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RESUMO

A tese busca contribuir para a explicação de duas capacidades cognitivas fundamentais
da inteligência humana denominadas senso comum e holismo situacional. Nas ciências
cognitivas, a tarefa de explicar essas capacidades enfrenta um desafio fundacional: como
é possível à cognição humana distinguir o que é ou não relevante em um número inde-
finidamente multiplicável de contextos? O desafio se caracteriza por uma circularidade:
potenciais soluções acabam pressupondo aquilo que pretendiam explicar, i.e. a sensibili-
dade ao que é contextualmente relevante. O argumento desenvolvido é uma tentativa de
escapar dessa circularidade. Ele tem por base uma análise bidimensional do problema. A
primeira dimensão é representacional e abarca como o conhecimento cognitivo sobre o
que é relevante pode ser armazenado. Ela se associa ao “frame problem” da inteligência
artificial. Na tese argumenta-se que a dimensão representacional do problema pode ser
neutralizada pelo abandono de esquemas representacionais linguísticos em virtude de
uma pluralidade de esquemas representacionais estruturais. Estes permitem que estados
representacionais possam exercer um papel explicativo claro e não trivial, e ao mesmo
tempo permitem um tipo de produtividade representacional que evita o “frame problem”.
A segunda dimensão é inferencial. Ela abarca a sensibilidade à relevância que caracte-
riza nossa produtividade inferencial, i.e. nossa capacidade de inferir o que é relevante
em um número indefinidamente multiplicável de contextos, incluindo aquelas que nunca
encontramos antes. A esse respeito, argumenta-se que a sensibilidade à relevância não
pode ser nem inata, pois mecanismos inatos não podem evitar a circularidade mencionada,
nem aprendida através de mecanismos inatos, pois processos de aprendizado tomam a
sensibilidade à relevância como pressuposto. A alternativa sugerida é que a sensibilidade
à relevância é um gadget cognitivo. Um tipo de mecanismo mental que é herdado não
geneticamente, mas culturalmente. Essa possibilidade é viabilizada a partir do trabalho de
Cecilia Heyes, que descreve como vieses de desenvolvimento culturalmente sedimentados
podem informar a constituição de mecanismos cognitivos. Assim, fatores culturais parti-
cipam da cognição não apenas na forma de informação disponível para processamento,
mas também como elementos que enviesam esse processamento na direção daquilo que é
culturalmente estabelecido como relevante em cada contexto.

Palavras-chave: frame problem; problema da relevância; contexto; ciência cognitiva;
representações mentais; mecanismos mentais.



ABSTRACT

This work aims to contribute to the explanation of cognitive capacities that are essential
to human intelligence: commonsense and situation holism. The attempt to explain them
within the field of cognitive sciences raises a foundational challenge. How can human
cognition distinguish what's relevant and what's not in an open-ended set of contexts? The
challenge is characterized by a circularity. Potential solutions end up relying on the very
capacity that they should be explaining, i.e. the sensitivity to what's contextually relevant.
The argument here developed is an attempt to get out of this circularity. It is grounded
on a bi-dimensional analysis of the problem. The first one is representational and is about
how cognitive knowledge on what's relevant can be stored. This dimension is related to
the frame problem from artificial intelligence. I claim that this representational aspect of
the issue can be neutralized by abandoning language-like representational schemes and
sticking to a plurality of structural ones. They allow representational states to play a clear
and non-trivial explanatory role while enabling a kind of representational productivity
that is not bothered by the frame problem. The second dimension is the inferential one. It
encompasses our relevance-sensitive inferential productivity, i.e. our capacity to efficiently
infer what's relevant in indefinitely many contexts, including ones we've never faced before.
I argue that such relevance sensitivity cannot be neither innate, for innate mechanisms
result in the aforementioned circularity, nor learned through innate mechanisms, for
learning processes themselves rely on relevance sensitivity. The suggested alternative
is that relevance sensitivity is a cognitive gadget. A kind of mental mechanism that is
culturally, rather than genetically, inherited. This possibility is rendered plausible within
Cecilia Heyes’ “cognitive gadgets” framework. She shows how developmental tweaks and
biases culturally established can participate in the constitution of cognitive mechanisms.
Thus, cultural elements can participate in human cognition not only as information sources,
but also in the form of tweaks that bias the processing of that information towards what's
culturally established as contextually relevant.

Keywords: frame problem; relevance problem; context; cognitive science; mental repre-
sentations; mental mechanisms.
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INTRODUCTION

Nothing is more admirable, than the readiness, with which the imag-
ination suggests its ideas, and presents them at the very instant, in
which they become necessary or useful. The fancy runs from one end
of the universe to the other in collecting those ideas, which belong to
any subject. One would think the whole intellectual world of ideas was
at once subjected to our view, and that we did nothing but pick out
such as were most proper for our purpose. There may not, however, be
any present, beside those very ideas, that are thus collected by a kind
of magical faculty in the soul, which, tho’ it be always most perfect in
the greatest geniuses, and is properly what we call a genius, is however
inexplicable by the utmost efforts of human understanding. (Hume, 1965,
p. 24)

Humans can zero in on what’s circumstantially relevant to their goals and expecta-
tions. They can do that for indefinitely many goals within an open-ended set of distinct
circumstances. How is that possible? Whenever this question is posed, it is not unusual
to hear replies like: “Impressive, but what’s so mysterious about it?” Indeed, showing why
it is hard to explain this capacity requires some work.

One of the reasons behind the required effort is that we’re used to seeing relevance
as a solution rather than as a problem. In most philosophical and scientific endeavors,
relevance sensitivity plays the role of an explanatory resource. For instance, communication
is possible because, among other things, we can stick to the relevant portion of our
common background of shared knowledge. As communication develops, we’re expected to
continuously review and constrain this set. Otherwise, the result can be hardly considered
communication. It would be impossible to communicate with somebody that, despite being
able to make perfectly valid inferences, simply can’t stick to the relevant ones. Similarly,
whenever we need to justify a conclusion, we can explain the presence of inferential steps
by appeal to their relevance for the task at hand. One can say, for instance, that a given
inference is there because it helps to select between two plausible possibilities in the course
of an investigation. In this sense, relevance is a tool available for accounts of rationality,
language, epistemology, etc.

But relevance sensitivity is also a problem. It emerges when trying to account for the
cognitive capacities underpinning its aforementioned explanatory roles. More specifically,
it comes to the fore whenever one is trying to fully understand how those mechanisms
work by modeling them from the scratch. This is so because only in this kind of situation
one is required to worry about everything that can bear on the exercise of some cognitive
capacity or performance. As an instance of this point, consider a situation in which
we’re instructing someone how to cook a certain dish. We expect them to be able to
understand an instruction such as “stir until smooth”. This means, among other things,
that we don’t expect the need to specify that the verb “stir” concerns the dish rather
than the cutlery (which could be stirred out of the pan) or the apprentice’s body. We
don’t expect this because we rely on the learner’s good judgment. But if we’re trying to
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model the mechanics of the capacity to understand that instruction, there’s no such thing
to rely on. We have no choice but to address directly questions like: given everything
that is known, how to select just the portions that can bear on the interpretation of
that utterance? That is, how to select the relevant portions? Either the model somehow
prevents inappropriate interpretations of the utterance, or it will fail as an explanation
of why a certain understanding was obtained. The problem is that what’s relevant can
vary drastically from circumstance to circumstance, and the model must account for every
single one of them.

Once we find ourselves in this kind of situation, we’re forced to mitigate the model’s
explanatory reach. This means that, rather than a model accounting for (say) the capacity
to understand English, the model will only account for the understanding of a single
sentence in a very peculiar circumstance (or perhaps a small set of similar sentences in a
very restricted set of circumstances). That is, we avoid the problem of handling the huge
amount of possible circumstances by artificially (and somewhat arbitrarily) narrowing
them down. Although this description makes it sound as if this type of extremely restricted
model is useless, this is not at all the case. A lot of artificial intelligence (AI) models
such as those powering chess engines are instances of this kind. The model concentrates
on what’s relevant for (say) playing chess and ignores everything else. The point is that,
in those models, the ability to stick to what’s relevant is completely put aside, for the
applicability of the model relies on the relevance sensitivity of those using it. We are the
one’s responsible to apply the chess model only when the ability at stake is that of playing
chess rather than, say, to cook.

How can we escape from this predicament? An obvious yet implausible possibility is to
rely on “brute force” and simply start figuring out what’s appropriate to every circumstance.
We do that by throwing assumptions into the model in the form of conditional rules (“if the
situation is such, do that”). Thus, the model can predict different outcomes for different
circumstances, as long as they’re covered by its set of rules. The problem now is to decide
when to stop. The number of required rules can quickly escalate and get out of control,
given the huge amount of possible circumstances. We need to stop somewhere, and the
arbitrariness may be unavoidable (“Enough! This is going to be a model of how one
understand a certain subset of possible English sentences involved in learning how to
cook with certain instruments, certain ingredients and certain conditions of pressure and
temperature.”). But whenever we stop, all we have is again a model with a mitigated
explanatory reach. It still relies on our ability, as designers or users of the model, to tell
the kinds of circumstances in which the model can be applied from those in which it can’t.
This is not hard to see because, even if the model covers a relatively large number of
circumstances, it’s relatively easy to come up with unaccounted ones.

Roughly, this is the general form in which relevance issues present themselves when
modeling cognitive abilities. All that’s needed is a complex dispositional capacity —
not necessarily linguistic — whose output may change in virtue of an open-ended set of
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circumstantial elements. While modeling, either we stop somewhere after accounting for
a relatively small subset of the possible permutations, or we watch them grow without
control as a combinatorial explosion takes place. In both cases, the target capacity is left
unexplained.

“So what?”, one might think. What’s really so difficult about avoiding these undesired
outcomes? Perhaps our cognition is indeed just a collection of domain-limited or special-
purpose capacities? Under this optimistic view, as we create more and more limited-reach
models of specific abilities, we’re closer and closer to the full picture. There’s no reason
for despair, is there?

In my view, this is just one of the many possible ways of confusing a reformulation of
the problem with a potential solution (or dissolution). The core motivation behind this
particular suggestion is the thesis that cognition can be somehow analyzed into mechanisms
that can be fully understood in isolation. But this is a rather strong requirement. It takes
its toll later, when the need to articulate such special-purpose mechanisms in indefinitely
many ways shows itself. The question becomes: what is the articulation of special-purpose
mechanisms that captures what’s relevant in this particular case? This is unavoidable.
We need to account for the productive way in which we can reuse what we know in an
open-ended set of circumstances. Otherwise, we would need a special-purpose mechanism
for each circumstance, which is unrealistic at best.

It is not hard to see that learning mechanisms suffer from the same issue. Learning
without any kind of supervision amounts to a task like this: given everything I know,
what should I infer now? Well, presumably one must infer what is relevant for one’s goals.
But that amounts to a new formulation of the same problem: given everything I know,
which among the possible inferences I can do should be regarded as relevant for my goal?
Again, either we drastically (and artificially) narrow down the set of possibilities and
concentrate on the inferences leading to the domain that we (as theorists) are interested
in modeling (e.g. learning about chess), or we fall victims of the combinatorial explosion
that follows. Notice also that having a learning supervisor is not a direct answer to this
problem. Whenever a mechanism is trying to acquire or improve some skill by following
something else, it must be capable of handling the instructions correctly. But instruction
sets, feedback and encouragement also rely on one’s “good judgment”, i.e. on one’s capacity
to figure out what’s relevant in order to properly follow them (it is no accident that the
cooking example above took place in a learning scenario).

The moral of stories like this is the following: when it comes to relevance sensitivity, it’s
simply too easy to confuse a reformulation of the problem with its solution or dissolution.
If we look back at the history of how problems of relevance have manifested themselves in
the cognitive sciences and AI, we’ll find several examples. Some of them will be discussed
in the course of this work. But looking back for its traces in early cognitive science
work also shows that, most of the time, it was disregarded as a problem for the future
or for somebody else. Most researchers were simply not worried about it. Part of the
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explanation, I suspect, lies in the aforementioned thesis that cognitive intelligence can be
broken down and understood as a cluster of independent mechanisms. The problem, to be
clear, is not that it is possibly false, but rather taking it for granted. Though that makes
intuitive sense, the requisites for a model that attempts to explain a capacity in isolation
are rather different from those that must make room for its further integration with other
mechanisms. In other words, Occamn’s razor is not necessarily a friend in this case. The
simplest model for a capacity taken in isolation may leave out features that are required
for its integration with the encompassing system. But that worry was usually put aside,
and relevance issues were broadly regarded as minor difficulties for when the computers in
which we run our models become powerful enough for us to consider more realistic and
integrative scenarios.

However, relevance issues emerged much earlier than predicted, and they did that
through a quite curious route. In the 1960s, Patrick Hayes and John McCarthy presented
the first description of the frame problem as a practical (yet deep) problem they were facing
in their logicist approach to AI. As Hayes argues (probably until today) and as I’ll argue in
chapter 2, the frame problem must be distinguished: it is not really about relevance, but
rather about modelling change. Nevertheless, it was taken to be a problem about relevance
by philosophers like Dennett and Fodor, and that escalated quickly. That’s why even
today much discussion employs the expression “frame problem” when addressing relevance
issues. It was this confusion that brought them to the fore, not more powerful computers
or increasingly comprehensive models. Perhaps even more curiously, with today’s available
computational power and gigantic linguistic models such as those from the GPT family,
some still have a hard time in seeing the relevance of relevance issues. But now, rather
than a problem “for the future”, it is sometimes taken as a harmless ghost from the past.
A reminiscence of when we still had to build computer models of cognitive capacities “by
hand” instead of using powerful machine learning techniques. Unfortunately, like any other
learning, machine learning also must answer the crucial question: given everything I know
what should I infer now? And even up to this day, that’s only feasible within artificially
circumscribed domains, such as that of recognizing faces or playing a game.1

The history of relevance problems is thus full of different diagnostics of what is to
blame, as well as prescriptions of what should be done about it. Some take it to be a
problem with our modeling tools: they simply can’t express what’s needed. Thus, to
change the modelling clay being used might be enough to buy us what’s needed. Others
take it to be a metaphysical issue: we must partition the world in the right set of joints.
1 Aren’t current large language models (LLMs) — such as those using the GPT family — evidence to the

contrary? They do seem to entertain proper conversations in a quite large number of circumstances,
don’t they? Yes, they seem to do that, but not in a way that throws light on how we handle relevance.
LLMs capture a single domain, which is our usage pattern of syntactic elements in natural language.
They capture what we do in a lot of distinct circumstances, but they don’t capture why or how. What
we expect from it is similar to what we would expect from a tidal frequency model. It can be useful for
making predictions about tides, but it doesn’t shed light on the mechanisms that cause tidal dynamics
to exist and have the shape they do.



19

The details will be properly discussed and need not bother us now. What matters is to
know that much of the dialectics employed in the chapters to come was adopted with this
in mind. As we tell the story of prima facie good answers later revealed as naive, the hope
is that it helps the reader in realizing how deep the issue goes. That’s why considerable
effort was made to carefully discuss matters that are sometimes conflated in the literature.

But this work does not only comprise an interpretation of the failed attempts. It tries
to make a positive contribution as well (and of course risks becoming just another chapter
in the history of failed attempts). I locate it at the philosophy of cognitive sciences, a
place that is much more like philosophy of science than it is philosophy of mind. If there
is any hope for cognitive science’s general project of providing grounds for epistemically
assessing biological or computational states and processes, then we must be able to explain
how capacities that rely on relevance sensitivity are possible. More precisely, we must
be able to formulate empirical hypotheses about how it is done. Thus, we must make
sure that we’re not being constrained nor misled by foundational posits from our favorite
cognitive framework or research tradition. In other words, as Chemero (2009) warned us,
we need to make sure that we’re not distorting or ignoring empirical possibilities through
non-empirical means.

As an instance of how this was handled, consider the use of representations in accounts
of cognitive capacities. I’ve tried to develop the theses I’m presenting in a predominantly
representational framework. The goal is not to claim that representations are necessary
to handle relevance issues, though. It is to show that problems of relevance do not arise
directly from the use of representations (even though some kinds of representation can put
a break on the representationalist’s hope, as we’ll see). Consequently, even if it turns out
to be empirically true that cognition does rely on representational contents in some cases,
that need not worry us any more than it does friends of broadly non-representational
frameworks, such as enactivism and ecological psychology.

With this in mind, I can now present the two core claims of this work:

(1) relevance sensitivity is a cognitive gadget; and
(2) a representational account of this gadget can be forged by using frameworks compat-

ible with representational cognitive pluralism.

Making sense of that requires a lot of unpacking, of course. Hence, in what follows I
provide the core structure of the argument for both claims, as they are presented in the
forthcoming chapters. Sometimes the discussions need to go deep in quite specific matters,
and there’s always the risk of losing track of the big picture. Hopefully, the following
synthesis can be of help with that.

The first chapter concentrates on characterizing what will be called the relevance
problem (RP). At first, it tries to do so in a rather abstract way. This is important, for
a vital point of this chapter is that RP is not a trait of any specific framework. With
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this in mind, I make an effort to provide as framework-neutral as possible conceptions
of commonsense and situation holism. These are two human cognitive capacities that
are exercised in an open-ended set of circumstances. Under the lights of our cognitive
machinery, such circumstances become fully-fledged contexts. A context involves not only
the environmental state of affairs, but our expectations, beliefs and goals as well. I them
present the chapter’s central claim: human contexts are non-saturable. Roughly, this
means that we can’t predict in advance what kind of feature will play a relevant role in any
context. Humans can handle an open-ended set of contexts, and there’s no way to draw any
clear boundary to the number and kinds of features that characterize it. Consequently, RP
presents itself as an explanatory threat in each and every context of human activity. Once
these ideas are presented, I use them in order to assess two radically different cognitive
frameworks: Fodor’s classic cognitivism and Wheeler’s “Heideggerian” cognitive science.
The point is to show how RP presents itself in both frameworks in a rather similar way,
despite one being broadly computational and representational in the most classic sense
and the other is non-representational and non-computational. Importantly, this result
generalizes to other frameworks, which means you don’t get rid of RP by simply picking
(say) ecological psychology or avoiding computational mechanisms.

Right before entering chapter 2, a distinction between representational productivity
and inferential productivity is introduced. Inferential productivity is about the system’s
capacity to entertain an open-ended set of inferences. It is the cognitive capacity that
requires a solution for RP. In its turn, representational productivity is about what the
system has the ability to express through representations. Thus, a central claim of chapter
2 is that representational accounts of cognition face an additional problem, which is
that of accounting for representational productivity. Inferential productivity without
representational productivity can only accommodate a very marginal explanatory role
for representations. But how much of cognition relies on representations is the kind of
thing that should be established empirically, not by limitations in one’s favorite framework.
Fodor’s language of thought (LOT) is the classic way in which cognitive science accounts for
representational productivity. Unfortunately, not only LOT brings the frame problem with
itself (here conceived as distinct from RP), it also preempts solutions for it. Structural, non-
linguistic, representations are presented as an alternative. Unfortunately, these don’t buy us
representational productivity, for their expressive power is domain-specific. The proposed
solution is to employ a bunch of domain-specific representational architectures, hence
representational pluralism. A plurality of architectures enables purchasing representational
productivity without raising the frame problem. In particular, I suggest that certain
articulations between domain-specific architectures may result in increasing expressive
power and that this is a version of what Karmiloff-Smith once called representational
redescription.

Now, people have suggested using structural representations as a possible solution for
the frame problem before. But with a few honorable exceptions, most left the suggestion
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undeveloped. As a result, many contenders could easily and quickly decline the invitation
to properly consider it. Such a hasty rejection is typically grounded in objections that
can be easily dismantled (e.g. “how can one structurally represent abstract concepts like
democracy?”).2 Thus, in order to avoid this fate, one must also show a larger portion of
structural representation’s potential. That’s why chapter 3 concentrates on arguing for
their applicability in real-world cognitive science. The idea that the mind exploits the
representational productivity of structural representations is what I call representational
cognitive pluralism (RCP). In order to ground the plausibility of this idea, I present
suggestions for 1) a theory of representational contents that (hopefully) avoids the crucial
antirrepresentationalist’s concerns; and for 2) the role of representations in the constitution
of attitude contents like beliefs and desires. Going further, in order to exemplify the
usefulness of RCP’s conception of representational redescription, chapter 3 also discusses
RCP’s possible role in the relational redescription hypothesis (Penn; Holyoak; Povinelli,
2008a). Very roughly, this hypothesis is as way of accounting for what makes human and
non-human animal cognition distinctive, even though they stand on the same evolutionary
continuum. RCP’s account of representational redescription buys additional dimensions in
the relational redescription hypothesis. In such dimensions, we can place more fine-grained
empirical hypotheses about what’s distinctively human in cognition. The result of this
long discussion is a powerful set of representational explanatory tools that do not raise
the frame problem and is broadly compatible with the core methodological commitments
of most contemporary approaches such as 4EA cognition (embodied, embedded, enactive,
extended, affective).

The relational redescription hypothesis is not here just to show how nice (I think) RCP
is, though. It helps to unfold the larger dimension in which the claims of chapter 4 will take
place. That’s the chapter in which I make a suggestion of how RP can be handled within
RCP. In order to do that, I introduce Cecilia Heyes’s cognitive gadgets framework and
show how it can be used to overcome important limitations in our capacity to learn what’s
relevant as we learn about the human world. The crucial idea is that cultural evolution can
account not just for information that we can grasp with innate learning mechanisms. It can
explain how the mechanisms employed in processing cultural information get established
as well. This buy us a bootstrap story, i.e. an account of inferential productivity that does
not simply assume relevance sensitivity. We can effectively tell the story of how we acquire
and store knowledge about what’s relevant in the human world. As this story is developed,
I show how the presented conceptions of structural representations and representational
redescription can play crucial roles in it.

Once we know how we can learn what’s relevant, we can concentrate on how this
knowledge is stored and used within cognitive tasks. A decisive part of the suggested
account is that the world of human activities is not only analyzable into specific situations.
2 Spoiler: you just don’t have to.
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It also involves large-scale dynamics that cut across every situation we find ourselves
in. Friendship, for instance, comprises duties and roles distributed alongside a temporal
dimension. The dynamics of friendship is like a story-template that “tells us” from time to
time things like “this is the part where you’re supposed to support your friend”. Inasmuch
as cognition is guided by such templates, it is much like a writer, who has a limited
number of plots to choose from, even if the characters and the details of the story are
always different. Templates like these, I suggest, are always “trying to happen” within
our cognitive machinery. They comprise a sufficiently small yet broad heuristics out of
which we can think an open-ended set of unbounded (i.e. non-saturable) situations. The
set of available templates, as well as the way we exploit the possibilities they afford is
what I call a cognitive style.3 Due to its heavy reliance on cultural evolution, such style is
a cognitive gadget in Heyes’s sense, and hopefully it helps us in understanding how we
can avoid RP every time we engage in a cognitive task.

Finally, in the conclusion I consider what has been (potentially) achieved. I also
quickly discuss some possible caveats, possible future research and RCP’s relation to some
contemporary cognitive frameworks.

3 I know. I’m not a huge fan of the name myself. But it’s hard to find a proper name for something
that’s between the Scylla of an inflexible routine (it may be employed in new ways), and the Charybdis
of a completely unconstrained process.



23

1 THE RELEVANCE OF RELEVANCE

In this chapter I claim that there is a relevance problem (RP) which manifests itself in
at least two human capacities essentially connected with human intelligence: commonsense
holism and situation holism. To ground this claim, I show that these capacities must rely on
the ability to cope with human world contexts, which are non-saturable, raising the question
of how we can account for an open-ended relevance-sensitive context productivity. I show
how the problem haunts two radically different frameworks: Fodor’s cognitivism and the so
called Heideggerian cognitive science, which is non-computational and non-representational.
From this analysis, I argue that RP manifests itself in all contemporary frameworks. Then
I present an overview and set the stage for the positive proposal on how to cope with the
problem that I’ll advance in the next chapters.

1.1 What intelligence amounts to

What is intelligence? If we try to find an answer by looking at the literature comprising
the 1950s cognitive revolution, we’ll be disappointed. The only broad consensus we
might be able to find there is that an accurate definition of intelligence is a secondary
matter. That is, for instance, Turing’s position (Turing, 1936). He believed that to define
intelligence or thought more generally is a pointless task. All we can do is ostensibly
compare someone that does exhibit intelligent behavior (like ourselves) with something
else we’re not so sure about, like a computer chat bot or maybe certain social network
users. This is the basic tenet behind Turing’s famous imitation game.

A first consequence was that researchers needed to think about the phenomenon
of intelligence through the lenses of their favorite framework or technology. But in
choosing a framework, a researcher is inevitably constraining down the set of possible
conceptions. Consider two classical examples: 1) intelligence as the capacity to solve
formal problems; and 2) intelligence as the capacity to adapt in a flexible and fluid way
to distinct environmental contingencies. Both capture something true. We do associate
math or logic problem solving with intelligence, and we also associate intelligence with
the capacity to adapt one’s behavioral outputs to the current circumstances in a flexible,
fast and fluid way. The view (1) was prominent among early Artificial Intelligence (AI)
researchers and cognitive scientists, which formulated step-by-step algorithms designed to
satisfy epistemic constraints. In its turn, the view (2) is prominent among those following
the work of Brooks (1991). For him, intelligent behavior is not a product of programs,
but something that emerges from the complex interaction of the basic perceptual and
sensorimotor capacities of the organism (or robot). Both views have in common that their
respective conceptions of intelligence are articulated in terms of the adopted framework,
and not the other way around. The shortcomings and difficulties of each approach emerges
in trying to achieve what the other does best. On the one hand, logical systems with
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central processors are incredibly inefficient at handling simple tasks that require keeping
track of multiple perceptual cues. To get a product out of the fridge without hitting
something in the way is very challenging for them. On the other hand, to claim that one
could model the capacity to play chess in terms of interacting sensorimotor capacities is at
best a very long shot.

Trying to understand something we don’t know in terms of something else we’re already
familiar with is not necessarily a problem. The strategy is common place in scientific
research. What is distinctive about intelligence, however, is that we have no independent
description of the phenomenon to be studied. Therefore, there is no neutral target against
which framework adepts can measure their progress. In this picture, the only target-related
thing that could put a framework down is a problem that’s insurmountable yet unavoidable.
But how do we know whether a given framework is stuck in one such problem? How much
should we try to solve it before start wondering whether it’s time to buzz ourselves out
of that bottle? Furthermore, even within a given framework there can be divergence on
what should be taken as a pretheoretical sign of intelligence. Researchers like Hutter;
Legg (2007) have found more than seventy different conceptions, and conjectured that
there are as many conceptions as there are researchers. It is true that they all share a
significant intersection: the capacity to do the contextually appropriate thing and the
capacity to rationally pursuit a goal, for instance. However, even small intra-framework
disparities might lead to clashes about whether a given model or theory is acceptable or
not, and there is no sign of agreement about what would be a good enough description of
the phenomenon that is independent of such models.

Whether intelligence has an essence is still a wide open question, and I have neither
the intention nor the tools to answer it. I believe the best we can do so far is to think
of intelligence as a cluster of different, yet closely related, cognitive capacities. John
Haugeland provides a first clue to outline this cluster. In his view, intelligence is “(. . . )
the ability to deal reliably with more than the present and manifest” (Haugeland, 1996, p.
125). However vague, the conception is informative. I’ll use it as a starting point and then
narrow down its scope towards the specific capacities I want to target.

What does Haugeland mean by “more than the present and manifest”? He has in mind
the possibility of being sensitive to patterns or features of the world even in the absence
of a direct causal connection. The usual examples come from cognitivist literature, which
emphasizes “higher” cognitive capacities like planning a weekend or thinking about what
would it be like if someone long gone were still here. Such cases are taken to imply a
causal detachment between the organism and the object of thinking. However, at least in
humans, this capacity is ubiquitous in “lower” online cognitive processes as well. That’s
what we do when we take an object to be heavy, for instance. The weight of an object
is an unobservable, it is something we deploy to make sense of how that given object
causally interacts with its surroundings. Our sense of how fast would the object fall after
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letting it go in the air is a product of our sensitivity to this non-observable property.1

This kind of knowledge about weight plays a role in what underpins both the capacity
to predict outcomes (“it will fall if you put it there”) and the capacity to infer the likely
causes of a state of affairs we happen to find (“I think it broke because it fell from there”).
Furthermore, there can be all kinds of intermediate cases among the paradigmatic ones.
Typical examples are those in which the causal connection is momentarily lost. If we’re
visually tracking someone in a crowd from a long distance, we might lose visual for a while,
but sometimes we can reliably predict when perceptual contact will be reestablished (“he
went behind that group of people, but considering his pace and the direction in which he
was going, he’ll probably reappear on the other side in a few seconds”).

This leaves us with a huge set of cognitive capacities to consider. My intention is to
discuss just two that I regard as fundamental ones. Following Haugeland (1998a) I’ll refer
to them as commonsense holism (or simply commonsense) and situation holism. Before
introducing them, a terminological remark: in order to present my view of these capacities,
I’ll talk about models. But at least for now I want to be as neutral as possible as to what
exactly a model is. Some claim that the organism itself can be regarded as a model of
its environment.2 Others, like the friends of classical cognitivism, might regard them as
computational or symbolic. But right now I’m only interested in the capacity to apply a
model to the world and use it to ground one’s behavioral outputs, that is, in the capacity
to render the world intelligible. I take both commonsense holism and situation holism to be
characteristic of how humans do it. In what follows, I’ll try to describe these phenomena
in ways that assume neither properties nor tools from any particular framework.

1.1.1 Commonsense holism

Commonsense holism is about the huge background of knowledge (both know-how
and know-that), that underpins human cognitive activity. It’s scope might be a matter
of dispute, but some examples are probably enough to show that it cannot be regarded
as a minor or secondary capacity. Consider first some social contexts. If the bell rings
at a friend’s house, commonsense knowledge is what allows us to know whether it is
appropriate or not to open the door. If you’re not so intimate, it will probably sound weird
or rude. But if you’re age-old friends, it might be taken as a favor. These are artificially
clear conditions, though. Real circumstances are filled with nuance: if you’re visiting your
age-old friend whose fiancé has just moved into his/her house, then despite your previous
familiarity with your friend and where he/she lives, it might be more appropriate not to
get involved and let the hosts handle it.
1 What I have in mind are episodes in which one can regard weight as a property that can be attributed

to many objects and that comes with certain causal powers. There can be of course less demanding
senses in which weight is not regarded as a “non-observable”. This is will discussed at some length
in chapter 3, were we’ll address the gap between the cognitive resources available to human and
non-human animals.

2 See, for example, Friston (2013).
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Background knowledge about social contexts also underpins other cognitive capacities,
such as reading a text. Consider the following story: 3 Rochelle is crossing the street
towards a store. As she walks, her wallet falls. Rachel happens to be there and sees
everything. She tries to get Rochelle’s attention across the street, but to no effect. Rachel
then reaches Rochelle’s wallet, grabs it and walks towards the same store. Once inside,
Rachel approaches Rochelle, they greet each other, and she finally asks: “Aren’t you
missing anything?”. Rochelle frowned for a bit and suddenly widened her eyes. She quickly
puts her hand in her back pocket and replies: “Is it with you?”. Rachel then gives her
wallet back, and Rochelle becomes grateful, for she saved her from a lot of trouble.

This is a very simple story and anyone capable of reading and understanding it is
expected to answer questions such as: 1) What kind of trouble has Rachel saved Rochelle
from?; 2) Why did Rochelle put her hand in her back pocket?; 3) Did Rochelle knew
she had lost her wallet before meeting Rachel?; and finally 4) Did Rachel and Rochelle
knew each other? The text has no explicit answers to any of these questions. Indeed, it
is striking how little of the situation is explicit. In particular, what allows us to answer
“yes” to question (4) is how the story is told. The way Rachel approaches Rochelle is not
really expected if they’ve never met before. We would find it odd to hear that they didn’t
know one another, and maybe even complain that the text is misleading. If some reader
is unable to answer these questions, we’re justified in saying that she didn’t understand
the story. Whenever we write something, we always assume a reader that is capable of
articulating what is written with the relevant background knowledge about the social
contexts involved. The same knowledge we use when we’re actually going through those
kinds of situations. Thus, it is important to notice that commonsense holism in reading is
not only about figuring out ambiguities or distinguishing serious talking from jokes. It
goes much deeper.

What does it mean to say that commonsense is holistic? I use the term to point out
that, in principle, all of our background knowledge is potentially relevant to cope with
any ongoing affair. If this sounds odd, consider another example, inspired by Samuels
(2010): say I’m worried about my dog barking on a Saturday morning, and I’m trying to
figure out how likely that is. Then I learn that there’s a chess championship going on in
another country. Can information about the chess championship be relevant to predict my
dog’s behavior? However unlikely, if I learn that my neighbor’s brother is playing chess at
the championship, and that he likes to celebrate with small (but loud) fireworks, that’s
enough to realize that the chess results might influence the likelihood of hearing dog barks.
Thus, by claiming that commonsense is both ubiquitous and holistic, I mean that most
of the time, most of our background knowledge about multiple domains of the world is
poised to be engaged in most of our cognitive activities.

Holism in this sense is easier to spot in instances of higher cognitive capacities such
3 Adapted from Marcus; Davis (2019).
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as those involving linguistic abilities. But that’s by no means the only place were this
kind of holism can be found. For instance, security staff in airports need to be sensitive
to suspicious behavior. But what “suspicious” amounts to? Most of the time, the task
requires being sensitive to fuzzy perceptual cues, such as “acting like someone who doesn’t
want to be recognized”. Solving this cognitive problem (i.e. deciding whether someone’s
exhibiting a behavior that justifies an approach) with above-chance success rate, may
require integrating background knowledge from multiple domains. Therefore, this is an
example of concrete yet ill-defined problem that claims for commonsense’s help in order
to avoid an unreasonable amount of errors. It is true that some markers are less fuzzy
and can be considered relevant more frequently than others: to appear nervous during a
security routine is a classic example. However, even such markers are context sensitive
and the security’s tolerance for it relies on the current circumstances. For instance, how
nervous someone must be before being approached is also a function of how much security
staff is available and how crowded the airport is.4

Importantly, being holistic is not about actually bringing to the fore as much knowledge
as one can at every single task. Rather, most of the time, most of our knowledge must
be intelligently ignored. Thus, a crucial element of commonsense is to articulate our
knowledge in a way that takes into account the specifics of the situation at hand (or the
one being considered). Situations are a way of characterizing what is distinctive about a
given circumstance (they’re ways of classifying it): it can involve personal aspects (the
kind of situation that makes me embarrassed), social practices (restaurants, hospitals,
courts. . . ), and even institutional acts (the inauguration of a building that is actually
finished). As an example, consider the question “do you know about computers?”. An
understanding of the situation we’re in helps us in delimiting the appropriate knowledge.
If we hear the question from a friend that’s browsing the catalog of an online computer
store, we know that she’s after information for buying computers. But if we hear the
same question from someone who’s having trouble coping with a computer, we’re led to
conclude she’s after information about how to use or fix it. This capacity to modulate
the exploitation of one’s knowledge according to a situation is a fundamental aspect of
commonsense.

Perner’s theory of “multiple models” is an account of the human developmental
trajectory that can shed a bit more light on what’s at stake (Perner, 1993). According to
Perner, in its first developmental stage, infants are constantly working with a single world
model. In this sense, the infant’s world comprises just the here and now. But that limit
disappears early on:
4 Importantly, this is not a point about the genesis of commonsense. It might well be that the kind of

knowledge integration that characterizes full-fledged human-like commonsense requires language in
order to be done. I have no claim about that. The point is just that, once we have commonsense, and
however we come to have it, we apply it to both linguistic and non-linguistic tasks. Some ideas of tools
that can help in the scientific endeavor to account for the genesis of commonsense will be presented
throughout this work.
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Somewhere around 1 1
2 years (. . . ) infants acquire a series of skills that

require facility with multiple mental models. They come to understand
means-end relationships, which require multiple models to project the
desired state and the necessary steps to get there. They can infer the
location of invisibly displaced objects, which requires extra models for
representing past points in the course of displacement. They start to
engage in pretend play, which requires an extra model representing the
world as different from the way it really is. They learn to interpret
representational media, like pictures, language and mirror images, which
require models for representing the information conveyed in these media.
(Perner, 1993, p. 47)

What Perner calls “model” is pretty close to what we have just referred to as “situation”.
Indeed, he conveniently dubs the infant who can handle multiple models a “situation
theorist”. Thus, Perner is describing a kind of ability characteristic of our commonsense:
we can take the world to be in many distinct ways, and we apply our cognitive knowledge
accordingly.

Commonsense has another property I have not mentioned so far: we cope with things
as they happen, and we understand texts as we read them. In Haugeland’s words,
“commonsense holism is real-time holism” (Haugeland, 1998a, p. 50). For every new bit
of information we obtain, that bit can, in principle, be articulated with our background
knowledge and produce drastic changes in the underlying process. We might be led to
apply a substantially different world model on-the-fly, and there’s no principled limit for
how much of our background knowledge can be deployed in such a real-time fashion. This
accounts for the possibility that a word suddenly changes the meaning of an ongoing
utterance, or that a new element triggers a significant revision of the whole situation, as
when a new clue drives a crime detective to review the role of every other piece of evidence
she already has. A solid alibi might suddenly fall. A ruled out person of interest might
now emerge as the likely perpetrator, and so on.

At this point, some might be tempted to take commonsense as a capacity to deal with
what is typical or ordinary in the human world. In this view, commonsense is just another
word for what we’re familiar with. Indeed, that’s what Dreyfus took commonsense to be in
his famous critique of early AI.5 A satisfactory account of commonsense certainly involves
an explanation of such familiarity with what’s typical. However, as Dreyfus himself later
acknowledged, commonsense goes further. Take this example from his later work (Dreyfus,
1992; Dreyfus; Dreyfus, 1987): a horse racing gambler who’s trying to figure out her
bet learns that a given jockey had hay-fever and that the race-course landscaping is in
full-flower. This is a situation where knowledge about human health must be used to think
about what to do in a context of horse betting. Despite involving atypical connections
among different sorts of knowledge, we can readily acknowledge its relevance and articulate
the role of each piece of knowledge on these grounds.
5 See Dreyfus (1972).



29

When Dreyfus presents this case, he readily admits that previous familiarity with
what’s typical in human wordly activities cannot play the role of a guide towards the
appropriate course of action. Nothing in the past of the agent could help him figure out
what to do in this situation. Dreyfus is led to conclude that commonsense encompasses a
kind of “creativity” which allows humans to render intelligible even situations that are
different from whatever it is that they’re used to. I’m not sure we should follow Dreyfus
in considering this capacity to be a kind of creativity. To be sure, in abnormal enough
circumstances, we get lost and have no idea how to cope. But we do have the capacity to
handle relatively conservative variations of what’s typical, and we do have the tools to
articulate pieces of old knowledge in new ways, if the circumstances require so.

In other words, we can extrapolate from what we know by efficient, fast and fluid
means. To account for this capacity is a formidable challenge.6 We seem to extrapolate in
a very particular way which no one could completely figure out so far. That’s why large
language models (LLMs) like OpenAI’s GPT family, at least in their current state, can
hardly be trusted with tasks requiring human-like commonsense: they can extrapolate
from their training corpus, but not in a human-like fashion. Very roughly, LLMs work
by trying to estimate the probability of a word being used in the context of words that
have already been said. Thus, in the context of a sentence like “Hello, how are. . . ”, it may
guess that the word “you” is the most likely to appear next. But that’s certainly not how
we choose the words we use. Rather, we seem to rely on reusable world models targeting
multiple domains, and we pick our words according to what’s rendered by them. For
instance, if we have already witnessed a vehicle collision, this knowledge can be applied
to estimate what would happen in a collision between trains (or even airplanes), even if
we have never seen one. While LLMs may be able to figure out that the vocabulary used
to talk about cars can (sometimes) be used to talk about trains or airplanes, relying on
estimates of vocabulary-appropriateness is very different from relying on models of causal
relations. Therefore, to account for commonsense holism is to account for this capacity as
well. Appeals to familiarity with what’s typical are not enough.

I hope the examples and the description provided so far are enough to show that having
commonsense is a huge and complex achievement for any cognitive system. Insofar as we
know, only human animals have it, but I need not and will not commit myself to this claim.
Indeed, I’m deeply sympathetic to the idea that other species, mainly those evolutionarily
closer to us, may present the capacity to integrate some knowledge in a commonsense-like
fashion. The focus on how commonsense is manifest in humans is a feature of my current
target, which is how intelligence is manifest in humans. I think it is an indispensable
component of any clustered conception of human intelligence. Thus, commonsense is not
to be understood as an all-or-nothing gap between human and non-human animals, but
that doesn’t mean it is not guilty of some very hard problems in the study of human
6 Indeed, the attempt to contribute to a better understanding of the way we extrapolate is one of the

goals of this thesis.
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cognition. Before digging into those issues, I’d like to draw attention to another, closely
related yet distinct, cognitive capacity that seems peculiar to the way humans render the
world intelligible.

1.1.2 Situation holism

While commonsense holism is already impressive, situation holism raises the bar
significantly. We saw how commonsense seems to imply that much of our background
knowledge about the world is continuously involved even on apparently simple cognitive
tasks. Within commonsense, situations appear as a way of characterizing what is distinctive
about a given circumstance (they’re ways of classifying it). This leads us to think of the
relationship between different situations as one of mutual exclusivity: either you are in
situation x, or in situation y. But humans (and perhaps other creatures) can do much more
than relying on different types of situations when taking the world to be in a certain way.
We can also articulate them, coherently working out indefinitely many distinct patterns of
interdependence. That’s what Haugeland dubbed situation holism. In order to see what’s
at stake, consider what it takes to read and understand the following story:

One evening, the Khoja looked down into a well, and was startled to
find the moon shining up at him. It won’t help anyone down there, he
thought, and quickly he fetched a hook on a rope. But when he threw it
in, the hook snagged on a hidden rock. The Khoja pulled and pulled and
pulled. Then suddenly it broke loose, and he went right on his back with
a thump. From where he lay, however, he could see the moon, finally
back in the sky where it belonged — and he was proud of the good job
he has done. (Haugeland, 1998a, p. 53)

In order to grasp Khoja’s pride and sense of achievement, one must keep track of how
two distinct viewpoints interact: the “real” one, and the epistemic one, i.e. the one in
Khoja’s imagination. Each one accommodates a different situation.

But what’s at stake in situation holism is not only the specifics of each situation taken
in isolation. It is rather about how the development of a situation being tracked might
prime or constrain the others. In order to properly understand the text, we need to keep
track of how these situations interact. In other words, we need to grasp the underlying
plot and understand why the way these distinct viewpoints interact matters to the story
being told.

This demand for over-all coherence — that all the various “situations”
(with respect to which clauses are understood) should fit together in an
intelligible way — is what I call situation holism. It is a general feature
of natural-language text, and coping with it is a prerequisite to reading.
(Haugeland, 1998a, p. 54)

What’s remarkable in this example is how little about that interaction is explicit in
the text. There is no clear reference to the Khoja’s misperceptions, and yet most of us
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readily see that “the moon shining up at him” is just the reflection of the moon in the
well. If a reader cannot get that, we’d say she did not understand the text at all.

In the resulting picture, commonsense is involved: we known that the moon won’t fit
within the well, for instance. But (pardon the pun) commonsense can’t tell the whole
story. It plays a role in recognizing the distinct viewpoints (or distinct models, in Perner’s
words) as alternative takes on the Khoja’s world, but situation holism emphasizes their
articulation into a somewhat unified, integrated whole. Situation holism accounts for the
continuous trade-off between them, i.e. the interactions that take place as the narrative
develops.

Situation holism has been studied in communicative contexts by relevance theorists such
as Sperber; Wilson (1995). However, it is not an exclusively communicative phenomenon.
While it is true that Sperber and Wilson also make claims about cognition in general, and
not just about language processing, I don’t think their approach is enough to account
for situation holism when conceived as a problem about cognition.7 And how should
we understand situation holism at the cognitive level? Just like commonsense, situation
holism is poised to play its role whenever we handle the structure of human activities in
the world.

As another example, consider children engaging in pretend play. They can gracefully
switch between two or more pretend scenarios (one in which the piece of wood is a
chocolate, and the other in which it is a cell phone), and they do that without loosing
track of whatever function the piece of wood has in non-pretend scenarios. The complex
interaction between the way an object is regarded in a pretend scenario and its identity in
the real world becomes manifest when the object gets broken in virtue of an event that
imposes itself from outside: the piece of wood might get wet, the chair regarded as the
king’s throne might make some funny noise or even break. In circumstances like these,
pretend participants must choose whether (and how) they’ll accommodate the events in
the play. The chocolate bar got wet and started to melt, so the children now proceeds to
pretend-wash their hands. The funny noise may be just ignored, but perhaps the king
becomes angry and requires another throne. Something similar can happen if the chair
gets broken: the king might require a new, better one, or they can just preempt the play
and start to worry about what their parents are going to think when they find out. In
a nutshell, they must decide when to enforce a rule of the game and when to resume
real-world inferences. This is the kind of decision-making that relies on situation holism.

These examples also show that, just like commonsense, situation holism cannot be
regarded as a mere familiarity with what’s typical nor with a collection of previous
experiences. Whatever underpins the children’s behavioral outputs in pretend play (as well
as our own when dealing with the huge network of institutions and structures comprising
the human world), it can also be effectively applied to novel situations. Situation holism
7 Their approach will be properly discussed shortly.
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also seems indispensable to the cluster of capacities that comprises human intelligence.
We have now a framework-neutral characterization of both commonsense and situation

holism. But before introducing the kind of challenge that emerges when trying to account
for them, there’s one last crucial idea to introduce: the non-saturable character of human-
world contexts.

1.2 The non-saturable character of human contexts

Most of the difficulty in explaining commonsense and situation holism is connected to
their reliance on context-sensitivity. Commonsense relies on the capacity to attribute the
circumstantially appropriate weight for each portion of our background knowledge about
the world. Likewise, selecting the circumstantially appropriate way to articulate two (or
more) models of a given situation is necessary for situation holism. But why and how
exactly is context-sensitivity an issue for cognitive science?

In order to answer that, we need to rely on a good description of the phenomenon. I
have no intention to provide a complete assessment of context, for this would take us too
far afield. However, I think context, inasmuch as it characterizes the background in which
human behavior is embedded, has properties that are not shared by all cognitive creatures
(perhaps none). In what follows, I’ll present what I mean by “context” in general and
“human context” in particular. But before we do that, some preliminary remarks are in
place. First, as I use the term, it is restricted to creatures with some kind of cognitive
machinery. Consequently, different takes on what cognition is results in distinct sets
of creatures. I think many species of animals have what we should regard as cognitive
capacities, but any disagreement about this can be easily put aside, for the core target of
the discussion will be context in human agents. Second, different cognitive frameworks
afford distinct characterizations of context. The specifics of some frameworks will be
extensively discussed throughout the chapter, but for now the target is a somewhat crude
and framework-neutral conception. Third, I don’t want to commit to any underlying
conception about the make-up of the world. Whether the world comprises facts, objects,
or what have you, bears no weight on the discussion. Finally, it must be crystal clear
that by characterizing human contexts and contrasting them with those of other animals,
my intention is not to describe an unbridgeable gap. Rather, I want to distinguish two
opposite poles of a continuum that makes room for intermediate cases. Thus, it is not
only possible, but rather likely, that we can find proto-versions of human-like contexts in
animals that are closer to us in evolutionary time. How close they can be (when it comes
to context) is still a wide open question, though.

How do we go from states of affairs in the world to contexts? Consider first a simple
non-human animal like a tick. Just like any physical entity, the tick is subject to the
causal effects of other entities or forces. The precise effect that any causal impingement
has depends on the nature of the impingement and on the make-up of the creature’s
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body. The sun’s warmth may have a bear on its body in a way that the sun’s light has
not. A falling stone might hurt it in a way that affects its normal biological functions,
or might be an event with no relevant effect in the animal’s body. Within the set of
possible causal influences, there is the subset of those that can bear on the creature’s
behavior. Such influences are also stimuli. Even the most rudimentar stimulus can be
regarded as a kind of perceptual cue the animal can exploit to produce adaptive behavioral
outputs. The set of features to which the creature is sensitive in this way constitutes its
effective environment, which is roughly what Von Uexkull (1934) called Umwelt.8 Different
creatures inhabit different effective environments, and they cope with the current states of
affairs only through their lenses. The tick, for instance, is specially sensitive to the butyric
acid that can be found in the skin of mammalians. The acid is among the few things that
can elicit some kind of behavior from the tick or, we could also say, it’s among the few
things that “exist” for it. Thus, the effective environment is the world’s state of affairs as
perceived by the creature.

Effective environments yield two dimensions on which robust behavioral outcomes can
get stabilized. First, it provides cues an organism can use to determine the right time to
deploy some behavioral strategy. By following this road, even a very simple “cover-all”
strategy might become adaptive. Flowers, for instance, simply spread their seed in every
direction.9 This works reasonably well because they’re sensitive to seasonal cues indicating
the right moment to carry out the task. Ticks use a similar strategy. They can hang idle
on the tip of a tree branch until some cue indicates a passing mammalian, giving it the
chance to let go of the branch on the right time and drop safely on mammalian skin. But
there’s a downside for invariant behavior: the adaptiveness of such strategies relies heavily
on the effective environment’s stability. A radical change of circumstances can suppress
relevant cues, perhaps leaving the creature in an endless idle state. It might also render
the cues useless, leading to harmful false positives and causing the tick to trade its branch
for non-mammalian skin, for instance.

As for the second dimension, effective environments also allows creatures to achieve
some adaptive outcome robustly by behaving differently as a function of the available
cues. Some predators can rely on lots of different cues, both from their prey (scent, visual
characteristics, and so on. . . ) and their surroundings, in order to select not just the right
moment to hit, but also the best way to approach their prey. Needless to say, nature
treads on both roads. Animals usually employ a mix of different strategies. Consider the
impressive navigational capacities of some species. Salmon are sensitive to the scent of
their natal stream. When the time to spawn comes, they can use this scent to identify their
8 The name “effective environment” is from Clark (1997a). Those already familiar with Robert Cummins’

conception of cognitive targets (Cummins, 1996) can help themselves by understanding the creature’s
effective environment as the set of possible targets it is able to fix on. Readers not familiar with this
idea need not worry, though. For our current purposes, it is nothing but a shortcut. We won’t really
need it until chapter 3, where it will be properly introduced.

9 This example is from Shea (2018).
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home stream even after spending years in the ocean, which means there is a rudimentar
kind of mnemonic mechanism involved. But that doesn’t exhaust its tool set. Scientists
also believe that it is sensitive to the earth’s magnetic field, which accounts for its capacity
to search for the river they came from. Once in their home river, they start relying on
scent to identify their home stream. The application of (at least) two distinct mechanisms
is a step towards alleviating the reliance on the stability of its environment. This can be
generalized: while “cover-all” strategies can be powerful, a well-endowed set of behavioral
strategies can go further.

Consider now a more complex creature with some kind of cognitive machinery, like an
ape or an elephant.10 They have a richer effective environment, at least when compared
to ticks and salmon. But that’s not the only difference. Their cognitive apparatus allows
them to have a take on their effective environment by rendering it intelligible somehow.
This rendering works like an intermediate framework between the creature and its effective
environment. Cognition involves internal states and processes that bear on the creature’s
behavioral outputs.11 In a very liberal sense, we can say that those states and processes
characterize the creature’s expectations while coping with its effective environment. In light
of these expectations, the creature’s view of the environment changes. Some perceptual
cue that would usually trigger a certain behavior gets inhibited, for instance. Furthermore,
new possibilities emerge out of the complex interaction between the effective environment
and the creature’s expectations. This means that the creature can be sensitive to new
features, for instance, non-perceptual features, articulations of previous experiences (“the
stick I’ve just saw can be useful to reach this fruit”) or its own predictions about what’s
going to happen next, given the current state of affairs (e.g. a rat in a maze may predict
the presence of food in a certain place at a certain time). Consequently, its effective
environment becomes larger, enabling increasingly complex behavior. That’s what I take
context to be: whatever the effective environment becomes under the creature’s cognitive
lights.12

Context is thus relative to the agent’s cognitive capacities. This means that, as
creatures endowed with cognition, elephants and apes exercise their capacities inside
contexts, not just effective environments. But what about ticks? Given the likely absence
of cognitive activity, should we say that its context just happens to be identical to
its effective environment? We definitely can, and those advocating for a conception of
10 I take the presence of cognition in apes and elephants to be noncontroversial, and I’ll ignore behavioristic

complains at my own risk.
11 Importantly, by “intermediate” I don’t mean to postulate some entity inside the cognitive machinery

that stands in for what’s outside, i.e. I’m not making a representational claim. Representations are
just one among the available tools we can use in trying to account for such intermediates. One could
also, for instance, use gibsonian language and take them to be the set of abilities employed in handling
affordances (Gibson, 1979).

12 This does not mean that context it is subjective as in private. The creature need be neither conscious
nor potentially conscious of whatever is going on in its own cognitive apparatus. Moreover, there’s no
fundamental issue precluding the possibility of fully describing a creature’s context from a third-person
perspective.
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cognition that’s broad enough to encompass whatever accounts for the tick’s behavior
definitely must. Here, however, I want to make room for the assumption that there is
some distinction between cognitively and non-cognitively produced behavior, whatever
that may boil down to. Particularly, I think that cognition is characterized by the capacity
to transform sensory inputs in knowledge about the effective environment, allowing the
creature to make use of that knowledge in producing its behavioral outputs.13 Notice that
this conception is fully compatible with the idea that our effective environments play a
constitutive role in our cognitive capacities. As I see it, this would be just another way
of claiming that cognition is embodied and embedded. But it can also accommodate a
more classic and “detached” view of cognition, such as those who see the body and the
environment as nothing but a source of inputs and a place to throw outputs. Though
I personally think that cognition is embodied and embedded, the current point is not
to discuss which conception better accounts for the nature of our cognitive capacities.
What matters is to notice that, as far as the distinction cognitive/non-cognitive makes
sense, so does the distinction between context and effective environment, even though one
could eventually disagree on the adopted terminology. Therefore, context becomes closely
related, yet distinct from effective environment. That’s why two individuals may share an
effective environment without sharing a context (they might have distinct understandings,
goals or expectations, for instance), but they cannot share a context without sharing an
effective environment. The size of the gap between context and effective environment
depends on the creature’s cognitive capacities. For instance, apes probably cannot make
use of abstractions when coping with their environments, at least not like humans can.14

Thus, even though humans and apes can share effective environments, the contexts in
which our actions take place would still be distinct, given the discrepancies in our cognitive
capacities.

As another example of this point, consider dogs. We share a significant amount of
the same effective environment. That’s what allows us to regard them as pets. There’s a
considerable intersection between what we can hear, feel and see, to the point that we can
interact by, say, throwing a tennis-ball and expect it to be tracked, chased and brought
back by the dog. However, the fact that we don’t share the same cognitive machinery
means that we won’t handle our effective environments in the same way, which means we’ll
perform within distinct contexts. For instance, they might see a tennis-ball as a tennis-ball,
but only in the sense that it is a thing with distinct physical properties like shape, color,
texture, and so on. On the other hand, we can also see tennis-balls in a functional,
game-embedded sense. This is why we could regard even balls with distinct physical
properties as tennis-balls, provided that they satisfy some game-enabling standards, such
13 I’m using the word “knowledge” in the same liberal sense we usually find in cognitive science’s literature.

It is compatible with both know-how and know-that. It also goes without saying that this conception
of cognitive knowledge is distinct from the one studied by epistemologists. What’s at stake is not the
status of some full-fledged agent’s attitude, but whatever gets stored in its cognitive mechanisms.

14 This claim relies on the work of Povinelli (2012). It will be discussed at some length in chapter 3.
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as size, elasticity or weight. Thus, while we might never be able to share much of a context
with a dog, we can nonetheless share a good deal of our effective environments. In contrast,
the lack of such an intersection makes it really hard to have bats as pets.15 Our effective
environments are just too different. Bats can track lots of things we can’t and vice versa.
We have nothing like an echolocation system, and even when it comes to the kind of senses
that we happen to share, like vision, our sensitivity to the environment is mostly disjunct,
for bats can see in conditions we would consider pitch black.

Furthermore, effective environment and the available cognitive machinery can play
distinct roles in our endeavor to learn whether a creature has a given capacity. The
distinctiveness might not be easy to see at first because there’s always the risk of conflating
them when trying to guess which cognitive capacities can be attributed to a species. I
believe this is what Frans de Waal has in mind when he asks whether we are smart enough
to know how smart other animals are (Waal, 2016). Elephants are a nice example: for
years, scientists thought that elephants could not use tools. They are known for using
their trunks to grasp things, and so researchers formulated experiments in which the
animal was expected to grasp a stick with his trunk and use it to reach a reward. As
elephants consistently refused to do so, many took it as a sign that the animal didn’t
get the problem, which is a claim about the creature’s cognitive capacities. However,
Frans de Waal describes how Kandula, a male elephant living in a Washington zoo proved
this assumption wrong. In trying to reach a tasty reward high above his head, Kandula
quickly noticed that he could kick a wood box with his foot until the box was underneath
his reward. He then stood on the box with his front legs and finally managed to reach
the reward with his trunk without the use of anything like a stick. The issue is that
the elephant’s trunk is also its nose. In grabbing a stick, the nose is blocked, which
preempts the animal from tracking its reward. What was previously regarded as an
incapacity to use tools proved to be our difficulty in recognizing the role of the animal’s
distinctive effective environment. Elephants can use tools in surprisingly smart ways: the
box used by Kandula was purposely left far from the reward, so he had to take distance
and seek for the box before coming back with it. This kind of example exposes the risk
of consistently misunderstanding the animal’s effective environment and thus failing to
evaluate its cognitive capacities.

Given the stipulated definition of context, it follows that whatever is distinctive
about human contexts must be grounded in something distinctive about human cognition.
Somehow, humans can go far beyond their effective environment and extend it in a
largely unconstrained way. But where exactly lies the difference? There’s obviously
no framework-neutral answer to this question, for any claim about the nature of the
underlying processes will be commited to some cognitive framework. There is, however,
a fundamental (and framework-neutral) difference in the way we can conceive human
15 Thanks to Ernesto Perini-Santos for the example.
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contexts. It regards the possibility of saturation. Consider another example related to
animals’ navigational abilities: the birds’ capacity to migrate. It involves considerably
complex mechanisms. While studying white-crowded sparrows, Thorup et al. (2007) have
shown that the behavior of juvenile first-time travelers and adults is different because
the latter is sensitive to features unavailable to the former. The adult’s previous travel
experience makes a difference for the chosen direction. At some point he became sensitive
to new cues, perhaps by learning. This suggests that the bird’s behavior might rely not
just on different features, but also on complex articulations of them. We can thus picture
the context in which the bird’s behavior takes place as a certain articulation of a subset of
the features to which it is potentially sensitive to, given its cognitive capacities.

Despite its potential complexity, the bird’s context is always saturated, i.e. there’s
a fixed number of features it is sensitive to while in that context, and a fixed role for
each of them to play as well, which means that there can be an ultimate description of
the feature’s subset in question.16 An ultimate description of a context is one in which
1) adding new features (or new ways to articulate them) will make no difference to the
creature’s behavioral output; and 2) removing a feature (or a possible articulation of them)
will necessarily make a difference. To unpack what this means, let’s put the bird aside for
a moment and consider a toy-like example of a cognitive system that is sensitive to four
features: a, b, c and d. It is not sensitive to all of them all the time, for it depends on its
current context. Say the system can be in up to three different contexts.

Table 1 – Toy-like cognitive system.

c1 c2 c3

a - a
b - -
c c c
- d d

Thus, by reading the table we can see that when the system is in context c1, it is
sensitive to three features (a, b and c), when in c2, it is only sensitive to two of them (c and
d), and so on. Importantly, what the current context stipulates is the subset of features
to which the system is sensitive to. It does not mean that the features are necessarily
present in the system’s environment. What it does mean is that, while in (say) c2, the
eventual presence of feature d will have an effect on the system’s behavior. In the same
vein, the presence of feature d while in c1 will bear no effect on the system (it will simply
keep doing its business as if d wasn’t there). It may trigger some action or some change of
perspective (such as switching to c1).
16 The point is not epistemic, i.e. what’s at stake is not how much of the bird’s context can be known to

us.
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What is lacking from the table is the way in which a context articulates the features
it is sensitive to, and every context necessarily involves some articulation. In this sense,
being in c3 is not just about being sensitive to features a, c and d. It is also about what
to do with them. Thus, c3 may comprise an articulation in which the system is led to stay
on the lookout for any of them simultaneously, while c1 may comprise an articulation in
which it may lead the system to actively look for a, start looking for c only if it takes too
long, and though it won’t look for d, it will immediately stop searching for a and c in case
d appears. Crucially, the way the system switches from context to context is also a given
of how every context articulates the features it is sensitive to. Thus, if the system is in
context c1 and the presence of a, b and c leads it to c2, this is part of the specification of
c1. For instance, if there’s no determined path from c1 to c3, that means the creature can
never go from c1 to c3. It also means that, if the only way for the system to leave c1 is
through the presence of a, b and c, it will be stuck in c1 as long as it takes. In a nutshell,
if we describe how a, b and c are articulated, as well as the behavioral effects they have
in the creature while in c1, the result is what I’ve dubbed the ultimate description of c1.
Evidently, the same goes for c2 and c3.

At this point, it is important to notice that what underlies the claim that the toy-like
system’s contexts are saturated is not their low complexity. Chess engines are pretty
complex systems, with a huge number of possible contexts in which lots of features are
articulated, and yet all of them invariably work with saturated contexts as well. Rather,
the heart of the matter is that the system is unable to extrapolate from its set of possible
contexts: it may be huge but it’s not open-ended. Thus, even if we endow it with the
capacity to learn how to be sensitive to new features (or to render new articulations of
them), the saturated character of its contexts remains intact.

With this in mind we can go back to the bird’s example. Though the bird’s ability
to migrate involves learning, it does not preempt its contexts to be characterized as
saturated, for the learning is presumably specialized (it requires specific experiences and
renders sensitivity to specific features). When the bird engages in migratory behavior,
it’s expectations are such that some features will have no effect. In other words, it is in
a context in which it is sensitive only to a certain subset of the features it can handle.
For instance, if the sunlight is a feature that makes no difference for the bird’s while in
its migratory context, then it is simply not part of the context in which the action takes
place. That is the case even if the sunlight makes a difference in (i.e. can be a part of)
other contexts. This stipulation implies that if a given feature is absent, nothing can take
its place (for nothing else makes any difference). That is, while in the context of migratory
behavior, nothing can take the place of the feature it uses to guide the direction in which
it flies. That’s what happens if the relevant sources of information for migratory birds
are absent, as in the young white-crowded sparrows’ case. Furthermore, a very similar
reasoning can account for the cognitive flexibility we find in the example of the elephants
capacities.
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At this point, a potential confusion must be precluded: wouldn’t the addition of some
non previously specified feature to a saturated context amount to a change of context?
No. Remember that context is the current state of affairs from the creature’s perspective.
From our God-like theoretical vantage point, we surely can hypothesize about the effects
that the addition or substitution of a feature could have, but that’s a different matter.
If a feature has the potential to dislodge the current context to another one, then that
role is already part of the context’s full specification. Context-switching is just one among
the possible effects that a feature can have in a given context. As an example, consider
again the tick. It is not a cognitive creature, but the simplicity of its behavior will be
useful in making this point. Assume it’s idling in a branch just waiting for a beacon of
butyric acid. Even if the tick is potentially sensitive to cues other than butyric acid under
different circumstances (such as when it is already enjoying mammalian skin), while in
“waiting-for-mammalian” mode, none of those cues will have any effect on its current
mode of operation.17 Likewise, in cognitive non-human animals, the pathways between the
current context and all the other possible ones (given the creature’s cognitive capacities
and effective environment) are given by the current context. In more impressionistic terms,
the full description of saturated contexts enables a kind of leibnizian calculemus of the
animal’s behavior, for there’s a clear finite basis for an equally finite set of behavioral
outputs. In the end, this is what allows us to conceive non-human contexts as subsets of
features.

In contrast, human contexts’ are non-saturable. Non-human animals can perform
actions in complex environments, for sure, but nothing close to the productive and flexible
way in which human contexts can be characterized (from a theoretical perspective). While
handling our effective environments, creatures like us need not just cope with a large set
of possible circumstances, but with an open-ended set of them. Consequently, there’s no
ultimate description of human contexts, for it’s always possible that adding or substituting
a feature (or a way to articulate them) makes a difference. In order to start unpacking
what this means, consider our navigational capacities: even if completely deprived of our
usual navigation tools (such as knowledge about the surroundings) we can use the earth’s
magnetic field through a compass, the movement of the sun and even the seasonal course
of constellations. It’s true that not many of us actually know how to use any of those
features in order to navigate (I certainly don’t), but the point is that we could learn to
become sensitive to these and other related features (even if only with the help of some
tool). In this sense, maps, gadgets and written instructions have the potential to become
salient navigational cues.

But a similar reasoning applies to every human context. Let us consider a relatively
common one: Alan and Bob are friends at a bar, and Alan wants to have a beer. The
tough cognitive task that arises is deciding whether he should invite Bob to join him.
17 Perhaps I should say philosophical-tick, for the description we’re working with here is an obvious

oversimplification of the creature’s actual mechanisms.
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If Alan were a cognitive system capable of dealing only with saturated contexts, each
situation would need to be described through a subset of features, just like the previously
described toy system. Let us start with what appears to be the simplest one:

(3) Alan and Bob are at a bar late in the afternoon.

In this context, should Alan offer Bob a beer? If these are the only features being
considered, there seems to be no reason not to invite him. But consider now what happens
if we add another feature.

(4) Alan and Bob are at a bar late in the afternoon. They’re going back to work right
after.

Suddenly there seems to be a plausible reason to hold back the urge to have a beer.
Perhaps an additional feature can be of help:

(5) Alan and Bob are at a bar late in the afternoon. They’re going back to work right
after, but the work they’ll engage in is not really that complicated.

If the work in which Alan and Bob will have to do late at night is not really that
demanding, then perhaps a beer won’t hurt, which means Alan may have its beer and it is
plausible to invite Bob to join him. But consider now another feature.

(6) Alan and Bob are at a bar late in the afternoon. They’re going back to work right
after, but the work they’ll engage in is not really that complicated. Bob has a
long-standing alcoholism problem and has been sober for two months.

Is it OK to offer a beer to someone with a history of alcoholism who is trying to stay
sober? It seems like Alan will have to leave it for another day (and perhaps with another
company). But lets add yet another feature.

(7) Alan and Bob are at a bar late in the afternoon. They’re going back to work right
after, but the work they’ll engage in is not really that complicated. Bob has a
long-standing alcoholism problem and has been sober for two months. On a previous
occasion Bob has said that he doesn’t mind when people drink in front of him.

It seems like Alan is going to have his beer, after all. The point of these examples
is (hopefully) clear enough: there is no stopping adding new features. There is no (non-
arbitrary) point in which the context is “characterized enough” in the sense that there’s
no other possible feature that can make a difference in Alan’s behavior. We can imagine
all kinds of possibly relevant additional characterizations: for instance, the fact that the
temperature might be too high and there’s no air conditioning might make one change
his mind about what to drink. Thus, no matter how rich is the description of a context,
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the description is never able to exhaust (i.e. to saturate) all the possible features one can
attend to in order to decide whether it is OK to have a beer with a friend. No matter how
complex the current context is, there’s always the possibility of realizing the potential role
of another feature.

To make it even worst, this is not only about the possibility of indefinitely multiplying
the number of features within a context. There are also indefinitely many ways to articulate
the already considered set of features. To see this, consider another tough cognitive task:
some friends go to a restaurant to eat a moqueca, but once there they find that it is
unavailable at the moment. Should they pick another meal ou should they go to another
restaurant? Consider these descriptions of the situation:

(8) Some friends are going to a restaurant in order to celebrate the birthday of one of
them. They intend to present him with his favorite meal: moqueca.

(9) Some friends are going to a restaurant in order to celebrate the birthday of one of
them. They intend to present him by paying the bill.

If we understand the situation as described in (8), then it seems like changing the
restaurant is appropriate. But if we understand it as described in (9), it might be considered
a bit of an overreaction. And again, a similar reasoning applies to all and every human
context.

Furthermore, human contexts can interact with each other in complex ways. There
are dinners in hospitals, medical emergencies in restaurants and both at the same time
in airplanes. Thus, when characterizing a context, features and expectations regarding
restaurants may interact with features regarding friendship, work goals or hospitals. How
can we, as theorists, map all and every possible pathway among the set of possible contexts
of a cognitive system? The bitter answer is that we can’t.18 Consider the shifting from
a context where one is having dinner and then a colleague shows up. Where should we
go from there? Is it good to have someone from work around, or is it bad? If it’s bad,
how bad? Is it a minor distraction, does it produce some level of anxiety or is it a trigger
to get out immediately? Again, we face a set of possibilities that’s prohibitively large.
The point is that, in describing a non-saturable context, we can’t model the absence of a
feature as the absence of an element in a subset. The absent feature can play a significant
role not just in choosing a beverage, but also in context-switching, i.e. in characterizing
the context that results from whatever changes. In other words, even absent elements
(like work colleagues) might have a role in explaining what we end up doing (or drinking).
In this picture, the conception of context as a finite subset of features must be put aside.
Human contexts are better conceived as a holistic rearticulation of most (if not all) of
our cognitive world, i.e. a context is a more or less global state in which the overall set of
features we’re sensitive to are more or less salient in different degrees. In more palatable
18 The grounds for this claim will be further developed in the upcoming discussion.
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words, a context is a species of “tonality” that the world acquires. Some features shine,
some become gray, but none completely fades to black. From now on, this is what I’ll refer
to as contextual tonality.

What kind of cognitive capacity can underpin the ability to navigate non-saturable
contexts? Non-saturability cannot be understood as the ability to process context de-
scriptions with an unlimited number of parameters. That would only make sense for
creatures with limitless time and memory. Rather, non-saturability captures the fact that
there’s no way to know in advance what are the kinds of features or parameters that we’ll
have to cope with in any given situation. What underlies it is a kind of productivity.
Such productivity is not like compositionality, usually associated with linguistic capacities.
Instead of the capacity to render increasingly complex compositions of primitive elements,
it comprises the capacity to articulate the available cognitive resources in indefinitely
many ways and generalize or extrapolate from these articulations. As this capacity can
be recursively applied to whatever context we find ourselves, there is no context that we
cannot extrapolate from, i.e. there is no context that we cannot rearticulate with some
feature that was being ignored up to that point.

Importantly, “rearticulating” doesn’t necessarily mean “adding a new feature as salient”
as if we were adding a new dish to a stack of dishes. Rather it might also mean changing
the role of one or more features, which is like to change the arrangement of the dishes,
or maybe the order in which they are stacked. That being so, what’s striking about this
capacity is not that it implies non-natural capacities, for memory and time constraints do
apply. If we rearticulate a context c1 into c2, and further rearticulate it into c3, c4 and so
on, it certainly there is a point at which we lose track of the trajectory, and so maybe
at context c35 (or c50) we may leave out some feature that was salient in c1. Therefore,
what requires explanation is how we can always extrapolate from any contextual tonality
we find ourselves in.

Indeed, as we’ll see in the forthcoming discussion, accounting for the non-saturable
character of human contexts is a major challenge for the cognitive sciences. But before
digging into that, we’ll explore a bit how the explanatory role of context was conceived
in some well-known cognitive frameworks. This will help in at least two ways: first, by
throwing some light on the many pitfalls ahead. Second, by making salient how easy it is
for us to let slide some essential features of context as a cognitive phenomenon.

1.3 The role of context in cognitive explanations

There is no doubt that context-sensitivity is an achievement of the mind. In this sense,
contexts are among cognitive science’s explananda. As theorists, we want to explain the
capacity of a system to behave properly within what we characterize as a context. But
could some notion of context also play a role in explaining our cognitive capacities? The
idea that capacities manifest in full-fledged agents can inspire a theoretical posit for their
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internal machinery is not new. The cognitive revolution in the 1950s comprises one such
move: in the cognitivist picture, the use of representations is an achievement of the mind
(we use maps, graphs and language as stand-ins all the time) that inspired a theoretical
posit that allows us to explain how the mind’s mechanisms work. Could context qua
cognitive capacity of cognitive systems be a similar inspiration for some kind of theoretical
tool (a domain, a process, a structure, what have you) that has an explanatory role to
play in scientific accounts of the systems’ underlying cognitive mechanisms? Notice that
the question is not whether the system has personal-level access to what characterizes the
context. Rather, what’s at stake is the possibility of a move from a notion of context qua
explananda to a notion of context qua explanans, both from a third person perspective. We
have just discussed what it is for a full-fledged agent or system to perform an action inside
a context. And we can understand what it means to say that the agent’s actions take
place in a (say) restaurant context: it means that the agent’s behavior respects certain
behavioral constraints that the context implies. But could some still-to-be-unpacked
notion of context be useful to explain this very capacity? A notion of context that could
participate in explanations of the mind’s mechanisms? In order to avoid confusion, let
us call this potentially explanatory notion m-context. What could it possibly buy us
explanation-wise that we can’t get without it?

Let us start by considering an example of what a system that does not rely on any
notion of m-context could work. Say you’re idling alone at home during a COVID-19
quarantine. Suddenly the door-bell rings and you’re now trying to decide what to do about
it. This brings about a change of context. Up to a few seconds ago you were in a “home
alone in quarantine” context, and now your in a “home alone in quarantine with someone
at the door” context. How should we account for this change of context within the mind’s
mechanisms? In approaches inspired by folk-psychology (as well as classic AI), the world’s
current state of affairs is designed as a pool of belief-like sentencial entries that describes
it (or more precisely, a pool of language-like representations of such belief-like contents).

Say you’re one such system. Whatever is in the pool is taken by your mind mechanisms
as something true about the world, and thus they operate with that information in order to
produce your behavioral outputs.19 In this case, the change of context could be accounted
for by simply adding a new entry to the pool of belief-like entries. Something like “doorbell
ringing now”. This changes the set of possible inferences that can be made out of the
whole pool, and thus may result in new behavioral outputs. Hence, the simplest possibility
is to claim that you’ve just acquired a new entry in this cognitive knowledge database
of yours, and that whatever you make of it is grounded on the inferences you can make
from this new entry. In this account, there is no cognitive effect beyond what comes
from the acquisition of the new entry. But if we can account for the resulting behavior
simply by pointing out the presence of an entry, what’s left to be explained? At first,
19 Remember that personal level access to that information is not what’s at stake.
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there seems to be no role for any conception of m-context to play in the explanation of the
resulting behavior. Thus, in order to claim that there is a non-trivial role for m-context in
mechanistic accounts, one has to 1) show that the mere presence of a knowledge entry in
the system is not enough to account for the agent’s behavior in the new context; and 2)
show how some conception of m-context can account for whatever is lacking.

An answer for both questions that we can frequently find in real-world frameworks of
cognitive science is this: m-context plays an important role in the overall organization
of the system.20 The first example comes from AI’s knowledge representation literature:
an m-context is a data structure.21 The main concern we find there is how to organize
information in a way that allows for efficient retrieval. Failing to do so would result in
systems that could get lost in a messy ocean of knowledge. The m-context’s role is thus
to organize the agent’s inner cognitive life and avoid this. This is why simply adding
another entry to an unstructured pool of belief-like entries is not enough to account for
the system’s behavior. Minsky’s frames (Minsky, 1997) and Schank’s scripts (Schank;
Abelson, 1977) are probably the most well-known approaches. Both relied on heavy
data compartmentalization. In the now classical example used by Schank, there could be
stereotypical scripts for restaurants, hospitals and so on. Inside those scripts, one could find
all the relevant knowledge about how to behave in the corresponding human-world situation.
In this picture, the structural resemblance between context and m-context (i.e. the way
information is compartmentalized) partially explains the system’s performance: the system
can behave adequately within a restaurant context because the involved mechanisms are
influenced by a restaurant m-context, i.e. by a script. A different organization could
seriously affect the efficiency of the system, for it could get lost in processing information
unrelated to the current context. In this picture, it is clear that the mere presence of some
new piece of knowledge is not enough to explain the system’s behavior, for the way these
are stored and organized also matters. Essentially, this approach tries to vindicate the
commonsense agential level understanding of context by taking m-context to be a data
structure that models it. A kind of folk-context, if you like.

However, the notion of m-context is not restricted to classic, computational approaches.
An m-context can carry the same explanatory role even in an embodied, embedded and not
necessarily representational approach. As a second example, take the framework advanced
by Wheeler (2005), which will be discussed at some length later.22 For Wheeler, the mind
is essentially a collection of special-purpose adaptive couplings (SPAC). By using the word
“coupling”, Wheeler emphasizes the fact that the mechanism is embedded. In order to see
20 This is not the time to discuss whether these are good or bad approaches. Our current target is just to

identify what they take m-context to be, and how they can have a nontrivial role in explanations of
cognitive capacities.

21 The use of an AI framework is justified by the fact that in the 1970s and 1980s cognitive science and
AI were still closely coupled enterprises.

