
often requiring novel methods. Often gaps are described as requir-
ing “subtle” methods to be repaired.19 And if our understanding
is substantially deficient (as can be the cased in the Nuanced Situ-
ation), it’s reasonable to think we don’t have knowledge. Dehn’s
Lemma (a topological theorem about the mappings of a disk) pro-
vides a good example here. This was thought proved by Dehn in
1910 (in [Dehn, 1910]), but a gap was found in 1929 by Kneser (see
[Kneser, 1929]). The gap was finally repaired by Papakyriakopoulos
in 1957 (in [Papakyriakopoulos, 1957]) building on the work and theo-
rems of several others. The fact that it took almost twenty years for
the error to be found in what was an important theorem indicates
that the mistake was subtle, and Dehn met the community standards

18See [MathOverflow, 2024b] and [MathOverflow, 2024a]. [Rav, 1999] also pro-
vides a host of other examples.

19See, for example, the remarks in [MathOverflow, 2024a] regarding the Yamabe
problem and Smale’s flawed proof of the Poincaré Conjecture.
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of the time. But the fact that the gap took almost thirty years to fill
strongly suggests that significant understanding was lacking, defeat-
ing any claim to knowledge.

(iii) ignores the fact that a subtle but deep error can evade the math-
ematical community as a whole. In many of the cases considered, the
agent has an accepted proof. Given how widespread this phenomenon
is, it is unlikely that all such simil-proofs fail to conform to the commu-
nity standards. So the issue must be that the agent is not disposed to
defend the steps in their proof when challenged. But in a case where
the subtle error evades the community as a whole, it seems hard to in-
sist that they are not disposed to defend the steps in their proof, when
the community itself is not yet able to pose the challenge that would
reveal the flaw.

I think the Nuanced Situation counterargument is bolstered by con-
sidering the case of ‘theorems’ where the proposition ‘proved’ is false.
Though slightly different from the Gettier phenomenon, these provide
good contrast cases since they clearly do not result in knowledge of
the proposition. But they can be supported by simil-proofs that are
accepted and broadly meet the standards given by the community,
and the steps of which the agent can be disposed to defend. If we
are to hold that every flawed case of purported SP -justification ei-
ther produces knowledge or fails to constitute justification, then we
must maintain that every simil-proof of a false proposition is not one
of SP -justification. But this is just to reject fallibilism (part of what
SP -justification is meant to capture). Perhaps this is a bullet one is
happy to bite, but it does not mesh well with the fact that simil-proofs
of false propositions can exhibit a high (though obviously not perfect)
degree of mathematical rigour. For example, the earlier mentioned
case of [Džamonja and Shelah, 1999] and ♣ contains much useful ma-
terial, even if one result fails to go through. Moreover, the diagnosis
of the error proved to be mathematically useful in articulating some
relevant details (as explained in [Brendle, 2006]).20

Which examples (e.g. Voevodsky) actually fit what situation will
depend on a careful analysis of the details of the simil-proof and sur-
rounding context. There may yet be other situations besides the Good,
the Bad, and the Nuanced. As with any Gettier case, one can always
dig in ones heels and argue that we either have knowledge or be rad-
ically infallibilist about justification. But the sheer scale of the phe-
nomenon makes this an unattractive prospect.

We will discuss some upshots for these cases and some dimensions

20See [Brendle, 2006], p. 45, footnote 1 for some discussion and further references.
I thank Daniel Soukup for bringing this example to my attention.
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of mathematical justification later (§§3, 4). For now, we should note
that the authors (and referees) of a flawed simil-proof are at least some-
what epistemically blameable for publishing a flawed argument. The fact
that the simil-proof produced is not a proof is underwritten by a mis-
take that they themselves have made. Of course, mistakes can happen,
and publishing a flawed simil-proof does not necessarily make an au-
thor morally or otherwise culpable. This point bears emphasising—
even if an author is epistemically culpable for a defective simil-proof,
the work often contains many valuable insights and isn’t bad or shoddy
(indeed the examples given in this section all represent significant con-
tributions). They are, however, cases where our conception of fallibilist
mathematical justification has come apart from the infallibilist one.

