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Abstract

Let mathematical justification be the kind of justification ob-

tained when a mathematician takes themselves to have proved a

theorem. Are Gettier cases possible for this kind of justification?

At first sight we might think not: The standard for mathemati-

cal justification is proof and, since proof is bound at the hip with

truth, there is no possibility of having an epistemically lucky jus-

tification of a true mathematical proposition. In this paper, I ar-

gue that non-trivial Gettier cases are possible (and indeed actual)

even for mathematical justification. I indicate some upshots for

mathematical practice, in particular regarding folklore theorems

and pluralism.
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Introduction

Let mathematical justification be the kind of justification obtained when

we take ourselves to have proved a result (so the sort of thing that ap-

pears after the term “Proof.” in a mathematics journal or textbook).

This paper concerns the (epistemologically familiar) phenomenon of

Gettier-cases, how these might relate to mathematical justification, and

what the upshots for mathematical practice might be.

A standard Gettier case is a situation in which an agent has jus-

tified true belief in a proposition, but that justification is lucky. One

might think that it such Gettiering is impossible for mathematical jus-

tification. If one thinks that mathematical justification is obtained by

knowing a proof from axioms, epistemic luck is impossible since the

axioms are true and the rules of proof preserve truth.

However there do seem to be examples of Gettier cases in mathe-

matics. In [Voevodsky, 2014a], Vladimir Voevodsky (a 2002 winner of

the Field’s Medal) relates the following episode from the development

of his work on motivic cohomology:1

The approach to motivic cohomology that I developed with

Andrei Suslin and Eric Friedlander [relied]2 on my pa-

per ‘Cohomological Theory of Presheaves with Transfers’,

which was written when I was a Member at the Institute in

1992–93. In 1999–2000, again at the IAS, I was giving a se-

ries of lectures, and Pierre Deligne (Professor in the School

of Mathematics) was taking notes and checking every step

1I thank Lukas Koschat for pointing out that the talk [Voevodsky, 2014b] (a talk
upon which [Voevodsky, 2014a] is based) contained particularly acute examples of
the phenomenon I’ll discuss throughout this paper.

2In this excerpt Voevodsky is talking about the avoidance of a different problem-
atic ‘lemma’ (Bloch’s lemma), and I have suppressed this detail for clarity.
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of my arguments. Only then did I discover that the proof

of a key lemma in my paper contained a mistake and that

the lemma, as stated, could not be salvaged. Fortunately, I

was able to prove a weaker and more complicated lemma,

which turned out to be sufficient for all applications. A cor-

rected sequence of arguments was published in 2006.

This story got me scared. Starting from 1993, multiple

groups of mathematicians studied my paper at seminars

and used it in their work and none of them noticed the mis-

take. [Voevodsky, 2014a, p. 8]

What we have here is, prima facie, an example of mathematical justi-

fication being Gettiered: The main results of Voevodsky’s ‘Cohomologi-

cal Theory’ (as I’ll abbreviate the paper from hereon out) were correct,

but the original ‘proof’ was flawed. Both Voevodsky and the schol-

ars using his results in their proofs in the period when the error had

not been diagnosed (1993–1999) had mathematically justified beliefs—

they were using (true) results that were widely accepted within the

community they were a part of in proving more theorems. Intuitively

speaking, however, they did not have knowledge since they were epis-

temically lucky that the relevant results (with flawed ‘proofs’) from

‘Cohomological Theory’ were, in fact, true.

There is a philosophical puzzle to be resolved here: How do we ex-

plain the apparent Gettier-phenomenon in mathematics whilst retain-

ing the close link between mathematical justification and something

like proof? Further, what might the upshots be of this phenomenon

for how we do mathematics? I will argue for the following claims:

Main Claims.

1. Whatever the status of justification in mathematics, the kind op-

erational in mathematical discourse is a fallibilist account (i.e. one

which is not necessarily factive).
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2. Such a fallibilist account indicates several actual instances of the

Gettier-phenomenon concerning mathematical justification, and

different kinds of luck at play.

3. These Gettier-cases indicate two dimensions in which mathemati-

cal justification can vary: (I) An internalist dimension (for the epis-

temic agent to have understood the conceptual dependencies of

their justification) and (II) an externalist dimension (the parts of

the justification to fit the mathematical facts).

4. In turn, these dimensions help to explain certain upshots for

mathematical practice.

Here’s how I’ll argue for these claims: §1 outlines the different ap-

proaches one might take to mathematical justification. In particular, I’ll

point to the fact that there are both infallibilist and fallibilist concep-

tions. I’ll press the point that whatever one thinks about the episte-

mological interpretation of mathematical justification, it is a fallibilist

one that is operative in mathematical practice. We’ll see (drawing on

work of Silvia De Toffoli3) that this kind of justification is underwritten

by simil-proofs: Mathematical arguments that can be shared with and

checked by the rest of the community. §2 provides some mathematical

Gettier cases on the basis of this kind of justification via non-trivial er-

rors or gaps (§2.1), difficulties with selection of the axioms (§2.2), and

the use of lemmas in simil-proofs as ‘black boxes’ (§2.3), as well as iso-

lating the different kinds of epistemic luck at play. I then argue (§3) that

the manner in which these cases are generated suggests two dimen-

sions in which an agent’s understanding of a simil-proof can vary, an

internalist dimension of understanding the conceptual dependencies

and interrelationships of the resources involved in a simil-proof, and

an externalist criterion of how well the steps taken in a simil-proof fit

with the mathematical facts. These criteria, I argue, highlight some up-

shots for mathematical practice (§4), in particular concerning folklore

3Especially [De Toffoli, 2021].
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theorems and pluralism in theory choice. I then conclude (§5) with a

summary and some open questions for moving forward.

1 Mathematical Justification

No account of Gettier cases is complete without a thorough character-

isation of the notion of justification. Before we get into the details of

the cases we thus have to tackle the important and difficult question:

What is mathematical justification?

This is a tricky problem: Say too much and one risks making one’s

arguments too narrow, too little and we run the risk of vicious impre-

cision. Rather than settling on one account of mathematical justifica-

tion, I’ll therefore try and isolate some different features of views and

discuss what the operative kind of justification in mathematics is, i.e.

under what conditions does a mathematician take themselves to be

justified?

With this in mind, let’s start by demarcating mathematical justifica-

tion from justification of a mathematical proposition. The latter is an ex-

ceptionally broad notion that admits of easy Gettiering in a manner not

tremendously interesting for mathematical practice. For instance, sup-

pose that a close mathematician friend tells me that Goldbach’s Con-

jecture is true. I trust them, and so I believe the conjecture. As it turns

out, let’s suppose that Goldbach’s Conjecture is true but my friend was

just playing a prank on me (and they had no idea whether Goldbach’s

Conjecture is true). Then I have justified true belief in a mathematical

proposition, but intuitively speaking I don’t have knowledge.

Whilst much epistemology focusses on this kind of example, it is

however not what I am interested in here. My focus is rather on the

kind of epistemic justification conferred when a mathematician takes

themselves to have proved a theorem and/or possess or know a proof of

said theorem. My interest is thus in the kinds of justifications agents

take themselves to have after working through arguments that occur
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after the term “Proof.” in mathematics texts like (reputable) journals

and textbooks. In particular, I want to examine if and how this kind

of justification can be Gettiered, and, if so, whether there are upshots

for the communal production and vetting of the relevant mathematical

artefacts.

1.1 Mathematical justification as possession of a proof

One historically prevalent conception of mathematical justification has

been the following:

Assumption of Proof-Theoretic Justification. (APT) A subject S has

mathematical justification for a believed proposition P just in case they

have/know a proof of P from axioms for the relevant mathematical

subject matter.

This assumption was widely taken to be the ‘default’ for much of

the 20th century. For example, Giaquinto writes:

It was simply assumed that mathematical knowledge

would have to be a matter of proof, that is, deduction from

the axioms... ([Giaquinto, 2007], p. 5)4

This assumption seems to vitiate the possibility of Gettier cases

concerning mathematical justification. Since axioms are true, and since

logical inferences preserve truth, it is hard to see how a mathematical

justification could be lucky. By definition, it seems, the standards of

mathematical justification prohibit the possibility of a Gettier case.

The problem is brought into sharper focus if we consider a stan-

dard template for generating a Gettier case. Linda Zagzebski5 showed
4Giaquinto continues:

...the only question, then, was how the axioms and inference rules of the
relevant axiomatic systems could be justified. Thus, the epistemology of
individual discovery simply dropped off the agenda. So did any concern
with actual thinking in mathematics.

Some of these subtleties to do with justification of axioms and individual discov-
ery will re-appear later.