22 I say “not necessarily representational” because, despite the fact that Wheeler’s approach does reserve
some space for representations in cognitive explanations, his conception of a sub-agential role for
m-context does not rely on it.
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how this makes room for m-context, we can take Wheeler’s favorite example: the cricket
phonotaxis system as described by Webb (1993). The mechanism can be found in female
crickets and its function is to find male mates through the tracking of the very specific
auditive stimulus they produce. Here is how Wheeler describes it:

The basic anatomical structure of the female cricket’s peripheral auditory
system is such that the amplitude of her ear-drum vibration will be higher
on the side closer to a sound-source. Thus, if some received auditory
signal is indeed from a conspecific male, all the female needs to do to
reach him (all things being equal) is to continue to move in the direction
indicated by the ear-drum with the higher amplitude response. So how
is it that the female tracks only the correct stimulus? The answer lies in
the activation profiles of two interneurons (one connected to each of the
female cricket’s ears) that mediate between ear-drum response and motor
behaviour. The decay rates of these interneurons are tightly coupled
with the specific temporal pattern of the male’s song, so that signals
with the wrong temporal pattern will simply fail to produce the right
motor-effects. (Wheeler, 2008, p. 334)

According to Wheeler, SPACs work correctly only in the presence of the right stimulus.
There is no need to parse or “interpret” the auditory input it in any way. The wrong
stimulus will simply have no causal effect and the mechanism will remain idle. The
m-context is not explicit in any way, nor is it comprising any kind of knowledge that
underpins the inner workings of the mechanism. Thus, the m-context is not an explicit
data structure, but a causal domain that can be taken in isolation. This domain underlies
the mechanism’s functional success conditions. But what does it buy us? We can see that
by contrast with what would be an m-contextless machinery. Such a mechanism could
grab the current auditory stimulus, hand it to a parser that would extract its structure
and yield it to another mechanism, depending on what it finds. In this case, there would
be no implicit m-context.

This amounts to a non-representational and non-computational version of the “just
add another entry” approach we’ve just discussed. In order to avoid getting lost in a
causal ocean, the mechanism must either assume that the m-context was established
somewhere else or identify the m-context itself. Only then it can figure out how to handle
the stimulus. This identification process can be quite complex and involve both bottom-up
(from stimulus to m-context) and top-down (from a candidate m-context to stimulus)
processes. The contrast with Wheeler’s SPACs is clear, for in these mechanisms, m-context
is always already there, at the point of triggering. Thus, Wheeler allows for a genuine
explanatory role for m-context in accounts of the minds’ inner workings: it is part of the
functional description involved in some mechanisms. Consequently, we have something
similar to what was achieved by the knowledge representation approach, and we can again
make sense of what would it be for a sub personal mechanism to be “inside” a given
m-context and have its inner workings relying on this.

Both Minsky’s frames and Wheeler’s SPACs enable an explanatory role for m-context
in their respective frameworks. In order to do that, both work under the assumption
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that m-context boundaries can be somehow determined. But there’s no such thing as a
non-saturable data structure or a non-saturable isolated causal domain, so there can be
no one-to-one mapping between m-context and human contexts. Furthermore, there is
no clear principle to individuate neither frames nor SPACs, and no criterion under which
we can decide where goes what (should cognitive knowledge about work colleagues be
part of the restaurant mechanism?). In particular, this is probably the main reason why
Minsky’s approach could never achieve anything beyond specialized systems, in which
the context is artificially constrained by the designer, allowing the system to handle a
single task in a very specific set of circumstances. Wheeler’s SPACs don’t share the same
historical importance, but they can be subject to the same reasoning. That doesn’t mean
the approaches are doomed, however, but only that there is a huge challenge ahead. A
more detailed diagnostic will be provided in the upcoming sections. For now, I want
to focus a bit on researchers who had already given up and believe that any appeal to
m-context in this sense is hopeless. How can they navigate the huge ocean of cognitive
knowledge without any appeal to m-contexts?

Take for instance Dreyfus (2007) and Bruineberg; Rietveld (2014). In their view, our
minds are continually “tuned” to the environment in a more-or-less global sense. However,
to claim that such tuning is global does not mean that every single mental mechanism
involved is deeply integrated with one another. There is space for specialized or even
encapsulated mechanisms. The point is just that the organization of these mechanisms
need not rely on determined m-contexts structurally resembling human contexts in any
way. This is also the reason why Gallagher (2007) thinks that m-contexts have no real
explanatory work to do. In the view of these authors, although the human world can
be organized in different contexts, such structuring has no role to play in explaining our
ability to negotiate and navigate them. The mind is sensitive to lots of environmental
cues, and behavior is to be accounted for without relying on their organization.

In this view, to enter a context is nothing like selecting an m-context to guide one’s
cognitive machinery. Instead, the whole system can be said to acquire a certain shade in a
broad spectrum of possible tonalities. This sounds familiar, for that’s how we characterized
human contexts: contextual tonalities. But what exactly this buys us explanation-wise?
Prima facie, by rejecting the need to compartmentalize and organize chunks of cognitive
resources or to specify contexts in which one can embed special purpose couplings, we can
avoid the need to deal with the non-saturable character of human contexts at the level of
cognitive explanation. Contexts would be a methodological tool that we, as theorists or
scientists, can apply to organize our work (“we study human behavior in restaurants”).
Should we accept some version of the global state story and avoid any role for m-context
in cognitive explanations, then? Though that would surely make Dreyfus happy, the
situation is not hopeless for those who want to insist in an explanatory role for m-context.
It’s far from clear whether Dreyfus’s or Bruineberg’s and Rietveld’s approach really buy us
anything as far as context-sensitivity goes. The need for an account of the human capacity
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to cope with an open-ended set of non-saturable contexts is still there. Scientists adopting
a global state story still owe us an explanation of how the trajectory from one global state
to the next can be isomorphic to the structure of contexts we find in the world.

To provide the grounds for such a trajectory and to provide a theory of context
determination, however, are very similar tasks, so even if one comes up with a proposal to
handle the former, there’s always a possibility that the solution can be formulated in terms
of the latter. It is an open question whether there can be any solution-wise distinction
that preempts such a move. This picture suggests that m-context issues cannot ground
the selection of one explanatory framework over the other. Therefore, one cannot dismiss
the problems brought about by the existence of non-saturable contexts just by pledging
allegiance to a specific framework. Therefore, at least as far as m-context issues goes, no
framework gets to handle commonsense and situation holism for free. As we’ll see in the
next section, this goes even deeper than one might think.

Before we move on, it is important to be clear about what motivates bringing up the
possibility of m-contexts to our picture. Basically, it is because the debate around whether
it makes sense to rely on m-contexts in explanations of cognitive capacities is historically
mistaken as the debate about whether it makes sense to rely on representations. So we
need to make a clear-cut distinction between issues regarding the (possible) reliance on
m-contexts and issues regarding the (possible) reliance on representations in accounts of
cognitive capacities and performances. As an example, when Dreyfus published his early
criticism to AI, the challenge of accounting for context-sensitivity underpinned most of his
arguments (Dreyfus, 1972). But at the time, as Dreyfus had no alternative framework
to offer, he pointed the finger towards representations and claimed that cognitive science
needs to avoid symbolic representations. As symbols were the only game in town, Dreyfus’
concluded that we must shun any role for representational contents. In other words, he
took the problem with the idea that m-contexts can be modeled as scripts or frames to be
a problem with the idea that frame-systems and script-systems rely on representations.23

The question of whether m-context has a role to play in cognition was conflated with the
question of the nature and role of representations in cognition. However, we should be able
to ask about the explanatory role of m-context in a given framework without worrying
about its representational commitments, like we just did within Wheeler’s framework.

1.4 How context sensitivity raises problems about relevance

Lets take stock of what we’ve already got. We saw that human intelligence is char-
acterized by, among other things, two broad capacities called commonsense holism and
situation holism. The first is the capacity to apply a huge backdrop of knowledge in real
time as the interaction with the outside world develops (as inputs get in, if you like), and
let this background guide our understanding of the current situation. Situation holism is
23 For a nice and elucidating exposition of Dreyfus’s mistake, see Salay (2009).
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the capacity to deal with two (or maybe more) of these understandings of the world at
once. It’d be already impressive if we could do this while keeping these two interpretations
apart, but we can also integrate them, and reason about how they interact with each other.
I believe that both of these capacities are ubiquitous, that is, they underpin a large part
of our cognition, even online, low-level processing, such as that involved in recognizing
a tiger as a tiger. Furthermore, the contexts involved in the structure of human world
activities comprise an open-ended set of non-saturable situations whose boundaries are
fuzzy and blurred. We have also seen how this trait of human world context raises an
issue for cognitive explanations, and that this issue cannot be avoided by simply choosing
one explanatory framework over another.

We’re finally in the position to appreciate a deeper and broader issue that I’ll call
relevance problem (RP).24 The conjunction of commonsense and situation holism with the
non-saturable character of human world contexts raises serious problems when trying to
handle relevance-sensitivity. The basic formulation of the problem is simple: given a goal
and a set of resources, how do we select the relevant ones? Put this way, it may sound
like a minor issue. There seems to be so many available options out there to deal with
this question, that one can easily fail to see why the issue is worthy of our attention in
the philosophy of cognitive science. As is typical with most of the philosophical problems,
however, the original question seems banal and hardly worthy of serious research. It earns
its keep as a concern by continuously resisting the naive initial approaches to cope with it.
This, I think, is the case of RP in cognition. We start with a simple and vague question,
and we realize that every time we advance a proposal to kick the problem through the
door, it somehow makes its way back through the window.

What’s the connection between the capacity to know what’s relevant and what we’ve
just seen about human intelligence and human world contexts? Given the initial question
about relevance, any kind of cognitive system that must cope with it has only three broad
strategies available: (1) always take for granted that every single available resource is
relevant; (2) always take for granted that none of the available resources is relevant; (3) at
any given case, take for granted that some of the available resources might be relevant.

For obvious reasons, we need not dwell on strategy (2). To say that a given system
never considers any of its resources as relevant amounts to a denial of its status as cognitive.
Only reflex answers like those produced by a knee that gets hit by a rubber hammer would
be available for such a system.

In its turn, (1) is actually a way to shift the problem to someplace else. Unless we’re
talking about a system with an infinite amount of time and knowledge, we must assume
24 Readers familiar with the frame problem (FP) may find this terminology a bit odd. Why not call such

relevance issue “frame problem” as many authors do? Because I think these are different matters that
call for different solutions. Though I have no terminological quarrel with those discussing relevance
issues under the name “frame problem”, I think the adopted terminology enables a clear-cut distinction
and avoid common misunderstandings around the way the word “frame” is employed. The long answer
will have to wait for chapter 2.
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that the available resources are manageable by the cognitive system.25 This might be the
case of simple enough biological systems which have only one or two broad strategies to
deal with whatever situation they find.26 Given a small enough amount of resources, one
can always rely on everything one’s got without worrying about time constraints. But how
can a natural system possess just the right set of resources to cope with its environment?
We know where to look for the answer at least since Darwin: the system’s evolutionary
history. Nice examples can also be found in AI systems. It is not a coincidence that in the
history of artificial systems, this approach succeeds only for tasks executed in heavily (and
artificially) constrained scenarios. Take for instance the so-called expert systems from
the 1980s and the contemporary bleeding-edge applications of deep learning technology
to create systems that achieve specific goals in efficient and robust ways. Such system’s
efficiency and accuracy rely heavily on the designer’s capacity to constrain whatever it
needs to consider when deciding what its behavioral output should be. The moral is
that, if one wants to claim that us, qua cognitive systems, rely on the constant usage
of everything we’ve got, one is only transforming the problem from that of selecting the
appropriate subset of resources into that of finding a design solution that avoids this need.
The resulting system would be one for which whatever the task, everything would be
already in place.

It’s a hard enough quest to find a design solution that can cope with a reasonable
number of well-defined circumstances, but when considering the non-saturable character
of human world contexts, it seems hopeless. It would be really odd to claim that one’s
knowledge about convolutional neural networks is always relevant in deciding what to
feed a dog. Even if one’s willing to bite such a bitter bullet, however, one would need
to provide a design solution that shows how all this knowledge could not be an issue for
resource-constrained systems. That is, she would have to show how the knowledge about
convolutional neural networks can have the right kind of causal effect both when it is
useless and when it is useful (as when one’s thinking about machine learning). To show
how such a distinction in causal effects could be done, however, is equivalent to show
how a system can distinguish what is relevant from what is not. That’s just the original
problem. Therefore, even if our intuition could push us into thinking that commonsense
and situation holism, along with non-saturable contexts, point towards (1), time and
memory constraints would push us back.

It looks like we’re stuck with (3), which is where RP really bites. If we want to explain
how our commonsense and situation holism can deal with non-saturable contexts (in a way
that is compatible with our finite resources and the heavy time constraint that is imposed
on us by their real time character), then we must understand how it is possible for us to
keep track of what is relevant in every specific situation. The issue can be summarized
25 I’ll leave God’s epistemology for those interested in it.
26 Again, I’m leaving aside whether such systems can be deemed cognitive. I’m just assuming that there

can be cases of natural cognitive systems that might rely on always using every resource they’ve got.
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like this: given a set Z of inference-like cognitive processes allowed by the constitution
of a given system S — and assuming that Z is so big that it is physically implausible to
expect that S discerns what’s relevant through an exhaustive consideration of every single
possible application — how can S select only the members of Z that are relevant for any
given task inside any given context? Notice that Z need not be open-ended in order to
preclude an exhaustive consideration. It just needs to be large enough so that the strategy
of checking all possibilities is beyond the reach of the system.

As Haselager remarked, this is the problem of understanding how only the relevant
part of our cognitive knowledge guides what we end up believing and doing (Haselager,
1997, p. 105). The most evident difficulty is that there seems to be no general theory of
relevance nor anything akin to a set of general principles that might distinguish what is
relevant and what is not in a contextless way. This is no surprise. Relevance is a relational
property. A hammer cannot be said relevant per se. It is relevant for a given task in a
given context. Relational properties cannot be easily (if at all) reduced to non-relational
properties such as physical ones. Relevance is not a property intrinsic to members of Z:
just like hammers, any of them might be relevant (or not) in one situation or another.
As Fodor (1983) would say, Z is isotropic. But that means we’re now in a very delicate
situation: on the one hand, we need to account for relevance sensitivity in order to explain
how we can negotiate human world contexts. On the other, we must rely on context to
distinguish what is relevant and what is not. It seems we’ve got sucked in a vicious circle.

How hard can it be to get out of this circle? We can see that by assessing the way it was
approached throughout the history of cognitive science. This will show us how easy it is to
be misled into thinking that we have found a solution even if all we did was to reformulate
it in a different framework.27 That’s the path we tread in the next session. For now, I
just want to remark that, as Samuels (2010) has noticed, if this analysis is on the right
track, the resulting picture is remarkably close to that on which Descartes has grounded
his substance dualism: reason’s flexibility and capacity to cope with an open-ended set
of situations resists mechanistic accounts, and relevance sensitivity might be the one to
blame. A science of mind that cannot account for it is dangerously incomplete, and that’s
the importance of trying to meet this challenge.

1.5 Why relevance problems are so hard

Throughout the years, cognitive science has developed many strategies that promised
to handle RP. I think none of them gets there. The usual outcome is to find a non-
generalizable strategy that ends up assuming commonsense rather than explaining it. This
is typically the case among those working closely with AI research and using it as source
of inspiration. The stance is reminiscent of cognitive revolution’s first days in which AI
was cognitive psychology’s intelectual engine. In those times, AI was the primary source
27 A danger that surely lurks over the possible solution I’ll present in this work as well.
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of computational models that cognitive psychologists could take as hypotheses about the
inner workings of the mind. However, in AI, artificially constrained scenarios (“toy worlds”)
are typically already taken for granted when specifying the capacity to be modeled. Thus,
just by specifying a target capacity in a certain way, one is already assuming the context
in which it will be applied, which means the system relies on the designer’s commonsense,
and not on its own. Such a context will be then artificially saturated, for it is up to
the designer to point out scenarios in which the system will not behave as expected and
constraint the environment in a way that avoids them. Even if the AI designer manages to
deal with a huge system who can cope with a large set of situations, her solution cannot be
generalized in a non ad-hoc way, for it relies on lots of special-purpose artificial constraints
she put there.

But AI is not the only path to this error. Even those less computationally inclined
and closer to biology can easily fall for it. The reason is closely related to a methodolog-
ical difficulty that pervades psychology. Take for instance the McGurk effect (Mcgurk;
Macdonald, 1976), according to which visual inputs may affect and override what we hear.
If we hear someone saying “ba” (as in bark) but see her mouth moving in a way that is
closer to what we would expect if she was saying “va” (as in vacation), we’ll actually hear
va, in a kind of auditory illusion. The mere specification of the effect (the conditions under
which it happens) does not amount to a psychological explanation. The specification of an
effect is psychology’s explananda, not its explanans (Cummins, 1983, 2010a; Haugeland,
1998b). Their manifestation is something to be explained. The relevant point to our
discussion is that the specification of capacities is no trivial matter. They’re akin to what
Marr (2010) dubbed the “computational problem” (a misleading name, for there is nothing
essentially computational about it). Some specifications might be clear enough, such as
the capacity to see depth in a visual input. Other capacities have boundaries that are
much harder to find, such as the capacity to learn a second language. I have no intention
to discuss this qua methodological problem, but I want to remark how easy it is to be
blind about relevance sensitivity either as a necessary part of the capacity’s specification
or as something that the specification must take for granted.

To show how pernicious and ubiquitous this might be, I’ll discuss how RP presents
itself (and refuses to leave) in two largely different frameworks. The first is Fodor’s
classical view of the mind as a collection of modules and a global processing engine. The
second is Wheeler’s Heideggerian account of the mind. Fodor’s view is connected to the
classical cognitivist tradition and is broadly computational and representational. Wheeler’s
view trades on a typically non-computational and non-representational modeling medium:
the Dynamic Systems Theory (DST) mathematical framework, usually associated with
physics. What’s interesting and elucidating is that, while the former assumes a destructive
pessimism about RP and claims that there is no possible cognitive science of relevance
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sensitivity,28 the latter tries to explicitly overcome it. Nonetheless, both end up in a similar
place, with difficulties that are analogous in form, despite their huge differences.

1.5.1 On Fodor’s pessimism

Fodor is well-known for taking two different claims to the extreme. First, a claim about
the kind of representational vehicle that underpins our representational capacities (Fodor,
1980). In his view, attitude contents amounts to representational contents. His famous
dictum makes it clear: to believe in p is to have a representation with the content p in
the belief box. This is Fodor’s way to say that to believe in p is to have some internal
state that both represents p and has been given a functional role: causally grounding the
behavioral outputs of the system in a way that can be epistemically assessed as taking
p to be true. In the next chapters I’ll have a lot to say about what the rejection of this
claim buys us, but for now, let’s stick with Fodor.

The second claim for which Fodor is well-known regards the modularity of mind (Fodor,
1983). In this view, we can talk about at least two kinds of cognition: modular and
central. Fodor’s conception of modular cognition is very specific and his properties are
long-familiar, so I’ll be brief here and quickly list the most prominent characteristics that
he attributes to modules. First, they’re domain specific. Whatever a domain amounts to,
the module is constrained by it and will refuse to handle anything else. Second, they’re
mandatory, that is, the presence of the adequate input will necessarily trigger the module
into doing whatever it does. Third, they’re cognitively impenetrable, that is, processes
outside the module cannot interact (except maybe in very limited ways) with the module’s
inner workings. This is why the agent has no say in what the module outputs (think about
perception: though you can refuse to accept that the wall ahead of you is indeed purple,
you can’t decide to see it differently). Finally, they’re informationally encapsulated, in the
sense that whatever content they have is proprietary, and whatever content other modules
have will not be taken into consideration.

Sometimes Fodor is clear in saying that informational encapsulation is the most
important characteristic he attributes to modules. However, even if this is not entirely
true of his view, encapsulation is surely the most relevant property for our discussion.
Perceptual input mechanisms are the usual examples of informationally encapsulated
modules, and that’s why one could point to the McGurk effect and take it to be evidence
against Fodor’s view. The effect, remember, is one in which visual input changes what
we hear. If those processes were completely encapsulated from each other, how could
that be possible? Though I believe Fodorians would indeed owe us an explanation for
this kind of case, I don’t think it would be too hard for them to produce one, nor that
the lack of an immediate answer would be fatal to the encapsulation thesis. There are
many possible stories. Maybe there’s more than two modules involved in vision and
28 Remember Fodor’s “law of non-existence of cognitive science” in Fodor (1983).
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audition, and one of these modules might rely on already worked out inputs from other,
lower level, modules. Or there can be some kind of architectural failure that allows for
this very specific effect. As a matter of fact, if we assume non-encapsulated modules,
we’d have to provide an architectural explanation about why there’s so little interference
among them, which would put us in a position very similar to those working with a
knowledge representation framework. Indeed, Minsky’s frames and Schank’s scripts, which
we have met when discussing context, are both strategies that can be used to tame non
encapsulated processing.

Fodor’s insistence on encapsulation is a reflection of his pessimism about such taming
strategies. This goes very deep. For him, being encapsulated and being an object of
scientific study come together. Fodor regards non encapsulated systems as central systems,
the ones responsible for non-modular cognition. Such systems have access to each and
every piece of information available in the system as a whole, and his main job is to
integrate the outputs of all the modules in some kind of global or system-wide processing.
Fodor’s most common example is belief fixation: given that the system already has a set
of beliefs Σ and receives a new input, what should it end up believing as a result? That is,
what should change in Σ? We have already seen how difficult it is to answer that question.
A satisfactory answer must rely on a good account of commonsense and situation holism,
which in its turn must rely on a good account of relevance sensitivity. The unavoidable
question thus becomes: how does only the relevant portion of Σ affects what the system
ends up believing?

Fodor’s point is that there is no possible scientific account for central cognition. If
that’s true, then there can be no scientific account of human intelligence. To ground such
an extreme claim, Fodor characterizes central cognition as both isotropic and Quinean. To
say that a system like Σ is isotropic means that all of its elements are potentially relevant
for the processing of any given input. In belief fixation, this means that every single
belief is potentially relevant in processing the input, and thus no one can be ruled out
as irrelevant a priori. To say that a system is Quinean means that, even if we find some
non-arbitrary way to distinguish relevant from irrelevant subsets in central systems and
avoid the need to make an exhaustive consideration of Σ for every single cognitive task,
the solution would not be generalizable. That’s because the current circumstances (the
conjunction of the current state of affairs in the world and the contents of Σ) can change
what is relevant and what is not. That’s Fodor’s path towards the issue of handling the
non-saturable nature of human world contexts. He thinks that there is no way to tame
central cognition, and that approaches like Minsky’s frames are hopeless. The best one
could get by treading that path is an adequate subset of what’s relevant for a very specific
and concrete circumstance. This is a far cry from where we’ve been expecting to get.

As hard a problem that is, it’s not yet clear why would Fodor claim that central
cognition is beyond scientific reach. As a first clue, we have to remember that Fodor
was a classical computationalist: to cognize is to compute. In this view, we can study
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and understand biological cognition only by studying and understanding computational
models. However, there is no possible computational model of any system that’s isotropic
and Quinean, ergo there is no possible scientific account of central cognition. On the other
hand, it is possible to create computational models of encapsulated modules, and thus we
can have a cognitive science of such modules. Computationalism is therefore incompatible
with non-modular systems. But as computationalism is the only game in town, we’re out
of luck.

I’m not committed to a broadly computationalist approach, but I find instructive to
assess whether Fodor’s worries are on the right track.29 Assume computationalism is all
we have. Does it mean we must accept such a pessimist conclusion and narrow down our
scientific enterprises to modular cognition? I don’t think so. In the Fodorian picture, belief
revision is described (explicitly) through an analogy with theory acceptance in science.
The process through which our cognitive apparatus decides how Σ must be reviewed in
face of a new fact is akin to the scientific process of reviewing its whole body of knowledge
as a function of some new fact. If scientific theory review is both isotropic and Quinean
(as Fodor assumes), then so is belief revision. But that’s simply not true, for there are
other possibilities.

Scientific theory acceptance can also be conceived in a broadly sparse fashion. We can
have groups of scientists or scientific enterprises in general that are completely ignorant
of what the others are doing. Science’s isotropic and Quinean consensus might be a
product of the ocasional clash and competition between these relatively independent
enterprises. In usual circumstances, individual scientists or small groups simply won’t
regard anything outside the boundaries of their objects of study or research tradition. In
this view, properties like being isotropic and being Quinean can be said of the whole body
of scientific knowledge, but they emerge out of the interaction of many local enterprises
and not out of a global consideration from every single scientist or research group. I don’t
know whether this is an accurate (yet very sketchy) picture of how science consensus comes
to be, but it doesn’t matter much, for my only point here is to show that Fodor cannot
take scientific reasoning as grounds for such an extreme claim about the impossibility of
modeling central cognition. What Fodor thinks about cognition is constrained by what
he thinks about science, but his conception of scientific reasoning might well be wrong.
We can (and I think we must) distinguish Fodor’s reasons for his pessimistic claims about
what can or cannot be an object of study for cognitive science, from the grounds he offers
to show how deep and hard is RP. The former relies on a questionable conception of
scientific reasoning and a firm belief that computationalism is all we have, while the latter
is a problem even for those who disagree with Fodor about science and who do not endorse
any form of computationalism. 30

29 I do believe computational mechanisms have an important role to play in explaining biological cognition
but, pace Fodor and classic cognitivism, I don’t think that computers can tell whole story.

30 This distinction will play an important role in the forthcoming assessment of Dan Sperber and Deirdre
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Once we take Fodor’s computationalism and conception of scientific reasoning out of
the picture, his position can be summarized as follows: encapsulation is the only way to
avoid RP. Why is that? Because given the specialized and domain-specific nature of the
tasks that modules deal with, they can get by without wondering about relevance. They
can apply strategies such as always using every resource they have, since there aren’t
many. In other words (closer to mine), modules need not rely on commonsense holism
or situation holism, and they need not worry about the non-saturable nature of human
contexts either. Of course, to say that they need not worry is different from claiming that
they managed to solve the problem. What I mean is that they don’t even try. Cognitive
capacities that rely on relevance sensitivity are simply not their business. In the resulting
picture, it remains a mystery how we can account for central cognition, but not because of
a commitment to cognitivism or computationalism. Rejecting these simply won’t help.31

The problem is that the strategy available to modules (given an input, they can select an
adequate subset of all information they have through an exhaustive consideration) is not
an option for central cognition. Remember our discussion about contexts: even if we bite
the bullet and claim that belief revision does involves all of our cognitive resources at every
single step of our continuous interaction with the world, we’d still owe an explanation.
Given any resource (a belief, for instance), sometimes it has a causal role that can be
epistemically assessed as that of being relevant for the current task, and sometimes it has
not. The question of how everything we know can bear on what we end up believing or
doing is shifted into the question of how the relevant part of what we know can bear on
what we end up believing or doing.32

At this point, computationalists in general, as well as those closer to AI research might
be tempted to regard this as a problem about computational power. Once we have a
powerful enough computer, be it a quantum computer or whatever, the consider-everything
strategy will prove itself viable. For those with that inclination, I just want to remark
that (1) this is not true; and (2) even if it were true, it would amount to a brute force
approach that might be useful for some AI systems, but it won’t help cognitive science to
understand how we do it with the amount of resources we have. To ground my claims, I’m
going to use a calculation made by Cherniak (1990): assume Σ has only 138 beliefs, and we
need to check for the consistency of the conjunction of these 138 sentences by means of a
truth table. How long would it take? Depends on how fast our computer is, of course. Let
the time spent computing each line of the truth table be the same a ray of light (traveling
at 299.726 km/sec) would take to traverse a proton (whose diameter is 1013), which is
something around 2,9.10−23 seconds. Such a computer would need more than 20 billion
years (remember, the table has 2138 lines), which is roughly the estimated time from the

Wilson’s approach to relevance.
31 We’ll see details on how can a non-computational approach fall for similar reasons in the next section.
32 Note that guarantees are beside the point. We can fail to see what’s relevant. Indeed, we fail more than

we’d like to admit. Still, our performance goes way above chance. As Fodor would say: contemplate
our not all being dead.
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big bang to the present. Such a calculation might be fun, but will probably raise lots of
reasonable questions: why a truth table? There can be better ways to structure the data
and better algorithms to apply. True, but that’s exactly what leads to the point (2): to
find a more efficient algorithm amounts to find a way to go on without the exhaustive
consideration of every possibility. It’s primarily about what we do, not how fast we do it.
Talk about computational power is simply beside the point. AI qua business enterprise
might benefit a lot from the increasing availability of more and more computational power
but this won’t necessarily matter much for the cognitive psychologist who’s worried about
how we can do it.33

Under these circumstances, there are two possible roads worth considering. The first is
to reject Fodor’s idea that we can only get rid of RP through encapsulated modules and
find a way to tame central cognition. The second is to embrace the idea and take it to
the next level by rejecting the existence of central cognition: we’re modular all the way
up. What both approaches have in common is that they consider the distinction between
modular and central cognition unrealistic. Let’s take a quick look at both.

1.5.1.1 Can we dodge Fodor through heuristics?

Let’s start with the first road. Some authors, such as Carruthers (2003) and Samuels
(2010)34 have claimed, contra Fodor, that encapsulation is not necessary for taming central
cognition. In their view, the key to ensure the computational tractability of centralized
processing is to use heuristics. A heuristic is a kind of rule of thumb that allows the
system to get by in a fallible yet reliable way. This kind of rule is the reason we can
play chess with our computers. Deciding what’s the best next move in a chess game is
computationally unfeasible. However, by adopting heuristic strategies, such as “in the
first 10 moves of the game, one must focus on dominating the central area of the board”,
the system can significantly reduce the amount of possibilities, for it need not find the
best available move, but only the one that increases its dominance in a well-defined subset
of the board. Notice that, by following this rule, the system may become blind to some
unusual opportunity that happens to take place. The opponent might make a move that
renders her queen vulnerable, but if the system concentrates solely on dominating the
center of the board, it ends up failing to realize that. Ain’t that exactly the kind of mistake
that happen to us all the time? Sure. This balance between reliability and fallibility is
what makes heuristics attractive. If this is on the right track, central systems may be able
to cope with the prohibitive amount of information that characterizes them, for they’re
always handling just the subset selected by the currently applied heuristic.

Unfortunately, if left on their own, heuristics fall short of what we need. They do provide
computational tractability, but only because they shift the burden to how information is
33 Indeed, the contemporary hype with deep learning models is partly due to the increasing availability

of GPU’s processing power (units dedicated to graphical processing).
34 See also Samuels (2005).
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organized in the system. To see this, consider what would be the outcome of a heuristic
rule that is completely insensitive to the underlying organization of the information it
is working with. Here’s a quick and dirty example guaranteed to render any problem
computationally tractable: whatever the problem, the processing is going to consider only
up to five inferences and ignore the rest. The obvious question would be: which five? Is
the chess system going to consider the first five possible moves of the leftmost piece, or
only the first possible move of the five leftmost pieces, or. . . ? The answer relies on how
the information grounding the inferences is organized. Consequently, if the organization
does not suit the system’s purposes, the behavioral outcome may be erratic.

Using organization to cope with huge amounts of information is a strategy we have
already seen when discussing the role of m-contexts in cognitive explanations. The same
idea can now be put in different words: we can tame central cognition by compartmen-
talizing and organizing the available information. The most well-known approach of
this kind is Minsky’s frames: the crucial idea is that one can organize the information
concerning different domains (or situations, or kinds of situations, and so on) in different
data structures and link the possible interactions among them. It is worth to let Minsky
himself introduce his idea:

A frame is a data-structure for representing a stereotyped situation, like
being in a certain kind of living room, or going to a child’s birthday party.
Attached to each frame are several kinds of information. Some of this
information is about how to use the frame. Some is about what one can
expect to happen next. Some is about what to do if these expectations
are not confirmed. We can think of a frame as a network of nodes and
relations. The “top levels” of a frame are fixed, and represent things
that are always true about the supposed situation. The lower levels
have many terminals—“slots” that must be filled by specific instances
or data. Each terminal can specify conditions its assignments must
meet. (The assignments themselves are usually smaller “sub-frames.”)
Simple conditions are specified by markers that might require a terminal
assignment to be a person, an object of sufficient value, or a pointer
to a sub-frame of a certain type. More complex conditions can specify
relations among the things assigned to several terminals. Collections
of related frames are linked together into frame-systems. The effects of
important actions are mirrored by transformations between the frames of
a system. These are used to make certain kinds of calculations economical,
to represent changes of emphasis and attention, and to account for the
effectiveness of “imagery.” (Minsky, 1997, p. 156)

Through Minsky’s description, it is easy to see how he thinks that frames might be able
to tame central cognition. By selecting which information goes in which data-structure,
and by mapping the possible interconnections among them, central cognition need not
get lost in idle processing about completely irrelevant and unrelated knowledge. As we
have already seen, frames are a way to account for the role of m-context in sub-personal
mechanisms. Unfortunately, they don’t work, and we already know why: frames are a
way to specify contexts, but human contexts cannot be specified in full because of their
non-saturable character. If one insists in using frame-systems, one quickly ends up in a
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non ending spiral of increasingly complex frame structures for dealing with increasingly
refined and specific contexts (from restaurant to restaurant-with-date to restaurant-with-
date-without-work-colleagues, and so on).

In the end, we get either a set of frame structures describing artificially (and perhaps
arbitrarily) saturated contexts (as we do in chess engines), or a system that fails to tame
central cognition. On the former case, we fail to account for the target phenomenon,
which is the non-saturable nature of contexts. If we take a frame to be the ultimate
specification of any context, the system won’t be able to cope reliably with any new
element that presents itself in that context (a fly, an ex-boyfriend, a blackout, and so on),
for it will simply be ignored. On the latter case, the frame system would have only a
partial specification of each context, leaving the rest to be determined in real time. The
frame would not be a specification of the context, but a kind of stereotype the system can
use as a starting point to deal with the real thing. But that begs the question on how we
can determine it in real time. Frames were supposed to explain how we do this kind of
thing. What we have thus is not an account of how central cognition can be tamed, but
one that assumes it has already been tamed somehow.

If frames can’t tell the whole story, perhaps they can at least provide a good starting
point for the application of heuristics? That is, maybe frames could account for what’s
stable (or typical) in the human world, while heuristics allow the system to go beyond that
and handle whatever is specific to the current circumstances. Thus, if the restaurant frame
has no information about the appropriate course of action to take when the waiter is rude,
one can rely on heuristics to find out the answer in some other frame. Unfortunately, as it
stands this suggestion is hopeless. Heuristics cannot alleviate the burden over information
organization because they rely on it themselves. Even this search for answers somewhere
else must rely on the world being organized in some way. Therefore, situations in which
the world (as modeled in the frame system) is organized in non-usual ways will remain
out of reach.

Consider another example: say you have to find a book in a huge library just by looking
at the shelves.35 In the worst case you’d have to check through each and every book until
you find the one you want. But here’s a nice heuristic strategy that might help to avoid
that: take the first letter of the author’s last name and use it as a guide. If it is a “Z”,
then you can save a lot of time by starting with the shelves at the end of the corridor. If it
is a “K”, you can start the search around the middle of the way. In both cases, if you see
books whose author’s last name starts with a letter that is alphabetically closer to the one
you’re looking for, you can use it as a clue for where you should go next. A smart strategy
indeed, but as you probably already noticed, the effectiveness of this strategy depends on
how the books are organized. If the books are ordered by color, it simply won’t work and
then (assuming you have no information about the color of the book) you’ll have to look
35 This example was adapted from Chow (2013).
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one by one.
This example makes salient that heuristic strategies must rely on certain assumptions

about how the world is organized. In frame systems, to provide such assumptions is the
main role of frame data structures. In the absence of the necessary information, not only
heuristics are blind, but the system has no clue to choose the appropriate heuristic among
the set of available ones. If the system has no idea how the books are organized, he can’t
choose between, say, looking for the author’s last name or checking the color of the cover
(assuming it knows both strategies). Well, some might ask: couldn’t we try both? Couldn’t
we try all strategies we know, assess the results and improve whenever possible? In a sense,
I believe that’s exactly what we do, but frame systems are unable to explain how. This is
only viable if we have a small enough set of sufficiently broad strategies. In frame systems,
this is not possible unless we artificially restrain the set of possible situations the system
can cope with. A heuristic like “do whatever is urgent for survival” might be adequate for
life or death situations, but should it be applied if your favorite dish is unavailable at a
restaurant?

Furthermore, as we have seen when discussing human contexts, the addition of a new
feature to a new situation does not amount to a simple addition of new information in
some frame slot. New elements, like new cues in a crime investigation, have the potential
to change the way the system should regard everything it has already considered. We have
thus a vicious circle: new inputs might have an effect on the way we organize information.
They can change causal relations previously assumed and can drastically change the weight
that some previous feature bears on the current circumstances. Remember the example
of the kids playing pretend. Is the voice of their parents calling from the other room to
be taken as a sign that it’s time to stop or could it be integrated into the play somehow,
thus allowing the kid to approach his dad by saying “who dares to call the King”? A lot
of different inputs might change the behavioral output in one way or another. The only
resource frame systems have to account for these many ways is by explicitly specifying
them. Thus, if we want to account for how new inputs can reorganize a frame structure,
we need a kind of second-order frame structure describing how it is done. But of course
the frames that describe how the first-order frames can be affected may themselves be
affected by some input, which leads us to the need for a third-order frame system. This
is a clear case of a vicious regress. Some like Dreyfus (1972) saw this threat right after
frame systems were first presented. In a nutshell: we can’t account for how to cope with
non-saturable contexts by postulating second-order non-saturable contexts to lead the use
of the first-order ones. But if we use heuristics within a frame system, that’s all we can
do.36

36 At this point, one can say that the problem with frame systems is that they are computational, and
hence they must regard relevance as a computational problem. This leads to the road where one tries
to avoid RP by avoiding its computational guise. In the next section I’ll try to show why the effort is
not fruitful.
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1.5.1.2 Can we dodge Fodor through massive modularity?

What about the second road? The core idea is to take the modularity thesis to an
extreme and go modular all the way up. In this view, the mind is essentially a product
of the complex interaction between many encapsulated modules. The mind is massively
modular, as some would say. Consequently, there is no such thing as central cognition
to be tamed. Many researchers connected to evolutionary psychology, such as Pinker
(1997) and Sperber (2005), chose to tread this path. There is extensive literature about
this view and I cannot do justice to it: even a birds-eye view would take too much space.
My discussion will thus be restricted to if and how a massively modular mind is able to
cope with relevance sensitivity in the characteristically human way, even when handling
non-saturable contexts.

As far as RP goes, Fodor’s point is that encapsulated modules need not worry about
it. A well-functioning module just need to cope with a specific kind of task by using
a proprietary, predefined and statically organized information corpus. If the module’s
performance is good enough to be adaptive, then it’s good to go. However, these are also
the properties that seems to preclude the appeal to modules in any task that relies on
information integration. A facial recognition encapsulated module that has no access to
geographical information will be of no help in guessing where someone comes from. This
kind of informational boundary led many to think that accounting for relevance sensitivity
in massively modular systems is hopeless, as they seem to allow for near-zero flexibility
and context-sensitivity. Though I agree that massively modular systems won’t do, that’s
not because they have no flexibility at all. There is space for some flexibility if we consider
that modules can eventually preempt each other (as when a predator-detection module
takes over) and that modules can get triggered by complex input clusters (a visual and an
auditory simultaneous input, for instance), but of course this is a far cry from what we
need.

According to Sperber (2005), modular systems can be much more flexible than that,
and are able to account for context-sensitivity. I’ll quickly present what I take to be his
core claims about this because it will help me point out exactly why I think massive
modularity falls short of what we need (just like frame systems). Sperber claims that the
kind of flexibility and context-sensitivity that we exhibit is due to a general organismic
tendency to improve efficiency at all times. His background for this claim is the theory of
Relevance he developed with Deirdre Wilson (Sperber; Wilson, 1995). There, they present
a technical notion of relevance that I’ll call s-relevance, in order to avoid confusion with
the more intuitive sense we’ve been using the term so far. The core idea is that s-relevance
is a property of inputs that can guide the effort and the amount of resources (such as
memory retrieving) dedicated by the cognitive system in attending it. If there is no central
cognition to assess the input and control the allocation of such resources, this is achieved
through competition: the cognitive economy must be so that the most s-relevant input is
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always (or usually) more likely to get most of the available resources.
In order to see how that could work (and ultimately why it falls short of what’s needed),

we have to understand a bit about what it means to say that a given input is s-relevant:
the measure is done in terms of a trade off between cognitive effort and cognitive benefit. A
cognitive benefit is an effect that contributes for the general efficiency of the encompassing
organism. In organisms like us, the idea is that the more we know about the world,
the better (i.e. the more efficiently) we can cope with it, and thus we can grasp how
cognitively beneficial some input is by measuring how many new inferences it allows us to
do in a given set of circumstances. Remember, however, that s-relevance is about a trade
off. It takes the system time and effort to cope with the benefits of any given input, so
the most s-relevant input is not just the one with more cognitive benefits, but the one
with the greatest set of benefits at the lowest cost. If any two inputs allow for, say, three
new inferences, then one that requires less cognitive effort will be regarded as the most
s-relevant. 37

A question quickly emerges: how can any cognitive system be sensitive to s-relevance?
At any given time, the s-relevance of an input depends on the current circumstances and the
current cognitive states (which encompasses the organisms current needs and expectations).
Given such reliance, it seems that a system can only know the s-relevance of some input
after a lot of processing. But if that were the case, then the whole s-relevance framework
would be self-defeating. What really matters then is not sensitivity to s-relevance, but
to expected s-relevance. If the system is able to calculate the expected size of cognitive
benefits, it can then allocate the right amount of resources for the input at the point
of triggering. In the resulting picture, cognitive efficiency is partly measured by how
accurately can a system make well-informed guesses about the s-relevance of an input.

But the worry about how can an input’s expected s-relevance be calculated remains.
After all, if the calculation is not efficient, then the whole project falls apart. In our
previous discussion about frame systems we have faced some difficulties that might reappear
here. Are we going to use heuristics? Which ones? Perhaps it’s possible to measure the
number of inferences that a given input allows and then store it, so we can use that as
a shortcut when processing the same input in the future. But this strategy is ignorant
of the particular importance that any given cognitive benefit might have in the present
circumstances, i.e. given the current needs and goals of the encompassing system. After
all, s-relevance, just like relevance, is a relational property. The s-relevance of any input is
a function of the current circumstances and the current psychological states. By following
this path, one might end up formulating an entire frame system (or something similar)
designed to calculate expected s-relevance in a way that fulfills the goal of contributing to
the system’s efficiency in general. Sperber is well aware of that risk, and his suggestion is
37 This is of course a very simplified description of a single element in a very rich and complex framework.

But hopefully this is a fair enough gloss of Sperber’s position, and I believe none of the missing details
would have impact over the main point being presented.
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that the threat might be mitigated in a non-cognitive way: “(. . . ) it is not at all obvious
that the brain should calculate the size of cognitive effects. There may be physiological
indicators of the size of cognitive effects in the form of patterns of chemical or electrical
activity (. . . )” (Sperber, 2005, p. 65).

What’s remarkable about this suggestion, whether plausible or not, is how much of
a detour from the classical program of cognitive science it is. Sperber clearly endorses
some version of computationalism, but he’s willing to give up on the claim that the mind’s
sensitivity to s-relevance is achieved computationally. Of course, he does not deny that
some of it might be computed, but his picture is one in which that would be an exception,
and not the rule. Given the difficulties involved, I suspect this is no accident. Sperber
acknowledges a clear role for m-context in cognition, but not a computational one.38 This
has important consequences. Remember that, in order to deny central cognition, we had to
give up on the idea of a centralized ruler and put a decentralized competition for resources
in its place. Thus, we have to account for the resource competition in physiological terms.
It is worth to check Sperber remarks about that at some length:

When an input meets the input condition of a given modular procedure,
this gives this procedure some initial level of activation. Input-activated
procedures are in competition for the energy resources that would allow
them to follow their full course. What determines which of the procedures
in competition get sufficient resources to trigger their full operation is
the dynamics of their activation. These dynamics depend both on the
prior degree of mobilization of a modular procedure and on the activation
that propagates from other active modules. It is also quite conceivable
that the mobilization of some procedures has inhibitory effects on some
other procedures. The relevance-theoretic claim is that, at every instant,
these dynamics of activation provide rough physiological indicators of
expected relevance. The flow of energy in the system is locally regulated
by these indicators. As a result, those input-procedure combinations
that have the greatest expected relevance are the more likely ones to
receive sufficient energy to follow their course. (Sperber, 2005, p. 68)

Metaphorically, we can take such physiological markers to comprise a complex road-like
structure that routes inter-module interaction. Such routes may be established both
genetically and developmentally. Thus, even if the interaction between different modules
occurs only through well-defined interfaces (i.e. only through accepted inputs and the
resulting outputs, with its inner workings remaining out of touch), the resulting picture
allows for a fairly complex interaction. We can develop the metaphor a bit further by
imagining that some routes may have “obstacles” (that is, something inhibitory) or being
the kind of route that allows for faster speeds (or average speed, but demanding less
resources) than others. Thus, certain inputs might fare better on certain inter-module
38 There’s room for some confusion here. In Sperber; Wilson (1995), the authors use the word “context” in

a very specific and technical sense that is distinct from the conception of m-context previously discussed.
Its explanatory role, however, is quite alike: Sperber thinks that the activation patterns of mental
modules have a role to play in explaining how we achieve sensitivity to s-relevance in sub-personal
mechanisms.
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routes than others. This metaphor helps us in understanding how physiological markers
can guide the process throughout different modules in a way that is sensitive to expected
relevance. That in virtue of which a given input is taken to be more or less s-relevant is a
feature of the available routes. The system can thus allow for inferences to be made or
preempt others by relying on the expected s-relevant without processing it.

Sperber’s approach is fruitful and shows that massive modularity can account for a
level of flexibility that could be easily left unnoticed. Given our current interests, however,
the pressing question is this: is it enough to handle RP? Or could it at least throw some
light on a possible path towards solving it? In order to be fair with Sperber, we should
first ask ourselves whether RP is among the targets his account aims at. Given the
comprehensiveness of the s-relevance theory, I think it should be. I’m not so sure whether
Sperber and Wilson would agree, though. In a review of their book Relevance, Chiappe;
Kukla (1996) have pointed out that the s-relevance theory falls short of a solution to RP.
The authors took Fodor’s construal of the issue, synthesized as “Hamlet’s problem”:

If, for example, you undertake to consider a nonarbitrary sample of the
available and relevant evidence before you opt for a belief, you have the
problem of when the evidence you have looked at is enough. You have,
that is to say, Hamlet’s problem: when to stop thinking. (Fodor, 1987,
p. 140)

That’s just the previously discussed Fodorian perspective according to which belief
revision processes are isotropic, Quinean and akin to scientific theory acceptance. Chiappe
and Kukla went on to argue that s-relevance is unable to explain how the mind can solve
Hamlet’s problem, since it doesn’t allow for a theory of central cognition, and nothing
short of it will do. But this strategy left their flanks vulnerable to Sperber and Wilson’s
reply which is, in a nutshell, to claim that the mind doesn’t work that way (Sperber;
Wilson, 1996). It is neither Quinean nor isotropic. Rationality, pace Fodor, does not
require that every relevant evidence be taken into account, only some of it. Sperber and
Wilson explicitly connect the deep relevance issue that Fodor describes to Fodor’s use of
scientific reasoning as a model of cognitive processing. Consequently, Sperber denies that
cognition is isotropic and Quinean, and claims that his account in terms of competition for
resources is enough: “In such conditions, Fodor’s Hamlet problem has a simple in-principle
answer. Let the process with greater expected relevance win.” (Sperber; Wilson, 1996, p.
532)

Were Fodor’s account of the mind a necessary condition for the emergence of RP,
Sperber’s reply would be enough to settle the matter. But it’s not. As we have seen
when previously discussing Fodor’s grip on the issue, RP emerges even if we take belief
fixation processes to be less than global or to rise out of narrower processes. Therefore,
those willing to claim that RP (as construed here) is not an issue for frameworks relying
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on s-relevance need more than Sperber’s reply to Chiappe and Kukla.39 If s-relevance is
unable to handle RP, how does Sperber’s suggestion regarding context-sensitivity fare
against it? Unfortunately, just like frame systems, Sperber’s physiological markers fall
short of what we need: they can handle saturated contexts, but non-saturable ones are
still out of reach. Consequently, if someone tries to apply Sperber’s approach to RP, she
will get nothing but a non-computational guise of the issue. Let’s unpack this claim.

Remember that frame systems were able to account only for a somewhat inflexible
background comprising a previously familiar set of artificially saturable contexts. Whenever
such systems need to handle something beyond the typical flow stored in a frame (e.g. a
new permutation of some situation), the frame stops being useful, and the system gets lost.
In the same vein, physiological markers might enable the system to handle situations it is
already familiar with, but won’t help it in coping with unknown permutations. They can
surely hiccup whenever something unexpected breaks the typical flow, but it can’t tell the
system what to do, for either it has no clue, or it has too many to choose from. Again, the
addition of a new contextual feature can result in a broad revision of the present context.
That’s why a restaurant context might led one to very different behavioral outputs in
contrast with a restaurant-with-a-date context.

The friend of massive modularity has two options here: either she dramatically increases
the number of modules and potentially duplicates a lot of information among them in
order to cope with these variations, or she increases the number of possible routes among
the modules. The former is simply not realistic, for there would have to be uncountably
many modules with redundant information and no place to stop the need for new ones,
thanks to the non-saturable character of human contexts. The remaining option is to try
to account for the many levels of s-relevance that a single input can have by increasing
the number of routes among the modules. There could be a less demanding route and a
more demanding one, a slightly less demanding one, a slightly slightly less demanding one,
and so on, in an open-ended fashion.

But now we have RP all over again. In such a scenario, it is likely that we would need
routes from almost every module to almost every other, as well as uncountably many
physiological markers to account for the many shades of expected s-relevance attributable
to an input. But if that’s the case, then we’re back to an unrealistic scenario akin to the
formulation of a frame system that explicitly establishes all the possible informational
routes. Expected s-relevance cannot modulate the flow anymore and something else is
needed, for now the system has uncountably many possible s-relevance expectations to
choose from. The only possible candidate I see for this something else is the organization
of module routings in a way that is structurally similar to the contexts of the human
world, which is, remember, exactly what frame systems try to do from the start, and
also the reason why their limitations and difficulties will haunt Sperber’s approach as
39 I’m not sure whether Sperber or Wilson would be willing to make this claim, but I’m inclined to guess

they wouldn’t. In any case, it’s elucidating to see what would be the problem with it.
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well. In the end, even if it’s true that Sperber’s suggestions allow for a lot of flexibility in
massively modular systems, this augmented flexibility is not nearly enough to account for
the relevance sensitivity that is present in our target phenomenon.

1.5.1.3 Taking stock

If I was mildly successful in my presentation of both roads, it should be clear that they
fall short of handling RP. Whether we’re talking about data structures exploited by a
central processor or physiological markers exploited by many encapsulated modules, the
remaining question is the same: if and how these resources can be organized in a way
that allows the system to handle non-saturable contexts. This result already suggests that
RP is not computational in nature. We did try to follow Sperber’s non-computational
approach and ended up hitting a wall with a picture of Fodor’s smile painted on it. But it
remains to be seen whether that’s an issue with Sperber’s account or whether it would
plague every non-computational approach. In what follows, I’ll make the case that even if
we deny space for modules, frames, computations and representational contents altogether,
the same kind of trouble reappears.40 We have to be careful, though. Getting rid of these
cognitive resources often leads to adopting approaches that imply alternative explanatory
frameworks. For instance, cognition as computational is frequently rejected in virtue of
an understanding of cognition as situated and better modeled as a dynamical system.41

In such frameworks, however, there is an additional danger RP-wise: they seem to be so
distant from the kind of cognitivism we’ve been discussing so far, that we end up believing
that the issue is gone for free. Thus, it is important to understand whether and how the
problem arises there as well. Otherwise, we might not be able to see the difference between
avoiding it and giving up on it.

1.5.2 On simplifying things by bringing Heidegger

For a while, the mind as a device computing over representations of the world was
deemed as cognitive science’s only safe place. No wonder, for the alternatives were the
behavioristic distortion of mental phenomena and the methodological issues of introspec-
tionism. But after decades in power, the limitations of computational approaches started
to show and (worst) refused to leave. This led many to wonder whether there could be
other safe places. This place was found in the idea that cognition is situated. Rather than
conceiving the mind as a device registering the world in a proprietary format to compute
40 There’s an underlying discussion about the nature of computation and its relation to representation.

Some like Fodor (1981) and Haugeland (1998c) advocate the semantic conception of computation,
according to which there’s no computation without representation. Others like Piccinini (2015) advocate
for a different, mechanistic approach which allow computation over non-symbolic elements. Given my
sympathy for Piccinini’s account, I’ve said that we can deny both computation and representations
and still be haunted by RP, but friends of the semantic conception need not worry, for that will make
no difference in the foregoing discussion.

41 As an example of this point, see Chemero (2009).
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over, we should take the system-environment coupling as the primitive unity of analysis.
Some well-known proponents of this kind of approach are Brooks (1991), Varela; Rosch;
Thompson (1991), Van Gelder (1995) and others. Nowadays, there’s a whole ecosystem of
situated, non-computational and non-representational frameworks, and we usually refer
to it as 4EA (embodied, embedded, extended, enactive, afective) cognition. For instance,
there are ecological approaches - inspired in the early work of Gibson (1979) - such as
the one from Chemero (2009) and varied enactive approaches like that of Noë (2004) or
Hutto; Myin (2013). Of course, not everybody thinks that situated cognition implies the
rejection of computational mechanisms and representational states or processes. Examples
of compatibilist approaches are that of Clark (1997a) and Piccinini (2021). Within the
4EA ecosystem, the only such framework in which RP was explicitly addressed as an issue
was the so called Heideggerian cognitive science. That’s why the following discussion will
focus on it.

Though some might find odd to bring Heidegger to the table, this is not really breaking
news. In a historical sense, the whole 4EA research tradition builds on ideas that can
be traced back to the phenomenological work of Heidegger and Merleau-Ponty.42 That’s
the case of Hubert Dreyfus. A large part of his early critique to AI (Dreyfus, 1972) is
underpinned by his view on Heidegger.43 Dreyfus’ book dedicates a large portion to sketch
what would be a set of Heideggerian grounds for cognitive science, and those ideas share a
lot of what grounds situated cognition. However, when the book was first published, his
suggestions were largely ignored. The likely two main reasons are: first, most attention was
given to the chapters where Dreyfus draws an acute (and sometimes aggressive) criticism of
classical symbolic AI - famously dubbed Good old fashioned artificial intelligence or GOFAI
by Haugeland (1985). Second, because Dreyfus’ sketchy Heideggerian remarks produce
no real alternative framework for cognitive science. He provides some phenomenological
descriptions of human capacities related to intelligence and argue that GOFAI won’t be
able to model them. But what’s needed was to outline a new research paradigm, and
Dreyfus was never able to do that on its own.

More recently, however, Wheeler (2005) engaged in the project of formulating a
scientific framework directly inspired by Heidegger’s work in a sense that goes beyond
situated cognition. His project’s goal is, in a nutshell, to naturalize Heidegger’s Dasein.
Wheeler’s basic approach involves moves like this: first he takes some Heideggerian element,
such as the different ways in which we can render the world intelligible (ready-to-hand,
ready-at-hand, presence-at-hand. . . ) and then he aims at describing what could be their
sub-personal marks, that is, what kind of mechanism could account for them.44 Heidegger’s
42 Remember that Andy Clark has an important and influential book named Being There (Clark, 1997a),

which is a literal translation of Heidegger’s Dasein. Furthermore, Clark explicitly points to Heiddeger
and Merleu-Ponty’s ideas as providing early inspiration for the views he advances there. The same
influence can be seen in Haugeland (1998d).

43 In Dreyfus’s case, his main influences are Heidegger (2012), Merleau-Ponty (2011) and Todes (2001).
44 Readers not familiar with Heidegger’s work must notice that this correlation between personal level
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scholars usually find this move to be heretic or unfaithful to Heidegger’s original project,
which is why two warnings are in place: first, it is not my aim to dwell on exegetical
questions about what would be an appropriate reading of Heidegger’s work.45 Second, I’m
not interested in questions about what would it take for a framework to be “genuinely”
Heideggerian in spirit or even if such thing is possible without rampantly distorting his
work. My discussion will focus solely on how well (or bad) this approach copes with RP.
I’ll start by presenting the core points of a debate between Wheeler (2012), Dreyfus (2007)
and Rietveld (2012) about how should a Heideggerian framework handle it. After that,
I’ll argue that the upshot of the proposed framework amounts to neither a solution nor a
dissolution of the targeted problem. RP is still there, pretty much untouched.

Wheeler, Dreyfus and Rietveld are all deeply committed to dynamic models built
with the mathematical framework of the Dynamic Systems Theory (DST). This is the
framework recommended by Van Gelder (1995) as an alternative to the computational
one.46 By taking computation out of the picture, most authors assume to be taking
representations out of it as well. That’s an unjustified move, though. The explanatory
role attributed to representations in cognition may vary enormously. For instance, some
take the role of causal mediation to be enough, while others require something that is
able to work as a decoupable stand-in (i.e. a proxy) for something else (Ramsey, 2007).
Whether these can be made to work is not at stake: the point is that you can’t get rid of
all of them at once just because you reject the computational framework.

Indeed, it is possible - at least in principle - to give explanatory roles for representations
in dynamic models. I’m not aware of anyone who advanced such a project explicitly, but
it is illuminating to recognize that this is contingent and the idea could be pursued. It
is also remarkable that there is no consensus on the relationship between dynamic and
computational systems. While van Gelder thinks that they are dissociated frameworks
and completely different in nature (Van Gelder, 1995), others like Wheeler think that
computational systems are a kind of dynamic system (Wheeler, 2005). This provides
an important clue to better understand the dialectic of the debates between cognitivists
and dynamicists. Many arguments for the adoption of dynamic models target only very
specific and classical conceptions of computation and representation such as those that
takes cognition to be the business of physical symbol systems (PSS) operating through
heuristic information search strategies (Newell, 1976). However, there’s a whole gradient
of possibilities in between that remains untouched.

phenomenological descriptions and sub-personal mechanisms is nothing like Titchener’s attempt to
get insights from introspection. Phenomenology is about describing the general traits of the human
experience, not about describing particular subjective experiences.

45 Dreyfus’s reading is typically regarded as deeply flawed among scholars. But Wheeler’s approach is
based on his own reading, which motivated some debate with Dreyfus.

46 For a nice review of this kind of models, see Chemero; Silberstein (2008) and Faries; Chemero (2018).
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1.5.2.1 The Wheeler-Dreyfus debate on the role of representational contents

What’s the place of Heideggerian cognitive science in such a gradient? That was the
starting point of the debate between Dreyfus and Wheeler. Both of them accept that there
can be some place for representations and computational mechanisms in the mind, that
is, they’re not against representations per se.47 The disagreement is not about the whole
edifice of cognition, but whether there can be any role for representations in explaining
the relevance-sensitivity that underpins commonsense holism, situation holism and the
capacity to negotiate non-saturable contexts. This is one of the reasons why the debate
is primarily focused on the so-called online cognition. While Dreyfus thinks that online
cognition must be representation-free, Wheeler’s perspective is more-fine grained: he
thinks that, in at least some cases, a particular kind of representation might be involved
in online cognition, but he agrees that such representations have no explanatory role to
play in our relevance sensitivity.

The boundaries of online and offline cognition are somewhat fuzzy, but given our current
concerns, some stipulative remarks will do. The distinction revolves around different forms
of tracking the world. Online cognitive abilities track it by relying heavily (or completely)
on the coupling between the encompassing system and its surrounding environment. Such
coupling is usually characterized in terms of the close interaction between perception and
action. Thus, the primary focus of online cognition is that of controlling action. This kind
of tracking may already involve some pretty complicated tricks, though. We’re tracking
our friend in a crowd, even though the visual inputs come only from a part of his body at
any point in time, depending on how much of him is occluded by the crowd. If that friend
becomes completely occluded while passing behind a truck, we can usually predict with
reasonable accuracy that he’s coming out on the other side, considering (for instance) its
pace. In its turn, offline cognition is decoupled from the system’s immediate surroundings,
i.e. a fully (or mostly) detached negotiation with the world. It involves worrying about the
weather somewhere else, thinking about someone who’s not here or reevaluating a decision
made long ago.

We can still think of it as a way to track the world, though. Rather than focus on
the “here and now”, offline cognition can account for a fully detached “there and then”.
If we lose our friend in the crowd, we can manage to find him again, for instance, by
relying on the knowledge that he promised to be back home in two hours or maybe on
what we know about its previous behaviour. That’s why one should not think about
47 If this claim comes as surprising for readers familiar with Dreyfus’ work, just remember that Dreyfus’

criticism against GOFAI and cognitivism aims at the idea that human intelligent behavior can be
grounded in, or explained through, physical symbol systems. Higher cognitive abilities such as those
presented in detached or offline cognitive capacities might well be explained or modeled in computational
and representational medium, provided that such mechanisms operate inside a background of more
basic cognitive capacities that accounts for our basic understanding of the world. He was wary of the
idea that computation could explain the whole edifice of cognition, but would have no big quarrel with
the idea that it is useful or accurate to explain certain capacities that emerge only on the 3rd floor.
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online and offline cognition as a clear-cut distinction between two radically different kinds
of cognition, but rather as the extremities of a continuum.48 As we take things to be
detached from the world, we open up new ways of handling them: what was previously
taken as possibilities of action (somewhere to sit) can now be regarded as objects with
properties and relationships (a chair).49

With this in mind, we can get back to the disagreement between Dreyfus and Wheeler.
For Dreyfus, nothing truly Heideggerian (whatever that amounts to) can allow any role
for representations in online cognition. Our basic understanding of the human world is all
set up at this level by sets of abilities structured according to our needs. In a classical
example: at this level, to know what a hammer is amounts to knowing how to use it,
and this is connected to knowing how to use nails, as well as knowing how to use the
fences one can build with hammers and nails, and so on. Our whole capacity to cope
with things in the world is accounted under this tool-like logic. This is very different
from carving out the world in terms of objects with properties and relations to other
objects. To take things as substances completely detached from the practical grip that
comprises online cognition is the business of offline cognition.50 One can know a lot about
hammers while regarding them as objects (shape, weight, color and so on) without having
a clue about how to use them. For Dreyfus, offline cognition can be accounted for in
computational and representational terms, but only provided that such processing takes
place in the previously structured background of worldly knowledge brought about by
online cognition. Such background already maps what is relevant and what is not in each
specific circumstance. That’s why, for Dreyfus, offline cognition must take relevance as
a given from online cognition. RP is precisely what you get by trying to handle online
cognition from the theoretic perspective characteristic of offline cognition.

Wheeler, however, won’t go so far. He definitely agrees with Dreyfus that relevance-
sensitivity is the business of online cognition. Yet, he thinks that there is a role for a
specific kind of representation. Such a role, however, is different from that of classic
cognitivism. As we all know, the core cognitivist idea is that sub-personal mechanisms
represent states of affairs in the world and compute their dynamics. Thus, given a
state of affairs s1, if one switches the place of any object, the new state of affairs s2 is
represented after being computed from s1 by using knowledge about the relevant domain.
In this case, such knowledge is propositional, traffics in symbolic medium and consists of
explicit descriptive axioms and rules. That’s classic cognitivism’s way to account for the
conception of the mind as a mirror of the world. The mind’s thinking about the world
48 This is not a claim about the underlying wetware, i.e. I’m still not getting into the issue whether we

need distinctive kinds of cognitive machinery or capacities in order to make sense of the distinction.
The nature of the continuum is still an open question. The current point is just that there are many
shades of gray in between the extremes, and we need to make room for them.

49 Whether what we consider detached takes on the world need to be accounted for with resources that
are themselves decoupled from the system’s environment (e.g. representations) is a problem for later.

50 Dreyfus associates this to Heidegger’s presence-at-hand mode of intelligibility.
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covaries with it by computing it. In this picture, the role attributed to representation
assumes that their contents are objective and detached, as if they describe the world from
the viewpoint of nowhere.51 A nice example of this classical approach can be found in
the work of Marr (2010). Marr’s focus was the visual apparatus. His challenge, as he
himself conceived it, is that of explaining how the mind manages to produce objetive, non
agent-o-centric representations such as “glass at location x,y”, out of the relatively poor
2D contents comprising the inputs of the visual system. These were the kind of contents
that Dreyfus rejected in online cognition. Both Dreyfus and Wheeler reject that this kind
of representational content can be found in online cognition. However, while Dreyfus
believed that this was a good-enough reason to reject any kind of representational contents
in online cognition, Wheeler thinks there’s a role for other kinds of representations.

To get a first glance of what Wheeler has in mind, we can look again at Marr’s work.
Curiously, part of Marr’s account involves an intermediate step in which the cognitive
system produces “2.5D” representations of distal environmental elements from the vantage
point of the agent (“the light pattern that characterizes the front side of the transparent
glass at my right”). The perspective-free characterization of the visual input (“glass
at location x,y”) is produced in a further step. The apparent need to consider 2.5D
representational contents only as an intermediate step was a product of conceiving the
mind as an objective mirror of the world. However, proponents of 4EA cognition conceive
the mind not as a mirroring device but as a tool to control the interaction between organism
and world. That’s Wheeler’s conception, but instead of following Dreyfus and rejecting
representations altogether, Wheeler follows Clark (1997a) and claims that there is a kind
of representation that can play an explanatory role in the mind-as-control. I’ll call them
situated representations.52 While a classical, perspective-free representation negotiates
the world through contents such as “glass at position x,y”, a situated representation has
contents that only makes sense by assuming an encompassing system or environment, such
as “glass is at a small hand movement towards there”.

Wheeler and others have noticed that Dreyfus is blind to the distinction between
situated and non situated representations.53 His argument against representations is a
variation of an argument we’ve met before when discussing heuristic approaches in frame
systems: in order to find the relevant frame to apply in a given situation, a second-order
frame is needed, but in order to know the relevant second-order frame, a third-order frame
is needed, and so on.54 Given the non-saturable nature of human contexts, there’s no
stopping this regress. But why would Dreyfus think that the issue can be generalized
51 With a nod to Nagel (1986).
52 Wheeler and Clark calls them action-oriented representations. This is partially due to their focus

on online cognition. However, as we’ll see later, I think this kind of representation is also useful in
offline cognition (which means they can be decoupled) and thus I wanted a name that could smoothly
navigate between online and offline cognition models.

53 See Salay (2009) for instance.
54 Dreyfus presents this version in Dreyfus (2007), and Wheeler discusses it in Wheeler (2008).
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to every representational approach? The reasoning can be synthesized like this: with
perspective-free contents, in order to represent that there’s a glass on a table, we also
need to represent the glass, the table, the room and whatever else is there, including the
set of possible relations among them. Otherwise, representations cannot fill their role
in explaining how the system can predict possible permutations of the current situation
(“if the glass is pushed out of the table, it will fall on the floor and probably break”).
Thus, every representational state or process seems to imply a fully detached take on the
world. In its turn, this implies the need to fully represent the world in a perspective-free
way, which brings us back to the problem of how to avoid getting lost in this sea of
representations. In other words, the explanatory role that classic cognitivism attributed
to representations is its only possible role.

The problem with this reasoning is that it ignores the possibility of situated contents.
The claim that a representational state or process is situated implies, among other things,
that its content can be determined in a way that does not bring with it the need for
additional representational resources. Thus, a tracking mechanism can use situated
representations in order to cope with some aspect of the current circumstances without the
need to represent the whole world encompassing it. Such a content will only make sense
for a given system, with a given body integrated with its surroundings in a given way. But
that does not undermine its explanatory role of how the system can exercise the respective
cognitive capacity. In presenting this point, Wheeler uses a nice example of a watch we
know to be non-accurate: we see that it marks X, but we know the actual time is, say,
X+2. This is a way to track the world that may involve the appeal to representational
states in order to comprise a kind of “augmented reality” based on which the system will
perform. We don’t need to posit a broadly cognitivist framework — like Fodor’s — just
to gain explanatory leverage through representational content.55 Situated representations
reminds us of that.

I understand that this claim might raise lots of questions about the semantics of
representational states and its relation to the attitude contents we find in beliefs and
desires. I’ll have a lot more to say about that in the coming chapters. What’s important
for the present purposes is to see that Dreyfus’s rejection of representational contents is
grounded on a blind spot regarding the possibility of situated representations. This will
enable us to isolate questions regarding the reliance on representations and focus on the
second part of the debate: whether and how the adoption of dynamical systems can help
us to avoid RP.
55 It is important to remark that this is not an argument for the adoption of representations. I’m not

claiming that this kind of mechanism cannot be explained unless we posit representations. The claim
is that representations can be posited in explaining it without triggering Dreyfus’s worries. I do think
that representational accounts are the most fruitful, but that’s a matter for later.
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1.5.2.2 The Wheeler-Dreyfus-Rietveld debate on relevance sensitivity

The next topic in the Wheeler-Dreyfus debate is more directly related to the claim
that a broadly Heideggerian cognitive framework would be able to avoid RP. Wheeler’s
bet is that we can achieve this by relying on two different kinds of couplings. We have
already met the first one when discussing the role of context in cognitive explanations:
special-purpose adaptive couplings (SPAC). As we have seen in the example of the cricket
phonotaxis system, a SPAC is triggered only by very specific inputs which leads the
organism towards a given behavioral output. Wheeler’s point is that such couplings are
tailor-made for a single context. In his own words:

(. . . ) rather than starting outside of context and having to find its way
in using relevancy heuristics and so on, the cricket’s special-purpose
mechanism, in the very process of being activated by a specific envi-
ronmental trigger, brings a context of activity along with it, implicitly
realized in the very operating principles which define that mechanism’s
successful functioning. Here, context is not something that certain causal
mechanisms must reconstruct, once they have been triggered. Rather,
context is something that is always there at the point of triggering, in
the adaptive fabric of the activated mechanism. (2008, p. 335)

Wheeler thinks that this kind of coupling is enough to explain our sensitivity to
relevance within a lot of different contexts. The couplings comprising the human mind
could be of course much more complex than the ones we find in crickets. Presumably,
a human SPAC could allow sensitivity to information available in contexts of social
interaction, for instance. This is compatible with non-representational approaches that
rely on complex structures of ecological information or “information for action” (Carvalho;
Rolla, 2020b). But that’s also why Wheeler would see no problem in accommodating
situated representational contents within SPACs whenever they show themselves to be
useful. Indeed, whether a SPAC is best modeled computationally or using the Dynamic
Systems framework is something that must be answered case by case. In this regard,
Wheeler’s characterization of SPACs is somewhat neutral. His picture is one in which
the human mind is essentially (though not exhaustively) a large collection of couplings
like these (Wheeler, 2005, p. 278), and that’s why, at this point, one might already be
wondering what is the difference between a Wheeler’s SPAC and a Minsky’s frame. The
answer is a spoiler of where our discussion is going: as far as RP is concerned, not much.

The mind is not comprised of just SPACs, though. There is a second kind of coupling
that is much more complex and also important in understanding how humans can be
sensitive to relevance: continuous reciprocal causation (CRC). This kind of system is
non-linear and complex enough to challenge the kind of functional analysis that’s behind
broadly mechanistic approaches. That’s why the task of computationally modelling them
is (allegedly) hopeless, and we need dynamical models. A nice metaphor to understand
CRCs can be found in Clark (1997a): a CRC coupling is like a jazz trio. Each member
is constantly responding to the other ones and influencing their responses. There is no
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blueprint or script to be followed, nor any of the musicians have a distinctive role in
leading the others. Whatever leads the system in one direction or another is causally
spread throughout the whole system in a non-trivial way. The core idea is that this
kind of coupling is responsible for the continuous fine-tuning between brain, body and
environment. Such fine-tuning would allow us to track local and distal environmental
minutia and trigger the appropriate behavioral output in a relevance-sensitive way.56

But how exactly collections of SPACs and CRCs allow for the dissolution of RP? In
Wheeler’s analysis, RP is a two-headed beast and manifests itself in two distinct ways that
Wheeler dubs intra-context and inter-context (Wheeler, 2008). The intra-context RP is
manifest when determining the adequate behavioral outputs within an already identified
context. The inter-context RP, however, is manifest in context-identification tasks. While
SPACs guide cognitive processing within a context, a CRC is the kind of coupling that
allows for the identification of the context in which the system is currently embedded in.

Before discussing the details of Wheeler’s suggestions, it is instructive to appreciate how
remarkably similar this picture is to the broadly Fodorian one we’ve previously discussed.
We are again talking about a kind of sub-system that is somehow specialized in a given
situation or set of situations (frames, modules, SPACs. . . ) and we are again discussing
how well these can fare with or without some kind of system that allows for context
identification (higher-order frames, energy allocation patterns, central cognition, CRCs. . . ).
Right now, we can only wonder whether this similarity is substantial or superficial. But
this is the core of the second main disagreement between Dreyfus and Wheeler. The
question of whether there’s a substantial distinction between an intra-context and an
inter-context RP is identical to question of how SPACs and CRCs relate to each other.

Dreyfus considers the conception of RP as two-headed somewhat artificial: given that it
is up to CRC couplings to explain how a cognitive system can cope with its circumstances in
a relevance-sensitive way, there is no explanatory work left for no SPAC. Such mechanisms
can account for other cognitive capacities, but only in a way that presupposes a solution
to RP. Relevance is the exclusive business of CRCs. In his turn, Wheeler insists that
SPACs and CRCs are equi-primordial, and that we need both of them to account for both
horns of RP. On this point, the most interesting argument against Wheeler’s position
comes from Rietveld (2012). His argument is grounded on a pathology named utilization
behavior (UB):

It describes a phenomenon in which patients with a lesion of the frontal
lobe (and/or of interconnected subcortical structures) demonstrate an
exaggerated dependency on their environments in guiding their behaviors.
Patients with UB grasp and use familiar objects when they see them,
neglecting their current situational irrelevance (. . . ). Such a UB-patient

56 In a variation of this idea, Vervaeke; Lillicrap; Richards (2012), claim that many CRCs can be
understood in terms of opponent processing. The fine-tuning between the agent and its environment is
a feature of the balance between competing goals chased by distinct CRC-like subsystems. This might
be a nice move towards more accurate dynamic models. But the upcoming criticism is not addressed
by Vervaeke’s emphasis on opponent processing. See also Vervaeke; Ferraro (2013).
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may, for example, put on a pair of glasses even though nothing is wrong
with his eyes. Or upon seeing a bed he may start to undress, although
this bed is in someone else’s house. A light switch in his visual field may
make him turn the light on and off continuously. (Rietveld, 2012, p. 111)

Rietveld’s point is that mechanisms like SPACs cannot handle relevance in isolation.
They can only afford UB-like outputs. In order to avoid that, SPACs must continuously
articulate themselves with a established tuning between brain, body and world such as
the one provided by CRCs. Ergo, CRCs have explanatory precedence when it comes to
relevance-sensitivity. If the tuning is lost, as it seems to be the case with UB-patients,
the triggering of a SPAC cannot be sensitive to the current contextual tonality anymore,
resulting in inappropriate behavioral outputs. Thus, Wheeler’s distinction between intra-
context and inter-context RP is unhelpful, for if we can’t isolate the work of SPACs from
the work of CRCs, then we can’t isolate intra-context issues from the broader inter-context
ones. There is no such thing as a purely intra-context relevance-sensitivity, which means
there’s no such thing as a purely intra-context RP. In the words we’ve been using, Rietveld’s
point is essentially that, except in pathological cases, an m-context can never account for
the whole contextual tonality in which the agent is embedded.

As I see it, Rietveld sheds light on a major issue with Wheeler’s framework, but getting
there will require some unpacking. For starters, we must not be misled by the issue of
when should a SPAC be put to work, as Rietveld sometimes seems to be. Wheeler’s
favorite examples are probably to blame. When bringing up the female cricket’s phonotaxis
mechanism, for instance, Wheeler emphasizes the fact that it is driven by a very specific
environmental stimulus (the male’s mating song). This might mislead us into thinking
that SPACs are only useful in cases where some external clue can impose itself over the
agent’s contextual tonality. In this view, like a Fodorian module, a SPAC would have
mandatory processing: whenever a given input arises, the mechanism starts working
and affects the agent’s behavioral outputs accordingly, regardless of the system’s current
contextual tonality. This, however, would amount to an account of context-switching, for
we’d be claiming that, given a certain stimulus, the system will necessarily switch to a
certain m-context. This is incompatible with the claims from both Wheeler and Rietveld.
They explicitly take context-switching to be the business of CRCs, which means SPAC
triggering cannot be the issue.

At this point, one can argue against Wheeler and Rietveld that there is evidence of
specialized mechanisms “taking over” context-switching tasks. For instance, there are
cases in which actions can be primed directly by objects in a way that mitigates (or even
precludes) the sensitivity to the current contextual tonality.57 In particular, Riddoch;
Humphreys; Edwards (2000) show that the process of selecting a visually present object
out of others is functionally distinct from selecting a response (by choosing the hand
with which to grab a tea cup, for instance). Once both the object and the action get
57 See Riddoch; Humphreys; Edwards (2000) and Phillips; Ward (2002).
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selected, normal-functioning agents are usually able to preempt the opportunities for action
provided by other visually present objects, while in UB-patients this capacity degrades.
These findings suggest a role for SPAC-like mechanisms in visual object selection that
precludes an antecedent role for the relevance-sensitivity (supposedly) provided by CRCs.
In the resulting picture, a failure to preempt irrelevant visual affordances for other objects
would amount to an m-context that is imposing itself as a direct consequence of some
given stimulus.