As we will shortly see, however, there are cases where an agent
is in a Gettier-type situation, but has not done anything epistemically
blameworthy (or at least the level of epistemic blame is substantially
diminished). Moreover, these are cases where the objection from the
Bad/Good Situation are avoided. The two kinds we shall see concern
axiom selection and the use of lemmas as black boxes.

2.2 Axiom selection

Let’s consider how axiom selection might play into a Gettier case. The
central point here is that while we may have a perfectly good simil-
proof from some set of assumptions, we may be lucky in the choice of
these assumptions.21

The situation is especially acute in set theory. There, the discovery
of the independence phenomenon has precipitated programmes sug-
gesting several new axiom candidates. We will consider just two here.
We won’t go into too much technical depth, but rather will simply dis-
cuss some philosophically relevant properties.

One option is to use forcing axioms. These state that the universe
has been saturated under certain kinds of sets (namely generic filters
for certain partial orders and families of dense sets), and in this sense
seek to maximise the subsets available.22 A strong axiom of this kind
is the proper forcing axiom (or PFA).

A different option is Ultimate-L. Under this axiom (V =Ultimate-
L) the universe contains many ordinals with certain strong properties
(so called ‘large cardinals’). The axiom tries to capture the notion of

21This problem, though not the kind of Gettier situation it has elicits, is pointed to
by [Fallis, 2003] (see p. 45).

22See, for example, [Bagaria, 2006] for a discussion of this idea, and [Bagaria, 2005]
for some philosophical remarks.
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the universe exhibiting pattern (as opposed to being chaotic) whilst
containing the widest variety of structures possible.23

Some observations about these axioms are important: (1.) They
agree on Projective Determinacy (PD), a statement about certain ‘or-
derly’ sets of real numbers (both imply a positive answer to PD), and
(2.) they differ on the truth of the Continuum Hypothesis (CH); PFA im-
plies that CH is false where V =Ultimate-L implies that CH is true. (3.)
Proponents of the different axioms believe they have good justifica-
tions for why their axioms are true.

We can now consider the following case:

The PFA-Lykovs. Suppose a family lives in complete isolation from
others. In our example they will be keen and talented set theorists
who learnt the basics set theory before their isolation. They develop
forcing axioms, and after lengthy discussion decide that they are the
right axiomatisation of the set concept. They adopt the PFA, prove PD
from it, and thereby come to be mathematically justified in believing
PD.24

Suppose then however that V =Ultimate-L is in fact correct, and
that both the Continuum Hypothesis and Projective Determinacy are
true. What should we say about the PFA-Lykovs’ belief in PD? On the
one hand it is correct, and it seems justified in virtue of their having
a satisfactory proof. However, one might dispute whether they have
knowledge; their axioms get the nature of set-theoretic reality funda-
mentally wrong.

The example of the PFA-Lykovs, whilst somewhat far-fetched,
plausibly has similarities with actual epistemic situations. Though
mathematicians might not be literally physically isolated from their
peers, culture and research specialisation can keep them apart. Con-
sider Thurston’s remarks concerning the state of mathematics more
widely:

Much of the difficulty has to do with the language and cul-
ture of mathematics, which is divided into subfields. Basic
concepts used every day within one subfield are often for-
eign to another subfield. Mathematicians give up on trying
to understand the basic concepts even from neighboring
subfields, unless they were clued in as graduate students.
[Thurston, 2006, pp. 42–43]

23It would take too long to explain these notions of ‘pattern’ and ‘chaos’ here. The
details are available in [Bagaria et al., 2019].

24The Lykovs were a family of Russian Orthodox Christians who fled religious
persecution and lived in almost total isolation between 1936 and 1978.
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Thurston’s point is that mathematicians are becoming increasingly
specialised and unable to engage with the work in fields other than
their own. One can then easily imagine a mathematician becom-
ing ‘siloed’ within a community, with insufficient communication be-
tween researchers from different traditions needed in order to appre-
ciate that a given different approach is a live axiomatic possibility. In
this context, it’s hard to sustain the claim that a mathematician who
proves a true proposition using what they take to be well-justified ax-
ioms (to which they might think there are no serious alternatives) has
done anything epistemically blameworthy simply by proving a theo-
rem from their culturally inculcated axiom system.