5See [Zagzebski, 1994].
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that as long as there is a gap between justification and truth, Gettier

cases are possible. One simply takes a case in which a proposition is

justified but false, and via epistemic luck modifies the case to make

the proposition true. The example she gives is that of someone (Mary)

mis-perceiving her husband’s brother (who looks somewhat like her

husband) as her husband (whilst the brother sits in a chair). Taking

her belief to be My husband is sitting in the living room, we can take her

false-but-justified belief and ‘make’ it true by epistemic luck by having

her husband sit out of eyeshot in the room. This makes it harder still

to see how we might generate a mathematical Gettier case, since on

the usual understanding of mathematical truth propositions are true

or false by necessity. It is thus not possible to use the Zagzebski in-

escapability template to start with a false mathematical belief and then

modify the situation to make it true by epistemic luck.

Emphatically not every accepted mathematical argument satisfies

the APT, however. The example of Voevodsky from the introduction

shows that there are often mathematical arguments that are accepted,

and indeed become central in an area, that are not strictly proofs (in

the sense of correct arguments from the accepted axioms). Work in

mathematics journals is fundamentally fallibilist in nature: It is possible

for accepted to exhibit minor errors (e.g. typos), significant gaps, and

even major errors.

1.2 Fallibilist mathematical justification: Simil-Proofs

The idea of fallibilist mathematical justification has been explored

in [Dove, 2003] and [Davis and Hersh, 1999], but of especial inter-

est for us here will be Silvia De Toffoli’s recent fallibilist account in

[De Toffoli, 2021]. The key notion for us will be that of simil-proof, and

the idea of knowing or possessing a simil-proof. Roughly speaking, a

simil-proof is an argument that has been accepted by members of the

community and meets certain minimal standards.

Before we explicitly define simil-proofs, we need the notion of
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shareability of a mathematical argument. De Toffoli characterises it as

follows:

An argument is shareable if its content and supposed cor-

rectness could be grasped by relevantly trained human

minds from a (possibly enthymematic) perceptible instance

of a presentation of it. [De Toffoli, 2021, p. 830]

A simil-proof can then be defined as follows:

Simil-Proofs. An argument is a Simil-Proof (SP ) when it is [(i)] share-

able, and [(ii)] some agents who have judged all its parts to be cor-

rect as a result of checking accept it as a proof. Moreover, [(iii)] the

argument broadly satisfies the standards of acceptability of the math-

ematical community to which it is addressed. [De Toffoli, 2021, p. 835,

(i)–(iii) added]

We should immediately note that not every simil-proof is a proof.

A mathematical argument can satisfy all of (i) to (iii), but ultimately be

fallacious.

De Toffoli defines an agent possessing a simil-proof (or having a simil-

proof) in the following manner:

Having-SP . S has an SP of C if and only if, when prompted to artic-

ulate a reason for her belief in C, in the appropriate context, S would

(in good faith) share the SP . Moreover, S would be able to appropri-

ately reply to challenges and hold related dispositions. For instance,

if the validity of an inferential step of her SP is questioned, S would

be disposed to abandon it if she cannot defend it. [De Toffoli, 2021, p.

839]

Often we talk of knowing a simil-proof in addition to having a simil-

proof, and so I will use these terms (and their cognates) interchange-

ably. De Toffoli then defines mathematical justification as follows:
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SP -Justification. A subject S’s belief that mathematical claim C (in

need of a proof) is mathematically justified if and only if S has an SP .

[De Toffoli, 2021, p. 837]

We should note that SP -justification is compatible with many

views on the nature of mathematical justification. [Rav, 1999] consid-

ers a view of mathematical practice that is irreducibly semantic, and

the job of a mathematical justification is to indicate these semantic con-

nections. Call this the semantic account. [Azzouni, 2004] considers a

view on which proofs indicate the existence of derivations (a view that

has received a recent defence by [Avigad, 2020]). Call this the deriva-

tion indicator account. Still other views hold that (at least some)

proofs are akin to recipes for reconstructing reasoning ([Tanswell, F]

provides a recent proposal). Call this the recipe account. The account

of mathematical justification in terms of knowing/having simil-proofs

is compatible with each of these ways of spelling out mathematical

justification. We can take simil-proofs to be presentations of seman-

tic relations, or indicating the existence of derivations, or providing

recipes for reconstructing reasoning.

Importantly: On each reconstruction of the role of simil-proofs we

have a fallibilist account. A simil-proof may fail to indicate semantic

relations that really hold, it may fail to provide an appropriate indica-

tion of a derivation, or the recipe may be fundamentally flawed. On

various accounts of the nature of mathematical justification, there are

simil-proofs that are not bona fide proofs.

In the rest of this subsection, I want to deflate some objections be-

fore they get going.

Of course some authors will reject the claim that possession of

a simil-proof that is not a proof provides mathematical justification.

There are various infallibilist accounts. This includes infallibilist ac-

counts of mathematical justification (e.g. the earlier discussed APT) but

also infallibilist accounts of justification more widely (e.g. Littlejohn’s

account in [Littlejohn, 2012]). For such accounts, SP -justification does
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not match up with mathematical justification, since the former is falli-

ble and the latter is not.

Whilst I acknowledge that there is probably something legitimate

being latched onto by such accounts, it is simply not so interesting

when considering mathematical practice. I am interested in the kinds

of mathematical justification that we are actually forced to interact with

as epistemic agents practising mathematics, not some infallibilist ver-

sion (that may well be inscrutable). In the context of actual mathemat-

ical agents coming to take themselves to be mathematically justified,

simil-proofs just are the operative concept, even if there are infallibilist

conceptions of justification that are of interest in epistemology. Really,

I think it’s plausible that the idea of mathematical justification is a nebu-

lous concept that admits of multiple different interesting explications

(in the Carnapian sense). Some of these may be fallibilist and other (le-

gitimate) conceptions may be infallibilist. Whatever the weather, the

kind of mathematical justification that is involved when mathemati-

cians construct arguments just is fallibilist, as the wealth of fallible ex-

amples show (some of which we’ll discuss later). So, notwithstanding

the interest of such accounts, I’ll (mostly) set them to one side.

Next: One might feel that the definition of simil-proof is ambigu-

ous in a couple of respects. First, it is unclear whether the ‘agents’

who are judging the parts of a simil-proof to be correct can be identi-

cal with the agent(s) who produced the proof. We might not want to

rule out that a pioneer or isolated mathematician can be mathemati-

cally justified6 or that justification is obtained at the point of discovery

rather than acceptance of the mathematical argument. This point need

not detain us—the cases we shall consider concern mainstream math-

ematical arguments that have been widely accepted.

Next, we might worry about the extent to which acceptability

standards are addressed to specific communities. For instance, we

might want communities to be able to criticise one another if they

think that the standards are too lax (or perhaps too strict). In this
6De Toffoli in fact considers this notion (see, p.830 of her [De Toffoli, 2021]).
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case, we want to be able to say that one community should be accept-

ing fewer (or more) mathematical arguments as simil-proofs. Mak-

ing such criticisms seems to require acceptability standards that go

beyond community-relative ones. This said, mathematics is quite a

broad church, and acceptability standards may (as a point of fact)

vary substantially from community to community. It may be that

there is a ‘core’ of values shared across mathematics and hence an

‘absolute’ notion of what is to count has a simil-proof, or it may be

that whether or not an argument is a simil-proof is an essentially

community-relative matter.7 Again, whilst this is a subtle issue, it need

not detain us further: Whether or not an agent is mathematically justi-

fied is ‘community-relative’ or ‘absolute’ we will still be able to gener-

ate certain kinds of Gettier-cases and analyse their upshots relative to a

specific given standard.

1.3 Matters of degree

In this subsection I want to argue that both being shareable and pos-

sessing a simil-proof can be viewed as matters of degree. This will be

important later, especially in §3 and §4.

Let’s start with shareability. Arguments vary according to how eas-

ily they can be checked by suitably trained agents. Some simil-proofs

are relatively hard to check or very gappy, others are clearer and eas-

ier to follow. Thus, whether a simil-proof is shareable can be viewed

as a matter of degree—arguments can be more or less shareable. I do

not think this is an objection against De Toffoli’s account—it is rea-

sonable to suppose that there is a minimal bar (possibly with fuzzy

boundaries) that arguments must clear in order to count as definitively

7 We should note that in really egregious cases, there definitely could be argu-
ments published in mathematics journals that do not count as simil-proofs on any
reasonable standard. For example, a corrupt editor who accepts a mathematician’s
request to have their (wholly error strewn) paper sent to a friend can result in the
publication of a non-simil-proof mathematical argument, since the purported simil-
proof might fail to meet the standards acceptable to any reasonable mathematical
community.
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shareable. Thus, whilst I will continue to talk of degrees of shareability, I

will also talk (like De Toffoli) of arguments being shareable (simpliciter).