What do these findings mean for the claims of Rietveld and Wheeler? As far as the
role they attribute to CRCs in context-switching goes, I don’t think they’re much of an
issue. The mere existence of some mechanisms resistant to the priming of the current
contextual tonality is not a threat to none of their pictures. Quite the opposite, it’s
something to be expected, given the evolutionary history we share with other species
and the prominence of this kind of mechanism in them. New findings might change
the view on how much of our normal behavior is a product of this kind of mechanism,
but we already know that, at some point, an increasing number of mechanisms must
start articulating with each other in increasingly complex ways. Otherwise, the task of
accounting for commonsense and situation holism is hopeless. Remember, for instance,
that one of the consequences of non-integration in frameworks conceiving the mind as
a massive collection of specialized sub-systems is the need to massively reduplicate the
information in each of them.58 CRCs are an answer to this need. The moral is that, at least
in a vague evolutionary sense, the evidence gives a small advantage to Wheeler’s picture
of SPACs and CRCs as explanatorily equi-primordial. We know specialized mechanisms
to be present in other species, and it’s more evolutionarily parsimonious to assume that,
when it comes to us, nature kept improving on them (e.g. by allowing its increasingly
flexible and context-sensitive application) without getting rid of its core strategy.59

The upshot is that the SPAC’s reliance on CRC for triggering presents no real issue for
the distinction between intra-context and inter-context relevance-sensitivity. In order to
play its role adequately, a SPAC must have been previously fed by inputs from whatever
prior processing took place. In other words, the holistic organization of the system always
have a role in setting the boundaries of the encapsulated domains in which SPACs will
take over. Even further, the SPAC itself might be a product that emerges on-the-fly
out of the holistic transient phases in a system. Wheeler’s general point is that once
such a mechanism gets triggered, it can exhibit relevance-sensitivity within a given causal
domain (what we have been calling a m-context) in a way that is insulated from other
mechanisms. Once s SPAC is established and triggered, it can bear the explanatory burden
of relevance-sensitivity within its underlying causal domain. This is the explanatory role
Wheeler attributes to m-context, and this is why Wheeler argues that there can be a
58 As we learned from the discussion of the massive modularity hypothesis.
59 See Griffa et al. (2022) for an account of the evolution of information transmission in mammalian

brains.
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relevance issue for insulated SPACs, after all. By claiming that UB-patients are affected
on whatever underpins the interaction between SPACs and CRCs (Wheeler, 2012), one
need not commit to an explanatory precedence of some kind of mechanism over another.

Nonetheless, Wheeler’s account is as far from hopeless as it is from safety. In order
to fully avoid Rietveld’s hit, he must show that SPACs buy us something that the sole
appeal to CRCs cannot. We must be able to get some explanatory leverage by appealing
to the notion of m-context as an insulated causal domain underpinning a special-purpose
sub-system. Wheeler’s claim is that if we recognize the possibility of handling relevance
within a specific m-context by means of one or more SPACs then, at least in that m-context,
RP will not be an issue. If we give up on the distinction between intra-context and inter-
context relevance sensitivity, this possibility is lost and the whole project of a Heideggerian
cognitive science of relevance-sensitivity becomes nothing but a non-computational guise
of the same old RP. But can SPACs really buy us this? To avoid Rietveld’s challenge,
Wheeler needs to show how a cognitive system can establish the boundaries of what will
become an m-context.

This is a well-known problem. Take the example in which the UB-patient can’t help
but start to undress and get ready to sleep whenever she sees a bed, even if the bed is
at a friend’s house. A reasonable assumption is that the UB-patient is stuck in a kind of
getting-ready-to-sleep m-context. But how are we to tell whether a given feature should
be considered part of it? Should the m-context include sensitivity just to the bed status
(is it made?), or should the patient’s current clothing get considered as well, so that it
matters whether the patient is already wearing pijamas or not? Should it be sensitive to
the location of the bed (at home, at a friend’s, at a house party. . . )? What about the bed
size, the temperature in the room or the surrounding noise? The familiar difficulty that
underpins such questions is: how far should we go into framing this m-context? In order to
account for the non-saturable nature of human contexts, we might end up encompassing
pretty much everything the system is sensitive to and devoiding m-context of the role it
is supposed to play. This kind of difficulty is the same one that a frame system faces,
and nothing about SPACs suggest they can fare any better. In a nutshell, Wheeler needs
nothing short of a theory of context determination. He is well aware of this. In his words:

This is, I admit, a genuine risk, and one that casts a spotlight on the
Herculean theoretical challenge of giving a theory of how our cognitive
systems determine where the boundaries of contexts lie. It seems to me,
however, that at this juncture we confront a choice. Either we remain
committed to the distinction between intra-context and inter-context
sensitivity to relevance, and so humbly accept the challenge to give
a theory of context-determination, or we follow Dreyfus and Rietveld
in rejecting that distinction, and so confront the fact that, (. . . ), our
Heideggerian cognitive-science of relevance-sensitivity in general, and not
just of context-switching, has barely begun. (Wheeler, 2012, p. 209)

Wheeler’s fear seems to be that if we accept a framework in which CRCs carry all the
explanatory burden, both for intra-context and inter-context relevance sensitivity, then
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we’ll gain no insight on how a cognitive system can be sensitive to relevance. We can
see this worry in his reply to a critique of his framework staged in Dreyfus (2007). By
relying on the work of Freeman (2001), Dreyfus presents his view on how CRC systems
could account for relevance-sensitivity in cognitive systems: the whole horizon of possible
behavioral outputs is rebuilt at each attention shift. In Dreyfus’s words:

(. . . ) our sense of other potentially relevant familiar situations on the
horizon of the current situation [i.e., our readiness and capacity for
context-switching], might well be correlated with the fact that brain
activity is not simply in one attractor basin at a time but is influenced by
other attractor basins in the same landscape, as well as by other attractor
landscapes which under what have previously been experienced as relevant
conditions are ready to draw current brain activity into themselves.
According to Freeman, what makes us open to the horizontal influence of
other attractors is that the whole system of attractor landscapes collapses
and is rebuilt with each new rabbit sniff [Freeman has worked extensively
on rabbit olfaction], or in our case, presumably with each shift in our
attention. And after each collapse, a new landscape may be formed on
the basis of new significant stimuli – a landscape in which, thanks to
past experiences, a different attractor is active. (Dreyfus, 2007)

Dreyfus develops his point using words from Dynamic Systems Theory, but the essential
claim is that at any given time we’re not only operating under the influence of whatever
comprises the current context, but also under the influence of whatever was previously
experienced in similar circumstances. According to Dreyfus, this is possible because, unlike
frame systems (or representational systems in general), we need not rely on previously
built links (or “routes”) between frames. In analogy, the resulting picture is one in
which, at each attention shift, the whole frame system is rebuilt by taking into account
everything we’re familiar with. That’s why a restaurant situation can easily become a
restaurant-with-co-workers-around as soon as the agent spots any co-workers.

In my view, the problem with Dreyfus’s suggestion is that it begs the question of
relevance-sensitivity. His move seems plausible for those not very fond of computational
systems because to rebuild a whole frame system from the scratch seems computationally
unrealistic (i.e. there is no algorithm for it). So it might seem that dynamical models are
buying us something in this case. But they’re not.

Computational systems can easily reorganize large amounts of information according
to certain principles. Every time you search something on Google, its engine reorganizes
the huge amount of information it has in a way that is connected to your query. The
million dollar question is: what is the principle (or the tractable set of principles) that
accounts for such reorganizing in a way that is sensitive to what’s relevant at any given
circumstance? Frame systems, as we have seen, are a kind of answer for this question.
Unfortunately, in the absence of the aforementioned principle, we cannot create a frame
system that reorganizes itself constantly by the lights of the most recent input or the
most recent attention shift. All we can do is either 1) try to design one specific frame
system and try to cope with worldly variations by using heuristics (this is the strategy we
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discussed in the previous session, and we already know why it is hopeless), or 2) design
one whole frame system for every possible circumstance, which is not only unrealistic, but
also unhelpful, for now we would need a meta frame system in order to guide the selection
of the frame system that accounts for the current circumstances, and for that, we would
need either that very same set of principles that would account for relevance sensitivity, or
a second-order meta frame system. This is nothing but a new version of the regress we
have met when discussing frame systems in the previous session. Google can do this by
artificially constraining the possible relations between information it has on us and the
information it makes available for search. If your query implies an unavailable articulation
(“from all the books you know, give me the names of those containing at least three typos
in its introduction”), it is very likely to fail, even if the information is there.

Wheeler seems to share enough of my view to pressure Dreyfus on precisely this point:
his suggestion begs the question because he lacks an account of how the rebuilding of the
whole landscape of possible behavioral outputs can be sensitive to what’s relevant. If the
system is, at any time, sensitive to everything that has been significant in the past (that
is, everything the system is familiar with), how is it that the system is able to select only
the relevant portions of it? Wheeler’s pressure is akin to mine: simply pointing out that
this view results in a flexible system is not enough, for we need to specify some kind of
strategy or principle the system applies in order to cope with relevance. In its absence, all
we can do is reformulate the problem in a new framework, and that’s what Dreyfus did.

To claim that CRCs enable us to avoid RP is not really that different from claiming that
heuristics are all we need in computational frameworks. As we have seen, heuristics usually
represent the hope that RP is all about avoiding computationally unfeasible processes. But
that falls short of what’s necessary, for heuristics must themselves rely on some principled
and relevance-sensitive way to organize the information it works with, and we don’t know
how to do that. In the same vein, CRCs represent the hope that RP is all about mapping
complex mind-body-world relationships. Though these are necessary, they’re far from
sufficient. We could formulate dozens of heuristics and still have no clue as to how the
system knows which one to apply in an open-ended set of non-saturable contexts. The
same goes for CRCs: we could describe dozens of it, and still have no idea how can their
interaction be sensitive to relevance. Thus, in order to avoid Dreyfus’s fate, Wheeler holds
tight to its distinction between intra-context and inter-context RP: given how clueless
we are regarding CRCs, SPACs are all we have left, but they’re only helpful under the
assumption that RP has an intra-context face.

However, it is not clear whether Wheeler’s credit card has a big enough limit. Even
if the issue of m-context determination were handled properly, we’d still be lacking a
substantial improvement over the reliance on CRCs. SPACs rely on bounded causal
domains, which amounts to determinate m-contexts, leaving the non-saturable nature of
human contexts out of the picture. This is not a problem per se, for it would be implausible
to assume a 1-1 mapping between every SPAC’s m-context and each agent’s contextual
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tonality. There’s probably no such thing as a restaurant-SPAC handling relevance within
restaurants. A restaurant context is likely to be the product of many narrower m-contexts
handled by different SPACs. But in order to account for full-fledged human contexts, we
do need a way to explain how can many m-contexts add up and constitute the agent’s
contextual tonality.

The problem is that we still don’t know how to build systems that are sensitive to non-
saturable contexts, and it’s a wide open question whether this can be achieved through the
complex articulation of sets of m-contexts, be they data structures like frames, or bounded
causal domains underlying SPACs. This is, again, the issue of how to organize cognitive
resources. RP, remember, is not just about finding some way to organize resources. It’s
about explaining how a system can find the right way to organize them, and by that I
mean the one that allows the system to apply those resources in a way that is sensitive
to relevance. Furthermore, the right organization must not only account for contexts the
agent is familiar with, but also for her context productivity. In order to cope with new
situations, the agent must be able to extrapolate from the contexts she already knows
in a way that is relevance-preserving. In a nutshell, this is the very same challenge that
Dreyfus and Rietveld face by relying solely on CRCs. Consequently, as far as RP goes,
SPACs bring no new game to town, which means they fare no better than CRCs and
Wheeler’s distinction is not really buying us anything.

1.5.2.3 Taking non-representational stock

It seems like, at the end of day, friends of dynamic models cannot consider themselves
free of RP, for it is neither representational nor computational in nature. Even if dynamicists
are able to find a set of principles or strategies capable of accounting for how we apply
cognitive resources in a productive yet relevance-sensitive way, I see no reason why there
could not be a computational guise of such a set. It can go the other way as well: we
can probably produce a dynamicist guise of any computational solution that eventually
arises. This might be somewhat obvious for those who think like Wheeler (2005) about the
nature of dynamic systems. For him, computational systems are a kind of dynamic system.
But even if one follows Van Gelder (1995) and conceives dynamic and computational
systems as different in nature, my point remains. This is not exactly a problem for
most dynamicists, for it might be seen as just one more item in a long list of ongoing
debates with representationalists. It is, however, a hard hit on Dreyfus, for RP is his core
motivation for rejecting representations and computations in online cognition.

Nonetheless, one can of course insist on the bet that relevance sensitivity will turn out
to be the kind of capacity that resists psychologically realistic computational solutions.
Take CRC systems: as we have seen, they model a nontrivial causal spread between brain,
body and environment that usually resists functional analysis and mechanistic descriptions.
If relevance-sensitivity turns out to be produced by this kind of system, then even if we
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can model it computationally, the result won’t be realistic, in the sense that it won’t
throw any light on how creatures like us manage to cope with relevance. Though this is
possible, I don’t see it as an explanatory virtue of the Dynamic Systems framework over
the computational one. Given any dynamic model, even van Gelder’s now famous Watt
Governor (Van Gelder, 1995), those more mechanistically inclined (like me), can always
say “nice, but how does it work?”, that is, we can still ask for an explanation of how such
a capacity comes out of such a complex causal interaction.

Dynamic models, as I see them, cannot answer that. They allow for a kind of good
science by subsuming causal interaction data under some regularity or law, which is enough
to formulate counterfactual hypothesis. However, as Cummins (2010a) remarks, this is an
exercise of confirmation, not explanation. The data confirms the law or, equivalently, the
law describes the data, but it doesn’t actually explain it. Remember the aforementioned
McGurk effect: to describe the conditions under which it occurs is not to explain it, but
only to describe it. This is different from explaining capacities in terms of the interaction
of simpler capacities, that is, by accounting for the behavior of some system in terms of
its constitution and organization. Such descriptions are psychology’s explananda.60

That’s why if we eventually reach a place where there is a given psychological capacity
(such as relevance sensitivity) that cannot be explained in terms of the constitution and
organization of its encompassing system, I’ll take this to mean that it cannot be explained
at all (given the currently available set of explanatory frameworks, of course), and not
that it can only be explained through a Dynamic Systems framework. This is why friends
of dynamic models are not allowed to say that, in their framework, RP simply does not
emerge. RP can only emerge within an enterprise that is trying to explain how something
works. If that’s not possible, then just like the fundamental laws of physics, we’ll be limited
to only describe how things are. However, I think there is reason for some optimist in
providing a psychological explanation of relevance sensitivity, and that is what motivated
this work.

1.5.3 What about this nice framework here?

I can hear a lot of questions already. What about Noë’s actionism (Noë, 2004, 2012),
autopoietic enactivism (Varela; Rosch; Thompson, 1991), radical enactive cognition (Hutto;
Myin, 2013), the ecological approach from Chemero (2009) or Bayesian approaches such
as those endorsing predictive processing (PP) (Clark, 2016; Hohwy, 2014)? The analysis
provided in the previous sections were (I hope) instructive, yet far from exhaustive. Pace
Fodor, there are just too many games in town to allow for a comprehensive analysis of
each one of them. This is why I’ve tried to show how the same problem can emerge in two
60 Claiming that subsumption under law cannot be explanatory in psychology is undoubtedly disputable.

I have no intention to dwell on that dispute, however. My intention is just to be clear on what grounds
I hold my position about this matter, so the disagreeing reader and I can both know what we’re not
agreeing about. See also Cummins (1983) and Haugeland (1998b).
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extreme cases: on the one hand, the most classical version of cognitivism, and on the other
hand, a Heideggerian approach that purports to be radically different in rejecting both
computational mechanisms and any explanatory role for representations, at least as far as
relevance sensitivity goes. If both frameworks cannot cope with relevance, then they can’t
cope with the non-saturable nature of human contexts, which in its turn shows that our
capacity for commonsense holism and situation holism remains beyond their explanatory
reach.

Can we generalize this conclusion to all available frameworks? I think we can, but let
me elaborate on this. I’m not claiming that nothing about any of then can be helpful
in eventually finding an alternative solution to RP. I’m also not claiming that the best
solution eventually available will not rely on anything specific to these frameworks. It
might be that the best approach involves something that is available to only one of them.
Indeed, possessing an exclusive conceptual tool that enables a solution for RP would
be, by my lights, a huge motivation for its adoption. What I am claiming, however, is
that no framework can consider itself free of the relevance issue just in virtue of its core
tenets. All of them owes an explanation of how could RP be solved in its own terms and,
assuming that’s the case, arguments for accepting that the solution is not available to other
approaches. Right now I think it’s very unlikely that any of them has such a conceptual
tool or a proprietary solution. In fact, I think that’s also true of the suggestion’s I’m going
to develop in the next chapters. All of them can be easily adapted to (for instance) PP
frameworks like the one advocated by Clark and Hohwy. One could even wonder why I
didn’t do it myself. The answer is simple: because I think that RP should not be regarded
as a framework-specific issue. It is true that, to some extent, the claims I’m gonna make
will be incompatible with some frameworks (Fodor’s cognitivism, for instance) and will
thus imply their rejection. But I still think it’s something good to be as framework-neutral
as one possibly can.

Having said that, it might be useful to make a few quick remarks on why some well-
known approaches or ideas could mislead us into thinking that they’d have an easier time
coping with RP. The history of RP teaches us that there are many ways to underestimate
it. Thus, whoever is serious about trying to get somewhere new must build on this story.
Furthermore, it is always fruitful to do our best in mitigating the amount of readers going
through all the work wondering “why in the world wouldn’t X be enough?”.

Let’s start by considering the fact that situated cognition allows us to offload much
of both cognitive processing and information to the environment. We have seen that
the issue is broadly organizational. Well, isn’t embedding a way to organize? To play
pretend in a stage is a way to organize what’s in and what’s out of the play. To put
some toy cars in line is a way to organize them in a street-like structure that will enable
street-wise inferences. To be in a classroom is a way to prime the need to abide by certain
rules. Couldn’t we just let such structures in the world leads us towards what’s relevant
and what’s not? I’m sympathetic to that idea and that’s exactly what I think happens
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in some cases. But I don’t think it constitutes an overall solution to RP. Much of our
cognitive tracking relies on the kind of informational integration that characterizes our
commonsense or situation holism, and it’s up to us to articulate whatever is out there in a
relevance-sensitive way. Though sometimes external informational structures may impose
themselves on us, in most cases, our cognitive apparatus allows us to articulate them with
our goals and expectations in order to predict outcomes from them, as well as to render
and exploit permutations of them.

Even further, we can build on complex, higher order, articulations of such predictions
and permutations. The need to be sensitive to relevance encompasses these abilities as
well. While being in a classroom may help to constrain inferences that are foreign to that
kind of context, we don’t lose the ability to overcome the constraints nor the ability to
enforce classroom-like constraints in other places. As we have seen, utilization-behavior
patients illustrate what happens whenever this capacity of us gets degraded or lost. In a
nutshell, we can’t be regarded as puppets of external informational structures, no matter
how rich or complex they are. Our relevance sensitivity is manifest in what we make of
them, for what we make of them frequently involves commonsense and situation holism.
Taking the system-environment as the primary unity of analysis throws no light on how
we do that.

Thus, as far as RP goes, it doesn’t really matter whether those informational structures
are somehow encoded within our heads or available out there. RP is about exploiting
whatever resources we’ve got in a relevance-sensitive way. Additionally, the difficulty in
explaining this capacity to exploit is not really about the amount of processing one has
to do, so offloading it won’t buy us much. If the problem was about processing effort,
non-computational approaches could fare better, and we already know that, and why,
they don’t. Finally, one should not forget that the worry about RP encompasses both
online and offline cognitive capacities. We’re not just trying to explain how creatures like
us can cope with changes in the world, but also how we can reason about a changing
world. Whenever the world is absent, we’d better have something in its place. And that
something, whatever it amounts to (representations, know-how, etc.) constitutes the set
of cognitive resources that must be managed in a relevance-sensitive way.

The second remark I want to make is about affection-guided cognition. I have no doubt
that cognition is affective in the very general sense that we care about (at least some of)
our inputs and some of our processing, and that this changes the inferential paths we tread.
Indeed, Haugeland made use of this idea to criticize AI efforts in modeling capacities that
rely on commonsense holism and situation holism: “The trouble with computers is that
they don’t give a damn” (Haugeland, 1998a). We surely could make Deep Blue behave
like it cares whether it wins or loses when playing chess with Kasparov, but this would be
nothing but a scam. Even if we accept the claim that an artificial gamer has a goal, there’s
no reason to accept that it cares whether that goal is achieved. Since machines don’t care,
and it doesn’t seem likely that we’ll be able to make them care in a foreseeable future, I
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agree with Haugeland that this is a key limitation for AI. But I don’t think affections are
enough to handle RP in human cognition, even if we recognize it as broadly affective. As
Carvalho (2019) and Ransom (2016) have shown, emotions are largely context-sensitive.
Contextual factors might make one regard a given object as useful or threatening. Thus,
affective marks, as far as cognition goes, must rely on previously identified contexts. Even
if they eventually modulate context identification tasks (as when somebody’s melancholic
mood leads to non-usual processing and different behavioral outputs), this leaves no place
for them in answering the key question about relevance sensitivity.

The final remark is about learning. It’s a very special kind of cognitive capacity, and
it will be given an important role in the upcoming chapters (specially in the last one).
Learning has a special appeal when discussing relevance issues, for whenever we think
about commonsense and situation holism as fully developed capacities, we usually figure
the problem as one of framing or selecting a subset of relevant resources out of a huge
pool of available ones. When thinking about learning, however, such top-down approach
is usually replaced by a bottom-up one, in which we think about the developmental stages
through which those resources get established. This leads to a legitimate question: couldn’t
we learn about what’s relevant as we learn how to cope with the world? Couldn’t relevance
be out there to be learned, just like everything else?

Now, there is a trivial sense in which this is evidently true. We do learn what’s relevant
as we learn our way in the world. Unfortunately, in order to account for how we do that,
we need a solution to RP. Just like any other cognitive capacities, learning needs to be
tamed. It requires the right set of biases and constraints on the processing. We know
this from the so called “no free lunch” (NFL) theorems (Wolpert; Macready, 1997). They
established that there can be no general purpose learning strategy: every approach is
necessarily tuned to a subset of problems. The more biased a learning strategy is, the
more it assumes about its target domain, and the less it allows for variation. Conversely,
the more variation is allowed, the more likely is the admission of noise in the learning
trajectory, which means that irrelevant features are being taken into account. Thus, in
order to learn how to cope with something, the system needs to apply the right strategy,
with the right set of biases and the right amount of tolerance for variation. But how can
we know the right learning strategy for a domain before we know anything about that
domain?

Needless to say, the problem gets specially acute in trying to account for creatures like
us. Our ability to handle non-saturable contexts involves the capacity to learn about an
unbounded set of domains. But we can’t have an unbounded number of domain-specific
learning mechanisms, and the NFL theorem seems to rule general learning out of the
picture. Thus, we’re stuck with the familiar need to pick the contextually right learning
strategy, i.e. we need to modulate our learning parameters in a way that render the process
sensitive to what’s relevant in the current circumstances. Notice how the problem with
learning mechanisms resemble the issues we’ve found when discussing frame systems and
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Heideggerian cognitive science. We’re again trying to make cognition sensitive to what’s
relevant with the same seesaw between untamed general processing or a huge list of very
specific mechanisms that are suitable only to handle saturated contexts. I won’t dig the
issue further right now, for it will be properly discussed in chapter 4, where I’ll develop
my suggestion of how we can “learn how to learn” about an open-ended set of domains,
i.e. learn to learn what’s relevant. What matters for now is to realize that, just like the
other alternatives we’ve considered, learning cannot account for RP on its own.

1.6 Mind the gap

RP stands as an obstacle to explanations of our capacity to handle non-saturable
contexts. Frame systems, special purpose couplings, physiological markers, and other
varieties of these approaches were all considered and dismissed due to their incapacity
to account for non-saturability. With this in mind, after reading a previous version of
this work, Marco Aurélio Alves and Eros Carvalho raised the following question: what if
non-saturability is too strong a requirement for human-like commonsense?61 Perhaps the
difficulties we’re facing are actually given to how the phenomenon is being conceived. Here’s
an example of a line of reasoning that could lead us into thinking that: we surely can write
down an indefinitely large number of contexts with an open-ended set of elements. These
elements may come from virtually any domain, which results in the isotropy emphasized
by Fodor. But that’s a feature of natural language. Why should that be taken as a
clue for what’s really going on within our cognitive processes? There’s the possibility
that we never take into consideration the hundreds of articulations comprising a given
linguistic description of a human context. Human contexts may be relatively more complex
than those involved in the cognition of non-human animals, but perhaps they’re equally
saturated and the big difference lies in the availability of more memory and processing
power. Therefore, though it might seem like we can integrate cognitive knowledge from
any domain to any other domain, this is an illusion. Hard limits to what domain and how
exactly they can be articulated may apply.

I think what makes this reasoning tempting is actually a conflation of two distinctive
cognitive capacities. First, the capacity to integrate information from many distinctive
cognitive mechanisms that handle different domains. Second, the capacity to take whatever
results from such integration and extrapolate from it without loosing track of what’s
circumstantially relevant. Artificially saturated situations (or saturated contexts from
sufficiently simple creatures) seems to go without the second capacity precisely because
the amount of information involved is small enough for us (or the creature) to handle it
by exhausting all the available possibilities. But the need for the second capacity does
not emerge only when the system is able to integrate everything to everything. Evidently,
the more domains are available for integration, the more complex articulations we can
61 I’m very grateful to both of them for much helpful discussion of the ideas presented here.
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produce, and the more RP bites when trying to extrapolate from it. And humans can
render much more articulations than it would be feasible to exhaust, given our seriously
limited resources. Yet we somehow manage to zero in on the relevant ones, even when
it involves an open-ended set of distinctive permutations of contexts, possibly involving
parameters that we never faced before. But even if we were capable of cognizing only a
few small domains and render poor articulations of them, this would bring us no clue
as to how we can apply that knowledge in new situations without losing track of what’s
relevant. Non-saturability is to be regarded as an extra degree of flexibility that creatures
like us come to have.

In this view, rather than an “all-or-nothing” integrative capacity, we could imagine
something more gradual. The image of “islands of rationality” endorsed by Hurley (2006)
is useful here: perhaps we have increasingly complex island-like clusters of integrative
capacities that provide sparse degrees of generality and flexibility among an increasingly
larger number of and situations. Indeed, that’s exactly how I see it. The point was
never that our cognitive machinery can integrate any cognitive knowledge with any other
cognitive knowledge, even though some authors (like Fodor) wrongly take that to be the
case. RP is able to bother us much before that. Big islands of integrative capacities are
enough to raise it, for they already challenge our time and memory constraints and thus
preclude an exhaustive consideration of every permutation. The capacity to integrate
information from different domains and exploit the resulting articulation with a variety of
tools are not due to a single cognitive achievement. But there’s a lot to unpack before I
can tell the whole story. In chapter 2, we’ll see how distinctive capacities can be integrated
through different approaches such as encoding, problem-embedding, representational
redescription, etc. There’s nothing exclusively human about these approaches, though
it might be true that we employ them at a higher rate and with a larger volume of
information. In chapter 3, we’ll discuss how this kind of strategy can be applied in order
to render a gradual version of the gap between human and non-human animal cognition
without the need to posit any mechanism peculiarly human. Finally, in chapter 4 we’ll
see how we can make use of these tools in a way that (hopefully) won’t beg RP (spoiler:
it relies heavily on cultural evolution). If the story as I’m trying to tell it is in the right
track, the gap between human and non-human animals is much more fuzzy than we’re
used to thinking of it. That doesn’t mean that there are no important differences, but
rather that what makes us human is perhaps much more of a fragile setup than we would
readily admit.

1.7 Representational and inferential productivity

What do we got so far? RP is a hard, framework-neutral, non-computational and
non-representational issue. It haunts whoever is trying to understand cognition within a
naturalistic perspective. Ubiquitous issues of this kind require that we either account for
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it or live with it. Despite the difficulties it ensues, RP is relatively easy to live with, for it
only bites those worried with the big picture. Most of the current research efforts among
cognitive scientists are relatively narrow, though. They’re usually focused on the details
of a single cognitive capacity or maybe small clusters of abilities. Therefore, the problem
of how these can be integrated in a coherent whole is rarely (if ever) faced.62 Even if a
solution is still out of reach, understanding RP is already rewarding, for it improves the
knowledge of how close we are to provide a scientific explanation of the mind. To know
what’s being left out can be informative and useful. This is true not just of cognitive
science, but any enterprise relying on similar conceptual and modeling tools as well. For
instance, an understanding of RP throws light on what underpins crucial deficiencies of
large language models such as OpenAI’s GPT family: at least so far, no such model has a
reliable grip on what’s relevant in human contexts.63 The same understanding justifies a
lot of anxiety, for we know a bit more about the challenge lying ahead. Any explanation
of human cognition must account for the sensitivity to what’s relevant in an open-ended
set of non-saturable contexts. If we can’t do that, we can’t explain commonsense nor
situation holism.

It’s time to check whether and how something can be done about it. I will outline
now the strategy and the background employed in presenting the ideas comprising the
upcoming chapters. I intend to stay as framework-neutral as possible, but I’ll adopt a
representational approach. Not any conception of representation, though. In chapters 2
and 3 I’ll argue that symbols and linguistically inspired approaches to representation are a
dead end. But that’s not true of structural representations (Swoyer, 1991). In the market
of ideas regarding content, structural representations buy us a lot of explanatory leverage
for a very low price. Its purchases will (I hope) become increasingly clear as we advance.
I can already remark, though, that they provide a clean and non-problematic link between
online and offline cognition even for those - like me - willing to embrace 4EA approaches,
i.e. the mind is embodied, embedded, (perhaps) extended, enactive and affective. We can
have it all without giving up on the additional explanatory dimension that representation
buys us.

This extra dimension comes from the fact that representations provide a clear-cut
distinction between what we know about the world and how we exploit this knowledge.
As we’ll see, this enables the formulation of empirical hypotheses that would not be
available otherwise. When trying to get somewhere, there’s a difference between making a
mistake due to an inaccurate map, and due to exploiting an accurate map upside-down.
Representations enable the same kind of distinction within sub-personal mechanisms. But
this leverage comes at a risk, for an additional hard problem lurks representational systems:
62 Not to be confused with worries about the disunity of scientific approaches. The disregard for the big

picture that I have in mind could remain untouched even if cognitive science were to rest on a single
framework.

63 I wrote about it in Barth (2021), though in another connection.
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how do we store what we know in a way that allows for efficient yet flexible retrieval in
an open-ended set of non-saturable contexts? In the next chapter I’ll argue that, despite
appearances, this is not simply a new instance of RP that emerges only in representational
systems. It is a distinct issue called frame problem that needs to be handled through a
different approach. This gives us two distinct desiderata that, for the sake of clarity, I’ll
call representational productivity and inferential productivity.

Representational productivity is about the expressive power of the representational
architecture (or the many, as we’ll see) employed by the mind. The set of things the
human mind can think about is unbounded and that seems to require a representational
architecture with (potentially) unbounded expressive power. This is, in part, what’s behind
Fodor’s language of though hypothesis (LOT) through which we can account for a huge
expressive power even with a small lexicon (Fodor, 1980). LOT seemed necessary for the
cognitivist picture because it allows one to express how things are and how things will
be after some event or action. It appeals to compositionality in order to account for how
bounded creatures like us can exhibit unbounded expressive power. A problem with this
approach is that LOT can express not just the proper outcomes of some event or action,
but also every outcome that’s logically conceivable, no matter how alien to the current
circumstances (e.g. balls falling up) or even to the agent’s world (e.g. balls becoming
invisible). The only available choice for LOTers is to restrict the possible inferences a
system can do with its expressive power. Modules and frames are a way to do just that.
As we’ve seen, however, the cost is huge: if we try to tame what the system can express
by constraining the ways it can exploit its representational resources, we pay the price
in flexibility, which is essential to handle non-saturable contexts. In other words, LOT
conflates representational and inferential productivity, i.e. it conflates the system’s capacity
to represent with the system’s capacity to exploit what it represents. The distinction
between using a wrong map and using a map wrong cannot be made to work in LOT.
This point will be further developed in the coming chapter.

The alternative that I’ll suggest is called representational cognitive pluralism (RCP).
The core idea is that much of our limitations are due to the presence of different domain-
targeted representational architectures (or, as I’ll call them later, representational schemes)
with varied representational power. Thus, our expressive power does not come from a
single maximally expressive architecture, but from the complex articulation of many less
powerful ones. In the resulting picture, we get a representational productivity that leaves
no space for the representational aspects of RP. The idea will be presented throughout two
chapters: the first focuses on conceptual issues, and the other is about its psychological
and scientific applicability. If everything goes as planned, this will leave us free of any
worries about representations in cognition (as far as relevance sensitivity goes) and in a
way that is not restricted to online cognition.64

64 I have no intention to claim that non-representational approaches are hopelessly trapped in online
cognition. My point is just that this is a wide open issue that will not emerge for representational
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What about inferential productivity? That’s just what we’ve been discussing throughout
the chapter. It is the capacity to exploit the cognitive resources we have in a relevance
sensitive way in an open-ended set of non-saturable contexts. By “inferential” I don’t
mean anything logic-like nor anything essentially related to language. I mean simply
the processing comprising the exploitation of some cognitive resource (representations,
detectors, know-how, etc.). My suggestion on how we should cope with this problem will
be presented in the thesis’s last chapter, after introducing all the necessary conceptual
tools.

1.8 Paragraph-by-paragraph summary

Each entry below summarizes a paragraph of the main text.

What intelligence amounts to

Definitions of intelligence were always regarded as a secondary matter.
No wonder the term is being used in so many senses.
These differences might be radical, but not necessarily.
I’ll take intelligence to be a cluster of capacities that allows one to deal reliably with

more than the present and manifest.
Intelligence in this sense is manifest both in online and offline cognition.
I’ll focus on two of intelligence’s constitutive capacities: commonsense and situation

holism.

Commonsense holism

Commonsense holism is the capacity to use our background knowledge about the world.
It is manifest even in the comprehension of simple stories.
It is holistic, for most of our knowledge is potentially relevant to handle an ongoing

situation.
Though linguistic examples are the most common ones, we can see commonsense

operating in perceptual tasks as well.
Importantly, being holistic is not about actually bringing to the fore as much knowledge

as one can at every single task: most of the time, most of our knowledge must be
intelligently ignored.

We can do that because we can take the world to be in many distinct ways, and we
apply our cognitive knowledge accordingly.

approaches such as the one suggested here. There are many possible ways for non-representational
frameworks to account for offline cognition. Some like Kiverstein; Rietveld (2018) try to reconceive
them in order to make it easier to handle with the available non-representational tools. In such a
scale-down approach, the boundary between online and offline cognition is somewhat blurred. Others
accept the traditional online-offline distinction and try to show how whatever tools their framework
got can be used in both kinds of cognition. These can be regarded as scale-up approaches. For a nice
review, see Carvalho; Rolla (2020a).
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Furthermore, it happens as the inputs come, for commonsense holism is real-time
holism.

It is not limited to previous familiarity with similar situations.
It involves the capacity to use pieces of knowledge in new ways, i.e. to extrapolate.
The challenge is to find the human way to do that. LLMs, for instance, can extrapolate,

but not in a human-like fashion.
Commonsense is an indispensable element of human intelligence.

Situation holism

Situation holism is (roughly) the capacity to coherently articulate two or more ways to
render the world intelligible.

It is manifest in the comprehension of simple stories like the Khoja’s.
Unlike commonsense, stuation holism is not really worried about the specifics of each

kind of situation.
Rather, it accounts for the integration of distinct situations in an intelligible whole.
But just like commonsense, situation holism is poised to play its role whenever we

handle the structure of human activities in the world.
For instance, choosing when to enforce a game rule and when to resume real-world

inferences requires situation holism.
Situation holism also requires more than mere familiarity with a collection of previous

experiences.
We have now a framework-neutral characterization of both commonsense and situation

holism.

The non-saturable character of human contexts

The difficulty in explaining commonsense and situation holism is in their reliance on
context-sensitivity.

I’ll offer here some remarks on what I mean by “context” in general and “human context”
in particular.

The set of world’s features to which a creature is sensitive constitutes its effective
environment.

Efective environments allow creatures to determine when to deploy some behavioral
output.

Most animals employ a mix of different strategies relying on different levels of environ-
mental stability.

Context is whatever the effective environment becomes under the light of the creature’s
cognitive capacities.

It is thus relative to the agent’s cognitive capacities and extends its effective environment.
We share a good deal of our effective environments with dogs, but the different cognitive

capacities mean we can’t share the very same context.



90

This distinctiviness is also manifest in the explanatory roles that cognition and effective
environment may play.

What’s distinctive about human context is grounded in something distinctive about
human cognition.

The context of non-human animals is complex, yet they’re always saturated.
Saturated contexts enable the full specification of its features.
And the full specification of how these features are articulated as well.
This is not about levels of complexity: the system’s contexts are said saturated when

the system can’t extrapolate from them in an open-ended fashion.
This is the case in the bird’s example, and in the elephant’s example as well.
Adding features to saturated contexts does not amount to a change of context.
In contrast, human contexts are non-saturable.
We can get a glimpse of what this amounts to by seeing that even relatively normal

and simple situations may involve indefinitely many features.
And indefinitely many articulations of features as well.
Thus, human contexts are not subsets, but a tonality acquired by the agent’s whole

world (contextual tonality).
The cognitive capacity underpinning non-saturability is a kind of productivity that

allows us to extrapolate from any contextual tonality we find ourselves in.
Now we’ll explore a bit the explanatory role of context in some well-known cognitive

frameworks.

The role of context in cognitive explanations

Context can be not just a mind achievement, but also an explanatory tool to account
for the mind’s mechanisms.

In order to claim that context has an explanatory role in mechanistic accounts, we must
define what we mean by that.

A first possibility is that m-contexts are data structures that help in organizing mental
processes.

A second possibility is that m-contexts are a partial causal environment in which we
can embed functional specifications.

Both possibilities assume that m-context boundaries can be somehow determined, but
we don’t know if that can be done.

A m-contextless alternative would be to consider the mind as globally tuned to its
environment.

But global state stories don’t really buys us anything explanation-wise.
Therefore, context issues cannot ground the choice of any particular explanatory

framework.
This is an important upshot, for the role of m-context is usually conflated with the role

of representational contents, which is a mistake.
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How context sensitivity raises problems about relevance

We have seen that context is the main issue when explaining commonsense and situation
holism.

But there’s a deeper issue about relevance: how to render the right subset of resources
salient for any given task.

What is the connection between relevance and context issues regarding commonsense
and situation holism?

Claiming that nothing is ever relevant is obviously a non-starter.
Another option is claiming that every cognitive resource is always relevant, but this

turns the issue into a design problem.
That’s because we are resource-constrained creatures.
Thus, we’re stuck with the need to explain how can one know what’s relevant in each

and every context.
This introduces a circle: relevance is context relative, but context-sensitivity relies on

identifying what’s relevant.
To see how hard it is to get out of it, we’ll analyse some well-known approaches.

Why relevance problems are so hard

Many strategies to handle the relevance problem (RP) take commonsense for granted.
A path to this error is related to psychology’s methodological difficulties in specifying

capacities.
To see how far this goes, we’ll discuss two deeply different frameworks: Fodor’s and

Wheeler’s.

On Fodor’s pessimism

Fodor is famous for defending the language of though hypothesis.
He also claims that the mind’s architecture consists of modular and central cognition.
Modules allows for some degree of flexibility, but they’re a far cry from what we need

for context-sensitivity.
Nonetheless, Fodor insists on encapsulation because he is pessimistic about alternatives

such as frames.
He takes the issue to be fatal and claims that no scientific account of central systems is

possible.
However, Fodor’s fatalism relies on the belief that classical computationalism is all we

have.
Furthermore, Fodor thinks that belief revision and scientific theory acceptance are

isomorphic processes.
But there are other possibilities: global revision might emerge from local processes, for

instance.
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Even without this conception of scientific reasoning, Fodor could still say that modules
are the only way to avoid RP.

Before digging into the consequences, it must be clear: this is not an issue about
computational power.

There are two possible roads to avoid Fodor’s pessimism: find non-modular ways to
tame central cognition or embrace massive modularity.

Can we dodge Fodor through heuristics?

The first approach appeals to heuristics for fast and frugal processes even in central
cognition.

But heuristics fall short of what we need.
They rely on how the information is organized (for instance, minskyan frames).
But only saturated contexts can be organized in this way.
Taking frames to be stereotypical descriptions of contexts which would be further

extended thought heuristics doesn’t work as well, for there’s no such thing as contextless
(non-trivial) heuristics.

Heuristics can’t guess the information lacking in a frame because they must rely on
frames to make those guesses.

If we insist on frames, we end up in a regress where first-order frames rely on second-order
frames and so on.

Can we dodge Fodor through massive modularity?

The second road rejects central cognition and embraces massive modularity.
Massively modular systems allow for some flexibility with mutual preemption and

complex input clusters.
Sperber uses elements of his Relevance Theory to extend module flexibility in this way.
He relies on s-relevance: a trade off between cognitive benefits and efforts that charac-

terizes inputs.
More specifically, he relies on sensitivity to expected s-relevance in inputs.
But effective calculation of expected s-relevance also relies on something akin to frame

systems.
This leads Sperber to claim that expected s-relevance can be handled by physiological,

non-cognitive markers.
We can understand such markers as comprising a complex road-like structure routing

inter-module interaction.
Sperber and Wilson believe they need not worry about Fodor’s construal of RP, for

they reject that the mind is Quinean.
But this is not enough to avoid the construal of RP advanced here, so it is a problem

for frameworks relying on s-relevance.
The reason is that we need to indefinitely multiply either the modules or the routes

among them.
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But both approaches raise RP.

Taking stock

The resulting picture suggests the problem is non-computational.

On simplifying things by bringing Heidegger

A non-computational framework in which RP was explicitly addressed is the so called
Heideggerian cognitive science.

The connection between Heidegger and cognitive science is not new and can be seen in
Dreyfus’s early work.

More recently, Wheeler tried to provide a broadly dynamical Heideggerian scientific
paradigm for cognitive science.

Wheeler thinks computational systems are a kind of dynamic system, but others think
they’re different in nature.

The Wheeler-Dreyfus debate on the role of representational contents

The role of computation and representations was the starting point of a debate between
Dreyfus and Wheeler.

The debate emphasizes online cognition.
For Dreyfus, there can be no role for representations in online cognition.
But for Wheeler, online cognition can accommodate non-classical representational

contents.
These can be conceived as situated representations.
Situated representations block Dreyfus’s argument against representations in online

cognition.
Dreyfus’s point is grounded in a blind spot regarding the possibility of situated content.

The Wheeler-Dreyfus-Rietveld debate on relevance sensitivity

The next topic in the debate is Wheeler’s thesis that we can avoid RP by relying on
two kinds of couplings.

The first one is the already familiar SPAC (Special-purpose adaptive couplings).
The second one are continuous reciprocal causation (CRC) couplings encompassing

brain-body-environment.
Wheeler then analyses RP in two: intra-context (solved by SPACs) and inter-context

(solved by CRCs).
The situation is remarkably similar to the one previously found when discussing classical

approaches.
Dreyfus rejects Wheeler’s analysis and Rietveld also argues against it using a pathology:

utilization behavior.
Rietveld claims that UB-patients reveal a primary role for CRCs in explaining relevance-

sensitivity, one that preempts any role for SPACs.
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But Rietveld’s argument emphasizes issues regarding SPAC triggering, which present
no real problem for Wheeler.

Wheeler agrees with Rietveld that SPAC triggering is the business of CRCs.
Evidence of SPAC-like mechanisms that are resistant to influence from m-contexts is

not the issue, either.
Consequently, Rietveld’s argument is not enough to devoid SPACs of the explanatory

role Wheeler attributes to them.
However, Wheeler’s case for SPACs relies on a wanting theory of m-context determina-

tion, and the question remains open.
By rejecting the possibility of such a theory, Dreyfus advocates for a framework where

mind and world are globally tuned.
His argument is already familiar to us: we need to rely solely on CRCs, and this means

to reject any role for m-context.
But the limitation of Dreyfus’ suggestion is also familiar: it begs RP instead of throwing

light on it.
Wheeler seems to share enough of my view to pressure Dreyfus on the same point.
However, he holds to the distinction between intra-context and inter-context RP and

claims that SPACs help with the former, while CRCs throw light on none of them.
But the distinction depends on a theory of m-context, and formulating one is just as

challenging as the issue facing CRCs.

Taking non-representational stock

The upshot is that RP cannot ground a migration to dynamic models, for RP is not
essentially linked to any framework.

Futhermore, dynamic models are not psychological explanations, for their models
comprise psychology’s explananda.

Thus, leaving RP aside on grounds of choosing a dynamical framework doesn’t amount
to a dissolution, but to give up on RP.

What about this nice framework here?

We’ve seen that computational and a dynamical framework have trouble handling
commonsense and situation holism for similar reasons.

The reasoning generalizes to all currently available frameworks.
Some ideas might help, but can’t solve RP on their own.
Situated cognition is of no help in organizing cognitive resources.
As far as RP goes, it doesn’t matter whether information is encoded within our heads

or out there.
Emotions also won’t help, for they are themselves context-sensitive.
There’s also learning, but we can’t just learn what’s relevant because learning itself

presupposes a solution to RP.
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The core issue is that general purpose learning is limited.
The problem is specially acute if we need to handle non-saturable contexts.

Mind the gap

What if non-saturability is too strong a requirement for human-like commonsense?
Human contexts may be equally saturated and the big difference may lie in the availability
of more memory and processing power.

This conflates two distinct capacities: 1) to integrate large amounts of information;
and 2) to extrapolate from the results of that integration without losing track of what’s
relevant. The latter, not the former, is what renders contexts non-saturable.

Though RP may present itself even in creatures without non-saturable contexts, it is
the non-saturability that makes it a specially hard challenge.

Representational and inferential productivity

In a nutshell, we need to solve RP in order to cope with contexts, commonsense and
situation holism.

I suggest we approach RP by means of two aspects: representational productivity and
inferential productivity.

Representational productivity is about the mind’s representational power.
My suggestion to account for representational productivity is that the mind employs

multiple representational architectures.
My suggestion to account for inferential productivity is that we can learn to learn

what’s relevant, after all.
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2 REPRESENTATIONAL PRODUCTIVITY

Handling RP in a representationalist framework forces us to face an issue that does
not raise for non-representationalists: how to allow for representational productivity in
a non-explosive way. If we manage to do so, we’ll have a richer set of tools to account
for inferential productivity. In order to show how we can manage that, I take the long
road. First, I show in which sense the frame problem from AI is connected (and equally
important, in which sense it is not) to RP. I do that by using resources from that literature
to delineate the role representations may play. Second, I suggest that the issue can be
handled by avoiding sentencial representations and adopting structural representations.
It enables us to deal non explicitly with relationships between tokens and contents while
providing domain-specific productivity and systematicity. Third, I introduce the concept of
representational pluralism and show how the idea of representational redescription allows
us to account for world making and its correlative productivity and systematicity in a way
that is bottom-up, and not top-down as it is the case with sentencial representations. The
resulting picture allows the representationalist to purchase a clear-cut distinction between
representational and inferential issues, so she can stop worrying about representations and
concentrates on relevance sensitivity.

2.1 The challenge of representational productivity

Representational productivity is the first desiderata outlined at the end of the
previous chapter. Though we have already seen that the idea is somehow related to
the mind’s expressive power, there’s a lot of detail to unpack and untangle before we
get clear about what’s at stake. In cognitive science, the word “productivity” usually
means the capacity to have an open-ended set of attitudes. The essential idea is that
productive cognitive capacities must be specifiable while abstracting away from time and
memory constraints. That’s pretty much what we do with computers in general and
calculators in particular. We only claim that a calculator can evaluate the product of any
two numbers when it is not subject to any constraints other than time and memory. If we
could find a huge number that could not be handled solely by managing time (i.e. more
time or faster processing) or the available memory, then the calculator’s capacity would
not be considered open-ended. The most obvious evidence that human cognition involves
productive capacities is our ability to understand an open-ended set of linguistic utterances.
The productivity of our understanding is one of cognitive science’s core explananda.

In classical stories, this capacity is accounted for by employing a productive
representational scheme. Linguistics taught us the value of compositionality and recursivity
in explaining the productivity of natural languages. It allows us to specify an unbounded
capacity while abstracting away from time and memory constraints. Why not draw on
the same trick when it comes to representations? The most well-known example of this
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strategy is Fodor’s language of thought (LOT) (1980). In a LOT-like representational
scheme, even a relatively small lexicon gains open-ended expressive power due to the
possibility of creating indefinitely many complex compositions. Friends of this approach
try to account for representational productivity solely by appeal to the properties of
LOT: we have unbounded expressive power because LOT is unbounded. Thus, while
the productivity of though is cognitive science’s explananda, the productivity of LOT is
cognitive science’s explanans.

Unfortunately, the approach brings with it a lot of well-known challenges that
are possibly insurmountable. For instance, it is very hard to reconcile with non-human
cognition. LOT requires a fundamental architectural assumption about the mind that
is not easy to account in evolutionary terms, given its all-or-nothing character. Such a
fundamental claim seems to be at odds with the evolutionary history we share with other
animals. This is not to deny that there is no gap between human and non-human brains,
of course. It is a point about the nature of the gap. Is there some big difference or is it all
about scaling up? That’s a tricky question, for there are many ways to tell a big difference
from a small one. It all depends on which properties of the brain we’re interested in attend
to. But to claim that the mind is essentially a LOT-powered belief-desire engine has broad
consequences for most brain research, which is why it probably qualifies as a huge gap.

Mammalians are a good example: do all of those who have minds employ LOT?
Researchers such as Povinelli (2012) provide an increasingly extensive body of evidence
about apes’ cognitive capacities that makes this hard to believe.1 Furthermore, one of the
core motivations for linguistic representations is explaining our capacity to learn natural
languages. But if LOT pervades most (or all) of our closest evolutionary cousins, how come
that we’re the only mammalian able to do that? On the other hand, to deny an LOT engine
for other mammalians amounts to the claim that they have no mind, which is equally odd,
specially for those with extensive work in animal cognition, such as Waal (2016). Many
researchers (e.g. Fodor) made an effort to show how psychologically parsimonious LOT is,
specially considering the huge challenge of explaining human cognition, but unfortunately
it is far from being parsimonious from an evolutionary perspective. Whether there is a
plausible evolutionary story to be told remains a largely open question, but given the time
and effort such pursuit already took us, with no sign of real success, I stand among those
who suspect that’s not a good problem to work on.

I don’t think friends of LOT will be convinced by these remarks. Many believe
that there is no other way to explain the productivity of our thought and understanding.
In their view, even though LOT has to face some tough challenges, we’d be far worst
without it. We must account for open-ended requirements with finite resources, and
that’s just what the compositionality akin to that found in natural language seems to
buy us. However, I think this is misleading, for it conflates different explananda: LOT is
1 I won’t dwell on the details now, but Povinelli’s research will be addressed in forthcoming discussions.
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able to account for representational productivity, but whether it accounts for inferential
productivity is something else entirely. In representational approaches, both kinds of
productivity are necessary to account for commonsense and situation holism but, taken
in isolation, none of them is sufficient. Additionally, I’ll argue that the real problem
with linguistic representations, is not that they have nothing to say regarding inferential
productivity. They’re worse than unhelpful, for they prevent us from explaining inferential
productivity, pushing us towards a dead end.

LOT allows one to represent an open-ended set of possible situations, as well as
their permutations. But they also can represent the same situation in indefinitely many
ways and make indefinitely many inferences out of it. To get a glimpse of what’s at stake,
consider the question “what will happen if I turn this glass of water upside-down?”. Now
just compare the amount of reasonable possibilities (the water goes down) with the huge
amount of logical possibilities (the water goes up, the water changes color, the water stays
still, etc.). How can we stop the system from going astray in such a sea of contents that
are architecturally possible, yet completely alien to the present circumstances? In order to
do so, it must exploit its representational resources efficiently, but in LOT systems, what
drives such exploitation are additional representational resources. This raises a snow ball
effect where, in order to efficiently exploit a representational resource A one must abide
by the rules specified in the representational resource B, and in order to efficiently exploit
resource B, one must abide by the rules specified in resource C, and so on indefinitely.
This kind of additional instruction is necessary because LOT has no built-in respect for
neither the dynamics nor the systematicity of any non-linguistic domain, and therefore
can spend lots of valuable time and resources making valid yet completely domain-alien
inferences. We need productivity, but we also need to keep it under control. To summarize
this view, I’ll borrow a term (not the meaning) from philosophy of logic and say that
language-like schemes such as LOT are explosive.

As we have seen in the previous chapter, the job of taming LOT’s explosiveness is all
left to mechanisms that try to constrain the set of possible inferences in any given domain
(that’s what a Minskyan frame is for). But that cannot be done unless we handle RP
adequately. However, LOT-powered approaches render RP intractable, for they constrain
the set of conceptual tools at hand, leaving the representationalist in a far worse situation
when compared to non-representational approaches. In this connection, I regard many of
the dead-ends faced by frame systems as products of LOT rather than representations
in general. While LOT allows us to at least conceive how finitary systems can deal with
open-ended sets of situations, they fall short of enabling an explanation of how finitary
systems can make use of compositionality to cope with the world efficiently. I’m not
claiming that LOT is the sole responsible for the problem of how to tame cognition, though.
We have seen that RP is a problem for non-representationalists as well. The point is
that LOT precludes representationalists from exploiting the full potential of their favorite
tool (i.e. representations). By adopting LOT, we avoid a system with too little expressive
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power, but we end up with one we can’t keep under control.
In what follows, I’ll make an effort to unpack and justify the claims I’ve just made.

I’ll ground this pessimism regarding LOT by showing what I take to be the most serious
manifestation of its explosiveness: the frame problem (FP). The historical pattern of failed
attempts to solve it will help us to accept that the issue is likely to be unsolvable. After
that, I’ll advance a positive suggestion: maybe there is a way to reach out a considerable
representational productivity without appealing to explosive schemes. The core idea behind
what I’ll call representational pluralism is to transfer some pressure from inferential issues
to the representational schemes themselves and let architectural traits help. However,
without a clear comprehension of what makes FP so hard, some motivations behind
representational pluralism will look ill-posed. That’s why I dedicate the next sections to
throw some light on the problem and its relation to language-like schemes.

2.1.1 For the want of a frame

The frame problem is a famous, yet sometimes poorly understood, issue for both
AI and cognitive science. It was first described in the logicist approach that characterized
the work of McCarthy; Hayes (1969). For a while it was extensively discussed within the
AI community. In that period, AI was still the intellectual engine of cognitive science,
producing both models and hypotheses that could be applied by cognitive scientists in
their effort to understand human cognitive capacities. Therefore, the issue quickly got
the attention of cognitive scientists like Pylyshyn (1987) and philosophers of mind and
psychology like Dennett (1999[1978]) and Fodor (1983). In the following decades, many
diagnostics and possible solutions were offered. Some like McDermott (1987) regarded it
as a minor issue, while others like Dreyfus; Dreyfus (1987) took it to be unsolvable, and
argued that the only way to avoid it is by abandoning representationalism.2 I meet them
half-way: FP is a serious issue, but it is not a product of representations per se. We need
not abandon representations, but we do need to abandon language-like schemes, at least
as far as commonsense and situation holism goes. Given the many interpretations of FP
available in the literature, before pointing out how it is connected with the explosiveness
of LOT, it is useful to get a bit familiar with the problem and the debate that emerged
out of it.

In its first guise, FP was about modelling the effects and non-effects of actions
or events. In the 1960s, John McCarthy and Patrick Hayes were developing a logical
formalism dubbed situation calculus and using it to model artificial agents. The world of
the artificial agent comprises a set of axioms describing the current state of affairs at a
given time. Call the set describing what’s on my table now Ω. The axioms specify the
current set of objects, their properties and the relationships they bear to one another.
As of now, Ω describes, for instance, the position of the laptop, the coffee cup and the
2 I present an extensive review of that discussion in Barth (2018).
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coffee bottle (yep). The properties and relations of these objects are denoted by special
variables denominated fluents. There can be fluents describing how much coffee there is in
the bottle, or how hot it is the coffee that’s already in the cup. Fluents might change their
values as the situation evolves. The quantity of coffee inside the bottle at situation s1 and
situation s2 might be different. The shifting from one situation to another is triggered by
actions or events that must be carefully specified. There can be, for instance, an action
dubbed pour_coffee to account for the possibility of taking the bottle and use it to
pour some coffee in the cup. Therefore, by executing the action pour_coffee, the system
would change the contents of Ω. Its previous contents described s1, while the new content
describes s2. New actions might trigger s3, s4 and so on. Changes in the world are thus
accounted by a continuous revision of Ω’s contents, and the dynamics of those changes are
specified by the set of possible actions and events. To specify what are the consequences
of a given action or event is to describe which among Ω’s fluents change their values. The
action pour_coffee, for instance, changes how much coffee there is in the cup (more than
before) and in the bottle (less than before).

This leads to an immediate issue about how to model actions and events: which
among the set of existing fluents must be affected by any given action? Should pour_coffee
change fluents such as the one’s describing the color of the cup, the final position of the
bottle or the quantity of coffee over the keyboard? Sometimes these fluents might change,
sometimes not. Once I’ve put the bottle back on the table, it’s position could have changed
slightly. If I did not realize how much coffee there already was in the cup, it might overflow
and some coffee may spill over the table and reach my keyboard. All of that can also
happen to an artificial agent trying to cope with the real world. What McCarthy and
Hayes quickly realized is that the choice of fluents could easily get out of control. Can
pour_coffee change the color of the cup or the bottle? It depends on whether they are
transparent or sensitive to some property of the coffee. Can it change the color pattern
of the table? Again, it depends whether coffee has been spilled on it. Can it change the
shape of the cup? Once more, it depends on the circumstances: if the cup is made of thin
plastic and the coffee is too hot, it might happen. That’s why we can’t simply assume
that the action will never have any effect other than a fuller cup.

Therefore, in trying to specify a simple action (pouring some coffee) one finds
herself thinking about the possible cases in which that action may or may not have some
side effect on the color, shape or other properties of the other objects on the table. But
it gets worst: in specifying actions and events, the considered set of objects cannot be
comprised of just those that happen to be around in a given situation. One must take
into account every existing object type (bottles, cell phones, stones. . . ), and their specific
set of properties. We can’t limit ourselves to the set of objects currently on the table, as
the set itself can change. Actions cannot be bounded to specific situations, for we would
need a different action specification for every single situation made possible by Ω. In the
resulting picture, to specify what it means to pour some coffee, one has to specify the
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possible effects of it over every property of every single kind of object that happens to
exist in the world of the artificial agent.

In situation calculus, actions are also specified by axioms. The axioms determining
the fluents that are always affected somehow by a given action are called effect axioms.
The axioms that specify which fluents will not be affected by a given action are called
frame axioms. Frame axioms were situation calculus’ tool to set up the boundaries of any
given action or event. The problem with frame axioms is that there seems to be no way
to rule out any fluent at design time, for the set of affected fluents is context-sensitive
and can only be determined at runtime, when the specific circumstances constituting the
current situation are already known. Given the need to account for every property of every
object that happens to exist in the artificial agent’s world, we need a different frame axiom
for each available property-action pair. In a world with M possible actions or events and
N different properties, the number of necessary frame axioms will be MN. In sufficiently
simple worlds, such as the toy or specialized ones we can still find in AI, one can take a
deep breath and just write the frame axioms down. However, this is prohibitively large in
real world scenarios, specially considering the non-saturable nature of human contexts.
The need to avoid an open-ended list of frame axioms is what McCarthy and Hayes dubbed
the frame problem.

Patrick Hayes took the problem to be essentially that of modeling a principle of
ordinariness regarding the (agent’s) world dynamics. Such a principle would be used as a
ceteris paribus clause, allowing us to design actions and events in terms like “in ordinary
situations, this action has such and such effect and all the rest remains the same”. By
relying on this principle, we would not need to specify the relationship of every property
to everything else in the world just to model the ability to pour some coffee. It would
allow us to put all of those frame axioms aside.

So far, FP seems to be a pure design-time problem. There is a practical face and
undesired runtime consequences, though. Consider again the situation calculus system Ω,
but now with a realistic bunch of knowledge about the human world (i.e. uncountably
many frame axioms). Were we to ask it: “if you pour me some coffee, what would happen
to the coffee still inside the thermos bottle?”. Our answer would probably amount to
something like “in ordinary circumstances, and assuming that nothing went wrong, the
thermos would have less coffee in it, and that’s all”. But what would it take for Ω to reach
this conclusion? That depends on how the knowledge is stored in the system. Situation
calculus’ systems could account for such an answer by attending to the event’s effect
axioms. Thus, if an agent stick to them, there’s no risk of losing time in the processing of
a huge number of frame axioms. But consider now the question: “if you pour me some
coffee, what would happen to it, once it’s in my cup?”. We know that it’s temperature will
start to decrease much faster than it was while inside the thermos, and we also know that
it’s color will remain the same. It’s easy to see that the non-change in color should be
modeled as a frame axiom. But should an acceleration of the decrease in temperature be
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modeled as an effect axiom of pouring some coffee? Probably not, for it obviously depends
on the cup or whatever is being used as a cup. On the other hand, if it’s modeled as a
frame axiom, than it will be one that the agent’s mechanisms must access and use with
reasonable frequency in such situations.

This shows that the distinction between effect and frame axioms may not amount
to the distinction between what’s ordinary (or typical) and what’s not. Consequently, we
should not be misled by situations in which what’s typical coincides with what’s modeled
as effect axioms. Frame axioms must be taken into account even in ordinary situations.
There is no structural isomorphism between how the information is stored and how likely
it is to be used. With this in mind, we can get back to the question: what would it
take for Ω to reach the conclusion that the coffee’s temperature will start to decrease
much faster than it was while inside the thermos? The answer is that, given the lack of a
meaningful structure in the agent’s model (as far as ordinariness goes), it would take an
exhaustive consideration of all the action’s frame axioms. This amounts to pretty much
everything Ω’s got about the world, for among the processed axioms, there must be things
like “pouring some coffee won’t change the signal strength of the Wi-Fi networks in range”.
The upshot is that, despite its expressive power, frame axioms are an incredibly inefficient
way to model events or actions. The structure of the stored information should allow for
efficient and flexible usage under an open-ended set of possible situations, but the pair
effect/frame axioms seems to go in the opposite direction. That’s why FP makes very
hard to infer efficiently, at runtime, the outcomes of actions and events.

This picture brings with it a serious consequence for (classical, cognitivist) cognitive
science. Unless we handle the issue properly, there’s no choice but to accept that knowing
about X requires knowing about every possible relationship that X could bear with
everything else in the (agent’s) world. We can see this clearly when considering the
capacity to learn about the dynamics of the world. Consider how weird would it be for a
system to learn how to execute the action push_object.3 To learn how pushing works goes
far beyond getting to know that the object’s position changes. It also involves learning
that the pushed object will keep its color, that the number of cells in the agent’s body
won’t change, and that the new position has (usually) nothing to do with the importance
of math for understanding neural networks. In frame axioms systems, however, all of these
ordinarily unrelated matters are considered a necessary part of what it is to know how to
push an object. But if one’s teaching me what it is to pour some coffee, where does the
information that it won’t affect my knowledge about the role of neural networks in data
science comes from? If the information cannot be found anywhere, what should I put in
its place? Hayes’ principle of ordinariness seems necessary to acquire knowledge efficiently
about any domain.

Just like most hard philosophical problems, FP started as a minor technical issue
3 Or equivalently, to learn what are the consequences of the event object_has_been_pushed.
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whose resilience caused it to drawn increasing attention. We can thus learn a lot by
getting acquainted with some unsuccessful attempts to solve it. Throughout the 1970s, the
issue was largely discussed, and two kinds of strategies to cope with it quickly emerged.
Haugeland called them the cheap test and the sleeping dog approaches (Haugeland, 1987).
The crucial idea behind cheap test was to formulate categories of properties according
to some criterion and organize the frame axioms accordingly. For instance, one could
populate a set with properties regarding relationships between objects (their relative or
absolute position in a plane), and another set regarding properties of those objects (mass,
shape, color, etc.). Different categories could be then regarded as ordinarily independent
of one another. In specifying the set of potential effects comprising some action, one could
point out to such categories and formulate frame axioms such as “no property of the
category x will ever be affected by this”. The hope was that it could render the number
of frame axioms manageable. The obvious problem, however, is that the world’s joints
are really hard to catch. Events and actions can affect and change the ground on which
the categories are defined. But these were supposed to be the definitions accounting for
the world’s ordinariness. Patterns of causal connection, for instance, are always subject
to revision, precluding the possibility of using them to ground the distinction between
effects and non-effects of an action or event. As a result, no one could ever come out with
adequate criteria to establish the boundaries of those categories. Indeed, despite the fact
that Minsky’s frames were not part of the logicist tradition of AI, the same issues these
systems faced (largely discussed in the previous chapter) were also faced by logicist cheap
test approaches.

As for the sleeping dog strategy, the core idea is to allow a kind of default reasoning
in which, as the name suggests, only a reasonable subset of the axioms gets considered
by default.4 Everything else is taken to be a non-effect and is ordinarily ignored. Thus,
unless the system has good-enough motivation to go beyond its default reasoning, it will
stick to it. The problem, however, should be already clear: how can the system know
whether it has good-enough motivation to consider some non-default effect? The FP is
now the problem of categorizing the world in facts that can be (ordinarily) ignored and
facts that can’t. Note that this is not an epistemic issue in the sense that there must be a
way for the agent to get things absolutely right. All that is needed is a way for the agent
to guess above chance what a good-enough motivation is. Some researchers claimed that
this can be done quite easily (Lormand, 1996; McDermott, 1987). However, this is true
only of artificially saturated contexts. Indeed, in simple enough saturated contexts, that
would be true of frame axioms systems as well. Writing all those axioms would be tedious,
but not unmanageable, leading one to claim that the solution to FP is to get an intern.

Despite issues like these, the sleeping dog strategy was considered quite appealing
among AI researchers. It triggered the development of non-monotonic logical formalisms
4 The name comes from the saying “let sleeping dogs lie”.
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such as those we find in McDermott; Doyle (1980), McCarthy (1980) and Shanahan (1997).
The underlying assumption was that FP is a product of the monotonicity of first order
logic. Assuming that Ω is monotonic, adding new axioms to it will allow new inferences
to be made (which amounts to changing the current situation), but will not preempt the
system from deriving what could already be inferred in the previous situation. This means
that sometimes Ω will allow the system to infer things that were true a long time ago
(such as an object’s position). One of the reasons why situation calculus needed frame
axioms was to avoid this kind of inconsistency. Frame axioms were supposed to narrow
down the system’s inferential capacities to those allowed by the current situation. Prima
facie, non-monotonic formalisms might seem useful to overcome this without the need of
frame axioms. But this is misleading. They fare no better than any other sleeping dog
approach, for they don’t avoid the need to know when the system is supposed to stick to
its default reasoning and when it’s not. All we have is a different formalism in which some
eventual solution could be expressed. We remain clueless as to what could be the contents
of anything like a principle of ordinariness.

What are we to do of all this? We can clearly see that FP is closely related to the
issues discussed in the previous chapter, but what exactly is the nature of this relationship?
Throughout the years, this has been extensively debated (Ford; Pylyshyn, 1996; Kiverstein;
Wheeler, 2012; Pylyshyn, 1987) and distinct approaches were put forward. In order to
ground my claim that FP is a manifestation of the explosiveness of a scheme, we have to
rule other interpretations out. In particular, we have to discuss its relationship with RP.

2.1.2 What is the frame problem about?

The chapter started with the claim that FP is a problem about representational
productivity related to the explosiveness of LOT. This claim is yet to be warranted, though,
for the contemporary canonical interpretation of FP is that it is identical to RP. For
instance, Fodor and Wheeler, whose work was discussed in the previous chapter, took
RP to be the referent of the expression “frame problem”.5 Therefore, before developing
our diagnostic further, it is worth dedicating a bit of time to understand why we should
accept that FP an RP are not identical, despite being closely connected in representational
frameworks.

Dennett was probably the first philosopher to realize that the FP has important
philosophical implications (Dennett, 1981, 1987). But in doing so, he took the problem
to be about relevance: FP should be regarded as an instance of RP. His first example
was about belief fixation: given a new piece of knowledge, how should it affect what the
agent already knows? Only the relevant portions of the agent’s knowledge should change,
but how do we identify these, i.e. how do we frame them? If the system knows what is
relevant in the current circumstances, all those frame axioms will not be a problem, for it
5 This view of FP as an instance of RP was also my view in Barth (2018).
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will ignore the irrelevant ones. In this view, the difficulty to find categories for cheap tests
or criteria for default reasoning is pretty much the same we face when trying to account
for what is relevant in non-saturable human contexts. The original formulation of the
problem is thus regarded as the way RP manifests itself in situation calculus. Consequently,
as far the need for a ceteris paribus clause goes, a theory of relevance would amount
to a theory of ordinariness and vice versa. Dennett’s reading became influential in the
philosophical community. Throughout the 1970s and the 1980s this tendency (mostly
among philosophers) to regard the problem of handling frame axioms in situation calculus
as a broader issue caused the eruption of a “terminology war” about what should be
the referent of the expression “frame problem” (Hayes, 1987). Despite some complaints
from the AI community, the semantic battle was lost and nowadays most researchers in
philosophy of cognition understand FP as RP.

Dennett’s move is an extrapolation of the practical issue outlined in the previous
section: the unrealistic need to continuously process every single frame axiom even in
ordinary situations. There are at least two significant problems with this move, though.
First, it conflates issues of representational and inferential productivity. It tries to alleviate
or dismiss representational issues by treating them as an inferential problem. But as
we have seen, representational productivity is about unbounded expressive power, while
inferential productivity is about being able to exploit one’s cognitive resources (including
one’s expressive power) in an open-ended set of circumstances. The temptation to conflate
these issues comes from the explosiveness of LOT. Since the scheme itself puts no constraints
on what can be inferred, the system is architecturally free to derive indefinitely many
permutations, even those alien to its current interests and expectations. Likewise, it is free
to theorize (i.e. model) the same situation in multiple ways, which creates the problem
of selecting the appropriate theory. Therefore, once we accept LOT, the only way to
constrain its representational power is by taming the system’s inferential capacities. That’s
what cheap tests and sleeping dogs are all about, and we’ve just seen why they fail. The
history of failed attempts to handle FP as an issue about inferential productivity suggests
that the approach leads us to a dead end.

The second problem with Dennett’s move is that it conflates issues about ordinari-
ness with issues about relevance. Handling relevance is distinct from handling ordinariness.
The way we structure and articulate the stored cognitive knowledge to account for rele-
vance may be very different from the way we do so in articulating ordinariness. Consider
the classical formulation of FP as an issue about modelling non-effects of actions and
events. If some property is not affected in any way by some action, that doesn’t mean it
is irrelevant. There are many circumstances in which a non-effect can be actually relevant
(“See? Nothing happens when I put it there!”). Thus, even if we could find a solution to
the FP in classical approaches (such as situation calculus), the question of how do we tell
what’s relevant from what’s not, would remain wide open.

What about the converse? Can a theory of relevance work as a theory of ordinar-
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iness? We can surely conceive some artificially constrained contexts (akin to GOFAI’s
micro-worlds) in which these might coincide. A specialized system or a very simple creature
certainly could store its cognitive knowledge about the world in a way that gives it exactly
what it needs whenever it needs. This means that relevance and ordinariness can look
alike, as least within saturated contexts. In more realistic cases, though, that’s not an
option. By analogy, a researcher relying on lots of reading notes to keep its work going
knows how to discern the relevant ones according to its current needs. Yet, if the notes
are not stored in a way that allows for efficient retrieval, she will waste time until she finds
what’s needed. If she has a well-organized set of notes, she’ll know that knowledge about
chess championships and dogs usually don’t go together, and yet, if some circumstance in
which both are necessary arises, she’ll be able to retrieve that cognitive knowledge quickly.
Thus, even if we could formulate some principle of relevance (on grounds of which she
realizes the need to use what she knows about dogs and chess), we would still have to face
the problem of how to store cognitive knowledge in a way that allows for efficient retrieval.
Whatever inferential strategies we used to cope with relevance must rely on this. In the
same vein, ordinariness is about expressing and storing the agent’s world dynamics in a
way that allows for efficient retrieval and exploitation, whatever the circumstances. The
upshot is that FP and RP have distinct explananda.

I’m not alone in taking FP to be distinct from RP. Lormand (1996), for instance,
follows Hayes (1987) and rejects Dennett’s account. Their point is not that philosophers
like Dennett fail to capture a real issue about relevance, but only that they’re capturing
something distinct from FP. Lormand claims that the FP is a very narrow issue about
logically modelling the persistence we find in the world’s dynamics. If we can get the
system to work without lots of frame axioms, then the issue is solved, and that’s exactly
what the sleeping dog approach allows us to do. Thus, even if we claim that the sleeping
dog approach won’t help with non-saturable contexts, Lormand would insist that this is
outside the approach’s scope. In a nutshell, philosophers like Dennett would be guilty of
a big mess, for their rejection of the sleeping dog strategy is based on its ineffectiveness
against RP. But the target was never RP, only FP. By analogy, Lormand’s point is that
philosophers are rejecting headache pills due to its ineffectiveness against cancer.

I take FP to be the manifestation of an issue about representational productivity, so
I obviously agree that FP and RP are distinct. However, pace Lormand, I don’t think FP
can be solved by appealing to sleeping dog approaches. The deeper reasons for this claim
will be made clear throughout the chapter, but for now it suffices to say that if we stick to
Lormand’s reading of the issue, then the sleeping dog approach won’t buy us anything.
Here’s why: Even in its very first formulation (McCarthy; Hayes, 1969), FP was conceived
as an issue that preempts the escalation of situation calculus’ models to real-world human
circumstances, i.e. to non-saturable contexts. The core issue with frame axioms was
thus that only saturable contexts (such as those we find in classical AI’s micro-worlds)
could be dealt with. If we’re willing to give up on more realistic contexts, then there’re
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all kinds of non-interesting solutions available. For instance, we could just provide a
single rule according to which nothing changes unless whatever has been made explicit in
effect axioms. Strategies like these are the reason we can play with chess engines in our
computers.6 Though one could argue that, in a very loose sense, this would amount to a
version of sleeping dog, the point is that this approach is entirely compatible with situation
calculus. Thus, all the effort put in developing, e.g. non-monotonic formalisms, didn’t
actually buy us anything helpful regarding FP. If we give up on modeling non-saturable
contexts, FP becomes just a minor technical nuisance. In that case, the most appropriate
answer would be to agree with McDermott (1987) and question the very existence of a
serious problem. We end up in a seesaw: if we insist in handling non-saturable contexts,
the sleeping dog approach fails to deliver dividends. But if we stick to saturated contexts,
then the sleeping dog delivers nothing we couldn’t already buy with frame axioms as well.

The discussion of the past attempts to solve or dodge FP is helpful in getting a clear
picture of what’s at stake. Despite the disagreements about some details, I believe that
the interpretation of the FP as an issue about representational productivity is reasonably
faithful to the original FP conception. It takes the problem to be about modeling change,
that is, about allowing suitable representations of the possible changes in the agent’s
world through time. On the one hand, by insisting on the need to handle ordinariness in
non-saturable contexts, we avoid portraying the issue as less severe than it really is, and
this leads to the rejection of strategies that can’t really buy us what’s needed. On the
other, by rejecting the conflation of the issue with RP, we avoid the rejection of possible
solutions (or dissolutions) due to traits pertaining only to RP. Handling FP is a necessary
step for any representational framework targeting RP, though it’s far from sufficient. It is
necessary because FP is about keeping representational resources manageable, and no real
solution to RP is possible without it.

Lets quickly take stock. The upshot of the previous discussion is that FP is a
manifestation of LOT’s explosiveness. Whenever we apply linguistic schemes in modeling
the world’s physics, the structure of a song or linguistic utterances, FP is bound to
appear. When modelling the dynamics of such domains, one must make all the possible
permutations explicit in the form of rules. However, there is a huge gap between the
scheme’s expressive power and the set of permutations allowed by any given domain. Most
of the permutations that can be logically expressed are alien to that domain and must
be precluded. Consider a causal domain where objects usually go down. LOT allows
for objects going in every logically conceivable direction. Consequently, not just every
possible permutation allowed by a domain must be explicitly stated: in order to avoid
odd behavior, all the abnormal ones must be included in the model as well. But the only
way to constrain its representational power is by adding more rules, i.e. by storing more
6 Just to be clear, I’m not claiming that current chess engines are designed with situation calculus. The

point is that they use the principle according to which only explicitly mapped consequences are taken
into consideration.
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cognitive knowledge about what inferential paths it should take when using that cognitive
knowledge. The more rules are added, however, the more rules need to be further added
so that the system knows how to cope with all of them. In systems capable of handling
non-saturable contexts, this implies an unbounded number of additional data-structures,
which renders the task hopeless. That’s why, in a nutshell, any LOT system trying to
cope with non-saturable contexts will manifest FP.

Considering the diagnostic, one can’t help but wonder whether it’s worth to
stick with LOT. Indeed, I’ll claim that getting rid of LOT in accounts of the mind’s
representational contents does allow us to avoid FP. Unfortunately, the cost is huge, for
now we have to give up all of LOT’s purchases, including representational productivity.
As we can’t simply ignore the need for representational productivity, if we want to avoid
language-like representations, we’d better come up with something else to fill this gap. Of
course, that’s easier said than done, and considering how drastic the suggestion is, my
approach will be to challenge the LOT tradition constructively by outlining an alternative
dubbed representational pluralism.

2.2 Structural representations and the frame problem

Before digging into the main point, there are important preliminary remarks to keep
in mind. In what follows, I’ll discuss some properties of representations without worrying
(much) about their psychological plausibility or implementation details. Whether it’s
possible to account for a given representation mechanistically, or whether such candidate
mechanism can be found in the brain are questions that will be postponed to the next
chapter. Foundational issues will be put aside as well. Thus, the question of how a
given physical state (presumably neural) can bear contents will not be discussed at this
point. This is why the examples I’ll use vary somewhat freely even between personal and
sub-personal scenarios. For instance, when saying that a representation can be exploited by
its user in a certain way, the term “user” does not imply a fully-fledged agent. Sub-personal
mechanisms or AI systems may be regarded as “users” of representations as well. This
move is purely methodological. I have no intention to put forward anything remotely
close to the classical claim that cognition comprises an independent domain of inquiry.
The wetware in which (as well as the body through which) some capacity is exercised
definitely has a say in accounts of that capacity. However, when discussing the role of
representations in cognition, it is important to be clear about what’s a feature of the
content being exploited and what’s a feature of something else. That allows one to establish
a clear boundary between representational and inferential assets, specially regarding their
respective senses of productivity.

