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Abstract

Let mathematical justification be the kind of justification ob-

tained when a mathematician provides a proof of a theorem. Are

Gettier cases possible for this kind of justification? At first sight

we might think not: The standard for mathematical justification

is proof and, since proof is bound at the hip with truth, there is

no possibility of having an epistemically lucky justification of a

true mathematical proposition. In this paper, I argue that Gettier

cases are possible (and indeed actual) in mathematical reasoning.

By analysing these cases, I suggest that the Gettier phenomenon

indicates some upshots for actual mathematical practice.
∗Fachbereich Philosophie, University of Konstanz. E-mail: neil.barton@uni-

konstanz.de.
†I am very grateful to Carolin Antos, Silvia De Toffoli, Kenny Easwaran, Eva-

Maria Engelen, Ben Fairbairn, Carrie Jenkins, Deborah Kant, Lukas Koschat, Daniel
Kuby, Beau Madison-Mount, Tim Maudlin, Colin McLarty, Thomas Müller, Vadim
Kulikov, Chris Scambler, Dima Sinapova, Martin Steenhagen, Colin Rittberg, Fenner
Tanswell, Dan Waxman, Keith Weber, and Jack Woods, as well as audiences in New
York, Cambridge, and Konstanz for helpful discussion. I would also like to thank the
FWF (Austrian Science Fund) through Project P 28420 (The Hyperuniverse Programme)
and the VolkswagenStiftung through the project Forcing: Conceptual Change in the
Foundations of Mathematics for their support.

1



Introduction

Let mathematical justification be the kind of justification obtained when

we take ourselves to have proved a result (so the sort of thing that ap-

pears after the term “Proof.” in a mathematics journal or textbook).

This paper concerns the (epistemologically familiar) phenomenon of

Gettier-cases, how these might relate to mathematical justification, and

what the upshots for mathematical practice might be.

In [Voevodsky, 2014a], Vladimir Voevodsky (a 2002 winner of the

Field’s Medal) relates the following episode from the development of

his work on motivic cohomology:1

The approach to motivic cohomology that I developed with

Andrei Suslin and Eric Friedlander [relied]2 on my paper

‘Cohomological Theory of Presheaves with Transfers’, which

was written when I was a Member at the Institute in 1992–

93. In 1999–2000, again at the IAS, I was giving a series

of lectures, and Pierre Deligne (Professor in the School of

Mathematics) was taking notes and checking every step of

my arguments. Only then did I discover that the proof of

a key lemma in my paper contained a mistake and that

the lemma, as stated, could not be salvaged. Fortunately, I

was able to prove a weaker and more complicated lemma,

which turned out to be sufficient for all applications. A cor-

rected sequence of arguments was published in 2006.

This story got me scared. Starting from 1993, multiple

groups of mathematicians studied my paper at seminars

and used it in their work and none of them noticed the mis-

take. ([Voevodsky, 2014a])

1I thank Lukas Koschat for pointing out that the talk [Voevodsky, 2014b] (a talk
upon which [Voevodsky, 2014a] is based) contained particularly acute examples of
the phenomenon I’ll discuss throughout this paper.

2In this excerpt Voevodsky is talking about the avoidance of a different problem-
atic ‘lemma’ (Bloch’s lemma), and I have suppressed this detail for clarity.
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What we have here is, prima facie, an example of mathematical justi-

fication being Gettiered: The main results of Voevodsky’s ‘Cohomologi-

cal Theory’ (as I’ll abbreviate the paper from hereon out) were correct,

but the original ‘proof’ was flawed. Both Voevodsky and the schol-

ars using his results in their proofs in the period when the error had

not been diagnosed (1993–1999) had mathematically justified beliefs—

they were using (true) results that were widely accepted within the

community they were a part of in proving more theorems. Intuitively

speaking, however, they did not have knowledge since they were epis-

temically lucky that the relevant results (with flawed ‘proofs’) from

‘Cohomological Theory’ were, in fact, true.

This apparent Gettiering of mathematical justification contrasts

sharply with an account of mathematical justification as possession

of proof from the axioms. In that context, epistemic luck is impossible,

since the axioms are true and the rules of proof preserve truth.

There is a philosophical puzzle to be resolved here: How do we ex-

plain the apparent Gettier-phenomenon in mathematics whilst retain-

ing the close link between mathematical justification and something

like proof? Further, what might the upshots be of this phenomenon

for understanding mathematical practice? I will argue for the follow-

ing claims:

Main Claims.

1. Whatever the status of justification in mathematics, the kind op-

erational in mathematical discourse is a fallibilist account (i.e. one

which is not necessarily factive).

2. Such a fallibilist account indicates several actual instances of the

Gettier-phenomenon concerning mathematical justification.

3. These Gettier-cases indicate two dimensions in which mathemati-

cal justification can vary: (I) An internalist dimension (for the epis-

temic agent to have understood the conceptual dependencies of

their justification) and (II) an externalist dimension (the parts of

the justification to fit the mathematical facts).
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4. In turn, these dimensions help to make precise some upshots for

mathematical practice.

Here’s how I’ll argue for these claims: §1 outlines the different ap-

proaches one might take to mathematical justification. In particular, I’ll

point to the fact that there are both infallibilist and fallibilist concep-

tions. I’ll press the point that whatever one thinks about the epistemo-

logical interpretation of mathematical justification, it is a fallibilist one

that is operative in mathematical practice. We’ll see (drawing on work

of Silvia De Toffoli in [De Toffoli, 2020]) that this kind of justification

is underwritten by simil-proofs: Mathematical arguments that can be

shared with and checked by the rest of the community. §2 provides

some mathematical Gettier cases on the basis of this kind of justifica-

tion via non-trivial errors or gaps (§2.1), difficulties with selection of

the axioms (§2.2), and the use of lemmas in proofs as ‘black boxes’

(§2.3). I then argue (§3) that the manner in which these cases are gen-

erated suggests two dimensions in which an agent’s understanding

of a simil-proof can vary, an internalist dimension of understanding

the conceptual dependencies and interrelationships of the resources

involved in a simil-proof, and an externalist criterion of how well the

steps taken in a simil-proof fit with the mathematical facts. These cri-

teria, I argue, highlight some upshots for mathematical practice (§4),

in particular concerning the use of proof-assistants, folklore theorems,

and various topics concerning pluralism in theory choice and meth-

ods of proof. I then conclude (§5) with a summary and some open

questions for moving forward.

1 Mathematical Justification

No account of Gettier cases is complete without a thorough character-

isation of the notion of justification. Before we get into the details of

the cases we thus have to tackle the important and difficult question:

What is mathematical justification?
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This is a tricky problem: Say too much and one risks making one’s

arguments too narrow, too little and we run the risk of vicious impre-

cision. Rather than settling on one account of mathematical justifica-

tion, I’ll therefore try and isolate some different features of views and

discuss what the operative kind of justification in mathematics is, i.e.

under what conditions does a mathematician take themselves to be

justified?

With this in mind, let’s start by demarcating mathematical justifica-

tion from justification of a mathematical proposition. The latter is an ex-

ceptionally broad notion that admits of easy Gettiering in a manner not

tremendously interesting for mathematical practice. For instance, sup-

pose that a close mathematician friend tells me that Goldbach’s Con-

jecture is true. I trust them, and so I believe the conjecture. As it turns

out, let’s suppose that Goldbach’s Conjecture is true but my friend was

just playing a prank on me (and they had no idea whether Goldbach’s

Conjecture is true). Then I have justified true belief in a mathematical

proposition, but intuitively speaking I don’t have knowledge.

Whilst much epistemology focusses on this kind of example, it is

however not what I am interested in here. My focus is rather on the

kind of epistemic justification conferred when a mathematician takes

themselves to have proved a theorem, and/or possess or know a proof of

said theorem. My interest is thus in the kinds of justifications agents

take themselves to have after working through arguments that occur

after the term “Proof.” in mathematics texts like (reputable) journals

and textbooks. In particular, I want to examine if and how this kind

of justification can be Gettiered, and, if so, whether there are upshots

for the communal production and vetting of the relevant mathematical

artefacts.

1.1 Mathematical justification as possession of a proof

One historically prevalent conception of mathematical justification has

been the following:
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Assumption of Proof-Theoretic Justification. (APT) A subject S has

mathematical justification for a believed proposition P just in case they

have a proof of P from axioms for the relevant mathematical subject

matter.

This assumption was widely taken to be the ‘default’ for much of

the 20th century. For example, Giaquinto writes:

It was simply assumed that mathematical knowledge

would have to be a matter of proof, that is, deduction from

the axioms... ([Giaquinto, 2007], p. 5)3

This assumption seems to vitiate the possibility of Gettier cases

concerning mathematical justification. Since axioms are true, and since

logical inferences preserve truth, it is hard to see how a mathematical

justification could be lucky. By definition, it seems, the standards of

mathematical justification prohibit the possibility of a Gettier case.