However, it’s important to note that this is a dimension along which a

simil-proof can vary, and this will be important when we come think

of what the upshots of the Gettier phenomenon might be.

Let’s also note at this point that having or knowing a simil-proof

can also be spoken of as a matter of degree—more or less effort might

be required to defend particular steps. A familiar feeling to many

mathematicians is that of simil-proofs beginning to fade in memory

if they have not been checked or prepared recently. In this sense, we

might say that we know or possess a simil-proof to different degrees

dependent upon how easily we can defend particular steps. Again,

I don’t think that this is an objection—there is a (possibly fuzzy) bar

that we can take to be cleared when we want to say that an agent has a

simil-proof simpliciter. However, it is important to note that the modal

form of simil-proof possession in De Toffoli’s characterisation is some-

what tricky to articulate, in particular regarding the level of idealisa-

tion permitted. I do not, for instance, have or know a simil-proof of

the Poincaré Conjecture simply by carrying around a copy of Perel-

man’s proof with me wherever I go, and being prepared to defend the

relevant steps if prompted (perhaps after several years or lifetimes of

study). I do think that there is a reasonable sense in which there are

simil-proofs for which I could articulate particular steps given enough

time (e.g. I would probably have to revisit a textbook to refresh my

memory for the proofs of the incompleteness theorems) and others

which I could not (e.g. Perelman’s proof is currently out of reach for

me). It’s important to note though that even in cases where it’s very

plausible that I know a simil-proof of a proposition (e.g. the incom-

pleteness theorems) this might not be backed up by perfect simil-proof

possession, and there are others where my understanding of the rele-

vant simil-proof is middling at best. We will return to this issue in §3
when we isolate different dimensions in which simil-proofs and pos-

session can vary further. But now, let’s move on to the cases.
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2 Some mathematical Gettier cases

We now have the fallibilist account of SP -justification on the table,

have discussed some ways in which the notions underlying it can be

matters of degree. In this section, I’ll explain how this account of math-

ematical justification leads to actual kinds of Gettier case. This will

divide into three main kinds: (§2.1) significant gaps/errors, (§2.2) the

selection of axioms, and (§2.3) the use of lemmas as black boxes. On

the way, I’ll make explicit the different kinds of luck at play in each

case. First though, we need to make a couple of preliminary comments

dealing with motivating the consideration of Gettier cases (as opposed

to merely mathematically justified false beliefs).

Of course simil-proofs can lead to falsehoods, and indeed this phe-

nomenon is interesting from a philosophical perspective. However,

such falsehoods are often diagnosed relatively quickly. For example,

in set theory [Džamonja and Shelah, 1999] claimed to have shown that

there are models of set theory in which both ♣ (a statement about the

combinatorics of sets) is true but there are no Suslin trees. Their results,

it was subsequently discovered, contradicted a well-established theo-

rem (namely Miyamoto’s Theorem) and so the simil-proof was recog-

nised to be flawed. However, [Džamonja and Shelah, 1999] contains

much useful material, even if one result fails to go through. More-

over, the diagnosis of the error proved to be mathematically useful

in articulating some relevant details (as explained in [Brendle, 2006]).8

[Rav, 1999] provides a host of other examples.

The Gettier phenomenon is importantly different, in that the error

might be harder to diagnose in virtue of the truth of the conclusion.

Since the proposition in question is true, contradictions will not show

up in the rest of our mathematical reasoning (putting aside dialethic

conceptions of mathematics). The Gettier phenomenon is thus espe-

cially interesting as it identifies cases where our mathematical justifi-

8See [Brendle, 2006], p. 45, footnote 1 for some discussion and further references.
I thank Daniel Soukup for bringing this example to my attention.
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cation is not (intuitively) leading to knowledge, but also where this

might be hard to diagnose—it is far harder to spot an error in a simil-

proof (by and large) than to simply realise that a simil-proof must be

flawed (without knowing where) because it leads to a falsehood.9

We should start by setting aside some easy and trivial Gettier cases.

For example, consider a case where computer assistance is being used

to prove a theorem. This now occurs often, as can be seen with the

proofs of the Four Colour Theorem or Kepler Conjecture, and the per-

vasive use of GAP in classification problems in group theory.10 How-

ever, we don’t need anything so complicated, one can see such uses as

roughly analogous to the use of an electronic calculator in computing

steps in a standard high-school paper (where of course calculator assis-

tance is allowed as part of the set-up!). Let’s suppose that the relevant

computational device is malfunctioning in some way, but complemen-

tary malfunctions just happen to cancel each other out or be tailored

to the problem at hand. Here we might say that intuitively speak-

ing we do not have knowledge despite having relevant mathematical

justification (i.e. possession of a simil-proof). It is not that there is

anything wrong with our mathematical justification per se, but rather

that something has gone wrong with extraneous empirical facts upon

which that justification depends for verification. In this way, the sit-

uation is somewhat analogous to the Russelian ‘stopped watch’ case

in which at (say) 7am an agent checks a (normally well-functioning)

watch that has stopped indicating the correct hour (in this case with

hands pointing at 7 and 12). Here, the relevant epistemic agent has

done nothing wrong in checking a piece of external apparatus, and

the relevant malfunction has just ‘happened’ to correspond neatly onto

the way the world is at that point of time. The upshots of this kind of

error are relatively obvious (e.g. where possible run software verifica-

9Indeed this is the structure of some of the dialectic in [Voevodsky, 2014a], a coun-
terexample to a simil-proof was found, but nowhere was the specific error identified.

10GAP is a system for computational discrete algebra, and in particular is used
to computer check properties of finite groups. Thanks to Ben Fairbairn for helpful
discussion and bringing this example to my attention.
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tion on multiple different pieces of hardware) and so I won’t consider

these kinds of case any further.11

2.1 Non-trivial gaps and hard-to-detect errors

More interesting are the following kinds of cases: There are situations

in which an agent has a simil-proof of a true proposition, but where

the simil-proof is defective in some way. It might, for example, con-

tain a significant gap that (unaware to the agent) requires significant

patching, or perhaps even a non-trivial flat-out error. One such exam-

ple of this kind was mentioned in the introduction concerning some of

Voevodsky’s results in his ‘Cohomological Theory’ paper: Voevodsky

himself had a simil-proof, but not knowledge since it turned out to be

lucky (in virtue of the error) that many of the propositions contained

therein were in fact true. Examples can easily be multiplied, especially

by looking at long or complicated proofs. In the enormous literature

proving the theorem classification of finite simple groups into various

kinds (cyclic, alternating Lie, or one of the sporadic exceptions) sev-

eral substantial gaps were found across the history of specific results

involved in establishing the theorem (see [Solomon, 1995] for discus-

sion). These gaps were significant and required fixing—in contrast to

the present day where many agents are regarded as having mathemat-

ical justification of some of these results, even if small and trivial errors

in the simil-proofs remain.12,13

11These kinds of examples, and a modification of the safety criterion to deal with
them, are considered by [Pritchard, 2012].

12We should note that whilst there is a simil-proof of the classification of finite
simple groups, no one individual knows the proof—it’s just too large. This will
become relevant in §2.3.

13Another example identified by Voevodsky in [Voevodsky, 2014a]

The groundbreaking 1986 paper “Algebraic Cycles and Higher K-
theory” by Spencer Bloch was soon after publication found by Andrei
Suslin to contain a mistake in the proof of Lemma 1.1. The proof could
not be fixed, and almost all of the claims of the paper were left unsub-
stantiated.
A new proof, which replaced one paragraph from the original pa-
per by thirty pages of complex arguments, was not made public un-
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However, it need not be the case that SP -justification be flawed as

a result of extravagant complexity. Another recent example concerns

the use of the theory “ZFC without Powerset”. This is often used with

ultrapower constructions (for example in the theory of iterated ultra-

powers). However, many authors (including some in textbooks) de-

scribe this theory as “ZFC with the Powerset axiom removed/deleted”

(or similar). However for many simil-proofs using this theory there

is an inferential gap—the sequence of propositions (so written) does

not constitute a proof of the relevant proposition (this is [Fallis, 2003]’s

definition of an inferential gap). In particular, this theory (simply re-

moving the Powerset Axiom from the usual formulation of ZFC) does

not suffice for many applications, notably there are models of ZFC with

Powerset just deleted in which the Łoś Theorem fails (an essential the-

orem for the ultrapower construction). One instead requires—in ad-

dition to the Powerset Axiom being removed—that the Replacement

Scheme be substituted by the schemes of Collection and Separation,

and the usual formulation of the Axiom of Choice be replaced with

the principle that every set can be well-ordered (these various formu-

lations are equivalent in the presence of Powerset). Thankfully, many

of the usual models one wants to perform iterated ultrapowers with do

satisfy this stronger theory. In this way, many simil-proofs construct-

ing ultrapowers without the awareness of these subtleties can be con-

strued as Gettier-cases—the relevant ultrapowers can be constructed,

but only because the usual models happen to satisfy the stronger the-

ory and not because they satisfy ZFC with the Powerset Axiom simply

deleted.14 But here the case is relatively simple (certainly in contrast to

motivic cohomology or the classification of finite simple groups) and

arises through a lapse due to over-familiarity with the ZFC-context,

til 1993, and it took many more years for it to be accepted as correct.
([Voevodsky, 2014a])

14See [Gitman et al., 2016] for a description of the situation with ZFC-Powerset,
including some identifications of where the incorrect theory is stated. I thank Jonas
Reitz for pointing out this example to me.
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rather than extreme complexity encoded within the simil-proof.