In making this point I have used a rather strong kind of set-
theoretic realism, one on which both PD and CH have definite truth
values. Not everyone agrees with this (notably more plenitudinous
positions like [Balaguer, 1998] and [Steel, 2014] do not). But we can still
generate Gettier-style cases by pulling back to consideration of consis-
tency questions.25 For, so long as it is possible to have a justified but
inconsistent axiom, one can come to have a mathematically justified
belief in a true proposition whilst being lucky.

For example, Frege’s mathematical justification of Hume’s Princi-
ple obtained by proving it from his axioms before the discovery of Rus-
sell’s Paradox is just such an example. Frege thought (pre-Russell’s
Paradox) that Basic Law V was a logical truth, and certainly felt that
he had strong mathematical justification for Hume’s Principle. This
kind of example is fairly common, and can occur in cases where we
are able to prove a proposition from a set of axioms with strictly fewer
consequences than the ones we in fact use. For example, many re-
sults concerning braids and left-distributive algebras are provable on
the basis of ZFC, but the original proofs proceeded via (often very
strong) large cardinals (e.g. measurable cardinals) before the reduction
in strength was discovered.26 On the assumption that these large car-
dinals were well-justified, any subsequent inconsistency discovered in
them would result in a Gettier case.27

One might feel that these cases are not ones of real mathemati-
cal justification since any real mathematical justification should begin
with a consistent set of premises. So long as we think that we have
a determinate grasp on arithmetic, I contend that these issues of ax-

25I thank Konstantinos Konstantinou for suggesting that cases of the kind I’m dis-
cussing transfer to this context, and John Burgess and Keith Weber for some further
discussion of this point.

26See here [Dehornoy, 2000], especially the remarks around p. 600.
27See [Barton et al., 2020] for some discussion of the example of braids and justifi-

cation.
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iom selection can be made quite common, even when we restrict to
consistent theories.

Let’s suppose that one is convinced by the robust evidence in sup-
port of the claim that P 6= NP .28 Suppose further that with the passing
years and growing frustration with the difficulty of proving P 6= NP ,
it comes to be adopted as an axiom in many areas of computer science.29

Now suppose we are given some problem Pr that is known to be NP -
complete, and ask if a particular deterministic Turing machine M can
solve Pr in polynomial time. Obviously at this point we can provide
a very quick simil-proof to the contrary, Pr is NP -complete, and if we
could solve Pr using M then P = NP , but this contradicts the P 6= NP
axiom. Let’s suppose though that in this hypothetical scenario, that
P = NP is true on the standard model of the natural numbers, but
is in fact independent of the axioms of our base theory (let it be ZFC
for the sake of argument).30 In other words, there are models of ZFC
on which P = NP holds and (non-standard) models of ZFC on which
P 6= NP holds. But lets suppose that in fact M doesn’t solve Pr anyway,
since the complex and hard-to-follow program doesn’t do the job for
Pr even if there is another Turing machine M′ that does. Here we have a
Gettier case—the grounds for the agent’s assertion that M doesn’t solve
Pr are based on a false principle (P 6= NP ), and the only way to have
their simil-proof be connected to truth is to interpret them as talking
about non-standard models.

If desired, one can come up with a more general statement of the
problem for models of arithmetic. The P = NP question can be formu-
lated as a Π0

2-statement. If we move to consideration of Π0
1-statements

of arithmetic φ (the Goldbach conjecture or a suitable consistency state-
ment will do), then any situation in which we come to have good ev-
idence for ¬φ, prove some statement ψ on that basis, but then φ turns
out to be independent from one’s base theory and ψ is true will have
the same flavour: ψ is true but ¬φ can only be true on non-standard
models.31

28P 6= NP is a claim about different ‘complexity classes’ of computational func-
tions. See [Aaronson, 2016], §3 for a survey of the evidence in favour of the claim.

29It is at least plausible that we’re are almost there in certain areas. In particular,
many cryptographic protocols (e.g. RSA-cryptography) depend on the hardness (i.e.
PTIME unsolvability) of problems in NP . This, however, is a somewhat delicate
issue (e.g. a non-constructive proof of P = NP wouldn’t pose any immediate threat
to cryptographic systems, even if it might shake confidence) and so I’ll set the details
aside.