The problem is brought into sharper focus if we consider a stan-

dard template for generating a Gettier case. Linda Zagzebski (in

[Zagzebski, 1994]) showed that as long as there is a gap between jus-

tification and truth, Gettier cases are possible. One simply takes a

case in which the proposition is justified but false, and via epistemic

luck modifies the case to make it true. The example she gives is that

of someone (Mary) mis-perceiving her husband’s brother (who looks

somewhat like her husband) as her husband (whilst the brother sits

in a chair). Taking her belief to be My husband is sitting in the living

room, we can take her false-but-justified belief and ‘make’ it true by

epistemic luck by having her husband sit out of eyeshot in the room.

3Giaquinto continues:

...the only question, then, was how the axioms and inference rules of the
relevant axiomatic systems could be justified. Thus, the epistemology of
individual discovery simply dropped off the agenda. So did any concern
with actual thinking in mathematics.

Some of these subtleties to do with justification of axioms and individual discov-
ery will re-appear later.
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This makes it harder still to see how we might generate a mathematical

Gettier case, since on the usual understanding of mathematical truth

propositions are normally understood as true or false by necessity. It is

thus not possible to use the Zagzebski inescapability template to start

with a false mathematical belief and then modify the situation to make it

true by epistemic luck.

Emphatically not every accepted mathematical argument satisfies

the APT, however. The example of Voevodsky from the introduction

shows that there are often mathematical arguments that are accepted,

and indeed become central in an area, that are not strictly proofs (in

the sense of correct arguments from the accepted axioms). Work in

mathematics journals is fundamentally fallibilist in nature: It is possible

for accepted to exhibit minor errors (e.g. typos), significant gaps, and

even major errors.

1.2 Fallibilist mathematical justification: Simil-Proofs

The idea of fallibilist mathematical justification has been explored

in [Dove, 2003] and [Davis and Hersh, 1999], but of especial inter-

est for us here will be Silvia De Toffoli’s recent fallibilist account in

[De Toffoli, 2020]. The key notion for us will be that of simil-proof, and

the idea of knowing or possessing a simil-proof. Roughly speaking, a

simil-proof is an argument that has been accepted by members of the

community and meets certain minimal standards.

Before we explicitly define simil-proofs, we need the notion of

shareability of a mathematical argument. De Toffoli characterises it as

follows:

An argument is shareable if its content and supposed cor-

rectness could be grasped by relevantly trained human

minds from a (possibly enthymematic) perceptible instance

of a presentation of it. ([De Toffoli, 2020], p. 8)

A simil-proof can then be defined as follows:
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Simil-Proofs. An argument is a Simil-Proof (SP ) when it is [(i)] share-

able, and [(ii)] some agents who have judged all its parts to be cor-

rect as a result of checking accept it as a proof. Moreover, [(iii)] the

argument broadly satisfies the standards of acceptability of the mathe-

matical community to which it is addressed. ([De Toffoli, 2020], p. 13,

[(i)–(iii) added])

We should immediately note that not every simil-proof is a proof.

A mathematical argument can satisfy all of (i) to (iii), but ultimately be

fallacious.

De Toffoli defines an agent possessing a simil-proof (or having a simil-

proof) in the following manner:

Having-SP . S has an SP of C if and only if, when prompted to artic-

ulate a reason for her belief in C, in the appropriate context, S would

(in good faith) share the SP . Moreover, S would be able to appropri-

ately reply to challenges and hold related dispositions. For instance, if

the validity of an inferential step of her SP is questioned, S would be

disposed to abandon it if she cannot defend it. ([De Toffoli, 2020], p.

17)

Often we talk of knowing a simil-proof in addition to having a simil-

proof, and so I will use these terms (and their cognates) interchange-

ably. De Toffoli then defines mathematical justification as follows:

SP -Justification. A subject S’s belief that mathematical claim C (in

need of a proof) is mathematically justified if and only if S has an SP .

([De Toffoli, 2020], p. 15)

We should note that SP -justification is compatible with many

views on the nature of mathematical justification. Rav (in [Rav, 1999])

considers a view of mathematical practice that is irreducibly seman-

tic, and the job of a mathematical justification is to indicate these

semantic connections. Call this the semantic account. Azzouni (in
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[Azzouni, 2004]) considers a view on which proofs indicate the exis-

tence of derivations (a view that has received a recent defence by Avi-

gad in [Avigad, 2020]). Call this the derivation indicator account. Still

other views hold that (at least some) proofs are akin to recipes for re-

constructing reasoning (Tanswell’s [Tanswell, F] provides a recent pro-

posal). Call this the recipe account. The account of mathematical jus-

tification in terms of knowing/having simil-proofs is compatible with

each of these ways of spelling out mathematical justification. We can

take simil-proofs to be presentations of semantic relations, or indicat-

ing the existence of derivations, or providing recipes for reconstructing

reasoning.

Importantly: On each reconstruction of the role of simil-proofs we

have a fallibilist account. A simil-proof may fail to indicate semantic

relations that really hold, it may fail to provide an appropriate indica-

tion of a derivation, or the recipe may be fundamentally flawed. On

various accounts of the nature of mathematical justification, there are

simil-proofs that are not bona fide proofs.

In the rest of this subsection, I want to deflate some objections be-

fore they get going.

Of course some authors will reject the claim that possession of

a simil-proof that is not a proof provides mathematical justification.

There are various infallibilist accounts. This includes infallibilist ac-

counts of mathematical justification (e.g. the earlier discussed APT) but

also infallibilist accounts of justification more widely (e.g. Littlejohn’s

account in [Littlejohn, 2012]). For such accounts, SP -justification does

not match up with mathematical justification, since the former is falli-

ble and the latter is not.

Whilst I acknowledge that there is probably something legitimate

being latched onto by such accounts, it is simply not so interesting

when considering mathematical practice. I am interested in the kinds

of mathematical justification that we are actually forced to interact with

as epistemic agents practising mathematics, not some infallibilist ver-

sion (that may well be inscrutable). In the context of actual mathemat-
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ical agents coming to take themselves to be mathematically justified,

simil-proofs just are the operative concept, even if there are infallibilist

conceptions of justification that are of interest in epistemology. Really,

I think it’s plausible that the idea of mathematical justification is a nebu-

lous concept that admits of multiple different interesting explications

(in the Carnapian sense). Some of these may be fallibilist and other (le-

gitimate) conceptions may be infallibilist. Whatever the weather, the

kind of mathematical justification that is involved when mathemati-

cians construct arguments just is fallibilist, as the wealth of fallible ex-

amples show (some of which we’ll discuss later). So, notwithstanding

the interest of such accounts, I’ll (mostly) set them to one side.

One might feel that the definition of simil-proof is ambiguous in a

couple of dimensions. First, it is unclear whether the ‘agents’ who are

judging the parts of a simil-proof to be correct can be identical with the

agent(s) who produced the proof. We might not want to rule out that

a pioneer or isolated mathematician can be mathematically justified4

or that justification is obtained at the point of discovery rather than

acceptance of the mathematical argument. This point need not detain

us—the cases we shall consider concern mainstream mathematical ar-

guments that have been widely accepted.

Next, we might worry about the extent to which acceptability

standards are addressed to specific communities. For instance, we

might want communities to be able to criticise one another if they

think that the standards are too lax (or perhaps too strict). In this

case, we want to be able to say that one community should be accept-

ing fewer (or more) mathematical arguments as simil-proofs. Mak-

ing such criticisms seems to require acceptability standards that go

beyond community-relative ones. This said, mathematics is quite a

broad church, and acceptability standards may (as a point of fact)

vary substantially from community to community. It may be that

there is a ‘core’ of values shared across mathematics and hence an

‘absolute’ notion of what is to count has a simil-proof, or it may be
4De Toffoli in fact considers this notion (see, p.8 of her [De Toffoli, 2020]).
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that whether or not an argument is a simil-proof is an essentially

community-relative matter.5 Again, whilst this is a subtle issue, it need

not detain us further: Whether or not an agent is mathematically justi-

fied is ‘community-relative’ or ‘absolute’ we will still be able to gener-

ate certain kinds of Gettier-cases and analyse their upshots relative to a

specific given standard.

1.3 Matters of degree

In this subsection I want to argue that both being shareable and pos-

sessing a simil-proof can be viewed as matters of degree. This will be

important later, especially in §3 and §4.