We can use these cases to identify different kinds of epistemic luck

at play. We first isolate:

Logical luck. We say that agent S’s mathematical justification of a true

proposition φ exhibits a higher degree of logical luck iff more of the im-

portant steps in the simil-proof do not logically follow from the previ-

ous steps and/or these mistakes are less easily fixed.

The example of ZFC-Powerset is a clear case of logical luck. Whilst

for the many of the relevant structures of interest the relevant proposi-

tions do follow from the premises, it is not the case that the conclusions

(e.g. the Łoś Theorem) follow from the premises (ZFC with the Pow-

erset Axiom simply deleted). So it is lucky that the desired theorems

actually do hold in the relevant contexts.

It may be, however, that whilst the various steps do follow logically

from one another there is still a kind of luck at play, as when a difficult-

to-fill non-trivial gap is unintentionally left. This is indicative of:

Enthymematic luck. We say that agent S’s mathematical justification

of a true proposition φ exhibits a higher degree of enthymematic luck iff

unbeknownst to S, important steps are missed (even if all the steps do

follow logically from one another) and it is harder to fill in the details

of these steps.

Not every instance of enthymematic luck is an instance of logi-

cal luck. A simil-proof that leaves a gap where there should be fur-

ther mathematical justification of a key lemma (say because it is as-

sumed that the lemma is obvious when it needs proof) might exhibit

enthymematic luck but no logical luck.

We will discuss some upshots for these cases and some dimensions

of mathematical justification later (§§3, 4). For now, we should note

that (in contrast to the cases I’ll examine below) the authors (and ref-

erees) of a flawed simil-proof are at least somewhat epistemically blame-

able for publishing a flawed argument. The fact that the simil-proof

17



produced is not a proof is underwritten by a mistake that they them-

selves have made. Of course, mistakes can happen, and publishing

a flawed simil-proof does not necessarily make an author morally or

otherwise culpable. This point bears emphasising—even if an author

is epistemically culpable for a defective simil-proof, the work often

contains many valuable insights and isn’t bad or shoddy in any sense

(indeed the examples given in this section all represent significant con-

tributions).

As we will shortly see, however, there are cases where an agent

is in a Gettier-type situation, but has not done anything epistemically

blameworthy. The two kinds we shall see concern axiom selection and

the use of lemmas as black boxes.15

2.2 Axiom selection

Let’s consider how axiom selection might play into a Gettier case. The

central point here is that while we may have a perfectly good simil-

proof from some set of assumptions, we may be lucky in the choice of

these assumptions.16

The situation is especially acute in set theory. There, the discovery

of the independence phenomenon has precipitated programmes sug-

gesting several new axiom candidates. We will consider just two here.

We won’t go into too much technical depth, but rather will simply dis-

cuss some philosophically relevant properties.

One option is to use forcing axioms. These state that the universe

has been saturated under certain kinds of sets (namely generic filters

for certain partial orders and families of dense sets), and in this sense

seek to maximise the subsets available.17 A strong axiom of this kind

15We might want to say that epistemic blame is itself something that comes in very
fine-grained degrees. In this case, we can simply say that the agents in the present
case are epistemically blameable to a much higher degree than we’ll see in the next two
sections.

16This problem, though not the kind of Gettier situation it has elicits, is pointed to
by [Fallis, 2003] (see p. 45).

17See, for example, [Bagaria, 2006] for a discussion of this idea, and [Bagaria, 2005]
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is the proper forcing axiom (or PFA).

A different option is Ultimate-L. Under this axiom (V =Ultimate-

L) the universe contains many ordinals with certain strong properties

(so called ‘large cardinals’). The axiom tries to capture the notion of

the universe exhibiting pattern (as opposed to being chaotic) whilst

containing the widest variety of structures possible.18

Some observations about these axioms are important: (1.) They

agree on Projective Determinacy (PD), a statement about certain ‘or-

derly’ sets of real numbers (both imply a positive answer to PD). (2.)

they differ on the truth of the Continuum Hypothesis (CH) PFA implies

that CH is false where V =Ultimate-L implies that CH is true. (3.) Pro-

ponents of the different axioms believe they have good justifications

for why their axioms are true.

We can now consider the following (albeit fantastical) case:

The PFA-Lykovs. Suppose a family lives in complete isolation from

the rest of the mathematical world. In our example they will be keen

and talented set theorists who learnt the basics of ZFC and the iterative

conception of set before their isolation. They develop forcing axioms,

and after lengthy discussion decide that they are the right axiomatisa-

tion of the set concept. They adopt PFA (believing themselves to have

chosen the right axioms on the basis of a strong justificatory story),

prove that PFA implies PD, and thereby come to be mathematically

justified in believing PD.19

Suppose then however that Ultimate-L is in fact correct, and that

both the Continuum Hypothesis and Projective Determinacy are true.

What should we say about the PFA-Lykovs’ belief in PD? On the one

hand it is correct, and it seems justified in virtue of their having a satis-

factory proof. However, one might dispute whether they have knowl-

for some philosophical remarks.
18It would take too long to explain these notions of ‘pattern’ and ‘chaos’ here. The

details are available in [Bagaria et al., 2019].
19The Lykovs were a family of Russian Orthodox Christians who fled religious

persecution and lived in almost total isolation between 1936 and 1978.
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edge; their axioms get the nature of set-theoretic reality fundamentally

wrong.

The example of the PFA-Lykovs, whilst somewhat far-fetched,

plausibly has similarities with actual epistemic situations. Though

mathematicians might not be literally physically isolated from their

peers, culture and research specialisation can keep them apart. Con-

sider Thurston’s remarks concerning the state of mathematics more

widely:

Much of the difficulty has to do with the language and cul-

ture of mathematics, which is divided into subfields. Basic

concepts used every day within one subfield are often for-

eign to another subfield. Mathematicians give up on trying

to understand the basic concepts even from neighboring

subfields, unless they were clued in as graduate students.

[Thurston, 2006, pp. 42–43]

Thurston’s point is that mathematicians are becoming increasingly

specialised and unable to engage with the work in fields other than

their own. One can then easily imagine a mathematician becom-

ing ‘siloed’ within a community, with insufficient communication be-

tween researchers from different traditions needed in order to appre-

ciate that a given different approach is a live axiomatic possibility. In

this context, it’s hard to sustain the claim that a mathematician who

proves a true proposition using what they take to be well-justified ax-

ioms (to which they might think there are no serious alternatives) has

done anything epistemically blameworthy simply by proving a theo-

rem from their culturally inculcated axiom system.

There are several immediate objections to the setup of the example

that help to articulate what is required for the case to work. One ob-

jection starts by noting that I have presupposed a very strong form of

set-theoretic realism: I assumed that every set-theoretic question (or

at least PD and CH) have determinate answers. One might dispute

this claim by arguing that the subject matter of set theory is rather
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composed of a plurality of different universes satisfying different sen-

tences.20 Under this conception, there might be no fact of the matter

about PFA or V =Ultimate-L (or possibly even PD and/or CH), dis-

solving the problem. I accept that under this conception of the seman-

tics of set-theoretic language, the problem dissolves. However, this

is somewhat orthogonal to my point: It is enough to be able to con-

ceive of situations in which we have competing siloed communities

who disagree on what axioms are true of that subject matter and do

not even view the other as offering a live justificatory possibility.

A second more subtle response is to argue that we should revise

how we interpret agents holding false but consistent axioms as con-

cerned with the models of those axioms rather than the whole universe

(possibly because of charity considerations). In this context, we rein-

terpret the PFA-Lykovs as talking about models in which PFA holds (in-

stead of the whole universe). Their simil-proof would then justify their

belief that PD is true in those models and it wouldn’t be lucky in any

sense. This kind of response is connected with the view of mathemat-

ics in [Balaguer, 1998], where we view any consistent set of axioms as

being true of some part of the mathematical realm.