But how are we suppose to understand representations at such an abstract level?
In order to avoid ad hoc stipulations of what should be regarded representational, I’ll use
Haugeland’s classical account as a starting point (Haugeland, 1998e). The core idea is
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that representations can work as stand-ins for something else. For instance, whenever a
pre-generation-Z uses a physical map to walk around a city, the map allows what Swoyer
(1991) dubbed surrogative reasoning about the city while thinking. The idea that maps
are representations because they stand in for something is intuitively palatable, but there
are other kinds of stand-ins that are harder to bite. Gastric juice is a well-know example.
It can help a predator to track its prey even in the absence of a direct causal connection,
for its presence preempts the organism from going astray in case it momentarily looses the
prey’s scent. In this sense, it can be said to stand in for the animal’s scent. Stories like
these are usually presented as unwanted consequences of naive representational theories,
particularly those relying on covariational information. The current need is peculiar,
though. While such cases have to be ruled out, it has to be done in a way that does
not imply commitment to any particular theory of representational content. Haugeland
manages to do it by deeming as representational only the stand-ins whose content (i.e. that
which they stand in for) is determined by virtue of an encompassing representational
scheme. To be so regarded, a representational scheme must satisfy the following:

(. . . ) (i) a variety of possible contents can be represented by a correspond-
ing variety of possible representations; (ii) what any given representation
(item, pattern, state, event, . . . ) represents is determined by some con-
sistent or systematic way by the scheme; and (iii) there are proper (and
improper) ways of producing, maintaining, modifying, and/or using the
various representations under various environmental and other conditions.
(Haugeland, 1998e, p. 198)

The most intuitive example of a scheme that satisfies Haugeland’s criteria is a formal
language. Roughly, for any linguistic token there’s a corresponding linguistic content, and
the correspondence is established systematically, so one has to abide by the formalism’s
rules in order to have well-formed formulas. However, Haugeland’s characterization is
liberal enough to accommodate both language-like schemes and structural schemes (maps,
graphs, geometric palettes, etc.).

Structural and linguistic schemes are classically distinguished by the nature of the
relationship between tokens and contents.7 In linguistic representations, the scheme is
responsible for allowing a given primitive term to partake in complex well-formed formulas.
But at least in standard stories, in claiming that a given term means x, what one is really
saying is that the term refers to x. Thus, primitive symbols of linguistic schemes are
said to represent by reference. The term “reference”, as used here, must be understood
in a loose sense. It captures the idea that the contents of the scheme’s primitives are
detached from their formal properties. For instance, the word “dog” refers to dogs in virtue
of something alien to the scheme, such as a convention.8 However, the scheme’s formal
7 The grounds on which the classical distinction rests are fundamentally flawed, though. In order to

properly ground the pluralism about representational schemes, It’ll be challenged and replaced. But
the replacement bears no weight on the current discussion.

8 I use this example for the sake of simplicity. I’m not assuming that linguistic schemes can account for
natural languages.
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properties are crucial to determine the contents of the compositions and articulations they
allow, i.e. the meaning of sentences is a function of their primitive constituents and the
scheme’s syntactic rules.

In contrast, structural representations get their contents by being structurally
isomorphic to them: a given map is said to represent city streets in virtue of the structures
they share. This does not imply, of course, anything like visual resemblance. Though that
is a kind of isomorphism, the structures in question are usually highly abstract. In this
sense, a graph may be isomorphic to the causal structure of some domain. Consider how
distinct this is from relying on reference: just to begin with, whether a given structure
represents a dog is all about its formal properties. There’s no space for references in
defining the role played by the elements of a structure. Of course, you can use structures
as symbols that refer to something else. A dog-structure can be used to refer to an
abstract concept such as friendship. But the structure won’t stop being isomorphic to
the dog just because you’re not exploiting its structural properties. Furthermore, the
word “isomorphism” must be taken in a less strict sense than the one usually employed by
mathematicians. Most applications of the idea make room for less-than-perfect mappings
between structures. If we were too strict, there would be no room for the statistical
analysis typically used to compare them (consider how we use fingerprints in identification
tasks). This buy us the possibility of degrees of accuracy, i.e. we can talk about how
isomorphic a structure is to another one.9

With this distinction in mind, it’s time to dig further on the purchases allowed by
structural representations.

2.2.1 What structural representations buy us

Can structural representations buy us something that language-like schemes cannot?
In what follows, I’ll argue that the answer is yes. They enable the system to exploit the
systematic permutations allowed by a scheme without making room for FP. In other words,
they’re not necessarily explosive. Structural representations do not require an open-ended
amount of additional representational assets in order to be adequately exploited. One can
see this feature at work in the case of changes in the world that require changes in its
representation, which is precisely where FP bites. This is synthesized in Erik Janlert’s
requirement of representational conservativeness:

A sign that the frame problem is under proper control is that the
representation can be incrementally extended: a conservative addition
to the furniture of the world would involve only a conservative addition
to the representation. (Janlert, 1996, p. 40)

9 In order to emphasize this point (and avoid confusion with math departments), some authors prefer
to use the word “homomorphism”. I have no quarrel with that, but I don’t think it really buys us
anything. What matters is the underlying mathematical account of accuracy. An appropriate account
might be equally incompatible with what mathematicians understand by homomorphism as well.
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Consider again the representation of whatever is in my table (Ω) and let’s say that
at some point a new cup of coffee has been added. How is this to be handled? Linguistic
representations fail to satisfy Janlert’s requirement because even conservative changes
yield an explosive need for additional representational assets. We’ve seen that happening
with situation calculus. Let’s quickly recapitulate how it goes. In order to render a proper
model of Ω, we need to describe the properties of every object (color, size, shape. . . ) the
possible actions (push, pull, change place. . . ), as well as the relationship each object bears
to one another, the relationship between its own properties and the properties of other
objects, the relationship between every property and every outcome of every possible
action, and so on. Whenever a new object (or property, or action) is introduced, we need
to make sure that the model remains accurate and useful. Otherwise, it won’t be able to
guide the system in exploiting the situation, i.e. the system can’t rely on them to make
plans and predict outcomes. In order to account for the new cup, we would need to add
rules mapping the object’s properties and relations to all the other properties and relations,
as well as every possible action or event. Thus, even a conservative addition (it’s just
another cup) to whatever is being modeled requires a potentially explosive number of
additional representational assets.

Nothing similar is necessary whenever we employ structural representations. A
good example can be found in Haugeland (1987). Consider the map-like depiction of the
spatial relationships between A, B and C in figure 1, and the following set of entries in an
LOT-powered system: 10

A

B

C

Figure 1 – A-B-C spatial relationships.

(1) A is 10 miles north of B
(2) A is 20 miles northwest of C

Both the language-like entries and the structural (picture-like) map account for the
relationship between B and C. However, in the linguistic case the B-C relation is implicit,
that is, it must be inferred through some kind of reasoning process over the conjunction of
10 Figure 1 is an adaptation of the one found in Haugeland (1987).
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(1) and (2). Consequently, if we change the contents of either (1) or (2), then the B-C
relationship is going to “automatically” change with it as well, for now the conjunction
of (1) and (2) yields a distinct set of valid inferences. But this is not at all the case with
the A-C relationship. Given that it is explicitly stated in (2), it must always be explicitly
updated as well. For instance, say the system gets the following input.

(3) A is 30 miles northwest of C

Once the system accommodates (3), its state will be inconsistent, for (3) contradicts
(2). The inconsistency is solvable, but the crucial point is that the representations won’t
do a thing to help with that. It is entirely up to the user (i.e. the system exploiting them)
to detect and figure out a plausible way to discipline and keep the set of entries consistent
and useful. This is odd, for representations were the entities supposed to explain how a
system can accomplish this kind of task. In a truly representational account, the system’s
reasoning should be a product of the available representational resources, not the other
way around. We already know how linguistic systems try to keep this explanatory role
for representations: by adding more and more explicit entries aimed at disciplining the
system’s reasoning and precluding idle inferences. Unfortunately, this is where FP becomes
salient.

Contrast this with the case of the picture-like map. Should we say that the B-C
relationship is explicit in the picture? In a sense, sure. The relationship is there for us to
see. But if we change the position of, say, A, then all relationships with both B and C
would be “updated” just like what’s implicit in linguistic entries. The information about
B-C is explicitly there, but it works just as if it was implicit. Importantly, whether the
position A-C is implicit or explicit in the map depiction is a question that can’t even be
formulated, for unlike the linguistic construal, there is no sense in which the relationship
can be regarded as derivative of the position of the other points. They’re all equally
primordial. This is a common trait among structural representations, so it seems that the
possibility of an implicit/explicit distinction is an artifact of the chosen representational
kind. Structural representations rely on schemes that preclude the distinction.

This somewhat odd conflation of implicitness and explicitness means that, when
adding a new feature, we don’t need to add an explicit set of additional rules in order
to keep the representation useful. Consider what would happen if we added a new
element D somewhere in the map-like structural depiction (figure 1). All of its geometrical
relationships with the other elements would be already established, i.e. we’d be able to
know whether D is larger than A, or what is its relative position. There is no need for
further information, nor there is need for some kind of reasoning in order to verify the
representation’s consistency. Right after the entrance of the new element, the representation
continues to be an effective guide to the system’s reasoning and behavior. This is a way
to satisfy Janlert’s constraint of conservativeness and avoid explosiveness.
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2.2.1.1 Representing change

Structural representations enable an additional purchase that will prove very
valuable in our forthcoming attempt to handle RP. Consider folk physics: the amount of
things we know about the physical world without taking classes. Things such as: objects
tend to fall; towels within a water tank will bring some of that water with them if removed;
sitting on eggs usually break them, and so on. Folk physics is a recurrent theme within
the FP literature, for many of its most typical examples are about causal domains. Will
changing a tea cup’s position also affect the position of the plate in which it was on?
Usually no. Will changing the position of a plate also affect the tea cup that’s on it?
Usually yes. Indeed, the emphasis on constructions of FP within causal domains was such,
that some took it to be an issue about formulating an adequate theory for folk physics
(Glymour, 1987). As we have seen when characterizing commonsense and situation holism,
FP is definitely not limited to causal domains, but these still make for good examples.

Structural representations are specially useful to target causal domains. That’s not
just because they can capture contents in a way that avoid the intrinsic/extrinsic distinction.
Its contents enable a distinct way to capture the world’s features, and consequently allows
for distinctive explanatory strategies of cognitive capacities. As we have been discussing,
FP is about handling the dynamics of the contexts faced by the system, i.e. it is about
modelling change. The dynamic nature of the world was the Achilles’ heels of situation
calculus and other language-like schemes. In those systems, remember, situation models
(or theories) are sets of clear cut snapshots and rules (laws) governing the transition from
one state to the next. The world is divided in clear-cut situations describing the current
states of affairs, and the dynamics of each underlying domain is expressed in sets of rules
used to discipline the representations. Therefore, it’s up to the system’s exploitation
processes to effectively apply those rules and calculate the transition effects while keeping
the representations consistent and under control, somewhat like Laplace would imagine
God’s work. Unfortunately, as we have seen, trying to model such rules using language-like
schemes raises FP.

In contrast, by using structural representations we can purchase an additional strat-
egy: rather than formulating rules to tame the user’s exploitation of the representational
resources, we can actually represent the dynamics. The change itself can be pictured,
i.e. represented rather than calculated. This is how Cummins summarizes this point:

Instead of changing your representations, you can represent change.
Instead of disciplining the representations in a way that mirrors the
dynamics you are interested in, you can put the dynamic structure in the
representation, that is, represent the dynamics. (Cummins, 1996, p. 95)

In doing so, representations can get their explanatory burden back: they can guide
the system in handling tasks that rely on the dynamics of the target domain. The burden
of the system’s reasoning processes can be thus alleviated. It can let itself be causally
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guided by its own representations, just like it can let itself be causally guided by the
environment. In this sense, the system can take advantage of the structural representations
to think about causal domains just like we take advantage of scale models when thinking
ahead and predicting outcomes.

The strategy allows us to overcome the need to carve out the world as sets of
time-instants. We can shape the trajectory of any given set of properties or entities
throughout an n-dimensional space comprising a domain. In other words, we can picture
objects falling or transforming themselves through time. Instead of time-instants, such
trajectories comprises intervals or “stories” within the domain. Such stories can themselves
become the building blocks to be exploited in reasoning processes, as well as their possible
systematic permutations. The system can use them just like we do when comparing
distinct paths in maps or distinct simulations in scale-models.

Furthermore, the involved time intervals need not be short. Contemporary AI
systems promising to show how our faces will look when older rely on this kind of pictured
trajectories. This strategy is not available to language-like schemes because the carving out
of those intervals also rely on the absence of an implicit/explicit distinction.11 When the
distinction is not preempted, the system is forced back to the need for disciplining its own
representations and the capacity to satisfy Janlert’s constraint is lost. In particular, we’ll
face the problem of where to draw the boundaries between any two stories, which is simply
another guise for FP: the issue of how do we model what changes (and what doesn’t)
between any two time instants is now the issue of finding out what changes between any
two time intervals. To be sure, the possibility of representing change in this way doesn’t
mean that we should get rid of the old approach in which the system is responsible for
disciplining the representations. That is an important strategy, and sometimes it’s all we
have. But structural representations purchase an important and fundamental explanatory
approach (at least regarding FP).

2.2.1.2 Intrinsic contents in structural representations

The suggestion that structural representations can get us rid of FP is not new. It
can already be found in Haugeland (1987). Why was it thoroughly ignored for so long? I
think there’s multiple reasons for that. Some have directly rejected the idea that structural
representations can avoid FP (Hendricks, 2006), but their arguments depended on taking
it to be an instance of RP, which is false.12 Others worried about issues that are unspecific
to either FP or RP, such as the apparently diminished role that structures can play in
accounting for attitude contents (what could be the structure underpinning the belief that
democracy is good?). These kinds of concern will be properly addressed in chapter 3. But
if the reliance on structural representations to handle FP is to get off the ground, some
11 In more precise terms, it relies on architectural features of structural schemes. This point will be

further developed in a bit.
12 Recall the recent discussion on the nature of FP.
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concerns require immediate attention. What is it about structural schemes that allow
them to do that? We need to understand a bit more about the nature of this feature
in order to know e.g. whether it is possessed by all and every structural scheme or only
some. Furthermore, we’re yet to see how exactly structural representations can account
for representational productivity, and we have to make sure that the necessary features
are still at work even on more realistic and demanding cases. If the price to handle FP is
to be paid in expressive power money, then the cost is too high, for we can’t go on without
representational productivity.

We can find an important clue in Palmer (1978): the heart of the matter is that
structural representations can use their own relational properties as stand-ins for the
relationships among whatever is being represented. In other words, they can intrinsically
mirror the dynamics and systematicity of whatever they represent. A relation such as “C is
larger than B” need not be explicitly stated in some additional token, for the information is
already there in the map-like depiction to be exploited (check back the figure 1 if unsure).
Thus, whenever one changes the geometrical properties of some object in a map-like
structure (location, size, shape and so on) its geometric relationship to everything else is
“automatically” updated. In particular, the A-B-C map-like example shows how we can
reason about geometric relationships in the world by using the geometrical relationships
of a representation as a proxy. That’s an instance of surrogative reasoning. Consequently,
inasmuch as the geometrical properties of a token accurately map the structure of its
wordly counterpart, Janlert’s conservatism requirement can be satisfied and the allowed
systematic permutations can be expressed without the risk of a representational explosion.

But is the preclusion of the explicit/implicit distinction a general feature of any
structural scheme or is it a special feature peculiar to some of them? Consider what
happens if we use a 2-dimensional scheme (plane) in order to model a 3-dimensional domain
(space). The extra dimension comprising space allows for relationships such as “x is on
top of y”. Could we try to account for the missing dimension using a 2D scheme? Sure.
Topographical maps are an example of how we can do that. However, the relationship
“on top of” is not captured intrinsically by the 2D scheme, and consequently it must
be disciplined by the system employing it. For instance, topographical maps must be
evaluated by assuming a view point from above, but this information is nowhere in the
token. It’s up to the scheme’s user (i.e. the system exploiting representations forged with
it) to discern whether the containment of any geometric shape within another is to be
regarded as an “on top of” relationship. It could also consider this an inconsistent state in
which two objects occupy the same space at the same time, for instance. This is a crucial
difference, for the representation cannot play its guiding role in any matter regarding the
missing dimension. We’re in a scenario where the system is responsible for keeping that
aspect of the representation accurate and useful, and that seems dangerously close to what
we face when using linguistic schemes.

None of that would be necessary with a 3D scheme, for it already encompasses the
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missing dimension. Therefore, a 3D scheme is able to avoid the explicit/implicit distinction
in 3D domains, and a 2D scheme is able to avoid it in 2D domains, but the 2D scheme
cannot fully avoid it in 3D domains. This can be generalized, so we find the answer to
our question: intrinsicness relies on the resemblance between a structured scheme and
a structured domain. Both have a bunch of dimensions, and a set of basic elements
that can be used to fill them up. Rather than points, the palette of basic elements may
comprise complex forms (squares, triangles, circles, and so on). Inasmuch as they share
the dimensions and the set of basic elements, scheme and domain also share the set of
possible distributions of their basic elements alongside the available dimensions. In this
sense, every structural scheme can be said to have a target domain. They should always
be considered specialized and domain-specific.

The upshot is that intrinsicness is a product of specialized schemes, i.e. tailor-made
architectural features. As long as they’re only employed within their target domain,
structural schemes enable the system to forge representations that can work as effective
guides without raising FP. The scheme itself preempts the system from going astray, for no
permutation alien to the domain in question is architecturally possible. This also means,
among other things, that architectural traits can bear an explanatory role that’s larger
than representationalists themselves usually acknowledge.

2.2.2 The explanatory role of architectural constraints

A scheme can be part of the explanation of how a system can efficiently cope
with a given domain through representational means. They can constrain both how the
content can be processed and what can be represented. At the agential level, this is hardly
news. Consider the need to calculate the product of any two numbers. When the number
domain is expressed and handled through the Arabic numeric system (1, 2, 3. . . ), one can
use the partial products algorithm that we all learned in school. The algorithm exploits
structural aspects of the domain that are adequately captured by the scheme (notice the
importance of placing the partial products in the right position before summing them
up). This approach is not available to schemes such as the Roman system (I, II, III. . . ).
Its hypothetical users would need alternative algorithms, and there can be considerable
differences in efficiency and time-consumption. In worst case scenarios, a numeric system
may leave us with no option other than making successive sums. Furthermore, the situation
is the same we have found when comparing 2D and 3D schemes: in the absence of the
structural features, the user has to rely more heavily on its own skills. If a numeric system
fails to accurately capture structural aspects of the number domain, it won’t be able to
play a role in the explanation of the user’s capacity to multiply. The scheme becomes a
tool used to merely express the results she’s coming up with by other means.

Architectural traits (i.e. features of the representational schemes) can play similar
explanatory roles at the sub-agential level. When a scheme fails to capture a systematic
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aspect of some domain, its tokens won’t be able to help the user in handling that aspect.
If the system can’t or refuses to take care of that, it becomes subject to what Cummins
dubbed forced error (Cummins, 1996). Whenever one tries to represent content beyond the
scheme’s reach, the token will be necessarily inaccurate. It is well-known, for instance, that
the Euclidean geometry is unable to capture in full the structure of physical space. But
there are many other examples: three-colored schemes such as RGB (for red-green-blue),
who can be found in most image editing software, can’t represent transparency. If one
tries to token what would be an RGB-powered representation of transparency, one ends
up representing some shade of color instead. Likewise, musical notation can’t express
accurately a speech or a receding train whistle, city maps can’t represent distances with
precision - for this also depends on how hilly the terrain is - and so on.

Forced errors are a kind of expressive constraint architecturally imposed on the
system. They are different from other kinds of representational errors because the system
can’t help itself. This possibility should come as no surprise for anyone willing to accept
the existence of domain-targeted schemes. After all, it would be very difficult to build
an accurate topographical map out of the shapes used in electrical diagrams. To see the
difference more clearly, consider these examples of “unforced” errors: a visual system
may represent an animal or object as larger than it really its. Someone might take a cow
for a horse. A student might represent “I won’t do it unless she does” as S ⊃ I rather
than I ⊃ S. All of these are “unforced” because in none of them the adequate content is
beyond the expressive power of the employed scheme. In such cases, the error is due to the
system’s limitations in the capacity to build representations with that scheme. The upshot
is that claims regarding a system’s capacity to exploit some representational scheme are
distinct from claims about the set of contents allowed by that scheme. While the latter is
a claim about architecturally imposed constraints on the system’s expressive power, the
former is about how well the system is able to exploit the expressive power architecturally
afforded. Thus, if a system can fully exploit a single representational scheme, its expressive
power is as big as the scheme’s. But if the system can’t exploit that scheme’s expressive
power in full, its overall expressive capacity gets decreased.

With this in mind, Cummins suggests that such content-constraining properties of
a scheme should be interpreted as a priori assumptions about its target domain (Cummins,
2010b). In this sense, domain-specific assumptions like “every object has color, shape and
size”, “no two objects can occupy the same place at the same time” or “objects remain
still unless forced” can all be architecturally established. Cummins presents this point
with the example of an artificial structural scheme called Cubic.13 Cubic is a kind of
gigantic 3D Rubiks’s cube. Each of its dimensions comprises 10,000 smaller 3D cubes
whose surface can be colored. Cubic can thus represent various coloring patterns in a huge
3D space. A perceptual system could use Cubic to represent not only objects as viewed
13 Cubic is not to be regarded as an empirical thesis about an actual scheme employed by the human

mind. It’s just a tool to present and illustrate a point.
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from the outside, but also their internal structure. For instance, a token whose contents
were a bottle full of coffee would be distinct from a token representing the same bottle,
but empty. What’s interesting about this scheme is that it can architecturally ground the
following (very familiar) a priori assumptions about its target domain:

(1) Every object is colored.
(2) Every object has a determinate size and shape.
(3) No two objects can occupy the same place at the same time.
(4) Every object has a determinate location relative to every other object.
(5) Every object is at a determinate distance from every other object.14

None of those assumptions is explicitly stated anywhere in Cubic. Nonetheless,
they’re all enforced by the scheme: if a user (e.g. some perceptual system) tries to represent
a counter-example to any of those assumptions, the result is forced error. For instance, it
simply can’t represent an object’s size without representing its shape as well. The same
assumptions can be regarded as axiomatic while using Cubic to reason about a domain.
In this sense, it’s user can rely on this set of assumptions without the need to render them
explicit or to enforce them somehow: the scheme itself takes care of that.

Whether and when architectural constraints participate in accounts of the system’s
performance is an empirical matter. Forced errors may directly account for behavioral
outputs, as when the system systematically fails to accurately represent something within
a domain for the lack of the necessary architectural traits.15 This would still amount to
a representational account. However, forced errors may play other less direct explana-
tory roles. They might be, for instance, the reason why the system stops relying on
representational assets within a given domain and falls back to other cognitive resources.
The result is a burden to the system that can (and I think must) be interpreted as a
mitigation of the explanatory role attributed to representations. Whenever there is a
systematicity gap between scheme and domain, representations built with that scheme lose
their explanatory leverage, for they can no longer orient the system in thinking about the
possible permutations within that domain. Rather, they become assets to be disciplined,
and that implies the need for either additional representational resources, or an appeal
to non-representational capacities that can guide its exploitation. Thus, whenever one is
trying to avoid the need for an open-ended set of additional inference-guiding information
(the kind of smell that attracts FP), one has to avoid gaps between scheme and domain.

But is FP all about the structural mismatch between scheme and domain? Prima
facie, it seems plausible to think so. The story could go like this: FP emerges in LOT-
powered accounts because it employs linguistic schemes in order to handle non-linguistic
14 The list is from Cummins (2010b).
15 The resulting behavior need not be bad. Misrepresentation is not necessarily misbehavior. To misrep-

resent something might result in apt responses or even be adaptive. False positives in representational
mechanisms used to predict predator behavior are a classic example of a situation where speed and
tractability matter far more than accuracy. This point will be further discussed in chapter 3.
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domains. Spatial systematicity provides an useful example. Given a flat space with an
object a in position x, and an object b in position y, a system that can cognize this state
can also cognize its converse, i.e. object a in position y and object b in position x. As this
kind of systematicity is not enforced by linguistic schemes, it is conceivable that a linguistic
system may be able to grasp object a in position x, but not in position y. Moreover, the
system can formulate all kinds of spatially implausible permutations, such as that a and b
are simultaneously present on the same position at the same time, or that one of them is in
two places at the same time. The underlying linguistic structure of the scheme cannot be
used as a guide while coping with that domain, for it provides no architectural constraints
other than the ones associated with linguistic structures. Hence, enter FP.

Tempting as it is, this story falls short of an adequate diagnostic. It implies that
FP could not emerge when the system exploits linguistic schemes in order to handle
linguistic domains. But FP obviously arises in this case as well. LOT’s explosiveness
shows itself even when accounting for the linguistic capacities of a system. Thus, while
structural schemes can avoid FP by relying on their own architectural features, this is not
true of linguistic schemes. There’s something else about them. The upshot is that FP’s
real nature is yet to be fully unveiled. Unfortunately, we can’t risk leaving things as they
stand. If the diagnostic let some stone unturned, there can be blind spots in the suggested
solution. This is the discussion to which we turn now.

2.2.3 How many schemes would you say there are?

What could be so distinctive about linguistic schemes, to the point where FP
becomes their exclusive problem? A first possibility could be that the linguistic domain
is open-ended. But it’s easy to see that it misses the point. Non-linguistic structured
domains can be equally open-ended. Cubic itself can represent an open-ended set of states.
The number of 3D cubes involved (10.000) is just a kind of memory constraint. It can be
further expanded by adding more 3D cubes or by enhancing the precision of the already
existing ones.

A more interesting possibility regards the classic way in which we distinguish
linguistic and structural schemes: while the former works by reference, the latter relies
on isomorphism. In this view, FP would be the product of establishing contents through
references, which implies ignoring the scheme’s formal aspects, at least when attributing
contents to its lexical elements. But can the distinction between reference and isomorphism
really provide a clear-cut boundary between linguistic and structural schemes? The answer
is no, for there are counterexamples. First, it seems like we can easily provide linguistic
descriptions of structures. Is a detailed linguistic description of a map still a map? In the
same vein, couldn’t a linguistic “specialized theory” about a city street structure provides
just the same set of constraints we find in a map? Second, we also can “picture” the
logical structure of linguistic expressions. The first Wittgenstein tried to provide a whole
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theory of linguistic meaning relying on this possibility (Wittgenstein, 1922). Linguistic
contents should be the business of language-like schemes, yet this approach would allow
us to have it as the product of isomorphism. His failure has no effect on this point, for
even though it cannot account for natural language, it can be made to work with some
logical formalisms, and that’s enough for the current needs. We have thus examples of
how to forge paradigmatic structural contents through reference, as well as how to forge
paradigmatic linguistic contents by the sharing of the same form.

The classical criterion seems to provide no distinction between kinds of schemes. It
can’t rule these counterexamples out. For instance, it provides no principled way to tell
why the linguistic contents afforded by the wittgensteinian approach should be regarded
as language-like. In the same vein, it preempts us from making simple claims, such as that
maps are examples of structural contents or that natural language trades with linguistic
contents.

Given the apparent lack of alternatives, a tempting conclusion is that there is no
real boundary to be drawn. Reference and isomorphism are just two ways to achieve the
same expressive power. Though we may face the empirical question of whether and how
systems forge their representational assets with one or another, there’s really no difference
at the current level of analysis. This path leads to what I’ll call a monist perspective:
there is only one “real” all-encompassing, domain-neutral representational scheme. Many
believe that the role of such an all-encompassing scheme can be played by classical logic
or maybe some non-classical variation of it. This is no surprise, for language is usually
regarded as potentially universal, given it’s indefinitely extendable expressive power. In
this view, any domain-related scheme, including maps, graphs and musical notation, would
be nothing but an artificially constrained version of the representational scheme. A kind
of “specialized language” that accommodates only a subset of its expressive power. The
difference between specialized schemes is only superficial and has a pragmatic nature: we
could describe a city’s street structure linguistically, but using a special purpose “language”
such as a map makes it easier for us to “read” it efficiently. Indeed, this reasoning is
probably among what lead Fodor and others to postulate a LOT: given the human mind’s
expressive power, there has to be a general way to express anything from any domain.
Otherwise, we could not account for capacities such as reasoning by analogy between
distinct domains.

What this makes of the claim that structures buy us something useful to handle
FP? If it’s true, then the adoption of multiple schemes would not be able to buy what’s
needed. A specialized scheme would have no peculiar architectural properties, for they
would amount to a set of constraints on how the ultimate domain-neutral scheme can be
used. Architectural traits would be simply another criterion to forge frame-like structures.
There could be a map-frame for map domains, a number-frame for number domains, and
so on. This would bring back the issues extensively discussed in chapter 1, for now we
have to tame the system’s expressive power by constraining its inferential power, i.e. we
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have to fully specify how we can articulate our domain-targeted frames. In other words,
we would be forced back to the hopeless approach of taming representational productivity
by disciplining inferential productivity.

If this is on the right track, monism regarding representational schemes is fatal to
the project of avoiding FP through structural schemes. Indeed, that is the reason why I’ve
rejected structural schemes in Barth (2018). At the time I was a monist myself, and so it
was just natural to think that specialized schemes were just another road to the same trap
in which frames, SPACs and physiological markers have fallen. From that vantage point,
whatever you think the most general representational scheme could be (first order logic,
a paraconsistent variant of it or something like Cubic), there’s nothing to gain from the
idea of specialized “sub-schemes”, at least FP-wise. Therefore, in order to rule out the
possibility that monism is true, we’d better show what is wrong with it.

2.2.4 Representing vs. Encoding

What’s the issue with monism about representational architectures? We can find a
plausible answer in Haugeland’s account of representational schemes (Haugeland, 1998e).
In a nutshell, the problem is that it conflates two different ways in which a scheme or
token is able to capture the contents of a domain: by representing it and by encoding it.16

Now, as we have been discussing, there are essentially two distinct kinds of relationship
between a representational token and its content. On the one hand, the token can refer
to that content. It can do that by using compositions of symbols grounded on their
contents by whatever means (functional specification, causal correlation, etc.). On the
other hand, the token can be isomorphic to that content. While I’m not really comfortable
calling reference-grounded meaning a kind of representation, this is not the place for a
terminological quarrel.17 Thus, at least for now, the term “representation” is being used in
a sense that encompasses both informational correlation and structural matching, but this
is going to change in the next chapter as we further develop the argument. What matters
for now is that none of these is equivalent to an encoding.

Encoding is not a relationship between a token and its content, but a process
associated to a given representational vehicle. Textual inscriptions within photographs are
instances of linguistic contents structurally encoded, while a set of sentences describing a
map’s structure is an instance of the opposite. The famous Gödel’s numbers are a way to
use numeric schemes to enconde linguistic contents from other domains. Encodings are
associated with recovery functions: given any scheme x, it is possible to encode it in a
given scheme y and later recover x’s content by using this function.

As an example, consider how softwares used for graphics design work. Inkscape is
a software very similar to Corel Draw, and it works with the SVG file type. An SVG is
16 Haugeland uses the word “recording”, but I’d prefer the terminology later introduced by Cummins,

who argues for a similar point in Cummins (2010b).
17 I follow here the criticism presented by Ramsey (2007).
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nothing but a text file that specifies, through sentences, the size, shape, color and place of
many geometric forms. Indeed, if you open the file in a simple text editor (e.g. Notepad or
Vim), here’s a glimpse of what you would find there (don’t worry about fully understanding
it):

<g inkscape:label="Layer 1" inkscape:groupmode="layer" id="layer1">
<rect style="fill:#ff0000;fill-opacity:1;stroke:none; stroke-width:2.446;
stroke-miterlimit:10; stroke-dasharray:none;stroke-dashoffset:0;
stroke-opacity:1" id="rect46" width="99.029762" height="76.176743"
x="29.482143" y="87.690468" /> </g>

When the same SVG file is opened in Inkscape, a recovery function creates a visual
(i.e. structural) image on the fly, and then we can see something like figure 2. Importantly,
the contents of the resulting structure are a product of its being isomorphic to a red
rectangle, not due to compositional properties of the linguistic scheme in which it is
encoded. The linguistic content of the SVG file is completely disjoint from the structural
content there encoded.

Figure 2 – A red rectangle.

Rather than expressing the same content using a distinct architecture, encoding
is akin to a file type in computers: a form in which information is stored/transmitted.
Encodings enable the information to be carried or stored in distinct vehicles and in distinct
forms without actually representing it. The point is not that encodings have no content,
though. Encodings can have contents (they’re made using schemes), but such contents are
distinct and, in some cases, irrelevant to the task at hand.

For instance, the linguistic inscriptions in the SVG file can be regarded as symbols
referencing numbers or properties. But such linguistic inscriptions are not there to enable
the system to make language-like inferences about numbers. They’re there to enable the
system to render structural contents by means of a recover function. Having disjoint
contents is what makes encoding so easy when compared to the task of expressing the
contents of one scheme in another. Indeed, to encode the structure of a human face using
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an SVG-like scheme is nothing like linguistically describing that face. We encode human
faces all the time with our smartphones simply by taking pictures of them. To grasp the
contents of those pictures is something else entirely. We can easily loose sight of this
because it’s easy for us to recognize faces in a photograph. But this is a very complicated
cognitive task. Only very recently the AI community could come up with somewhat
reliable facial recognition systems. And despite being a huge achievement, these systems
are usually very limited in scope. In the absence of such systems, our cell phones have no
idea of what are the photograph’s contents: all they can handle is the way in which the
pictures were encoded.

The difference between grasping encodings and grasping contents can also be found
in Gödel: by shifting a digit of some Gödel number to the left, we are multiplying it by 10,
but in doing so we are exploiting a systematic relation of the number domain. The result
would be a reference to another number, but not necessarily another word. The exploited
relationship does nothing to preserve nor to distinguish what would be a well-formed
sentence in natural language or in some other logic-like formalism. In this sense, using
Gödel numbers to process the sentences of some artificial language is different from using
the symbol strings comprising that language. A system that can only refer to entities in
the number domain (i.e. numbers) can be used to encode that artificial language, but it
will be completely blind to the contents of any other domain, just like the pictures we take
on our smartphones are blind to what’s in the photograph.

We have thus another route through which a given specialized scheme can handle
contents beyond its representational power: it may not be able to represent it, but it might
nonetheless encode it. With this in mind, the reply to the monist can be summarized
like this: what they regard as representational schemes with greater expressive power are
actually just ordinary specialized schemes being used to encode other ordinary specialized
schemes.

At this point, the monists can accept that schemes can mutually encode each other.
But that is still compatible with their core claim. Even though one can encode contents,
that doesn’t mean one can’t also represent them in a domain-neutral scheme. There seems
to be plenty of examples to believe that: one can provide linguistic descriptions of human
faces (as well as maps and structured domains in general), and one can also “picture” the
structure underlying a given sentence, as we do in linguistics. Thus, while you can encode
a red triangle in the SVG file type, you can also express its contents, as we apparently do
by saying “red triangle”. The rejection of the monist stance requires an additional step.

2.2.5 Against monism: the incommensurability thesis

As we have seen, to say that a scheme has a target domain is to say that it enforces
certain assumptions about the domain. These assumptions are manifest as constraints in
the kind of content it is able to express. In order to reject the monist stance, we can build
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on this and show that a distinctive set of assumptions about a domain always implies a
distinctive set of representable contents. If that’s the case, then the only way in which a
scheme can handle contents outside its target domain is by encoding it. In what follows,
I’ll make this case in two steps. First, Haugeland’s argument for the incommensurability
of kinds of contents will be presented and discussed (Haugeland, 1998e). Rather than
locating the essence of a representational kind (i.e. language-like and picture-like) in the
distinction between reference and isomorphism, he grounds it on the distinctive kinds of
content they can express. In a second step, I’ll show how contents can individuate not
only kinds of scheme, but particular schemes as well.

Haugeland’s main point is that linguistic and structural schemes cannot share
the same set of assumptions because linguistic scheme’s contents are essentially absolute,
while structural scheme’s contents are essentially relative. Structural schemes are said
to be essentially relative because they always assume at least two (though usually more)
interdependent dimensions. We can get back to the example of a cartesian plane: we
simply can’t graph a point in the x axle without also expressing its position in the y
axle. But it goes much further. We saw how Cubic won’t allow one to express an object’s
determinate size without also expressing its shape and determinate location. Thus, if you
try to represent the redness of a tie in Cubic, you end up expressing its shape as well. In
the same vein, a picture can’t represent the coffee bottle as broken without simultaneously
expressing that it is smaller than the mug by the side. Underlying those examples is the
fact that structural representations just are shapes of variations distributed alongside
interdependent dimensions.

The nature of the dimensions, as well as the minimal shapes available to be
distributed can vary enormously. The dimensions need not be euclidean, nor continuous as
in typical planes or spaces. There can be gaps, curves, ramifications or any other kind of
“deformity”. As for the minimal shapes to be distributed along the dimensions, they may
be simple “points”, but there can also be palettes comprising flat lines, circles, squares,
and so on. All of these features conspire together in order to constrain how a variation
can be shaped within the available dimensions.

In stark contrast, the contents of linguistic schemes are said to be absolute because
they don’t assume any background comprising interdependent dimensions. They’re not
shapes taking place within planes, spaces or whatever n-dimensional structure. Linguistic
contents capture objects and properties, but these do not constitute anything like a
“conceptual space” in which a content takes place. This allows them to capture both
structured (e.g. a graph measuring temperature over time) and non-structured contents
(e.g. a list of temperatures) one at a time. That’s why, unlike graphs of Cartesian planes,
you can express the value of a point relative to the x axle and be silent about the value
relative to the y axle. That’s also why you can express that the coffee bottle is broken
without simultaneously expressing its shape, size or location. In Haugeland’s words:
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(. . . ) even if for every dog there were a breed, it would make no more
sense to graph breed against dog than phone number against social
security number: there’s no space for such a graph to take shape in.
Objects have their properties one by one, absolutely, and not as part of
some shape, relatively. (Haugeland, 1998e, p. 193)

In order to correctly grasp Haugeland’s point, one must avoid the following mis-
understanding: the absolute-relative distinction about contents is not equivalent to the
atomistic-holistic distinction about schemes.

Cartesian graphs are a clear example. Given a point in a plane, its value will
always be a tuple such as {x,y}. Adding a new dimension to the scheme (i.e. making it
capture space rather than planes) results in a change of value for every single token. Now,
given any point, its value will always be a triple such as {x,y,z}. In contrast, atomistic
schemes have their basic semantic elements established independently of one another.
Consider a palette comprising cartoon-like drawings of a person, a dog, and a house as its
basic semantic elements, as well as a plane in which you can place compositions of these
elements. Users of this scheme can thus forge contents such as two dogs and a person
in front of a house. Adding a new basic element to the palette (maybe the drawing of a
parrot) has no effect on any of the other basic elements. Both the cartesian plane and
the cartoon-like palette are (respectively) examples of holistic and atomistic structural
schemes with relative contents.

What about linguistic schemes? Can they be both holistic and atomistic? Sure.
Some approaches rely on a set of basic elements whose meaning is attributed independently.
Thus, whether a word “dog” means dog is independent of whether “cat” means cat or
parrot. The underlying scheme is evidently atomistic. You can change the meaning of
a basic element without interference on the meaning of any other. However, proponents
of conceptual role semantics for representational contents (as well as proof-theoretic
approaches in logic), aim at establishing the linguistic contents by holistic means (for
instance, the set of possible ways in which a token can be employed is the function of
its relationship with the other possible tokens). This implies that the underlying scheme
is holistic. Whenever you add a new possible connection, the whole set of possible ways
in which a token can be employed changes. Nevertheless, the expressed content is still
absolute in both cases. Whenever a token expresses the content that the glass is broken,
it can do so without assuming any background comprising interdependent dimensions,
i.e. it can do so without simultaneously expressing things like its color, shape or even how
broken it is).

Once we’re vaccinated against this misunderstanding, we can work out some
implications of the absolute/relative distinction and check whether it can buy us a ticket
out of monism. First, relative contents cannot bear neither truth nor falsity.18 Given its
18 If we understand propositions to be the primary bearers of truth and falsity, it follows that relative

contents are non-propositional. But I’m trying to avoid quarrels about what propositions are. I Thank
Marco Aurélio Alves for making my life easier in this regard.
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reliance on interdependent dimensions, the relative contents’ relationship with whatever
they’re representing is always shaded and gradual. As such, it is subject to measure in
terms of greater or smaller degrees of accuracy. We can say, for instance, that a non-blurred
photograph is a more accurate depiction of its target than a blurred one. But it would
be wholly inadequate to make truth-conditional assessments such as claiming that the
former is true and the latter is false. Importantly, the dimensions of a scheme need not be
continuous for this to hold, i.e. they’re not analogical, though sometimes they’re glossed
that way.19 As Haugeland remarks, the relationship between populations and generations
of a biological species is intrinsically ordered (i.e. structured) and thus can be expressed
with structural schemes, even though both population and generation are discrete elements
(Haugeland, 1998e, p. 193).

Some might be tempted to resist this claim and insist that relative contents can be
assessed in truth-conditional terms. Here’s an example of how the reasoning could go: one
can ground the truth-conditional assessment in sets of possible worlds, as suggested by
Stalnaker (1984). The content can be said true in the possible worlds where it holds, and
false otherwise. Why couldn’t the current state of a structure, such as that of a red tie, be
said to hold in some possible worlds and not in others? That seems to be all we need in
order to make truth-conditional evaluations of the relative contents. It is definitely enough
for us to answer “yes” to the question ’is the tie red?“. And this is just one among the
many stories that can be told. If any of such story becomes a problem for Haugeland’s
distinction, it will ultimately become a problem for the current diagnostic of FP.

Though this line of reasoning seems to overcome the distinction between absolute
and relative contents, it is actually blind to it. Absoluteness and relativeness are not
different ways to partition a single set of possible worlds. Rather, one could say that they
operate with distinct sets. While absolute contents partition sets of (for instance) atomic
facts that captures individual objects and properties, structural contents partition shapes
distributed alongside interdependent dimensions. Thus, the issue is not that the set of
possible worlds in which a picture holds would be vague in virtue of blurred boundaries.
Rather, the issue is that a picture can’t hold in any of them, for it works with its own
non-overlapping set. Shapes distributed alongside interdependent dimensions can’t capture
a single possible world out of the set used by absolute contents. Consequently, there’s no
intersection between the contents that each representational kind is able to express. In
arguing for this point, Haugeland presents the following example:

We can, for instance, say — it is a fact — that the Earth is round. Is
this not the very same “structure or feature of the world” that would be
represented also by a silhouette of the Earth against a bright background?
I don’t think so. In the first place, the sentence identifies (the fact
comprises) a particular object and a specific property of that object,
whereas the silhouette identifies no object or property: its (. . . ) content

19 As an example of this point, Samuels (2010) refers to structural representations as “analogical
representations”, which is at best misleading.
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is just the overall pattern of light and dark from some perspective. But
further, though the sentence is entirely compatible with the Earth being
transparent or just as bright as the background, the silhouette is not;
and so on. (1998e, p. 194)

Haugeland’s example helps us see that relative and absolute contents are incom-
mensurable. In stark contrast with relative contents, the absolute character of linguistic
contents seems to be tailor-made for assessment in terms of truth and falsity. Linguistic
tokens relate to their contents in an all-or-nothing fashion. Their targets are either hit or
missed, which makes them perfect to express clear-cut partitions of possible worlds, as well
as truth-conditional evaluation. Therefore, Haugeland’s content-based distinction implies
that structural and linguistic schemes are disjoint, and that they can’t be assessed with the
same rule: no relative content can be deemed true or false, and no absolute content can
be intrinsically measured for graded accuracy. In other words, they are incommensurable.
We have thus a suitable candidate to account for what’s essentially distinct between the
structural and the linguistic representational kinds.

Another possible source of resistance to the incommensurability thesis is rather
intuitive: it seems to be incompatible with the way we handle things in the world. An
instance of this move can be found in Camp (2018): she correctly notices that we often
assess maps (a structural token) in truth-conditional terms and also frequently handle
book contents (which comprises large collections of linguistic sentences) in terms of overall
accuracy regarding events or states of affairs. We look at the picture of a room and see
that the drawers are open, that the clothing is all over the floor and that the room is a
mess. In the same vein, we take sets of sentences as drawing an “insufficiently accurate
picture” of what is the case. The details may vary, but the crucial idea is that such sets
of sentences comprise theories (or concepts, or whatever) who capture distinct partitions
of possible worlds. The greater the intersection between the theory’s partitioned set
and the set of possible permutations of the actual world, the more accurately the theory
“pictures” it (i.e. shares its structure). Wouldn’t these amount to counter examples to the
incommensurability thesis, and consequently, to the distinctiveness of structural contents?
They surely seem to indicate that we can handle structural contents in truth-conditional
terms, as well as linguistic contents in graded notions of accuracy. Can we reconcile those
cases with the idea of disjoint contents about representational kinds? As I see it, we don’t
really have to, for there is no real issue.

The heart of the matter is a confusion between the representational power of a
scheme and the fully-fledged set of cognitive resources of the encompassing system. The
former is a purely architectural trait. The latter comes from the system’s capacity to
exploit and articulate all of its cognitive resources. On the one hand, there’s the expressive
power of representational states and processes. On the other, there’s the system’s overall
capacity to entertain indefinitely many attitudes. While representational content is a
semantic issue, attitudes are psychological processes and states. The distinction is not
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always obvious, given the ubiquity of the already mentioned dictum from Fodor: to
believe in p is to represent p. But we should not conflate these. Pace Fodor, to entertain
a psychological state such as that of believing in p says nothing about the role of the
representational contents in the making up of that state.

As an example of this point, consider again the picture of a messy room. What are
its representational contents? Whatever they are, they can participate in attitude contents
such as “the room is really messy” or “there’s lots of stuff out of the places where they
should be”. Going further, we could maybe infer that the room is a crime scene. After all,
that’s exactly the kind of mess one would expect to find after the work of someone looking
for valuables in a hurry and not worried about the organization of the things left behind.
But none of this is strictly manifest in the picture. Ultimately, a photograph is nothing
but a bunch of light incidence structures. Those structures are the token’s bare-bones
representational contents. Thus, what the encompassing system is able to exploit in such
a complex structure depends on its overall capacities and its full set of available cognitive
resources. Feature Detectors, environmental couplings, attentional biases are just some
examples of the resources that can be employed when exploiting the picture. This is what
enables it to harbor attitude contents out of structural contents: that is a room in a house,
there’s house-room-typical furniture, they’re not where they’re supposed to be, and so on.

Therefore, the fact that psychological states allow for complex applications of
distinct cognitive resources in general does not stand in the way of the incommensurability
thesis. It implies no overlapping nor coincidence between the contents allowed by structural
or language-like schemes. The upshot is that we cannot take the system’s capacity to
entertain a given attitude as a clue to the underlying representational architecture being
employed (if any). This faulty move from determinate psychological states to determinate
semantic states is not new. The famous systematicity argument from Fodor; Pylyshyn
(1988) is perhaps the most well-known example of this strategy. If we can see what’s wrong
with their move, we’ll get a better grip on why we should put this kind of strategy aside
once and for all.

The core of Fodor and Pylyshyn’s point is that classical language-like representa-
tional schemes have the adequate structure to account for the systematicity of though.
As many have pointed out, the idea that human thought is broadly sensitive to linguistic
systematicity is at least misleading.20 What Fodor called the systematicity of thought was
actually the systematicity of linguistic domains. In doing so, he took for granted that our
cognitive machinery is fully capable of cognizing such domains by representing them. This
is a matter of dispute, though. For instance, our capacity to detect sameness of logical
form is know to be limited (Kahneman, 2011). But for the sake of the argument, let’s put
it aside and agree with Fodor and Pylyshyn on this. If we accept that the systematicity
we find in the human capacity to cognize linguistic domains requires a representational
20 See, for instance, Dennett (1991).
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scheme with the very same systematicity, then we have to accept that the cognition of
linguistic domains implies LOT.

But what about other domains? We do cognize linguistic domains, but we also
handle (for instance) spatial domains. As Blackmon et al. (2001) remark, the same
argument from the systematicity of the cognized domain to the systematicity of the
underlying representational scheme would lead Fodor to a kind of pluralism about schemes.
Distinct domains would imply distinct underlying specialized architectures. This is a bullet
Fodor would probably refuse to bite. Being a monist, he could insist that we need a single,
domain-neutral scheme. Thus, despite the fact that linguistic systematicity is not like
spatial systematicity, he could argue that we can use sentences to express (i.e. represent)
spatial domains as well. That doesn’t work, though, for as we have just seen, absolute
and relative contents are incommensurable. All we have left, thus, is the possibility of
encoding. But once we open the door to the possibility of cognizing distinct domains by
encoding them, the pressure for sticking with LOT is gone. Why couldn’t we adopt a
distinct scheme and use it to encode linguistic domains?21 In fact, why not get rid of
representations and use only encodings all the way up, like eliminative connectionists and
some non-representational frameworks suggest?

This would lead us back to a lot of familiar debates regarding distinct cognitive
frameworks, but that’s not the path I’m suggesting we tread. The point is simply to
acknowledge that the direct move from psychological capacities to architectural traits
of the underlying mechanisms is faulty. It’s a bad argument for the adoption of LOT
and it would be a bad argument for adopting pluralism about architectures as well. The
issue about how a given domain is cognized (i.e. by representing, encoding, or both. . . ) is
empirical, and as such it cannot be settled while sitting on a couch.

We can finally get back to the core issue with the monist stance regarding represen-
tational schemes. Once we accept the distinction between representing and encoding, as
well as the incommensurability that distinguishes structural and linguistic representational
kinds, we can easily see what’s wrong with it. The monist claims that, in dealing with
distinct kinds of schemes, we’re actually handling the same contents through distinct
representational tools. But if what’s distinctive about structural and linguistic schemes
are their distinctive contents, that option is simply not in the cards. Monism has to be
rejected because there’s no such thing as a domain-neutral all-encompassing representa-
tional scheme that can express both absolute and relative contents. What leads one to
think like that is the confusion between representing and encoding. What seemed like a
bunch of counterexamples to the distinction between linguistic and structural schemes
were simply examples of this confusion. The difference between encoding and representing
is akin to that between taking a picture of a text and comprehending its meaning. While
representation is a status of some process or state that enables it to play the role of
21 This is exactly what we get with Tensor Products within neural models (Smolensky, 1990).
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a stand in, an encoding is a process related to the representational vehicle. Given the
incommensurability of absolute and relative contents, encodings are the only way through
which linguistic schemes can convey structural content and vice versa. We have finally a
clear-cut distinction between linguistic and structural schemes. One that relies not on the
relationship between token and content (i.e. reference and isomorphism), but rather on
the nature of the content that each kind is able to express.

2.2.6 Individuating representational schemes through contents

Any structural scheme is distinct from another structural scheme in the sense that
it has a proprietary set of primitive elements. Moreover, each of them has a distinct set of
dimensions and building blocks used to graph alongside its dimensions. The dimensions
themselves may also be proprietary. They can obviously differ in number (a 2D versus a
3D or n-D scheme, for instance) but that’s not all: they need not be euclidean and this
means that they can be curved, distorted or even gaped.

Now, when first introducing the incommensurability thesis, I’ve relied on the
analogy with possible worlds in order to mark the distinction: absolute contents are able
to partition a set of possible worlds comprising (say) atomic facts. In their turn, relative
contents are only able to partition shapes distributed among a number of interdependent
dimensions, i.e. a kind of structural set of possible worlds. This background of n-dimensional
structures, as well as the set of basic structural elements, is distinctive of the way in which
structural schemes carve out the world. That’s enough to distinguish between linguistic
and non-linguistic contents, but the same line of reasoning can bring us further: there’s no
single set of possible structural worlds to be shared by every structural scheme. To have
a proprietary form is not to limit oneself to a subset of the possible shapes within what
would be such a single set of structural worlds. Rather, each scheme may work with its own
proprietary set of possible structural worlds in virtue of its own set of primitive elements
and dimensions. That’s behind Cummins’ suggestion that each scheme comprises a set of
a priori assumptions about a target domain. Its proprietary form is to be understood as
sets of constraints over what can be represented and how it can be processed. The upshot
is that each scheme comprises a specific set of relative contents tailor-made for a given
domain.

But what exactly comprises a domain? In some examples, we’ve talked about 2D
planes and 3D spaces as comprising distinct domains. Couldn’t one also regard a plane as
abstracting away from the dimension of deepness that one find in spaces? In this view,
there would be a single domain (3D spaces) that is captured by two schemes, a 2D and a
3D one, but the former captures it in a less than perfect way. This is somewhat analogous
to classic debates in representationalist literature regarding the indeterminacy of contents:
should we describe a representational capacity as that of tracking black dots accurately or
tracking flies inaccurately? Whatever one may think about this in the context of content
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determination - and despite the similarity in form - there’s no real fact of the matter
about it in the present context. As far as the explanatory role of architectural features
go, it makes no difference whether we say that two schemes can capture a single domain
with distinct degrees of accuracy or that those same two schemes accurately capture two
distinct domains. What matters is how accurately a scheme captures a targeted domain,
and the specification of the target domain is dependent on our explanatory needs. Thus,
one is free to characterize a scheme X as targeting the domain of black dots accurately or
as targeting the domain of flies inaccurately. Whenever scheme X is employed within the
fly domain, the scheme’s (in)accuracy towards that domain will be the same, and that
underpins all the scheme’s explanatory burden.

We can thus say that any two schemes may capture the same domain in different
ways, for they enforce distinctive sets of assumptions about its form and dynamics. In
other words, they can be related to each other in terms of how distinctively they capture
a given domain. For instance, a scheme A can capture more fine-grained aspects that
are left out by scheme B, and thus scheme B can be said more abstract than A. This
means that, whenever scheme B is employed, it will result in forced errors that lead the
system towards a grasp of certain features of the scheme that can be considered more
abstract in comparison with the features made available by the application of scheme
A. That’s an example of how forced errors can be useful and informative. Science’s got
plenty of such examples where one learns about a complex system by employing schemes
that abstracts away from the target’s lower-level dynamics. Whenever a system finds
out that it can articulate any two schemes through the relationship of abstractness, it
may learn a lot about the target domain. This goes both ways: a system may find out
that a scheme can be employed to capture features of a domain that would be otherwise
out of the picture. This kind of strategy is specially useful considering the fact that
cognitive resources are always limited and constrained by time and memory. One can’t
be expected to rebuild the structures comprising the whole world in order to represent
it. Thus, in some circumstances, the possibility of trading representational accuracy for
speed or tractability is valuable, and sometimes a less-than-perfect scheme might be more
suited for the system’s current needs than the other available ones.

In the same vein, any two schemes can be revealed as providing relatively similar sets
of representable contents regarding a domain. Consider Palette-C, an atomistic structural
scheme used to represent simple cartoons (figure 3). It comprises three building blocks (a
line, a circule, and a closed semi-circle) that can be arranged alongside a bidimensional
plane. In figure 3, the scheme is used to forge a token representing a cartoon-house and
a cartoon-person. Say there is a variation called Palette-D whose only difference is an
additional building block shaped like a quarter circle. Where we to forge the exact same
token with Palette-D (i.e. the quarter circle block was not employed), would it have the
same content as the token built with Palette-C? Sure. This means that the contents of
both schemes can overlap or coincide, probably to a considerable degree. Nonetheless,
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Figure 3 – Palette-C. A scheme for representing simple cartoons.

Palette-D allows for representational contents that are unavailable to Palette-C. It also
makes room for a considerably larger set of possible permutations, just like adding a
new word to a lexicon would do for a linguistic scheme. Thus, despite the possibility of
coincidental contents, the schemes may lead the system towards very distinctive paths.
For instance, while attempting to learn how to exploit its own structural traits, a system
employing Palette-C rather than Palette-D would learn a distinctive set of permutations.
This aspect of the learning process would be akin to that of a kid that finds a different
set of combinations while exploiting distinctively shaped plastic building blocks. In this
sense, the contents afforded by Palette-C and Palette-D are disjoint, for the answer to
the question “what can we add to this token?” will always be different (i.e. the possible
inferences will be different due to the distinct sets of basic building blocks).

Consider also what would happen if we tried to embed a token from the 2D scheme
representing a square within a 3D scheme.

Figure 4 – Embedding 2D shapes in 3D schemes

Figure 4 (a) shows the square in a bidimensional plane. Whenever it is embedded in
a 3D, the resulting shape is different, for 3D schemes enforce the need of a third dimension.
Whenever you try to represent a 2D square in it, you get forced error, and the square
becomes a somewhat weird 3D shape. The exact resulting shape depends on the scheme.
In figure 4 (b) we can see the result of a 3D scheme that enforces the value zero. In
math notation, we could say that by embedding a <1,1> square in a 3D scheme, we get
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a {<1,1>,0} polygon. This is a different shape distributed along a distinct number of
dimensions, i.e. we have distinctive contents and, consequently, distinctive causal powers.
Systems exploiting permutations of the 3D shape will reach distinct results from those
exploiting the 2D shape. Thus, the contents are necessarily disjoint.

Figure 5 – Embedding 3D shapes in 2D schemes

What about the opposite? Consider a cube from a 3D scheme such as the one in
figure 5 (a). What would be the result of embedding it in a 2D scheme? Again, there is
forced error. The cube could be rendered in different ways, such as the ones we see in
figure 5 (b). These comprise distinct ways to “embed” a 3D cube into a 2D space. The
most obvious possibilities for the set of axles {x, y, z} is to embed them as {x,y} or {y,z}
or {x,z}. We might be inclined to say that some of these possibilities are a more accurate
depiction of what we would expect of a 3D cube whenever embedded in a 2D space. As
when one of the cube’s face gets cut off and we get what would be a 2D square. But that’s
misleading. Another possibility that involves the whole 2D plane occupied by {x,y,z}, as
we can see in the first shape of figure 5 (b). There’s no principled way to claim that one
embedding strategy is “better” than the other. Thus, even the apparent similarity of 2D
and 3D schemes is first and foremost a product of our own exploitative capacities. As far
as the underlying scheme is concerned, to carve out portions of a token in this way is no
different from tokening a 3D cube and ignoring the third dimension. 2D and 3D shaped
elements have quite distinct causal powers, even though we can relate them somehow
(“this is how a cube should look like whenever you embed it in a 2D environment”).

This is an example of how any two schemes, despite being both structural, cannot be
measured with the same ruler. A scheme may do a better job regarding certain dimensions
of its target domain, while some variation of it might fare not so well. For instance, while
a scheme may be suitable to accurately capture size and shape, other may emphasize
location and color. The upshot is that there is no exploitation-neutral criterion with which
we can measure how accurately a scheme captures its domain. Unlike absolute contents,
that are assessable in truth-conditional terms, there’s no such thing as evaluating accuracy
“from the viewpoint of nowhere”. There’s no sense in which we can say, for instance, that
a blurred picture is less accurate than a non-colored one. It all depends on the needs of
the encompassing system.
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To see this idea at work, consider a 3D scheme and suppose that there is a way
to measure the accuracy with which a token captures a specific dimension. Say we can
express this measure with values between 1 and 10. Thus, a token that is maximally
accurate would be classified as {10,10,10}, for it maxes out in all the scheme’s dimensions.
We certainly can compare such a token with a minimally accurate one that’s classified
as {1,1,1}. But what are we to say of a token A that does {10,5,10} in contrast with a
token B whose accuracy is {5,10,10}? We could say that A is less accurate with respect
to the second dimension and that B is more accurate than A with respect to the same
dimension. What we could not claim, however, is that A is a more accurate token than B
or vice versa.

Thus, in at least some cases, even two tokens of the same scheme cannot be
measured with the same ruler. It doesn’t mean that the contents are incomparable, though.
What it does mean is that ir order to do such a comparison, the system must possess the
right set of exploitation capacities. If it employs a 3D scheme to capture some domain and
a 2D scheme to capture another one, it may do so without realizing that these schemes
share one or more dimensions (assuming that’s the case). Indeed, to realize something
like that is an achievement, and not necessarily an easy one. One shall not forget that it
took us a Galileo to learn that geometry can help us to think about time and speed, and
a Descartes to realize that we can use equations to encode trajectories in a plane.

In the resulting picture, there’s a bunch of domain-specific schemes that can bear
a plurality of relationships among themselves. Given the proprietary form with which a
scheme captures its target domain, there’s probably no easy way to render anything like
a classification system for them. Schemes can be compatible in some circumstances and
incompatible in others. Such compatibility comes in degrees: one can be a more abstract
version of another or a conservative variation. Depending on the system’s needs, they
might be either useful or comprise an obstacle. Thus, the capacity to articule them is
distinct ways can make all the difference for the system. Indeed, it is possible that the
system knows how to exploit any two schemes without realizing how they can be usefully
articulated.

2.2.7 A final diagnostic for FP

Is this progress? Our goal, remember, was to find the source of FP and the reason
why it seems to be unavoidable in linguistic schemes. One of the open questions was:
assuming that FP only emerges whenever there is a gap between scheme and domain,
how come that it bites even if we employ linguistic schemes in order to model linguistic
domains? Now we know why. If such schemes are characterized by the kinds of contents
they enable, it follows that the explosiveness of LOT is actually the explosiveness of
its absolute contents. Absolute contents are never intrinsic, i.e. they bear no structural
resemblance to any domain, for they have no structure. The diagnostic also helps us
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to understand why every classic attempt of handling FP by means of distinctive logical
formalisms have failed. All of them ended up in the same place because all of them worked
with absolute contents.

The point is not just that linguistic schemes do nothing to preempt permutations
that are alien to non-linguistic domains (e.g. “objects always fall up”). The point is that
nothing scheme-wise preempts even compositions alien to the linguistic domains themselves,
such as “Pirapora book sleep John”. Even though one may correctly insist that linguistic
domains do have structure (morphological, syntactical and so on), the point is that such
structure is not captured by linguistic schemes in any way. Consequently, the validation
and exploitation of absolute contents must rely entirely on the system’s capacity to enforce
the adequate set of compositional rules. The system is always completely responsible for
keeping them sane and useful. But the only way to do that without falling for FP and
without giving up on representation’s explanatory role implies an open-ended regress: we
need to represent exploitation rules, which must themselves be exploited according to
second order exploitation rules, and so son. This is why, as far as absolute contents are
involved, FP is not just unavoidable, but also unsolvable.

We can also see more clearly the exact conditions under which structural repre-
sentations (i.e. relative contents) can be of help regarding FP. Unlike linguistic schemes,
structural schemes are structured. Their contents are always relative. So there is always
the chance of a match between scheme and domain, i.e. structural schemes can have
target domains. Whenever there’s no gap between the structure of scheme and domain,
architectural constraints will be enough to avoid the possibility of expressing permutations
alien to the target domain. This is enough to avoid FP in that domain.

Maybe at this point, one can worry about the size of the structured domain.
What if the scheme allows for an open-ended set of permutations? How can architectural
constraints help the system figuring out the adequate ones? The answer is disappointing,
yet illuminating: they don’t. To expect otherwise is to make a confusion regarding FP and
RP. Finding out the relevant permutation for the current situation is just another instance
of RP. What architectural traits buy us is the possibility of organizing information in a
way that can be efficiently retrieved in an open-ended set os distinct situations. That is
what we couldn’t do with absolute contents. Thus, while exploiting the set of possible
permutations, the system need not worry about keeping up with the domain’s dynamics.
For instance, if the structure of a map changes, the system may need to reassess the best
possible path towards its goal all over again. And that is definitely the kind of task in
which the number of possible paths may require a way to be sensitive to the subset of
relevant ones (i.e. it may require the system to handle RP). What the system that relies
on structural representations will not have to worry is about recalculating the relationship
among every single element in the map, before it even start to wonder about the best
path. What’s next to what, what’s the relation between theirs sizes, distances, shapes,
positions, all of this will be given by architectural traits.
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Having said that, it is important to be aware of what happens when the match
between structural scheme and domain is less than perfect or when there is no structural
match at all (such as when a scheme is used to encode content from another domain).
First, there can be cases of forced error: the system is unable to handle a permutation
of some domain because it lacks the appropriate set of assumptions. Second, the system
may have to take over, which means it either cannot rely on its representational assets
any more (which means giving up on the explanatory role of representations), or that it
becomes the sole responsible for keeping those assets sane and useful. That is the same
situation we’re left whenever we employ absolute contents. Therefore, though relative
contents seems to buy us a way out of FP, it comes at the cost of being domain-dependent.
Whenever the system leaves the domain’s safe shores, it is again left to go astray.

As things stand, the purchases of structural representations may seem rather thin.
The explanatory role of architectural traits, as well as the possibility of representing
dynamic change are deeply connected with the match between scheme and domain. But if
the intrinsic way in which structural schemes capture systematic relationships works only
within their target domain, how can it be of help with FP in realistic scenarios? We need
the representational productivity that LOT promised us, but we also have to avoid FP and
the confusion between representing and encoding. After all, humans are not single-domain
creatures. If structural representations cannot avoid the potential loss of representational
productivity, then the cost of its purchases will be too high. That is the crucial motivation
for representational pluralism, a suggestion of how we can have non-explosive (FP-free),
domain-independent productivity without relying on absolute contents.

2.3 Representational pluralism

The fundamental claim of representational pluralism is that representational pro-
ductivity can be achieved through the complex articulation of a plurality of structural
domain-targeted schemes. Despite first appearances, the idea is not outlandish at all.
At the agential level, we already do it on a daily basis. Whenever we must draw a wire
diagram, we don’t use the same palette we would when drawing a flowchart. Rather, we
employ a specialized palette with a very specific set of building blocks. The same goes for
maps, scale models, music notation and so on.

We do have natural language (as well as formal languages) that can be employed as
all-purpose domain-neutral encoding medium. But it’s easy to see how inefficient they are
when applied to domains for which there are specialized schemes available. Furthermore,
even though we don’t always realize it, we skillfully apply different sets of schemes in order
to enhance their expressive power. As an example, consider graphs of cartesian planes.
They cannot express the same point in two distinct positions. By drawing two points within
the plane, the resulting content is not that the same point is in two different places, but
that there are two distinct points. Fortunately, articulating two distinct representations



137

built with distinct schemes enable enhanced expressive power. Thus, if one really needs to
express the same point in two distinct places of the plane, some kind of identity label can
be added (a symbol, a color, a drawing, etc.). Any two points with the same identity label
will express the information that they’re actually the same. This allows the encompassing
system to communicate the idea that the very same point is occupying two places at the
same time.

Representational pluralism is an application of this kind of strategy at the sub-
personal level. It suggests that the expressive power of multiple schemes can be indefinitely
enhanced. Distinctive mechanisms or subsystems can articulate their domain-specific
representational power in ways that enhance the encompassing system’s overall expressive
power. This is plausible because our target phenomenon is the representational productivity
of the whole system, not just that of a particular representational scheme. There’s no
reason to stick with the idea that the system’s expressive power must be accounted for
by a single scheme. Quite the contrary. The previous discussion taught us that relying
on a single scheme is a dead end. Thus, rather than hoping for a single non-explosive
domain-neutral scheme, one can build productivity out of the complex articulation of a
plurality of less expressive schemes.

Representational pluralism comprises a bottom-up approach. Essentially, this
means that as the system acquires more and more representational capacities (e.g. by
learning), this process should be understood as the ability to articulate domain-specific
resources in increasingly complex ways. Our goal, however, is not just that of understanding
how this can be achieved. We also need to make sure that we won’t get a structural
version of FP as we integrate an increasingly rich set of representational resources. How
can we be positive that the structural representations won’t become explosive in virtue of
the complex integration of multiple tokens? We’ve seen that linguistic systems require an
unrealistic ceteris paribus clause. Couldn’t structural representations require something
along the same line in order to keep useful and consistent as they are integrated?

My answer will be no. But in order to properly justify it, we must take the long
road. In what follows, I’ll characterize my understanding of representational redescription,
the learning process trough which the explanatory role played by architectural traits
can be indefinitely enhanced. After properly introducing the idea, I’ll argue that such
enhancement implies no need for anything like a ceteris paribus clause, and we can have
thus a kind of non-explosive representational productivity.

2.3.1 Representational redescription

Representational redescription (or simply redescription) was first presented by
Karmiloff-Smith (1992). In its original sense, redescription comprises processes through
which a system can learn increasingly portable contents from its own cognitive capacities.
In this case, “portable” means that the content becomes available in distinct forms and can
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be further exploited by distinct mechanisms. It is a process through which “(. . . ) implicit
information in the mind becomes explicit information to the mind.” (Karmiloff-Smith, 1992,
p. 18). Thus, a system may be able to, say, recognize zebras in its environment, but this
knowledge can be rather inflexible. As the system learns about how its own recognition
capacities work, this knowledge becomes available in other, more portable forms, and these
can be further exploited. Thus, the know-how involved in identifying zebras on natural
environments may be redescribed as the complex articulation of mechanisms sensitive
to stripes, to horse-like shapes, and so on. The resulting knowledge is more flexible and
can be more easily applied to distinct environments and tasks. After all, being able
to handle stripe structure can be useful for more than recognizing zebras. Here’s how
Karmiloff-Smith herself presented the idea:

My claim is that a specifically human way to gain knowledge is for the
mind to exploit internally the information that it has already stored
(both innately and acquired), by redescribing its representations or,
more precisely, by iteratively re-representing in different representational
formats what its internal representations represent. (Karmiloff-Smith,
1992, p. 15)

In a nutshell, representational redescription comprises learning processes feeding
on information that’s already available in the cognitive machinery. The process can be
recursive, which means its outputs can be subject to further redescription in an open-ended
fashion. Unlike Karmiloff-Smith, I don’t think there’s anything particularly human in
taking this kind of information as a learning corpus. The amount of redescription that the
human apparatus does might be peculiar, as well as the level of achieved complexity. But
there’s no reason to narrow down its application to human animals only. Indeed, Povinelli
(2012) is an example of researcher that employs representational redescription as a tool to
help explain the gap between human and ape cognition. It is possible that what Karmiloff-
Smith’s had in mind was that redescription provides a path from structural representations
towards linguistic representations. Fully-fledged natural language is definitely something
that only humans managed to achieve. There was hope that we could explain human
linguistic capacities by appeal to linguistic representations (i.e. representational states
with absolute contents), and redescription could be a way to account for how human
developmental processes allow that to happen. It should come as no surprise that I regard
this as a bad thing. We already know that whenever absolute representational contents
enter the mind’s mechanisms in a strong non-compartmentalized fashion, FP comes with it.
Though we are linguistic creatures, we cannot explain those capacities by positing absolute
contents within the mind. Thus, what I regard as redescription is not a process from
structural (relative) representational contents towards linguistic (absolute) representational
contents. Rather, its final product is the capacity to token structural contents the system
could not forge up to that point. Thus, what’s distinctive to representational redescription
is not its learning corpus, but what it produces.
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An illuminating example of how the redescription process could go can be found in
Ribeiro; Saverese; Figueiredo (2017). They’ve shown how machine learning techniques can
be employed so that a system can learn about structural identity and similarity between
nodes in a structure. The idea is to map the role played by individual nodes within that
structure and use that role as a category. This allows the system to learn structured
second-order functions. It can learn, for instance, the linkage pattern among neural
sub-populations. The idea is not really new, though. It is akin to the inner workings of
contemporary web search engines that attributes second-order functions to websites. As
per Kleinberg (1999), some websites (i.e. nodes within the network) can work as points of
reference or “authorities” to a given topic. Usually the authority is established by assessing
the node’s neighborhood and checking how heavily it is referenced by other sites. But
what’s interesting about the work of Ribeiro and colleagues is that their approach can
map node functions solely in virtue of their position within the structure, i.e. by structural
similarity. This means that there’s no need to share the same neighborhood. It can find
similar functions even in nodes very apart from one another within the structure.

Figure 6 – Structural similarity between two nodes.

Consider figure 6.22. Nodes u and v are structurally similar, which means that
they play similar roles within the structure. Both have similar degrees (u is connected to
5 other nodes, while v is connected to 4). Both comprise a similar number of triangular
connections (u comprises uba, ubc and ude while v comprises vxw and vtz). Finally, both
are connected to the remainder of the structure by only two nodes (v routes through x
and w, and u routes through d and e). Despite the structural similarity, they’re far from
one another, i.e. they don’t share neighbors.

This approach throws light on how a process can map second-order structures and
patterns even among distinct mechanisms. It not only maps the structure’s content, which
is enough to make explicit a piece of structural knowledge previously left implicit. It can
also map second-order roles such as that of being an “authority” within a given structure.
Thus, it can learn how to map authoritative nodes within mechanisms from rather distinct
domains. As it grasps this second-order structural knowledge, it can learn to structurally
represent which neural subsystem typically gets along some other, and it can do that
under various dimensions (temporal, spatial, etc.) and in multiple scales. The potential
result of this kind of learning is structural knowledge about how the system performs
22 The image is from their original paper.
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under distinct situations and about the character of the cognitive resources it employs. In
a nutshell, a system can learn to represent and exploit its own dynamics. As previously
discussed, that’s the kind of content that cannot be expressed by language-like schemes
without artificially constraining its expressive power or bringing up FP. Indeed, this kind
of redescriptive process is at the core of the suggestions I’ll make on how to handle RP,
but let’s not get ahead of ourselves, for there’s still a lot of hurdles on the way that require
attention.

Another important distinction from Karmiloff-Smith’s original work is that she
employs the word “representation” in a rather loose sense. A lot of what we would regard
as non-representational (such as encoded contents) would be representational in her view.
We must distinguish between finding out new ways of exploiting representational resources
that the system already has (i.e. increasing its inferential productivity) and becoming
able to bear more representational states or processes (i.e. increasing its representational
productivity). In order to understand how the mind can achieve non-explosive repre-
sentational productivity, we have to know the difference between these and the specific
articulations that result in enhanced expressive power. One should not understand every
improvement in the overall capacity of a system to better exploit its own resources as
enhancements of its representational productivity. The upshot is that, in the current
framework, not every redescription is representational redescription. As we’ll see, encod-
ing, problem-embedding and analogical exploitation might allow for significant cognitive
purchases, for they identify new ways in which existing resources can be exploited. They
can provide enhanced cognitive capacities or increased knowledge about the world, but
they can’t forge enhanced expressive power. The latter is possible due to a specific kind of
learning capacity, and the name “representational redescription” will refer to it.

Before further developing what’s peculiar to representational redescription, let
us work out a more accurate description of its learning corpus. What is it about the
available information that enables enhanced representational productivity? Roughly,
there are two kinds of sources: possible relationships between already available structural
traits (i.e. schemes) and the actual application of representational tokens. The first kind
was already discussed at some length while presenting the thesis that schemes can be
individuated by their contents. Thus, there’s no need to dig further on it. The second is
particularly interesting, for it may comprise both 1) architecturally guided exploitation,
such as when the system is led to a conclusion through some kind of representational
forced error); and 2) cases in which the system “takes over” and articulate representational
tokens without such guidance (it may see some other system articulating things in a way
that never occurred to it). Let’s concentrate a bit on these. After that we’ll see how
the same information can be subject to both representational and non-representational
redescriptive processes (and why the latter falls short of what we need).
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2.3.1.1 Complex token articulation as food for thought

A crucial source of information available to redescription processes comes from
the articulation of distinctive cognitive resources. These articulations comprise patterns
of neuronal activity from which a learning mechanism can extract part of the system’s
dynamics. The amount of available resources may vary enormously from system to system.
Systems that make use of representations can articulate them in ways that are constrained
by the underpinning architecture, which enables the possibility of learning about that
architecture by exploiting distinct permutations of its representational tokens. Of course,
not every use of representational resources is constrained like that. The system may
also employ tokens from distinct schemes and articulate them in order to render more
complex permutations. For instance, it can represent the functionally-embedded sense of a
chess knight and articulate it with additional representations that capture its extra-game
features, such as having a certain weight or texture. But even representational systems
may feature a lot of additional cognitive resources. Sensorimotor know-how, environmental
couplings and feature detectors are typical examples. All of these can be articulated with
representational resources and further modulated by attentional biases (the features the
system is focusing on) and affections. In particular, biological systems usually care about
some of their processes, states and inputs. This flexibility brings us back to classical issues:
how can a cognitive system integrate its resources in adaptive ways?

The general answer is that cognitive systems can learn. Presumably, every cogni-
tive system has a starter-kit pool of resources, but usually these are further developed
throughout the system’s lifespan. They’re frequently exploiting new ways of applying
its resources, assessing the results and improving whenever possible. That doesn’t tell
us much about how they do it, though, and the amount of learning strategies may vary
among systems. Recently, Dehaene (2021) presented a comprehensive account of the kinds
of learning that are likely to happen in the human cognitive apparatus. There we can
see instances such as learning by adjusting parameters, minimizing errors and optimizing
rewards. Additionally, we’re somehow able to learn by exploring distinct possibilities by
restricting search spaces, even when combinatorial explosions are in place. The latter case
is specially interesting, for this is the type of learning that requires the avoidance of (or a
solution for) RP. We need not worry about that right now, as we’ll approach the issue
is chapter 4.23 For now, what matters is to check whether and how the result of these
learning processes can be further exploited by representational redescription processes.