Let’s start with shareability. Arguments vary according to how eas-

ily they can be checked by suitably trained agents. Some simil-proofs

are relatively hard to check or very gappy, others are clearer and eas-

ier to follow. Thus, whether a simil-proof is shareable can be viewed

as a matter of degree—arguments can be more or less shareable. I do

not think this is an objection against De Toffoli’s account—it is rea-

sonable to suppose that there is a minimal bar (possibly with fuzzy

boundaries) that arguments must clear in order to count as definitively

shareable. Thus, whilst I will continue to talk of degrees of shareability, I

will also talk (like De Toffoli) of arguments being shareable (simpliciter).

However, it’s important to note that this is a dimension along which a

simil-proof can vary, and this will be important when we come think

of what the upshots of the Gettier phenomenon might be.

Let’s also note at this point that having or knowing a simil-proof

can also be spoken of as a matter of degree—more or less effort might

be required to defend particular steps. A familiar feeling to many

5 We should note that in really egregious cases, there definitely could be argu-
ments published in mathematics journals that do not count as simil-proofs on any
reasonable standard. For example, a corrupt editor who accepts a mathematician’s
request to have their (wholly error strewn) paper sent to a friend can result in the
publication of a non-simil-proof mathematical argument, since the purported simil-
proof might fail to meet the standards acceptable to any reasonable mathematical
community.
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mathematicians is that of simil-proofs beginning to fade in memory

if they have not been checked or prepared recently. In this sense, we

might say that we know or possess a proof to different degrees depen-

dent upon how easily we can defend particular steps. Again, I don’t

think that this is an objection—there is a (possibly fuzzy) bar that we

can take to be cleared when we want to say that an agent has a simil-

proof simpliciter. However, it is important to note that the modal form

of proof possession in De Toffoli’s characterisation is somewhat tricky

to articulate, in particular regarding the level of idealisation permitted.

I do not, for instance, have or know a simil-proof of the Poincaré Con-

jecture simply by carrying around a copy of Perelman’s proof with

me wherever I go, and being prepared to defend the relevant steps

if prompted (perhaps after several years or lifetimes of study). I do

think that there is a reasonable sense in which there are simil-proofs

for which I could articulate particular steps given enough time (e.g. I

would probably have to revisit a textbook to refresh my memory for

the proofs of the incompleteness theorems) and others which I could

not (e.g. Perelman’s proof is currently out of reach for me). It’s im-

portant to note though that even in cases where it’s very plausible that

I know a simil-proof of a proposition (e.g. the incompleteness theo-

rems) this might not be backed up by perfect proof possession, and

there are others where my understanding of the relevant simil-proof

is middling at best. We will return to this issue in §3 when we isolate

different dimensions in which simil-proofs and possession can vary

further. But now, let’s move on to the cases.

2 Some mathematical Gettier cases

We now have the fallibilist account of SP -justification on the table, ave

discussed some ways in which the notions underlying it can be matters

of degree. In this section, I’ll explain how this account of mathematical

justification leads to actual kinds of Gettier case. This will divide into
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three main kinds: (§2.1) significant gaps/errors, (§2.2) the selection of

axioms, and (§2.3) the use of lemmas as black boxes. First though, we

need to make a couple of preliminary comments dealing with moti-

vating the consideration of Gettier cases (as opposed to merely mathe-

matically justified false beliefs).

Of course simil-proofs can lead to falsehoods, and indeed this phe-

nomenon is interesting from a philosophical perspective. However,

such falsehoods are often diagnosed relatively quickly. For example,

in set theory [Džamonja and Shelah, 1999] claimed to have shown that

there are models of set theory in which both ♣ (a statement about the

combinatorics of sets) is true but there are no Suslin trees. Their re-

sults, it was subsequently discovered, contradicted a well-established

theorem (namely Miyamoto’s Theorem) and so the proof was recog-

nised to be flawed. However, [Džamonja and Shelah, 1999] contains

much useful material, even if one result fails to go through. Moreover,

the diagnosis of the error proved to be mathematically useful in articu-

lating some relevant details (as explained in [Brendle, 2006]).6 Rav (in

[Rav, 1999]) provides a host of other examples.

The Gettier phenomenon is somewhat different, in that the error

might be harder to diagnose in virtue of the truth of the conclusion.

Since the proposition in question is true, contradictions will not show

up in the rest of our mathematical reasoning (putting aside dialethic

conceptions of mathematics). The Gettier phenomenon is thus espe-

cially interesting as it identifies cases where our mathematical justifi-

cation is not (intuitively) leading to knowledge, but also where this

might be hard to diagnose—it is far harder to spot an error in a simil-

proof (by and large) than to simply realise that a simil-proof must be

flawed (without knowing where) because it leads to a falsehood.7

We should start by setting aside some easy and trivial Gettier cases.

For example, consider a case where computer assistance is being used

6See [Brendle, 2006], p. 45, footnote 1 for some discussion and further references.
I thank Daniel Soukup for bringing this example to my attention.

7Indeed this is the structure of some of the dialectic in [Voevodsky, 2014a], a coun-
terexample to a simil-proof was found, but nowhere was the specific error identified.
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to prove a theorem. This is now commonplace, as can be seen with the

proofs of the Four Colour Theorem or Kepler Conjecture, and the per-

vasive use of GAP in classification problems in group theory.8 How-

ever, we don’t need anything so complicated, one can see such uses

as roughly analogous to the use of an electronic calculator in comput-

ing steps in a standard high-school paper (where of course calculator

assistance is allowed as part of the set-up!). Let’s suppose that the rel-

evant computational device is malfunctioning in some way, but com-

plementary malfunctions just happen to cancel each other out or be

tailored to the problem at hand. Here we might say that intuitively

speaking we do not have knowledge despite having relevant math-

ematical justification (i.e. possession of a simil-proof). It is not that

there is anything wrong with our mathematical justification per se, but

rather that something has gone wrong with extraneous empirical facts

upon which that justification depends for verification. In this way,

the situation is somewhat analogous to the Russelian ‘stopped watch’

case—the relevant epistemic agent has done nothing wrong in check-

ing a (normally well-functioning) piece of external apparatus, and the

relevant malfunction has just ‘happened’ to correspond neatly onto

the way the world is at that point of time. The upshots of this kind of

error are relatively obvious (e.g. where possible run software verifica-

tion on multiple different pieces of hardware) and so I won’t consider

these kinds of case any further here.9

2.1 Non-trivial gaps and hard-to-detect errors

More interesting are the following kind of case: There are situations in

which an agent has a simil-proof of a true proposition, but where the

putative simil-proof is defective in some way. It might, for example,

contain a significant gap that (unaware to the agent) requires signifi-

8I thank Ben Fairbairn for bringing the use of GAP in group theory to my atten-
tion.

9These kinds of examples, and a modification to the safety criterion to deal with
them, are considered by [Pritchard, 2012].
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cant patching, or perhaps even a non-trivial flat-out error. One such

example of this kind was mentioned in the introduction concerning

some of Voevodsky’s results in his ‘Cohomological Theory’ paper: Vo-

evodsky himself had a simil-proof, but not knowledge since it turned

out to be lucky (in virtue of the error) that many of the propositions

contained therein were in fact true. Examples can easily be multiplied,

especially by looking at long or complicated proofs. In the enormous

literature proving the theorem classification of finite simple groups

into various kinds (cyclic, alternating Lie, or one of the sporadic ex-

ceptions) several substantial gaps were found across the history of spe-

cific results involved in establishing the theorem (see [Solomon, 1995]

for discussion). These gaps were significant and required fixing—in

contrast to the present day where many agents are regarded as having

mathematical justification of some of these results, even if small and

trivial errors in the simil-proofs remain.10,11

However, it need not be the case that SP -justification be flawed as

a result of extravagant complexity. Another recent example concerns

the use of the theory “ZFC without powerset”. This is often used with

ultrapower constructions (for example in the theory of iterated ultra-

powers). However, many authors (including some in textbooks) de-

scribe this theory as “ZFC with the powerset axiom removed/deleted”

(or similar). However there is an inferential gap (in the sense of

[Fallis, 2003]): This theory (simply removing the powerset axiom from

10We should note that whilst there is a simil-proof of the classification of finite
simple groups, no one individual knows the proof—it’s just too large. This will
become relevant in §2.3.