I think that this response essentially gives in to the idea of the mul-

tiversist account of truth. If all we have to do in order to be speaking

truthfully with our axioms is be consistent, then essentially we have

said that how our thought and language relates to mathematical real-

ity is given by consistency, even if there is some universe of sets be-

yond. For the purposes of mathematical practice, it would make the

distinction between true and consistent axioms immaterial.

Moreover, we can still generate Gettier-style cases by pulling back

to consideration of consistency questions.21 For, so long as it is possi-

ble to have a justified but inconsistent axiom, one can come to have a

mathematically justified belief in a true proposition whilst being lucky.

20This claim is made, for example, by [Hamkins, 2012].
21I thank Konstantinos Konstantinou for suggesting that cases of the kind I’m dis-

cussing transfer to this context, and John Burgess and Keith Weber for some further
discussion of this point.
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For example, Frege’s mathematical justification of Hume’s Principle

(and hence the axioms of second-order arithmetic) obtained by prov-

ing it from his axioms (and before the discovery of Russell’s Paradox)

is just such an example. Frege thought (pre-Russell’s Paradox) that

Basic Law V was a logical truth, and certainly felt that he had strong

mathematical justification from true axioms for Hume’s Principle and

theorems of Peano Arithmetic. This kind of example is fairly common,

and can occur in cases where we are able to prove a proposition from a

set of axioms with strictly fewer consequences than the ones we in fact

use. For example, many results concerning braids and left-distributive

algebras are provable on the basis of ZFC, but the original proofs pro-

ceeded via (often very strong) large cardinals (e.g. measurable car-

dinals) before the reduction in strength was discovered. Dehornoy

writes:

It seems to us that the role of set theory in such cases is quite

similar to the role of physics when the latter gives heuristic

evidence for some statements that mathematicians are to

prove subsequently. In both cases, the statements are first

established rapidly but at the expense of admitting some

additional hypotheses or approximative proof methods—

observe that adding a set theoretical axiom is nothing but

adding a new proof method—and the subsequent task is

to give a proof that does not use the additional hypotheses

any longer. [Dehornoy, 2000, p. 600]

On the assumption that these large cardinals were well-justified,

any subsequent inconsistency discovered in them would result in a

Gettier case.22 So even allowing for every consistent theory correctly

describing part of the mathematical realm, it’s still possible to get a

Gettier case from faulty axioms.23

22See [Barton et al., 2020] for some discussion of the example of braids and
[Dehornoy, 2000] for the original mathematics.

23Moreover, any subsequent discovery of reasons other inconsistency to reject the
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One might feel that these cases are not ones of real mathemati-

cal justification since any real mathematical justification should begin

with a consistent set of premises. So long as we think that we have

a determinate grasp on arithmetic, I contend that these issues of ax-

iom selection can be made quite common, even when we restrict to

consistent theories. For, whilst the case of set theory is especially inter-

esting for consideration of competing axioms and foundational ques-

tions, the problem can be made relatively concrete. All we need is to

have a situation in which we prove a true proposition on the basis of

some false ‘axiom’ or other, and this isn’t limited to set theory. Let’s

suppose that one is convinced by the robust evidence in support of

the claim that not every problem solvable by a non-deterministic Tur-

ing machine in polynomial time is solvable by a deterministic Turing

machine in polynomial time (i.e. one believes the statement known

as P 6= NP holds on the basis of the strong evidence supporting it).24

Let’s suppose that with the passing years and growing frustration with

the difficulty of proving P 6= NP , it comes to be adopted as an axiom

in many areas of computer science.25 Now suppose we are given some

problem Pr that is known to be NP -complete, and ask if a particu-

lar deterministic Turing machine M can solve Pr in polynomial time.

Obviously at this point we can provide a very quick simil-proof to

the contrary, Pr is NP -complete, and if we could solve Pr using M

then P = NP , but this contradicts the P 6= NP axiom. Let’s sup-

pose though that in this hypothetical scenario, that P = NP is true on

the standard model of the natural numbers, but is in fact independent

of the axioms of our base theory (let it be ZFC for the sake of argu-

requisite large cardinals after propositions have been proved from them will also
yield Gettier cases.

24See [Aaronson, 2016], §3 for a survey of such evidence.
25It is at least plausible that we’re are almost there in certain areas. In particular,

many cryptographic protocols (e.g. RSA-cryptography) depend on the hardness (i.e.
PTIME unsolvability) of problems in NP . This, however, is a somewhat delicate
issue (e.g. a non-constructive proof of P = NP wouldn’t pose any immediate threat
to cryptographic systems, even if it might shake confidence) and so I’ll set the details
aside.
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ment).26 In other words, there are models of ZFC on which P = NP

holds and (non-standard) models of ZFC on which P 6= NP holds. But

lets suppose that in fact M doesn’t solve Pr anyway, since the complex

and hard-to-follow program doesn’t do the job for Pr even if there is

another Turing machine M′ that does. Here we have a Gettier case—the

grounds for the agent’s assertion that M doesn’t solve Pr are based on a

false principle (P 6= NP ), and the only way to have their simil-proof be

connected to truth is to interpret them as talking about non-standard

models (which, patently, they are not trying to do, unless one has a very

strong kind of relativism in play on which we are not even capable of

singling out the standard natural numbers).

If desired, one can come up with a more general statement of the

problem for models of arithmetic. The P = NP question can be formu-

lated as a Π0
2-statement. If we move to consideration of Π0

1-statement

of arithmetic φ (the Goldbach conjecture or the consistency statement

for your favourite recursive theory extending the base theory will do),

then any situation in which we come to have good evidence for ¬φ,

prove some statement ψ on that basis, but then φ turns out to be in-

dependent from one’s base theory and ψ is true will have the same

flavour: ψ is true but ¬φ can only be true on non-standard models.27

I won’t go into this further—the point has already been made—but it

bears mentioning that this kind of Gettier-case is not necessarily an

isolated phenomenon in set theory, but has the potential to be quite

widespread given the desire to expand our axiom systems in the face

of ignorance.

For the case of axiom selection, no errors need be made in the proof

26[Aaronson, 2016] regards the formal independence of P = NP from suitable set
theories as somewhat unlikely, but it remains an epistemic possibility which is good
enough for current purposes.

27Note that any Π0
1-statement of arithmetic independent from the axioms of ZFC is

true on the standard model. Intuitively speaking, when φ is independent, then there
are models of φ and models of ¬φ, but since every model of arithmetic includes the
standard model as a submodel, and since φ consists in universal quantification over
some quantifier-free χ (i.e. φ = ∀x0, ...,∀xnχ, where χ is quantifier free), φ has to be
true on the standard model.
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to get the Gettier case. We therefore need to identify another kind of

luck with respect to mathematical justification:

Luck in origin. We say that agent S’s mathematical justification of a

true proposition φ exhibits a higher-degree of luck in origin iff more of

the ‘axioms’ used in (more) important steps in the simil-proof are false.

The cases we have considered here are mostly ones solely of luck in

origin—we are lucky that our false axioms yield true statements. Still,

luck in origin can be combined with logical and enthymematic luck,

we might make mistakes in the steps of our reasoning in addition to the

axioms chosen.

Note that in examples of luck in origin we have a falsehood at the

root of the problem (a ‘false lemma’ in Harman’s sense of the term)

namely (depending on the example) PFA, P 6= NP , or the negation of

our Π0
1-statement φ. We might then ask if it is possible to get rid of this

false lemma and have a situation in which the agent is neither clearly

epistemically blameworthy nor uses a false mathematical proposition.

As I’ll now argue, this is possible (and indeed actual).

2.3 Black box lemmas

The kind of example we will consider concerns the use of lemmas as

black boxes. What does it mean to say that we are using a black box lemma

or a result as a black box? In the course of constructing a simil-proof,

we may use other results. Some of these results are well-understood

by the prover, others less so. More generally, we can define:

Black box lemma. We say that a proposition φ is being used as a black

box lemma by an agent S who knows a simil-proof SP , iff:

(i) φ is used in the simil-proof SP .

(ii) φ is accepted by the mathematical community as a theorem.

(iii) S does not have a simil-proof of φ (in the sense that S would not

be able to defend the steps of φ’s simil-proof themselves).
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The metaphor of a ‘black box’ reflects this state of affairs. φ may be

very useful to S in proving a theorem, but the simil-proof of φ might

not be well-known to S (say because φ’s simil-proof is very complex,

or uses resources from a field different from S’s expertise). The use

of black box lemmas is fruitful and very important for the develop-

ment of mathematics as a community: It allows mathematicians with

diverse expertise to use each other’s results. Moreover, it is unreason-

able to expect mathematicians to understand all dependencies in their

knowledge, this may be too time costly.