As an example, consider the strategies through which the cognitive machinery
is able to coordinate distinct portions of the brain with another one. Say a system is
physically inspecting toys like a red triangle and a blue circle. It comprises mechanisms
like one specialized in handling shape domains and the other specialized in handling color
23 Dehaene seems to be commited to absolute (i.e. language-like) contents in the mind, so his approach

obviously depart from the view being presented here. However, none of his examples, qua learning
strategies, are restricted or essentially committed to language-like contents nor anything like an LOT.
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domains, both do that by exploiting specialized schemes. How can the system knows
whether a token of |red| belongs with a token of |triangle| rather than |circle|? A possible
answer is provided by Crick; Koch (2003). They suggest a framework in which what binds
a |red| to a |triangle| is a shared neuronal firing rate. At the core, their point is that
those mechanisms share a dynamic structure (firing rate over time), and this property
can be further exploited by other mechanisms, including those capable of representational
redescription. Whether their hypothesis is sufficiently plausible remains an open question,
but whatever turns out to be true, it is rather unlikely that the binding of different
properties would leave no traceable neuronal clues.

Another example of the flexibility available for redescription mechanisms involves
more complex kinds of articulations. As some enactivists argue (Carvalho; Rolla, 2020b;
Hutto; Myin, 2013), the whole system can engage in exploratory activities in the environ-
ment, and these may result in complex sets of couplings that involves different resources.
This is what Piccinini (2022) called active learning. The core point is that we should
avoid conceiving learning as a process that happens in isolation within mechanisms when-
ever they passively get some input. Enactivists and proponents of ecological psychology
typically think that, by describing such couplings, one can avoid the need of anything
like functionally individuated subsystems (the kind of thing that is required is order to
have representational states and processes). But active learning provides no reason to
deny the possibility of such functional characterizations. Quite the opposite: whenever
the world’s structures are absent, it can be really useful to have some other structure
as its stand-in. Just like there can be couplings among brain, body and environment,
there can be couplings among a brain mechanism, the system’s body and other brain
mechanisms. Both leave valuable tracks (in terms of neuronal activation patterns) about
how the resources are currently exploited, and these tracks may comprise the information
that further redescription processes need in order to learn what’s going on.

The crucial idea is that the way we employ cognitive resources frequently yields
apt informational candidates to feed learning processes like representational redescription.
The application of cognitive resources is obviously subject to RP, though. The upshot is
that, assuming that RP can be avoided or solved somehow, representational redescription
enables the system to further increase its expressive power in a way that won’t bring FP
to the fore. Whenever a system learns how to do something, that may become a routine
or style of handling this, and these can become the object of further representation and
processing. The system can thus learn about what it knows and how it employs what it
knows. If, as per redescription promises, it becomes able to exploit that knowledge through
representations, it means that its expressive power can get increasingly complex in a way
that does not entail RP nor FP. There’s also an obvious snowball effect to the approach:
the results of redescription processes can be further employed, and the relationships
between them can be further exploited by redescription processes as well. This is the kind
of reiteration we’re after, for that’s what we need in order to get open-ended expressive
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power, i.e. representational productivity.
However, not every learning process is a redescription process. Other kinds of

learning may target information regarding relationships among structural schemes and
information about how the available pool of cognitive resources is currently employed. In
order to avoid rendering the idea of redescription trivial, we need to know how to spot
the difference. We’ll do that by quickly discussing three other approaches to this kind of
information: encoding, cross domain problem-embedding, and exploitation by analogy.

2.3.1.2 Playing with food: encoding

Figure 7 – Theorem 1 from Galileo

Consider now the ability to encode. In most cases, encoding a content provides
no insight about it. That’s expected, for as we have seen, the relationship between a
content and its encodings is blind to the content’s underlying structure. Nonetheless,
there are cases in which we’ve got lucky and learned something from these. Here are two
examples where the ability to encode ended up in significant discoveries about a domain:
first, when Galileo applied geometry in order to express relationships between times and
speeds. Unlike others at his time, Galileo took geometry to be more abstract. He deployed
geometric tokens in order to do surrogative reasoning about non-geometric domains. His
achievement, however, goes beyond the capacity to encode information. By reasoning with
the help of the token we see in figure 7, Galileo managed to establish his famous Theorem
1.24 He found out that, at least to some extent, these domains share structure. They’re
24 “The time in which any space is traversed by a body starting from rest and uniformly accelerated is

equal to the time in which that same space would be traversed by the same body moving at a uniform
speed whose value is the mean of the highest speed and the speed just before acceleration began. The
time in which any space is traversed by a body starting from rest and uniformly accelerated is equal
to the time in which that same space would be traversed by the same body moving at a uniform speed
whose value is the mean of the highest speed and the speed just before acceleration began”. The excerpt
is from Galilei (1954).
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isomorphic, which means times and speeds need not be linguistically encoded: they can
be structurally represented as well.

A second useful example can be found in the history of imaginary numbers. As we
know,

√
−1 = i was stipulated by fiat in the 16th century Italy. The number domain was

arbitrarily enlarged in order to solve very specific practical issues. Nonetheless, this prima
facie wary move appears to have hit something significant about the domain’s underlying
structure. The imaginary number i can be found, for instance, in Schrödinger’s differential
equation describing the wave function of quantum-mechanical systems. Explaining how
this could be is a difficult problem in philosophy of science and mathematics, so we’re not
going further into it. What matters for us is to notice that an apparently unwarranted
move in an encoding made us open our eyes to something significant about the encoded
domain.

Should we understand both examples as cases of enhancement in representational
expressive power? Consider first Galileo’s move. Inasmuch as a token shares structure
with something else, it can be said to represent that something by isomorphism. 25 The
scheme’s user (Galileo) actually realized that he could represent and exploit an additional
domain it could otherwise only encode. But let’s not forget that Galileo already mastered
(at least to some degree) the exploitation of the geometric domain. He wasn’t learning how
to cope with a structure that was previously unknown to him. What he realized is that
he already had the architectural means to exploit a new domain with the correspondent
structure, i.e. he realized a new way to exploit representational resources that were already
available for him. By analogy, that’s something akin to realize a new way to use a map one
already has, as if we found out that a map of city A can be used to walk around at city B
because the cities share street structure. The result is not a new kind of map. Rather, it’s
a new successful application of an already available one. Thus, Galileo’s achievement does
not amount to an enrichment of his representational power. Rather, it amounts to a new
way to exploit representational capacities he already had. That’s definitely informative,
and surely counts as an important kind of cognitive achievement. But it does not amount
to an enhancement of Galileo’s overall representational resources, that is, it does not
amount to the acquisition of a new architectural resource.

The example of imaginary numbers enables us to extract a similar lesson, but
there’s an important difference. Rather than realizing that a resource we already have
fits a domain other than the one we usually apply it to, what we’re learning is that we
can use encodings to think about things our minds can’t represent. As a matter of fact,
25 Theories of representational contents that ground them in structural isomorphism (in contrast with

those that ground contents in something else, such as correlational information) usually take structural
correspondence to be necessary, but not sufficient. This is not a problem for my claim about the nature
of Galileo’s deed, for it relies solely on the fact that the isomorphism has some explanatory role to
play in the constitution of representational contents. It need not be the whole story. The introduction
of additional constraints (such that some instances of isomorphism ground representational contents,
while others don’t) need not concern us here. Furthermore, this topic will be properly discussed in the
next chapter.
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we do that all the time. We can think and talk about shapeless objects in the sense that
we can make utterances that refer to these kinds of property, but we can’t represent it
by isomorphism. Of course, as far as imaginary numbers go, there’s evidence that they
do encode some underlying structure we were still not able to figure out. The fact that
they don’t break the systematicity of the number domain is one such evidence. Maybe we
don’t have the architectural means to represent whatever structure’s behind it, maybe
we do. The point, to reiterate, is that this is not the kind of move that can ground the
enhancement of our representational expressive power. It is surely an enhancement of our
cognitive capacities in general, but just like Galileo’s move, it does not amount to the
acquisition of a new architectural resource.

The upshot is that, though the exercise of encoding abilities allow us to learn new
information about the world, it cannot be what we’re looking for. Encoding is not a
plausible way to increase our representational expressive power.

2.3.1.3 Playing with food: task-embedding

Task-embedding (or problem-embedding) is a kind of non-analogical cross-domain
exploitation. The idea was first presented as such by Cummins (1991). The motivation for
this approach is already known: given the overall incompatibility among distinct schemes -
even those misleadingly similar, as we have seen when comparing 2D and 3D schemes -
the permutations afforded by a scheme cannot be used as a guide to render permutations
in another. In other words, inferences from a domain cannot be simply transposed to
another. However, it is conceivable that a system can embed a cognitive task from one
domain into another. This enables the task to be constrained by the latter. Consider a
case in which a system is forging tokens of Palette-C (see figure 3). To produce such a
token amounts to graphing its building blocks in a plane. But the scheme enforces no rule
like “there must be something preventing the object from falling” nor anything related to
the causal consequences of gravity. Consequently, the system becomes the sole responsible
to enforce it, whenever it must.

But how can it learn to do so? Fortunately, in at least some cases, the system may
recruit architectural help from other schemes. Tokens or building blocks from Palette-C
can be embedded within a causal scheme G somewhat like we just did when discussing the
relationship between 2D and 3D shapes. The essential idea is to submit the exploitation
of Palette-C’s features to G’s constraints. Thus, G may enforce the need for causal
connections among every feature, which can mean no floating entities, no changing their
place without also changing place of whatever is on their surface, and so on. As an
example of this point, say the system is trying to learn how to render more realistic
cartoons. One of the things it would have to learn is whether moving a Palette-C-powered
coffee-cup cartoon alongside the scheme’s dimensions should have any consequence for
the cartoon-plate beneath the cup. Assuming that G’s architectural traits enforces causal
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relationships such as that of gravity, it won’t allow permutations in which things are not
grounded. Therefore, whenever the system embeds Palette-C features within G, the set of
possible permutations over them is severely constrained. The task of learning how to forge
more realistic cartoons partly comprises the task of finding the possible gravity-respecting
permutations. In this sense, G’s architectural traits may become a kind of supervisor for
the system’s learning, i.e. task-embedding enables a form of supervised learning.

Task-embedding is a promising and powerful learning strategy, but it falls short of
representational redescription. It allows the system to learn new ways of handling things,
but it does so by embedding them on what it can already express. It conflates what it
knows about Palette-C’s domain and G’s domain, but not in a way that amount to the
acquisition of new representational resources. The result may be a more efficient way to
exploit Palette-C in certain circumstances, but this efficiency is achieved by constraining
the exploitation of its representational power, not by expanding it.

2.3.1.4 Still playing with food: analogical reasoning

A rather similar conclusion comes from reflecting about the ability to coordinate
distinct models or tokens through analogical reasoning. Thus, a quick remark will suffice.
As I understand such skills, they’re another kind of cross-domain reasoning that allows us
to grasp entities or states from a domain by using tools whose target is another domain.
If we take this in a sufficiently broad sense, then it is no different from what Galileo did:
he regarded the relationships between speeds and times as akin to those of a geometric
domain.

Of course, the upshot is rarely that of Galileo. Most of the time, analogies are
shallow and capture only a very specific aspect or dimension from distinct domains. We
can say, for instance, that electrons orbit a nucleus much as planets orbit a sun. Modern
quantum mechanics has shown that this view is problematic and ultimately false, but the
point remains: early attempts to model atoms were inspired by the solar system and its
dense nucleus (the sun). This kind of move may result in new cognitive knowledge about
the world, but that’s not achieved through the enhancement of system’s expressive power.
Rather, the system is learning new ways to apply representational resources it already has.

2.4 Explosion-free representational productivity

Let’s quickly take stock. Human world contexts comprises situations where complex
coordination of cognitive resources is needed, particularly representational ones. Therefore,
the remaining fundamental question is whether we’re allowed to keep structural scheme’s
purchases as we walk towards increasingly complex applications of the system’s resources.
Commonsense requires the capacity to recognize and handle individuated objects as such,
even though we think about them through multiple tokens that capture distinctive aspects
of them. In a chess game, a piece on the board is both a knight and a small statue made
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of wood or stone. Being able to grasp such an object in distinct ways at distinct times
requires some kind of integration among the cognitive resources employed. Otherwise, we
would not be able to plan a chess move with a knight and take into consideration the weight
of the piece while executing the move. Furthermore, while discussing situation holism, we
saw that understanding human-world situations involves articulating and applying distinct
models of the situation. Such models might be the product of assembling different tokens
from distinct schemes, and if the set of possible situations is open-ended, then there has
to be a productive way of doing so. The complexity involved can escalate very quickly,
for thanks to situation holism, we can grasp the same situation in more than just one
way, as we do when playing pretend. Representational pluralism makes this the burden of
representational redescription processes.

In the previous sections, two of the core informational sources for redescriptive
learning processes were presented: the system can exploit relationships between structural
schemes as well as the way cognitive assets are currently exploited. This information can
become the learning corpus of both representational and non-representational redescriptive
processes. Non-representational redescription comprises processes such as encoding, task-
embedding and exploitation by analogy. The output of such processes is enhanced
inferential productivity, i.e. the system can find out new ways to articulate its current
set of cognitive resources. Roughly, it results in new cognitive knowledge. For instance,
if the system could already process tokens of points in a plane, and could already think
about color as well, now it might be able to reason in terms of colorful points in a plane.
That does not amount to a representational kind of redescription, though. In order to
qualify as representational, the outputs of the redescription processes must retain the
representation’s explanatory purchases. But such representational purchases are a feature
of their underlying schemes. More specifically, they’re a feature of how accurately a scheme
captures a domain. Therefore, the output of representational redescription must be a new
scheme, i.e. a new set of architectural assumptions about some target domain.

It follows that even unconstrained exploitation of cognitive resources (represen-
tational or not), that proved successful or adaptive enough to be stored, can be further
redescribed as a new representational scheme. Rather than merely reenacting some already
stored knowledge, the system can now exploit architecturally constrained permutations
of that knowledge. In other words, it can forge representation-guided extrapolations
of its previous exploitations. Thus, the redescribed scheme comprises a more portable
rendering of whatever the system learned about the world.26 And this rendering is stored
as a set of architectural constraints, which means it can guide further reasoning. In a
nutshell, representational redescription opens up the possibility of forging architectural
constraints from the way tokens of different schemes are applied, exploited or organized.
26 The importance of increasing portability is also addressed by Ismael (2007). Though she’s worried

about more specific issues and develops her reasoning using different tools, I believe that much of what
is advocated here is compatible with her work.
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The system’s representational capacities are effectively enhanced. We have thus a path
towards open-ended representational productivity.

That being so, we should not conceive of representational redescription as a learning
strategy or a kind of learning. It is rather a peculiar goal: increased portability. This
preserves the spirit of Karmiloff-Smith’s insight, even though it rejects the idea that
increasing portability is a step towards linguistic representational schemes. Rather, it goes
towards more portable structures, as previously exemplified through the work of Ribeiro;
Saverese; Figueiredo (2017). But why would a system pursuit this goal? Its real value
regarding RP won’t be fully unpacked until chapter 4, but some hints are already in order:
increased portability is a way to do more with less. It is a way to trade complex problems
for more frugal and simpler ones, so that even a limited processing power can handle
it. Whenever a system applies a given structural scheme in order to handle something,
the scheme “dictates” how the system takes that something to be. The system can then
employ exploitation strategies that would not be available otherwise.27

With this at hand, we can finally get back to the issue of the potential need for
a ceteris paribus clause in order to avoid a representational explosion as the system gets
more and more complex. How can we formulate such a clause in a pluralist system? The
good news is that we don’t have to. Representational pluralism can accommodate an
unbounded enhancement of the system’s representational resources without losing track
of what keeps them under control. Say a given scheme X results from representational
redescription of the concomitant previous exploitation of schemes A, B and C. The fact that
X derives from those schemes doesn’t mean that the system loses the ability to exploit them.
Representational redescription is like baking a cake in the sense that it produces something
new from the complex articulations of its ingredients, but it’s unlike it in the sense that its
ingredients are not consumed. They’re still there to be exploited just like they were before.
Thus, redescription does not entail loosing sight of the architectural constraints used in the
“ingredients”. The tendency to think otherwise is perhaps attributable to the tendency of
understanding biological mechanisms through the eyes of engineering rather than wearing
evolutionary glasses. Evolutionary accounts of biological capacities are full of examples in
which distinct features add up to constitute a new capacity without concealing or getting
rid of the previously available ones.

Therefore, no ceteris paribus clause is needed, for what we want is given by the
absence of certain possibilities due to the system’s assumptions about its target domain.
In other words, if there’s anything remotely similar to such a clause, it is given by what’s
left out by the set of scheme’s assumptions about their respective target domains. What
the system regards as ordinary while handling its representational resources is a function
of its set of architectural constraints. Which of such constraints will be effectively taken
into account at any given cognitive task is a function of the scheme’s being exploited.
27 This will be further discussed at the beginning of the next chapter.
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There is no need for additional data structures nor to render any assumption explicit in
any way, for they’re already embedded in the scheme’s make up. That’s why the system
can readily acknowledge that a ball will fall unless it is glued to the roof or unless it is full
of lighter-than-air gas, but it only does it if and when this possibility is brought about
somehow (e.g. by someone else). In other words, the system may have the capacity to
forge representational contents of balls falling up or being glued to the roof, but it need
not repeatedly check whether that’s the case. Unless something brings these possibilities
up, it will just stick to the domain’s assumptions architecturally stored, cope with things
on that grounds and preclude alien permutations.

To see this at work, suppose there’s a scheme that captures some set of causal
relationships with reasonable accuracy. That could work as a partial explanation of why
we don’t get lost in simple situations within the scheme’s target domain. Given a floor and
a ball in the air, we can promptly say towards which direction the ball goes once released:
down. We can do that because such a permutation can be architecturally enforced by the
scheme employed in representing the causal domain. Of course, we can also understand
the exceptions: what if the ball is tied to a roof or is full of some lighter-than-air gas?
But these considerations come from outside the core dynamics of that domain. Thus,
architectural traits amounts to non-arbitrary principles that are useful when applying a
token and thinking about a situation. Unless someone or something brings up such alien
possibilities (relative to the domain in question), they’re simply outside our horizon and
regarded as non-ordinary.

Before moving on, it’s elucidating to emphasize how distinct this is from the
strategy of taming inferential capacities by using frame-like structures. Using multiple
schemes to build-up increasingly powerful representational capacities allow us to preempt
the system from going astray by relying on its multiple architectures. The representational
constraints are, in this sense, a given of the way the representational capacities are specified.
In contrast, frame-like structures try to artificially impose representational constraints
by establishing inferential limits in how the system is able to exploit its unbounded
representational resources. Consequently, it must establish “a priori” everything the
system should or shouldn’t infer in every possible context. By relying on architectural
traits, rather than constraining the representational capacities top-down, we-re building
them bottom-up.

If we’re on right track, the results we get so far allows us to find the right balance
between the freedom to go beyond what’s present and manifest and the world’s stability
(as when we make predictions such as “what will happen if. . . ”). The system can wander
without loosing track of the world’s ordinariness. We are finally able to get representational
productivity while avoiding FP, and free to face the challenge posed by RP without giving
up on representational resources. Therefore, representational pluralism can provide
adequate grounds for a sleeping dog approach to FP. The set of assumptions from the
system’s schemes comprise principles of ordinariness that enable a kind of default reasoning.
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Cognitive knowledge representationally redescribed and stored as schemes requires no
additional data structures to guide their exploitation. Like any other scheme, they can
architecturally enforce its set of assumptions and guide the system in its reasoning by
leaving out all the permutations that are alien to that domain (things like balls falling
up). We can thus dodge issues that affect absolute (i.e. linguistic) contents, such as that
of finding out what can be ordinarily ignored and what cannot.

The resulting picture is one in which a system can reiteratedly redescribe domain-
specific cognitive knowledge. It can not only find new ways to grasp things within the
domains it already targets, but also articulate features from multiple domains and forge
new schemes out of those articulations. All of this can be done without giving up on the
benefits of relying on representations. We can thus see how a system can increase its
representational expressive power without giving up on the domain-specific benefits. Given
representational redescription, even a system with a rather small set of representational
resources (i.e. schemes) in its starter kit is able to reach an open-ended expressive power.

2.5 Getting ready for what comes next

Now that we have representational productivity properly established without the
risk of representational explosiveness, we’ve made a fundamental step towards handling
RP without leaving representationalism. But before we get back to RP, there’s still a
fundamental question that must be dealt with: what’s the psychological plausibility of
representational pluralism? As Waskan (2003) would put it: how do we go from the idea of
scale models as metaphors for the mind’s inner workings and reach a plausible mechanistic
implementation of structural representations? This question can be unpacked in lots of
complex issues. A complete answer to all of them requires a lot of empirical work, to be
sure, but if we want the proposed framework to be taken seriously, we need to show the
potential of its core tenets.

For instance, we’re the kind of creature that can bear propositional attitudes about
the world, but if representational pluralism throws language-like representational contents
away, then we must explain how a bunch of non-propositional representational contents
can add up and constitute propositional attitude contents. In doing so, we want to stick to
everything that representational explanatory frameworks can buy us, and we don’t want
to become vulnerable to anti-representationalist arguments that would render trivial or
useless everything that was discussed in this chapter. Furthermore, we have to face the
need for a plausible semantics for all of those representational schemes: in virtue of what
do they get their contents? How exactly a given scheme gets to say that it has a certain
domain as a target? We need a theory of representational content that is, at the same
time, able to answer that and preclude the typical threats posed against representational
approaches. As we’ll see, representational pluralism can be a very picky desiderata, and
the vast majority of the theories on the cards won’t do. Having said that, I think that the
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answer is already available in cognitive science’s literature. All we have to do is show how
to articulate them with what we already discussed.

2.6 Paragraph-by-paragraph summary

Each entry below summarizes a paragraph of the main text.

The challenge of representational productivity

Productivity of thought is usually regarded as one of the core cognitive psychology’s
explananda.

This capacity is usually accounted for by employing productive representational schemes
such as LOT and relying on their compositionality.

However, LOT brings with it a lot of well-known challenges that might be insurmount-
able.

The one I regard as fatal is that LOT, despite providing representational productivity,
precludes inferential productivity.

That’s because LOT is explosive: it requires an open-ended set of additional cognitive
resources in order to prevent the system from going astray.

Consequently, LOT precludes the representationalist from exploiting the full potential
of representational assets.

The frame problem is a manifestation of LOT’s explosiveness, and its history of failed
solutions will help us see that the issue is probably unsolvable.

For the want of a frame

The frame problem was born in the AI community, and it was interpreted in many
ways.

In its first guise, it was about modelling the effects and non-effects of actions or events
in a logical formalism called Situation Calculus.

Situation calculus required all of them (effects and non-effects) to be determined at
design time, but as they can change depending on the actual circumstances, the designer
has to fully determine them for every possible circumstance a priori.

The need to avoid this prohibitively long list of axioms in specifying actions or events
was dubbed the frame problem.

Patrick Hayes took the problem to be essentially that of modeling a principle of
ordinariness, i.e. a princile that could stand as a ceteris paribus clause in every inferential
step.

Despite appearances, even in its original formulation, FP is not just a problem for
designers of intelligent agents, for even if we could come up with all the required axioms,
the result could be very inneficient.

Inference becomes cognitively costly, for frame axioms don’t allow efficient and flexible
information retrieval under an open-ended set of possible situations.
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This has an obviously unrealistic consequence for learning in such systems: in the
absence of a ceteris paribus clause, learning about X necessarily amounts to learning about
X’s relations to everything else in the (agent’s) world.

Broadly speaking, the literature presents us two kinds of strategies to handle FP: 1) the
“cheap test” approach tries to reduce the number of hypothesis considered by classifying
and compartmentalizing the information (this suffers from the same issues plaguing the
frame systems presented in chapter 1 and won’t be further discussed); and 2) default
reasoning (sometimes called the sleeping dog approach).

Sleeping dog approaches appeal to default reasoning, but it only reformulates FP as
the problem of determining the boundaries of what’s default and what’s not: how can the
system know whether it has good-enough motivation to consider a non-default inferential
path?

The sleeping dog approach triggered the development of non-monotonic logical for-
malisms, which have value on their own, but provided no substantial progress FP-wise.

Now that we’re acquainted with FP’s early manifestation, we can discuss its nature
and relationship with RP.

What is the frame problem about?

First, we must understand why FP and RP are not the same.
Dennett was probably the first to interpret FP as an instance of RP, for he thinks that

a theory of ordinariness and a theory of relevance can play the same role.
But his reading conflates issues about representational productivity and inferential

productivity: it tries to tame the former by constraining the latter, and the story of failed
attempts to handle FP through cheap test and sleeping dog shows that this leads to a
dead end.

Furthermore, issues regarding ordinariness cannot be reduced to problems about rele-
vance: an ordinary non-effect can be circumstantially relevant.

For the same reason, an issue about relevance cannot be reduced to a problem about
ordinariness, which means ordinariness and relevance have distinct explananda.

Some reject Dennett’s account, but only due to an excessively narrow conception of FP
as the practical problem of reducing the number of frame axioms to be written down by
the designer while modelling the world.

They think non-monotonic logic is all we need to achieve that, but this view is silent
about what matters most: the need to handle non-saturable contexts.

My view is in the middle: solving FP is indeed about being able to model world changes
efficiently, but this has to be done in a way that does not stand in the way of handling
RP in representational frameworks.

The history of FP is the history of trying to model changes using LOT, which requires
handling LOT’s explosiveness of representational productivity, which can only be done by
constraining inferential productivity, which seems impossible for non-saturable contexts.

But perhaps we can pursue representational productivity without LOT, and I’ll ar-
gue that we can buy that if we rely on an alernative account that employs structural
representations: representational pluralism.
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Structural representations and the frame problem

For now I’ll abstract away from psychological, implementational and foundational issues
regarding representations, which means we’ll not worry about what grounds semantics,
whether they’re mechanistically plausible, etc.

This is a purely methodological move, for we need a clear boundary between represen-
tational and inferential capacities.

In order to avoid ad hoc stipulations such as “gastric juice represents the prey’s
scent”, we’ll take representations to be tokens that function as stand-ins in virtue of an
encompassing scheme.

We can temporarily rely on the classical way of distinguish structural and linguistic
representational schemes: the nature of the relationship between tokens and contents.

In linguistic schemes, the representation relationship boils down to that of reference: to
say that a represents b means that a refers to b.

In structural schemes, the representation relationship is grounded in isomorphism: to
say that a represents b means that a is isomorphic to b.

With this distinction in mind, it’s time to dig further on the purchases allowed by
structural representations.

What structural representations buy us

Structural representations allow for non-explosive representational assets, which enables
us to avoid FP when exploiting them.

To see how, consider Erik Janlert’s requirement: conservative changes in the world
must involve only conservative additions to the representation.

Linguistic representations fail to satisfy it because even conservative changes yield an
explosive need for additional representational assets.

This is not the case with structural representations, as we can see in the example of
map-like depictions of geometrical relations among cities.

When a new sentence is added, in order to figure out what needs updating, linguistic
systems require explicit tests even of what’s implicit in every entry, which results in the
need for an explosive amount of additional information, for without it the system can’t
keep the set of entries consistent and useful, i.e. the very thing that should be guiding the
system needs guidance from the system.

In constrat, structural representations collapse the linguistic implicit/explicit distinction:
their contents can guide cognition as if they were explicit, but their updates happen
“automatically”, as if they were implicit.

Thus, adding new features to a structural representation don’t require making additional
sets of rules explicit in order to keep the representational token capable of guiding cognitive
tasks.

Representing change

Structural representations enable an additional purchase that’s unavailable for linguistic
contents.
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With language-like schemes, the world’s dynamics is typically modeled as sets of
sentences depicting a clear-cut snapshot of a situation, and rules (laws) governing the
transition from one snapshot to the next.

In contrast, structural schemes enable the change itself to be pictured, i.e. rather than
calculating changes, the system can represent the dynamics.

In doing so, representations can get their explanatory burden back: they can guide the
system while thinking about the dynamics of the target domain.

We can thus overcome the need to carve out the world as sets of time-instants and
think of it in terms of trajectories, intervals, stories, etc.

This strategy is not available to language-like schemes because the carving out of those
intervals also rely on architectural features of structural schemes, such as the collapsing of
the linguistic implicit/explicit distinction.

Intrinsic contents in structural representations

This raises crucial questions: how can structural representations do that? Are these
features possessed by every structural scheme or just some of them?

The answer to the first question is that structural representations intrinsically mirror
relationships among the represented features.

But a scheme can only do that when it shares structure with the domain being cognized,
otherwise the responsability for keeping the representation consistent goes back to the
system, and the representation’s explanatory role is threatened (just like language-like
schemes).

Thus, the intrinsicness that characterizes structural representations relies on the struc-
tural resemblance between the underlying representational scheme and a given domain,
which means that schemes should be considered domain-specific.

The upshot is that architectural traits can play a larger explanatory role than it’s
usually acknowledged in representational accounts of cognitive capacities, for much of
representation’s usefulness comes from the domain-targeted character of its underlying
scheme.

The explanatory role of architectural constraints

Architectural traits of representational schemes can constrain both how the content
can be processed and what can be represented.

Buth such purchases happen only with schemes that accurately capture their target
domain, and only when reasoning within that very domain.

Architectural limits to what can be represented are called forced errors; these are
different from other kinds of representational error because they’re independent of the
system’s capacity to exploit the scheme.

Cummins suggests that these content-constraining properties are what determine the
scheme’s target domain, for they comprise the scheme’s set of a priori assumptions about
the domain.

He illustrates this point with an 3D artificial structural scheme called Cubic.
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Cubic’s architectural traits can ground spatial assumptions such as “evey object has a
determinate size and shape” and “no two objects can occupy the same place at the same
time” even though these are nowhere explict in the scheme’s specification.

Such set of assumptions comprises the scheme’s essence.
So far, it seems like whenever one is trying to avoid FP in representational systems, one

has to avoid gaps between scheme and domain, for such gaps bring back with themselves
the need for additional explicit reasoning rules.

This suggests that FP’s ultimate source in representational systems is the mismatch
between scheme and domain, for only in these cases the need for additional reasoning rules
comes to the fore.

But that can’t be right, otherwise using linguistic schemes in linguistic domains would
not trigger FP, which means we need to look for a better diagnostic of FP elsewhere.

How many schemes would you say there are?

We know that FP won’t affect structural schemes employed within their target domains,
but what could be so distinctive about linguistic schemes and their respective linguistic
domain, to the point where FP becomes their exclusive problem?

The heart of the matter is in the classic conception of what distinguishes linguistic and
structural schemes (which we have been assuming so far): the nature of the relationship
between token and content (reference and isomorphism).

This conception provides no clear-cut boundary for there can be structural accounts of
linguistic contents (remember Wittgenstein’s project) and linguistic accounts of structures
(a linguistic description of a map).

A tempting conclusion would be that there’s no real boundary to be drawn: they’re
just two ways to achieve the same expressive power, a position we’ll call monism, which
is common among those who think that structural schemes are nothing but “specialized
formal languages”.

But if monism is right, then structural schemes can’t buy us a way out of FP, for
architectural features would boil-down to rules regulating the exploitation of linguistically
described structures, which is no different from the frame-like structures discussed in
chapter 1.

Thus, in order to justify the adoption of a pluralist perspective, we must first understand
why monism must be rejected.

Representing vs. Encoding

The problem with monism is that it conflates two distinctive ways in which a scheme
can account for contents: by representing it and by encoding it.

Encoding is not a relationship between a token and its content, but a process associated
to the representational vehicle.

We can find an example in graphics software who store the drawings in the form of
complex sets of sentences that describe what the system must do in order to render the
picture (a “pragmatic” approach to pictorial contents, if you will).
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Thus, rather than a way to express the same contents using a distinct architecture,
an encoding is akin to a file type in computers: a form in which information is stored or
transmitted.

Exploiting encodings and exploiting contents is different, just like exploiting a linguistic
sentence is distinct from exploiting its correspondent Gödel number.

The pluralist reply to monism is that what they regard as a domain-neutral scheme
with larger expressive power is actually an ordinary specialized scheme encoding contents
from other equally specialized scheme.

But the monist can still try to resist by insisting that the possibility of encoding a
content does not preempt the possibility of also representing it, which means we need an
additional step before fully rejecting it.

Against monism: the incommensurability thesis

We can dodge the monist’s resistance by showing that a distinctive set of asssumptions
about a domain always implies a distinctive set of representable contents.

In this connection, Haugeland argues that the content of language-like schemes is
essentially absolute, while structural scheme’s contents are essentially relative.

Structural representations are said relative because they’re always shapes of variations
distributed alongside two or more interdependent dimensions.

The nature of the dimensions, as well as the minimal shapes available to be distributed
can vary enormously.

In contrast, the primitive elements of language-like schemes don’t assume any set of
interdependent dimensions and can be aggregated one by one.

Importantly, the distinction between absolute and relative contents is not equivalent to
the distinction between atomistic and holistic schemes.

A holistic scheme is one in which the contents of any token is always a product of
its whole set of primitives (add a third dimension to a cartesian plane, and every token
x,y is now necessarily x,y,z), while atomistic schemes have their basic semantic elements
established independently of one another.

This goes for linguistic schemes as well: they can be obviously atomistic (“dog” means
dog, independently of what “cat” means), but conceptual role semantics (of proof-theoretic
approaches in logic) can establish absolute contents by holistic means.

With this in mind, we can appreciate that, while absolute contents partition sets
of (for instance) truth-assessable atomic facts capturing individual objects and proper-
ties, structural contents can only partition shapes distributed alongside interdependent
dimensions.

But couldn’t relative contents be truth-assessable as well? Stalknaker, for instance,
suggests that a picture can hold in certain subsets of possible worlds, thus grounding
truth-conditional evaluations of it.

But that is not so: absoluteness and relativeness are not different ways to partition a
single set of possible worlds, for each kind of content operates with its own distinct set.

Therefore, absolute and relative contents are incommensurable, and the distinctiveness
of each kind of content can account for what’s essentially distinct between structural and
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linguistic representational schemes.
Some may try to resist the incommensurability thesis by presenting possible counterex-

amples: sets of sentences may present an “innacurate picture” of something, and pictures
may ground truth-conditional assessments (“the drawer is open”).

But examples like these rely on the conflation of the expressive power of a particular
scheme and the fully-fledged set of cognitive resources available to a system.

Therefore, the fact that fully-fledged psychological states allow for complex applications
of distinct representational resources in general does not stand in the way of the in
comensurability thesis.

Another instance of a similar faulty move from psychological states to semantic states
can be found in Fodor and Pylyshyn’s systematicity argument.

They assumed that the systematicity of thought implies an isomorphic systematicity
for the vehicle of thought, but that’s not necessarily so, for the systematicity of a domain
can be cognized not only by representing it, but by encoding it as well.

Furthermore, even if their argument were sound, it would imply pluralism rather than
LOT, for the systematicity of each domain would imply its own specialized scheme.

These examples remind us that the direct move from psychological capacities to the
architectural traits of the underlying mechanisms is faulty.

The distinction between absolute and relational contents is able to resist complaints
like these and stand as a plausible account of what distinguishes linguistic and structural
contents, as well as a plausible reply to the monist: there’s no such thing as an all-
encompassing representational scheme that can express both absolute and relative contents.

Individuating representational schemes through contents

A natural development of the incommensurability thesis is that every structural scheme
has a proprietary form. Any structural scheme is distinct from another structural scheme
in the sense that it has a proprietary set of primitive elements.

Each scheme work with its own proprietary set of “possible structural worlds” in virtue
of its own set of primitive elements and dimensions.

This means that, inasmuch as representations are involved, how (in)accurately a scheme
captures a domain will always have some explanatory role to play.

A less-than-perfect scheme amounts to a set of assumptions (about its target domain)
and these assumptions may be what’s behind the tractability of some structure that is out
there.

This also means that even though some overlapping between similar schemes is possible,
any two schemes will always be overall incomparable in accuracy.

For instance, embedding a 2D square in a 3D scheme results in disjoint contents.
The same happens if we embed a 3D cube within a 2D scheme.
Therefore, from the viewpoint of nowhere, there’s no way to tell whether a given content

in a 3D scheme can play the same explanatory role that a token of a 2D scheme would,
for that depends on why and how the content is exploited by the system.

The same reasoning can be extended from structural schemes to particular representa-
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tional tokens: given any two pictures of the same scheme, sometimes it may be impossible
to say which one is more accurate in general, for one can be more accurate in one dimension
and the other can be more accurate in another dimension.

There’s no system-neutral sense in which we can say, for instance, that a blurred picture
is less accurate than a non-colored one.

In the resulting picture we have a content-based account of representational pluralism:
there’s a plurality of domain-specific schemes that can, to varied degrees, mutually encode
each other.

A final diagnostic for FP

Now we can finally see where FP comes from: the explosiveness of LOT is actually the
explosiveness of its absolute contents, for they have no structure, and thus they can’t bear
intrinsic structural resemblance to any domain.

Consequently, the validation and exploitation of absolute contents must always rely
entirely on the system’s capacity to enforce the adequate set of compositional rules, thus
rendering FP not only unavoidable, but also unsolvable, for the asset that should be
guiding the system will always need guiding from the system.

In startk contrast, structural schemes can architecturallyh enforce its own “usage rules”,
precluding FP within their target domain.

This is a good time to remember tha FP is not RP: architectural traits won’t help in
choosing the relevant permutations, i.e. it won’t help to choose among the possible paths
in a map, but it will avoid the need to recalculate the relation among every single element
of the map at every inferential step.

Therefore, though relative contents seems to buy us a way out of FP, it comes at the
cost of being domain-dependent, for whenever the system leaves the domain’s safe shores,
it is again left to go astray.

The problem is evident: humans are not single-domain creatures, so we’d better
understand how we can achieve representational productivity out of a plurality of domain-
specific structural schemes.

Representational pluralism

Representational pluralism claims that representational productivity is achieved through
the complex articulation of specialized schemes.

At the agential level, it is commonplace to skillfully apply specialized schemes in order
to enchance their expressive power, e.g. we can label points in a cartesian plane ir order
to express the same point in different places (which is impossible without labels).

The strategy can be applied at the sub-personal level as well.
As the system learns new ways to articulate tokens from distinct schemes, it gets

enhanced expressive power (i.e. it moves towards representational productivity), but how
far can this approach go before we need something akin to the ceteris paribus clause
required for linguistic systems?

I’ll claim we can go all the way up indefinitely, but in order to justify that, I’ll need first
to characterize my understanding of a very specific learning process called representational
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redescription.

Representational redescription

Karmiloff Smith first presented the idea as a process through which implicit information
in the mind becomes explicit information that can be further exploited by the mind.

In her view (expressed in my terms), this is how we get to the point where we exploit
linguistic absolute contents within the mind, but it should come as no surprise that I reject
the idea of representational redescription as a move from relative to absolute contents.

Outputs of representational redescription processes always comprise more relative
contents, but they may be represented through a distinct scheme that involves patterns
and structures that the system was (up to that point) insentitive to.

The potential result of this kind of learning is structural knowledge about how the
system performs under distinct situations and about the character of the cognitive resources
it employs, i.e. a system can learn to represent and exploit its own dynamics.

But in order to fulfill our needs, we must carefully distinguish between finding out new
ways of exploiting representational resources that the system already has (i.e. increasing
its inferential productivity) and becoming able to bear more representational states or
processes (i.e. increasing its representational productivity).

Before further developing what’s peculiar to representational redescription, let us work
out a more accurate description of its learning corpus: what is it about the available
information that enables enhanced representational productivity?

Complex token articulation as food for thought

Complex token articulations comprise patterns of cognitive activity from which a
learning mechanism can extract part of the system’s dynamics.

The availability of this data is a bi-product of the system’s capacity to integrate its
resources in adaptive ways (an issue we’ll discuss in chapter 4).

As an example, consider the strategies through which the cognitive machinery is able
to coordinate distinct portions of the brain with another one, e.g. when it associates a
token of |red| with a token of |circle| in order to render a |red circle|.

Of course much more complex processes also yield useful information, such as when the
agent engages in active learning or exploration of its surroundings.

The general idea is that the way we employ cognitive resources frequently yields apt
informational candidates to feed learning processes like representational redescription.

However, not every learning process operating over the system’s own dynamics is
a representational redescription process, and in order to avoid rendering the idea of
redescription trivial, we need to know how to spot the difference.

Playing with food: encoding

First we need to distinguish redescription and encoding, for though encoding can
increase our cognitive knowledge, it provides no additional representational expressive
power, as we can see in the case of Galileo’s theorem 1.

Another example of the same point can be found in the history of imaginary numbers.
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Both are examples of cognitive achievements that do not result in enhanced representa-
tional expressive power, but rather in realizing that the system can use a representational
scheme already available in a new way.

Learn to encode a domain is surely an enhancement of our cognitive capacities in
general, but it amounts to learning that an already available representational asset can be
employed in a new way.

Thus, though encoding allow us to learn new information about the world, it is distinct
from representational redescription.

Playing with food: task-embedding

Task-embedding (or problem-embedding) is a kind of non-analogical cross-domain
exploitation.

The basic idea is that a system can subject a representational token from a scheme C
to the architectural constraints of a scheme G.

Thus, G’s architectural traits may become a kind of supervisor for the system’s learning
about C’s target-domain, i.e. task-embedding enables a form of supervised learning.

But again, though this allows the system to learn new ways of exploiting already existing
representational resources, it does not amount to increasing the system’s representational
capacities.

Still playing with food: analogical reasoning

A similar upshot comes from metaphors and analogies: these are another kind of
cross-domain reasoning.

They only allow for new ways to exploit expressive (representational) resources the
system already has.

Explosion-free representational productivity

The final product of redescription processes are new representational schemes with new
architectural traits.

Enconding, task-embedding and analogical reasoning enhances inferential productivity,
but not representational productivity, for the output of representational redescription
processes are new architectural assumptions, i.e. new representational schemes.

In a nutshell, representational redescription opens up the possibility of forging architec-
tural constraints from the way other cognitive assets are applied, exploited or organized,
rendering a portable representational version of the resource.

The system can them exploit the resource in new ways that were unavailable up to that
point, and that makes increased portability the main goal of representational redescription.

Now that everything is sufficiently unpacked, we can see that there’s no need for a
ceteris paribus clause: an increasingly larger amount of representational schemes can
accommodate an unbounded enhancement of the system’s representational resources
without losing track of what keeps each of them under control.
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In other words, we don’t need a ceteris paribus clause because what we want is given
by the absence of certain possibilities in virtue of the system’s architectural assumptions.

Architectural traits amounts to non-arbitrary principles that can can guide the system
in its reasoning by leaving out all the permutations that are alien to that domain (things
like balls falling up), and thus unless someonthing brings up very alien possibilities (relative
to the domains in question), they’re simply outside the system’s horizon and regarded as
non-ordinary.

Rather than precluding a system that relies on a single all-powerfull representational
scheme from going astray, we’re building up increasingly powerfull representational capaci-
ties with multiple architectural constraints.

The results allow for the right balance between the freedom to go beyond what’s
manifest and the world’s stability.

As the system can reiteratedly redescribe its cognitive assets into representational
schemes, its representational expressive power can grown indefinitely without losing track
of what’s ordinary within specific domains.

Getting ready for what comes next

We’ve handled FP at a somewhat abstract level, but is our strategy psychologically
plausible?

In the next chapter, we’ll see how we can go from metaphors of scale models to a
plausible mechanistic implementation of structural contents.
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3 THE APPLICABILITY OF REPRESENTATIONAL PLURALISM

Now that we have representational pluralism, I’ll present representational cognitive
pluralism (RCP): the thesis that the human cognitive machinery relies on representational
pluralism by employing a plurality of structural schemes in the making up of its representa-
tional resources. In this chapter, I’ll discuss the thesis’ consequences and the possibilities
opened up for our scientific endeavors targeting biological cognition. This requires a more
fine-grained understanding of the explanatory role that structural representations can play,
as well as the prospects that representational redescription gives us for dealing with higher
cognitive capacities without raising the need for absolute representational contents. The
result will be the outline of a set of tools placed between classic cognitivism and contempo-
rary non-representationalism. These tools provide what’s needed to approach RP without
giving up on neither representations nor the methodological commitments most dear to 4E
cognition.

3.1 Battle of frameworks

In the previous chapter, we’ve discussed representational resources from a rather
abstract vantage point. As stated, one of our goals is to keep using representations even in
the face of FP. But up to this point, one could still agree with pretty much all the claims
regarding representational schemes made in the previous chapter and yet maintain that the
discussion applies only to representations qua external tools, i.e. non-mental representations.
There’s no such thing as mental representations qua explanatory tools employed to
understand how the mind’s inner mechanisms work, but only full-blooded agents exploiting
environmentally available information.1 We use maps to drive around, music notation to
learn how to play a song, graphs to express the structure of some process, and so on. This
position can be found in contemporary non-representationalist approaches. They surely
agree with me in claiming that there’s no such thing as propositional representational
contents within the mind’s mechanisms, but only because they don’t think there is any kind
of representational content at all. Thus, if we want to make room for representations, we
must show that employing multiple representational architectures is both psychologically
and mechanistically plausible, in the sense that it is both compatible with current scientific
practices and elucidating. That is the main target of this chapter.

The thesis that the mind employs multiple structural schemes is what I’m calling
representational cognitive pluralism (RCP). It is basically the claim that pretty much
everything previously discussed regarding structural representations can bear non-trivial
explanatory roles in scientific accounts of biological cognition. Given the contemporary
polemics regarding representational and non-representational approaches to cognition,
RCP’s position must be carefully outlined. Roughly, it is located half-way between LOT-
1 For an example of one such account, see Carvalho; Rolla (2020b).
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powered classic cognitivism and frameworks fully dismissive of representations, such as
ecological psychology, varieties of enactivism and others. This is a somewhat uncomfortable
position to be, for it becomes harder to make friends among both core contenders. But we
can try to forge a more friendly environment for RCP by showing that its commitments
(particularly those regarding representations) are compatible with the core tenets and
methodological prescriptions dear to most cognitive frameworks.

Pretty much all the purchases promised by classic cognitivism relied on the hopes
that a naturalistic account of representational states or processes could be provided. In its
absence, the intentionality of mental states remained mysterious. To see how serious the
issue is to classic approaches, one just need to remember two of its core claims. First, it
conceived of cognition as essentially computing over representational states. But if one
is unable to explain in virtue of what a given state can be deemed representational, the
intentional character of the mind remains completely unaccounted for. It gets worst if,
like most classic cognitivists and many up to this day, one adopts a semantic conception of
computation. This means that even what’s computational relies on what’s representational.
As Fodor would put it, “no computation without representation” (Fodor, 1980, p. 34).
Second, attitude contents were a direct given of representational contents. The belief that
there is beer in the fridge was explained by the existence of a representational state with
that very content. Thus, if classic cognitivism can’t explain how such a representational
state is possible, it can’t explain how a system can have beliefs, desires and so son.

There’s a third core motivation for adopting representations, though it is usually
under-appreciated. In the 1960s the AI pioneer Herbert Simon already emphasized that
complex behavior associated to rationality and intelligence did not imply proportionally
complex mental mechanisms (Simon, 1996). Rather, such complex behavior could be
partially explained by the complexity of the system’s environment. Simon used to illustrate
the idea by graphing the reasonably complex trajectory of an ant as it dealt with a bunch
of obstacles. It goes around objects, it avoids steep paths, and so on. The lesson that
Simon took to heart was that the biological machinery underlying the ant’s behavior
need not be that complicated, after all, thanks to environmental complexities, a relatively
simple and small set of rules could result in complex behavioral trajectories.2 For him,
something along the same lines would be true of human cognition as well. Our mental
mechanisms would not be simple, but they could be much less complex than we initially
feared, for much of the flexibility and complexity exhibited by humans could be due to
its environment. Thus, representations have a third crucial role to play: they enable us
to understand how this is possible. They do mirror elements of the world, but not in
any way: they do so in a proprietary format, i.e. under a particular ontology. Such a
proprietary format would enable a reasonably small set of relatively simple inferential
strategies to account for the flexibility and complexity we find in human behavior. The
2 A similar remark about Simon’s work can be found in Haugeland (1998d).
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form with which we register the world (i.e. with which we encode or represent it) matter
just as much as the fact that we do it.

This is probably why classic cognitivism mitigated the importance of perception in
the study of intelligence. Perceptual processes were conceived as taking place before the
mind’s registering of the world. Moreover, at least up to that time, they didn’t seem to
yield any real mystery to be solved regarding human capacities. As Smith (2019) remarked,
perceptual capacities never motivated any kind of dualism throughout history. Thus, it
was just plausible to assume that scientific endeavors should concentrate on how cognitive
machinery registers the world. It is no coincidence that this is the space in which classic
cognitivism outputs its core tenets. For instance, the idea that the mind registers the
world as sets of discreet and unambiguous objects, properties and relationships, which
results in a kind of absolute content and all the problems that come with it.3 It is true
that, for many at the time, the core motivation for adopting such an ontology was the
naive belief that these were indeed the world’s joints.4 But that naivety is unessential and
unspecific to the role that representational formats played throughout classic cognitivism’s
history. The fact that there were so many competing distinct formalisms and frameworks
for “knowledge representation” at the time shows that the question of the proprietary
form in which the mind registers the world was always regarded as a fundamental issue
(Hayes, 1977; McCarthy, 1980; Minsky, 1997).

RCP is not commited to none of the two cognitivist motivations presented earlier.
It does not require taking cognition to be essentially computational-representational nor
posits a direct connection between attitude contents and representational contents (more
on this in a bit). But it remains loyal to a portion of cognitivism’s tradition inasmuch
as it takes the proprietary forms in which the mind can register the world as bearing an
important explanatory role to play. The way we render the world intelligible is just as
important as the fact that we do it. To that extent, RCP requires a plausible theory of
representational contents. This is the spot where it takes issue with non-representational
accounts of cognition.

Curiously, the lesson that non-representationalists took to heart - e.g. Brooks
(1991), Van Gelder (1995), Varela; Rosch; Thompson (1991) - was already present in
Simon’s ant. Rather than following Simon and taking the relationship between the ant and
its environment as a sign that the mind works with a peculiar ontology (i.e. a certain way
to register the world), they thought that we should take the ant-environment relationship
as the elementary unit of analysis. The cognitive mind would no longer be conceived as a
register of the world poised between perceptual inputs and behavioral outputs. It would
rather be something that emerges from the continuous and direct interaction between the
3 Remember the distinction between absolute and structural contents, extensively discussed in the course

of the previous chapter.
4 This is the point that Hubert Dreyfus is well-known for taking issue with already in the 1960s (Dreyfus,

1992).
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organism’s action and perception. This is the core insight behind the idea of situated
cognition.

Some cognitivists from the classic approach (or closer to it) think that the situated
interpretation of Simon’s ant should be fully rejected (Fodor, 2010; Sá Pereira; Souza Filho;
Barcellos, 2023). Though RCP may be compatible with a classic mind-as-mirror approach,
there’s no reason to stick with that. Furthermore, RCP’s commitment to non linguistic
representational schemes might bother the classic cognitivist. It might see it as conceiving
too much to the antirrepresentationalist. After all, the challenge of making-up attitude
contents from structural representations is not really that different from the challenge of
forging attitude contents from the informational structures that emerge out of the couplings
and the continuous interaction between the system and its surrounding environment. In
both cases, the relationship between structures and attitudes remains to be explained.
This preempts claims like “to believe in p is to harbor a linguistic representation with
that content”. For the classic cognitivist, by giving up on linguistic representations, we
could be leaving behind a crucial motivation for the adoption of representational contents.
On the other extreme, a similar stance can be found: non-representationalists are wary
of accepting any conception of representation, regardless of the underlying architecture
and the kind of content. We can see that in their effort to argue that representations can
be completely rejected in an increasingly larger set of cognitive capacities (Bruineberg;
Chemero; Rietveld, 2018; Chemero, 2009; Kiverstein; Rietveld, 2018).

In the resulting picture, the first corner encompasses classic cognitivism and its
refusal to accept any move involving non-representational cognition. The general worry
is that it’s nothing but a step back to a behaviorism-like approach (and to the kind of
problems they used to face). That’s why she insists in claiming that cognition is essentially
related to representational contents and that this content must be, at least partially,
linguistic. On the other corner, enactivists, ecological psychologists and the like are eager
to fully dismiss representations in virtue of the situatedness of cognition. Their worry is
that any notion of representation may be a trojan horse trying to make room for undesired
methodological and theoretic commitments that bring back the problems faced by classic
cognitivism.

But there are also those, like me, who think that the key is in the intersection
between these two groups. This position is not really new. Its seed can already be found in
the connectionism (McClelland et al., 1987; Rumelhart et al., 1986), for that was the first
major move towards rejecting linguistic representations within cognitive science. At first,
connectionism was not so much about rejecting an explanatory role for representations, but
rather about a promising way to register the world. This is one of the reasons why friends
of connectionism usually find it easier to accept and interact with the ideas behind situated
cognition. Perhaps the most well-known instance of this move is that going from Clark’s
Associative engines (1993) towards Clark’s Being there (1997a). On the former, Clark put
forward a conception of cognition that was broadly connectionist and representationalist.
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As for the latter, Clark has shown that his conception was compatible with some important
insights coming from dynamic approaches such as that of Van Gelder (1995) and Thelen;
Smith (1992). A similar - more recent - approach can be found in Piccinini (2021). The
core idea is to integrate concepts from 4EA cognition without leaving aside computational
and representational mechanisms. For instance, computational mechanisms are not just
passive receptors of inputs. Far from it, they can be coupled with the environment and
can participate in active exploration and learning processes. They can handle information
from multiple sources, both from the neural apparatus (neuronal firing rates, for instance)
and from the outside (visual and auditory signals).

Thus, while the antirrepresentationalism and the classic cognitivism push us
towards the extremities, non-classic cognitivism push towards the center. Given that
classic cognitivism is currently not taken as seriously as antirrepresentational approaches
like ecological psychology or enactivism, I’ll focus the discussion on the latter and try to
show that structural representations can be a valuable tool even for them. Importantly,
the idea is not to bring back a full-blooded conception of representationalism where every
cognition is necessarily representational. Rather, what I’m commited to is the idea that
representational contents can bear non-trivial explanatory roles in cognition.

In order to pay the debts I incurred in this section, I’ll rely on the work of Cummins
(1996). In the next section we’ll discuss an important insight advanced by him: the
distinction between representational contents and intentional targets.

3.2 Representations and targets

While classic cognitivism puts the whole burden of accounting for the system’s
intentionality in representational contents, non-representationalism puts none. In this
regard, I’ll side with the non-representational account. The intentionality exhibited by
cognitive systems is not to be explained by the representational contents it harbors. Yet,
representations are able to keep an important role in accounting for at least some of the
system’s overall cognitive capacities. In order to see how, we need to understand Cummins’
distinction between representations and targets.

Whenever a system employs a representation as a model of something else in the
world, this application can be analyzed in two distinct dimensions: a semantic and a
functional one. On the one hand, the semantic dimension accounts for what a given state
or process actually represents. On the other, the functional dimension is responsible for
specifying the target against which the representation is applied, i.e. whatever the system
is trying to exploit by means of a model. The notion of target is functional in the sense
that it specifies what a given mechanism has the function of representing at any given
time.

The crucial aspect of target fixation is (hopefully) non-polemical at the agent level.
Say a group of friends is traveling through an unknown country at a time before the
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existence of Internet or smartphones. One of them is asked to provide a city-map the
group needs in order to find a given touristic spot. She finds no printed map for sale, and
then she starts to collect information from the locals. Based on what she learns, she draws
a map herself. It includes some streets, its intersections and some presumably helpful
landmarks. She meets her friends again and presents the produced map, which can be
exploited to guide the group’s reasoning about where to go. What’s important about this
example is that, whatever the structure drawn on the map, everybody will regard it as a
route leading to the desired spot. That route was her target. However, the produced map
may not represent a proper path. It may lead to somewhere else, or maybe miss some
relevant street intersection. Perhaps some local got confused or even lied to her. Thus,
though it is taken to be an accurate depiction of the route towards the desired spot, the
map may actually depict the route towards someplace else.

The distinction between the route actually depicted in the map and the route that
the group assumed to be depicted in the map is the difference between what the map
represents and the target against which the representation is being applied to. To ask
for the city that a map actually depicts is different from asking for the city one is trying
to think about by using that map as a model. Each of these has its own independent
explananda. Accounting for how a system fixes on a target is distinct from explaining in
virtue of what a representation has the contents it does. In other words, the capacity
to have X as a target is distinct from the capacity to harbor an accurate depiction of X.
That’s why one can use (inadvertently or not) a map that depicts city X in order to plan a
route in city Y. Moreover, while a map depicts (i.e. represents) a city at all times, targets
only get fixed in particular episodes of exploitation. Thus, whenever the user of a map
employs it as a tool to enable surrogative reasoning about the streets of some city, that
city becomes the map’s target. This means that the map’s target is only determined by
the system at the moment of use. The target is thus a property of representational tokens
rather than types, for only tokens have their current functional roles fully determined.
Consequently, theories accounting for target fixation should be distinct and independent
of theories of representational contents.

The independence allows us to see that the intentionality of a given state or process
is not a given of the exploited representational content. Rather, it comes from the fixed
target. To fix on a target is to intend it. The capacity to intend something is remarkably
distinct from the capacity to represent it. Whenever someone is asked to produce a map,
she might understand what her target is, even though she doesn’t have the means to hit it
(perhaps she’s unable to speak the local language). She’s able to fix on a target that she’s
unable to hit. Thus, the claim that a system can target (i.e. intend) something is distinct
from the claim that it can represent that target. This is an important feature of the
distinction, for we don’t handle all of our targets by representing them. Representational
intentionality accounts for only one of the possible ways through which a system can handle
targets. There can be, for instance, mechanisms specialized in detecting a state of affairs.
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Detectors have targets and hiccup in their presence, but they provide no information other
than that, i.e. they do not rely on internal states or processes that have the function of
representing those targets. We’ll have more to talk about non-representational mechanisms
handling targets, but for now it is important to remark that not every intentionality is
representational intentionality.

From this vantage point, we can see that much of the current contemporary debate
among representational and non-representational frameworks is actually about target
fixation. Targets can get fixed in various ways. They may be due to the functional
description of an internal mechanism, but they can also be the product of a complex
process involving couplings between the system’s cognitive apparatus with its body and
the surrounding environment. For instance, the idea that organisms can directly exploit
ecological information available in the environment is all about the targets that a system
can fix on.5 Frameworks can thus disagree about the set of targets a system can have
and how exactly they get fixed. But such divergence is not about whether and how
representations are exploited by the system while working with its targets. Questions
about how a system fixes on a target and what cognitive resources it employs while
handling that target must be kept apart. Representations are not a way to characterize
that in virtue of which a system is sensitive to a range of features of the world, but rather
a strategy available for the system to store and exploit information about those targets.

With the distinction between target and representation in mind, we can now
turn ourselves to the issues used to justify pessimistic views regarding representations.
There are two flanks typically exploited: the first draws on the apparent difficulty in
naturalizing representational contents. The second renders representations as having no
real explanatory role to play in scientific explanations, usually by claiming that semantic
contents are causally inert. Both flanks lead many to reject representations and regard
them as neither real nor explanatorily useful. But I think that we can overcome both
difficulties. That’s what we’ll focus on in the next section.

3.3 What are mental representations?

Since the very beginning of cognitivism, philosophers took for themselves
the task of supplying a naturalistic account of representational contents. Many
non-representationalists - enactivists in particular - think that the task cannot be fulfilled,
and in the last years, it became commonplace to ground this stance in the so called hard
problem of content (HPC) as formulated by Hutto; Myin (2013). The formulation is
supposed to show a fundamental and unsolvable incompatibility between naturalism and
representational contents. Simply put, the core claim is that there is only one possible
source of natural information, which is covariation, and this source won’t do. Covariation
is the kind of information that Dretske (1981; 1986) and others appeal to in their accounts
5 See, for instance, Carvalho; Rolla (2020b).
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of representational contents. Natural states or processes can covary reliably or nomically.
Smoke and fire, for instance. But representationalists — the argument goes — take that
to comprise a semantic relationship. Thus, whenever S covaries with F, then S is said
to mean F. Smoke means fire, for they covary reliably. In the same vein, if we can find
neuronal states that covary reliably with properties or states outside the neuronal system,
then we can aptly call them representations.

But Hutto and Myin go on to argue that covariation cannot comprise a semantic
relationship per se. A full-blooded agent may take smoke to mean fire because she’s
embedded in a social and cultural context. But no such thing can be said about sub-personal
mechanisms. In other words, the semantic gloss is only in the eye of the beholder. If we take
the beholder out of the picture, there’s no such thing as representational relationships doing
any work. There’s only raw covariation. Raw covariation can participate in explanations of
cognitive performances, but not by doing anything recognizably representational.6 It may
be relevant to characterize how the system is able to causally track something, but this
non-semantic gloss is enough to exhaust covariation’s explanatory role. When semantics
arrive at the party, it’s too late. Everything is already accounted for. That’s the core
issue with beholder-dependent accounts: whatever they add-up to the explanation of the
performance is explanatorily irrelevant. As Dretske would summarize it: “The fact that
[representations] have a content, the fact that they have a semantic character, must be
relevant to the kind of effect they produce.” (Dretske, 1991, p. 80) In this scenario, Hutto
and Myin claim that friends of representations must either give up or simply hope for a
rather unlikely development in physics that would - somehow - allow representations to
enter the naturalistic picture.7 If covariation cannot ground representations, and if there’s
no other natural source of information, representationalists should abandon any hope.

But are covariational theories really hopeless? I am very sympathetic to this line
of reasoning, for I agree that one can’t get symbols nor anything worth of the name
“representation” out of raw covariation.8 Of course, representationalists can always try to
provide an account that grounds semantics in covariation without trivializing the semantics’
explanatory role. That’s pretty much what most theories of representational contents
in the market set out to do. Fortunately, we can avoid that discussion. First, because
non-representationalist literature is full of well-known reasons to be skeptical about this
project. Even within representationalism, there are those who realize how difficult that
is.9 Second, and most important, even if somebody manages to overcome these difficulties
somehow, there is an additional problem with the endeavor: theories relying on covariation
entail LOT, which (as argued in chapter 2) render FP unsolvable. Let’s quickly unpack
this claim.
6 This is what Ramsey (2007) dubbed the job description challenge.
7 This claim is adopted by many proponents of enactivism, such as Rolla (2023).
8 Pace Shea (2018).
9 Extensive discussion in this regard can be found in Cummins (1996), Ramsey (2007) and Hutto; Myin

(2013).
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The core idea behind covariational accounts, remember, is that a certain state can
be regarded as a symbol of G if, in perceptual contexts, its tokening covaries reliably with
instances of G in the world. Even sophisticated accounts, such as that of Millikan (1987)
and Dretske (1981; 1986) rely on this. However, in naturalistic conditions we can have
only a finite amount of detectors tracking features of the world and hiccuping indicator
signals whenever that feature is present. In covariational theories, such detectors are the
basis on which we can ground primitive representational states (i.e. symbols). That’s why
we need to add composition rules in order to have representational productivity. But
a system with 1) a finite set of primitives and 2) composition rules that allow it to go
beyond the contents given by its primitive set is the crude definition of a LOT-powered
system. As Cummins (2010c) noticed, one can surely try to dodge this simple reasoning
with the following reply: there need not be a 1-1 mapping between the set of detectors
available for the system and the set of primitive symbols it employs. Primitive symbols
can themselves be a product of complex combinations of indicator signals, which means
the number of primitive symbols can be unbounded even in systems with a relatively small
set of indicator signals. But what exactly would this move buy us? The result would be
a rather clumsy attempt at having a symbol system that is unbounded in virtue of an
open-ended set of primitives rather than its underlying combinatorics. This is empirically
unsound enough, but it gets even worse when we remember that even open-ended sets
of primitives have to face realistic memory limitations. In this case, such limitations will
drastically mitigate the system’s expressive power. In the end, this attempt to reject
the claim that theories based on causal correlation imply LOT would amount to giving
up on representational productivity. That’s why, in a nutshell, if one is commited to a
covariational theory of representation, one is commited to an LOT-like scheme. Since we
already rejected the kind of content that LOT provides, HPC’s success or failure against
covariational theories is not really relevant for our endeavor. Even if we managed to reject
HPC, we would have no interest in purchasing covariational theories.10 To my ears the
“hard problem of frame” (i.e. FP) fares much better in the market of reasons to avoid
LOT.

Furthermore, whatever you may think of HPC’s destructive effect on covariational
theories, it cannot fulfill its wider antirrepresentationalist goals. It is simply not true that
the covariation relationship is the only naturalistically plausible source of information.
There’s at least one additional source of natural information, and we’ve already met it:
isomorphism. Isomorphism (or homomorphism, as “partial” isomorphisms are sometimes
called) is a purely mathematical relationship between two or more structures. Therefore,
even those accepting HPC’s corollary can still reject the claim that HPC is fatal for those
willing to make use of representational contents.
10 As we’ll see in a bit, the claim is that we can’t rely on any LOT-like representational theory that

affords absolute contents. Covariation can keep its place in providing non-representational contents
and/or working in chains of causal intermediaries within the cognitive machinery.
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Inspired by the work of Swoyer (1991) on isomorphism, Cummins advanced the
thesis that the semantic dimension of representational states or processes can be completely
accounted for by this kind of relationship alone. The representation relationship is nothing
but the mathematical relationship of isomorphism (Cummins, 1996). It goes for any
physical state or process, from printed maps to neural activation states in the brain.
A given structure A represents a given structure B inasmuch as A is isomorphic to B.
Therefore, elements of A represent elements of B, relations among the elements one can
find in A represent relations among the elements one finds in B, and so on. Whenever A
is found, A is a potential source of information about B. We have thus a semantics for
structural representations.

Crucially, the representation relationship does not rely on the fact that it is being
currently exploited as such. We can carry with us a paper map of the street structure
of Belo Horizonte (BH) all the time and never use it. The map will not become a
representation of BH only when we decide to use it, for it is already isomorphic to BH
even while in our pockets. Whenever we open it, it is already set up to work as a proxy,
i.e. as a stand-in for the street structure of BH. Representation is, in this sense, intrinsic.
There’s no need for neither conventions nor covariation to play any role in determining
the map’s contents.

Cummins’ theory is pretty straightforward, but it raises immediate doubts about
how the resulting notion of content can fill the role typically attributed to mental represen-
tations. A first worry is about its seemingly excessive liberality. Isomorphic structures are
too cheap and seem to be everywhere. This means that A might represent not just B, but
also C, D, E and so on. Thus, a map depicting the streets of BH represents those streets,
as well as the relationships among them, but it also may represent streets from other cities
with similar street-structure. It may even represent any deep-ocean structure it happens
to be isomorphic with by cosmic coincidence. As it stands, representational contents will
always be non-unique. But this is where Cummins’ distinction between target and content
start to pay dividends: the pressure for content determination is actually a pressure for
target determination. In other words, the non-uniqueness of representational contents is
harmless. It may seem problematic, but only if we conflate two distinctive ways in which
we understand utterances like “A represents B”:

(1) structure A is isomorphic to structure B;
(2) structure A is exploited within a system as a stand-in or model of B.

Cummins takes the “A represents B” to mean (1). But most of the literature
usually takes it to mean (2). A meaningful example of this point can be found in Hutto;
Myin (2013):

To qualify as representational, an inner state must play a special kind of
role in a larger cognitive economy. Crudely, it must, so to speak, have
the function of saying or indicating that things stand thus and so, and to
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be consumed by other systems because it says or indicates in that way.
(Hutto; Myin, 2013, p. 62)

This characterization of the representational relationship is a clear instance of
(2). The problem with any such instance is that it conflates the semantic and functional
dimensions. What we want are the conditions under which a given state can be regarded
as contentful, i.e. representational. Instead, what we get are the conditions under which
we can take a given mechanism to be exploiting a state as a model or stand-in of some
functionally determined target. In analogy, we ask for the city that a map represents, and
we get as an answer the city that someone is trying to walk around by using the map. But
the question “which city is depicted in this map?” is evidently different from the question
“where are you going to use the map?”. While the former is about representational contents,
the latter is about target fixation. Once we have the target/representation distinction at
hand, that becomes clear. But in its absence, we’ll be tempted to agree with Hutto, Myin
and others that there cannot be representational content unless someone’s exploiting that
content. This is somewhat odd, for a map of BH does not “becomes” a map of BH only
when someone’s exploiting it. It remains isomorphic to BH even if we lose it somewhere.

The same reasoning goes for states within the cognitive machinery. Representations
and targets have distinct explanatory goals. Targets are about what the sub-personal
mechanism is trying to do. Whenever we say that a mechanism x has the function of
representing a certain state, we’re specifying its target, not its content. That’s why, unlike
representational contents, targets must be unique. They’ll comprise the norm against
which the accuracy of the harbored representation can be measured against. That why,
if some mechanism has the street-structure of BH as a target, it simply won’t matter if
the effectively produced representation is isomorphic to a hundred other things in the
world. Mechanisms consuming the produced representation will take it to be a map of
BH regardless of what the token effectively represents (i.e. of what it is isomorphic to).
The representational content is not there to answer what the mechanism has the function
of representing. Rather, it is there to help us understand the mechanism’s performance:
given that a consumer took a produced structure as a model of BH, what would be the
outcome of trying to plan a route with it? Again, the fact that the produced token may
be isomorphic to tons of other things unrelated to BH is irrelevant to assess its role in
being exploited as a map of BH.

So far, we’ve seen how this approach to structural semantics avoids both HPC (for
it does not rely on covariation) and the problem of non-uniqueness of representational
content (it is only an issue for those who think that contents should specify targets as
well). Furthermore, Cummins’ structural semantics can also avoid all thee traditional
issues regarding representational contents. To begin with, there’s no grounding problem,
i.e. there’s no mystery about how representational contents can be anchored in the world.
Grounding issues are specific to symbolic approaches. Given that the contents of primitive
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symbols are arbitrary references, the only way one can recognize a state as contentful
(i.e. as a symbol) is by grasping that reference. Unlike isomorphism, which is grounded
in the similarity of form, establishing a relationship between a symbol and its reference
requires some kind of intermediary. We can easily understand how full-blooded agents
can play this intermediate role by e.g. establishing conventions. But it is harder to find
naturalistic and non question-begging substitutes that enables a semantic for sub-personal
mechanisms. Indeed, the whole point behind HPC is to claim that there can be no
such thing. This leaves us with nothing but full-blooded agents in order to establish
what represents what, and that’s why friends of HPC feel entitled to claim that every
representational gloss will be, inevitably, in the eye of the beholder.11 On the other hand,
isomorphism need no such thing, and that’s why HPC has no power over it.

In the same vein, there’s no mystery regarding the causal efficacy of representational
contents. Both contents and causal powers are a given of the representational token’s
structure. Representations are thus able to play their role in guiding cognitive processes
in virtue of their contents. Furthermore, there’s no need for anything like a “content
interpreter”. Its consumers are causally sensitive to its structure just like a lock is causally
sensitive to the structure of a key. Finally, the possibility of mismatch between the
structure of a target and the structure of a token enables a robust and purely semantic
conception of misrepresentation. This last point is going to be further developed soon, for
misrepresentation enables the purchase of a whole explanatory dimension that, I’ll argue,
cannot be purchased by other means.

Before moving on, we can quickly take stock. What do we have so far? We’ve
seen how the question of what mental representations are is clearly distinct from the
question of how they’re exploited by its consumers within the encompassing system.
Representations are isomorphisms. Mental representations are isomorphisms harbored
within the cognitive apparatus. Whether and how they’re exploited within a system is
a rather different and independent question. It involves the system’s capacity to fix its
targets and to employ representations of those targets whenever handling them. While
theories of mental representations account for contents, theories of target fixation account
for the system’s targets. Indeed, as we’ll see throughout the discussion, some classic
theories of representational contents in the market may comprise plausible candidates for
target fixation. Once they are relieved of the burden of explaining how representational
error is possible, many of their best-known problems disappear. The independence between
contents and targets also implies that, unlike many used to think, there’s no need for
a unique set of necessary and sufficient conditions to identify representational and non-
representational mechanisms within cognitive systems. Rather, we must identify cases
where mechanisms are exploiting structures in virtue of their form, for these are cases
where a representation is being used as a model. But this is an empirical matter. One
11 The non-triviality of representational contents in explanations of cognitive capacities and performances

will be discussed soon.
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should not simply assume that, whenever there are representations, they always account
for the whole performance or capacity. Their role may vary enormously, and they may
be exploited alongside other cognitive resources, such as indicator signals, environmental
couplings and even affective elements. Thus, in order to claim that a mental representation
plays a relevant explanatory role, we must seek for cases in which they provide the best
explanation of the available evidence. But how exactly should that be done? Let us now
see some examples and tools.

3.3.1 Do we actually exploit structural correspondences?

The human cognitive machinery is clearly capable of exploiting causal correlations
through indicator signals coming from detectors. A detector is basically a mechanism
that hiccups whenever some target state of affairs obtains. There’s plenty of well-known
examples of the crucial idea out there: thermostats indicate the ambient temperature;
idiot lights in cars indicate whether it’s time to get more gas; predator detectors enable
non-human animals to run away, and so on. As the work of Hubel; Wiesel (1962)
established long ago, many cells in primary visual cortex (V1) can be regarded as edge
detectors, and the electrical spikes emitted in the presence of such edges is their signal.
Importantly, indicator signals are not representations. Their content comes from the
functional specification of the detection machinery. The yellow light of a car indicates low
gas because of its place and function in the car system, not because the yellow light is a
symbol. The information conveyed by the yellow light depends on its source. That’s why
you can’t tell the meaning of two yellow lights in two distinct systems without looking
at their functional specification. The same goes for the signals coming from V1’s edge
detectors. In order to behave like symbols and constitute something akin to LOT, indicator
signals must be made portable, i.e. there has to be something in the signal itself that
mitigates its source-dependence and allows one to focus solely on the signal’s physical
traits. Grounding symbolic contents in indicators is the idea that HPC tries to gloss as
impossible. But though we should be wary of symbolic machinery, it seems hard to deny
that human cognitive mechanisms exploit indicator signals.

In contrast, the idea that we exploit structural correspondences may not be so
readily acceptable. The mere existence of structural similarities in the brain’s activation
patterns and wordly structures is not enough to show that it’s the similarity that’s being
exploited. The processing cannot be neither assimilated by nor reducible to the exploitation
of causal correlations. That’s easier said than done, for the relationship between signals
and structures can be quite complex. In particular, structural representations might be
constructed from indicators signals and yet their contents might be disjoint. Let us start
with an example of how that complexity can come about in image processing.



175

3.3.1.1 First example: natural images

The research of Olshausen; Field (1996) targeted the brain’s processing of natural
images and established what came to be known as the sparse coding generative model.12

The targeted images involve natural scenarios (mountains, trees, lakes, etc.) with no
human-made artifacts, such as cups or buildings. A remarkable feature of natural images
is in their statistical structure. As Olshausen and Field point out:

The activities of the photoreceptors themselves do not form a particularly
useful signal to the organism because the structure present in the world
is not made explicit, but rather is embedded in the form of complex
statistical dependencies or redundancies, among photoreceptor activities.
(Olshausen; Field, 1997, p. 3311)

This lead many to speculate about what exactly would be the task of the visual
system in handling the statistical complexity found in photoreceptors. What is it doing
with them? Barlow’s early suggestion was that visual systems have the goal of extracting
these statistical dependencies and decorrelating them (Barlow, 1961, 1989), generating a
collection of maximally statistically-independent descriptive functions. Natural images
would thus amount to collections of maximally independent indicator signals from such
basis functions. The crucial idea behind the pursuit of such independent indicators is
that of reducing the redundancy found in photoreceptors. For instance, since there’s a
lot of spatially continuous stuff in natural images, a certain light incidence over a single
photoreceptor is usually a sign that its adjacent region have similar light intensity and
color. This is a way to capture our intuition that images are comprised of structural
primitives, such as edges, straight lines or curves. The point brought forth by Olshausen
and Field is that the set of maximally independent basis functions would constitute a kind
of sparse code in which the core features comprising the picture can be captured.

Importantly though, this is not a general principle for image processing (Olshausen;
Field, 1997), but a kind of empirical thesis. One can only decorrelate the statistical
structure and find its maximally independent descriptive primitives if they’re actually
there. With this in mind, they designed an algorithm to figure out the likely set of
maximally independent basis functions, that is, they managed to reach a candidate to the
structural scheme applied in constructing natural images (Olshausen; Field, 2000). The
number of basis functions they’ve found is remarkably small, and the set is also notably
similar to the edge detectors mapped in V1 by Hubel; Wiesel (1962) a long time ago.

The basis functions express the brain’s sensitivity to certain visual features of the
environment, that is, they are a kind of indicator signal. Thus, it is tempting to ask
whether a visual input can be a composition built directly from the information they
12 My attention to this work was drawn by Cummins; Poirier (2010) and the reasoning I present in this

section owes much to the one they’ve developed there. See also Olshausen; Field (1997) and Olshausen;
Field (2000).

13 Picture extracted from Olshausen; Field (2000).
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Figure 8 – The smallest set of maximally independent basis functions for constructing
natural images. 13

carry. That would amount to an explanation of natural images in terms of indicator
signals pointing to environmental properties: the image’s content would be a product
of indicator’s content. However, this works with the assumption that each indicator is
completely independent of each other rather than just maximally independent, and this
assumption is false. Here’s the author’s warn against this temptation:

Typical images are not simply the sum of light rays coming from different
objects. Rather, images are complicated by the effects of occlusion and
by variations in appearance that arise from changes in illumination and
viewpoint. What is more, there are often loose correlations between
features within a single object (say, the parts of a face) and between
separate objects (chairs, for example, often appear near tables), and
independent-components analysis would erroneously consider such objects
to be independent entities. So the most one can hope to achieve with
this strategy is to find descriptive functions that are as statistically
independent as possible. But it is quite unlikely that such functions will
be truly independent. (Olshausen; Field, 2000, p. 244)

The basis functions express the brain’s sensitivity to certain visual features of the
environment, that is, they are a kind of indicator signal. By pointing their status as not
completely independent of one another, what the authors are saying is that indicators
need help in detecting their targets. This is no threat for the sparse code approach in
general, for one of the motivations behind the pursuit of maximally independent descriptive
functions is that of explaining the brain’s efficiency in processing natural images. Thus,



177

maximizing redundancy avoidance is a possible way to achieve increased efficiency. But
images cannot be simple collections of independent detector signals, for the same set of
descriptive primitives is able to account for distinct images, and we can’t tell them apart
just by looking at the collection involved in its construction. The geometrical structure in
which those signals are arranged is also necessary. As an illustration of this point, consider
again the scheme Palette-C, discussed in the previous chapter.