30[Aaronson, 2016] regards the formal independence of P = NP from suitable set
theories as somewhat unlikely, but it remains an epistemic possibility which is good
enough for current purposes.

31Note that any Π0
1-statement of arithmetic independent from the axioms of ZFC is
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For the case of axiom selection, no errors need be made in the proof
to get the Gettier case. In this way, it highlights that the infallibilist con-
ception of mathematical justification, in order to be truly infallibilist,
must throw in the truth of the assumptions we start with. We therefore
need to identify another kind of luck:

Luck in origin. We say that agent S’s mathematical justification of a
true proposition φ exhibits a higher-degree of luck in origin iff more of
the ‘axioms’ used in (more) important steps in the simil-proof are false.

Note that in examples of luck in origin we have a falsehood at the
root of the problem (a ‘false lemma’ in Harman’s sense of the term)
namely (depending on the example) PFA, P 6= NP , or the negation of
our Π0

1-statement φ. We might then ask if it is possible to get rid of this
false lemma and have a situation in which the agent is neither clearly
epistemically blameworthy nor uses a false mathematical proposition.
As I’ll now argue, this is possible.

2.3 Black box lemmas

The kind of example we will consider concerns the use of lemmas as
black boxes. In the course of constructing a simil-proof, we may use
other results. Some of these results are well-understood by the prover,
others less so. More generally, we can define:

Black box lemma. We say that a proposition φ is being used as a black
box lemma by an agent S who knows a simil-proof SP , iff:

(i) φ is used in the simil-proof SP .

(ii) φ is accepted by the mathematical community as a theorem.

(iii) S does not have a simil-proof of φ (in the sense that S would not
be able to defend the steps of φ’s simil-proof themselves).

The metaphor of a ‘black box’ reflects this state of affairs. φ may be
very useful to S in proving a theorem, but the simil-proof of φ might
not be well-known to S (say because φ’s simil-proof is very complex,
or uses resources from a field different from S’s expertise). The use

true on the standard model. Intuitively speaking, when φ is independent, then there
are models of φ and models of ¬φ, but since every model of arithmetic includes the
standard model as a submodel, and since φ consists in universal quantification over
some quantifier-free χ (i.e. φ = ∀x0, ...,∀xnχ, where χ is quantifier free), φ has to be
true on the standard model.
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of black box lemmas is fruitful and very important for the develop-
ment of mathematics as a community: It allows mathematicians with
diverse expertise to use each other’s results. Moreover, it is unreason-
able to expect mathematicians to understand all dependencies in their
knowledge, as this may be too time costly.

With increases in the complexity of mathematics and the interlink-
ing of various established results, it might be the case that the use of
black box lemmas is essential. Consider the theorem on the classifi-
cation of simple finite groups. This theorem is (a) accepted by the
mathematical community, and (b) no one single person really knows its
simil-proof—the simil-proof has been established by a huge network
of researchers proving their own small part of it and the combined
work totals many thousands of pages. Now, any use of this theorem
in a simil-proof is essentially using the theorem as a black box, one can-
not have a simil-proof of it—the argument is just too large. Proving
results using the classification of finite simple groups as a black box
lemma is now so common in group theory that it has its own acronym
(CFSG).32 Whilst the example of the CFSG is especially vivid—a human
agent cannot possess the currently accepted simil-proof—it can also be
made more mundane, this kind of phenomenon will occur wherever
the difficulty of all lemmas relied on in the proof exceeds the mathe-
matician’s ability to know those proofs.

The same goes for cases outside one’s field of expertise. Often
it is simply too labour intensive or inefficient to learn an entire area
that one is not familiar with in order to understand a complicated
lemma that is useful for a given proof. This attitude can be seen in
some mathematicians’ opinions on the matter. In a recent interview
study [Andersen et al., 2020] present the following observations con-
cerning a question on MathOverflow about when it is acceptable to
use a lemma as a black box:

[Sauvaget, 2010] raises the question of when one should
check the results of others before using them in one’s own
proofs. And similar questions have been discussed else-
where on MathOverflow... In his response to Sauvaget’s
question, Fields medalist Timothy Gowers suggests that,