With increases in the complexity of mathematics and the interlink-

ing of various established results, it might be the case that the use of

black box lemmas is essential. Consider the theorem on the classifica-

tion of simple finite groups. This theorem is (a) accepted by the mathe-

matical community, and (b) no one single person really knows its simil-

proof—the simil-proof has been established by a huge network of re-

searchers proving their own small part of it and the combined work

totals many thousands of pages. Now, any use of this theorem in a

simil-proof (say by showing that a group is both simple and finite and

therefore must belong to one of the relevant classes) is essentially using

the theorem as a black box, one cannot have a simil-proof of it—the

argument is just too large. Proving results using the classification of

finite simple groups as a black box lemma is now so common in group

theory that it has its own acronym (CFSG).28 Whilst the example of the

CFSG is especially vivid—a human agent cannot possess the currently

accepted simil-proof—it can also be made more mundane, this kind of

phenomenon will occur wherever the difficulty of all lemmas relied on

in the proof exceeds the mathematician’s ability to know those proofs.

The same goes for cases outside one’s field of expertise. Often it

28I thank Ben Fairbairn for discussion of the use of the CFSG in group theory. A
survey of some problems solvable with the CFSG is available in [Cameron, 1981],
some of the problems therein (e.g. Schreier’s Conjecture that the outer automor-
phism group of every finite simple group is solvable) are still open without the CFSG.
It should be mentioned that some group theorists (including Cameron) express a de-
gree of unease about using a theorem with a simil-proof that cannot be known by
any (human) mathematician.
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is simply too labour intensive or inefficient to learn an entire area that

one is not familiar with in order to understand a complicated lemma

that is useful for a given proof. This attitude is backed up (to a degree)

by some mathematicians’ opinions on the matter. In a recent interview

study [Andersen et al., 2020] present the following observations con-

cerning a question on MathOverflow about when it is acceptable to

use a lemma as a black box:

[Sauvaget, 2010] raises the question of when one should

check the results of others before using them in one’s own

proofs. And similar questions have been discussed else-

where on MathOverflow... In his response to Sauvaget’s

question, Fields medalist Timothy Gowers suggests that,

“If a result is sufficiently accepted by experts you have

good reason to trust, then the result can be trusted.”

Matthew Emerton writes that, “If a result is generally cer-

tified by experts, is well-established, and widely used and

understood (even if not by you personally), then there is

surely no problem in quoting it, applying it, and relying

on it.” Another Fields medalist, Terence Tao, gives a sim-

ilar comment to a blog post [Kowalski, 2009]. Tao writes

that, “If [the result] is prominent enough, and one trusts

the practitioners of that field, then presumably it has been

checked and understood by the experts, and it would be

safe to cite.” [Andersen et al., 2020, p. 3]

Further, the interview partners they consider generally regard the

use of lemmas as black boxes as acceptable (though there are some ex-

ceptions). Kowalski (in a blog post) points to this labour-saving feature

(though he also acknowledges that he has some reservations about the

practice):

To give a concrete example, I have no doubt that the Rie-

mann Hypothesis over finite fields is true, but although I
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have really done a lot of reading about it, and can claim

to have gone in great detail in the first proof of Deligne,

I can not yet claim to have mastered the second—which

I’ve used much more often in my work (and even with the

first, I have certainly not a full mastery of the total amount

of background material, such as the complete proof of the

Grothendieck-Lefschetz trace formula). This example is not

academic at all: many analytic number theory results de-

pend on estimates for exponential sums which are not ac-

cessible at all without Deligne’s work and its extensions,

but very few are the analytic number theorists who under-

stand the full proof. [Kowalski, 2009]

What we have here is a feature of mathematical justification anal-

ogous to the use of testimony in epistemology more widely (indeed,

this is how [Andersen et al., 2020] cash out the phenomenon). This

then leads to the familiar kinds of Gettier-case that we see in the wider

literature on epistemology where testimony from a reliable source re-

sults in Gettiering. Suppose that I prove some theorem φ, on the basis

of a lemma ψ that I am treating as a black box (where the simil-proof

of ψ is widely accepted). As it turns out though, the simil-proof of ψ

is flawed, but ψ is true. So my mathematical justification in φ is some-

what lucky—it depends on using a true proposition that is widely ac-

cepted, but for which the accepted simil-proof is flawed.

This luck made clearer when we consider the modal behaviour of

my doxastic and epistemic states. In the world at which the flaw is

spotted early, and the publication of the lemma delayed until after I

am dead, I don’t come up with my simil-proof, and hence do not take

myself to have a mathematically justified belief in φ. Presumably, it

is also plausible that for many cases there will be proofs of ¬ψ using

similar flaws, and in such cases I might end up going on to ‘prove’

¬φ instead (say when my proof-strategy is to show that φ and ψ are

equivalent). In this way, it seems that my beliefs and justification are
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not modally robust; there are relevant ways in which the world could

be lightly perturbed and in which the same (or a similar) justification

would either (a) not be regarded as a proper justification, or (b) lead

me to a false ‘theorem’. In the case where my simil-proof depends

upon a legitimate black box lemma, it’s plausible that stronger pertur-

bations in modal space will be required to dislodge my mathematical

justification.

Despite this problem with my mathematical justification, I have not

done anything obviously epistemically culpable just by using a lemma

as a black box and indeed my simil-proof is in perfectly good working

order. However, it does not seem right to say that I know since my

belief in φ is based upon ψ which has a flawed simil-proof.

Importantly, there are actual examples of the flavour we describe.

Voevodsky’s example from the introduction is an interesting case.

In particular, some of the results from ‘Cohomological Theory’ were

widely used before the error was found and diagnosed.29 The use

of the flawed results by authors other than Voevodsky constitutes a

Gettier-case; they were lucky that the parts of the paper relevant for

applications could, in fact, be salvaged.

Examples are easily multiplied. Dehn’s Lemma (a topological the-

orem about the mappings of a disk) was thought proved by Dehn

in 1910 (in [Dehn, 1910]) a flaw was found in 1929 by Kneser (see

[Kneser, 1929]) and it was finally proved only by Papakyriakopoulos

in 1957 (in [Papakyriakopoulos, 1957]). The ‘result’ in 1910 ‘resolved’

an important problem in topology at the time, and likely would have

been used in the ‘unknown’ period 1910–1929.

The Four Colour Theorem (that any map can be coloured with

four colours) was thought proved 1879–1891, but it wasn’t until Ap-

29For ease, I repeat part of an earlier quotation from [Voevodsky, 2014a]: “Starting
from 1993, multiple groups of mathematicians studied my paper at seminars and
used it in their work and none of them noticed the mistake.” Voevodsky is espe-
cially clear about the usefulness of the work in his lecture [Voevodsky, 2014b] (upon
which [Voevodsky, 2014a] is based), and emphasises the usefulness of the results in
‘Cohomological Theory’ between 14:20 and 17:00 of the lecture (see especially the
remarks occurring at around 15:30).
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pel and Haken’s computer-assisted proof in 1974 that it was finally

proved. Any use of the Four Colour Theorem (or indeed the Five

Colour Theorem—the proof of which can be salvaged from Kempe’s

proof) between 1879 and 1891 can then be regarded as a black box

Gettier-case.30

Moreover, this can happen with unsurveyable proofs. The case of

the classification of finite simple groups will again serve as our exam-

ple. As Solomon relates:

The literature of the Classification was always challenging,

coming in massive 200-page papers. Nevertheless, there

were always individuals and seminar groups that made se-

rious efforts to read and digest most of the papers which

appeared during the years 1960–1975. At least 3,000 pages

of mathematically dense preprints appeared in the years

1976–1980 and simply overwhelmed the digestive system

of the group theory community. Mason’s 800-page qua-

sithin typescript has achieved some notoriety, inasmuch as

it has never been published. More accurately, it is an ex-

treme point on the spectrum of incompletely assimilated

manuscripts from the latter years of the Classification. In-

deed, it was not until 1989 that it was noticed that certain

small subcases of the problem remained untreated in Ma-

son’s typescript, a gap which Aschbacher filled in a type-

script distributed in 1992. [Solomon, 1995, p. 236]

These errors (which lay undiagnosed for a time) might, for all we

knew, have been fatal to the proof. And in this case it is clearly unrea-

sonable to expect the relevant agent to follow up all dependencies of

the relevant proof—that is to ask for an impossibility. These kinds of

cases are indicative of the following kind of epistemic luck:
30See [Sipka, 2002] for a discussion of the history of the Four Colour Theorem.