Figure 9 – The Palette-C scheme, again.

The thing about Palette-C is that its primitive constituent’s meaning is completely
disjoint from the meaning of its tokens. The scheme’s minimal semantic element is not
identical to the set of its basic semantic elements. We can surely claim that the meaning
of the first primitive is a straight line, but it’d be pointless to ask whether the meaning
of that straight line is being a human arm or the roof of a house. We don’t know that
except within an already worked out representation. This is why, if we try to account
for the contents of figure 9 in terms of information yielded by a constituting collection of
indicator signals, we would need something like a house-signal and a person-signal. But
that would fall short of what we need, for the house includes a door, and the person has
a face (she’s smiling). These contents are there in the token for us to exploit, but if we
adopt a single “there’s a house here” signal, that information will be lost. This is the
price for making the basic elements completely independent of one another: the resulting
scheme becomes language-like and, as we have seen when discussing the incomensurability
of distinct schemes, its contents would be absolute instead of relative. Olshausen’s point
about true independence as not achievable entails a scheme that is not language-like.

If the basis functions, understood as indicator signals, are not enough to explain
the contents of natural images, then what can account for the scheme’s geometrical
properties? There has to be something else involved. A suggestion of what this can be is
found in Lewicki; Olshausen (1999). They add a Bayesian gloss to the image processing
mechanisms by claiming that indicator signals rely on probabilistic information about the
visual surroundings. As a consequence, indicator signals must rely on a lot of background
cognitive knowledge about the visual environment. In the resulting picture, indicators do



178

have a clear role to play in the construction of a natural image, but this role is not that of
providing the basic semantic elements out of which an image can be constructed. Rather,
they allow for the efficient processing of statistic structure.

That’s just the tip of the iceberg, though. The sparse coding model prompted a
whole field of study. An increasing number of researchers started to propose refinements
and expansions, both in how to better capture the statistical structure of natural images
and in finding out how a neural substrate could implement it. As examples of the former,
there’s the approach of Karklin; Lewicki (2008) to reach higher-order statistical structure.
As for the latter, there’s the work of Boerlin; Denève (2011) suggesting that recurrent
neural-networks provide an adequate architecture for implementing sparse coding strategies,
and there’s the concurrent approach of Gregor; LeCun (2010), for whom feed-forward
models are better suited.

Furthermore, the approach was applied to other modalities. Though the early work
focused on the spatial dimension of static images, the research of Hateren; Ruderman
(1998) made similar findings employing the same kind of analysis on video sequences of
natural scenes. Just like the basis functions found by Olshausen resemble edges, van
Hateren’s functions resemble shifting edges. They managed to obtain a similar set of
maximally independent functions that shift with time. Later on, Caldieu and Olshausen
would also apply a similar approach in order to capture motion (Caldieu; Olshausen, 2008).
The work on motion is specially remarkable for us because it’s an example of how we can
represent the dynamics of a domain, a possibility that, as we have seen in the previous
chapter, is unavailable for language-like schemes.

Needless to say, these examples are not supposed to express the bleeding edge
research nor the current state-of-the-art in image processing. The point is just to provide
a small glimpse of how fruitful and robust the sparse coding approach is and thus justify
its use in our discussion about structural schemes in the human mind. In the end, we have
structural representations of natural images whose content is distinct from the information
brought about by sets of indicators. Just like palette-C has no indicator for arms, legs
or house-parts, there’s no such thing as indicators for the visual properties specific to
rocks, trees or mountains, i.e. the contents of natural images are not due to the existence
of indicators for rock-edges, tree-textures or mountain-shapes. The image’s content is a
product of the token’s geometry rather than the source of the involved signals. Once a
structural scheme is stabilized, the system is free to exploit its systematic permutations.
One can, for instance, render the human in the picture as being sad by rotating the
semicircle representing its mouth 180 degrees. Or one can also try new compositions
of the primitive elements, such as using a semi-circle and a straight line to draw a hat
over the little person’s head. As discussed in chapter 2, these are the kind of systematic
permutations afforded by structural schemes.
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3.3.1.2 Second example: rats, mazes and food

The motivation for providing additional examples is that the existence of structural
similarities between neural states and things out there does not imply that those similarities
are being exploited in virtue of the structure shared with the environment. Indeed, the
study of natural image processing has shown that we might need a considerable amount
of work before claiming that a given capacity is better explained by exploiting structures
rather than, say, by relying on sets of indicator signals. Importantly, this is not just
about contrasting cases of representation exploitation and indicator exploitation. We’ll
see how the same idea can be applied to situations in which we must determine whether
some cognitive capacity or performance involves representations, direct sensitivity to
affordances (as emphasized by ecological psychologists) and even the active exploration
of the environment by the system (as emphasized by enactivists). In order to reinforce
the idea that structure exploitation is a feature of biological cognition in at least some
cases, we need to show that and how structural representations can also participate in
non-visual domains.

Cognitive maps are perhaps the most used example of structural representations
in biological systems. That doesn’t mean they’re not polemical, though. Such maps are
supposed to account for our capacity to go from a point to another even without any
external signals pointing towards the right direction. The firing of so called “place cells”
in the rats hippocampus, for instance, is know to be sensitive to the rat’s location in
space. That’s enough to enable simple associations such as “doing action X here will
be rewarded with Y”. Associations like that can be explained using indicator signals.
However, it has also been noticed that the relationship between co-activation patterns in
place cells structurally resembles spatial locations (Burgess; O’Keefe; Recce, 1993; OKeefe;
Burgess, 2005). The firing of a place cell increases the likelihood of firing other place
cells that are sensitive to the animal’s spatial surroundings. This is built up from both
exploration and previous cognitive knowledge. The resulting structure of co-activation
can be used as a proxy for the spatial structure in the rat’s environment. It enables the
rat to exploit its structure in order to plan ahead routes towards pre-established locations,
and there is evidence that’s exactly what they do (Pfeiffer; Foster, 2013). Therefore,
the evidence suggests that the rat’s capacity is not explained solely by indicator signals.
Rather, they manage to go from a know place to another through the exploitation of
geometrical structure, just like we do when using a printed map.

All the above would be enough, provided that representations were the only
possibility. However, enactivists can insist that the rat is just actively exploring its
environment and relying on non-representational affordances. Thus, it’s not enough to
show that some explanation involving representations is available. We have to show that
the representational approach is the best available explanation, considering the evidence.
An interesting example can be found in Newen; Vosgerau (2020). The authors emphasize
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the rat’s capacity to articulate information regarding not only the spatial features of the
maze, but food and time periods as well. They can understand that, if a certain kind
of tasty food was left in a certain position of the maze in the morning, it means that
there will be another kind of tasty food (say sweet) in another position of the maze in the
afternoon (Crystal, 2013; Panoz-Brown et al., 2016). For Newen and Vosgerau, the best
available explanation to this performance involves articulating representations of food type,
day periods and spatial location. In particular, they think that this example is specially
useful to show how a non-representational approach amount to a poor fit of the data:

The informational state of rats which have learned to behave according
to a conditional in the maze is best characterized as structured into
components of <object-type; location; time>. The alternative would
be to presuppose a high number of independent, non-structured disposi-
tions which need to include all the possible permutations of associations
between a starting state of affairs and a type of behavior. And these dispo-
sitions would need to be learned independently of each other, since there
would be no common component to be taken over. (Newen; Vosgerau,
2020, p. 184)

Though it is conceivable that the rat’s behavior can be explained by a reasonably
big set of distinct affordances, this alternative would require at least one independent
affordance for each exploitable permutation of the represented structure. Otherwise, the
rat’s performance would remain partially unexplained. This is obviously no problem
for the thesis that there’s ecological information available, nor for the claim that they
can play important roles in the explanation of some cognitive capacities. The issue is
that, in this case, in contrast with the representational approach, appeal to affordances
and active exploration don’t fit the available evidence so well. The authors point out
that the rats present a quick and flexible learning rate. This is specially true in cases of
conservative permutations of situations the rat is already familiar with. For instance, they
can understand that the maze was partially rearticulated, or that, in some conditions, a
whole maze sector can be considered irrelevant to determine how likely it is to find food at
night. Accounting for this kind of flexibility with a non-structured set of affordances would
imply a rather distinct learning trajectory, possibly slower and more error-prone. But the
point is not that representations allow the rats to make fewer mistakes. Rather, the point
is that the kind of behavioral output they exhibit throughout the learning process would
be different, specially in cases requiring complex permutations involving the elements of
the triad object-place-time. The upshot is that, in at least some cases, representational
contents may provide the best explanation of the available data.

3.3.1.3 Third example: causal structures

The examples previously exploited comes from distinct domains. Let us now
consider the case of causal structures. Evidence shows that 3-5 years old children are
already sensitive to the underlying causal structure of fictional stories (Walker; Gopnik;
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Ganea, 2014). This allows them to generalize some of the story’s contents to the real
world, depending on how similar they are (fantastic worlds decrease the likelihood of doing
so). Furthermore, there is evidence that 7 years old children are already fully able to
recognize the same underlying causal structure underpinning distinct events in distinct
stories (Rett et al., 2021). The capacity seems to be already present (though in a less
accurate version) in 5-6 years old children, where the researchers found mixed results.
Structural representations fit the evidence nicely, for they allow us to understand those
capacities as an articulation of how accurately a given structure is captured and how
skillfully is it exploited. Just like the previous examples, that’s an empirical matter, so
if we can find evidence of at least one case in which causal reasoning must rely on the
exploitation of structural correspondence, the suggestion becomes even more appealing.

A nice example can be found in Huys et al. (2012).14 The researchers formulated an
experiment in which the subject’s behavior relies on the exploitation of causal structures.
That was not the main goal of their research, though. Rather, their target was determining
the planning strategies that subjects employed while assessing their choices (i.e. the
heuristics or hints they were using in trying to maximize their reward). In doing so, the
researchers have shown that the subjects were evaluating sets of possible paths afforded by
a causal structure. The strategy employed was akin to the ones we would use in assessing
the shortest path out of a maze. This is how the researchers depicted the causal structure
employed in the experiment:

Figure 10 – The causal structure employed in the experiment.15

Here’s a glimpse of how the experiment was performed. Subjects were presented
with a screen depicting the six available locations, and one of them was marked as their
initial state. All they could see was a set of rectangles, that is, they had no access to the
connections depicted in figure 10. Every location affords two distinct moves, and each
move can provide either a reward or a cost in pences. By convention, the possible moves
were distinguished as left ones (L) and right ones (R). Thus, moving through the structure
could be described as sets of left or right moves such as “left, then right, then left again”.
But those left/right moves are not to be taken literally. They’re not a function of the
14 The work of Huys et al. was brought to my attention by Shea (2018). See also Huys et al. (2015).
15 The picture was extracted from Huys et al. (2015).
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visual depiction of the state. The resultant state for left moves are depicted in dashed
arrows, while the consequences of moving to the right are expressed with solid arrows. For
instance, if the subject is in state 4 and moves to the left, she’ll be taken to state 5 rather
than 3. Furthermore, each transition could result in a loss or a reward. The blue arrow
brings with it the largest gain (+140), black arrows result in a small loss (-20), while red
arrows result in larger losses (-70). Finally, green arrows result in a modest gain of +20.16

But not even this set of single-move consequences was available for subjects. They were
asked to provide sequences of three to five left/right moves and the only feedback they
would get was their final state and the final sum of their reward or loss. For instance, if
you happen to be at location 3 and tries a left-right-left sequence, the feedback would be a
reward of +50 and the final state would be 2. Like rats in a maze, the subject must manage
to learn the underlying structure by trying distinct combinations of moves and assessing
the aggregated results. In doing so, they could learn the maze-like causal structure of the
task, and exploit it to plan ahead and try to get the most rewarding final consequence.

Depending on the number of guess moves, the set of possible sequences increases
quickly. Since each state denotes a tuple of two distinct consequences (left, right), there are
8 possible 3-move sequences, 16 possible 4-move sequences, 32 possible 5-move sequences,
and so on. The researchers have shown that some subjects would use heuristic strategies
that quickly dismiss paths involving a major loss (-70) even if that path would eventually
lead to a positive outcome. In virtue of such strategies, those paths were not assessed in
their entirety. The relevant point for our current interest is that this kind of reasoning relies
on some kind of representation of the relationship between the six possible states. The fact
that we can employ distinct strategies (whatever they are) to think ahead while handling
the same structure strongly suggests that we are exploiting an internal correspondent
structure as a proxy. This is an example of surrogative reasoning about a causal domain.
The same strategy employed by the rat’s hippocampal place cells can be applied here: we
can learn to navigate throughout the causal structure of the task as we learn to navigate
a maze by trying out distinct paths and assessing their outcomes.

3.3.2 How to tell whether one is exploiting representations?

This small set of examples is not supposed to provide evidence that every cognition
involves the exploitation of structural representations. This is not a return to representa-
tionalism as the idea that every instance of cognitive processing is necessarily an instance
of representation-guided processing. Rather, the claim is that sometimes we can (and do)
exploit structural correspondence for distinct purposes in distinct domains. Finding out
16 If the reader is relying on a scheme that can’t represent color (such as those used in black-and-white

printings), that will result in a forced representational error, for the blue, red and green arrows will
be necessarily depicted as distinct shades of gray. In this case, the following language-like encoding
might be helpful: the blue arrow (+140) is the one depicting the transition 1-to-2; red arrows (-70) are
depicted in the transitions 3-to-6, 2-to-5 and 5-to-1; finally, green arrows (+20) are depicted in the
transitions 1-to-4, 4-to-2 and 6-to-3.
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when we actually do that is a purely empirical matter, and the capacity in question or
performance must be assessed in all its specificity. Thus, it’s useful to briefly mention
the kind of strategy that allows us to confirm whether a given capacity comes from the
exploitation of structural correspondence or something else. How can we distinguish cases
where the system effectively exploits representations from those where it is exploiting
other kinds of resources, such as indicator signals’ environmental couplings and the like?

Merely detecting instances of structures within the cognitive machinery won’t do.
Even if the representational structure is there, this tells us nothing about the role it is
playing in the cognitive economy. It may be exploited only as an indicador signal, i.e. the
system may ignore its form and simply take it to be a sign of something else. Indicator
signals may be complex in form, but their content is not related to their formal properties.
One could easily put a complex light pattern in a vehicle and claim that, whenever that
pattern obtains, it means the vehicle is running out of gas. The light pattern is there and,
being a structure, it can definitely represent something with that form (maybe the lights
have the shape of a dog), but this is completely ignored by its consumer, who takes the
token to mean low gas, and nothing more. In a similar vein, Facchin (2021) noticed that
detector mechanisms can render states isomorphic to the kind of feature they target in
the world. It is worth to see his reasoning in full:

Consider (. . . ) the bi-metallic strip of the thermostat. Let it be sensitive
to three environmental temperatures, ordered by hotter than in the
triplet (ta,tb,tc). Let va, vb and vc be the corresponding states of the
bi-metallic strip. Suppose now that longer than orders these states in the
triplet (vb,vc,va), preventing the relevant strip-temperature structural
similarity from obtaining. Yet the strip can still successfully orchestrate
the behavior of the thermostat, at least as long as it enters in each state
when the environment is in the corresponding temperature (i.e. as long
it correctly indicates) and each state leads the system to behave as it
has been designed to behave. So the relations among the features of the
vehicle are irrelevant to the functioning of the system. As a consequence,
the structural similarity is not exploited, as a structural similarity is
exploited only if a system is sensitive to the relations among the features
of the vehicle (. . . ). Receptors might be structurally similar to their
targets (and as a matter of fact they are). Yet, this similarity does
nothing for the system and deserves to be called an epiphenomenon
(. . . ).

Facchin’s reasoning generalizes, meaning that every indicator mechanism is iso-
morphic to some structure of the target feature. He’s obviously right in claiming that
the system is not causally sensitive to that structure, i.e. the structure is not playing any
cognitive role in virtue of its form. Facchin thinks that the structural similarity is thus
epiphenomenical. That’s not quite right, though. An epiphenomenon would never be
able to play any cognitive role, but that’s not true of those structures. First, like any
other structure, they represent what they’re isomorphic with. This means that, despite
being non-exploited, they’re not devoid of their representational status. They’re instances
of what Cummins dubbed non-exploited representational content (2010). Non-exploited
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contents are simply cases in which representation-producing mechanisms token structures
that are not exploited or that are only partially exploited by consumer mechanisms. The
structure of indicator mechanisms is just one such case. Therefore, it is possible, at least
in principle, that the system can learn to exploit those structures in virtue of their form.
This is enough to reject the claim that those structures are epiphenomenical. They do
represent, and the issue whether a particular cognitive system can learn to exploit such
structures is empirical.

In standard representational stories, this would seem to be, at best, a quite peculiar
situation, but that’s actually the rule rather than the exception. One cannot exploit
representations that are not there to be exploited in the first place. As Cummins would
say: “You cannot have a representation drive story about learning if your story about
representational content implies that the content that is supposed to do the driving is only
there when the learning is complete.” (Cummins, 2000, p. 117). We can see this point
at work in contemporary machine learning techniques. Large language models such as
those of the GPT family take their training corpus to represent a structure of probabilistic
distribution that describes where and when a given syntactic element is expected. As the
training goes by, it learns how to exploit that structure with increased accuracy. If we
pause the learning process at any point, the result will be a consumer that is only partially
sensitive to the structural information available in the representations. Something along
the same lines can happen in the brain. Visual subsystems, for instance, may represent
(i.e. produce isomorphic tokens) of the proximal stimuli. Such representation may already
encompass structural information about deepness, thus allowing consumer mechanisms to
infer and exploit it. But there may be no consumer mechanism able to do that. Whether
the system can eventually become sensitive to it depends on its set of available learning
strategies or on its overall developmental trajectory.

A similar reasoning goes for the structures involved in receptor mechanisms. Rather
than just providing information about the presence of some feature (“feature x here now”),
detector mechanisms are a potential source of structural information about their target
features. If something like this actually happens, it amounts to a substantial change in
the functional profile of the detector in question. While detection information is source-
dependent, the structural information it provides about its target feature is not. Even
if structural information is “copied away” from the detector mechanism and employed
someplace else, its representational content remains the same. Source-independency is a
kind of decoupling that’s unavailable to non-representational assets.

The upshot is that the mere presence of a structure is enough for it to be considered
representational. It is not enough, though, to tell us that the structure is being exploited
in virtue of its form. How are we suppose to distinguish such cases? Shea (2018) suggests
that we should investigate the correlation between degrees of accuracy and behavioral
outcomes: how would the system perform in the presence of a less (or more) accurate
model its target? The underlying assumption is that whenever improving the accuracy
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of a given structure increases the likelihood of good performance, then it is likely that
the performance is achieved by the exploitation of that structure. But without further
development, the suggestion leaves an important feature either mitigated or completely out
of the picture: semantic success does not imply functional nor behavioral success. Good
performance may come with bad accuracy, and bad performance can occur even in the
presence of accurate structural resemblance (we can make the most out of bad maps, and
we can fail to correctly exploit what’s given in very accurate ones). Thus, the pursuit of
evidence for the exploitation of structures should not work under the assumption that good
accuracy implies good performance. Predator detection, for instance, is probably better
accounted in terms of indicator signals in most creatures. But just for the sake of the
example, suppose there’s a creature that relies on the structural resemblance of its know
predators to predict their moves and decide whether they stay or flee. Mechanisms with
lots of false-positives could be adaptive even if the resemblance was loose, or even if the
exploitation was error-prone. Greater accuracy usually imply more cognitive resources than
lower accuracy, and predator-detection systems are specially sensitive to this: the quicker
and cheaper, the better. Importantly, the answer to the question “what’s the proper
level of accuracy?” is clearly dependent on the present circumstances. In some situations,
there’s room for extensive use of time and memory, and more accurate representations
would provide benefits. In others, there can be serious time and memory constraints
(the organism is trying to outrun a predator), and these might affect the proper level of
accuracy, i.e. the level providing the best trade-off between precision and speed.

The distinction between good representational accuracy and good performance is
one of the main purchases of introducing representations as an explanatory tool. Though
it might make things a bit more complicated, we get in return an important degree of
articulation. One can articulate distinct empirical hypotheses regarding the mechanism’s
target, the produced representational content (if any), how the content is exploited (if
it is) and what’s the resulting behavior in distinct circumstances. What we need is a
way to empirically determine the overall strategy that’s being employed by the system
in exercising a given capacity. Assuming that we can see or measure what’s going on
in a given mechanism, how could we draw any conclusion about the form of the mental
representations being exploited there? A nice suggestion can be found in Blackmon et al.
(2001): we should look for incidental effects.17

Say we’re trying to figure out how a given calculator can compute the product of 25
times 5. We have two distinct candidate models: the first claims that the inner processing
occurs by successive sums. The calculator goes on to accumulate the partial addition
of 25+25+25+25+25 and then present the final result. The second model suggests that
the inner processing relies on the partial products algorithm. Thus, the system would
break the multiplication into smaller steps (5.5, 5.2. . . ), and then proceed to aggregate the
17 See also Cummins (1983) and Cummins (2010a).
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partial results. Both models account nicely for the calculator’s behavioral output (printing
125 on screen). They are, to use Pylyshyn’s term, weakly equivalent (Pylyshyn, 1984).
But these models differ in other aspects. Successive sums render the system sensitive
to how big the multiplier is: it will take longer to multiply 25.9, for 9 is larger than 5.
In its turn, the partial products algorithm makes the system sensitive to the number
of digits of the multiplier: 25.5 and 25.9 will take the same amount of time. Moreover,
though increasing the number of digits in the multiplier (say 25.12) will increase the
amount of time in both models, it happens at distinct rates. This temporal effect is an
example of incidental effect. It is incidental in the sense that it is secondary: it won’t
change the input-output relationship. Lots of things can be a source of incidental effects:
environmental interference, unusual working circumstances (e.g. high temperature), the
processing speed, and so on. In this case, the effect is a function of the algorithm employed
by the calculator. If we can insulate them and measure the algorithmic effects, then we
can use the data to confirm which model better accounts for the calculator’s capacity.

A real world application of this strategy can be found in the example of how rats
exploit structural representations. The argument from Newen and Vosgerau (2020) appeals
crucially to incidental effects. More precisely, they claim that, even though the kind of
behavior can be explained without representations, this alternative would imply incidental
effects (e.g. a distinct learning rate) that are incompatible with the current set of available
evidence.

A similar reasoning can be used to distinguish cases in which the cognitive apparatus
is relying on representations from those in which it relies on encodings. Different schemes
provide distinct systematicity effects. A systematicity effect is one that implies sensitivity
to the structure of some domain. Natural images and causal reasoning were all examples
of measurable sensitivity to the systematicity of their respective domains. In chapter 2
we have seen that representational schemes can exhibit systematicity effects in two ways:
by representing the domain’s structure or by encoding it. For instance, language-like and
structural schemes can exhibit distinct temporal profiles when parsing linguistic inputs.
Long ago, Smolensky and others have shown that neural models relying on non-linguistic
schemes can be weakly equivalent to language-like models in their capacity to parse the
structure of some linguistic input (Smolensky, 1990; Smolensky; Legendre; Miyata, 1992).
In order to establish that, they used tensor products to encode linguistic domains. Unlike
classical language-like schemes, tensor products do not resemble the systematicity of
linguistic domains in any way. Such models can handle an entire sentence in a single step,
for the many nodes comprising a hidden layer can work in parallel.18 On the other hand,
linguistic-scheme-powered models might need to analise distinct parts of each sentence,
one by one. The temporal signature of these models will be distinct, and this kind of
18 This is not exactly true about artificial neural networks, for they usually run in serial processors. But

that’s not an issue, for the temporal signature will still be distinct. The time it takes to process a
hidden layer won’t change as a function of the input size, for instance.
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distinction allows us to confirm which one better fits its target. Thus, systematicity effects
can be used as incidental effects to decide for the best available model.

Going further, as Blackmon et al. (2001) notices, distinct models describing the
way human cognitive machinery parse linguistic inputs may also have distinct priming
effects. Language-like schemes, for instance, might predict that the closest systematic
variants should be more easily accessible. Thus, we could investigate whether an input like
“John loves Mary” primes the mind in a way that allows it to process anything involving
those elements in a faster way. If the systematic linguistic variants of a given input are
more easily accessed after its processing, that can be regarded as a sign that there’s a
language-like scheme underneath. On the other hand, priming effects that are inconsistent
with the systematicity of language-like schemes can point us towards a non-linguistic
scheme.

As a final quick example of how incidental effects can be informative, we can also
consider what happens when they’re lacking. The work of Cao (2020) regarding predictive
processing and the interpretation of neural signals is a nice example. She makes a point
about how generative models (the kind typically associated with the predictive processing
framework) and non-generative ones can be regarded as mathematically equivalent. What
this means is that we’re not aware of any incidental effect we can use to decide between
those (at least so far). If the absence of incidental effects persists through time, it might be
suggestive that, on the one hand, we’re on the right path towards accounting for cognition
as it really is, for both are capturing something true of cognition. But on the other hand,
it also means that there’s no new game in town, i.e. predictive processing could be, as
Cao suggests, a new gloss for old ideas. What matters for us is that the confirmation of
whatever turns out to be true relies on incidental effects. In order to prove that Cao is
in error, one would have to come up with a plausible candidate for incidental effect, and
maybe an experiment that confirms its presence.

3.3.3 The role of representational contents in the assembly of attitude contents

We’ve just seen some evidence that humans exploit structural resemblance in at
least some occasions. But how much of cognition can be accounted for in this way? And
how can those structures give rise to attitude contents such as beliefs and desires? Both
questions are empirical and require extensive scientific research. Whether most or few
of our cognitive processing relies on structural representations will come up from the
accumulated body of scientific knowledge. The same goes for how structures engage or
participate in attitude contents. But the latter claim is commited to a somewhat radical
(and not always appreciated) departure from the way classic cognitivism thinks about
representations.

When Fodor’s LOT reigned, much of the literature used to think about the
relationship between representational contents and attitude contents through the lens of
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Fodor’s dictum: to believe in p is to harbor a representation with the content p in the
“belief box”. A belief box is just a characterization of the role played by a token at a given
task. In this case, the role is akin to that of taking something as true. Consequently, the
dictum puts all the explanatory burden on representational contents. Attitude content is
nothing but representational content. Therefore, to put forth a theory of attitude contents
comes down to providing a theory of representational contents. Given the dictum, the
resilient preference for language-like schemes is no surprise. How could we account for
propositional attitudes without language-like representational contents? The impression
that there’s no plausible answer to that question is behind much of classical criticism
against structural representations. How should we “picture” logical properties such as
negation or disjunction?19 What could be the structure of normative properties such
as justice or good? Fodor’s dictum lies behind such questions, for they work with the
assumption that attitude contents must be somehow reducible to (or completely accounted
for in terms of) representational contents.

In order to grasp the explanatory role of structural contents, we need to introduce
the notion of application. Classic work in mental representation conventionally expresses a
token whose content is x as “|x|”. However, the notation is ambiguous with respect to the
target and content dimensions. Assertions such as “the system tokens an |x|” are used in
order to express both that the system harbors a representational state with the content x
(content dimension) and that the system intends x, i.e. that the representation is supposed
to be about x (target dimension). In order to disambiguate it, we can follow Cummins’
jargon: whenever a representational mechanism exercises the function of harboring a token
of x, we can say that the mechanism is applying a representational token to its target: |x|
→ x. Applications are distinctive in the sense that they have both dimensions (target and
content) fully established.

Another difference is that, in classic approaches, when a system tokens an |x|, we’re
entitled to infer its representational contents: x. However, when it comes to applications,
this apparently straightforward inference is not available. Application contents are distinct
from representational contents. This provides an extra degree of freedom for scientific
theories about cognitive mechanisms, but unpacking applications gets trickier, for we
need to know both content and target, and this is not always obvious. To see why, let us
consider first an example were both target and content are know in advance. Say a system
harbors an application like |board| → current_board in order to keep track of a chess game.
The fact that the pictured board is the one from the current game is nowhere represented
on the system, i.e. it cannot be found in |board|. The information is available, but only
because it can be inferred from the functional specification of the mechanism doing the
targeting. As far as the contents of |board| go, it makes no difference whether the pictured
structure is that of the current game being played by the system, a hypothetical position
19 It is not new nor surprising that perhaps some logical properties can indeed be pictured. Shin (1994)

set himself the task of showing how this could be done with Venn diagrams.
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the game would be in after a move being considered, or even the status after the 27h
move of last year’s championship final. Therefore, the content of an application is not
identical to the representational content being applied. The content of |board| is simply a
board structure, but the content of its application by a mechanism with the function of
representing the actual board of the game currently being played is something like “the
current board of the current game is |board|”.

On this account, the explanatory role played by representations in cognitive systems
can only be fulfilled by applications. Targets to which no representational content is being
applied are not representational assets. Representational contents that are not being
applied to a target cannot account for representational error. We have thus a notion of
misrepresentation that only requires applications. But what is the relationship between
applications and attitude contents? We could advance a theory of attitude contents that’s
as simple as it gets: an attitude is simply an application with a cognitive role. All we’d
need to do is give the application a cognitive role, such as that of being a belief, a desire
or a goal. Couldn’t “the current board of the current game is |board|” work as a belief for
the system? Though that’s possible, it would amount to Fodor’s dictum 2.0. Once we
realize that representations need not account for everything there is to handle regarding
attitudes (as we just did by seeing that the content of an application is also given by its
target), why should we restrain ourselves like that by assuming that attitudes are the sole
product of applications?

Attitudes can be much more complex and comprise articulations of multiple
applications, attention mechanisms, affections, indicator signals and other kinds of cognitive
resources. Some of these resources may bear closer relations to attitude contents than
others. Consider indicator signals. They enable us to infer attitude contents in a way that’s
not available for structural representations. For instance, a predator detector mechanism
can directly afford the attitude that there’s a predator there. But that doesn’t mean
there’s a 1-1 relationship between indicators and attitudes, nor that indicators always
yield attitude contents directly. There can be attitudes that do not involve indicators, and
others involving both indicators and representations. While detectors can point out that
there’s something around, structures can tell the system what that something is, what it’s
doing or even what it’s likely to do next. Structures and indicator signals can add-up in
many ways and give rise to attitudes such as “there’s a tiger moving fast there”.

Furthermore, a single attitude can involve multiple representations. An
attitude such as “the table is red” might be achieved with the help of a |table| → cur-
rent_foveated_object application alongside a |red| → color_of_the_current_foveated_object
application. Other kinds of mechanisms can also participate in this pool and work as
filters for the contents afforded by both representations and indicators. There can be
attention mechanism pointed towards a |red-table| → current_foveated_object application.
Such mechanism can exploit |red-table| and “abstract away” the redness of the application
just like a similar mechanism could make salient the redness of a table in the world. The
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same goes for affections. An attitude such as “this is my father’s favorite move in chess”
might involve a structural representation of the board, another structural representation
of the move, an attentional mechanism used to center on some aspect of the articulation
of both representations and an affective element pointing towards my father. Indeed,
there is evidence that fearful objects (e.g. spiders) can distort our perceptual experience,
which presents them closer than they really are (Carvalho, 2021). All of these can bear on
the determination of attitude contents. How exactly they add up in order to constitute
an attitude is the business of a theory of attitudes, which is beyond our scope. What
really matters for our current discussion is to see 1) that representations, targets and
attitudes distinct explananda, and 2) that whatever our favorite theory of attitude content
is, it need not worry about misrepresentation, for this is already accounted for at the
application level.

Fodor’s dictum is reminiscent of a time in which attitude contents were cognitive
science’s explanans. The contents attributed to mind states were regarded as a theoretical
posit. The task of explaining how those states could bear any content became a foundational
task that philosophers took for themselves. However, cognitivism conflated issues about
representational states and attitude states. To be fair, there were good reasons for adopting
that stance. For instance, mental states have intentionality, and representations are a way
to account for that. A successful theory of representational contents would thus allow for
huge purchases. The difficulty in providing this theory is part of what lead some to reject
representations (Van Gelder, 1995; Varela; Rosch; Thompson, 1991). In their view, we’re
better off without them, and we must prefer accounts of attitude contents in which they
have no place. This is a way to reject the dictum, but it’s not the only way. We don’t
need to fully reject any role for representations in constituting attitudes. What’s needed
is to reject the idea that representations should bear all the explanatory burden.20.

By rejecting Fodor’s dictum, cognitive science’s explanans is revealed as another
explananda. The contents of attitudes (propositional or not) are not something that
scientists will get from philosophers working out foundational issues. Instead, it’s something
that must be empirically figured out from the pool of cognitive resources afforded by some
framework. This position is evidently related to a contemporary debate regarding the
nature of belief. I won’t dig much into that issue, for this would take us too far afield, but
it’s instructive to see what would be the place of RCP in it.

Schwitzgebel’s dispositionalism (Schwitzgebel, 2002, 2013) says that to believe
in p is “. . . nothing more than to match to an appropriate degree and in appropriate
respects the dispositional stereotype for believing that p.” (Schwitzgebel, 2002, p. 253).
The contrast with Fodor’s dictum is stark. Most of Schwitzgebel’s arguments directly
address the attempt to ground propositional attitudes in language-like representational
contents. Despite the similar gloss, it’d be misleading to take dispositionalism as a revival
20 That’s the middle way advanced by theorists like Andy Clark, among others (Clark, 1997a, 1997b)



191

of behaviorism, for they don’t share the same set of commitments. For instance, one
need not reject qualia in order to be a dispositionalist. However, there are similarities.
Dispositionalism’s core idea is that implementation details just don’t matter, and at least
attitude-wise, they may be treated like a black box. So, whatever turns out to be true
about the inner workings of human cognitive machinery, it won’t change that in virtue of
what beliefs are attributed. This opens the way for an all too-easy reply, which is simply
to deny any real conflict with RCP (as well as any other framework that rejects Fodor’s
dictum). What grounds representational contents and attitude contents (in this case,
beliefs) are disjoint. Thus, as far as determining attitude content goes, representational
contents are nothing but implementation detail. In a nutshell, while Fodor’s dictum puts
all the explanatory burden of attitude contents in representations, the dispositionalist puts
none.

But I see no reason to be commited to either position. While it’s true that RCP
rejects any role for language-like representations, there is a good reason for that: we
must avoid FP. We need not reject any role whatsoever to structural representations
in the constitution of attitudes, though. Again, this is an empirical matter. It is at
best premature to start with the assumption that, whatever it is we find out about the
mind’s reliance on structural representations, it will have absolutely no effect on attitude
content determination. The philosopher’s task, as I see it, is to formulate a flexible and
rich framework of cognitive resources, and then allow scientific endeavors to find out
how exactly these add up to become attitudes. Attitude contents are cognitive science’s
explananda. That’s why one must keep in mind that the remainder of this work does not
rely on any specific account of attitude contents.

An important outcome of this discussion is that, whatever representational contents
buy us, it must be accounted for independently of our favorite theory of attitude contents.
After all, representationalists want to use the former as a tool to explain the latter, not
the other way around. Fodor’s dictum made this crucial point somewhat hard to see, for it
pretty much conflates issues regarding attitudes and issues regarding representations. As
we’ve just discussed, avoiding the identity of attitude and representational contents may
lead to a drastic increase in complexity. For instance, the relationship between attitude
productivity and representational productivity may not be so direct as one could expect.
Representational productivity is certainly an essential aspect of attitude productivity, but
it may not be the full story, for attitude constitution may exploit other resources, specially
when linguistic abilities are involved (Perini-Santos, 2017). Therefore, if representations
refuse to yield attitude contents for free, they must be able to earn their keep in some
other way. What is it that representations buy us, exactly? That question will occupy us
throughout the next section.
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3.4 What representations buy us

What do we earn by the insistence in making room for representational contents?
Nowadays, whenever this question comes up, the background is usually a battle of
frameworks: if representations are real and have something to offer explanation-wise,
we should remain commited to representationalism. But if that’s not the case, then we
should fully embrace non-computational and non-representational approaches, such as
enactivism or ecological psychology. There’s a third possibility, though. The existence
and exploitation of structural representations is fully compatible with 4E cognition, both
online and offline. The real issue is not in making use of representational assets. It’s in the
classic representationalist claim that every cognitive performance involves representations
and in the (now equally classic) antirrepresentationalist claim that none of it does. Both
representationalism and antirrepresentaionalism are problematic, if we understand them
as theses about the essence of cognition.

In what follows, I’ll try to put this battle aside. Rather than arguing for a framework
over the other, I’ll try to show that they can share a larger set of assumptions. In particular,
I’ll argue that structural representations are fully compatible with the core assumptions
of 4E cognition. This is not really news. Some non-classic cognitivists such as Piccinini
(2021, 2022) and Clark (1997a, 2016) are trying to show this for a while.21 Since it’s
harder for the non-classical cognitivist to have issues with 4E cognition, the reasoning
focus on the antirrepresentationalist’s resistance in accepting representational assets in a
4E framework.

The typical source of resistance comes from thinking that, by allowing the entrance
of cognitive assets born in classic cognitivism, one is making room for the sub-repticious
adoption of unwanted methodological principles. A concrete example of how this is
manifest is in the relation between perception, action and cognition. 4E cognition takes
the system-environment relationship to be the basic unit of analysis. It follows that it must
reject what Hurley (2001) dubbed the “sandwich” model of the cognitive mind. Cognition
is not to be taken as a mirror of the world placed between perceptual inputs and behavioral
outputs. Rather, it’s something that emerges out of the continuous and fluid interaction
between action and perception. By bringing some (or any) notion of representation back
to the picture, wouldn’t this amount to a rehabilitation of the sandwich model? Cummins’
distinction between targets and representations allows us to see clearly that the answer is
no. The sandwich model does not follow from the existence of representational contents in
the system. Rather, it amounts to a very peculiar way to describe how the system is able
to fix its targets and exploit its set of available resources. How a system gets to fix and
exploit its representational targets is the business of a theory of targets, not a theory of
representational contents.
21 I won’t deal with the classic cognitivists here. They’re probably not happy with my disregard for

linguistic contents anyway.
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Representations, alongside computations, detectors, environmental couplings and
the like, should always be regarded as a pool of available cognitive assets. To determine
the assets employed in a given cognitive capacity or performance is an empirical matter,
and this has to be done for each and every mechanism or capacity being studied. As
we’ve seen in the examples from the previous sessions, there are cases in which both
representational and non-representational explanations are available. Representations
cannot earn their place because of framework-wise preferences of the researchers. They do
so they participate in the best available explanation.

But there’s an additional source of antirrepresentational resistance. It is the claim
that representations cannot bear any relevant explanatory role. According to this view,
any representational gloss is only in the eye of the beholder. We’ve met this reasoning
before: it’s the same one behind the claim that semantic properties have no causal powers
of their own. This is an issue for theories based on correlation. But is it a problem for
the structural semantics adopted by RCP as well? I don’t think so, but that’s not the
reasoning I’ll pursuit. Rather than having causal powers of their own, representations
ought to prove themselves useful by enabling some explanatory leverage over theories that
reject them. In what follows, I’ll try to make a case for the usefulness and non-triviality
of representations in scientific explanations of cognition. In particular, I’ll argue that
structural representations maximize this explanatory profit for the cheapest price in terms
of theoretical commitments. If successful, this approach results in a notion of representation
that’s much more resilient against anti-representationalist arguments.

Cummins (1996) realized that the independence of the target and content dimensions
enables the purchase of a robust account of misrepresentation: whenever a system fixes on
a target and applies a token to it, there can be a mismatch. It can aim at a target and fail
to hit it. Whenever a user fixes Belo Horizonte as a target and applies a map whose content
is Belo Horizonte, there is no representational error. But if it fixes Rio de Janeiro as a
target and uses the same map, then there is representational error, for that means one is
taking the structure of the streets of Rio de Janeiro to be just like those of Belo Horizonte.
In this sense, the token’s target comprises the norm against which the token’s content is to
be measured. Whenever the structure of the content doesn’t fit the structure of the target,
there’s representational error, i.e. misrepresentation. Thus, to ask for the map’s target is to
formulate a question such as “what’s that map supposed to be of?”, or “what is it you expect
to find there?”. Instances of appropriate answers would be something like “This map is
supposed to be an accurate depiction of Belo Horizonte” or “This map is supposed to allow
one to walk around Rio de Janeiro”. Representations can thus play relevant and non-trivial
explanatory roles because they enable us to formulate empirical hypotheses that would be
unavailable in their absence. This additional explanatory dimension is characterized by
the distinction between representational error and exploitation (or processing) error. To
begin unpacking this claim, consider another example of how non-mental representations
can be exploited at the agent-level:
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(10) Igor took the wrong path because his map was excessively inaccurate; and
(11) Igor took the wrong path because he used the map upside-down.

Hypothesis (10) characterizes an inaccuracy in how the information was represented
to Igor. It is, in this sense, an example of misrepresentation. In its turn, the hypothesis
(11) depicts an error in how the available information was exploited. Mechanisms malfunc-
tioning, bad environmental couplings, mistakes in exploring the system’s surroundings, as
well as less than ideal conditions, are all instances of this kind of non-representational error.
Misrepresentation does not rely nor depends on how aptly the information is exploited, nor
on issues with the vehicle carrying it (e.g. when a physical map gets damaged). They’re
possible due to the direct relationship between the structure that the representation
happens to be isomorphic with (its content) and the structure to which it is applied (its
target). This direct relationship can unfold a whole class of empirical hypotheses: those
involving articulations of the mismatch between representational content and the target of
its application. The hypothesis that Igor took the wrong path due to an inaccuracy in the
map is empirically distinct from the hypothesis that he exploited the map wrongly. Even
if the resulting output turns out to be similar (in both cases he ended up in the wrong
place), these hypotheses would bring distinct incidental effects to the table.

Moreover, we must see that the issue is not epistemic: representational targets are
distinct from actual states of affairs. Misrepresentation is not about being unfaithful to
actual states of affairs. Indeed, representational targets often are non-actual states we
use to think about “what’s going to happen if. . . ” or “what would it be like if. . . ”. For
instance, one can have the street structure of Belo Horizonte in the 1950s as a target.
However, even if the target is an actual state of affairs, there’s a difference between failing
to hit the target and failing to be faithful to what’s out there.22

The independence of the representational dimension is crucial. Representations and
targets have distinct explananda. If a system can have X as a representational target, that
means it has a mechanism whose function is that of representing X. That is so because
attributing the function of representing X to a mechanism doesn’t mean it is actually able
to satisfy what’s expected of it. Rather, it means that the system will handle things as if
it were successful and use the mechanism’s outputs to make inferences about X. Thus,
misrepresentation is completely disjoint from any sort of malfunction or exploitation error.
Semantic inaccuracy does not imply nor suggests functional or behavioral failure. That’s
why in hypothesis (10), Igor’s mistake had to be characterized as due to the “excess” of
inaccuracy. The point is not that a sufficiently high degree of inaccuracy will always render
unfit behavior. Rather, the point is that the map’s level of inaccuracy resulted in failure
due to Igor’s goal while exploiting the map. A map that’s “excessively accurate” could
produce unfit behavior as well. Igor could get lost in all that detail that’s irrelevant for
22 This point would be a lot easier to synthesize if sentencial representations were on the cards, for we

could simply say “there’s a distinction between falsehood and misrepresentation”, but I’m trying to
avoid illustrations and analogies relying on linguistic contents.
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his goal. It is true that this would not amount to misrepresentation, for it would be a case
of failure in exploiting the map. But that’s enough to establish that there’s no connection
between being accurate and producing fit behavior.

As another example of this point, consider how we usually give up on accuracy in
virtue of tractability. That’s frequently advantageous. Whenever one quickly draws a very
simple map, or whenever a scientist employs a simplified model of some complex domain,
one’s trying to save herself from the effort of handling a huge amount of details that, while
increasing the accuracy, are irrelevant for her current goals. In these cases, one’s relying
on misrepresentation in order to achieve better performance. Nature can rely on the same
strategy. Given limited resources, an overly simplified representation of the dynamics
of some predator’s movements produced by a sub-personal mechanism can be the key
to give the prey a chance to flee. In a nutshell, we should not be misled by the “mis”
in “misrepresentation” or the “error” in “representational error”. Semantic inaccuracy is
neutral in this respect. The results of the level of (mis)match between representational
content and the current target can be good or bad. It all depends on the system’s current
goal.

When given descriptions like these, antirrepresentationalists are probably tempted
to disregard misrepresentation as the kind of error that can be reduced to exploitation error.
After all, there can be no misrepresentation if there’s no representation. Thus, whatever
behavioral outcome that can be explained by misrepresentation can also be explained in
terms of exploitation or processing errors. But at this point, one must realize that this is
an empirical matter. In the absence of something like HPC, all the antirrepresentaionalist’s
has left is a crude pessimism regarding the possibility of any empirical hypothesis involving
representations be true. But this is a much weaker position to be, for HPC-like arguments
enable one to claim a priori that any empirical hypothesis involving representations is
implausible. Consider again the example of rats in mazes. Newen and Vosgerau argued that
the flexible and fast way how rats learn is better explain by appealing to representational
states. That is, their learning trajectory fits the available data better when characterized
in term of a growing improvement on the accuracy (i.e. reduction of the mismatch between
content and target) of the involved representations. In order to get rid of this hypothesis,
a better one must be provided, i.e. one that fits the available data even better. That’s the
kind of evaluation one has to do in order to determine whether some cognitive capacity
or performance involves errors of the kind (10), (11) or some complex articulation of
both. But if one adopts a framework that rejects the possibility of representational states
and processes by principle, one’s going to discard or distort a whole class of empirical
hypotheses through non-empirical means. The scientific endeavor ends up improperly
constrained, for it might make it look like the only empirically plausible characterization
of some behavior is by positing an error in exploiting other kinds of resources, i.e. an error
of the kind (11).

Perhaps surprisingly, antirrepresentationalists are not the only ones tempted to
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make that move and claim that errors looking like (10) are actually like (11). Many
representationalists do that as well. They obviously don’t do that by rejecting the
existence of representations, but they might wrongly believe that this is the only plausible
path towards a naturalistic account of representational content. By understanding the
source of this temptation, we’ll be able to appreciate the robustness of misrepresentation
grounded the distinction between targets and contents.

3.4.1 What most representationalists got wrong

Classically, in trying to account for the explanatory value of representations, many
representationalists stick to what Haugeland (1998b) called change of dimension: within
representationalism, a complex causal structure is revealed as semantically assessable. In
this sense, a set of computations (or more generally, the overall dynamics within a system)
can be revealed as chess playing or route planning. This dimension shifting need not be
direct and can be structurally complex. Consider how many changes of dimensions there
can be in artificial computational systems: electronic circuitry can be revealed as handling
low-level data structures (AND-gates, OR-gates and so on), which can be then revealed as
handling higher-level data types (integers, float-point numbers, strings of characters) used
to comprise data structures (trees, stack, queues, etc.) of the kind we find in higher level
programming languages, and so on. This can go up to the point were one is entitled to
describe the system as (say) playing chess or planning a route.

For any science trying to describe cognitive capacities in terms of the satisfaction
of epistemic constraints (partially or completely), this is a crucial move. It allows one
to provide a scientifically acceptable explanation of how a system can be sensitive to
semantically defined epistemic constraints (such as the rules of a game or the rules
comprising contextually-adequate behavior). The issue with the emphasis on the change
of dimension is that this purchase is compatible with accounts that trivialize or deflate
the explanatory role of representations in cognition (Egan, 2020). If dimension shifting is
all that representations can offer, the claim that they’re in the eye of the beholder is easily
justified. Curiously, many representationalists fail to appreciate this point. To see how,
let us start by considering what Haugeland (1998f) tells us about the explanatory reach of
biological norms:

(. . . ) there is another important distinction that biological norms do
not enable. That is the distinction between functioning properly (under
the proper conditions) as an information carrier and getting things right
(objective correctness or truth), or, equivalently, between malfunctioning
and getting things wrong (mistaking them). Since there is no other
determinant or constraint on the information carried than whatever
properly functioning carriers carry, when there is no malfunction, it’s
as “right” as it can be. In other words, there can be no biological basis
for understanding a system as functioning properly, but nevertheless
misinforming (. . . ) (Haugeland, 1998f, pp. 309–310)
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Haugeland’s point is that biological norms do not allow us to talk about biological
organisms that are “mistaken” in the sense that they’re operating adequately, with no
malfunction, under ideal conditions and, nonetheless, working with inaccurate informa-
tion. From this vantage point, the only way to render misrepresentation naturalistically
plausible is to understand it as derivative of other kinds of non-representational errors
(i.e. malfunction, less than ideal conditions, etc.). To get a glimpse of what’s behind
Haugeland’s pessimism, we must consider how some classic theories of representations
approached misrepresentation.

To begin with, let us quickly consider the case of conceptual role semantics (CRS).
Though it is not the most well succeed endeavor among representationalists, it renders the
point I’m trying to make specially clear. As we know, CRS attributes representational
content to a state or process in virtue of how that state is used within the system. In its
turn, this pattern of usage is determined by the connections - sometimes called epistemic
liaisons - that a token bears with every other token that the encompassing system is able
to instantiate. In Cummins’ terms, such patterns determine the set of targets that the
token is going to be applicable to. Therefore, the representational content of some state is,
by definition, identical to the set of targets it is applied to. This rules out the possibility
of grounding misrepresentation in the mismatch between target and content.23 In CRS,
to have the content |x| is identical to have x as a target. The content of |x| is fixed by
how it is used, that is, by the target against which it is applied to. Therefore, there’s
no such thing as “misusing” |x|, for the content of |x| is a given of the set of epistemic
liaisons afforded by |x|, and this set is nothing but the set of possible uses for |x| within
the system. There’s simply no room for mismatch between what |x| means and whatever
|x| is applied to.

In what sense can we say that this approach trivializes the explanatory role played
by representations? To put it rather crudely, Cummins claims that CRS is a valence
theory (in reference to the valence bond theory from chemistry). In his words:

CRS thinks about content as we might think about valence. Imagine a
theory that tells us what bonds with what in what proportions. We could
simply list all the possibilities (assuming they are finite). Or we could
do this: assign a positive or negative number to each radical, and state
the following rule: any combination that adds up to zero is a compound.
Valences are a kind of fiction in this theory (multiply them all by a
constant and the theory remains unchanged). Specifying something’s
valence is simply a convenient way of specifying its bonding potential
without actually having to mention all the other elements and all the
proportions explicitly. (Cummins, 1992, p. 117)

In Cummins’ view, CRS results in a notion of content that is a kind of fiction. To
specify the content of a representation becomes nothing more than a convenient way to
refer to the set of the possible liaisons without making the whole set explicit. In this
23 These remarks refer to CRS conceived as a theory of representational contents. Whether CRS is a

good choice for other explananda, such as attitude contents, is another matter entirely.
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picture, the representation’s contribution can’t go beyond that of glossing complex causal
structures in semantic terms, i.e. dimension shifting. Thus, it is no wonder that, when it
comes to characterizing psychological explanation, it feels so easy to put this semantic
gloss aside (or move it from the object of study to the eye of the scientists studying it)
and claim that a description of the causal dynamics is all we need. From a methodological
perspective, such a gloss can surely make our lives easier, but it’s not really explaining
anything. All the explanatory burden is being carried by the representation’s causal role,
rather than its contents.

How can a friend of CRS make room for misrepresentation? Since CRS conflates the
target and content dimensions by definition, one has no choice but to bring some new, non-
semantic, element to the table. As Perlman (2002) noticed, the strategy boils down to using
this new element to ground some distinction between episodes of representation tokening.
There are the tokenings that establish representational contents, and the tokenings that
apply (i.e. exploit) the already established content. Thus, while content-establishing use
makes no room for representational error, content-exploiting use does, for in some cases
the system may end up applying the established content to something in the world it is
not an accurate depiction of. The result, however, is a rather different conception of what
misrepresentation is. What we have is not a purely semantic account of misrepresentation
that buy us an extra dimension for empirical theses. Rather, it is something akin to the
antirrepresentationalist approach of reducing misrepresentation to other kinds of error.
For instance, rather than relying on the target/content distinction, maybe we could rely on
a distinction between ideal and actual use? Consider this account from Piccinini (2022):

(. . . ) misrepresentation occurs when a system activates a representation,
targeting a stimulus, which makes worse predictions about incoming
data about what a stimulus will do and how it will appear under various
possible conditions than an alternate representation that is also available
to the system. (Piccinini, 2022, p. 11)

Piccinini is definitely not a champion of CRS.24 But his account is an instance of
the kind of move that friends of CRS could use in order to accommodate representational
error even in the absence of the content/target distinction. He finds a spot in the fitness
of the system’s processing. Piccinini uses the system’s own capacities as source of the
norms against which to measure the accuracy of its representations. He thus grounds a
kind of competence/performance distinction. But rather than relying on some abstract
ideal of competence, the norm relies on the system’s own bounded capacities: if it tokens
|x| at a place where it would do better by tokening |y|, then it is misrepresenting |y| as |x|.
Unfortunately, this approach implies that whenever the system applies |x| to a target, if |x|
is the best it can do, then |x| is accurate. It is regarded as an accurate representation even if
|x| is not an accurate depiction of its target. Thus, there’s no room for explanations such as
“the system did its best and its fastest because it misrepresented its target as simpler than it
24 I won’t dig into Piccinini’s account because much of what I say here is compatible with his work.
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really is in that particular occasion”, i.e. because it successfully traded accuracy for speed.
That’s why in Piccinini’s account - just like in CRS or in non-representational approaches -
every instance of representational error boils down to exploitation error or reasoning error.
In a nutshell: if the system is at its best, by definition, it is not misrepresenting. But if the
system is not at its best, the error is not really representational. We can’t even formulate
the hypothesis that the system is not at its best because it misrepresented something,
for what counts as episodes of misrepresentation rely on less-than-ideal behavioral or
functional performance. In Cummins’ terms, it defines semantic accuracy in terms of
behavioral or functional effectiveness: a correct representation is a representation that
renders effective behavior (1996, p. 27). By conflating semantic accuracy and effectiveness,
we rule out the possibility of effective inaccuracies (misrepresentations that enable the
system to achieve optimal performance) or costly accuracy levels (situations in which
speed and tractability should be a priority).

Another concrete example of this strategy can be found in the famous teleological
approach of Millikan (1987). In trying to make room for misrepresentation, she brings
adaptability to the table. Roughly, what fixes representational content are episodes of
tokening that resulted in adaptive behavior to the species’ evolutionary history. They
become the norm against which other tokenings can be measured. If tokenings of R
resulted in adaptive behavior, then R is the token’s representational content. Once this is
established, whenever the system tokens R in order to hit something other than R, that
amounts to misrepresentation. The CRS-like doctrine that representation is a function of
how the state is exploited within the system remains.

We can see a rather similar move in Millikan’s approach because what grounds
semantic accuracy is, roughly, adaptive behavior. In other words, semantic accuracy
derives from behavioral fitness. From this vantage point, Haugeland’s reasoning is flawless:
biology makes no room for the possibility of misrepresentation, unless it is grounded in non-
semantic errors. Not only this breaks the independence among the semantic and functional
dimensions, but it also presents a serious issue for the representationalist endeavor. The
representationalist’s goal has always been to explain functional and behavioral performances
with the help of representational states. But in this picture, the explanatory order is
upside-down, for we are attributing contents by relying on functional and behavioral
performances. It is no surprise that antirrepresentationalists feel comfortable enough to
ask: if functional and behavioral mistakes are already accounted for, why should we add a
semantic gloss at all? It adds nothing to the explanation, after all.

That’s why we can safely claim: it is the absence of a purely semantic account
of misrepresentation that opens up the possibility of questioning the explanatory role of
representations. Consequently, in order to resist the antirrepresentationalist claim, one
must show that the representational dimension can be established independently, and
that’s exactly what Cummins’ distinction between target and content buys us. Given the
independent way how representational contents and targets are established, it follows that
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they can mismatch. The pressure that could lead us into grounding semantic error in
functional or behavioral errors has no chance to come up, for there is no need to forge any
gap between content-fixing and content-exploitation usage. Pace Haugeland, biological
norms do accommodate the kind of error in which a mechanism can work under ideal
conditions, without malfunction and nonetheless work with wrong information.

In this picture, despite the examples provided, it is still empirically possible that
all empirical theses involving representations turn out to be false. However, once there
is no HPC preempting the existence of representations playing non-trivial explanatory
role, one cannot really reject them a priori, for their presence and effects are now a purely
empirical matter. Whenever they participate in the best available explanation for some
cognitive performance or capacity, there will be no reason to avoid them. This shows
that there is a non-trivial place for structural representations in cognitive science. We can
now do the same with representational redescription. Is there any reason to think that
something like that actually happens?

3.5 Apes, humans and representational redescription

We’ve seen some examples of plausible candidates for real world representational
accounts of cognitive performances and capacities. Time to do the same for representa-
tional redescription as presented in the previous chapter. Is there reason to think that
redescription processes actually take place in human cognition? The hypothesis earns its
keep for its potential role in elucidating what distinguishes human cognition from that
of non-human animals such as apes. As with representational contents, the fact that
representational redescription has self-sustained plausibility is important for the purposes
of this work. If the entire set of tools with which RPC works were required solely to deal
with RP, my credit card limit would need to be much higher than it is.

In what follows, I’ll suggest that representational redescription — as well as
encoding, task-embedding and the like — enable the formulation of more refined and
(hopefully) fruitful empirical hypotheses regarding the continuities and differences of
human and non-human cognition. As discussed in chapter 1, we seem to be a very peculiar
kind of creature, and we’re yet to figure out what exactly such peculiarity consists of.
We exhibit intelligence in both online and offline cognitive performances. Whether we’re
trying to figure out a better way of using a hammer or planning a vacation, our peculiar
commonsense and situation holism is frequently there in the background. But alongside
the depiction of what’s peculiar to human cognition, comes the question about the nature
of this gap. What exactly underlies it? Is it something innate, developed or both?

Penn; Holyoak; Povinelli (2008a) draw a useful picture of the debate’s contemporary
form. It comprises two distinct dimensions: first, an empirical characterization of the
differences between human and non-human cognition. Second, a characterization of what
underlies such differences. In order to assess the latter, we need to first understand their
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view of the former. While presenting the first dimension, Penn, Holyoak and Povinelli
(PHP for short) concentrate on the idea that human cognition is distinctive because it
goes beyond observable features. This difference is manifest in lots of distinct domains:
causality, sameness/difference recognition, higher order spatial relations and so on. As
an example, here’s their characterization of the difference in how human and non-human
animals recognize sameness and difference:

Humans not only recognize when two physical stimuli are perceptually
similar, they can also recognize that two ideas, two mental states, two
grammatical constructions, or two causal-logical relations are similar as
well. (Penn; Holyoak; Povinelli, 2008a, p. 111)

Roughly, the idea is that we can make such judgments relying on information not
directly available to perception. We can make use of “unobservable” features and attribute
them specific roles such as that of being a cause. That’s what we do whenever we claim
that an object fell and broke because of its weight. The point is not to deny that apes
and other non-human animals can’t handle or even make instrumental use of the effort
required to lift some object. Rather, the crucial remark is that humans can regard weight
as an intrinsic property of any object, detaching its understanding from mere effort-to-lift
measurements. Povinelli (2012) provides extensive empirical evidence that apes are unable
to handle weight in this fashion. In order to summarize these differences, he formulated
the following table:

Table 2 – How the human body and brain “represents”
weight — Adapted from Povinelli (2012).

1 Anti-gravity muscles The mass of many muscles in the body quickly atrophy
in response to weightlessness

2 Effort required to lift
object

The sensory-motor system tracks the force used to lift
a given object

3 Effort experienced in
lifting object

Humans (and other animals) have phenomenological
experiences of effort lifting and moving objects25

4 Feed forward model of
effort required to lift
object

The sensory-motor system represents the predicted
effort needed to lift a given object

5 Causal representation of
a relation involving
“weight”

The perceptual system represents the causal
connections between object and outcome (organisms
may use size, weight, shape, effort sensation, or any
cluster of these to learn to predict an “effect” from a
“cause”)
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6 Effects of object weight
across contexts, or
f(WEIGHT)

The human mind represents “weight” as a causal
mechanism common across perceptually distinct
categories

7 Linguistic representation Humans generate linguistic (symbolic) labels for the
causal mechanism of weight (“weight”, “heavy”, “light”,
etc.)

8 Metaphorical expression Humans generate linguistic (symbolic) descriptions
that connect both the phenomenological aspects of
weight and f(WEIGHT) to nonliteral contexts

Povinelli draws a clear line between human and non-human cognition at row 6.
Humans and apes share the cognitive capacities 1-5, but only humans have the capacities
6, 7 and 8. Povinelli’s work concentrates on capacity 6: only the human apparatus seems
able to handle things like cause, weight or color across perceptually distinct categories.
He uses the notation f(x) to emphasize this point. Thus, being able to handle some
domain-specific relation involving weight through perceptual cues is different from being
able to handle f(weight) in multiple domains.

Despite being clear about this, the table is somewhat puzzling at first. To begin
with, not every element of the table is a plausible candidate for mental representation,
and Povinelli is aware of at least one such case. He knows that the first row (“anti-gravity
muscles”) depicts nothing recognizably representational.26 Moreover, Povinelli’s use of
the word “representation” is vague and not only seem to conflate the target and content
senses, but also encompasses cases that, within RPC, could be accounted for indicator
signals or other kinds of cognitive tools. Tracking the effort required to lift and object
(row 3) is a clear example. Thus, we must be careful when interpreting the table. Unlike
what we’ve been doing so far, Povinelli was not trying to find out whether the listed
capacities actually rely on some non-trivial sense of representation. Rather, he takes the
word in the fuzzy sense that we sometimes find in classic literature: to entertain a belief
x is to represent x (which conflates attitude and representational contents), or, in more
basic cases, whenever there is some causal intermediary that helps to handle x (e.g. an
indicator signal), the mechanism is also described as a representation of x. We need
thus the proper terminological adjustment, and that can be done by taking the table to
be about targets: there is evidence that apes can target certain domain-specific causal
relationships (row 5), but there is no evidence that they can target weight in a more
abstract sense across contexts (row 6). This way, we do justice to Povinelli’s point without
25 This is clearly unrelated to accounts of the system’s underlying cognitive apparatus. I kept it only to

be faithful to the extent of Povinelli’s work.
26 He says: “Just for fun, I’ve started with something that isn’t really a ‘mental representation’ at all: the

so-called ‘anti-gravity muscles’ of the human body.” (2012, p. 10). Not sure what’s fun about that,
though.



203

giving up on everything we’ve discussed so far regarding what’s (possibly) representational
and what’s not.

Despite these small shortcomings, and given the necessary terminological adaptation,
the list is useful, for it illustrates the empirical possibility that these states can be produced
concomitantly within the same system. In other words, the fact that a system becomes
able to harbor a causal representation involving weight (row 5) doesn’t mean that its
sensory-motor system can’t harbor another kind of representation (row 4) used to predict
the effort needed to lift a given object. This is consistent with the claim presented in
chapter 2: the fact that new abilities (or schemes) can result from the articulation of
simpler abilities does not mean that the comprising assets are lost. But how exactly
are we to understand the relationship between what’s described in each row? The table
depicts a route towards increasingly “higher”, abstract and domain-independent cognitive
capacities. This will lead PHP to hypothesize that human and non-human cognition
can be graphed in a continuum towards a physical symbol system (PSS) (Newell, 1976),
which is essentially a kind of LOT-powered system. Their point, to be fair, is not that
the underlying cognitive machinery is necessarily that of a PSS. They’re not commited
to any full-blooded LOT-powered system. But they regard as crucial the claim that
human cognitive machinery resembles or approximates PSS’s features. We’re talking about
features such as the capacity to deal with linguistic compositionality and systematicity, as
well as distinguishing between types and tokens. Their point is that the path to human-like
cognition is described as a symbol approximation. They call it the symbol approximation
hypothesis (SAH).

As an example of what motivates PHP towards SAH, consider the capacity to
handle weight as a causal mechanism across distinct domains (as per row 6). At first
glance, symbolic systems handling absolute contents seem to be more suitable candidates
than a system that can only rely on relative (structural) contents, as suggested by RCP.
Given a suitable semantics, a symbol can refer to anything: causality, weight, triangularity,
leftness. In their turn, structures are unable to represent any such universal or category.
They can represent a particular causal relationship, but they cannot picture causality (or
f(cause)as PHP would put it). In the same vein, they can represent triangles or left
hands, but they can’t represent triangularity nor leftness. As Cummins would put it, “no
picture can show what a left hand and left shoe have in common” (Cummins, 1996, p. 106).
Here we have a potential tension between RCP and SAH. RCP emphatically rejects any
role for absolute representational contents in mind mechanisms. But the road described
by SAH seems to lead us towards that kind of content. Before moving on, we need to sort
that out.
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3.5.1 What’s wrong with the symbol approximation hypothesis

By depicting human-like capacities as PSS-like, SAH leads us to believe that we
need two distinct representational systems: a pattern completion one (as the ones we find
in neural models) and a symbolic one. A development of this idea can be found in Gary
Marcus. He advocates the need for hybrid models in which we find both rule-based symbol
crunching and connectionist-like associations (1998; 2003). Marcus is deeply pessimistic
about non-symbolic machinery being able to render out-of-distribution generalizations
for even the simplest linguistic or algebraic rules. To see what he has in mind, say we
train a model on sentences with the form an x is an x for a finite set of x’s instances
(person, dog, gadget, etc.). Whenever we ask the model to complete a sentence like “a dog
is an. . . ”, the model is able to output “. . . dog”. But has it really captured the underlying
rule f(x) = x? If the model can’t consistently behave according to the same rule with
novel words (i.e. words that were absent from the training corpus), then the answer is
negative. Marcus’ findings suggest that, though neural models can resemble f(x) = x for
some (increasingly larger sets of) values of x, none can consistently handle novel values,
which means the model is closer to a huge look-up table than a rule-follower.

As Marcus thinks that neural models can’t fully grasp rules like these, he hypothe-
sizes that we need innate symbolic machinery in order to compensate for these limitations.
I am inclined to agree with Marcus about the current limits of connectionist approaches
(or deep learning, as some use to call them today).27 Though some generalization is always
achievable, consistently grasping and applying algebraic rules for not originally present in
the corpus seems to be still out of reach. However, I don’t think this criticism bears the
same weight in discussions about the human neurocognitive apparatus. First, because as
previously presented, I don’t think there are symbols in the mind, let alone anything like
an innate symbolic machinery. Second, I think Marcus’s conclusion does not follow from
the empirical evidence he presents, for he does not exhaust all the options. He claims that
his results are robust (they’re invariant in different architectures, with different training
corpus, and so on), but, as Clark; Thornton (1997) notice, it might simply be that the
ability in question depends on information absent from the corpus. The right information
might lead to the right cognition of the given domain, be it linguistic or algebraic. Indeed,
human learning may involve a lot of assets and processes with no parallel in machine
learning approaches (Dehaene, 2021). Consequently, no matter how robust are Marcus’
results - and how damaging they are for contemporary AI efforts — they’re ill-suited to
make strong claims about what human-cognitive machinery must look like.

Even if this weren’t the case, there are deeper reasons to question the path pointed
out by SAH. There’s nothing necessarily symbolic about the human capacities listed
by PHP. In other words, the idea that they’re better (or exclusively) accounted for by
27 I’ve made use of some of his arguments in Barth (2018) and Barth (2021). See also Marcus; Davis

(2019), Marcus (2020) e Marcus; Davis (2020).
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symbols or the associated classic computational models is precisely what’s at stake. Thus,
describing a capacity as “PSS-like” or “near-PSS” implies assuming what they were trying
to establish. Framework neutral descriptions of human-like cognitive capacities should not
be taken to imply or suggest the existence of symbolic machinery so directly. It is true
that PHP could try to deny this implication and claim that SAH is just a way to describe
peculiarly human capacities, whatever the underlying machinery turn out to be. But if
that’s really the case, then one better drop any mention to “PSS” or “SAH”. It is not
doing any work that a framework-neutral depiction of those human-like capacities couldn’t
do by itself. In this sense, I think PHP fell for the constraint we’ve talked about at the
very beginning of this work: the difficulty in formulating framework-neutral descriptions
of cognitive capacities.

Perhaps an alternative to try to save the symbol talking is by offloading them
to the environment. As Barrett (2008) suggests, PHP seem to take a broadly internal
stance towards mind mechanisms. In her view, the authors ignore the possibility that
whatever accounts for the SAH character of cognition can be out of our heads. Rather
than relying on PSS-like machinery, we employ external symbols as tools. But PHP
correctly resist the more radical versions of this idea (Penn; Holyoak; Povinelli, 2008b).
What grounds their concurrence is that the difference between the cognition of human and
other primates cannot be neither solely nor mostly out of our heads. Simply offloading
symbols to the world would have thrown no light on that difference. As we’ll see shortly, I
think external symbols do play an important developmental role in accounting for how we
handle the world, but not the whole story. Furthermore, fully offloading contents preempts
the explanatory leverage that mental representations buys us, for it simply ignores the
empirical possibility that mental representations can provide the best available explanation
for certain cognitive capacities and performances.

Once we get rid of the PSS talking, we become open to a different diagnostic and a
different possibility. The crucial idea is that what PHP regard as f(cause) or f(weight)
cannot be merely a symbol. Rather, it is a concept. Let’s unpack this claim, right after a
quick remark: I am aware of the large and old dispute in cognitive science regarding what
a concept is. However, I have neither the intention nor the need to dig into that issue.
Thus, with the likely exception of those who follow Fodor (2004; 1998) into thinking that
concepts have no structure nor any kind of epistemic condition, I assume that none of
what follows will be polemic.28 Even eliminativists such as Machery (2009) should not be
alarmed, for as we’ll see, what matters for my purposes is just the claim that we can’t
send a symbol to do a concept’s job. What I regard here as a concept can be conceived as
a bunch of cognitive assets that are somehow connected by sharing a topic. Attitudes,
representations, indicator signals, know-how and whatnot. We also need not worry about
28 Well, maybe those advocating a linguistic notion of concept, such as McDowell (1994) would also be

worried about this. But they probably wouldn’t bother reading about philosophy of cognitive science
anyway.
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how such assets are structured or articulated. Thus, whether they comprise necessary and
sufficient conditions, prototypes or theories will bear no weight on the discussion.

Now back to the main point. Consider what it takes to have the concept DOG.
It may involve representations of what a dog looks like, attitudes about what dogs like
to eat, knowing-how to walk them, and so on. Something similar goes for the concept of
LEFTNESS. It may involve memories of a time in which one had to look at her hand in
order to determine which one is the left. Perhaps with the help of some habit (writing),
accessory or birth mark. This can grow into the knowledge that her pet also has left legs,
that the car has a left side and so on. The concept of LEFTNESS may comprise all of
this cognitive knowledge. None of it requires symbols. It surely requires the capacity to
articulate cognitive resources in certain ways, but the lack of symbolic assets brings no
principled issue.

The same goes for concepts like CAUSE and WEIGHT as they appear at row
6 of Povinelli’s table. If we think about CAUSE as |cause|, that is, if we think about
concepts as representational content, then we’ll be lead quickly to the idea that this
representational content must be symbolic and to believe that there’s some radically
different representation machinery at work in human cognition. But that’s not necessary.
What’s distinctive of human cognition and ape cognition may comprise lots of differences,
big and small. We may be able to have representational targets that apes don’t. We
may be able to represent those targets using schemes that apes don’t have. We may even
share representational content with apes, but maybe we exploit them with consumers that
are sensitive to structural aspects that their consumers are not. Moreover, we may be
able to articulate distinctive kinds of cognitive assets in distinct ways by, e.g. encoding
or task-embedding. There can even be a human way to cook up attitude contents from
representations, indicator signals and other assets.

This is not a speculation about which of these is true, if any. The matter is
obviously empirical and won’t be settled by armchair thinking. Rather, the point is to
show how the continuum towards “symbol-like” machinery can be misleading. Rather,
the distinction between human and non-human cognition may be along the dimensions
unfolded in the previous chapters. For instance, given any domain, it is possible that we
share representational capacities without fully sharing the set of available exploitative
capacities. We may share lots of representational targets and yet handle them in very
distinct ways. This enables us to talk about discontinuity in human cognition in a more
refined way. We can do stuff that non-human animals can’t, but that need not imply any
big jump in the kind of mechanisms we employ. In other words, we can render both human
and non-human cognition discontinuous in the sense that they don’t rely on the same tool
set, but continuous in the sense that such tool sets are much more alike than we’re used
to thinking about them when framing the issue through the lens of a specific framework.

At this point, it seems like we have a plausible alternative to SAH. We could maybe
stop the reasoning here with a claim like this: it is an open question whether what PHP
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calls f(weight) is actually a symbol for weight or a concept of WEIGHT.29 But we can’t
stop here, for the very good reason that it is not true. Regarding f(weight) as a concept
is the only plausible way, or so I intend to argue. We have to take another step and show
that walking towards symbolic systems, pace PHP, won’t buy us what’s needed. In other
words: symbol systems are not good rulers of what’s distinctive about human cognition.
This is not a point against PSSs per se, nor a point against the possibility of modeling
cognitive capacities with symbols (though there are limits, as FP shows). Rather, the point
is that even if we find out that humans could have a fully-fledged symbolic machinery that
somehow handles FP, the question about what underlies the difference between human
and non-human cognition would remain intact.

PHP seem to assume that the capacity of thinking about f(cause) is in some
sense associated to the capacity to forge a symbol referring to f(cause). A symbol for
weight or cause is no different from a symbol for dog or cow, though. It refers to the thing
without actually comprising any information about it. But the explanatory relevance of
something like f(cause) or f(weight)is not in the possibility of having symbols referring
to it. Rather, it is in what the system knows about them. Having a symbol pointing to
CAUSE is like having a symbol pointing to COW. The symbol itself tells you nothing
about neither causes nor cows. It won’t help the system to recognize them nor guide
it while thinking about them. Thus, even on symbolic systems, what accounts for the
system’s capacity of handling f(cause) (or f(cow), or f(weight). . . ), is not the symbol,
but whatever the system knows about its referent, i.e. its concept.

In a purely symbolic system, such cognitive knowledge would comprise lots and
lots of sentence-like absolute contents stored through symbolic medium. A CAUSE in
a symbolic system would be akin to a CAUSE in a non-symbolic system, but seriously
constrained, for all the knowledge comprising CAUSE would have to be expressed using
only sentence-like formalisms. That’s exactly what McCarthy and Hayes were trying
to achieve when they first faced FP, by the way. Again, I’m aware that PHP are not
advocating for purely symbolic systems. Their view is probably best described as a hybrid
one, in which some sort of symbol system lives alongside a non-symbolic one (as per
Marcus’ proposal). But if symbols can’t buy us CAUSE, that means they can’t buy us
f(cause), for these are the same. Why should we bring symbols to the discussion at all?

In general, whenever PHP talk about “PSS-like” systems, what they have in mind
seem to be systems capable of doing logical reasoning. And symbolic systems do seem to
buy us that. They allow for language-like compositionality and language-like systematicity.
We could then, at least in principle, forge a truth-conditional semantics that allows us
to put complex articulations of symbols in pair with complex articulations of words in
29 Some might feel tempted to reject this distinction by saying that PHP’s hypothesis is able to accom-

modate it. That is, regarding f(weight) as WEIGHT is actually a way to approximate a PSS. First,
it is not, and we’re about to see why. Second, if being “PSS-like” goes for this, it probably goes for
pretty much anything remotely similar to human cognition. This means that the talking about PSS is
not really throwing any light and should be dropped.
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natural language. The problem is that, while such semantics may tell us how symbols can
be managed in truth-preserving ways, it won’t do the same for concepts. When you deny
the symbol for dog, you get a pointer towards the set of all things that are not dogs. But
if you deny a concept DOG, what you get is not a concept of NON-DOG, i.e. information
about all the things that are not dogs. In the same vein, no truth-conditional semantics
will tell us what results from the conjunction of GOOD and DOG. In order to grasp that,
one must have some information about what GOOD and DOG are. Remarkably, this has
the potential to weaken arguments like that of Marcus’ even more, for the capacity to
fully grasp f(x) = x won’t buy us what’s needed.

In a nutshell, the problem with the reliance on symbolic machinery — even by
means of approximation — as a way to express what’s peculiarly human in cognition,
is that, at the end of the day, PSSs are silent about what really matters. They don’t
tell us how to merge concepts, nor can they throw light on what exactly comprises the
underlying difference between human-WEIGHT and ape-WEIGHT. With this in mind,
my suggestion is that we’ll do better getting rid of the symbolic talk and concentrating on
more framework-neutral depictions of the differences in overall cognitive capacities.

3.5.2 The relational redescription hypothesis

Despite the taste for PSS-like machinery, the way PHP frame the question of the
gap between human and non-human cognition is distinctive. Rather than contrasting
linguistic and non-linguistic capacities, they concentrate on the long gradient of possibilities
within. We already had a hint of how the ideas described in chapter 2 can throw some
light on what underlies some important differences located along this gradient. Ape’s
cognitive machinery, inasmuch as it exploits mental representations, might use distinct
schemes, distinctive tokens or distinct exploitation strategies. More importantly, these
ideas comprise a common framework in which different perspectives can forge different
empirical hypothesis about what makes us human or why apes can’t handle language.
One need not regard humans as smart and apes as dumb. We can say that humans and
apes can do a lot of smart things without giving up on the claim that humans do it in
a way that allow them to go further. In other words, similar behavior need not imply
similar cognitive apparatus. We have thus a framework in which the minutia of Povinelli’s
relational redescription hypothesis (2012; 2000) can be articulated.