11Another example identified by Voevodsky in [Voevodsky, 2014a]

The groundbreaking 1986 paper “Algebraic Cycles and Higher K-
theory” by Spencer Bloch was soon after publication found by Andrei
Suslin to contain a mistake in the proof of Lemma 1.1. The proof could
not be fixed, and almost all of the claims of the paper were left unsub-
stantiated.
A new proof, which replaced one paragraph from the original pa-
per by thirty pages of complex arguments, was not made public un-
til 1993, and it took many more years for it to be accepted as correct.
([Voevodsky, 2014a])
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the usual formulation of ZFC) does not suffice for many applications,

in particular there are models of ZFC with powerset just deleted in

which the Łoś Theorem fails (an essential theorem for the ultrapower

construction). One instead requires—in addition to the Powerset Ax-

iom being removed—that the Replacement Scheme be substituted by

the schemes of Collection and Separation, and the usual formulation of

the Axiom of Choice be replaced with the principle that every set can

be well-ordered (these various formulations are equivalent in the pres-

ence of powerset). Thankfully, many of the usual models one wants to

perform iterated ultrapowers with do satisfy this stronger theory, and

so simil-proofs constructing many ultrapowers without the awareness

of these subtleties can be construed as Gettier-cases—the relevant ul-

trapowers can be constructed, but only because the usual models hap-

pen to satisfy the stronger theory and not because they satisfy ZFC with

the powerset axiom simply deleted.12 But here the case is relatively

simple (certainly in contrast to motivic cohomology or the classifica-

tion of finite simple groups) and arises through a lapse due to over-

familiarity with the ZFC-context, rather than extreme complexity en-

coded within the simil-proof.

We will discuss some upshots for these cases and some dimensions

of mathematical justification later (§§3, 4). For now, we should note

that (in contrast to the cases I’ll examine below) the authors (and ref-

erees) of a flawed simil-proof are at least somewhat epistemically blame-

able for publishing a flawed argument. Of course, mistakes can hap-

pen, and publishing a flawed simil-proof does not necessarily make an

author morally or otherwise culpable. This point bears emphasising—

even if an author is epistemically culpable for a defective simil-proof,

the work often contains many valuable insights and isn’t bad or shoddy

in any sense (indeed the examples given in this section all represent

significant contributions).

12See [Gitman et al., 2016] for a description of the situation with ZFC-Powerset,
including some identifications of where the incorrect theory is stated. I thank Jonas
Reitz for pointing out this example to me.
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As we will shortly see, however, there are cases where an agent

is in a Gettier-type situation, but has not done anything epistemically

blameworthy (or, perhaps, if we are thinking of epistemic culpability

as coming in very fine-grained degrees, the agent is only epistemically

blameworthy to a very small degree). The two kinds we shall see con-

cern axiom selection and the use of lemmas as black boxes.

2.2 Axiom selection

Let’s consider how axiom selection might play into a Gettier case. The

central point here is that while we may have a perfectly good simil-

proof from some set of assumptions, we may be lucky in the choice of

these assumptions.13

The situation is especially acute in set theory. There, the discovery

of the independence phenomenon has precipitated programmes sug-

gesting several new axiom candidates. We will consider just two here.

We won’t go into too much technical depth, but rather will simply dis-

cuss some philosophically relevant properties.

One option is to use forcing axioms. These state that the universe

has been saturated under certain kinds of sets (namely generic filters

for certain partial orders and families of dense sets), and in this sense

seek to maximise the subsets available.14 A strong axiom of this kind

is the proper forcing axiom (or PFA).

A different option is Ultimate-L. Under this axiom (V =Ultimate-

L) the universe contains many ordinals with certain strong properties

(so called ‘large cardinals’). The axiom tries to capture the notion of

the universe exhibiting pattern (as opposed to being chaotic) whilst

containing the widest variety of structures possible.15

13This problem, though not the kind of Gettier situation it has elicits, is pointed to
by [Fallis, 2003] (p. 45).

14See, for example, [Bagaria, 2006] for a discussion of this idea, and [Bagaria, 2005]
for some philosophical remarks.

15It would take too long to explain these notions of ‘pattern’ and ‘chaos’ here. The
details are available in [Bagaria et al., 2019].
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Two facts about these axioms are relevant. First, they agree on Pro-

jective Determinacy (PD), a statement about certain ‘orderly’ sets of real

numbers (both imply a positive answer to PD). Second, they differ on

the truth of the Continuum Hypothesis (CH) PFA implies that CH is false

where V =Ultimate-L implies that CH is true.

We can now consider the following (albeit fantastical) case:

The PFA-Lykovs. Suppose a family lives in complete isolation from

the rest of the mathematical world. In our example they will be keen

and talented set theorists who learnt the basics of ZFC and the iterative

conception of set before their isolation. They develop forcing axioms,

and after lengthy discussion decide that they are the right axiomatisa-

tion of the set concept. They adopt PFA, proving that PFA implies PD,

and thereby come to be mathematically justified in believing PD.16

Suppose then however that Ultimate-L is in fact correct, and that

both the Continuum Hypothesis and Projective Determinacy are true.

What should we say about the PFA-Lykovs’ belief in PD? On the one

hand it is correct, and it seems justified in virtue of their having a satis-

factory proof. However, one might dispute whether they have knowl-

edge; their axioms get the nature of set-theoretic reality fundamentally

wrong.

The example of the PFA-Lykovs, whilst somewhat silly, isn’t so

far from home. Consider Thurston’s remarks concerning the state of

mathematics more widely:

Much of the difficulty has to do with the language and cul-

ture of mathematics, which is divided into subfields. Basic

concepts used every day within one subfield are often for-

eign to another subfield. Mathematicians give up on trying

to understand the basic concepts even from neighboring

subfields, unless they were clued in as graduate students.

([Thurston, 2006], pp. 42–43)
16The Lykovs were a family of Russian orthodox Christians who fled religious

persecution and lived in almost total isolation between 1936 and 1978.
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One can easily imagine a mathematician becoming ‘siloed’ within

a community, with insufficient communication between researchers

from different traditions needed in order to appreciate that a given dif-

ferent approach is a live axiomatic possibility. In this context, it’s hard

to sustain the claim that they’ve done anything epistemically blame-

worthy simply by proving a theorem from their culturally inculcated

axiom system.

There are several immediate objections that one might make to this

example. The first is to note that in setting up the example I have pre-

supposed a very strong form of set-theoretic realism: I assumed that

every set-theoretic question (or at least PD and CH) have determinate

answers. One might dispute this claim by arguing that the subject mat-

ter of set theory is rather composed of a plurality of different universes

satisfying different sentences.17 Under this conception, there might be

no fact of the matter about PFA or V =Ultimate-L (or possibly even PD

and/or CH), dissolving the problem. I accept that under this concep-

tion of the semantics of set-theoretic language, the problem dissolves.

However, this is somewhat orthogonal to my point: It is enough to be

able to conceive of situations in which we have competing siloed com-

munities who disagree on what axioms are true of that subject matter

and do not even view the other as offering a live justificatory possibil-

ity.

A second, more subtle response, is to argue that we should revise

how we interpret agents holding false but consistent axioms as con-

cerned with the models of those axioms rather than the whole universe

(possibly because of charity considerations). In this context, we rein-

terpret the PFA-Lykovs as talking about models in which PFA holds (in-

stead of the whole universe). Their simil-proof would then justify their

belief that PD is true in those models and it wouldn’t be lucky in any

sense.

I think that this response essentially gives in to the idea of the mul-

tiversist account of truth. If all we have to do in order to be speaking
17This claim is made, for example, by [Hamkins, 2012].
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truthfully with our axioms is be consistent, then essentially we have

said that how our thought and language relates to mathematical real-

ity is given by consistency, even if there is some universe of sets be-

yond. For the purposes of mathematical practice, it would make the

distinction between true and consistent axioms immaterial.

Whilst the case of set theory is especially interesting for consider-

ation of competing axioms and foundational questions, the problem

can be made relatively concrete. All we need is to have a situation in

which we prove a true proposition on the basis of some false ‘axiom’

or other, and this isn’t limited to set theory.18 Let’s suppose that one is

convinced by the robust evidence in support of the claim that not every

problem solvable by a non-deterministic Turing machine in polyno-

mial time is solvable by a deterministic Turing machine in polynomial

time (i.e. one believes the statement known as P 6= NP holds on the

basis of the strong evidence supporting it).19 Let’s suppose that with

the passing years and growing frustration with the difficulty of prov-

ing P 6= NP , it comes to be adopted as an axiom in many areas of com-

puter science.20 Now suppose we are given some problem Pr that is

known to beNP -complete, and ask if a particular deterministic Turing

machine M can solve Pr in polynomial time. Obviously at this point

we can provide a very quick proof to the contrary, Pr is NP -complete,

and if we could solve Pr using M then P = NP , but this contradicts

the P 6= NP axiom. Let’s suppose though that in this hypothetical sce-

nario, that P = NP is true on the standard model of the natural num-
18One example we might consider is Frege’s mathematical justification of Hume’s

Principle obtained by proving it from his axioms (and before the discovery of Rus-
sell’s Paradox). This is an interesting example, but I relegate it to a footnote—I want
to consider cases where there is a consistent axiomatisation and plausibly a coherent
motivation behind these consistent axioms.