I thank Ben Fairbairn for directing me to the Four Colour Theorem example, and
Vadim Kulikov for pointing out Dehn’s Lemma. Both Dehn’s Lemma and the Four
Colour Theorem are also discussed by [De Toffoli, 2021].
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Luck in dependence. We say that agent S’s mathematical justification

of a true mathematical proposition φ exhibits a higher-degree of luck

in dependence iff more of the mathematical justifications of accepted

propositions on which S’s simil-proof of φ depends (which may in turn

be justified by a simil-proof held by someone other than S) exhibit

either luck in origin or luck in reasoning.

For many cases of luck in dependence, in particular where the only

kind of luck at play in the flawed simil-proof on which S’s simil-proof

depends is enthymematic luck (i.e. there is no logical luck or luck in

origin), it is hard to say that (a) S is epistemically blameworthy (after

all, the error does not lie with them, and since there is no logical luck,

the error may be very hard to diagnose), and (b) there are no obvious

false mathematical propositions at play in S’s mathematical justifica-

tion.31

Apart from the differences in the kind of luck at play, there is a

question in all this as to how different the case of black box lemmas and

axiom selection are. For, one might think, in the case of a black box

lemma the agent is (roughly speaking) treating the black box lemma

as a new axiom within their system. So, for example, when a group

theorist uses the CFSG in proving a theorem, they are actually working

in their usual base theory augmented with the CFSG as an axiom. For

now let’s note a couple of disanalogies between the two cases. First, as

noted above, many of the black box lemmas we’re considering are true,

in contrast to false ‘axioms’. Second, in the case of a false ‘axiom’, the

agent has a flawed belief in an area that they understand well whereas

in the case of a black box lemma it is the agents lack of understanding

that necessitates the use of a black box.

Despite these complications, I take it as clear that the fallibilist ac-

count of mathematical justification in terms of possession of a simil-

proof produces Gettier-style cases for mathematical knowledge—one

31Of course one thing we might say is that S has the false belief that their black box
lemma has a legitimate proof. This seems, however, to be a proposition of a more
sociological flavour compared to a mathematical proposition.
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can be mathematically justified in a true proposition φ but intuitively

speaking not know φ.

3 Externalist and internalist dimensions of

simil-proof-possession

What do these cases tell us about mathematical practice and the gener-

ation of mathematical justification? In this section, I’ll argue that there

are two main dimensions in which an agent’s possession of a simil-

proof can vary, namely externalist fit and internalist understanding.

As we’ll see, when a simil-proof has a high degree of externalist fit

and is possessed by an agent with a high degree of internalist under-

standing, the Gettier phenomenon is more easily avoided.

We can start by considering what we want out of simil-proofs. I see

at least two roles (aside from the enjoyment of mathematical activity):

(1.) We want proofs to tell us that some proposition(s) is (are) true.

(2.) We want proofs to deliver mathematical understanding, we want

them to show us how our mathematical concepts relate to one an-

other.

The idea that simil-proofs fulfil something like these roles appears

variously throughout the literature. I take it that (1.) is beyond re-

proach. An awareness of (2.) is also prevalent, however. It perhaps

the central claim of [Thurston, 2006] that mathematical understanding

is what is really desired, rather than merely discovering the turth of

propositions. [Rav, 1999] is explicit about the value of proofs beyond

the verification of truth. [Gowers, 2000] speaks of “two cultures” of

mathematics, and in particular that for some mathematicians the point

of solving problems is to understand mathematics better and for others

the point of understanding mathematics is to solve problems better.

Each facet of mathematical activity motivates a different facet of

mathematical justification that can be fulfilled to a greater or lesser
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degree. I’ll deal with each in turn. Regarding truth, we want our simil-

proofs to map on to the mathematical facts appropriately. We therefore

define the following:

Externalist Fit. A simil-proof (held by a subject S) exhibits a higher

(lower) degree of externalist fit iff more (less) of the steps that S takes

in the simil-proof fit the mathematical facts (i.e. each step is true and

follows logically from the previous steps).32

A few clarifications are in order here: (1.) By ‘mathematical facts’ I

do not mean to commit to any platonistic or correspondence theory of

truth. Most accounts of mathematical ontology have some account of

what mathematical truth should come down to, even if they are non-

platonistic in nature. This might require a paraphrase, a fictionalist

(for example) can still talk about degrees of externalist fit even though

they think that (strictly speaking) mathematical claims are false, for

them it is just that mathematical truth comes down to truth within the

relevant fiction. (2.) A requirement of fitting the facts does not neces-

32One related externalist idea (that served as the starting point for this condition) is
through considering [Jenkins, 2008]’s account of mathematical knowledge. Jenkins
suggests that S knows that P iff:

• S believes P .

• P is true.

• P is a good explanation for S believing that P , for someone not acquainted
with the particular details of S’s situation (an ‘outsider’).

Where an ‘outsider’ O is defined as follows:

(1.) O is rational, and can understand the content of S’s belief that P (i.e. is capable
of entertaining the proposition P ).

(2.) O is aware of commonplace facts about people and their mental lives, i.e. facts
about what it is like, in general terms, to be a rational thinking person.

(3.) O is not aware of any special facts about A or A’s situation. O is aware that A
is a person and that A believes that P , but that is all.

For Jenkins then, to be a knower is to have ones beliefs be explained by the math-
ematical facts, and this fact to count as a good explanation to an observer. Jenk-
ins’ account of knowledge is itself subject to particular kinds of Gettier case (as
[Tennant, 2010] points out), however it presents one way of thinking about an ex-
ternalist desideratum on mathematical justification and is suggestive of the aspect of
externalist fit.
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sitate simil-proofs being composed of sequences of propositions. S’s

production and presentation of a picture-proof, for example, can per-

fectly well correspond better or worse to the mathematical facts, even

if one takes a view of mathematical justification on which such dia-

grammatic reasoning does not constitute a sequence of propositions.

(3.) The dimension of externalist fit attaches to the simil-proof (in con-

trast to the agent’s possession thereof). (4.) There is no obvious way

to guarantee that our simil-proofs do track the facts (although as we’ll

discuss later there are things we can do to increase our confidence that

they do).

A high degree of externalist fit is clearly desirable, but does not tell

the whole story. In particular, it does not guarantee that an agent has a

high-level of mathematical understanding in knowing a particular simil-

proof. For example, blindly following a known formula may exhibit

an exceptionally high degree of externalist fit, but tell us little beyond

the fact that a certain proposition is true. (Many of us will be personally

familiar with the example of blindly following the quadratic formula

x = −b±
√
b2−4ac
2a

at school without a clue as to why it works.) We there-

fore want to examine the following desideratum on the possession of

simil-proofs:

Internalist Understanding. S’s possession of a simil-proof exhibits a

high degree of internalist understanding iff S understands how the pieces

of their simil-proof fit into a wider framework of knowledge, and un-

derstands the conceptual dependencies of the resources employed in

their simil-proof. We define a low degree of internalist understanding in

the obvious way.

Of course this condition is itself up for philosophical interpreta-

tion, what constitutes mathematical understanding is no easy matter. I

am, however, happy to work with the notion on an intuitive level for

the purposes of this paper (though I remain open to debates concern-

ing how it should be sharpened). It may be, of course, that mathe-

matical understanding is itself a multi-faceted notion. Note that inter-

34



nalist understanding is a dimension in which a subject’s possession of

a simil-proof can vary, rather than any property inherent in the simil-

proof. Whatever one’s characterisation of mathematical understand-

ing, it seems to be a pretty clear desideratum on possession of a simil-

proof that it be accompanied by understanding.

The dimensions of externalist fit and internalist understanding are

naturally related, but can be independent. S’s knowledge of a very

gappy simil-proof that uses many black box lemmas may exhibit nigh-

perfect externalist fit, but a low degree of internalist understanding—

S does not understand how the relevant steps of the simil-proof are

conceptually related to other areas and does not understand the con-

ceptual dependencies of the black boxes. On the other hand, an agent

may have an excellent understanding of an area, but produce a simil-

proof that has a reduced degree of externalist fit, as when a strong

established researcher simply makes an error and produces a flawed

simil-proof (e.g. the earlier discussed examples of ♣, ‘Cohomological

Theory’, and ZFC-Powerset). In what one might think is the ideal case,

we have both—a perfect externalist fit between the steps in the simil-

proof and mathematical reality, and a clear understanding of how the

simil-proof fits into our wider mathematical apparatus. Indeed, one

would hope that the dimensions are related—as we obtain better in-

ternalist understanding of a simil-proof, we become more likely to

externally fit the mathematical facts, and a high-degree of external-

ist fit offers more opportunity for internalist understanding. Sadly of

course, S’s possession of a simil-proof may have neither—it may be

both founded on mathematical sand and S may have a poor under-

standing of the concepts (and, again, these two features may be related

to one another).