Povinelli presents his understanding of what relational redescription is, as well as his
arguments using as example the evolution of social cognition. For many, social cognition
must be grounded in the so called theory of mind (TOM), which requires peculiarly
human abilities, such as the capacity to estimate what other agents are thinking and
what are their beliefs or intentions. Povinelli claims that arguments for TOM usually
rely on analogies: we see non-human animals exhibiting human-like behavior and posit
the presence of human-like cognitive machinery in order to explain it. This idea is not



209

new. Povinelli traces it back at least to Hume, and take it to be entertained by figures
like Darwin. As an example of argument relying on this kind of analogy, we can consider
the evidence of deceptive behavior in apes. This can be found in Waal (1992) and Waal
(2007). The cases presented by de Waal are sometimes regarded as strong evidence for
the view that one cannot deceive someone else unless one can somehow reason about that
someone else’s mental states.

In stark contrast, PHP thinks that social cognition can be articulated without
TOM. Here’s how Povinelli presents this view:

(. . . ) in our model, the behavioral forms that primatologists are fond
of calling deception, empathy, grudging, and even reconciliation, all
evolved and were in full operation long before there were any organisms
that could interpret these behaviors in mentalistic terms. In short,
these behaviors did not evolve because our earliest mammalian and
primate ancestors possessed the means of representing the minds of
their fellow group mates. Rather, these behaviors evolved because they
became inevitable as selection honed psychological–behavioral systems
to maximize each group member’s inclusive fitness. (. . . ) we believe that
our new psychological systems for representing and explaining already-
existing behaviors in terms of mental states were woven in alongside
these ancestral systems. Thus, the reinterpretation model posits that
most of the basic behavioral patterns present in our ancestors (as well as
the psychological mechanisms for producing them) remained undisturbed
by the evolution of theory of mind. (Povinelli, 2000, p. 59)

In a nutshell, while the TOM hypothesis explain social behavior by positing the
existence of human-like mental states about someone else’s mental states, the relational
redescription hypothesis claims that social behavior emerged without relying on anything
peculiarly human. Instead, capacities such as TOM came later by and enabled humans to
reinterpret their own social behavior in TOM terms.30 This opens up the possibility that
humans and apes share much of what underlies their social behavior, but only humans are
able to interpret that behavior in TOM terms.

PHP’s idea is not limited to social cognition. There’s a more general thesis
underneath it. Its crucial claim is that what we regard as “high level cognitive capacities”
comprises the human capacity to reinterpret evolutionarily old abilities and mechanisms
used to cognize social or causal domains in less-than-general terms. As we have seen, such
reinterpretation is usually taken to consist on mechanisms able to target ancient systems
and render then more general and domain-independent. That is, what was once grounded
in the exploitation of observable features and relationships can now be “objectified” into
an unobservable property. That’s how we can tell what’s similar between a left hand and
a left shoe, or between a bird’s nest and a dog’s doghouse. This is the spot where the
discussion from the previous session must be placed. The idea that some properties can
be abstracted away from their domains is usually regarded by PHP as their redescription
30 This idea fits well with the hypothesis that TOM, as well as causal reasoning, language and similar

capacities are actually a kind of cognitive technology. We’ll develop this point further in the next
chapter.
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into “symbol-like” medium. However, we’ve seen why that’s misleading. What we need
are not symbols, but increasingly complex and richly articulated concepts.

This is also the spot where the extra degrees of freedom yielded by RCP pays
dividends. The many possible relations between cognitive assets previously described —
redescription through structural analysis, encoding, task-embedding and the like — provide
the essential tool-set that the system needs to engage in reinterpretations of both its own
dynamics and the dynamics of others. In other words, it can render new understandings
about itself and everybody else. While it is true that Povinelli relied on Karmiloff-Smith’s
original idea of representational redescription, 31 the RCP version retains the same goals,
even though it rejects the idea that redescriptive processes necessarily run towards absolute
contents and symbolic machinery. They can provide more abstract understandings, but
they can also forge new ones, even though not necessarily of a more abstract sort. This
means that, within RCP, one can go beyond formulating models that put apes and humans
in a linear “vertical” trajectory towards increasingly higher abstracts levels (as table 1
suggests). One can also model “horizontal” disparities as well. What I have in mind are
different takes on the same kind of phenomenon or cognitive capacities. Remember, for
instance, the warning from Waal (2016) about how the capacity to handle tools in order to
solve problems can take many forms, mainly due to the creature’s particular Umwelt This
kind of difference can also be accounted for in terms of representing things under different
schemes, exploiting these schemes with different strategies or perhaps there can be species
that can only encode what others can represent, and so on. The space between purely
behavioristic accounts of non-human animal cognition and full-blooded folk-psychological
accounts can accommodate a large, multidimensional gradient of intermediate possibilities.
Now, in order to make these claims a bit less impressionistic, lets draw a sketch of how a
broadly non-symbolic story could go.

3.5.2.1 Domain bootstrapping

Structural schemes have target-domains. Within those domains, they’re at their
best, in the sense that they can fully play their explanatory power. However, most
examples involve only perceptual-level domains (natural images, cognitive maps and so
on). But whenever one talks about “higher” cognitive capacities, one usually means
episodes of offline cognition. Thus, unless we want to seriously constraint representations’
explanatory role to online settings, a large portion of the story must be about the “higher
level domains”. What does it take to grasp one of them?

Fortunately, structural representations are broadly compatible with both online
and offline capacities. They can play the role of stand-ins at both levels. This means
that we don’t need to posit different kinds of cognitive resources only to account for this
difference. Whether we’re talking about environmental affordances or a sudden realization
31 As stated in (Povinelli, 2012, p. 297).
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that there’s a better way to plan the next travel, structural representations can be there to
help. For instance, the same representational resources that figure in online cognition can
also be used in offline simulations, in order to predict outcomes. That is, the system can
easily apply lower-level knowledge about the world in order to guide offline simulations.
This is useful because, whenever some aspect of the world is absent, you’d better have
something else to put in its place, and structural representations are likely to provide the
most powerful tool for the cheapest price.

Something along these lines comprises Barsalou’s simulators (Barsalou, 1999, 2003),
but we can also find similar ideas in Friston; Mattout; Kilner (2011) and Clark (2016).
While developing their suggestions, Barsalou, Friston and Clark have their own frameworks
in mind, but all of them work with the idea that the representations used in online
cognition can be repurposed and exploited by mechanisms dedicated to offline cognition.
Trajectories throughout some domain state space can be thus used to think about it
even in situations where the agent is causally detached from that domain. Furthermore,
cognitive machinery can learn how to articulate permutations and variations of those
trajectories, thus performing simulations that help the agent tell “what’s gonna be like”
when somethings happens. The upshot is that any representational resource employed
in action and perception (i.e. online capacities) is also available to play non-trivial roles
in planning, reasoning and thinking in general. Moreover, structural representations
ensure that, if someone eventually figures out a complete story about how structural
representations (alongside indicator signals, environmental couplings and other cognitive
tools) can handle higher, offline, cognitive abilities such as those involved in mastering
natural language, then that story will not suffer from FP.

However, not every capacity to negotiate a domain can be regarded as a simulation
of lower level perceptual ones. Offline cognition usually involves rather peculiar domains.
Consider the classic example of playing chess. The chess domain comprises very distinctive
sets of rules taking place within a heavily constrained environment. The domain is out
there for us to learn about just like the domain of natural images. However, we can easily
understand where the structures comprising natural images came from. But chess? How
exactly this kind of that domain comes to be?

We can find a clue for a possible bootstrap story in the classic work of Clark
(1997a). Clark’s idea relies heavily on the human capacity to create and maintain lots of
external symbolic structures. The crucial claim is that external symbols (sounds, words,
drawings, objects) can be regarded as discrete labels for complex concepts. Consider again
concepts previously discussed such as CAUSE or WEIGHT. These concepts comprise lots
of knowledge. External labels such as words (“cause”, “weight”) or pictures enable us to
stabilize everything we know about the respective topics under a kind of indivisible unit.
This unit can then be a primitive element in increasingly complex, higher-order structures.
In this sense, by articulating their elements we forge new domains in which the possible
permutations get stabilized. By associating a portion of knowledge to a public symbol,
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we can both associate those “objectified wholes” with each other (as we do in “healthy
weight”), and shape our own thinking by learning to associate what were, up to this point,
disconnected portions of our knowledge (in the example, those about HEALTH with those
about WEIGHT). As this kind of association goes on, we get new structured domains,
and these can be cognized through specific models (maybe using specific representational
schemes), that capture the domain’s expressive power and systematicity.

A common example of this phenomenon comes from the spatial domain: if we put
washed itens in box 1 and unwashed itens in box 2, we can then think about what to do
with box 1’s itens without attending to their specific perceptual properties. By sticking to
their presence in box 1, we’re abstracting those other properties and simply taking them
to be a set of washed stuff. This is the kind of capacity that may comprise concepts like
WASH.

A more concrete example of same point can be found in Thompson; Oden; Boysen
(1997). Thompson’s experiments have shown that apes exposed to token based symbol
systems can make limited, yet impressive, use of them. The apes in question could
recognize and use labels for “shoe” and “cup”, and they could also recognize second-order
sameness relations between different distributions of those. In sets comprising, say {cup-
shoe; shoe-shoe}, we have two first-order relations (one being of difference, for a cup is
not a shoe, and the other of sameness, for a shoe is a shoe), and also one second-order
relation, that is of difference (for the relation between a cup and a shoe is different from the
relation between a shoe and another shoe). In the resulting picture, we have a cognitive
engine capable of representing the structures of both first-order and second-order relations.
However, when assessing this kind of evidence, PHP claim that:

(. . . ) these experimental protocols lack the power, even in principle,
of demonstrating that a subject cognizes sameness and difference as
abstract, relational concepts which are (1) independent of any particular
source of stimulus control, and (2) available to serve in a variety of
further higher-order inferences in a systematic fashion. A functional
decomposition of the S/D and RMTS protocols reveals that the minimum
cognitive capabilities necessary to pass these tests are much more modest.
(Penn; Holyoak; Povinelli, 2008a, p. 112)

Indeed, what the experiment shows is not enough to establish the presence of a
proto-symbolic mechanism. But that’s only an issue if we stick to a PSS-like view of the
mechanisms involved. The apes from Thompson; Oden; Boysen (1997) did not acquire
full-blooded PSS-like capacity to generalize over rules, but they did acquire the capacity
to deal with certain second-order regularities in some domains. That’s a possible case of
representational redescription. The possibility that human-like cognitive capacities comes
from the cumulative cognitive technology is not at all ruled out, and there’s a reason to
be optimistic about that: we don’t need symbols to encode the structure of a domain. We
can encode, for instance the phrase structure of the current linguistic input, and this can
guide us in our thinking (that is, on how to connect different parts of our knowledge as
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indexed by linguistic labels), somewhat like a recipe can guide cooking activity. We don’t
need to suppose that recipe and the cooking are made of the same stuff for that to happen.
Cognitive machinery comprised of a plurality of domain-specific representations allows
us to see how we can gradually grow towards cognitive capacities increasingly complex
without the need to postulate a specific proto-symbolic mechanism.

Clark’s idea is that this basic phenomenon can be repeated recursively for indefi-
nitely many times. This has the potential to result in cognitive capacities of increasingly
higher level, and the structures of the emerging domains are its output. We can thus
objectify clusters of properties, and relate these with others objects. From this, new
structured high-ordered domains can emerge, and these can be gradually learned and
represented by using the same kind of cognitive mechanism that we already have.

It is tempting to think of such “public symbols” as linguistic elements, and Clark’s
idea may indeed capture something necessary to account for the emergence of linguistic
capacities. But his idea is not restricted to language nor intends to fully account for it.
Rather, many distinct higher order domains may emerge out of processes like this. These
domains may underpin social practices, institutions and of course chess. Importantly, I
don’t think Clark tries to deny a divide between humans and other animals. He would
not deny that there is something in the human brain that allows us and (as far as we
know), only us to learn a full-blooded language. What’s at stake is the nature of the
divide, and how much of a genetic “starter pack”, comprises the relevant properties of the
human brain.32 Thus, Clark’s insight can account for the way we can forge increasingly
complex structures comprising various domains that can be then cognized by already
existing cognitive machinery.

The story is not that the exposition to public symbol systems is enough to completely
explain the capacity to deal with abstract symbols. We’re not just chimps who got lucky
and have found a nice set of tools. There can be significant differences in our cognitive
mechanisms, but not to the point where we would have to assume some completely different
kind of mechanism (like a proto-symbolic one), and all the evolutionary difficulties that
come with it.

Clark’s story is consistent with Hurley’s picture of “islands of rationality” we used
in chapter 1 in order to characterize islands of integrative capacities. Just like integrative
capacities, the knowledge comprising concepts like CAUSE or WEIGHT can quickly
grow as the system learns its way into novel domains and situations. How far it can
go is of course a function of the creature’s overall cognitive capacities. Perhaps only
linguistic creatures can entertain concepts with full-fledged generality, but as the relational
redescription hypothesis suggests, the capacity to hold a concept like WEIGHT is certainly
not and all-or-nothing matter.33 Thus, distinct creatures may be able to recognize a
32 I think the best candidate for what comprises our “genetic starter-kit” is provided by Heyes (2018a).

Her work will be extensively discussed at the final chapter.
33 It is not clear what could be the role of language in accounting for fully-fledged generality. I’m inclined
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CAUSE in distinct domains, even though it is not able to recognize it in every domain it
can negotiate.

Now, one of the cognitive abilities that PHP describe as exclusively human is that
of making similarity judgments by attending to non-perceptual features. That amounts
to, for example, the capacity to recognize any two features as instances of CAUSE or
WEIGHT even though the features can be found in perceptually distinct domains. Thus,
whether one’s talking about objects being pushed to the ground by something or a social
invitation to a party being accepted, humans can recognize both as instances of a CAUSE.
In the former, we refer to the cause of an object falling and breaking. In the latter, it
is the cause why someone went to a party. This can go on indefinitely for any concept:
humans can (fallibly) recognize whether any two mental states are similar, or whether any
two logical relations are alike, and so on.

At this point, it might be puzzling that, at least in the cases where structural
contents are all we have to compare cognitive knowledge, what exactly is being compared
whenever two instances of CAUSE from distinct domains are regarded as similar? What
could be structurally similar to a physical-CAUSE and a social-CAUSE? Clark’s story buys
us the following answer: concepts comprise the integration of cognitive knowledge under a
given topic. Part of this integration story involves forging a new domain. Learning about
CAUSE (or WEIGHT) amounts to articulating knowledge from distinct domains into an
emerging “domain of causes”. As we integrate further knowledge into CAUSE, the domain
of causes gets more complex and enables more and more permutations. Causes may vary
enormously in their details, and the capacity to handle the set of possible permutations
may be handled by a specialized domain in which these permutations takes place. All
of this can be cognized by either encoding or representing the possible states within the
recently emerged domain of causes. Such domain provides the state space in which we
can compare the many structures comprising each permutation. This buy us enough to
compare concepts from distinct domains without relying on perceptual cues, just like PHP
requires. In the end, non-perceptual similarity judgments can boil-down to structural
similarity within distinct domains. Let us unpack this a bit more.

3.5.2.2 Similarity judgments within emergent domains

To see how structures can handle similarity judgments, consider Churchland’s
suggestion that we can understand semantic similarity (or even identity) in terms of neural

to look at it as a crutch for exploiting cognitive assets. Once we learn how to grasp sentence-like
structures, they become a tool we can use in order to communicate and write down which cognitive
assets we want to exercise and in what way. In this sense, a sentence like “the elevator is blue” tell us
that we should recruit ELEVATOR, BLUE and articulate them in a certain way. By the same token,
a sentence template such as “X causes Y” can have any concept we’re able to entertain as values for
both X and Y. Thus, we can eventually read something like “elevators causes blue”, but it doesn’t
mean we can make sense of it. We can always try, though. In this sense, fully-fledged generality is
more of a linguistic tool than a cognitive capacity.
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state space similarity (Churchland, 1998). This point emerged in the context of a debate
with Fodor; Lepore (1991) about Churchland’s space state semantics. Churchland (1989)
suggests that mental contents are given by the position that an activation pattern occupies
in an n-dimensional activation space. By the same token, latent (long-term) cognitive
knowledge would be a product of the position in a weight space, i.e. a function of how
the relevant populations of neurons are wired. However, Fodor and Lepore argued that
neural models could never provide a robust criterion for inter-individual content similarity.
Here’s an example of how they put it:

If the paths to a node are collectively constitutive of the identity of the
node (. . . ) then only identical networks can token nodes of the same
type. Identity of networks is thus a sufficient condition for identity of
content, but this sufficient condition isn’t robust; it will never be satisfied
in practice. (Fodor; Lepore, 1996, p. 147)

In other words, Churchland’s account fall short of explaining how can two distinct
systems be in the same representational state. The identity of those states is only possible
assuming that the network has the same number of neurons arranged in the same fashion
(i.e. has the same architecture). Accordingly, the same latent cognitive knowledge of
any two systems can only be identical when the neurons are identically wired (they
occupy the exact weight space). In the case of learned connections, this requires identical
learning conditions with identical stimuli. As a consequence, in order to ascribe the same
representational content to any two human agents, we would need the exact same level of
activation in the exact same number of neurons (arranged in the exact same way), in both
brains. Though theoretically possible, that is obviously impractical to satisfy, which is
why the worry presented by Fodor and Lepore is sound. In order to avoid their criticism,
Churchland needs a way to show that the same representational state can occur even in
distinct neural populations with distinct wiring.

Churchland’s way out involves giving up on the idea that representational states
are a given of the exact position in an activation space. Instead, they can be purported
as a function of sets of possible positions within the same activation space. Perhaps the
best way to present the approach is by using the example provided by Churchland himself:
say we’re training an artificial neural network to recognize the facial distinctions among
members of families: A, B and C. The training corpus comprises lots of pictures of distinct
members of each family. The goal is to construct a network that gets some facial picture as
input and is able to output the family it belongs to: A, B or C.34 The resulting distribution
of activation patterns is depicted in figure 12(a).

Whenever the network is fed a picture from a member of the family A, the resulting
activation pattern will be around the A region. Likewise for regions and families B and C.
The weird mesh in region A of figure 12(a) is not just a partition in the activation space,
34 For simplicity, let’s rule out the possibility of presenting the network with a facial picture of someone

from a fourth family.
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Figure 11 – Churchland’s prototypical partitions.

Figure 12 – Structural contents in partitions of activation spaces.

but a set of them. Churchland calls such partition sets prototypes (Churchland, 1998).
Figure 11(a) exemplifies distinct geometric partitions equivalent to distinct positions in
an activation space. We can see what would be the prototypical region for the average
member of a family in 11(b).35 A prototype does not depict any specific member. Instead,
it works as a center of gravity that aggregates typical features of A members.

Now say we’ve decided to train a second network. One with a distinct number
of nodes (neurons) and perhaps even a distinct number of hidden layers. The resulting
distribution of activation patterns for this second network is depicted in figure 12(b).
We can see there how the prototypical regions occupy distinct portions of the network’s
activation space. This is the foundation for the criticism of Fodor and Lepore: how could
we tell whether the two networks are representing or encoding the same thing? However,
perhaps you already noticed that the triangular A-B-C structure is geometrically alike in
both networks. How could that be? The answer can be found in Laakso; Cottrell (2000),
who developed what is today know as representational similarity analysis. The technique
became an important component of contemporary research in both neurosciences and AI,
particularly in the Deep Learning tradition.36

35 The positions are evidently simplified in order to be expressed as 2D drawings. Real world activation
spaces are usually multi-dimensional.

36 See for instance Abnar et al. (2019) and Nanda et al. (2022).
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The researchers used cluster analysis in distinct neural models to shown how similar
geometric patterns of activation would appear even in heterogeneous representational
spaces. Thus, the evidence suggests that the structures captured by the spatially arranged
sets of prototypes are objective. In the family resemblance example, the A-B-C triangle is
the (evidently oversimplified) geometric depiction of the objective structure comprising
the relationship among facial cues of distinct family members. Just like the basis functions
afforded by the sparse coding approach, the structures comprising prototypical regions are
out there to be captured. In both cases, the resulting structures are candidate to further
exploitation of its geometrical properties by the encompassing system. Furthermore,
prototypical regions cannot be regarded as sets of indicator signals. Consider again the
Palette-C scheme in figure 9: that in virtue of which a straight line becomes a human arm
or leg is its geometrical relationship with other primitive elements. Likewise, what makes
of B a prototypical region for members of that family just is its geometrical relationship
with the A and C prototypes. Thus, we should not be misled into thinking that the trained
networks first learned prototypes for each family and then learned their distinctions. It’s
quite the opposite: the prototypical regions are established as one learns the difference
between the distinct families, that is, as one learns to capture the A-B-C structure in
increasingly accurate ways.

The upshot is that we don’t need symbols nor any machinery resembling it in order
to explain how a creature can handle CAUSE or WEIGHT. We need not fully-fledged
“logical and abstract” capacities in order to go beyond perceptual stimulus. Even if Penn;
Holyoak; Povinelli (2008a) are right when they claim that non-human animals do not
rely on non-perceptual structures in order to render sameness/difference judgments, that
does not allow us to regard non-human cognition as “less symbolic” and our machinery as
“more symbolic”. Symbols are not helpful in characterizing the norm against which we
should assess our cognitive capacities. Thus, we need not suppose the abrupt emergence of
some cognitive machinery that is somehow able to render abstract and logical reasoning.

In order to allow shareable judgments of sameness and difference (i.e. judgments
pointing to the same cognitive target), we need not fully-fledged linguistic promiscuity.
Different systems need only to share enough of the structure domain involved in using
a given concept and similar developmental trajectories are sufficient to account for that.
We can thus abandon SAH and still honor all the relational redescription’s goals and
constraints put forth by PHP. RPC affords a story that does not rely entirely on language.
One need not commit to the idea that ape minds with linguistic abilities would be nothing
short of human minds. Moreover, one need not symbols in order to account for so many
distinctive ways to render the world intelligible. Multiple representational architectures and
distinctive exploitation techniques buy us an extra degree on freedom that our empirical
hypotheses may rely on to do comparative psychology or or related scientific endeavors.
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3.6 What now?

If we have succeeded in the aims of this chapter, two important purchases were
made. First, we’ve made room for structural representations in accounts of cognition.
Such representations can play non-trivial explanatory roles in a way that does not preclude
4EA’s cognition most dear methodological commitments. Their non-triviality comes from
the extra degree of freedom we get to formulate empirical hypotheses that would not be
possible in their absence. We have a robust notion of misrepresentation and can explain
behavioral outputs in terms of a purely semantic relationship between a representational
content and its functional target. Moreover, the architectural traits of the employed
schemes can also participate in explanations of cognitive capacities and performances,
for they amount to sets of assumptions about how the world is, which means they can
constrain the way a system registers the world (i.e. takes it to be).

Second, we have the possible relations between distinctive representational schemes,
as well as the many possible exploitation techniques, particularly that of representational
redescription. This buy us a considerably large dimension in which we can place empirical
hypotheses about what’s peculiar to human cognition in contrast with non-human cognition.
Rather than putting all the burden under a wide (yet unique) capacity (theory of mind,
language, and so on), the issue can be articulated as multiple empirical research problems.
We should be allowed to ask, for instance: are the subjects learning a new representational
scheme (i.e. how to deal with a new structured domain)? Or are they learning how to
exploit an already-familiar domain in a new way?37 All of what can be done while avoiding
the potential problems that come with SAH. To start with the assumption that there has
to be some kind of symbolic machinery in order to account for what’s unique in human
cognition improperly constrains the set of empirical possibilities.

We have thus achieved representational productivity without absolute contents,
which means we can engage in research without the risk of raising FP. Everything we need
to make an attempt at handling RP is in place.

3.7 Paragraph-by-paragraph summary

Each entry below summarizes a paragraph of the main text.

Battle of frameworks

If we want to make room for representational pluralism in cognitive science, we must
show that employing multiple representational architectures is both psychologically and
37 Notice how this is reminiscent of the old debate between piagetians and their adversaries. It is

sometimes under appreciated that if a given cognitive framework does not allow this kind of empirical
question to be formulated, what we have is, as Chemero (2009) remarked, a kind of hegelian move
that rules out empirical questions through non-empirical means.
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mechanistically plausible, in the sense that it is both elucidating and compatible with
current scientific practices.

The thesis that the mind employs multiple structural schemes is what I’m calling
representational cognitive pluralism (RCP), and it is able to accomodate insights from
classic cognitivism and non-representational approaches such as ecological psychology,
varieties of enactivism and others.

Two of classic cognitivism’s core motivation for its heavy reliance on representations
were 1) a conception of cognitive activity as essentially that of computing over symbols
and 2) the thesis that attitudes contents were a direct given of representational contents.

A third, sometimes under-appreciated motivation is the possibility of using proprietary
formats (i.e. a particular ontology) that can alleviate the tractability of complex problems:
the form with which we register the world (i.e. with which we encode or represent it)
matters just as much as the fact that we do it.

This is probably why classic cognitivism mitigated the importance of perception in
the study of intelligence: perceptual processes were conceived as taking place before the
mind’s registration of the world.

RCP rejects the first two mentioned commmitments of classic cognitivism, but it profits
from the idea that registering the world in proprietary forms has an explanatory role to
play, and to that extent it requires a theory of representational contents.

Thus, inasmuch as the third motivation is concerned, it takes issue with non-
representationalists, for they insist in making no room for any conception of
representation.

Likewise, iansmuch as the third motivation is concerned, it also takes issue with classic
cognitivism, for they insist in a single, languagel-like way to register the world.

While the classic cognitivist worries that giving up on language-like scheme is a step
back to the kind of problems faced by behaviorism, the non-representationalist worries
that representations are a step back to the kind of problems faced by classic cognitivism.

Considering this, my goal is to find a middle way and sketch a picture in which structural
representational contents can bear non-trivial explanatory roles without giving up on the
4EA cognition’s tenets.

Thus, I have no intention to claim that every cognition is representational, only that it
is empirically plausible that representations can play non-trivial explanatory roles.

Time to start paying the huge debts I incurred in this section.

Representations and targets

The first step is to be familiar with Cummins’ distinction between representations and
targets.

When a system uses a token T as a stand in for something else, two dimensions are
involved: the functional dimension specifies the system’s target (what is it trying to
represent) and the semantic dimensions accounts for what T actually represents (i.e. T’s
representational contents).

For instance, if you draw a map of your city to a friend, your city will be the functinally
fixed target, even if the map pictures someplace else due to some innacuracy.
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Each dimension (semantic and functional) comprise an independent explananda and
requires its own theory, for the capacity to have X as a target is distinct from the capacity
to forge and exploit a representation of X.

This independence allows us to see that the intentionality of a given state or process is
not a product of the exploited representational content, for it comes from the fixed target.

From this vantage point, we can see that much of the current contemporary debate among
representational and non-representational frameworks is actually about the strategies
through which the system fixes its targets.

With the target/representation distinction in mind, let’s see how we can overcome
two common antirrepresentationalist claims: 1) representational contents are inconsistent
with naturalism and 2) they have no real explanatory role to play in scientific accounts of
cognition.

What are mental representations?

The difficulty in naturalizing representational contents was recently synthesized in
Hutto and Myin’s “hard problem of content” (HPC): causal correlation does not imply
contents, and as that’s the only source of natural information, there can be no naturalistic
accout of representational contents.

Thus, any semantic gloss given to causal covariation is in the eye of the beholder (i.e. the
theorist), and though it may be methodologically useful, it is not doing any explanatory
work recognizably representational in nature.

I’m sympathetic to the idea that covariational theories can’t ground representational
contents, but even if someone eventually manages to overcome HPC, causal covariation
would remain unacceptable in RPC because it implies LOT, which we already rejected in
the last chapter.

It implies LOT because covariation necessarily relies on a finite set of feature detectors,
and so in order to harbor content productivity they need to be aggregated in complex
compositions, but compositions of basic elements is the crude definition of LOT.

Fortunately we can bypass any worries with covariation, for it is simply not true
that covariation is the only naturalistically plausible source of information: there’s also
isomorphism.

Cummins’ theory of representational contents to account for the semantic dimen-
sion relies solely on it: the representation relationship is nothing but the mathematical
relationship of isomorphism, i.e. for any x, if x is isomorphic to y, x represents y.

Crucially, the representation relationship does not rely on the fact that it is being
currently exploited as such by some system: a map of a city does not become contentfull
only when used by someone, i.e. the content is intrinsic and requires neither conventions
nor covariation.

Thus, to claim that A represents B means just that A is isomorphic to B, not that A
is exploited as a model of B, and only the latter requires B to be fully determined (such
determination is the business of target fixation theories).

Cummins’ theory dodges HPC for not relying on covariation, so there is no grounding
problem.
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Morerover, there’s no mystery regarding the token’s causal efficacy, for both contents
and causal powers are products of the token’s structure, and the possibility of mismatch
between representational content and the system’s fixed target enables a robust and purely
semantic conception of misrepresentation (to be further developed).

In a nutshell, representations are isomorphisms, and the question of what mental
representations are is distinct from the question of how they’re exploited within the
systems which is an empirical matter.

Do we actually exploit structural correspondences?

Though we can be wary of symbols, it seems clear that human cognitive machinery is
capable of exploiting causal correlations through indicator signals (i.e. detectors).

In contrast, the idea that we exploit structural correspondences may not be so readily
acceptable, for the mere existence of structural similarities in the brain’s activation patterns
and wordly structures is not enough to show that it’s the similarity that’s being exploited.

First example: natural images

A good example of this point can be found in the sparse coding approach to the brain’s
processing of natural images.

The core idea is that natural images result from collections of indicator signals.
This is not a general principle for image processing, but an empirical thesis, for the

indicators come from the statistical structure of the images.
Despite the involvement of indicator signals, images are not simply compositions of

them, for the same set of them can account for distinct ones.
Thus, the scheme’s minimal semantic elements are not identical to the set of its basic

semantic elements, as illustrated by the scheme pallete-c, and this means it cannot be
language-like.

The role of indicator signals is not that of providing basic semantic elements, for the
actual contents of images involves significant background cognitive knowledge (i.e. complex
ways of exploiting the available assets).

The sparse coding model prompted a whole field of study.
The approach was later applied to other modalities such as video sequences.
What’s crucial: the image’s content is a product of the token’s geometry rather than

the source of the involved signals, which allows for the kind of structural scheme we’ve
discussed in the previous chapter.

Second example: rats, mazes and food

In order to reinforce the idea that structure exploitation is a feature of biological
cognition in at least some cases, we need to show that and how structural representations
can also participate in non-visual domains.

Cognitive maps in rats are perhaps the most used example of structural representations
in biological systems.
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In order to rule non-representational accounts of the rat’s capacity, we need to
show that representations comprise the best available explanation, specially agains non-
representational accounts such as those formulated solely in terms of affordances.

Newen and Vosgerau show that affordaces have more difficulty in accounting for the
available evidence (e.g. the rat’s learning trajectory and the way information from distinct
affordances would have to be articulated).

Third example: causal structures

Let us now consider the structure of causal domains.
There is evidence that in some cases human reasoning relies on exploiting structural

correspondence.
In a particular experiment, researchers have shown that we do so in order to find the

most rewarding causal path somewhat like a rat finds its path through a maze.
The researchers managed to find some heuristic strategies we apply in dealing with

increasingly complex paths, and they amount to a kind of surrogative reasoning that relies
on structural models.

How to tell whether one is exploiting representations?

In order to know whether a system actually exploits geometrical structure, Shea
suggests the connection between representational accuracy and system performance: if
lower accuracy reduces performance, then the behavior is likely to rely on the structural
correspondence.

Something like this seems necessary because merely detecting instances of structures
within the cognitive machinery can amount to non-exploited contents.

Indeed, for non-innate representational abilities, non-exploited contents are the rule
rather than the exception, for every content must be available before the system can learn
to exploit it.

Moreover, even detector mechanisms are a potential source of structural information
that the system can use to learn about the detected feature (rather than just learning that
it was detected somewhere).

So we must capture more than the existence of structure (we have to capture the fact that
the system is exploiting it in virtue of its form), but Shea’s suggestion is misleading because
good performance may come with bad representational accuracy, and bad performance
can occur even in the presence of accurate structural resemblance.

The more general notion of incidental effects seems to be what we need.
Distinct models producing the same behavioral output may still have distinctive inci-

dental effects.
The argument in favor of representational accounts of rat’s cognitive maps are a real

world example: even though the kind of behavior can be explained without representations,
this alternative would imply incidental effects that are incompatible with the available
evidence (e.g. a distinct learning rate).

A similar reasoning can be used to distinguish cases in which the cognitive apparatus is
relying on representations from those in which it relies on encodings, for different schemes
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provide distinct systematicity effects and these amount to distinct incidental effects.
Priming effects are an example of possible systemacity effect: a scheme might result in

faster processing of its closest systematic variations.
Indeed, incidental effects are informative even when absent (i.e. when ny two models

are able to fully account for the available evidence without any apparent distinction).

The role of representational contents in the assembly of attitude contents

Reliance on structural representations is commited to a somewhat radical departure
from classical cognitivism.

To begin with, we must reject Fodor’s dictum: to harbor an attitude with the content
p is not to harbor a representation with that content.

Whenever one says that the system harbored an |x|, this means that the system applied
a content to a target. It is a case of an application, in which both target and content
dimensions are fully established.

Applications are not just a new way to talk about classic representations. Unpacking
applications is trickier because part of the application content can be due to its target
rather than its representational content.

Some applications may constitute a fully-fledged attitude (e.g. a belief), but that need
not be the rule.

Attitudes can be much more complex and comprise articulations of multiple applications,
attention mechanisms, affections, indicator signals and other kinds of cognitive resources.

The upshot is that representations, targets and attitudes have distinct explananda, and
whatever our favorite theory of attitude contents is, it need not worry about semantic
misrepresentation, for this is already accounted for at the application level.

Non-representationalists also reject the dictum by rejecting any role for representations,
but the previous discussion has shown that this is not necessary, for we can instead
reconceive representation’s role: it need not bear all the explanatory burden of accounting
for attitude contents.

In the resulting picture, the contents of attitudes (propositional or not) are not something
that scientists will get from philosophers working out foundational issues, but something
that must be empirically figured out.

This position is evidently related to a contemporary debates regarding the nature
of belief: while Fodor’s dictum puts all the explanatory burden of attitude contents in
representations, Schwitzgebel’s dispositionalism puts none.

That’s why it is important to keep in mind that the remainder of this work does not
rely on any specific account of attitude contents (except of course for the rejection of
Fodor’s dicutm).

Thus, whatever representations buy us, it must be specifiable independently of any
particular theory of attitude contents. Figuring that out will occupy us in the next section.
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What representations buy us

Both representationalism and antirrepresentaionalism are problematic, if we understand
them as theses about the essence of cognition.

But we can put this idea aside and argue that structural representations are fully
compatible with the core assumptions of 4E cognition: cognition can (rather than needs
to) involve the exploitation of representational assets at least sometimes.

The typical source of resistance comes from thinking that, by allowing the entrance
of cognitive assets born in classic cognitivism, one is making room for the sub-repticious
adoption of unwanted methodological principles, but such principles regard only target
fixation, not representational contents.

Representations, alongside computations, detectors, environmental couplings and the
like, should always be regarded as a pool of available cognitive assets, and determining
which is being employed is an empirical matter.

But there’s an additional source of antirrepresentational resistance: the claim that
representations cannot bear any relevant explanatory role.

However, that is not so. The independence of the target and content dimensions enables
an additional dimension for empirical hypotheses: those relying solely on the difference
between what a token represents and the target against which it is applied to.

In other words, we can disstinguish cases in which correct information is being mis-
handled (using a good map upside-down) from cases in which incorrect information is
being properly handled (correctly using a bad map). The latter is an example of a purely
semantic notion of misrepresentation.

In order to appreciate this insight, it is crucial to emphasize that representational
targets are distinct from actual states of affairs.

Furthermore, as misrepresentation is disjoint from any sort of malfunction or exploitation
error, there’s no direct connection between semantic innacuracy and unfit behavior.

It is commonplace to give up on accuracy in virtue of tractability (a very detailed
map can be more accurate, but it is also more cognitively costly), which means that
misrepresentation can be the reason behind apt behavior.

Antirrepresentationalists are probably tempted to disregard misrepresentation as the
kind of error that can be reduced to exploitation error, but now they have no HPC to rely
on, and they can only bet that non-representationalist accounts will always turn out to be
the best available explanations, a much weaker position against representations.

But perhaps surprisingly, antirrepresentationalists are not the only ones tempted to
make that move and claim that semantic innacuracies are actually exploitation errors.
Most representationalists do that as well, as we’ll see now.

What most representationalists got wrong

Classically, in trying to account for the explanatory value of representations, many
representationalists stick to what Haugeland called change of dimension: a complex causal
structure is revealed as semantically assessable.

For any science trying to describe cognitive capacities in terms of the satisfaction of
epistemic constraints (partially or completely), this is a crucial move, but dimension change
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is compatible with accounts that trivialize or deflate the explanatory role of representations
in cognition.

Thus, representationalists agree that in order to have representations playing a non-
trivial explanatory role, we need misrepresetation, but they usually think that the only
possible naturalistic account of misrepresentation involves taking misrepresentation as
boiling down to non-representational issues (malfunction, less than ideal conditions, etc.).

To see this, consider a crude version of conceptual role semantics (CRS): the usage
pattern fixes both target and representational contents, precluding any possible mismatch
between them.

That is why Cummins claims that CRS is a kind of (equally crude) valence theory (in
reference to the valence bon theory from chemistry): valences are a kind of fiction.

In other words, within CRS the representation’s contribution can’t go beyond that of
glossing complex causal structures in semantic terms, i.e. dimension shifting, which renders
them explanatorily idle (the explanatory burden is being carried by the representation’s
raw causal role, rather than its contents).

Since CRS conflates the target and content dimensions by definition, in order to avoid
trivialization one has to bring some new, non-semantic, element to the table in order to
distinguish content-fixing cases from content-determining cases. This allows for mismatch,
but it’s just like the antirrepresentationalist strategy of reducing semantic error to other
kind of error, thus preempting the purchase of a purely semantic dimension for empirical
theses.

This conflates semantic accuracy and behavioral fitness, as the norm for correnct
representation boils down to the norm for apt behavior.

A more concrete example can be found in Millikan’s strategy: the non-semantic element
she brings to distinguish accurate from innacurate representation is adaptability.

Thus, semantic accuracy derives from behavioral fitness, but this inverts the explanatory
order: rather than explaining cognitive performances with the help of representations,
we’re attributing representational conttents with the help of behavioral performances. No
wonder the antirrepresentaionalist claims representations are not doing any work. They’re
not.

That’s why we can safely claim: it is the absence of a purely semantic account of
misrepresentation that opens up the possibility of questioning the explanatory role of
representations, and that is what the distinction between the target and representational
content dimensions buy us.

We should stick to Cummins’s approach, thus. In the resulting picture, whenever
representations participate in the best available explanation for some cognitive performance
or capacity, there will be no reason to avoid them.

Apes, humans and representational redescription

We’ve seen reasons to accept that representations can participate in cognitive explana-
tions, but what about representational redescription processes?

In what follows, I’ll suggest that representational redescription — as well as encoding,
task-embedding and the like — enable the formulation of more refined and (hopefully)
fruitful empirical hypotheses regarding the continuities and differences of human and
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non-human cognition.
The contemporary debate comprises two dimensions: an empirical characterization of

the differences between human and non-human cognition, and a characterization of what
underlies these differences. First I’ll consider the view of Penn, Holyoak and Povinelli
(PHP) about the former.

Roughly, the idea is that humans can make judgments relying on information not
directly available to perception (we can rely on “unobservable” properties such as weight).

Povinelli’s work concentrates on the ape’s capacity to handle things like cause, weight
or color across perceptually distinct categories.

PHP think that human and non-human cognition can be graphed in a continuum
towards a physical symbol system (PSS), which is essentially a kind of LOT-powered
system: they call this idea the symbol approximation hypothesis (SAH).

They think that we need symbols (i.e. absolute contents) to refer to things that cannot
be structurally “pictured”: causality, weight, triangularity, leftness, etc.

Thus, there seems to be a tension between RCP (which rejects absolute contents) and
SAH, and I think the change that will solve the tension must be made on the SAH side.

What’s wrong with the symbol approximation hypothesis

By depicting human-like capacities as PSS-like, SAH leads us to believe that we need
two distinct representational systems: a pattern completion one (as the ones we find in
neural models) and a symbolic one.

But there’s no sufficiently robust reason to think that non-symbolic machinery can’t
handle what’s needed.

Furthermore, there’s nothing necessarily symbolic about the human capacities listed by
PHP. Describing a capacity as “PSS-like” or “near-PSS” implies assuming what they’re
trying to establish.

Perhaps an alternative to try to save the symbol talking is by offloading them to the
environment, but the difference between the human and other primate’s cognition can be
neither solely nor mostly out of our heads, and offloading symbols throwns no light on
that difference.

By getting rid of the symbol talking, one can realize that what we need are not symbols
for |cause| or |weight|, but rather concepts.

Structural representations cannot picture leftness, but they can underlie a lot of
knowledge regarding leftness.

The same goes for cause, weight and so on: what’s distinctive of the human cognitive
capacities involves differences in what comprises the underlying knowledge about these.

Rather than being increasingly symbol-like, the distinction in cognitive capacities may
be along the dimensions unfolded in the previous chapters: we may use different schemes,
exploit them differently, etc. This enables a more refined talking about discontinuity
between ape’s and human’s cognition.

Some may say we have an alternative to SAH, not a knock-down argument against it,
but there are deeper problems.
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Even in fully-fledged PSSs, what explains the capacity to handle cause or weight in
different perceptual domains is not a symbol, but whatever the system knows about its
referent (i.e. a concept). A symbol that refers to cause cannot do the same job as a concept
of cause.

A concept of cause in a symbolic system would be akin to a concept of cause in a
non-symbolic system, only seriously constrained, for all the knowledge comprising it would
be language-like. Why talk about symbols at all?

A possible reason could be that symbolic systems buy us logic-like compositions, but
that’s misleading, for things like negation doesn’t apply to concepts (negating the concept
of dog doesn’t get you a concept of non-dog).

Thus, the problem with the reliance on symbolic machinery — even by means of
approximation — as a way to express what’s peculiarly human in cognition, is that PSSs
are silent about what really matters.

The relational redescription hypothesis

Similar behavior need not imply a similar cognitive apparatus, and RCP is suited to
work out the minutia of PHP’s relational redescription hypothesis about what underlies
the distinction between humans and other primates.

PHP present their understanding of what relational redescription is, as well as his
arguments using as example the evolution of social cognition: many think that social
cognition must be grounded in the capacity to render theories of mind (TOM).

In stark contrast, PHP think that social cognition can be articulated without TOM.
While the TOM hypothesis explain social behavior by positing the existence of human-

like mental states about someone else’s mental states, the relational redescription hypothesis
claims that social behavior emerged without relying on anything peculiarly human.

It goes beyond social cognition: the crucial claim is that what we regard as “high
level cognitive capacities” comprises the human capacity to reinterpret evolutionarily old
abilities and mechanisms used to cognize social or causal domains in less-than-general
terms.

This is also the spot where the extra degrees of freedom yielded by RCP pays dividends,
for the differences can be modeled as the result of reinterpretative abilities that comes
from increasingly complex and richly articulated contents comprising concepts.

Domain bootstrapping

Let’s sketch a possible account: what does it take for a system to grasp a domain with
a higher level of abstraction?

First, remember that structural representations are compatible with both online and
offline capacities, and the same representational asset can participate in both.

Any structural representational resource employed in action and perception (i.e. online
capacities) is also available to play non-trivial roles in planning, reasoning and thinking in
general (and that comes without any worries about FP).

However, not every capacity to negotiate a domain can be regarded as a simulation of
lower level perceptual ones, for we do things like playing chess, which comprises a very
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distinctive kind of structure. How can such a domain come to be?
Andy Clark presents a possible bootstrap story: by associating a portion of knowledge

to a public symbol, we can both associate those “objectified wholes” with each other
(as we do in “healthy weight”), and as this kind of association goes on, we get new
structured domains, and these can be cognized through specific models (maybe using
specific representational schemes), that capture the new domain’s expressive power and
systematicity.

For instance, by spatially separating washed and unwashed itens, we learn to abstract
that peculiar property from the item’s other perceptual properties.

Proto-versions of this capacity can be found even in apes.
Though PHP question the interpretation of some of these findings, the issues they point

out is mostly related to their commitment to SAH, and thus we need not worry (much)
about it.

As this capacity is reiterative, much of human’s higher level cognitive capacities might
come from cumulative cognitive technology.

Many distinct higher order domains may emerge out of processes like this, including
those underpinning social practices, intistituions and of course chess.

Thus, the cognitive gap between humans and other primates might be large enough to
establish robust differences in cognitive mechanisms, but not to the point where we would
have to assume some completely different kind of mechanism (like a proto-symbolic one),
and all the evolutionary difficulties that come with it.

Furthermore, Clark’s story is consistent with Hurley’s picture of “islands of rationality”
we used in chapter 1 in order to characterize islands of integrative capacities.

Now let’s put it to test: one of the cognitive abilities that PHP describe as exclusively
human is that of making similarity judgments by attending to non-perceptual features.

At this point, it might still be puzzling that, at least in the cases where structural
contents are all we have to compare cognitive knowledge, what exactly is being compared
whenever two instances of the concept of cause from distinct domains are regarded as
similar? So let us unpack this a bit more.

Similarity judgments within emergent domains

To see how structures can handle similarity judgments, let’s consider Churchland’s
suggestion that we can understand semantic similarity (or even identity) in terms of neural
state space similarity.

Fodor and Lepore challenged Churchland’s account of neural semantics claiming that it
required unrealistic conditions in order to ascribe the same representational content to
any two systems.

Churchland’s answer is that representational states are functions of sets of possible
positions within the same activation space.

Structural contents can be thus carried by partitions of activation spaces.
Churchland relies on a technique for similarity analysis suggesting that the structures

are objective.
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Researchers using this analytical tool have shown that even distinct neural models with
heterogeneous activation space bear similar geometric patterns of activation.

The upshot is that we need not fully-fledged “logical and abstract” capacities in order
to go beyond perceptual stimulus.

Neiher we need fully-fledged linguistic promiscuity: different systems need only to share
enough of the structure domain involved in using a given concept and similar developmental
trajectories are sufficient to account for that.

What now?

The first important purchase made in this capter is a non-trivial explanatory role for
structural representations even in accounts of 4E cognition.

The second is in the considerably large and flexible dimension in which we can place
empirical hypotheses about what’s peculiar to human cognition.

Now everything we need to make a representational attempt at handling RP without
worring about FP is in place.
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4 INFERENTIAL PRODUCTIVITY

The major claim of this chapter is that relevance-sensitivity is a cognitive gadget.
It amounts to a “cognitive style”, a gadget that evolves through cultural evolution and that
is culturally inherited. It guides and constrains how the system exploits its own cognitive
knowledge. The gadget comprises a finite and relatively small set of templates that are
always operative, always “trying to happen”. Such templates arise from the representational
redescription made by neural control structures (i.e. gating mechanisms) that are deeply
involved in the brain’s dynamics. Such redescription process involves learning from second-
order structures that emerge out of the system’s stored experiences (i.e. the set of ways in
which the system has previously exploited its own cognitive knowledge). As the dynamics
of the system’s stored experiences are shaped with the help of culturally established traits,
the structure of their dynamics represents what’s culturally relevant. While learning from
them, these redescription mechanisms apply further culturally inherited biases. This allows
the system to forge and exploit representational permutations of its previous experiences in
way that is flexible yet constrained by what’s culturally relevant. Thus, both the system’s
experiences and the way they’re exploited in order to guide cognition are shaped by culturally
inherited traits. This results in a picture where the cognitive machinery’s dynamics is both
constructed and constrained by culturally established relevancy. We have thus the grounds
for relevance-sensitive inferential productivity.

4.1 Where are we at?

It’s been a long way, so we’d better take stock and make sure that everything
discussed so far is clear. We’ve seen reasons to think that the capacity to stick to what
is relevant is central to human-like cognition and cannot be simply avoided nor put
aside. It underlies capacities such as commonsense and situation holism, for without
relevance-sensitivity, there’s no way to handle non-saturable contexts. The core issue,
dubbed relevance problem (RP), is to explain how we can know what’s relevant at any
given situation. What’s relevant depends on the system’s current context, but figuring
out the appropriate context with which to interpret the relationship between the system’s
surroundings and the system’s expectations and goals relies on what it takes to be relevant.

We’ve also discussed why classic LOT-powered systems seem unable to handle
RP: cognition guided by absolute contents face the frame problem (FP), an additional
issue that renders the pursuit of relevance-sensitivity hopeless. Though one can bet on
non-representational approaches to avoid FP, we’ve seen that the move is not necessary.
Structural representations are immune to FP, and this opens the way for an account of
RP that does not shun representational explanations away. The deployment of multiple
structural schemes enable a non-explosive kind of representational productivity that is
compatible with the relational redescription hypothesis. This is a particularly interesting
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outcome. Throughout the years, RP was regularly characterized either as a problem that
would only affect representational frameworks (Bickhard, 2001; Dreyfus, 2007), or as a
problem that bothered every framework equally (Samuels, 2010). Neither stance is right
on target, or so I’ve tried to show. RP bothers everyone, but not equally. Those insisting
in handling it through absolute representational contents face a dead-end, which is FP.
Though the idea that structural representations can be of help against FP is not new
(Haugeland, 1987; Janlert, 1996), up to this point, most authors just made a vague appeal
to non-sentential representations and left the issue at that point, without fully developing
its consequences and possibilities. This of course was never enough neither for a (then)
heavily LOT-driven community, nor for those willing to fully reject representations. Costly
large-scale overhauls don’t happen unless people are convinced that there is no other
reasonable way forward. In this sense, Waskan (2006) is an honorable exception: he has
shown show that structural representations are immune to FP and can account for a
reasonable amount of representational productivity. I don’t think he went deep enough,
though, for I believe that only by going plural about schemes we can see not only that,
but also why structural (i.e. relative) contents can really make a difference FP-wise.

Given everything we discussed, it seems clear that figuring out what’s relevant
cannot be the goal of any functionally individuated cognitive task, whatever the assets
involved, for the task itself would inevitably suffer from RP. It follows that relevance must
be some kind of emergent property. Functionally isolated performances of distinct cognitive
mechanisms and assets bring forth a cognitive economy that mirrors what’s contextually
relevant. As extensively discussed in the first chapter, the cognitive economy may be
understood either in terms of a more-or-less system-wide state or in terms of the articulation
of m-contexts. Which story better accounts for what really happens is, and should be,
regarded as an empirical issue. That is, the commitment to a cognitive framework or
another should not constrain the formulation of empirical hypotheses involving one or
another. Thus, whatever the overall system’s organization amounts to, what matters is
that it constrains the future performances from its comprising mechanisms in a relevance-
sensitive way. But of course the million dollar question remains untouched: how can the
system either figure out (or be lucky enough) to enjoy the appropriate contextual tonality
beyond chance? After all, this seems to assume, rather than explain, some pre-established
harmony between what’s relevant and the agent’s cognitive economy. It remains to be seen
how inferential productivity can occur within the contextually relevant set of constraints
even though such constraints cannot be cognitively inferred.

The claim that relevance-sensitivity must be a consequence of the system’s overall
dynamics is specially worrisome for those commited to the idea that cognition can only be
properly explained by subsuming performances under some kind of epistemic rationale. The
idea behind this constraint is somewhat like contemporary demands of explainability for AI
models. Simply pointing out that a model gets there somehow — like most contemporary AI
applications do — is not enough. We want to understand its underpinning rationale. Why
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has a given conclusion been reached? Its inferential process must be rendered intelligible,
which means it must answer to epistemic constraints. But what exactly comprises such
constraints? Classic cognitivism understood the pursuit of such a rationale in a very
strict sense. It would comprise logic-like inferences expressed in linguistic form. Thus,
epistemic constraints were usually understood in terms of truth-conditions. Nowadays,
not many are willing to understand “cognitive inference” in such a narrow way. Indeed,
if the “ought implies can” principle obtains when assessing cognitive performances of
real-world systems, then different architectures, contents and cognitive assets imply distinct
epistemic standards under which these must be assessed.1 If RCP is remotely right about
anything, then simulation-based inference relying on structural (i.e. relative) contents
is likely to be the rule rather than the exception, at least inasmuch as representational
states and processes are involved. Relative contents, as discussed, cannot be assessed in
truth-conditional terms. Rather, they’re more or less accurate structural depictions. This is
definitely not the place to develop such a complex topic, but it is important to understand
that the connection between the rationale requirement and cognitive explanation does not
imply anything remotely similar to the classic understanding of rationales.2 Epistemic
rationales need not — and probably cannot — be what they used to.

Where that leaves the capacity to handle relevance? It is tempting to suggest that
there can be no rationale underlying relevance sensitivity. There are good reasons to
believe that no rationale relying on classic computational architectures handling absolute
contents can do. Indeed, every rationale seems to suppose it rather than to explain how
we get to it. Classic cognitivism would consider anything that cannot be explained under
some rationale as non-cognitive. Chapters 2 and 3 have shown that such pessimism is well
grounded: given FP, there seems to be no hope for rationales expressed with absolute
contents. This is Sperber’s approach when discussing sensitivity to s-relevance. In order to
avoid circularity, he gives up on rationale-grounded explanations and grounds expectations
of s-relevance in non-cognitive physiological markers. But what about relative contents
and other architectures, such as that suggested by RCP? A plurality of structural schemes
brings with it a plurality of architectural constraints. These are the much discussed
assumptions that any scheme makes about its target domain. However, domains are too
coarse-grained. They can preempt the system and make sure it won’t go astray, that is,
it avoids the explosiveness associated with absolute contents. It would be implausible to
claim that architectural constraints are enough to avoid RP, though. The major question
remains open: couldn’t relevance be the outcome of some complex-yet-intelligible rationale
relying solely on information structured according to a plurality of schemes?

As it stands, the idea shines no light on how that could be done. We still have to face
the challenge of finding the contextually relevant way to articulate the available structural
information, which is just another way to state that we still have all the way to go towards
1 See Cherniak (1990) for a development of this point.
2 See Cummins; Poirier; Roth (2004) for a first step in fleshing out this idea.
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a solution to RP. Here’s why: in our cognitive lives, we presumably represent and exploit
many structural models, and thus the possibility emerges that we can articulate them in
indefinitely many ways. This multiplies the set of possible permutations indefinitely. Thus,
in order to handle RP, one has to know which models to apply, and which among the
resulting set of possible permutations are relevant. The correct application of structural
contents seem to rely on relevance-sensitivity. It is helpful to see how Vervaeke; Ferraro
(2013) put this point:

To direct behaviour towards some future state of affairs requires some
representation of that state of affairs. However, representations are
aspectual by nature since one does not represent all of the aspects or
features of a thing. This means that one needs relevance realization to
generate good representations because one has to pick which aspects
are relevant to represent. This is a patently vicious explanatory circle.
(Vervaeke; Ferraro, 2013, p. 10)

We can understand the “aspectual” nature of representations in the sense that a
single object (or process, or state of affairs. . . ) comprises indefinitely many structures. At
any given moment, a mechanism can fix on any of these structures as its target. Sometimes
distinct temporal and spatial structures can be targeted at the same time and mutually
inform each other.3 But it is evident that the complex articulation of these resources must
be already sensitive to relevance. If we try to make it the source of relevance attribution,
we fall in the vicious explanatory circle that Vervaeke mentioned. Since this is all evidently
true of structural representations, it follows that they provide no direct answer to RP,
even though it is an open question whether we could find some rationale leading to it.

Should we go non-cognitive then? The issue with this idea is that whatever accounts
for relevance sensitivity must be a potentially exploitable source of further knowledge.
We’re not only tuned to what’s worldly relevant in already familiar circumstances: we
can also extrapolate from it. Commonsense, remember, is not just about handling
what’s routine or typical. Moreover, thanks to the non-saturability of contexts, even
typical situations may require atypical connectivity between different portions of cognitive
knowledge. Knowledge about time-zones may be necessary to schedule a call, depending
on the participants’ geographic location. Thus, storing what’s typical is not enough.
Whatever accounts for out capacity to fix on what’s circumstantially relevant must be
available for extrapolation in a way that preserves this sensitivity (i.e. in a way that remain
epistemically constrained).

This is also manifest in our capacity to make judgments about what is likely to
be irrelevant in conservative variations of what’s typical. Nobody is likely to convince
a jury of one’s innocence by alleging a failure to see the relevance of something widely
recognizable as such. Even when providing post-action rationalizations, we can tell the
ones that stand a chance in the jury of public opinion from those that do not (“I did
3 This is the core idea behind predictive processing’s multi-level architecture.
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not spill the coffee on purpose, I just didn’t realize that the cup being full is a relevant
feature to consider when deciding to put some more.”). Importantly, this is not about
being able to extrapolate without failure. We fail more frequently than we’d like to admit.
McDermott (1987) exemplifies this with the story of how he was soaking a tablecloth in
the sink while his wife was using the washing machine. Both knew the washing machine
would discharge into the sink and cause a deluge. Even so, none of them realized the
need to do something about it. But when the deluge actually took place, they could
immediately understand what happened. The point, thus, is not that we always recognize
what’s relevant. Rather, there seems to be a properly human way to fail at that while
keeping above chance. Some failures may sound funny, because most people can recognize
themselves as being able to make the same mistake. At the same time, other failures
would be regarded as strong evidence that there’s something wrong, or that one’s engaging
in a childish lie. Thus, accounting for relevance presents us with apparently incompatible
requirements: relevance sensitivity cannot be the output of any cognitive task, and yet
it must be at least potentially exploitable by other cognitive processes. How can this
tuning be sensitive to features that are available from the complex articulations of different
mental models without actually making use of them?

In what follows, I’ll make a tentative suggestion of how this can be achieved. It relies
on structural representational contents and mechanisms of representational redescription,
both understood as previously discussed. But it’s not my intent to claim that this is the
only way to account for relevance. Those working with non-representational approaches
(e.g. enactivists) may well provide a similar bootstrap story that does not involve any
kind of representational contents. According to the claims previously made, whether
a given system relies on representational contents is ultimately an empirical question,
and should be determined one capacity — or performance — at a time. However, I do
suspect that structural representations provide the best trade-off between theoretical
commitments and cognitive purchases that nature has at its disposal. That’s why I think
that a representational account is worth formulating and submitting to further empirical
validation.

We’ll start with a quick discussion about how cognitive mechanisms can achieve
the right level of flexibility that context-sensitivity requires, all without giving up on
mechanistic explanations. With a flexible machinery and a place from which a system can
learn what’s relevant, we still have to face how we can learn what’s relevant. Learning is a
relevance-sensitive task itself, after all. I’ll try to provide a bootstrap story of how we “can
learn to learn” what’s relevant with the help of Cecilia Heyes’ cognitive gadgets framework.
If successful, this will be enough to account for how we deal with what’s typically and
familiarly relevant. But a successful account of relevance sensitivity, one that is able to
render commonsense and situation holism non-mysterious, must also explain our capacity
to extrapolate from the familiar without loosing track of what’s relevant. This will be the
last step in the discussion.
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4.2 Effective connectivity

How can the brain’s overall structure be functionally analyzable, broadly integrated
and yet flexible enough to engage in tasks that seem to require a broad redesign of its
whole functional structure? This question underpins much of the discussion that took
place in the first chapter. On the one hand, we have frameworks that unwillingly preempts
any hope. Classic LOT enables a broad integration by adopting the assumption that
the mind trades on a single currency, which is the absolute content that LOT carries.
But whenever the kind of flexibility required for RP is needed, FP ensues and render the
requirement unreachable. The more flexibility is needed, the less we can model it. The
attempt to tame it with m-contexts (as discussed in chapter 1, they’re roughly a kind
of compartmentalization that enables the system to select small portions of its cognitive
assets) has led us nowhere. A pessimistic view on this is behind Fodor’s famous “law of the
non-possibility of cognitive science” (1983). In a common variation, proponents of massive
modularity usually - but not necessarily - rely on a similar trick. Though they reject the
idea of central processing, they must be able to articulate many modules when handling
complex tasks, and the positing of a common currency to inter-module communication is
surely helpful.

On the other hand, there are frameworks that seem to enable a high level of
cognitive flexibility. And they do that without giving up on the idea of m-contexts. The
already discussed example is Wheeler’s broadly Heideggerian approach (2005). However,
there is a catch: whenever the requirement for flexibility becomes too complex or too
broad, Wheeler’s account relied on a broadly dynamic account of the brain dynamics - one
heavily relying on Dynamic Systems Theory. Dynamic models, however, employ a different
explanatory strategy, which is subsumption under law (Cummins, 2010a). In contrast, the
explanatory strategy being pursued here is the more “classic”, mechanistic one: we want
to know how something works. We want a broadly functional and mechanistic account
of how the mechanisms underlying a given capacity or performance work - the kind of
explanation that is revealed by functional analysis.

Maybe Clark (1997a) was right when he claimed that some of the brain’s dynamics
are so complex that they cannot be subjected to the analytical explanatory strategy. But
I’m not so sure. Much of this thinking is motivated by an excessively narrow conception of
the analytic strategy. It is usual to think that it implies adherence to classic computational
models, symbolic media or even particular architectures such as Hurley’s sandwich model
(Hurley, 2001).4 We’ve dedicated a good deal of chapter 3 to see that none of that is
necessarily the case. Rather, it is possible that a structural representation can be exploited
by the same kind of coupling that would comprise the exploitation of a structure that
is not within the cognitive apparatus. If there are mechanisms capable of coupling with
4 I take this to be a fundamental issue with the arguments employed by Van Gelder (1995) in his defense

of dynamic models.
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external structures, there can be mechanisms coupled with inner structures as well.5 And
it may well be that such couplings are too complex or too fine-grained to be functionally
analyzable. But this goes both ways: if the analytic approach is not committed to the kind
of computational architecture nor the representational genera that its adversaries take it to
be, then it is potentially able to encompass a lot more than it is usually thought. Piccinini’s
work (2021, 2022) is a good example of how this idea can be fledged. His framework
employs the analytic explanatory strategy (in his words, mechanistic explanations) on
4EA cognition. Thus, it is quite unclear whether this explanatory strategy has the
limitations that many attribute to them. Most (perhaps all) of the typical examples are
only problematic for those commited to the computational architectures and symbolic
contents characterizing classic cognitivism.

The main topic of this session remains so far untouched: can a broadly mechanistic
approach, at least in principle, make room for the outstanding level of flexibility that seems
to be required? A manifestation of the issue, remember, is the question of how a system
can have efficient access to the right portions of its knowledge. Functional approaches
find the ground for the required flexibility in how the system is functionally organized
and compartmentalized. But there’s no context-free organization that is adequate to the
overwhelming set of non-saturable contexts humans face. Thus, relying on organization
implies the need to reorganize and reassemble according to the system’s current environ-
ment, as well as its needs and expectations. In this sense, the organization itself plays a
heuristic role. Cognitive machinery must be broadly integrated while, at the same time,
not restricted to a single organization. But how can such wide reorganization takes place
if the reorganizing process must itself rely on how the information is currently organized?

The first step is to get rid of a certain traditional way of thinking about the
functional explanatory strategy. This view assumes that the decomposition afforded by
functional analysis yields a 1-1 mapping between a function and a neural substrate. Each
neural structure can carry a single function. Sometimes this is taken to mean that we can
make sense of these functions by studying them in isolation. But in many cases, there’s no
such 1-1 mapping between functional attributions and neural structures (Anderson, 2014;
Pessoa, 2022). In different circumstances, the same neural substrate can carry distinct
functions and the same function can be yielded by different neural substrates at different
times. The upshot is that there can be more than one way to analise the same cognitive
function or performance, for the analysis itself may be context-sensitive.

With this in mind, the second step is to provide a sketch of how could this story
about context-sensitive function attribution be told. We can find a clue in what Clark
dubbed neural control structures. These are:

(. . . ) any neural circuits, structures, or processes whose primary role is
to modulate the activity of other neural circuits, structures, or processes

5 “There can be” is not an empirical assertion. It means simply that this possibility is not precluded by
RCP.
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— that is to say, any items or processes whose role is to control the inner
economy rather than to track external states of affairs or to directly
control bodily activity (Clark, 1997a, p. 136)

The hypothesis is that there are neural populations devoted to modulate the flow
of activity between cortical areas. Essen; Anderson; Olshausen (1994) provides a useful
analogy: such neural populations are responsible for the inner traffic of useful materials
between functionally distinct portions of the brain.

The production process involves careful selection of useful materials,
discarding of excess or unnecessary materials, and transforming and
repackaging of the desired materials in an appropriate configuration for
the particular applications for which the product is intended. For efficient
function, the flow of material must be carefully monitored and controlled.
This requires specialized systems that are explicitly designed for this
purpose, rather than for construction and fabrication processes per se.
(Essen; Anderson; Olshausen, 1994, p. 298)

If van Essen is right, there are mechanisms specialized in providing a kind of
gating function between distinct mechanisms. By “gating” I mean not just enabling or
disabling information traffic. It has an active participation in how different mechanisms in
distinct parts of the brain may articulate themselves and influence one another. The exact
nature of such mechanisms may vary and there may be dispute about how they’re better
modeled. Essen; Anderson; Olshausen (1994) take them to be functionally identifiable
information-routing control neurons in the brain. Damasio’s well-known convergence zones
would be another example of brain structure that could fill the role of gating information
among distinct mechanisms (Damasio; Damasio, 1994) And of course there’s Clark’s
contemporary approach within predictive processing, which relies on precision weighting
(Clark, 2016) All of these comprise wide-scale theories about how the brain is able to
integrate and articulate distinct mechanisms in complex ways.

Neural control structures allows us to understand how many distinct mechanisms
can interact in ways that render RCP’s suggestion of representational productivity more
plausible. The involved mechanisms need not trade on a single currency, that is, they
can represent or encode information in proprietary formats, but still be integrated and
articulated. Friston (1994) calls the influence that a neural mechanism is able to exert over
another its effective connectivity. We can expand this understanding and say that the set
of possible inter-subsystem influences comprises the system’s overall effective connectivity.
This is distinct from the pattern comprising the brain’s physical connectivity, for it may
involve lots of short-time transient assemblies comprising very specific articulations of
distinct mechanisms. In the resulting picture, distinct mechanisms - perhaps representa-
tional ones - with different architectures exploiting distinct cognitive assets may interact
in complex ways. This complex articulation of distinct mechanisms enables the system to
comprise transient sub-systems that are tailor-made for the situation at hand. Indeed, as
previously noted, there is growing evidence that the brain is able to broadly reconfigure
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its overall pattern of effective connectivity in a fluid and context-sensitive way (Anderson,
2010, 2014).

This puts a lot of weight on neural control structures — and on whatever specific
mechanisms turns out to play this role. They enable us to understand how broadly
mechanistic accounts can present a high level of flexibility. But how do they “know” the
pattern of effective connectivity that the current situation requires? Van Essen claims
that, in at least some cases, like that of the visual processing machinery, the involved
gating mechanisms are innate (Essen; Anderson; Olshausen, 1994). But of course this falls
short of an adequate account. If we are supposed to get off the ground, neural control
sub-systems must be developed throughout the agent’s lifetime. That is, the agent must
learn its way through the possible patterns of effective connectivity. This amounts to the
need to learn what’s relevant at each situation.

At this point, it is tempting to think that there’s no mystery to it. As the
agent grows, it becomes familiar with a growing set of specific situations in the world.
Connectivity patterns are a just way to “store” this familiarity. In this view, the system’s
inputs are enough to drive neural control structures towards the right direction. Thus,
in similar enough situations, the required pattern will be rendered again and the system
will be able to handle it as before. All that neural control structures would need to do is
analyze the inputs, search for similar structures and modulate the flow accordingly.

However, similarity-based recognition of the current situation is a non-starter.
Everything is similar and dissimilar in indefinitely many ways. Being comprised of mostly
water is equally true of both the human body and a cup of tea. Moreover, both can share
lots of typically irrelevant features, such as being in the same place, existing the same
time, and having less weight than the Eiffel Tower. Thus, even to recognize something as
similar the system must first zero in on the set of relevant features. If we make similarity
recognition to be neural control structure’s business, the only achievement will be to shift
RP someplace else. To make things worse, the same issue applies for learning tasks. The
environment in which learning takes place is equally filled with irrelevant features. We
have the required flexibility, but it remains blind to what’s relevant. How can it learn to
see?

4.3 Can we learn what’s relevant?

Where does relevance comes from? Who or what gets to determine what is
relevant and what is not? Fodor’s answer to this question draws on scientific inference:
relevance is an objective property. It exists independently of any cognitive system. It is
no coincidence that Fodor’s paradigmatic examples come from science. For instance, most
metallic materials expand whenever heated. Thus, changes in temperature are relevant to
determine changes in its shape, volume or density. But no one would — at least no one
should — understand relevance in such a narrow way. This kind of knowledge is the result
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of years, sometimes centuries of hard work from multiple agents building on one another.
If RP was about tracking this kind of relevance, it would amount to the problem of how
we can know everything there is to be scientifically known. That’s evidently not what’s
at stake. Science is likely to be human’s most challenging endeavor. The task of figuring
out the relevant many-to-many relationships that everything bears to everything else is
likely to be a non-ending task. Even though scientific endeavors allows us to know some
of what’s objectively relevant in this sense, this is definitely not what we have in mind
when we claim that human cognition is sensitive to relevance.

Some might be tempted to disagree by saying, e.g. that the relevance we’re sensitive
to is objective in Fodor’s sense, but that it should be regarded as a regulatory ideal. In
this view, we’re the kind of creature that got lucky to grasp enough of it to ensure the
continuity of our species. But that’s not the point. Science is about what’s true. Relevance,
as discussed here, is about what’s fit to a given context. And this context is the complex
articulation of many environmental and cognitive assets, including the systems’ goals and
expectations. In this broader sense, what’s contextually fit may coincide with what’s
true, but that’s not always the case. It encompasses also pragmatic considerations. Is it
OK to answer “would you pass me the salt” negatively? The doorbell is ringing, should
I answer it? The norms against which answers to these questions should be measured
with are not a regulatory ideal of what is objectively true. Cognition must track what is
taken to be appropriate in a given culturally pervaded human world, i.e. the structure
of human activities and the set of possible contexts in which they may take place. In
this sense, human cognitive activity must be constrained by the structures comprising
human activities. It comprises clusters of different kinds of norms and distinct kinds of
authorities.

We are introduced to what is relevant as we’re introduced to everything that
comprises the human world. This may involve lots of things, such as scientific knowledge,
institutions, habits, community standards and other cultural elements. As we learn to
inhabit the human world, we learn to cope with what’s relevant for the activities that
take place within. In this sense, relevance emerges as a structural trait that’s out there for
us to cognize. This is where the temptation to offload relevance-sensitivity to the world
takes place: can’t we simply let the structures of the world guides us? We need not infer
that we’re in a certain circumstance. We’re always coupled or somehow tuned to the right
set of features of the world, and this puts our cognitive machinery in the right contextual
tonality (i.e. in the right pattern of effective connectivity). Thus, the human world itself
is structured in a way that takes us from context to context. But we must remember an
already formulated issue: what comprises the “right set of features”? The same state of
affairs can be framed in indefinitely many distinct ways, and these inevitably take into
account the goals, interests, and the overall set of available cognitive capacities of the
cognizer. To track what’s relevant involves much more than simply let oneself be guided
solely by what’s out there.
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Moreover, even if we could offload all this cognitive work to the world, it would
not be enough. We quickly addressed this issue in the first chapter: learning is also a
cognitive task, and as such, it suffers from RP. As a first approximation of what’s at stake,
let us consider how the issue arises in artificial neural networks (ANN). What makes them
really useful in machine learning is not so much their capacity to recognize particular
elements that were present in their training corpus, but the capacity to generalize from
them. This kind of generalization is of a different sort, however, for we’re not talking about
induction. Generalization in machine learning means a kind of tolerance for difference.
This capacity underwrites the network’s knowledge that the current input is a familiar face
under different light conditions, and not a face from somebody else. But it’s very hard to
learn the right amount of tolerance. If it tolerates too much, the ANN will get a lot of
false positives, but if it’s too narrow, then the result can hardly be considered knowledge
about any structured domain, for what we’ll have is akin to a look-up table used to label
previously known inputs. This is why the ability to generalize is necessary. But if that’s
the case, then we have to deal with a pressing question: which features among those that
figure in the training corpus should be considered when generalizing? This kind of issue is
well illustrated in the following charge:

Figure 13 – What’s relevant about daddy?

As the picture suggests, a given feature can be seen in lots of different structures,
but the feature in question is clearly inessential to what the system was trying to learn
about (presumably, daddy’s perceptual characteristics). Another interesting example can
be found in Geirhos et al. (2019): the algorithm used to learn about elephants from a
training corpus comprised of elephant pictures, usually takes skin texture as essential.
Since skin properties are inessential to elephants, the resulting model knows a lot about
elephant skin, but very little about elephants. It can’t recognize elephants in cartoons or
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elephants in lighting conditions that occlude skin details (such as an elephant against the
sun). According to the researchers, however, this tendency is easily corrected by tweaking
the modeling process in the right way. This can be made both through changes in the
training corpus (add, remove or reorganize data) or in the statistical assumptions of the
learning algorithm. But if such a tweaking has to be figured out by the theorist, then
what are we to say about learning in the wild?6

Presumably, there are lots of different domains with many levels of structured
relations which need to be figured out when learning how to negotiate them. What can
guide learning routines towards the relevant features of whatever it is we’re trying to
learn about? We can’t appeal to the mere availability of the relevant information in the
environment, for the question is just how the learning mechanisms can discern relevant
from irrelevant features when learning about any given target. Like any well formulated
riddle, all the necessary information is there, but it is up to us to figure out how things
should be assembled in order to get it right. How can we avoid the system from going
astray, since virtually any structure may be (wrongly) taken as essential to the learning
target?7 Notice that there’s nothing computationally unfeasible about learning how to
recognize elephants from pictures, and still the system might end up taking skin texture
to be an essential feature. The problem is not that we lack the computational power to
learn all we have to learn, but that in the absence of the proper guidance on how to use
whatever cognitive resources we’ve got, we might still get lost in the way.

In order to dig deeper on the issue, I’ll make use of the distinction put forth by
Clark; Thornton (1997) between type-1 and type-2 regularities. Intuitively, the idea is
simple. Some of our learning relies on being able to grasp patterns or regularities that are
only marginally present in the available input information, whatever the domain. As an
example, consider the famous mutilated checkerboard (MC) problem. MC is a common
example of the role that insight plays in problem solving and overall intelligence. The
kind of insight that relies on commonsense.

Figure 14 shows a normal checkerboard with 8 x 8 (64) squares. Say you have
32 domino pieces. Each one of them can be used to cover 2 adjacent squares in the
checkerboard, either vertically or horizontally. The initial problem is: can we arrange
those 32 pieces in a way that covers all 64 squares? We can easily see and prove that the
answer is yes. However, consider now a mutilated version of the same checkerboard:

As we can see in figure 15, two diagonally opposite corners are missing, which
leaves us with 62 rather than 64 squares. Could 31 domino pieces be used to cover the
remaining 62 squares? What’s interesting about this case is not really the fact that is
possible to do it or not (it is not, by the way), but rather, how we can demonstrate it. If
6 This is not a point against unsupervised learning algorithms. Indeed, the elephant problem emerged

in research using supervised algorithms. Furthermore, our learning system is much more robust, for
we can learn more or less the same thing out of a wide range of different series of inputs throughout
development.

7 For a deeper discussion of this issue in the context of deep learning, see Arjovsky (2021).
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Figure 14 – A normal checkerboard.

Figure 15 – A mutilated checkerboard.

we insist on the same strategy applied before mutilating the checkerboard, we’ll fall into
a combinatorial explosion. Such explosions don’t mean a solution is not possible, only
that we need a new strategy. And we can easily see that it is impossible by taking into
consideration what Kaplan; Simon (1990) dubbed the property of parity: each square has
a color, and the squares are organized in a way that takes the color into account. In this
case, by alternating them into black/white squares. By taking parity into consideration,
we can show that every piece of domino will always necessarily cover a black and a white
square, no matter how we arrange them over the checkerboard. But figure 15 makes clear
that two white squares were removed, which breaks the parity, and allows us to see that a
solution is impossible. Given our current purposes, what really matters is this:

To solve the MC problem insightfully, subjects must switch from an initial
representation that considers only numbers of squares and dominos and
their geometrical arrangement, to a new representation that takes the
parity of the squares into account as well. (Kaplan; Simon, 1990, p. 379)

In other words, the property of parity is irrelevant to solve the first problem, but
absolutely relevant to solve the mutilated version. The essential difference is in how the
problem is formulated. If we insist in formulating MC as a problem about geometrical
arrangement while leaving parity aside, we’ll probably not be able to solve it.
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At this point, it is tempting to mitigate the significance of this example. After all,
the parity is there in the structure for us to exploit. And it seems odd to regard such
a clear black-square/white-square pattern to be only marginally present. But this takes
things backwards. The point is that the checkerboard has indefinitely many properties
other than parity. None of them are equally helpful, but that’s something we only know
after realizing parity’s circumstantial relevance. Thus, the issue is to understand how we
can fix on parity as a relevant target.