32I thank Ben Fairbairn for discussion of the use of the CFSG in group theory. A
survey of some problems solvable with the CFSG is available in [Cameron, 1981],
some of the problems therein (e.g. Schreier’s Conjecture that the outer automor-
phism group of every finite simple group is solvable) are still open without the CFSG.
It should be mentioned that some group theorists (including Cameron) express a de-
gree of unease about using a theorem with a simil-proof that cannot be known by
any (human) mathematician.
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“If a result is sufficiently accepted by experts you have
good reason to trust, then the result can be trusted.”
Matthew Emerton writes that, “If a result is generally cer-
tified by experts, is well-established, and widely used and
understood (even if not by you personally), then there is
surely no problem in quoting it, applying it, and relying
on it.” Another Fields medalist, Terence Tao, gives a sim-
ilar comment to a blog post [Kowalski, 2009]. Tao writes
that, “If [the result] is prominent enough, and one trusts
the practitioners of that field, then presumably it has been
checked and understood by the experts, and it would be
safe to cite.” [Andersen et al., 2020, p. 3]

Further, the interview partners they consider generally regard the
use of lemmas as black boxes as acceptable (though there are some
exceptions).

What we have here is a feature of mathematical justification analo-
gous to the use of testimony in epistemology more widely. This then
leads to the familiar kinds of Gettier case that we see in the wider liter-
ature on epistemology where testimony from a reliable source results
in Gettiering. Suppose that I prove some theorem φ, on the basis of
a lemma ψ that I am treating as a black box (where the simil-proof of
ψ is widely accepted). As it turns out though, the simil-proof of ψ is
flawed, but ψ is true. So my mathematical justification in φ is some-
what lucky—it depends on using a true proposition that is widely ac-
cepted, but for which the accepted simil-proof is flawed.

Despite this problem with my mathematical justification, I have not
done anything obviously epistemically culpable just by using a lemma
as a black box and indeed my simil-proof is in perfectly good work-
ing order. At least, we may want to say that my level of epistemic
culpability is substantially dimished compared to the situation in which
the error originates in my own work. However, it does not seem right
to say that I know since my belief in φ is based upon ψ which has a
flawed simil-proof. Again, here we have a case where the fallibilist
notion of justification comes apart from the infallibilist one—it is not
evident how the steps in the simil-proof of the black box communicate
truth to their descendants in my proof.

Importantly, there are actual examples of the flavour just described.
Voevodsky’s example from the introduction is an interesting case.
In particular, some of the results from ‘Cohomological Theory’ were
widely used before the error was found and diagnosed.33 Examples

33For ease, I repeat part of an earlier quotation from [Voevodsky, 2014a]: “Starting

23



are easily multiplied. The gap in the earlier-cited example of Dehn’s
Lemma lay undiagnosed for almost twenty years. The ‘result’ in 1910
‘resolved’ an important problem in topology at the time, and likely
would have been used in the ‘unknown’ period 1910–1929. The Four
Colour Theorem was thought proved 1879–1891, but it wasn’t until
Appel and Haken’s computer-assisted proof in 1974 that it was finally
proved. Any use of the Four Colour Theorem (or indeed the Five
Colour Theorem—the proof of which can be salvaged from Kempe’s
proof) between 1879 and 1891 can then be regarded as a black box Get-
tier case.34

Moreover, this can happen with unsurveyable proofs. The case of
the classification of finite simple groups will again serve as our ex-
ample. [Solomon, 1995, p. 236] explains how in 1989, certain small
subcases of a large 800-page typescript by Mason were noticed to be
flawed. These were subsequently patched by Aschbacher in 1992. In
this case it is clearly unreasonable to expect the relevant agent to fol-
low up all dependencies of the relevant proof—that is to ask for an
impossibility.

Black box lemmas are indicative of the following kind of epistemic
luck:

Luck in dependence. We say that agent S’s mathematical justification
of a true mathematical proposition φ exhibits a higher-degree of luck
in dependence iff more of the mathematical justifications of accepted
propositions on which S’s simil-proof of φ depends (which may in turn
be justified by a simil-proof held by someone other than S) exhibit
either luck in origin or luck in reasoning.