19See [Aaronson, 2016], §3 for a survey of such evidence.
20It is at least plausible that we’re are almost there in certain areas. In particular,

many cryptographic protocols (e.g. RSA-cryptography) depend on the hardness (i.e.
PTIME unsolvability) of problems in NP . This, however, is a somewhat delicate
issue (e.g. a non-constructive proof of P = NP wouldn’t pose any immediate threat
to cryptographic systems, even if it might shake confidence) and so I’ll set the details
aside.
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bers, but is in fact independent of the axioms of our base theory (let it

be ZFC for the sake of argument).21 In other words, there are models

of ZFC on which P = NP holds and (non-standard) models of ZFC on

which P 6= NP holds. But lets suppose that in fact M doesn’t solve Pr

anyway, since the complex and hard-to-follow program doesn’t do the

job for Pr even if there is another Turing machine M′ that does. Here

we have a Gettier case—the grounds for the agent’s assertion that M

doesn’t solve Pr are based on a false principle (P 6= NP ), and the

only way to have their simil-proof be connected to truth is to interpret

them as talking about non-standard models (which, patently, they are

not trying to do, unless one has a very strong kind of relativism in play

on which we are not even capable of singling out the standard natural

numbers).

If desired, one can come up with a more general statement of the

problem for models of arithmetic. The P = NP question can be formu-

lated as a Π0
2-statement. If we move to consideration of Π0

1-statement

of arithmetic φ (the Goldbach conjecture or the consistency statement

for your favourite recursive theory extending the base theory will do),

then any situation in which we come to have good evidence for ¬φ,

prove some statement ψ on that basis, but then φ turns out to be in-

dependent from one’s base theory and ψ is true will have the same

flavour: ψ is true but ¬φ can only be true on non-standard models.22

I won’t go into this further—the point has already been made—but it

bears mentioning that this kind of Gettier-case is not necessarily an

isolated phenomenon in set theory, but has the potential to be quite

widespread given the desire to expand our axiom systems in the face

21Aaronson (in [Aaronson, 2016] regards the formal independence of P = NP
from suitable set theories as somewhat unlikely, but it remains an epistemic possi-
bility which is good enough for current purposes.

22Note that any Π0
1-statement of arithmetic independent from the axioms of ZFC is

true on the standard model. Intuitively speaking, when φ is independent, then there
are models of φ and models of ¬φ, but since every model of arithmetic includes the
standard model as a submodel, and since φ consists in universal quantification over
some quantifier-free χ (i.e. φ = ∀x0, ...,∀xnχ, where χ is quantifier free), φ has to be
true on the standard model.
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of ignorance.

2.3 Black box lemmas

In the above examples, we had a clear false lemma (in the epistemo-

logical sense of the term) namely (depending on the example) PFA,

P 6= NP , or the negation of our Π0
1-statement φ. As such, many exter-

nalist constraints on justification will prohibit the presence of such a

false lemma. One might ask whether there are other examples which

avoid the agent using a false lemma in a simil-proof yielding mathe-

matical justification. As it turns out, there are several examples of this

phenomenon involving the use of lemmas as black boxes.

What is a black box lemma? In the course of constructing a simil-

proof, we may use other results. Some of these results are well-

understood by the prover, others less so. More generally, we can de-

fine:

Black box lemma. We say that a proposition φ is being used as a black

box lemma by an agent S who knows a simil-proof SP , iff:

(i) φ is used in the simil-proof SP .

(ii) φ is accepted by the mathematical community as a theorem.

(iii) S does not have a simil-proof of φ (in the sense that S would not

be able to defend the steps of φ’s simil-proof herself).

The metaphor of a ‘black box’ reflects this state of affairs. φ may

be very useful to S in proving a theorem, but the proof of φ might

not be well-known to S (say because φ’s simil-proof is very complex,

or uses resources from a field different from S’s expertise). The use

of black box lemmas is fruitful and very important for the develop-

ment of mathematics as a community: It allows mathematicians with

diverse expertise to use each other’s results. Moreover, it is unreason-

able to expect mathematicians to understand all dependencies in their

knowledge, this may simply be too time costly.
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With increases in the complexity of mathematics and the interlink-

ing of various established results, it might be the case that the use of

black box lemmas is essential. Consider the theorem on the classifi-

cation of simple finite groups. This theorem is (a) accepted by the

mathematical community, and (b) no one single person really knows

its proof—the proof has been established by a huge network of re-

searchers proving their own small part of it and the combined work

totals many thousands of pages. Now, any use of this theorem in a

proof (say by showing that a group is both simple and finite and there-

fore must belong to one of the relevant classes) is essentially using the

theorem as a black box, one cannot have a simil-proof of it—the proof

is just too large. Proving results using the classification of finite simple

groups as a black box lemma is now so common in group theory that

it has its own acronym (CFSG).23

The same goes for cases outside one’s field of expertise. Often

it is simply too labour intensive or inefficient to learn an entire area

that one is not familiar with in order to understand a complicated

lemma that is useful for a given proof. This attitude is backed up

(to a degree) by some mathematicians’ opinions on the matter. In a

recent interview study L. Andersen, H. Andersen, and Sørensen (in

[Andersen et al., 2020]) present the following observations concern-

ing a question on MathOverflow about when it is acceptable to use

a lemma as a black box:

[Sauvaget, 2010] raises the question of when one should

check the results of others before using them in one’s own

proofs. And similar questions have been discussed else-

where on MathOverflow... In his response to Sauvaget’s

23I thank Ben Fairbairn for discussion of the use of the CFSG in group theory. A
survey of some problems solvable with the CFSG is available in [Cameron, 1981],
some of the problems therein (e.g. Schreier’s Conjecture that the outer automor-
phism group of every finite simple group is solvable) are still open without the CFSG.
It should be mentioned that some group theorists (including Cameron) express a de-
gree of unease about using a theorem with a simil-proof that cannot be known by
any (human) mathematician.
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question, Fields medalist Timothy Gowers suggests that,

“If a result is sufficiently accepted by experts you have

good reason to trust, then the result can be trusted.”

Matthew Emerton writes that, “If a result is generally cer-

tified by experts, is well-established, and widely used and

understood (even if not by you personally), then there is

surely no problem in quoting it, applying it, and relying

on it.” Another Fields medalist, Terence Tao, gives a sim-

ilar comment to a blog post [Kowalski, 2009]. Tao writes

that, “If [the result] is prominent enough, and one trusts

the practitioners of that field, then presumably it has been

checked and understood by the experts, and it would be

safe to cite.” [Andersen et al., 2020], p. 3)

Further, the interview partners they consider generally regard it as

acceptable (though there are some exceptions). Kowalski (in a blog

post [Kowalski, 2009]) points to this labour-saving feature (though he

also acknowledges that he has some reservations about the practice):

To give a concrete example, I have no doubt that the Rie-

mann Hypothesis over finite fields is true, but although I

have really done a lot of reading about it, and can claim

to have gone in great detail in the first proof of Deligne,

I can not yet claim to have mastered the second—which

I’ve used much more often in my work (and even with the

first, I have certainly not a full mastery of the total amount

of background material, such as the complete proof of the

Grothendieck-Lefschetz trace formula). This example is not

academic at all: many analytic number theory results de-

pend on estimates for exponential sums which are not ac-

cessible at all without Deligne’s work and its extensions,

but very few are the analytic number theorists who under-

stand the full proof. ([Kowalski, 2009])
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What we have here is a feature of mathematical justification anal-

ogous to the use of testimony in epistemology more widely (indeed,

this is how [Andersen et al., 2020] cash out the phenomenon). This

then leads to the familiar kinds of Gettier-case that we see in the wider

literature on epistemology where testimony from a reliable source re-

sults in Gettiering. Suppose that I prove some theorem φ, on the basis

of a lemma ψ that I am treating as a black box (where the proof of ψ is

widely accepted). As it turns out though, the proof of ψ is flawed. So

my mathematical justification in φ is somewhat lucky—it depends on

a using a true proposition that is widely accepted, but for which the

accepted simil-proof is flawed.

This luck made clearer when we consider the modal behaviour of

my doxastic and epistemic states. In the world at which the flaw is

spotted early, and the publication of the lemma delayed until after I

am dead, I don’t come up with my simil-proof, and hence do not take

myself to have a mathematically justified belief in φ. Presumably, it

is also plausible that for many cases there will be proofs of ¬ψ using

similar flaws, and in such cases I might end up going on to ‘prove’

¬φ instead (say when my proof-strategy is to show that φ and ψ are

equivalent). In this way, it seems that my beliefs and justification are

not modally robust; there are relevant ways in which the world could

be lightly perturbed and in which the same (or a similar) justification

would either (a) not be regarded as a proper justification, or (b) lead

me to a false ‘theorem’. In the case where my simil-proof depends

upon a legitimate black box lemma, it’s plausible that stronger pertur-

bations in modal space will be required to dislodge my mathematical

justification.

