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By the uniqueness of the minimum, " = ¢ (X). Since (z,) is bounded we conclude that
(t,) converges to ¢ (A). This shows that ¢ is continuous. [ |

Lemma 2. limy_, ,, ¢(A) = 0 and lim,_, o+ |p(X)| = +o00.

Proof. Let (A,) be a sequence such that lim,_, ., A, = +o00, and let t, = ¢ (1,). For
t € R, we have f(t,)/1, + |t,| < f(¢)/ A, + |t], and in particular f(z,)/A, + |t,] <
f(0)/A,. Let Aq be a fixed positive value, and let m = infg[ f (t) 4+ Aolt]|]. Now f(¢,) >
m — Aolt,|, so (1 — Xo/A)|t,| < (f(O) — m)/kn. Therefore lim,,_, o, 1, = 0.

For the other claim of the lemma, let (),) be a positive sequence that tends to zero,
lett, = ¢(X,), and let ¢’ be a limit point of (z,) (if one exists). The argument of Lemma
1 proves that for any real ¢, f(¢) > f(¢'). That makes f(¢') a global minimum for f,
contrary to the hypothesis. Since (t,) has no limit point, lim,,_, », |#,| = +00. [ |

From these two lemmas, we see that the range of ¢ contains (0, o) or (—o0, 0)
(but not both). We will show that in the first case conclusion (a) holds. Similarly, the
second case leads to (b).

Assume the range contains (0, 00), and let m(1) = infg (f(t) + )»|t|). Now f(t) >
sup, (m(x) — Alr]). If t = ¢ (1), then f (¢ (1)) = m(1) — Al¢p(A)|. Thus f is the point-
wise supremum of a family of affine functions on (0, 00), so f is convex there. We
claim that f is actually strictly convex. Indeed, if f is affine on some interval [a, b]
with 0 < a < b, then we can choose A such that the function f; given by fi(¢) =
f (@) + AJt| reaches its infimum at a point of (a, b). Since f; is is affine on this in-
terval, it is minimized at an interior point only if it is constant on that interval, which
contradicts the uniqueness of the minimum point.

Let s, ¢ be given with t > 0 and —f < s < ¢. There exists A such that r = ¢ (A).
Thus

F@s)+Als| > f() +Alt] = f(t) + Als].

We obtain f(s) > f(t). If —t < s <t, we obtain f(s) > f(¢).) For the integral
inequality, we have —[u(x)| < u(x) < |u(x)|. So f(u(x)) > f(Ju(x)]). Since f is
convex, Jensen’s inequality yields

/Qf(u)zv/gf(lul)zf(/glul)-

It is a strict inequality since u is not essentially constant and f is strictly convex.

Also solved by R. Stong.

Squares On Graphs

11402 [2008, 949]. Proposed by Doru Catalin Barboianu, Infarom Publishing,
Craiova, Romania Let f : [0,1] — [0, 00) be a continuous function such that
fO) = f(1) =0 and f(x) > 0 for 0 < x < 1. Show that there exists a square
with two vertices in the interval (0,1) on the x-axis and the other two vertices on the
graph of f.

Solution by Byron Schmuland and Peter Hooper, University of Alberta, Edmonton, AB,
Canada. Extend f by letting f(x) = Oforx > 1. Define g(x) = f(x + f(x)) — f(x)
for x > 0. If there exists x € (0, 1) with g(x) = 0, then a square as required exists with
vertices

(x,0), &+ f(x),0), & f(x), @&+ fQx),[fK)).
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Now g is continuous, so to show that such x exists we will show that y, z € (0, 1)
exist with g(y) > 0 and g(z) < 0. Let z be a value where f takes its maximum. Then
f(@) > f(z+ f(2)),sothat g(z) <0.Since 0+ f(0) =0 < z < z+ f(2), by conti-
nuity there is a value y € (0, z) so that y + f(y) = z. Hence g(y) = f(y + f(y)) —
f) =f@—-f()=0.

Editorial comment. Pal Péter Délyay (Hungary) noted a generalization: Given any
p > 0, there exists a rectangle with base-to-height ratio p having two vertices on the
x-axis and the other two vertices on the graph of f.

Also solved by B. M. Abrego & S. Fernandez-Merchant, F. D. Ancel, K. F. Andersen (Canada), R. Bagby,
N. Caro (Brazil), D. Chakerian, R. Chapman (U.K.), B. Cipra, P. Corn, C. Curtis, P. P. Ddlyay (Hungary), C.
Diminnie & R. Zarnowski, P. J. Fitzsimmons, D. Fleischman, T. Forgécs, O. Geupel (Germany), D. Grinberg, J.
Grivaux (France), J. M. Groah, E. A. Herman, S. J. Herschkorn, E. J. Ionascu, A. Kumar & C. Gibbard (U.S.A.
& Canada), S. C. Locke, O. P. Lossers (Netherlands), R. Martin (Germany), K. McInturff, M. McMullen,
M. D. Meyerson R. Mortini M. J. Nielsen, M. Nyenhuis (Canada), A. Plaza & S. Falcén (Spain), K. A. Ross,
T. Rucker, J. Schaer (Canada), K. Schilling, E. Shrader, A. Stadler (Switzerland), R. Stong, B. Taber, M. Tetiva
(Romania), T. Thomas (U.K.), J. B. Zacharias & K. Greeson, BSI Problems Group (Germany), GCHQ Problem
Solving Group (U.K.), Lafayette College Problem Group, Microsoft Research Problems Group, Missouri State
University Problem Solving Group, Northwestern University Math Problem Solving Group, NSA Problems
Group, and the proposer.

A Trig Series Rate

11410 [2009, 83]. Proposed by Omran Kouba, Higher Institute for Applied Sciences
and Technology, Damascus, Syria. For 0 < ¢ < 7 /2, find

1 >, (—=1)""" sin*(nx)
limx~2 (=1 in’
xl_I)I(l)x > 0gcos¢>+; o ()2 sin”(n¢)

Solution by Otto B. Ruehr, Michigan Technological University, Houghton, MI. We be-
gin with three elementary identities. The first is

S () _ r(r+1)Sin2¢ .
;r sin® ng = Q=P [ =) +drsig] )

This is derived by writing sin® n¢ in terms of exponentials and summing the resulting
geometric series. Now divide (i) by r and integrate with respect to r to get

X 1 (1 —r)? +4rsin® ¢ .
Z P’y sin’ ng = 2 log |: =72 ] . (i1)

n=1

Differentiate (i) with respect to r to obtain

o el 2 1 1[(r—1D?>=202+ 1) sin’ ¢
E nr"”" sin n¢=7——|: — ] (iii)
2(0=r)2 2] [(1=r)2+4rsin’¢]?

n=I1

The limit at ¥ = —1 in (ii) gives us

2, (=1t 1
E (7) sin’ ngp = —— logcos ¢.
n 2

n=1

Now we can write the requested limit as

. O sin®nx] . 5
lim x lim E — 1= S5 | sin ng.
+ n n2x

x—0 r——1

n=I1
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