The fact that possession of a simil-proof can vary in degree with

respect to both externalist fit and internalist understanding suggests

an interesting phenomenon: There is a sense in which the Gettier-

phenomenon itself is a matter of degree. It is very rare (except perhaps

in trivial and easy cases) that we have a perfect correspondence be-
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tween the steps of the simil-proof and reality as well as understand all

the dependencies of our proof, especially where difficult research-level

mathematics is concerned. In this sense, our mathematical justification

via possession of simil-proofs is almost always Gettiered to a degree and

imperfect.33 This presses the following problem: Given that a degree

of imperfection is ubiquitous in mathematics, and given that it may be

very hard to diagnose, what should we do about the matter?

4 Upshots for mathematical practice

We now have a robust sense of the Gettier-phenomenon regarding

mathematical justification, and two important dimensions in which

possession of a simil-proof can vary (namely externalist fit and inter-

nalist understanding). These, I will argue in this section, highlight

several epistemic upshots for mathematical practice.

Some ‘upshots’ are trivial or clearly an established part of math-

ematical practice, and so I relegate them to merely being mentioned

in passing. Obviously enormous non-trivial gaps in proofs are to be

avoided and researchers should endeavour to work with as much care

as possible. Furthermore, it’s clearly to be regarded in a result’s favour

if (i) its simil-proof has been checked by multiple agents (increasing

our confidence in externalist fit) with multiple different backgrounds

(increasing our confidence that there’s good internalist understanding

to be had), and (ii) been integrated in other areas (again increasing our

level of internalist understanding).34 However there are some further

respects in which we might regard our two dimensions as yielding

upshots for mathematical practice.

Folklore theorems. A phenomenon which is pervasive in mathemat-

ics is the existence of theorems that are ‘folklore’. These can often take
33I thank Deniz Sarikaya for this suggestion.
34This checking from multiple perspectives is considered by

[Andersen et al., 2020].
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the form of unpublished notes (that have subsequently been lost) or

proofs that are regarded as easy and known, but have not been writ-

ten down. The present discussion shows that the acceptance of many

folklore results is fundamentally bad practice. Such theorems fall into

the following categories:

(1.) A result where there is unclear attribution (e.g. because the result

is very old and/or was proved outside of the published litera-

ture by multiple people independently) but has appeared in text-

books/graduate theses etc. (with attribution to the ‘folklore’).

(2.) Results that are genuinely trivial.

(3.) Results that are merely believed to be easy or known.

Cases (1.) and (2.) are benign and so I set them aside. However case

(3.) is problematic, we lose shareability of the proofs and the ability to

scrutinise both externalist fit and internalist understanding, and may

invite in logical, enthymematic, and dependence luck. A recent exam-

ple, discussed in [Rittberg et al., 2020], concerns the attempted publi-

cation of a paper containing a result in topos theory that was rejected

on the grounds of the result already being part of the folklore. On

examination, however, the ‘standard’ folkloric proof was found to be

flawed (although the theorem was true). As such, use of the folklore

theorem constituted a Gettier-case before discovery of the flaw. Dis-

cussing the issue André Joyal (a prominent category theorist) writes:

Although considered “folkloric” by some experts, the re-

sult does not appear in the literature. I had believed that

one could directly deduce it from the theory of classify-

ing toposes of Makkai and Reyes. It is only recently, in the

context of a discussion with Caramello, Johnstone and Laf-

forgue, that the latter attracted my attention to an aspect of

Caramello’s proof which I had missed... Surprised by this

observation, I tried to exhibit the “folkloric” proof that I
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thought I had of this theorem. With my great astonishment,

it took me a night of work to construct a proof based on my

knowledge of the subject, and the proof depended only par-

tially on Makkai-Reyes’ theory! [Joyal, 2015, italics mine]

Key to note here is that not only were we in a Gettier situation

with this theorem, but we see clearly problems along the dimension of

internalist understanding. In addition to the mere fact that the simil-

proof was flawed, it was flawed in such a way that the conceptual

dependencies were not well understood by experts who felt they had a

simil-proof (in the end, the resulting proof depended only partly on

resources it was thought to hinge upon).35

There is thus value in writing folklore theorems down and making

them shareable. If they are really trivial, the proofs can be given to stu-

dents as exercises or included in textbooks. If they are merely thought

to be ‘easy’, they can either be given to graduate students for presen-

tation in theses36 or should be published (either in a relevant journal

or on a public pre-print archives like the arXiv).

Methodological pluralism in mathematics. The previous example

speaks to a practical change we can make in avoiding one source of

logical, enthymematic, and dependence luck. There are also practical

steps we can take to assuage worries of luck in origin. The example of

the PFA-Lykovs (and related cases closer to home) showed that we can

35It may also be that the original folklore simil-proof contained inferences that did
not logically follow from one another, and so exhibited poor externalist fit. To show
this conclusively, however, we would have to exhibit models witnessing the failure
of these logical implications, and this seems to be in itself a significant mathematical
question.

36Three nice recent examples from logic are (i) Regula Krapf’s PhD thesis
[Krapf, 2017] contains simil-proofs of some folklore results concerning global choice
and bi-interpretations between second-order arithmetic and set theories in which
every set is countable, (ii) Francesco Parente’s clarification of some folklore proofs
relating to forcing axioms (in [Parente, 2012]) and (iii) Jeroen Hekking’s presen-
tation of Zermelo’s Quasi-Categoricity Theorem in contemporary notation (in
[Hekking, 2015]). Further examples of such results being clarified are now easy to
find in mathematics, and often PhD theses begin by setting up some known folklore
proofs to feed into the main results later.
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be mathematically justified in a proposition, have done nothing wrong

in our proof, but still fail to have good externalist fit. Whilst a degree of

focus can be mathematically beneficial—great strides are made when

intelligent people focus solely on a specific range of problems from

within a specific axiom system—it comes at epistemic cost: Mathemat-

ical monism results in the possibility of luck in origin and our beliefs

being explained by falsehoods. This suggests that a methodological plu-

ralism in foundations is advisable—we should encourage the study of

multiple different axiom systems and cross fertilisation between these

different systems. This is so even if one is ontologically a believer that

there is a true axiom system, the possibility that one is wrong should

motivate one to accept the study of competing frameworks, in order

that we miss as few live possibilities for well-motivated axioms as pos-

sible.37

Within this context, the desire for externalist fit indicates further

epistemic value in mathematical practice to what [Koellner, 2009] calls

‘overlapping consensus’. There are certain statements (e.g. PD) that

are agreed on by multiple strong theories. The development and study

of multiple axiom systems, and finding what lies in the intersection

of all their consequences, increases the chance that at least one of the

systems is the correct explanation for believing particular statements,

decreasing the risk of luck in origin. Oddly, a strong belief that there

are final answers to independent questions motivates consideration

of a pluralism concerning the study of different theories—if only to

ensure that we have the correct system within our purview.

5 Conclusions and open questions

In this paper I’ve argued that given a fallibilist account of mathemat-

ical justification, mathematical Gettier cases are not just possible, but

in many cases are in fact actual. I’ve also argued that this highlights

37Similar arguments are made with respect to ignorance in mathematics in
[Barton, 2017].
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some important upshots for mathematical practice, in particular con-

crete steps that can be taken to make mathematical claims more epis-

temically tractable with respect to internalist understanding and exter-

nalist fit.

We have seen a smattering of different upshots that we might take

from the dimensions of externalist fit and internalist understanding,

and how the Gettier phenomenon regarding SP -justification informs

these. However, there may be many more. We therefore ask:

Question. What further upshots of the Gettier-phenomenon, external-

ist fit, and internalist understanding are there for mathematical justifi-

cation and the philosophy of mathematical practice?

Our arguments did depend on a somewhat specific account of justi-

fication (namely SP -justification), though one I think is broadly speak-

ing correct. Of course there are rival epistemologies out there, and so

a natural question is:

Question. How does taking different conceptions of the nature of

mathematical justification affect the Gettier-phenomenon, and does

this change the various upshots we see for mathematical practice?

One final and broad ranging question concerns the agents involved

in mathematical justification. Throughout, I have been concerned with

the kind of epistemic status conferred when a single person has a simil-

proof. However, we might think that the appropriate agent is actually

the community as a whole. Indeed both the example of black box lemmas

and axiom selection depended on looking at the epistemic states of an

isolated individual embedded within a community. This suggests that

the following question is of key importance:

Question. How are (i) the status of the Gettier-phenomenon, and (ii)

the relevant upshots for mathematical practice, affected by a move to

communal rather than individual epistemic agents?
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