Despite this problem with my mathematical justification, I have not

done anything obviously epistemically culpable just by using a lemma

as a black box and indeed my simil-proof is in perfectly good working

order (though see §3 for some discussion of this point). However, it

does not seem right to say that I know since my belief in φ is based

upon ψ which has a flawed simil-proof.
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Importantly, there are actual examples of the flavour we describe.

Voevodsky’s example from the introduction is an interesting case.

In particular, some of the results from ‘Cohomological Theory’ were

widely used before the error was found and diagnosed.24 The use

of the flawed results by authors other than Voevodsky constitutes a

Gettier-case; they were lucky that the parts of the paper relevant for

applications could, in fact, be salvaged.

Examples are easily multiplied. Dehn’s Lemma (a topological the-

orem about the mappings of a disk) was thought proved by Dehn

in 1910 (in [Dehn, 1910]) a flaw was found in 1929 by Kneser (see

[Kneser, 1929]) and it was finally proved only by Papakyriakopoulos

in 1957 (in [Papakyriakopoulos, 1957]). The ‘result’ in 1910 ‘resolved’

an important problem in topology at the time, and likely would have

been used in the ‘unknown’ period 1910–1929.

The Four Colour Theorem (that any map can be coloured with

four colours) was thought proved 1879–1891, but it wasn’t until Ap-

pel and Haken’s computer-assisted proof in 1974 that it was finally

proved. Any use of the Four Colour Theorem (or indeed the Five

Colour Theorem—the proof of which can be salvaged from Kempe’s

proof) between 1879 and 1891 can then be regarded as a black box

Gettier-case.25

Moreover, this can happen with unsurveyable proofs. The case of

the the classification of finite simple groups will again serve as our

example. As Solomon relates:

The literature of the Classification was always challenging,

24For ease, I repeat part of an earlier quotation from [Voevodsky, 2014a]: “Starting
from 1993, multiple groups of mathematicians studied my paper at seminars and
used it in their work and none of them noticed the mistake.” Voevodsky is espe-
cially clear about the usefulness of the work in his lecture [Voevodsky, 2014b] (upon
which [Voevodsky, 2014a] is based), and emphasises the usefulness of the results in
‘Cohomological Theory’ between 14:20 and 17:00 of the lecture (see especially the
remarks occurring at around 15:30).

25See [Sipka, 2002] for a discussion of the history of the Four Colour Theorem.
I thank Ben Fairbairn for directing me to the Four Colour Theorem example, and
Vadim Kulikov for pointing out Dehn’s Lemma. Both Dehn’s Lemma and the Four
Colour Theorem are also discussed by [De Toffoli, 2020].
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coming in massive 200-page papers. Nevertheless, there

were always individuals and seminar groups that made se-

rious efforts to read and digest most of the papers which

appeared during the years 1960–1975. At least 3,000 pages

of mathematically dense preprints appeared in the years

1976–1980 and simply overwhelmed the digestive system

of the group theory community. Mason’s 800-page qua-

sithin typescript has achieved some notoriety, inasmuch as

it has never been published. More accurately, it is an ex-

treme point on the spectrum of incompletely assimilated

manuscripts from the latter years of the Classification. In-

deed, it was not until 1989 that it was noticed that certain

small subcases of the problem remained untreated in Ma-

son’s typescript, a gap which Aschbacher filled in a type-

script distributed in 1992. ([Solomon, 1995], p. 236)

These errors (which lay undiagnosed for a time) might, for all we

knew, have been fatal to the proof. And in this case it is clearly unrea-

sonable to expect the relevant agent to follow up all dependencies of

the relevant proof—that is to ask for an impossibility.

There is a question in all this as to how different the case of black

box lemmas and axiom selection are. For, one might think, in the case

of a black box lemma the agent is (roughly speaking) treating the black

box lemma as a new axiom within their system. So, for example, when

a group theorist uses the CFSG in proving a theorem, they are actually

working in their usual base theory augmented with the CFSG as an

axiom. We will return to this issue when discussing upshots (§4). For

now let’s note a couple of disanalogies between the two cases. First,

as noted earlier, many of the black box lemmas we’re considering are

true, in contrast to false ‘axioms’. Second, in the case of a false ax-

iom, the agent has a flawed belief in an area that they understand well

whereas in the the case of a black box lemma it is the agents lack of

understanding that necessitates the use of a black box.
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Whatever the weather, I take it as clear that the fallibilist account

of mathematical justification in terms of possession of a simil-proof

produces Gettier-style cases for mathematical knowledge—one can be

mathematically justified in a true proposition φ but intuitively speak-

ing not know φ.

3 Externalist and internalist dimensions of

simil-proof-possession

What do these cases tell us about mathematical practice and the gener-

ation of mathematical justification? In the rest of this section, I’ll argue

that there are two main dimensions in which an agent’s possession of a

simil-proof can vary, namely externalist fit and internalist understand-

ing.

We can start by considering what we want out of simil-proofs. I see

at least two roles (aside from the enjoyment of mathematical activity):

(1.) We want proofs to tell us that some proposition(s) is (are) true.

(2.) We want proofs to deliver mathematical understanding, we want

them to show us how our mathematical concepts relate to one an-

other.

The idea that simil-proofs fulfil something like these roles appears

variously throughout the literature. I take it that (1.) is beyond re-

proach. An awareness of (2.) is also prevalent, however. It perhaps

the central claim of Thurston’s [Thurston, 2006] that mathematical un-

derstanding is what is really desired, rather than merely discover-

ing the turth of propositions. Rav (in [Rav, 1999]) is explicit about

the value of proofs beyond the verification of truth. Tim Gowers (in

[Gowers, 2000]) speaks of “two cultures” of mathematics, and in par-

ticular that for some mathematicians the point of solving problems is

to understand mathematics better and for others the point of under-

standing mathematics is to solve problems better.
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Each facet of mathematical activity motivates a different dimension

concerning mathematical justification that can be fulfilled to a greater

or lesser degree. I’ll deal with each in turn. Regarding truth, we want

our simil-proofs to map on to the mathematical facts appropriately. We

therefore define the following:

Externalist Fit. A simil-proof (held by a subject S) exhibits a higher

(lower) degree of externalist fit iff more (less) of the steps that S takes

in the simil-proof fit the mathematical facts (i.e. each step is true and

follows logically from the previous steps).26

A few clarifications are in order here: (1.) By ‘mathematical facts’ I

do not mean to commit to any platonistic or correspondence theory of

truth. Most accounts of mathematical ontology have some account of

what mathematical truth should come down to, even if they are non-

platonistic in nature. This might require a paraphrase, a fictionalist

(for example) can still talk about degrees of externalist fit even though

they think that (strictly speaking) mathematical claims are false, for

26One related externalist idea (that served as the starting point for this condi-
tion) is through considering Carrie Jenkins’ account of mathematical knowledge (in
[Jenkins, 2008]. For Jenkins suggests that S knows that P iff:

• S believes P .

• P is true.

• P is a good explanation for S believing that P , for someone not acquainted
with the particular details of S’s situation (an ‘outsider’).

Where an ‘outsider’ O is defined as follows:

(1.) O is rational, and can understand the content of S’s belief that P (i.e. is capable
of entertaining the proposition P ).

(2.) O is aware of commonplace facts about people and their mental lives, i.e. facts
about what it is like, in general terms, to be a rational thinking person.

(3.) O is not aware of any special facts about A or A’s situation. O is aware that A
is a person and that A believes that P , but that is all.

For Jenkins then, to be a knower is to have ones beliefs be explained by the math-
ematical facts, and this fact to count as a good explanation to an observer. Jenk-
ins’ account of knowledge is itself subject to particular kinds of Gettier case (as
[Tennant, 2010] points out), however it presents one way of thinking about an exter-
nalist desideratum on mathematical justification and is suggestive of the dimension
of externalist fit.
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them it is just that mathematical truth comes down to truth within the

relevant fiction. (2.) A requirement of fitting the facts does not neces-

sitate simil-proofs being composed of sequences of propositions. S’s

production and presentation of a picture-proof, for example, can per-

fectly well correspond better or worse to the mathematical facts, even

if one takes a view of mathematical justification on which such dia-

grammatic reasoning does not constitute a sequence of propositions.

(3.) The dimension of externalist fit attaches to the simil-proof (in con-

trast to the agent’s possession thereof). (4.) There is no obvious way

to guarantee that our simil-proofs do track the facts, and we’ll return to

this issue in §4.