For many cases of luck in dependence, in particular where the only
kind of luck at play in the flawed simil-proof on which S’s simil-proof
depends is enthymematic luck (i.e. there is no logical luck or luck in
origin), it is hard to say that (a) S is epistemically blameworthy (after
all, the error does not lie with them, and since there is no logical luck,
the error may be very hard to diagnose), and (b) there are no obvious

from 1993, multiple groups of mathematicians studied my paper at seminars and
used it in their work and none of them noticed the mistake.” Voevodsky is espe-
cially clear about the usefulness of the work in his lecture [Voevodsky, 2014b] (upon
which [Voevodsky, 2014a] is based), and emphasises the usefulness of the results in
‘Cohomological Theory’ between 14:20 and 17:00 of the lecture (see especially the
remarks occurring at around 15:30).

34See [Sipka, 2002] for a discussion of the history of the Four Colour Theorem.
I thank Ben Fairbairn for directing me to the Four Colour Theorem example, and
Vadim Kulikov for pointing out Dehn’s Lemma. Both Dehn’s Lemma and the Four
Colour Theorem are also discussed by [De Toffoli, 2021].
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false mathematical propositions at play in S’s mathematical justifica-
tion.35

3 External fit and internal understanding

What do these cases tell us about mathematical practice and the gener-
ation of mathematical justification? In this section, I’ll argue that there
are two main dimensions in which an agent’s possession of a simil-
proof can vary, namely external fit and internal understanding. As
we’ll see, when a simil-proof has a high degree of external fit and is
possessed by an agent with a high degree of internal understanding,
the Gettier phenomenon is more easily avoided.

We can start by considering what we want out of simil-proofs. I see
at least two roles (aside from the enjoyment of mathematical activity):

(1.) We want proofs to tell us that some proposition(s) is (are) true.

(2.) We want proofs to deliver mathematical understanding, we want
them to show us how our mathematical concepts relate to one an-
other.

The idea that simil-proofs fulfil something like these roles appears
variously throughout the literature. I take it that (1.) is beyond re-
proach. An awareness of (2.) is also prevalent, however. It perhaps
the central claim of [Thurston, 2006] that mathematical understanding
is what is really desired, rather than merely discovering the truth of
propositions. [Rav, 1999] is explicit about the value of proofs beyond
the verification of truth. [Gowers, 2000] speaks of “two cultures” of
mathematics, and in particular that for some mathematicians the point
of solving problems is to understand mathematics better and for others
the point of understanding mathematics is to solve problems better.

Each facet of mathematical activity motivates a different facet of
mathematical justification that can be fulfilled to a greater or lesser
degree. I’ll deal with each in turn. Regarding truth, we want our simil-
proofs to map on to the mathematical facts appropriately. We therefore
define the following:

External Fit. A simil-proof (held by a subject S) exhibits a higher
(lower) degree of external fit iff more (less) of the steps that S takes in

35Of course one thing we might say is that S has the false belief that their black box
lemma has a legitimate proof. This seems, however, to be a proposition of a more
sociological flavour compared to a mathematical proposition.
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the simil-proof fit the mathematical facts (i.e. each step is true and fol-
lows logically from the previous steps).

A high degree of external fit is clearly desirable, but does not tell
the whole story. In particular, it does not guarantee that an agent has a
high-level of mathematical understanding in knowing a particular simil-
proof. For example, blindly following a known formula may exhibit
an exceptionally high degree of external fit, but tell us little beyond the
fact that a certain proposition is true. (Many of us will be personally
familiar with the example of blindly following the quadratic formula
x = −b±

√
b2−4ac
2a

at school without a clue as to why it works.) We’ll
therefore add the following desideratum on the possession of simil-
proofs:

Internal Understanding. S’s possession of a simil-proof exhibits a
high degree of internal understanding iff S understands how the pieces
of their simil-proof fit into a wider framework of knowledge, and un-
derstands the conceptual dependencies of the resources employed in
their simil-proof. We define a low degree of internal understanding in the
obvious way.

Of course this condition is itself up for philosophical interpretation,
what constitutes mathematical understanding is no easy matter. I am,
however, happy to work with the notion on an intuitive level for the
purposes of this paper (though I remain open to debates concerning
how it should be sharpened).