A high degree of externalist fit is clearly desirable, but does not tell

the whole story. In particular, it does not guarantee that an agent has a

high-level of mathematical understanding in knowing a particular simil-

proof. For example, blindly following a known formula may exhibit an

exceptionally high degree of externalist fit, but tell us little beyond the

fact that a certain proposition is true. (Many of us will be familiar with

the example of blindly following the quadratic formula x = −b±
√
b2−4ac
2a

at school without a clue as to why it works.) We therefore want to

examine the following desideratum on the possession of simil-proofs:

Internalist Understanding. S’s possession of a simil-proof exhibits a

high degree of internalist understanding iff S understands how the pieces

of their simil-proof fit into a wider framework of knowledge, and un-

derstands the conceptual dependencies of the resources employed in

their simil-proof. We define a low degree of internalist understanding in

the obvious way.

Of course this condition is itself up for philosophical interpreta-

tion, what constitutes mathematical understanding is no easy matter. I

am, however, happy to work with the notion on an intuitive level for

the purposes of this paper (though I remain open to debates concern-

ing how it should be sharpened). It may be, of course, that mathe-

matical understanding is itself a multi-faceted notion. Note that inter-
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nalist understanding is a dimension in which a subject’s possession of

a simil-proof can vary, rather than any property inherent in the simil-

proof. Whatever one’s characterisation of mathematical understand-

ing, it seems to be a pretty clear desideratum on possession of a simil-

proof that it be accompanied by understanding.

The dimensions of externalist fit and internalist understanding are

related but can be independent. S’s knowledge of a very gappy simil-

proof that uses many black box lemmas may exhibit nigh-perfect ex-

ternalist fit, but a low degree of internalist understanding—S does not

understand how the relevant steps of the simil-proof are conceptually

related to other areas and does not understand the conceptual depen-

dencies of the black boxes. On the other hand, an agent may have

an excellent understanding of an area, but produce a simil-proof that

has a reduced degree of externalist fit, as when a strong established re-

searcher simply makes an error in a simil-proof and produces a flawed

simil-proof (e.g. the earlier discussed examples of ♣, ‘Cohomological

Theory’, and ZFC-Powerset). In what one might think is the ideal case,

we have both—a perfect externalist fit between the steps in the proof

and mathematical reality, and a clear understanding of how the proof

fits into our wider mathematical apparatus. Indeed, one would hope

that the dimensions are related—as we obtain better internalist under-

standing of a simil-proof, we become more likely to externally fit the

mathematical facts, and a high-degree of externalist fit offers more op-

portunity for internalist understanding. Sadly of course, S’s posses-

sion of a simil-proof may have neither—it may be both founded on

mathematical sand and S may have a poor understanding of the con-

cepts (and, again, these two features may be related to one another).

The fact that possession of a simil-proof can vary in degree with

respect to both externalist fit and internalist understanding suggests

an interesting phenomenon: There is a sense in which the Gettier-

pheonomenon itself is a matter of degree. It is very rare (except per-

haps in trivial and easy cases) that we have a perfect correspondence

between the steps of the proof and reality as well as understand all
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the dependencies of our proof, especially where difficult research-level

mathematics is concerned. In this sense, our mathematical justification

via possession of simil-proofs is almost always to a degree Gettiered and

imperfect.27 This presses the problem: Given that a degree of imper-

fection is ubiquitous in mathematics, and given that it may be very hard

to diagnose, what should we do about the matter?

4 Upshots for mathematical practice

We now have a robust sense of the Gettier-phenomenon regarding

mathematical justification, and two dimensions in which possession

of a simil-proof can vary (namely externalist fit and internalist under-

standing). These, I will argue in this section, highlight several epis-

temic upshots for mathematical practice.

Some ‘upshots’ are obvious or trivial or clearly already an estab-

lished part of mathematical practice, and so I relegate them to merely

being mentioned in passing. Obviously enormous non-trivial gaps in

proofs are to be avoided and researchers should endeavour to work

with as much care as possible. Furthermore, it’s clearly to be regarded

in a result’s favour if (i) its simil-proof has been checked by multi-

ple agents (increasing our confidence in externalist fit) with multiple

different backgrounds (increasing our confidence that there’s good in-

ternalist understanding to be had), and (ii) been integrated in other

areas (again increasing our level of internalist understanding).28 How-

ever there are some further respects in which we might regard our two

dimensions as yielding upshots for mathematical practice.

The use of proof-assistants. A facet of mathematical life that is be-

coming more and more prevalent is the use of proof assistants (e.g.

Coq, Isabelle, Lean) in mathematical reasoning. These come in var-

27I thank Deniz Sarikaya for this suggestion.
28This checking from multiple perspectives is considered by

[Andersen et al., 2020].
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ious kinds, but two salient features are (1.) the requirement that all

arguments be rigorously formalised to facilitate computer check, and

(2.) the existence of libraries where various established results can

be stored (and then searched) if one needs to call upon a black box.

This has clear advantages for externalist fit: If an argument can be

formalised and checked by a proof assistant then we can have a very

high confidence that the conclusion is true and the steps of the simil-

proof fit the mathematical facts. The only questions to be ascertained

are (i) whether we encoded the problem correctly, (ii) whether we are

interpreting the output correctly, and (iii) whether the machine and

program are in good working order.

However one respect in which proof-assistants (and the proofs they

implement) can be improved is the dimension of internalist understand-

ing. In particular, we would like some of the simil-proofs we check

to be as close to conceptual reasoning as possible, ensuring that for-

malisation in proof assistants is more than merely checking that a re-

sult is true but also can be integrated with our conceptual apparatus.

This has ramifications for the design and implementation of proof-

assistants—it suggests that specific instances of code that correspond

more closely to the ‘intuitive’ reasoning provide an additional layer

of epistemic (and not just mathematical) gain. This has application

with respect to two aspects of proof-assistant design. At the object

level, once a language has been fixed, code that formalises ‘intuitive’

thoughts has some epistemic ‘benefit’ over more abstract code. For

example, Avigad’s recent formulation (see [Avigad, 2019]) of the muti-

lated chessboard example does more than respond to a philosophical

objection (from [Tanswell, 2015]) it shows how Lean can be used as a

part of one’s mathematical practice as a conduit for mathematical un-

derstanding. Second, however, it suggests that languages for which we

design a proof-assistant are important, and in particular there is epis-

temic gain to me had from those that provide closer implementations

of ‘intuitive’ arguments than ones that are baroque.29

29I am hardly the first to notice this, for example Thurston writes (regarding Appel
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Folklore theorems. A phenomenon which is pervasive in mathemat-

ics is the existence of theorems that are ‘folklore’. These can often take

the form of unpublished notes (that have subsequently been lost) or

proofs that are regarded as easy and known, but have not been writ-

ten down. The present discussion shows that the acceptance of many

folklore results is fundamentally bad practice. Such theorems fall into

the following categories:

(1.) A result where there is unclear attribution (e.g. because the result

is very old and/or was proved outside of the published litera-

ture by multiple people independently) but has appeared in text-

books/graduate theses etc. (with attribution to the ‘folklore’).

(2.) Results that are genuinely trivial.

(3.) Results that are merely believed to be easy or known.

Cases (1.) and (2.) are benign and so I set them aside. However case

(3.) is problematic, we lose shareability of the proofs and the ability to

scrutinise both externalist fit and internalist understanding. A recent

example, discussed in [Rittberg et al., 2020], concerns the attempted

publication of a paper containing a result in topos theory that was re-

jected on the grounds of the result already being part of the folklore.

On examination, however, the ‘standard’ folkloric proof was found to

be flawed (although the theorem was true). As such, use of the folk-

lore theorem constituted a kind of Gettier-case before discovery of the

and Haken’s proof of the Four Colour Theorem:

For instance, when Appel and Haken completed a proof of the 4-color
map theorem using a massive automatic computation, it evoked much
controversy. I interpret the controversy as having little to do with
doubt people had as to the veracity of the theorem or the correctness
of the proof. Rather, it reflected a continuing desire for human under-
standing of a proof, in addition to knowledge that the theorem is true.
([Thurston, 2006], p. 38, original italics)

Some attempts to improve this aspect of proof assistants is one of the central ques-
tions of Edward Ayers’ recent PhD thesis [Ayers, 2021].
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flaw. Discussing the issue André Joyal (a prominent category theorist)

writes:

“Although considered “folkloric” by some experts, the re-

sult does not appear in the literature. I had believed that

one could directly deduce it from the theory of classify-

ing toposes of Makkai and Reyes. It is only recently, in

the context of a discussion with Caramello, Johnstone and

Lafforgue, that the latter attracted my attention to an as-

pect of Caramello’s proof which I had missed... Surprised

by this observation, I tried to exhibit the “folkloric” proof

that I thought I had of this theorem. With my great aston-

ishment, it took me a night of work to construct a proof

based on my knowledge of the subject, and the proof de-

pended only partially on Makkai-Reyes’ theory! (André Joyal,

in a public letter30 to Olivia Caramello, italics mine)

Key to note here is that not only were we in a Gettier situation

with this theorem, but we see clearly problems along the dimension of

internalist understanding. The key point here is that not only was the

simil-proof flawed, but it was flawed in such a way that the conceptual

dependencies were not well understood by experts who felt they had

a simil-proof (in the end, the resulting proof depended only partly on

resources it was thought to hinge upon).31

There is thus value in writing folklore theorems down and making

them shareable. If they are really trivial, the proofs can be given to stu-

dents as exercises or included in textbooks. If they are merely thought

to be ‘easy’, they can either be given to graduate students for presen-

30See [Joyal, 2015].
31It may also be that the original folklore simil-proof contained inferences that did

not logically follow from one another, and so exhibited poor externalist fit. To show
this conclusively, however, we would have to exhibit models witnessing the failure
of these logical implications, and this seems to be in itself a significant mathematical
question.
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tation in theses32 or should be published (either in a relevant journal

or on a public pre-print archives like the arXiv).

Re-proving theorems. In mathematics it is common to reprove

known theorems with substantially different proofs. This has clear

mathematical payoff—a new proof shows how techniques or results

are interlinked across areas and can thereby often generate new work.

However, the current discussion shows that there are clear epistemic

benefits to this practice too. Showing that a proposition has proofs

from multiple areas clearly provides an opportunity for increased in-

ternalist understanding.33

This has ramifications for the shareability of our simil-proofs. On

the one hand proofs can perform well as regards shareability in-

tracommunity if they are clear and easily checked. However, the

present discussion also shows that they are valuable intercommunity:

The easier they are to understand to non-specialists the greater the un-

derstanding of how our mathematical concepts hang together.

Methodological pluralism in mathematics. It is not just with respect

to different proofs of the same result that we should want a degree

32Three nice recent examples from logic are (i) Regula Krapf’s PhD thesis
[Krapf, 2017] contains simil-proofs of some folklore results concerning global choice
and bi-interpretations between second-order arithmetic and set theories in which
every set is countable, (ii) Francesco Parente’s clarification of some folklore proofs
relating to forcing axioms (in [Parente, 2012]) and (iii) Jeroen Hekking’s presen-
tation of Zermelo’s Quasi-Categoricity Theorem in contemporary notation (in
[Hekking, 2015]). Further examples of such results being clarified are now easy to
find in mathematics, and often PhD theses begin by setting up some known folklore
proofs to feed into the main results later.

33Though slightly outside the scope of this paper, a theorem having multiple simil-
proofs also increases our confidence that the result is actually true. There is one sense
in which this is just a numbers game—more simil-proofs clearly decrease the likeli-
hood that a proposition is false. However, it seems that research area is also impor-
tant: [Andersen et al., 2020] suggest that some mathematicians regard it as important
that a proof has been checked by multiple authors with different expertise. Though a
slightly different phenomenon, simil-proofs establishing a result from the perspec-
tive of different fields show that there is convergence from many different sources,
potentially increasing our confidence (much as in the case of a single proof being
checked by multiple different authors with different expertise).
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of pluralism, but also different axiom systems that imply the same re-

sult. The example of the PFA-Lykovs (and related cases closer to home)

showed that we can be mathematically justified in a proposition, have

done nothing wrong in our proof, but still fail to have good externalist

fit. Whilst a degree of focus can be mathematically beneficial—great

strides are made when intelligent people focus solely on a specific

range of problems from within a specific axiom system—it comes at

epistemic cost: Mathematical monism results in the possibility of our

beliefs being explained by falsehoods.34

This desire for externalist fit indicates further value in mathemat-

ical practice to what [Koellner, 2009] calls ‘overlapping consensus’.

There are certain statements (e.g. PD) that are agreed on by multi-

ple strong theories. The development and study of multiple axiom

systems, and finding what lies in the intersection of all their conse-

quences, increases the chance that at least one of the systems is the

correct explanation for believing particular statements. Oddly, then, a

strong belief that there are final answers to independent questions mo-

tivates consideration of a pluralism concerning the study of different

theories—if only to ensure that we have the correct system within our

purview.

Axiom justification as mathematical activity. Recall that an argu-

ment is shareable if its content and supposed correctness could be

grasped by relevantly trained human minds from a perceptible in-

stance of a presentation of it. Arguments for axiom selection can also

be shared. This has played out in the literature with various authors

trying to be precise about the justifications on which their axioms are

based. Unfortunately, it would take us too far afield to review all this

material.35 Suffice to say, over the last century we have moved away

from a picture on which axioms (especially set-theoretic ones) are sim-

34Similar arguments are made with respect to ignorance in mathematics in
[Barton, 2017].

35See [Barton et al., 2020] for an overview.
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ply obviously true, and more towards a picture on which the justifica-

tion of axioms is a matter of providing diverse reasons to accept an

axiom. Often these reasons are closely related to mathematical results,

with the natures of the relevant proofs being closely discussed in sup-

porting the relevant axiom. [Barton et al., 2020], for example, charac-

terise the justification of axioms as being the best explanations of our

given mathematical data at a particular time—attempts to subsume

multiple different results under single statements in natural ways.

This analysis suggests that a substantial question (one that possibly

runs counter to the orthodox view) concerns the extent to which axiom

selection is really so different from the construction of simil-proofs. Of

course the derivation indicator account of mathematical practice can

put a wedge in here—there is no way of making sense of the justifica-

tion of axioms being linked to derivation in any sense. However for the

recipe and semantic accounts, we have views on which we are invited

to reconstruct a particular kind of reasoning or be drawn to certain se-

mantic connections. Can’t an axiom justification be similar? Nonethe-

less, the two activities certainly have a different ‘feel’, and in particu-

lar simil-proof construction seems to proceed in a more stepwise fash-

ion from other kinds of shareable arguments.36 Moreover, these more

philosophical kinds of arguments can also plausibly vary along the di-

mension of internalist understanding and externalist fit. I do not want

to suggest that axiom justification and construction of simil-proof are

the same kind of activity. I do however want to suggest that they are

not as different as one might initially think, and that there is a substan-

tial challenge to clearly demarcate the two, and that there may well be

a case to be made that axiom justification is a legitimate mathematical

activity alongside constructing simil-proofs, choosing definitions, and

making conjectures.

36It’s tempting to use the term ‘deductive’ rather than ‘stepwise’ here, but I want
to refrain from committing to simil-proof construction as a purely deductive activity.
It’s not clear, for instance, that grasping a diagram in a proof is a kind of a deduction.
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5 Conclusions and open questions

In this paper I’ve argued that given a fallibilist account of mathemat-

ical justification, mathematical Gettier cases are not just possible, but

in many cases are in fact actual. I’ve also argued that this highlights

some important upshots for mathematical practice, in particular con-

crete steps that can be taken to make mathematical claims more epis-

temically tractable with respect to internalist understanding and exter-

nalist fit.

There are several open questions raised by the current study that I

want to present the reader with in closing. The first has already been

identified at the end of §4:

Question. How should we distinguish simil-proof construction from

other kinds of mathematical activity such as axiom justification, con-

jecturing, and selection of definitions?

We have seen a smattering of different upshots that we might take

from the dimensions of externalist fit and internalist understanding,

and how the Gettier phenomenon regarding SP -justification informs

these. However, there may be many more. We therefore ask:

Question. What further upshots of the Gettier-phenomenon, external-

ist fit, and internalist understanding are there for mathematical justifi-

cation and the philosophy of mathematical practice?

We have seen various instances (e.g. folklore theorems) where

things could be improved, and others where the mathematical com-

munity already performs well (e.g. in valuing diverse proofs). There

is a question of how we can determinate the extent to which mathe-

matical communities obey different desiderata. This is essentially an

empirical question, and so we ask:

Question. How can we isolate and empirically test for the level to

which various upshots are complied with in different mathematical
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communities?37

Our arguments did depend on a somewhat specific account of justi-

fication (namely SP -justification), though one I think is broadly speak-

ing correct. Of course there are rival epistemologies out there, and so

a natural question is:

Question. How does taking different conceptions of the nature of

mathematical justification affect the Gettier-phenomenon, and does

this change the various upshots we see for mathematical practice?

One final and broad ranging question concerns the agents involved

in mathematical justification. Throughout, I have been concerned with

the kind of epistemic status conferred when a single person has a simil-

proof. However, we might think that the appropriate agent is actually

the community as a whole. Indeed both the example of black box lemmas

and axiom selection depended on looking at the epistemic states of an

isolated individual embedded within a community. This suggests that

the following question is of key importance:

Question. How are (i) the status of the Gettier-phenomenon, and (ii)

the relevant upshots for mathematical practice, affected by a move to

communal rather than individual epistemic agents?
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