The dimensions of external fit and internal understanding are nat-
urally related, but can be independent. Sadly of course, S’s posses-
sion of a simil-proof may have neither—it may be both founded on
mathematical sand and S may have a poor understanding of the con-
cepts. When S has knowledge of a very gappy simil-proof that uses
many black box lemmas, we may exhibit nigh-perfect external fit but
a low degree of internal understanding—S does not understand how
the relevant steps of the simil-proof are conceptually related to other
areas and does not understand the conceptual dependencies of the
black boxes. On the other hand, an agent S may have an excellent un-
derstanding of an area, but produce a simil-proof that has a reduced
degree of external fit, as when a strong established researcher simply
makes an error and produces a flawed simil-proof. In what one might
think is the ideal case, we have both—a perfect external fit between
the steps in the simil-proof and mathematical reality, and a clear un-
derstanding of how the simil-proof fits into our wider mathematical
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apparatus. Indeed, one would hope that the dimensions are related—
as we obtain better internal understanding of a simil-proof, we become
more likely to externally fit the mathematical facts, and a high-degree
of external fit offers more opportunity for internal understanding. And
these are closely related to what the advocate of the infallibilist concep-
tion wants; they want (i) to start from true axioms (external fit), (ii) for
each step to guarantee truth preservation (external fit), and (iii) for it
to be evident why this is so (internal understanding).

The fact that possession of a simil-proof can vary in degree with
respect to both external fit and internal understanding suggests an
interesting phenomenon: There is a sense in which the Gettier-
phenomenon itself is a matter of degree. It is very rare (except perhaps
in trivial and easy cases) that we have a perfect correspondence be-
tween the steps of the simil-proof and reality as well as understand all
the dependencies of our proof, especially where difficult research-level
mathematics is concerned. In this sense, our mathematical justification
via possession of simil-proofs is almost always Gettiered to a degree and
imperfect.36 This presses the following problem: Given that a degree
of imperfection is ubiquitous in mathematics, and given that it may be
very hard to diagnose, what should we do about the matter?

4 Upshots for mathematical practice

Even if one finds Gettier cases in mathematics unsurprising for fal-
libilist justification, their analysis can reveal some upshots for math-
ematical practice. Some are trivial or clearly an established part of
mathematical practice (e.g. have a proof checked by multiple agents).37

However there are some further respects in which we might regard our
two dimensions as yielding upshots for mathematical practice.

Folklore theorems. A phenomenon which is pervasive in mathe-
matics is the existence of theorems that are ‘folklore’. These can often
take the form of unpublished notes (that may have subsequently been
lost) or proofs that are regarded as easy and known, but have not been
written down. The present discussion shows that the acceptance of
many folklore results is fundamentally bad practice. Such theorems
fall into the following categories:

(1.) A result where there is unclear attribution (e.g. because the result
is very old and/or was proved outside of the published litera-

36I thank Deniz Sarikaya for this suggestion.
37This checking from multiple perspectives is considered by

[Andersen et al., 2020].
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ture by multiple people independently) but has appeared in text-
books/graduate theses etc.

(2.) Results that are genuinely trivial.

(3.) Results that are merely believed to be easy or known.

Cases (1.) and (2.) are benign and so I set them aside. However case
(3.) is problematic; we. lose shareability of the proofs and the ability
to scrutinise both external fit and internal understanding, and may in-
vite in logical, enthymematic, and dependence luck. A recent example,
discussed in [Rittberg et al., 2020], concerns the attempted publication
of a paper containing a result in topos theory that was rejected on the
grounds of the result already being part of the folklore. On examina-
tion, however, the ‘standard’ folkloric proof was found to be flawed
(although the theorem was true). As such, use of the folklore theorem
constituted a Gettier case before discovery of the flaw. Discussing the
issue André Joyal (a prominent category theorist) writes:

Although considered “folkloric” by some experts, the re-
sult does not appear in the literature. I had believed that
one could directly deduce it from the theory of classify-
ing toposes of Makkai and Reyes. It is only recently, in the
context of a discussion with Caramello, Johnstone and Laf-
forgue, that the latter attracted my attention to an aspect of
Caramello’s proof which I had missed... Surprised by this
observation, I tried to exhibit the “folkloric” proof that I
thought I had of this theorem. With my great astonishment,
it took me a night of work to construct a proof based on my
knowledge of the subject, and the proof depended only par-
tially on Makkai-Reyes’ theory! [Joyal, 2015, italics mine]

We see here clear issues along the dimension of internal under-
standing. In addition to the mere fact that the simil-proof was flawed,
it was flawed in such a way that the conceptual dependencies were not
well understood by experts who felt they had a simil-proof (in the end,
the resulting proof depended only partly on resources it was thought
to hinge upon).38

38It may also be that the original folklore simil-proof contained inferences that did
not logically follow from one another, and so exhibited poor external fit. To show
this conclusively, however, we would have to exhibit models witnessing the failure
of these logical implications, and this seems to be in itself a significant mathematical
question.
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There is thus value in writing folklore theorems down and making
them shareable. If they are really trivial, the proofs can be given to stu-
dents as exercises or included in textbooks. If they are merely thought
to be ‘easy’, they can either be given to graduate students for presen-
tation in theses or should be published (either in a relevant journal or
on a public pre-print archives like the arXiv).

Methodological pluralism in mathematics. The previous example
speaks to a practical change we can make in avoiding one source of
logical, enthymematic, and dependence luck. There are also practical
steps we can take to assuage worries of luck in origin. The example
of the PFA-Lykovs (and related cases closer to home) showed that we
can be mathematically justified in a proposition, have done little wrong
in our proof, but still fail to have good external fit. Whilst a degree of
focus can be mathematically beneficial—great strides are made when
intelligent people focus solely on a specific range of problems from
within a specific axiom system—it comes at epistemic cost: Mathemat-
ical monism results in the possibility of luck in origin and our beliefs
being explained by falsehoods. This suggests that a methodological plu-
ralism in foundations is advisable—we should encourage the study of
multiple different axiom systems and cross fertilisation between these
different systems. This is so even if one is ontologically a believer that
there is a true axiom system, the possibility that one is wrong should
motivate acceptance of the study of competing frameworks, in order
that we don’t miss live options for well-motivated axioms.39

Within this context, the desire for external fit indicates further epis-
temic value in mathematical practice to what [Koellner, 2009] calls
‘overlapping consensus’. There are certain statements (e.g. PD) that
are agreed on by multiple strong theories. The development and study
of multiple axiom systems, and finding what lies in the intersection of
all their consequences, increases the chance that at least one of the sys-
tems is the correct explanation for believing particular statements, de-
creasing the risk of luck in origin. Oddly, a strong belief that there are
final answers to independent questions motivates consideration of a
pluralism concerning the study of different theories—if only to ensure
that we have the correct system within our purview.

39Similar arguments are made with respect to ignorance in mathematics in
[Barton, 2017].
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5 Conclusions and open questions

In this paper I’ve argued that there are two important conceptions of
justification in mathematics; one fallibilist and one infallibilist. Under
fallibilist accounts of mathematical justification, mathematical Gettier
cases are not just possible, but in many cases are in fact actual. I’ve also
argued that this highlights some important upshots for mathematical
practice, in particular concrete steps that can be taken to make math-
ematical claims more epistemically tractable with respect to internal
understanding and external fit. In doing so, we can try to ensure that
a higher number of our fallibilist mathematical justifications fit the in-
fallibilist conception too.

I want to close by highlighting a couple of questions. First: We have
seen some upshots that we might take from the Gettier phenomenon
for the dimensions of external fit and internal understanding. How-
ever, there may be many more. I therefore ask:

Question. What further upshots of the Gettier-phenomenon, external
fit, and internal understanding are there for mathematical justification
and the philosophy of mathematical practice?

A second and broad-ranging question concerns the agents involved
in mathematical justification. Throughout, I have been concerned with
the kind of epistemic status conferred when a single person has a simil-
proof. However, we might think that the appropriate agent is actually
the community as a whole. Indeed both the example of black box lemmas
and axiom selection depended on looking at the epistemic states of an
isolated individual embedded within a community. This suggests that
the following question is of key importance:

Question. How are (i) the status of the Gettier-phenomenon, and (ii)
the relevant upshots for mathematical practice, affected by a move to
communal rather than individual epistemic agents?
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