The relation between parity and the geometry of the domino pieces is what Clark
and Thornton would regard as a type-2 regularity. Their distinction between type-1
and type-2 regularities relies on the fact that type-2 problems require a rather indirect
form of justification. The presence of a type-2 regularity can be inferred from the input
data, but not directly. It is there to be found, but only after framing the date it in
the circumstantially right way. The following table is used by them to provide a useful
illustration of this idea:

Table 3 – Input-output pairs in training set- from Clark;
Thornton (1997).

x1 x2 y1

1 2 → 1
2 2 → 0
3 2 → 1
3 1 → 0
2 1 → 1
1 1 → 0

The table presents some type-1 regularities such as P(y1=1) = 0.5 (i.e. given any
input pair, there’s a 50% chance of getting 1 as the output) and P(y1 = 1|x2 = 2) =
0.67 (i.e. given that one of the inputs is 2, the probability of the output being 1 is 67%).
These are what Clark and Thornton regard as “direct justifications” that the system can
learn about. Such justifications can be acquired by directly inspecting the statistical
relationship in the input data.

However, there are statistical relationships of this kind that only become available
for direct inspection after the application of some arbitrary function. Consider the function
d(a,b) = abs(a-b). The output of this function is the absolute difference between a and
b (i.e. negative values are rendered positive and -1 becomes 1). If we apply this function
to the input-output pairs in the previous table, this is what we get:
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Table 4 – Derived inputs - from Clark; Thornton (1997).

x4 y1

1 → 1
0 → 0
1 → 1
2 → 0
1 → 1
0 → 0

By framing the input set under d(a,b), a whole new set of inferences become
immediately available by the same kind of statistical inspection previously available with
the raw data. It becomes evident that, whenever d(a,b) = 1, the output is also 1. This
means that the data grounds the following conditional reasoning:

if x4 == 1:
y1 = 1

else:
y1 = 0

Thus, assuming that the system is trying to figure out whether the data grounds
this reasoning, subsuming the data under d(a,b) will make it evident whether that’s the
case. Clark and Thornton’s point is that type-2 patterns become accessible by common
statistical inspection only after subsuming the data under some function. I’ll call this kind
of function (somewhat provocatively) framing function. The parallel with the MC problem
should be clear already. Unless one subsumes the available data under a framing function
that renders parity available, it’s very unlikely that a solution can be found, given the
combinatorial explosion lurking over every function blind to this property.

On the bright side, this means that many hard cognitive problems from very distinct
domains can be solved with a relatively small set of exploitative approaches, many of
which (perhaps all) can be shared by both human and non-human animals. Needless to say,
many such framing functions can be articulated in complex ways, or even recursively. As
Clark and Thornton put it: “(. . . ) a problem whose mature expression poses an intractable
type-2 learning problem can be reduced to a developmental sequence of tractable type-1
mappings” (1997, p. 61). All one has to do is subsume the available information under
the right function. Now, what exactly this subsumption amounts to may vary. There
are many candidates among the kind of cognitive tools previously discussed: it may be
the use of some appropriate representational scheme, the application of the appropriate
exploitative strategy (e.g. task-embedding), or a complex articulation of these. Framing
functions can bear both on how we take things to be (e.g. how we represent or encode
them) and on how we exploit them. They’re a tool for representational redescription.
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However, as the authors notice, now we have the problem of selecting the contextu-
ally appropriate way to render the available information intelligible among indefinitely
many possible ways.

The number of possible recodings8 is simply the number of distinct
Turing machines we can apply to those data. There are infinitely many of
these. Thus the space of indirect justifications is infinitely large. To hit
on the right one by brute-force search would indeed be “serendipitous”.
(Clark; Thornton, 1997, p. 59)

Selecting the contextually appropriate framing function under which to subsume
information is essential, and it is also what triggers RP even in regular episodes of learning.
Thus, learning processes fare no better than any other cognitive process. This is why
one can’t simply learn what’s relevant. At least not in the same sense that we usually
conceive of learning processes. Learning trajectories rely on a fixed target. There has to
be something about which one’s learning. The mismatch between the system’s target and
its current guess about the appropriate way to take or handle it, is the only reason why
there’s some kind of error signal to be tracked and minimized.9 This puts us in a classic
chicken-and-egg situation: in order to learn what’s relevant about its current circumstance,
one has to fix the right set of targets, which means finding and applying the right framing
functions in the right order. But doing so takes for granted, rather than explain, the
ability to identify the contextually relevant articulation of framing functions.

In learning, a framing function is akin to a developmental tweak. It primes
the process towards a certain way of taking the information or towards some structure
underlying it. Rather than simply trying out every possible framing function, the system
has to already possess at least some minimal information that allows it to narrow down
the space of possible functions to try out. But where do these biases come from? And
who (or what) gets to say when they are to be applied? Let us consider some traditional
possibilities, and the reasons why they’re not enough.

4.3.1 Option one: general-purpose learning

The first possibility is that the analysis provided is just wrong. Learning algorithms
are perfectly able to figure out how to handle type-2 regularities all by themselves. Or
equivalently: the distinction captures no real fact of the matter. There’s no need for
the selection of the contextually right tweak, for a sufficiently general-purpose learning
8 Clark and Thornton use the word “recoding” to describe the process of subsuming some data set under

a framing function. I won’t adopt the terminology to avoid confusion with the very specific sense in
which the word “encoding” is used here.

9 Every learning task has a target. Not every learning approach has a supervisor, though. Having a
target is different from having a previously established supervisor to help in hitting that target. Thus,
one shall not confuse unsupervised learning algorithms, which can fix their own targets at runtime,
with “targetless” approaches, which would be nonsense. If there’s no target against which to assess the
system’s current guesses, there’s no motivation at all to produce any kind of error signal.
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algorithm is able to encompass every possible context and figure out the right approach,
all by itself. Our job is to figure out such “ultimate” algorithm.10

This idea is reminiscent of the hope that we can find the algorithm comprising
general intelligence. This was behind the infamous General Problem Solver (GPS) (Newell;
Shaw; Simon, 1959; Newell, 1976), which applied means-end analysis in order to build a
program that can - as per the project’s name - solve anything. The naivety behind the
idea was quickly recognized by most AI peers.11 But the hope never completely faded. We
may not be able to build a GPS, the reasoning goes, but we may be able to find a learning
algorithm that can build one for us. At least so far, the only general-purpose thing we’ve
been able to find was the “just need more data” excuse for why we’re not there yet.

However, if such an approach turned out to be possible, then we would be entitled
to suppose that nature draws on the same all-encompassing trick. Thus, it would do
no harm to ask: are there any reasons for optimism? Proponents of all-encompassing
solutions would be right in arguing that machine learning (ML) algorithms can figure
out some problems relying on type-2 regularities without any further information about
the underlying domain. We don’t to look for the most recent approaches in order to find
this possibility. Even backpropagation learning (Rumelhart et al., 1986), one of the most
well-known algorithms even from AI outsiders, can do that. However, this feature may be
misleading. The fact that an algorithm can figure out some type-2 patterns doesn’t mean
there’s anything fully generalizable at work. And indeed, backpropagation embodies a lot
of assumptions about its problem-space. For instance, if the right framing function cannot
be discovered by the gradient descent method it relies on, it will necessarily fail to find it.
One can of course bet that the set of all relevant functions is discoverable in this way. But
this would not be that different from GPS’s assumption that any real-world problem could
be expressed as a formal linguistic problem and dealt with by using logic-like inferential
tools.

The crucial point is this: what is true of backpropagation seems to be true of every
learning algorithm. At least this is what’s entailed by the so called “no free lunch” (NFL)
theorem, quickly mentioned in the first chapter (Wolpert; Macready, 1997). The NFL
theorem shows that every learning algorithm will inevitably embody certain assumptions
that will favor some framing functions over others. In the words of Sterkenburg; Grünwald
(2021), learning algorithms are model-dependent. They should not be conceived as a
one-placed function that maps data directly to conclusions. Rather, they’re a two-place
function that maps data and some underlying model — which means, roughly, data
as framed in a certain way — to conclusions. Thus, the issue with domain-unspecific
approaches to learning is not that they can’t see anything beyond type-1 patterns. They
10 See Domingos (2015) for an attempt.
11 In 1976, Drew McDertmott wrote: “By now, ‘GPS’ is a colorless term denoting a particularly stupid

program to solve puzzles. But it originally meant ‘General Problem Solver’, which caused everybody a
lot of needless excitement and distraction. It should have been called LFGNS – ’Local-Feature-Guided
Network Searcher” (McDermott, 1976, p. 4).
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surely can grasp some type-2 problems, but only inasmuch as the assumptions embedded
in the algorithm match those of the domain underlying the target problem. The upshot is
that, despite the limited set of cases in which a learning algorithm can successfully figure
out type-2 patterns, there’s strong reason to believe that their virtues cannot be fully
generalized.

4.3.2 Option two: meta-learning

Vervaeke and others suggest that we can handle relevance learning with meta-
learners (Vervaeke, 2022; Vervaeke; Ferraro, 2013; Vervaeke; Lillicrap; Richards, 2012).
Meta-learning is a promising research field within AI. It targets algorithms that can apply
distinct learning strategies and assess its own results, trying to improve whenever possible.
Meta-learning systems can be understood in terms of the application of distinct framing
functions, as well as complex articulations of them. They have no fixed set of them, nor
are they restrict to a single application strategy. Thus, they can try out new approaches
and select them whenever improvement obtains, rendering the approach self-adaptive.
But the issue is somewhat evident: how can a meta-learner tell which strategy to employ
at any given circumstance? How is it to identify situations requiring improvement from
those that are fine? It clearly needs to apply its own learning algorithm whose business is
to figure out the right framing functions for each situation. But this learning algorithm
would embed its own fixed set of biases and limitations as to what comprises the problem
space and how it should be approached. Should we perhaps apply a meta-meta-learner?
Unfortunately, it wouldn’t help, for we’d need a fixed learning algorithm at the meta-meta
level as well. The threat of infinite regress is evident.

The authors are aware of this. Vervaeke; Lillicrap; Richards (2012) make a gesture
towards a solution by suggesting that meta-learning’s business is to become attuned
to and handle some of the system’s economic properties. The crucial claim is that the
meta-learner must rely on opponent processing as a way to balance competing goals that
rely on those economic properties. In this sense, it comprises a kind of “virtual governor”
that “decides” how to commit cognitive resources.12 Of course the meta-learner is not to
be conceived of as a functionally distinct mechanism, otherwise it would suffer from RP.
Rather, the ideia is that what we call “meta-learner” is actually embedded in the overall
organization of the brain.

Opponent processing requires the interaction of distinct mechanisms with opposite
goals. For instance, there can be a mechanism trying to produce diversification of strategies
by e.g. testing new framing functions. Meanwhile, there can be more specialized mechanisms
that go deeper by applying domain-dependent strategies the system already knows. At any
given context, the amount of resources each of them gets — or how close to a full takeover
12 The expression “governor” is likely used to resemble the paradigmatic Watt governor from Van Gelder

(1995).
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they’re allowed to get — depends on the virtual governor. The rationale is analogous to
the core idea behind Darwinian evolution: on the one hand, we find the means to produce
diversification (mutation, reproduction, etc.). On the other, mechanisms that selectively
narrow them down (e.g. competition for environmental resources). The point of course is
not that virtual governors have access to every available economic property, otherwise this
would quickly lead us to a point where virtual governors and central processing would be
indistinguishable. This would bring back the problem of how to select the right approach
and the corresponding threat of an infinite regress. Rather, many special-purpose - or at
least less than fully general — economic properties result from opponent processing work
concomitantly. They’re all sensitive to specific elements of the environment, somewhat
like the resulting balance of the sympathetic and parasympathetic systems. There’s a
continuous interaction, and depending on the environmental setup, one gets more time
and resources than the other.

In this picture, the capacity to stay tuned to what is relevant is nothing but
the appropriate balance that the system obtains from this. Finding what’s relevant is
understood as the capacity to find the contextually appropriate balance between the many
opponent processes going on. Such balance is achieved through the continuous switching
between distinct cognitive processes that are always “trying to happen” but get either
mitigated and preempted or emphasized and allowed to go on. Thus, framing functions
that are too narrow, or too specific may be preempted in virtue of more general ones,
bringing diversification to the system. This is somewhat like reaching a point were one
would say “nothing is working, maybe I should take this differently?”.

This is a nice step in a promising direction. Opponent processing brings to the
fore the limits of conceiving relevance as essentially tied to efficiency.13 In contrast, the
authors emphasize how being sensitive to what’s relevant may involve leaving efficiency
aside to pursuit diversification. This is what they call resiliency.

Less explored is the idea that brains are also seeking the opponent goal
of resiliency. Brains are trying to maintain an important degree of flexi-
bility so that they have the potential to redesign their function, thereby
increasing their fault tolerance in order to retain a potential to resist
damage. Thus, the brain can have opponent processing between efficiency
and resiliency function as a virtual governor that sets parameters on cost
functions that optimize for reward. (Vervaeke; Ferraro, 2013, p. 10)

In a nutshell, the idea is that a meta-learner seeks the best balance between
opponent economic properties such as efficiency and resiliency. This looks like a plausible
alternative account of the brain’s flexibility. By sticking to economical properties, it
amounts to a non-semantic and non-computational approach, making it suitable for
dynamic modeling. But just like it was the case with Wheeler’s CRCs, I don’t think they
13 The framework in which this occurs more explicitly is Sperber’s. As discussed in the first chapter,

Sperber’s approach relies on the idea of s-relevance (Sperber; Wilson, 1995), which is essentially a way
to measure the level of efficiency that an input enables the system to reach.
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get to the bottom of what’s really at stake. The idea allows us to make (some) sense of
the complexity undergoing in the brain. It provides some principles we can use to outline
its dynamics of reorganization. In this sense, it does throw light on what’s underneath the
brain’s flexibility, but it doesn’t really tell us how the cognitive machinery can be tuned to
what is relevant. How is the system to know the contextually appropriate balance? What
should and what shouldn’t get the system out of it? Meta-learners are supposed to figure
that out somehow, but if left on their own, they have no clue on how they can do that.

What we have here, I think, is another attempt to stop a vicious regress of
explanations for RP by appeal to a change in the explanatory strategy. This is just
what we’ve discussed in the first chapter, when assessing Wheeler’s CRCs. Opponent
processing may be a nice way to describe the system’s dynamics, but it won’t help us to
understand how does the system work. Moreover, while discussing patterns of effective
connectivity, we’ve seen that there’s no reason to give up on the analytic explanatory
strategy. At least in principle, nothing preempts the possibility of a sufficiently flexible
system that is broadly functionally analyzable. Vervaeke seems to be aware of that, for he
recently co-authored a paper arguing that the opponent processing approach and the PP
framework are actually two ways of describing the same underlying process (Andersen;
Miller; Vervaeke, 2022). What he describes as the attempt to balance competing goals
such as that of being efficient and resilient is equivalent to what PP accounts for in terms
of modulation by precision-weighting. RCP is not a version of PP processing, but it surely
employs the same explanatory strategy and it is broadly compatible with PP mechanisms
employed in accounting for flexible patterns of effective connectivity — i.e. the possibility
of multiple shades of contextual tonality. At least so far, no light has been thrown in how
the system learns its way through what’s relevant.

4.3.3 Option three: innate tweaks

A different approach involves heavy reliance on innate framing functions. This is
advocated by researchers like Gary Marcus (1998; 2003). In this view, we are biologically
inclined to handle inputs in a characteristically human way. We’re born with the appro-
priate set of tweaks, i.e. the relevant developmental tendencies (biases, if you will) are
genetically inherited. As previously presented, Marcus’ view is commited to more than
that, for he thinks that some of this innate tweaks develop into symbolic machinery, but
this need not worry us right now.

Innate developmental tendencies and tweaks are undoubtedly plausible in some
cases. The reason we don’t stick to elephant skin when learning about elephants might
well be the availability of some innate resource. Likewise, innate developmental tendencies
might be enough to explain why a sudden acute sound catches more of our attention than
a continuous background noise. But when it comes to social creatures like us, this falls
short of what we really need, for it leaves a huge set of culturally established learning
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targets unexplained. We most certainly do not inherit developmental tendencies to learn
the right way to behave in classrooms or in airplanes. We could try to build those targets
from genetically inherited primitive targets, but even though the system has the capacity
to stabilize on some specific target, it is hard to understand how could such genetically
inherited targets be assembled in the right way, so that the systems locks on the relevant
learning target dictated by the present circumstances. Furthermore, we’d be stuck with the
need for a huge amount of specialized learning mechanisms and/or very specific learning
biases, and this would lead us back to square one, for now we’d have to deal with the
problem of how to select which learning routine is the right one in each situation.

4.3.4 Option four: incremental learning

While presenting the distinction between type-1 and type-2 regularities, Clark and
Thornton advance their own idea about how we learn to apply the contextually appropriate
set of framing functions. The core of their suggestion is incremental learning. Hard type-2
problems must be factored in developmental sequences of easier type-1 problems. Rather
than trying to figure out what an elephant is out of the raw pattern, the system can
initially focus on smaller and easier problems, such as figuring out textures, shapes, relative
sizes, and so on. Once it has such chunks at hand, they comprise a set of “primitives”,
and the problem of whether and how these can be articulated into an elephant becomes
achievable through simple type-1 processing. In a nutshell, “(. . . ) what looks like type-2
learning is in fact the occasional reformulation of a type-2 problem in terms that reduce it
to type-1.” (1997, p. 64).

Unfortunately, as it stands this is just a reformulation of the problem. Those more
familiar with contemporary neural models within cognitive neurosciences and AI (specially
deep learning) will recognize this as a standard way to interpret what virtually any deep
neural model does. For instance, models built for handwritten digit recognition (such
as those trained against an MNIST corpus) are usually taken to employ this approach:
first, they recognize small patterns and later they “build” the digits from them. How is
this possible? Contemporary deep learning models can do that because they’re domain-
bounded. Such boundaries are indirectly established by their training corpus. They may
either comprise a narrow topic (visual features of elephants, digits, etc.), or they may
involve a lot of information from distinct topics, but under a single encoding. In the former
case, being domain-specific means a larger probability of finding the right set of framing
functions (though there’s no guarantee, as the example of elephant skin reminds us). In the
latter, the system may handle information from multiple domains, but it will frame all of
them indistinctly, e.g. whether you’re asking it for the name of a country or the result of a
word problem, it will handle both prompts by making next-word prediction. Contemporary
large language models (LLMs) such as GPT-3 or GPT-4 rely on this (McCoy et al., 2023).
They encode the structure of the probabilistic distribution of formal linguistic elements,



251

whatever they’re about, and any other structure remains out of reach.
The corollary is that contemporary ML techniques won’t buy us what we need.

Either we have a set of framing functions bounded to a specific domain, or we have a set of
framing functions that tries to handle every domain equally, without the proper treatment
of its particularities (In RCP, the latter amounts to the claim they encode — rather than
represent — everything under a single structural scheme). Clark and Thornton are aware
that this kind of limitation applies to their view. Nevertheless, they partake of a cautious
optimism regarding the possibility of reusing framing functions. Indeed, in the second
chapter, we’ve discussed many possible ways in which knowledge about a domain can be
employed to exploit another one: relations between schemes, encodings, task-embedding
and so on. But we’ve also seen why that’s not enough to avoid RP. If we introduce the
possibility of increasingly complex articulations of knowledge from distinct domains, the
threat of a combinatorial explosion returns, and with it the need to know in advance the
relevant articulations from the idle ones.

I hope that, at this point, it is easy to see how close we are (again) to the kind of
issue we’ve faced when discussing frame systems in cognitivism and SPACs in Heideggerian
cognitive science. Learning itself seems to rely on the application of cognitive features in a
relevance-sensitive way, which means we’re trapped again: we can’t simply learn what’s
relevant because relevance is necessary for learning. Learning helps us realize what is
typical, identical, similar and so on. But all of these require context-sensitivity. Even
identity and similarity judgments requires one to pay attention to the right set of features.
The ones taking the texture of elephant skin as a necessary member of this set in all
possible contexts will fail to recognize elephants in many typical circumstances.

Have we exhausted all the options? I’m inclined to think that, up to a few decades
ago, we would be forced to say so and leave the matter open. But there’s a road that,
despite not being exactly new, is getting increased attention and, as far as I can tell, has
never been properly exploited as a potential way out of RP. A first version of it can already
be found in a speculation made by Clark and Thornton:

It may even be useful (though clearly highly speculative) to consider
public language and culture as large-scale implementations of the same
kind of strategy. Language and culture, we suspect, provide exactly
the kind of augmentation to individual cognition that would enable
uninformed learning devices to trade achieved representation against
computation on a truly cosmic scale. Public language may be seen as
a ploy that enables us to preserve the fruits of one generation’s or one
individual’s explorations at the type-1/type-2 periphery and thus quickly
to bring others to the same point in representational space. Otherwise
put, we can now have learning trajectories which crisscross individuals
and outstrip human lifetimes. (Clark; Thornton, 1997, p. 64)

Despite the speculative gloss, relatively recent empirical findings enable us to flesh
out a significantly less speculative story. One in which cultural elements that involves
language — but is not being limited to — may play a prominent role in explaining how
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we can handle the relevant framing functions without raising RP. These findings can be
synthesized in Cecilia Heyes’s framework of cognitive gadgets.

4.4 The cognitive gadgets framework

As things stand, we already know that in a very general and explanatorily trivial
sense, we learn to recognize what’s relevant as we learn to cope with the world. However,
as we try to make sense of this capacity at the sub-personal level, things remain quite
challenging. The difficulties emerge when trying to account for both how information
about the world is stored and how the information is exploited. This is not surprising, for
we store what we learn, and to learn is to exploit information yet to be stored. That’s
why appeals to how the information is organized are hopeless. All they do is to shift the
explanatory burden to learning processes. And as discussed, learning seems to be in a
seesaw between general-purpose mechanisms that are blind to domain-specific regularities
and domain-specific learning that are useless outside their target domain. Clark and
Thornton know this well:

The trouble with informed search, of course, is identifying the informant.
In many cases, positing better-informed search simply begs the question.
Just where did those feature detectors, or those biases towards trying
such and such a recoding first, come from? Unless we are comfortable
with a very heavy-duty nativism and an amazing diversity of task-specific,
on-board learning devices, we will hope in addition to uncover at least
a few more general strategies or ploys. Such strategies (tricks, ploys,
heuristics) cannot be problem specific, since this would be to fall back on
the full nativist solution. Instead, they will constitute general techniques
aimed at maximizing the ways in which achieved representations can be
traded against expensive search. They will thus maximize the chances of
a learner successfully penetrating some random type-2 domain. (Clark;
Thornton, 1997, p. 63)

What they regard as “informed search” is just exploiting information with the
right set of tools, that is, information subsumed under the contextually appropriate set of
framing functions. But perhaps there is a way to dismount from the seesaw.

“Cognitive gadget” is how Cecilia Heyes calls cognitive mechanisms that are
culturally, rather than genetically, inherited. The name is suppose to draw a contrast with
what Steven Pinker once called cognitive instincts (Pinker, 1994). For Heyes, much of
what we typically regard as domain-specific innate cognitive mechanisms (i.e. “cognitive
instincts”) are actually gadgets: theory of mind, imitation, causal understanding, meta-
cognition, empathy and of course, language (Heyes, 2018a, 2018b; Heyes et al., 2020).
Whether she’s right about each one of these is of course an empirical matter that’s outside
this work’s scope. But she does present considerable evidence for all of them. Some of
these capacities are specially interesting for our current interests: the idea that theory
of mind is a cognitive gadget is broadly compatible with the relational redescription
hypothesis outlined in the previous chapter under RCP’s lights. We have thus an example
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of the overall compatibility of RCP and the cognitive gadgets framework right from the
start. Furthermore, it renders plausible the idea that framing functions can be culturally
inherited. As an example, causal understanding — in Povinelli’s jargon, the capacity to
render f(cause) — can itself be a cognitive gadget that is culturally inherited in the
form of a developmental trajectory of culturally established framing functions.14 The
idea has the potential to throw light on what makes us human. This is a nice first step
towards what will be the major claim of this chapter: relevance sensitivity is a cognitive
gadget. But before getting there, we have to outline at least the core tenets behind Heyes’
framework.

Cultural evolution is usually though of as a way to account for culturally sedimented
information regarding adequate behavior, practices, traditions and religious belief systems.
In this picture, such cultural information becomes available to be handled by us with
our set of genetically inherited tools (i.e. our cognitive instincts). Culture defines what
we’ll handle, and genetic defines how we’ll handle it. Heyes goes beyond this traditional
picture by claiming that we can culturally inherit also the set of techniques we employ
when handling cultural information. We don’t inherit just the what, but the how as well.
This is what she has in mind when she claims:

(. . . ) cultural evolution has the potential to explain the adaptedness of
distinctively human cognitive mechanisms; why, in some cases, cognitive
mechanisms seem to fit the environments in which they operate and do
their jobs reasonably well. (Heyes, 2018a, p. 37)

Heyes provides a selectionist account of cultural evolution. The mechanisms
responsible for producing variation, as well as those responsible for selecting the most
advantageous traits are autonomous in relation to genetic evolution. This means that
cognitive gadgets may change solely due to cumulative social learning. Now, if any such
account is to get off the ground, it must start by answering three core questions: 1) what
exactly is evolving? 2) By means of what kind of mechanisms? And 3) what are the routes
of inheritance? Heyes is particularly clear about all of them. 1) What evolves are mental
mechanisms functionally individuated; 2) The mechanism of replication is that of social
learning; and 3) the routes through which these may happen can be vertical (as when a
kid learns something from her biological parents), oblique (as when someone learns from
her uncle), horizontal (siblings, friends and so son) and of course any combination of these.

Social learning is sometimes modeled as analogous to genetic replication. For
instance, one can learn to avoid dangerous food by noticing that someone else is avoiding
it. In this view, a small information fragment is being transmitted to someplace else. But
very few episodes of social learning have this form. Children don’t learn how to read by
having the right information packets directly copied within their heads through visual or
auditory channels. Instead, they’re continuously instructed and encouraged through time.
This is how Heyes understands the possibility of inheriting cognitive gadgets:
14 This suggestion can be found in Heyes (2018a).
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This insight opens up the possibility that features of cognitive mechanisms
(mills) are culturally inherited in the same ways as ideas and behaviors
(grist). A cognitive mechanism certainly is not a pellet of information
that can be copied inside your head, sent through the air, and planted
wholesale in my head. But if grist is not “copied” in this sense, there is no
reason to expect mills to be “copied,” either. Instead, we can recognize
that certain kinds of social interaction, sometimes with many agents
over a protracted period of time, gradually shape a child’s cognitive
mechanisms so that they resemble those of the people around them.
(Heyes, 2018a, p. 44)

The idea that cognitive gadgets are a product of cultural evolution inherited
through social learning enables a reasonably detailed account of what’s distinctive about
human cognition. We need not postulate a huge gap in the nature of the underlying
genetically inherited mechanisms. Of course there must be something peculiar, otherwise
we would be left with the problem of explaining why apes and similar creatures don’t share
our capacities. But rather than concentrating on peculiarly human “cognitive instincts”,
we can instead focus on accounting for what’s peculiar about human culture. Heyes’
account has the potential to supply important additional pieces to the ideas worked out
in the previous chapter. When discussing the relational redescription hypothesis, it was
stated that structural contents and representational redescription yields a rich dimension
of empirical hypotheses regarding what’s peculiarly human. But if Heyes is right, this
dimension need not be solely populated by genetic mechanisms. Rather, it may involve
many products of human culture. This means that, if we ground what is peculiar to human
culture in genetics, we will already be preparing the ground for a way of explaining the
presence of characteristically human cognitive mechanisms. There might be a peculiarly
human way to realize representational redescription, or a peculiarly human amount of
redescription our cognitive apparatus can engage in. Both characteristics can be explained
by how human culture impinges on it.

Heyes’ proposal is an example of how such a story could go. She claims that humans’
genetic starter kit have three peculiar traits: first, a considerably higher sociability. Our
temperament allows us to tolerate, seek and enjoy one another’s presence much more
frequently and for longer periods. In contrast, if you put apes within an airplane, a
blood bath is a bit more than likely (Hrdy, 2011). Second, we have enhanced social
motivation. Innate attentional biases dislodge our attention towards other agents. There
are, for instance, biases for peculiarly human voices and typically biological movements.
This enhances drastically the power that other minds have over ours throughout our
cognitive developments. Third, our general-purpose information-processing machinery is
considerably more powerful. We can process more in less time, and store more information
as well.

The list is not just surprisingly small, but the nature of the traits are curious as
well. The only distinctive developmental biases are those that enhance our sociability. In
Heyes’ view, we need not posit any innate special machinery, symbolic or not. All we



255

need is an increased level of processing power and hungriness for culturally established
stuff. This looks somewhat radical, but it need not be regarded as an all-or-nothing issue.
The point is not that distinctively human cognitive tricks must be a product of cultural
evolution. What Heyes’ framework buy us is a plausible alternative to purely genetic
accounts.

In order to put such a heavy burden on social learning, Heyes introduces a peculiarly
human kind of social learning she calls cultural learning.15 Cultural learning is social
learning that involves cognitive processes specialized for cultural inheritance. Heyes
provides no clear definition of what cultural learning is, but she provides a well-developed
list of paradigmatic examples: selective social learning, imitation, mindreading and of
course language. In her bootstrap story, these are cognitive gadgets that we develop
and acquire through our distinctive genetic starter pack. The gadgets themselves enable
further extensions thanks to the cultural accumulation they help to afford. Indeed, the
possibility of cumulative culture is a human trace (Tennie; Call; Tomasello, 2009). These
cultural gadgets are said to enable cultural learning when they enhance the fidelity with
which social learning happens. Such faithful transmission over generations enables a high
level of stability, and human culture can thus accumulate modifications over time without
necessarily relying on genetics.

In this picture, the claim that cognitive gadgets are products of cultural evolution
amounts to the claim that they were shaped by cultural group selection. As an example,
consider a case in which people from two distinct social groups A and B are genetically
alike but have different versions of the same cognitive mechanism. The version from people
of the group A may be more effective in fulfilling some function and achieving some goal
(getting food, providing protection, etc.). Thus, inasmuch as that mechanism is involved,
this means that people from group A will achieve greater success. This translates into a
higher number of descendants and a higher survival rate, which means that group A tends
to prevail over B over time. Moreover, a higher success rate my attract people from group
B into learning from group A. All of this contributes for the slow fading out of group B’s
version of the gadget, which means that group A is the fittest.

A nice - and somewhat surprising - example of how a cognitive gadget can develop
out of the presented starter pack is the human capacity to imitate. Imitation is traditionally
regarded as a cognitive instinct that plays an important role in social learning. Underneath
the capacity to imitate, however, we find the correspondence problem. Roughly, what looks
like imitation from our perspective seems completely different from the perspective of the
agent doing the imitation. Heyes exemplifies this with the following illustration.
15 The name “cultural learning” is not really new in the literature. However, Heyes advances a specific

way to understand what cultural learning is, and uses this understanding to discuss the role of cultural
learning in what makes us distinctively human. Here I’ll present just what’s indispensable for our
considerably narrower goal. For more details, see Heyes (2018a).

16 The picture was used by Heyes (2018a), but was originally downloaded from
https://www.catholicgentleman.net/2015/01/im-just-like-daddy/.



256

Figure 16 – Imitation in children.16

What we see in figure 16 is a child with her arms, head and pace similar to the
two walking adults. However, from the little boy’s perspective, we have something very
different:

The little boy cannot see the resemblance. As he imitates the men,
dipping his head and putting his hands behind his back, all the boy can
see is the ground and perhaps the heels of the men in front. To the
boy, hands behindback looks like groundandheels. The boy can feel his
own movement— a slight tension in his shoulder joints, the touch of one
hand on the other — but he cannot feel the movements of the men. And
he can’t compare his own movement with that of the men by listening
because hands behindback does not produce a distinctive sound that
is detectable to the human ear. So, how is the boy able to produce an
action that resembles the men’s action from a thirdparty perspective
when he, the boy, cannot sense — see, feel, or hear— the resemblance?
(Heyes, 2018a, p. 118)

The problem, in a nutshell, is how the cognitive apparatus can associate the
movement the agent produces with the movement from third-parties that the agent only
sees. Notice that appealing to innate and genetically inherited mechanisms provides no
complete answer, for we would still own an account of how that mechanism works. That’s
why appeals to, for instance, mirror neurons won’t do. Despite the evidence of their
involvement in imitation, involvement is not enough, and now we’re left with the problem
of explaining how neurons can provide a solution to the corresponde problem (Catmur;
Walsh; Heyes, 2009). The correspondence problems shares a trait with RP: in both cases,
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it’s very easy to suggest a solution that just begs the question. Heyes suggests that the
solution is culturally, rather than genetically, inherited.

Her idea is that we can associate sensory and motor states bidirectionally. Whenever
we produce a visual image of somebody making a movement, we also tend to activate
a neural state involved in producing that same movement. These associations are not
innate, though, but rather a product of sensorimotor learning. This is what she calls the
associative sequence learning (ASL) model. According to ASL, we learn an increasingly
larger repertoire of associations between what we see and what we do. This happens
in many ways. For instance: babies can learn to associate the visual stimulus of hand
movements and the corresponding motor processes by self-observation. This much is
also available for non-human animals, but humans have very peculiar additional sources
of learning targets. We’re frequently exposed to optical mirrors where we can observe
ourselves, drastically increasing the opportunities for self-observation. Moreover, babies are
frequently imitated by others. There’s evidence that western mothers imitate their infants
roughly once every minute (Uzgiris et al., 1989). For instance, when the mother imitates
the baby frowning, the baby can learn to associate her actual motor state (frowning) with
that visual stimulus from the mother. Finally, due to our increased level of sociability, we
engage in lots of synchronous activities like rituals and dances.

Thus, the typically human environment provides plenty of opportunities to acquire
visual-motor associations of the necessary kind to ground the peculiarly refined way in
which humans are able to imitate. Furthermore, this enables us to encode relatively simple
body movements into “chunks” that can be further articulated in complex ways. Such
chunks can underlie our distinctive capacity for activity coordination, including those
underlying communication through gestures. They are a nice example of what framing
functions can look like in the real world. Indeed, there’s evidence of cultural differences in
how facial expressions are processed. Jack et al. (2009) found that Western Caucasians
distribute their attention more or less equally among the eyes and the mouth, while East
Asians tend to concentrate on the eyes. Among other possible effects, this renders distinct
ways to recognize emotions in other people’s faces. Heyes’ development of the possible
outcomes is worth the quoting:

This kind of cultural tuning of attention to social stimuli could have
profound effects on social learning. For example, observational condi-
tioning is a primary means of learning the value or emotional valence
of types of object or event; people, animals, plants or practices become
attractive or aversive when they are paired with positive or negative
expressions of emotion by others. Therefore, if Western Caucasians are
more sensitive to expressions of fear and disgust, it is probable that
they would learn more readily via observational conditioning that certain
objects are threatening or repulsive. In this particular domain they may
be faster social learners, not because they have better or different genetic
adaptations for social learning, but as a result of sociocultural experience
tuning input mechanisms to a particular configuration of facial features.
(Heyes, 2012, p. 2185)



258

Though the example is not focused on imitation, it helps us to see how the human
capacity to imitate may employ the same kind of sensorimotor learning that is available
for non-human animals. The crucial difference is that we apply those mechanisms to the
outputs of culturally embedded developmental trajectories in a much larger scale. Notice
that this is pretty much Clark’s story of how the ability to handle type-2 problems can be
decomposed into a developmental trajectory of framing functions that render the informa-
tion tractable by type-1 learning mechanisms. Only now, thanks to Heyes’ framework,
we have a plausible source for culturally shaped framing functions and developmental
trajectories.

We can make this point even more clear by considering the following question:
there is evidence that non-human animals learn by imitation. But if imitation is a cognitive
gadget, how can we explain the fact that humans are distinctively good at it? That is, if
non-human animals’ set of innate cognitive tools is just like ours, how can this apparently
huge gap be explained? Heyes’ ASL models puts the burden on socio-cultural experiences
such as the opportunities for synchronous actions, interactions with optical mirrors and,
in the case of babies, being imitated. This kind of social experience is not available to
other primates. An important exception might be self-observation, though. Non-human
animals can employ the same strategy and learn to associate perceptual stimulus with
motor states or processes. But their environment is not so rich as the one available for
humans. We have thus a plausible bootstrap story in which a higher level of sociability and
more powerful general-purpose processing and learning mechanisms can render a number
of cognitive gadgets inaccessible to non-human animals. Imitation is one such gadget.

Well, what else is in Heyes’ story for us? Remember that we want to dismount
from the seesaw of specialized and general-purpose learning mechanisms. General-purpose
uninformed learning is a dead-end, for it inevitably suffer from RP whenever it tries to
pick the right framing function. In their turn, specialized learning mechanisms can only
work within their target domain. Furthermore, up to this point, the only plausible source
for the tailor-made character of such mechanisms was genetic evolution. But these are
not fit to explain developmental trajectories and biases that only make sense within the
current setting in human culture. As Heyes exemplifies:

If, as behavioral ecologists and economists have assumed, social learning
strategies were fixed products of genetic evolution, they would make
social learning selective, but only in a way that was efficient in ancestral
environments. For example, if older individuals tended to provide more
reliable information in the distant past, agents alive today would be
inclined to copy older individuals even if, in a tech savvy world, younger
individuals tend to know more, at least on certain topics. (Heyes, 2018a,
p. 110)

In the resulting picture, culture is not just a pool of resources (abilities, knowledge,
artifacts, etc.) that genetically established mechanisms can learn about. It is also the
source of learning tweaks and targets that enable us to exploit all of these resources as well.
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Culturally inherited learning biases are culturally inherited framing functions. They handle
our economy of attention and provide targets against which our learning trajectory can be
measured. By providing the right set of framing functions at the right developmental stage,
culture is able to provide the right developmental sequence of tractable type-1 learning
problems. Type-1 problems, remember, are the kind of issue that general-purpose learners
can handle well. Therefore, Heyes’ framework buys us a non question-begging bootstrap
story that greatly enhances the viability of general-purpose learning: there’s no need for
them to figure out everything by themselves. They need not select the right set of framing
functions by solely relying on a somewhat miraculous genetically sedimented approach.
The same learning mechanism can lead to different outcomes in distinct cultures. We
have thus a plausible story that enables us to see how our genetic starter-kit can lead us
through very similar developmental trajectories without the need of native special-purpose
learning systems.

4.5 Relevance sensitivity as a cognitive gadget

Our current goal can be summarized like this: we want to show how a system can
track what is relevant and use it to constrain its own activity, even though this is not the
goal of any of its mechanisms in particular. This ability to track and constrain must be
kept intact as the system switches from context to context. Otherwise, it won’t help us
to explain relevance-sensitivity in non-saturable contexts. Heyes’ framework of cognitive
gadgets can help us with that in three steps: first, we have to understand how what’s
culturally relevant gets stored in a way that enables patterns of effective connectivity
(ec-connectivity from now on), resembling what’s culturally relevant. Second, we must
make sense of how what’s stored may guide or constrain cognitive processing in the
appropriate way. Third, we must know how the system can extrapolate from the contexts
it is familiar with without losing track of what’s relevant. Let’s concentrate first on the
question of how what’s relevant can be stored within the system. What’s stored is what’s
learned, but as we’ve seen when discussing the possibility of learning what’s relevant,
providing a direct answer to how we learn is harder than it looks. Heyes’ cognitive gadgets
provide a promising path towards a way out, but there are some pitfalls that we must
avoid.

As we dig into the human world, we experience and learn about an increasing
number of situations and domains. But we don’t experience nor learn about distinct
situations in isolation. It would be misleading to claim that we experience a situation s1
and a situation s2 if they temporally succeeded one another. Rather, we should say that we
experience s2 as coming from s1. In other words, our experience comprises the dynamics
of going from s1 towards s2. Now, given that every situation is experienced through the
lens of our cognitive apparatus, we should say instead that what we experience is going
from a contextual tonality c1 to a contextual tonality c2. But both context and situation
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are concepts that involves wordly states of affairs. In what follows, however, I want to
concentrate on the overall state within the cognitive apparatus. In other words, I want
to focus on the system’s ec-pattern. Each of the aforementioned contexts involves such a
pattern, so we can say that the contextual tonality c1 involved the pattern p1, and so on.

Now, I want to remark that the dynamics comprised of some sequence of ec-patterns
may constitute routines. For instance, every day we may engage in a dynamics comprising
the patterns p3, p4, p3 again, p45, p4 again, p3 again, p9 and p20.17 As the dynamics is
reenacted day after day, it may reinforce the connection between the comprising patterns
within the cognitive apparatus, to the point where it makes sense to talk of it as a template
for the dynamics (call it t1). Thus, t1 = { p3, p4, p3, p45, p3, p9, p3, p20 }. It is a
“template” in the sense that one should not regard the dynamics of ec-patterns to be an
exact reconstruction of each contextual tonality. Say t1 describes a routine of brushing
one’s teeth, having breakfast, brushing one’s teeth again, having lunch, teeth-brushing
again, having dinner and going to sleep. Sometimes the agent may wake up in a good
mood, or tired, or perhaps feeling cold. Brushing one’s teeth in a good mood involves
a contextual tonality that’s different from brushing one’s teeth while feeling tired. But
as far as t1 is involved, all that matters is that she’s brushing her teeth as usual. Thus,
inasmuch as p3 comprises an ec-pattern, it points towards the set of cognitive assets
typically involved in brushing her teeth. The connection among the assets need not be
adaptive nor useful. One can conceive, for instance, that every time the agent engages in
p3, some fond memories become more salient or prone to come to the fore.

Three quick yet important remarks must be done. First, templates of dynamics in
this sense need not arise only from routines. They may be adopted through social learning
as well: “You do t1? You should do t32!”.

Second, a dynamics like t1 is not supposed to encompass everything that happens
throughout the agents’ day. Most of us don’t live like Sisyphus, i.e. under a single dynamics
of pushing a heavy boulder up a hill, seeing it roll backwards, chasing it and starting all
over again. A lot happens between brushing one’s teeth and having lunch, for instance.
What a dynamics like t1 is supposed to express is akin to a cyclic tendency. As the time for
lunch approaches, the agent tends to approximate with increased accuracy the ec-pattern
involved in having lunch. But other dynamics may come together at the same time. Later
we’ll see how the suggested approach enables both ways of context switching: one in which
the dynamics may eventually emerge and impose itself, and one in which the agent can
actively engage in trying to achieve a desired ec-pattern.

Third, dynamics like those expressed in t1 are not to be taken as sequences of
ordered static contextual episodes. We may be lead to think like that given the way we
17 Evidently, the numbers do not mark the sequence in which the patterns happen every day, otherwise

they would be sequential. The point of the numeric identification is just to show that the dynamics of
a routine may comprise patterns of connectivity that were first realized in very different moments of
the agent’s life.
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linguistically encode t1 as a set of clear-cut variables. But this is misleading. Rather,
what’s represented is the trajectory of the brain’s patterns of connectivity. Encoding
a trajectory in linguistic terms such as “from p1 to p2” leaves out a lot of potentially
important processing that happens as the context switching takes its time. As discussed in
chapter 2, the possibility of depicting the dynamics of a process like this is an important
purchase of structural schemes that is beyond the reach of schemes carrying absolute
contents.

The templates we live by resemble — with varied accuracy — the templates
comprising the world of human activities. No one alive participated in the invention of the
“working 9 to 5” routine, and yet a lot of our inner dynamics resembles that. A similar
reasoning works for the brushing-teeth routine just depicted. Given this, it is tempting to
paint a picture in which, as we learn our way in the world, culturally inherited routines,
habits or traditions yields us all we need in order to store information about the world in
the appropriate way. Other people teach us, providing both feedback and encouragement.
They point towards the right learning targets: what to do, when and how. Such targets
constitute the norms against which our learning attempts must be contrasted with. If
we’re not there yet, error signals such as “no, this is how you do it” - or non-verbal gestures
of disapproval with similar meaning - makes us notice the mistake, and we can keep trying.
Thus, the dynamics of the many ec-patterns is inevitably isomorphic to the way that the
correspondent activities are articulated in the world. The situations in which you learn
about something are the situations in which that knowledge is going to be used.

The reason why this picture is tempting is that it appears to avoid worries about
circularity. Lots of local culturally-pervaded learning tasks give rise to the culturally
adequate way to store that information. It gives you what’s linked to what, and how
strong that link is. Thus, it might look like whenever the system needs to stay tuned to
what’s relevant, all it has to do is follow the way information was organized. As we engage
in local learning tasks, we inevitably store them according to the structure of the world.
The long-time goal of finding the right way to organize knowledge can thus be achieved in
a blind and emerging way, at least from the system’s perspective.18

Tempting as it is, I think this picture must be rejected. The problem is that
social learning is frequently non-local. Whenever someone provides instructions, learning
targets or maybe problem formulations in the hope that we can solve them, one expects
us to rely on a proper articulation of what is already known. This frequently implies
the exploitation of what we’re already familiar with in new and creative ways. In other
words, human social learning often relies on commonsense, which implies being sensitive
to what’s relevant. This is true even of kids after a certain age. We certainly don’t expect
them to realize things before they’re ontogenically capable to do so, but we don’t give
them commonsense classes either. Mostly, we expect them to exploit what they know as
18 This is the picture adopted by Clark (2002), which I partially reject for the reasons about to come.
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we present the inputs, as well as provide encouragement and feedback throughout their
developmental trajectory.19

The upshot is that even what looks like local learning processes may frequently
rely on the complex context-sensitive articulation of what we already know about the
world.20 This is why merely pointing out that the way we learn resembles the way the
world is, falls short of a complete answer. The way we store things is not the sole product
of many local learning processes. A large amount of integrative capacities must be already
operative. Consequently, relevance-sensitivity must be part of the storing-information tale
from the start, or at least it must enter the stage very soon. This means that there has to
be more involved in what allows us to go beyond the mere familiarity with our previous
experiences. The resemblance between the organization of the world and the organization
of the stored information provides just a partial answer.

4.5.1 Storing relevance-sensitive knowledge about the world

As information starts to get stored within the cognitive apparatus, it is indeed
structured in a way that partially resembles the structure of human activities in the
world. For instance, the things we learn first are linked first. And as we learn or practice
more, we not only reinforce those links, we create new patterns of linkage between what
we’re learning with what is already known. But how can all of this knowledge (or some,
depending on our current integrative capacities) can bear on and constrain new episodes
of learning?

The first step is to notice that, given the aforementioned structural resemblance,
Cummins’ theory of representation invites us to think that the available structure of such
patterns as effectively representing the structure of human activities (at least the portion
with which we already engaged with at any moment of our developmental trajectory). But
not just that. It also represents the links among the different available portions of stored
information and their peculiar dynamics. In other words, it represents the dynamics of
the transition from one ec-pattern to another, that is, it represents the system’s dynamics
in the sense previously outlined (like t1).

Such structure does not depict the full-fledged contents of the cognitive assets
involved in the particular functionally identifiable mechanisms articulated, but it does
resemble how they were articulated throughout our developmental trajectory. In a nutshell,
the system’s dynamics comprise a second-order structure that captures how the information
is routed and exploited brain-wise (i.e. inasmuch as the brain’s physical architecture allows)
19 Some might complain that, in a way, we do teach them commonsense as we instruct them on what

they can and cannot do. True enough, but that’s not the point. What’s at stake is that we don’t need
to provide full-fledged instructions of everything we expect from them, as we do with computers. In
normal circumstances, “make sure your little brother don’t get hurt while playing” is clear enough.

20 I suspect it is no coincidence that, at a certain point of childhood development, providing guidance
feels less like feeding information and more like helping her in properly articulating what she already
knows.
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This kind of representational content is available for exploitation and redescription with
the whole set of tools described and discussed in earlier chapters. Thus, rather than taking
these patterns to comprise solely resemblances of situations within the human world (being
in a restaurant, being in a classroom, and so on), we can concentrate on the dynamics of
the ec-patterns themselves. For instance, daily, weekly or even yearly dynamics can be
represented and exploited in this way. Such dynamics comprise a second-order structure
that captures how the information is routed and exploited brain-wise.

We have thus a natural source of information about what the cognitive apparatus
is doing. And we have some plausible candidates for the type of articulation that can
be done with it. By capturing the way information travels and flows brain-wise, one is
capturing crucial aspects of its pattern of effective connectivity, i.e. its dynamics. This is
precisely the kind of structural information that approaches like that of Ribeiro; Saverese;
Figueiredo (2017), which we discussed in chapter 2 are well suited to capture. Thus,
redescription processes employing this kind of trick may be able to find roles like that
of being an authoritative neuronal sub-population. Authoritativeness, remember, is not
identified by the role that a mechanism plays within a given situation, but rather by the
relationship it bears with every other mechanism it is able to integrate with - for instance,
the “teeth-brushing pattern” tends to impose itself, and bring its comprising mechanisms
along with it, every cycle of x hours.

But who’s responsible for doing this work within the brain? We don’t want to go
back to the image of a central processor representing and exploiting the dynamics of other
processes so it can modulate all subsequent activity. What’s needed is a plausible sketch
of how distributed sets of distinct functionally individuated mechanisms could participate
in the story. We already have a place to look for the answer. Earlier we saw that neural
control structures can route and modulate the flow of information in a context-sensitive
manner without implying the need for anything like a central unit for wide-scale processing.
Neural control structures share a function, not a place. Unfortunately, as per van Essen’s
previously presented statements, in order to do that they relied on innate information
about the specific domains they specialized in. Nonetheless, in the same work Essen;
Anderson; Olshausen (1994) already speculated that a small step would be enough to
render the idea of neural control structures applicable to higher level cognition.

It requires only a modest conceptual leap to suppose that analogous
routing strategies may be used to control the flow of information in
whatever central structures are used to represent semantic information
and other high-level abstractions that are the coinage of cognitive function.
(Essen; Anderson; Olshausen, 1994, p. 298)

Luckily, representational redescription purchases a way to render van Essen’s
speculation plausible. A possible story is one in which a mechanism can learn to become a
neural control structure and modulate the flow of the mechanisms it happens to interact
and integrate with (let us call this set of mechanisms its encompassing subsystem). The
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candidate to neural control structure is able to learn and representationally redescribe
the ec-patterns. As it points its learning abilities towards a bunch of mechanisms, it
concentrates not on the knowledge that comprises then, but in their usage-dynamic. In
other words, rather than capturing information about the knowledge stored in those
mechanisms, it captures their dynamics over time, perhaps at multiple scales: when they’re
active and who they’re interacting with. In doing so, it represents the informational flow
that’s employed and become subject to be further exploited by itself and other eventual
consumers in order to modulate that flow, just like it happens with innate neural control
structures. Such mechanisms can thus actively participate in every cognitive task involving
mechanisms within its subsystem.

Together, these subsystems help to create the overall brain-wide pattern of effective
connectivity in which every task is going to be embedded. Thus, at this level of analysis,
we can see that there is no central, brain-wide control structure capturing and modulating
the informational flow in the cognitive apparatus. Rather, there are many distributed ones
capturing distinct aspects (handled by distinct subsystems) of the structures comprising
the brain’s dynamics. Ultimately, this means that, talking about brain dynamics in
terms like sets of patterns like t1 is an obvious simplification. There’s not a single global
mechanism hiccuping signs that it’s time to enter p34. Instead, what we have is a bunch
of subsystems converging on a complex brain-wide pattern of effective connectivity that
theorists will dub p34 for methodological reasons.

This is the answer to the first question. Whenever we learn our way in the
world, we not only store knowledge in the form of a certain structure. Thanks to neural
control structures, we store knowledge about the dynamics under which the knowledge
is historically articulated as well. This knowledge is implicit in the usage-pattern of the
involved cognitive assets and is equally available for further exploitation. We can say that
this knowledge resembles what’s culturally relevant because it is a direct product of the
way in which the world’s dynamics routinely take place. Furthermore, at this point, many
culturally inherited framing functions can already be involved in the making up of the
wordly knowledge. I’m not emphasizing this point yet because, until now, their role is not
peculiarly that of comprising cognitive gadgets. That is, up to this point, the story would
still be compatible with a set of cognitive instincts exploiting cultural information. But
this will change soon.

4.5.2 Relevance-sensitive influence over cognitive processing

The second question is how this knowledge that represents — with varied accuracy
— what is culturally relevant can affect cognitive processes. We’ve seen that, through the
lens of RCP, neural control structures can represent and learn to exploit the dynamics of
the subsystems they comprise. Whenever they engage in the representational redescription
of the dynamics of a subsystem, the output is the outline of a new emerging domain akin
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to the ones discussed in chapter 3. This means that some of what’s typical or cyclical
in that dynamics can be representationally redescribed into architectural constraints.
As the subsystem’s developmental trajectory goes on — i.e. as it enriches its dynamic
patterns — it increases the accuracy with which it represents the dynamics of the human
activities it participates in. They can effectively learn to render permutations of its
previous experiences (inasmuch as its encompassing subsystem participated, of course).

As the subsystem is operative, all that information is available for exploitation. This
means that its neural control structures are not restricted to merely reenacting previous
dynamics. Rather, the system can effectively exploit simulations of the architecturally
available set of permutations of the dynamics it represents (“what if I have lunch earlier
today?”). It can forge and “experiment with” such permutations in a flexible yet archi-
tecturally constrained and FP-free way. Furthermore, such patterns can be cognized by
other mechanisms through additional representations or encodings. Distinct mechanisms
can, for instance, produce analogies, compare schemes, task-embed things in it, and so
on. In this picture, neural control structures are a source of guidance for other cognitive
processes. They provide reliable knowledge of what is typical. However, they can go
beyond that. This extra degree of freedom is what allows the system to go beyond what’s
merely familiar.

Unfortunately, inasmuch as we go beyond what we’re familiar with (e.g. non
previously experienced permutations of ec-patterns), they can’t guarantee that this will
happen without losing sight of what’s typically relevant. More precisely, once neural
control structures redescribe the set of dynamics into a representational scheme and start
exploiting it, they become capable of modulating the flow in novel ways. Inasmuch as
they have this freedom, they can no longer guarantee that every permutation is going
to happen in a way that respects what’s circumstantially relevant. After all, being able
to render new permutations implies the possibility of moving away from what’s typically
relevant. How can it preclude contextually alien permutations?

This is where Heyes’ framework starts to pay dividends. As we learn our way, we
gain access to exploitative strategies culturally established, i.e. cognitive gadgets. The
gadgets in question are framing functions that we employ when exploiting some cognitive
assets. Such framing functions are akin to the tweaks employed to know whether elephant
skin is essential to elephant recognition. In the particular case of neural control structures,
the framing functions can tweak our way towards the right direction whenever we exploit
possible permutations of our cognitive dynamics. As an example of this point, suppose
that whenever doubt obtains, our routine dynamics tell us to follow the highest authority
available, and that this usually boils down to following the oldest person in the room.
Though this seems like a plausible strategy, as Heyes remarked, this can be misleading,
at least in circumstances involving (very) recently developed technology. In these cases,
younger people are frequently better authorities on what to do. “Follow the younger” is the
kind of gadget that guides us in how we should exploit the space of possible permutations
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allowed by some domain-comprising dynamics. But the same reasoning goes for lots of
very specific outlines: “Hollywood scary movies always try to let you anxious by rising
music as the protagonist checks the source of a noise in a dark place, then they suddenly
stop the music and let you relax a bit by showing a cat as a possible source, and only
then, at that moment of relief, the threat shows itself”. Finally, some tweaks may comprise
preparatory rituals or catchphrases like “always on the lookout!”. Notice how comedy
movies typically draws on our familiarity with this kind of framing functions by twisting
the typical pattern in which they’re applied (things such as a goofy character screaming
“always on the lookout!” in a very unusual setting). Thus, lots of small culturally inherited
gadgets like these comprise tools that the system can use to guide its exploitation of the
possible articulations of its ec-patterns.

This supplies the system with the required flexibility without begging questions
about how they can be harmonic with what’s culturally relevant, and with principled
means of control. It enables us to go beyond what’s merely previously familiar by exploiting
permutations of ec-patterns in a productive yet culturally constrained way. In this picture,
the capacity to stick to what is relevant does not rely solely on how the information is
organized and stored within the system. Rather, it is also a function of how the system
exploits that information.

The upshot is that what’s relevant comes not only in the form of cognitive knowledge
about the domains directly involved in human activities. It also comprises knowledge
about how to exploit them, i.e. how to process them. This is RCP’s way to make the same
claim made by Heyes: culture provides not only grist, but also mills, i.e. the means to
process grist. This points us to an important clue of how RP can be tamed. It already tells
us how we can go beyond what we’re familiar with without losing track what’s relevant.
Whenever we go, i.e. whatever permutation of our typical patterns of effective connectivity
we exploit, we’ll remain loyal to what’s culturally relevant inasmuch as we rely on cognitive
gadgets to tweak our exploitation of our own dynamics.

Unfortunately, there’s still one last step before reaching a complete account of RP.
As things stand, we may still have a potentially overwhelming number of small gadgets
like the ones aforementioned. Thus, the possibility arises that we are again haunted by
the problem of how to choose the right gadget to apply at any circumstance. In the next
session, I’ll make a tentative suggestion to tell a story in which this can be avoided.

4.5.3 Relevance-sensitive context extrapolation

Extrapolating from familiar contexts without losing track of what’s relevant is the
core cognitive capacity underpinning the possibility of handling non-saturable contexts.
That amounts to the capacity to engage in novel variations of already familiar contextual
tonalities even though we can’t know in advance the kind of feature we’ll have to handle.
We’ve seen how that can be done with the help of culturally inherited cognitive strategies
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(i.e. cognitive gadgets). An important part of the story is that we should not concentrate
on kinds of situation, but rather in the system’s dynamics. Whenever we find ourselves
within a situation, we’re handling it under some articulation of the possible ec-patterns.
The cognitive tweaks we culturally inherited work with them as the background against
which they’re deployed, not with clear-cut situations. Thus, ec-patterns and situations
comprise distinct dimensions of the same structure comprising human activities. This
means that we can concentrate on one dimension rather than the other, and that this
decision will always leave something out.21 The current point, to be clear, is not that the
dimensions exploited whenever trying to demarcate the boundaries of a concrete situation
are useless or not exploited at all. Rather, the point is that they’re not behind the system’s
capacity to keep track of what’s typically relevant in indefinitely many contexts.

We can summarize our current goal like this: how do we avoid idle permutations
of our ec-patterns? If neural control structures (as well as whatever mechanism exploits
them) are allowed to free float, RP will remain a genuine threat. A while ago, Cherniak
(1990) reached a similar point. He realized that the way we store information is intertwined
with our capacity to exploit it in a relevance-sensitive way. Also like us, he noticed the
limitations of this approach. Storing in the right way seems necessary, but not sufficient to
explain our capacity to render plausible and relevance-sensitive inferences. Unfortunately,
at the time, all he did was to speculate that we somehow learn the right way to do that or
inherit the proper genetic wiring:

(. . . ) actions of inferring must (. . . ) come to conform with desires and
beliefs largely by means of fixed, nonintegrated, nonconscious mechanisms
of selection or guidance that do not involve reasoning processes of any
kind. These mechanisms may be acquired—for instance, as learned
“cognitive styles” — or natural selection may have “designed” the agent
so that, as an efficient organism, he undertakes particular inferences.
(Cherniak, 1990, p. 12)

We know why the natural selection of genetic traits is hopeless: our upbringing relies
on culturally inherited gadgets. As for what Cherniak dubbed cognitive style, unfortunately
he didn’t develop it, keeping it somewhat mysterious. After all, acquiring a cognitive
style is nothing but learning to make the appropriate inferences in a relevance-sensitive
way. Moreover, Cherniak thought that a cognitive style must not involve any kind of
reasoning processes. The reason for this claim is that Cherniak worked with a LOT-powered
framework. In that scenario, any appeal to reasoning processes would be circular, that is,
it would beg the question that a style was supposed to solve, which is how we can engage
in inferential productivity that respects what’s contextually relevant. Notwithstanding,
the term “cognitive style” seems appropriate to RCP. That’s not because it designates
non-cognitive work, though. It’s because it designates a collection of strategies to render
inferences that do not work with a principled notion of what’s relevant. In other words, the
21 That’s expected whenever handling multi-dimensional structures, as extensively discussed in chapter 2.
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way we do things within a given culture is not a feature of some principled conception of
relevance.22 Rather, it is the result of the accumulation of contingencies that characterizes
cultural evolution. It is not merely a cognitive routine, for it’s what allows one to go
beyond what’s cognitively routine. But what could a cognitive style amount to? The set
of conceptual tools involved in RCP and the cognitive gadgets framework may be a fruitful
way to flesh out the idea.

A cognitive style can be regarded as a set of strategies employed by mechanisms
exploiting the stored structural knowledge about the dynamics of cognition. However,
this time what I have in mind is something different from the small cognitive tweaks
mentioned in the previous session. Those tweaks are surely available to be inherited and
employed as previously stated, but there’s a distinctive kind of cognitive gadget that
comes from the cultural accumulation of those small tweaks. Over time, they comprise
what I’ll regard as cognitive templates for the overall dynamics of the cognitive apparatus.
As the name emphasizes, such templates comprise the dynamics of ec-patterns, just like
the ones previously discussed. However, templates comprising cognitive styles are usually
large-scale, in the sense that they can involve the operation of many distinct routing
mechanisms. In other words, they’re templates for a certain way to render the dynamics
of the world intelligible. To get a glimpse on what such strategies would amount to, I’ll
take an idea from another old paper, this time from Dennett (1996), which is worth citing
at length:

Suppose an agent is supplied with half a dozen story outlines — or 25
or 103, but not many more — and these are so over learned that these
stories are always “trying to happen”. That is, whatever happens to
the agent, the stories are crowding around, looking for their particular
heroes, heroines, obstacles, opportunities and circumstances, and very
tolerant of mismatches. (. . . ) Suppose, that is, that the difficulties the
hero encounters and deals with in each story is typical, and the repertoire
of stories is practically exhaustive of human problems. Each story, as
it “tries” to be reenacted in the agent’s own experience, provides the
agent with a model of how to behave. It keeps giving the agent hints:
Stay on the lookout for dirty tricks of sort A, do not forget to take
the key along, perhaps this is an opportunity to try the old “push-the-
witch-in-the-oven” trick, wait till the villain falls asleep, perhaps this is
a wolf in sheep’s clothing, and so on. (. . . ) An agent equipped with a
sufficient stock of stories trying to happen would always be vulnerable to
being blindsided by an entirely novel story, but perhaps, after millenia
of storytelling, there are no more entirely novel stories. That, at least,
is the conclusion despairingly reached by many a blocked novelist and
triumphantly reached by many a structuralist anthropologist. (Dennett,
1996, p. 6)

Dennett suggests that we have a number of “story outlines” that we employ in
trying to make sense of the world. His idea can be easily connected to that of Joseph
Campbell’s “journey of the hero”, from Campbell (1949). In his studies of mythology,
22 This is just a restatement of an idea already worked out in chapter 1: there can be no general theory

of relevance.
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Campbell hypothesized that there would be a common structure underlying the myths
that human beings have developed throughout their history. Very roughly, the structure
would comprise a dynamics in which the protagonist is called to an adventure, faces and
wins a decisive challenge and then returns home transformed by the experience. But we’re
not concerned here with how credible Campbell’s thesis is in anthropology. The idea of a
“monomyth” was much more ambitious than it is required by the illustrative role it plays
here. For instance, neither Dennett nor I have in mind something that necessarily crosses
different cultures. Quite the contrary, what matters for us (well, for me) is the possibility
of structural dynamics culturally inherited by cultural learning, perhaps sometimes by
literally hearing about them in tales.

Many of such story outlines may resemble large-scale expected dynamics in multiple
domains of life, such as relationships, health and work. They may also resemble patterns
of a shorter time scale, such as those involved in telling stories with a clear “moral” (“be
careful, you know the story of the boy who cried wolf”). They can even resemble the
behavioral patterns of particular agents, perhaps in a religion-embedded sense (“this is
what she would do”, “this is what he would like”). We learn the trajectories comprising
such stories as we learn to navigate in the world. Consider, for instance, the dynamics of
friendship alongside a large-scale temporal dimension. It usually begins with an encounter
involving common goals, interests or experiences. There are many steps in it as the level
of intimacy grows (or perhaps remains stationary in a plateau). It implies duties and roles,
in the sense that it has to be nurtured and leads to expectations. Moreover, you’re subject
to having favors asked, you’re expected to be loyal, to be there for good and bad moments,
to remember special occasions, and so on. As we master the whole dynamics, it can play
the role that Dennett attributes to it and keep “trying to happen”, occasionally tipping us
by whispering “this is the part where you’re expected to do x”.

Dennett’s story outlines, I suggest, are the peculiarly human way to generalize
about the world. In RCP, they amount to cognitive templates, i.e. to set of cognitive
gadgets structured by cultural evolution. In their turn, such templates comprise the
cognitive style that resembles what’s culturally relevant in a given culture. Cognitive
templates enable us to handle non-saturable contexts because they’re always operative in
whatever concrete situation we find ourselves in. Even in situations that we’re never found
before, they can point us towards all kinds of cognitive tricks. What to pay attention to,
what is likely to come next, and so on. Thus, we can go beyond the set of permutations of
the patterns of effective connectivity with which we’re already familiar without getting
lost: on the one hand, architectural features of the employed representational schemes
preempt the possibility of going astray due to FP. On the other, the availability of a
cognitive style, i.e. a relatively small set of cognitive templates always “trying to happen”
preempts the possibility of going astray in indefinitely many idle permutations. They’re
available for both learning and non-learning cognitive tasks.

The importance that the templates comprising a cognitive style are limited in
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number should not be underestimated. In order to avoid RP, we need a good balance
between flexibility and stability. The availability of a reasonably limited yet powerful set
of templates for stories might be able to provide just the right amount of each. A huge
number of cognitive templates would simply bring RP back, for now we would have the
problem of choosing among them. On the other hand, the absence of templates would
keep us in the cage of the worldly experiences we’re previously familiar with.

This implies that the human-world comprises also templates rather than just kinds
of situations.23 In this view, as stated in the first chapter, a cognitive context does not
amount to a subset of the cognitive apparatus’ cognitive assets, but rather a tonality. Thus,
even those willing to tell their tales by relying on m-contexts need not worry about what
is in or out a specific situation. Everything is potentially in, but the system explores the
possible configurations only in terms of how it articulates the permutations of ec-patterns
allowed by its cognitive style. Its cognitive style is, in this sense, the set of possible
ways to articulate the available ec-patterns, both acquired as the system learns about the
world through culturally inherited framing functions. This is how the system is able to
keep its interests and the world in harmony. The system’s current contextual tonality
is the system’s current articulation of the available ec-patterns alongside the world’s
circumstances. As the set of available permutations of ec-patterns can be articulated
productively without raising RP, it is not mysterious how the system can entertain an
open-ended set of non-saturable contexts.

Before we dig further into how this enables a system to switch from context to
context without raising RP, two quick remarks are in place. First, in her book, Cecilia
Heyes distinguishes cultural learning as a special kind of social learning that’s specialized
for cultural evolution. I’ve just claimed that relevance sensitivity is a cognitive gadget, and
that it plays a special role in many of our cognitive tasks, both those involved in learning
and those not involved. Should we say that relevance sensitivity (i.e. a cognitive style)
is specialized for cultural inheritance? I’m inclined to think so. It provides a means of
enhancing the fidelity and accuracy with which information is passed on. Furthermore, it
helps to gather very similar understanding from and enormous variety of situations. While
this obviously requires further research, I think there are good reasons to be cautiously
optimistic about it.

The second remark is about whether we should think of relevance sensitivity as
a metacognitive mechanism. It all depends on what one means by that. But again, I’m
inclined to think so, at least if we accept the conception advanced by Proust (2013), which
recognizes a place for what she calls “procedural meta-cognition”. In this picture, such
mechanisms need not be described according to linguistic or “conceptual” rules. Rather,
they may provide clues about what we should regard as relevant in a given situation even
though it’s underlying rationale is not available to us. A culturally established cognitive
23 Indeed, there’s the possibility that situations only make sense from the perspective of the theorist.

This amounts to the denial of any explanatory role for m-contexts.
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style seems fit for this role.

4.5.4 Relevance-sensitive context switching

In RCP, Dennett’s story outlines are cognitive templates that can be exploited in
order to guide and constrain other cognitive processing. That is, by “adopting” a given
template, what one is doing is entering a certain state characterized by some pattern of
effective connectivity. Such an articulation amounts to the system’s current contextual
tonality. But how can a given permutation of a story come about? In other words, how
does context switching take place? The usual way to think about this is in terms of the
system being able to track the world and render harmonic internal states. This doesn’t
throw much light on the role played by the system’s interests and expectations, though. In
what follows I’ll quickly describe two possibilities that are likely to coexist: the first is a
bottom-up approach that describes the familiar set in which the system simply finds itself
within a given context that comes about. The second amounts to a top-down approach in
which the system can actively engage into bringing about a contextual tonality.

Perkins (2002) claims that behavior is largely controlled by a bottom-up activity
switching mechanism he dubs emergent activity switching. This is a special case of self-
organizing criticality, a concept that comes from physics. It describes the dynamics of
systems tending towards an atractor. Perhaps the simplest example is thirst. As the
intensity increases, it enhances the likelihood that the system shifts towards water-seeking
behavior. There’s a critical point, though, where the behavior becomes almost inevitable,
i.e. it becomes the system’s focus. The criticality is said to be “self-organizing” because it
comes about as part of the way the subsystem works. It is not really a perturbation on
some stabilized flow, but rather a consequence of what keeps the system (mostly) stable.
The closer the thirst-modulating system is to a critical point, the more likely it is to make
the system pay attention to external features such as the availability of a bottle of water.
Eventually, if the thirst continue to build it may trigger an active attempt to find water.
After finally drinking some water, the system enters a “dormant” state in which bottles of
water are less likely to be salient.

The critical phase primes the system towards a certain contextual tonality. In RCP
terms, this means it makes it enter a sequence of ec-patterns as described by a template.
Not all templates must be assembled by culturally inherited gadgets or elements, of course.
A thirst-modulating system, if there really is one, is likely to be accounted for solely in
terms of genetic evolution. But Perkins’ engine works with culturally assembled templates
as well. It invites us to think of context switching as emerging out of many concurrent
processes of self-organizing criticality.

This is plausible account of how there can be stories that are always “trying to
happen”. Different processes tend to build up to the point where some critical phase
triggers a contextual tonality.
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Emergent activity switching appears to be a highly adaptive way of
resolving what behaviors to execute when. Forget for a moment that we
like to think of ourselves as intelligent organisms capable of managing our
behavior in global, planful top-down ways. Perhaps I am not so mindful
this week, or sleepy today; or perhaps I am a dog or a cat instead of a
human being. Emergent activity switching keeps me drinking when I need
to drink, without reliance on self-knowledge and panoramic planning.
(. . . ) I don’t have to monitor deliberately whether I’m thirsty. My body
tells me. (Perkins, 2002, p. 70)

The picture that Perkins draws in this quote is recognizable in much of the literature
regarding RP. Indeed, Dreyfus’ famous skepticism towards classic cognitivism was largely
grounded in a description of the background (in which every cognitive task takes place) as a
phenomenon that cannot be cognitively explained (Dreyfus, 1992; Dreyfus; Dreyfus, 1987).
This pictures the system’s cognitive machinery as a dupe of such low-level undergoings,
as if the background in which the system’s cognitive tasks take place was always a given,
at least from the perspective of the system’s cognitive activity. In this view, the relation
between a context and the tasks that take place in it is unidirectional. This goes both for
low level water-seeking routines and routines involving higher cognitive capacities, even
when consciously exercised.

(. . . ) the pattern also figures prominently in loftier activities. Consider,
for example, preparing for an upcoming interview. For a while, you don’t
worry about it at all. As the time approaches, it’s more and more on
your mind. Eventually, you worry enough about it so that you sit down
and begin to prepare. The period of preparation continues until you
feel secure. Having rendered the worry dormant, you switch out of the
preparation behavior, proceeding with other activities until the interview.
Or, alternatively, worry may begin to build again as you think of real or
imagined shortfalls in your initial preparation. (Perkins, 2002, p. 69)

This brings forth a picture in which we don’t have to monitor deliberately whether
it’s time to prepare for an interview (or a presentation, or a thesis defense). We can instead
“trust our worry”. This is how our cognitive templates interact with and preempt the
cognitive tasks we put forth. It brings to the fore certain templates according to certain
patterns which are describable as emergent. Inasmuch as RP is concerned, the fact that
templates stories are assembled with the help of cognitive gadgets (i.e. culturally inherited
tweaks) preempts the necessity to invoke a pre-established harmony between cognitive
processes and the structure of worldly activities.

But there’s something unsatisfactory with this unidirectional account of the relation
between contextual tonality and the cognitive tasks we engage in. Up to this point, this
view pictures the system as a dupe of its own cognitive style. Though this is undoubtedly
true, it should be emphasized that there is another route towards establishing a distinct
context for the realization of a task, i.e. context switching. There are cases in which a
system (like us) can actively engage in bringing the proper contextual tonality to the fore.
By doing so, we can actively change to a different articulation of ec-patterns. That is, rather
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than merely attuning ourselves to the current context of activity, we can actually refer to
another, non-actual context and change the way we handle a situation. Reconfiguring the
context itself may become the cognitive task.

In order to make this suggestion, I’ll deploy an example from Cappuccio; Wheeler
(2012): how United Kingdom’s King George VI dealt with his famous stutter. More
specifically, how he managed to handle it when he had to announce that the United
Kingdom was entering World War II. Until a few weeks earlier, George was not the
king, he was unprepared to be crowned, and thought of himself as a marine officer. His
circumstances were really intimidating. The set of contexts with which it was already
familiar with are very dissimilar from the one he was facing now. Given his complete lack
of familiarity, the disparity between how he’d see himself and his current role, we could
hardly claim that his set of familiar templates would poise him to react appropriately. In
order to handle it, George made use of preparatory routines such as practicing with tongue
twisters and training with preparatory gestures. In the words of Cappuccio; Wheeler
(2012):

It seems difficult to claim that his decision to confront the local context
of that public announcement was fluidly coupled with, and unproblem-
atically derived from his personal and political history (. . . ), as the
emotional tone of the situation seemed strongly to discourage that deci-
sion; so much so, in fact, that even his personal identity and institutional
function, and not just the contingent circumstances of the speech, could
be seen as an anguishing state of affairs to be avoided. (. . . ) This shift
could be achieved only through a resolute effort on the part of the king
to become aware of, and to change, the conditions of his contextual situa-
tion, and not through a process in which he unreflectively accommodated
himself to those conditions. (Cappuccio; Wheeler, 2012, pp. 23–24)

By training with preparatory routines, George could “reset” its behavioral disposi-
tions. He could then bring to the fore a new contextual tonality, and with it, he brought
up a distinct articulation of worldly knowledge and behavioral dispositions he could use to
act differently in a very unfamiliar context. This requires some level of detachment from
the current environmental circumstances, which means that there is a place for the kind of
job that representational contents can be specially helpful. Representational articulations
of templates are able to handle this, for they can amount to the partial simulation of a
distinct contextual tonality. George was trying to employ framing functions to simulate a
new permutation of the contextual tonalities he was already familiar with. Such simulation
can help him to behave differently in a scenario he has never found before. In order to do
so, he used preparatory rituals (such as tongue twisters) that helped him to get closer to
the desired contextual articulation. These are culturally inherited scaffolds that enable
the system to exploit its set of represented templates in new ways, i.e. it can learn to
articulate new templates or learn to apply a given template differently.

The described process should not be taken as a full inner power that can fully
overcome external circumstances or bring about a new contextual configuration out of the
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blue. Rather, we’re pointing to a process of context-switching that is not a direct response
to environmental changing, but a strategy actively adopted by the agent. The system is
able to think about its own dispositions from the simulated context that arises out of the
simulated template. By manipulating and simulating a new context, he can “check” what
is seen by him as relevant, that is, he can let itself be guided by the articulated template.
This is an example of how we can tell a tale in which representations can effectively guide
the system into a new contextual tonality without the need to posit m-contexts, but
without precluding them through non-empirical means. This allows us to remain faithful
to the idea that this should be determined through empirical means.

4.6 Closing remarks

Let us finally outline everything we’ve discussed and make sure we haven’t left
out anything essential nor any promises unfulfilled. What have we (hopefully) achieved?
Ultimately, relevance-sensitivity is the product of a cognitive gadget dubbed cognitive style.
This gadget is produced by cultural evolution and inherited through social learning. As
conceived, this notion of relevance-sensitivity is completely compatible with representational
mechanisms — and if RCP is anywhere near the right path, representational accounts may
provide the best trade off between explanatory purchases and theoretic commitments. It is
also non-algorithmic in the sense that there’s no underlying principle or theory of relevance
behind what constitutes relevance-sensitivity, i.e. it is compatible with the claim that there
can be no such thing as a contextless algorithm to determine what’s relevant. Rather,
it is compatible with the idea that relevance-sensitivity comprises a broadly pragmatic
engagement with the world.

Can a cognitive style handles non-saturable human-world contexts? That is, can it
buys us relevance-sensitive context productivity? A cognitive style supplies the system with
a finite and limited set of exploitative strategies (i.e. templates). Consequently, there’s only
a limited capacity to render permutations of the systems’ patterns of effective connectivity
(ec-patterns). Distinct permutations result in the articulation of different local mechanism
in different ways. This means that different kinds of elements will become prominent in
different degrees of intensity. As the cognitive templates comprising the system’s style
are always “trying to happen”, their sensitiveness to certain key clues can quickly render
a critical point leading to a context switching. Thus, a friendship-template can quickly
lead to a health-template in case a friend starts to not feeling well during dinner. But this
doesn’t stop the friendship-template nor the (say) social-relationship-template from keep
“trying to happen” at all times.

Ultimately, there may be limitations to the kinds of feature that can become salient.
But this limitation is more the result of the volume of knowledge stored in the system than
the scope of the templates it continually employs. That is, a template cannot bring to the
fore elements that are completely alien to a particular system. However, as the system
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learns about those elements in some other occasion, the same template now can render
that element salient whenever the involved mechanism gets active under a given pattern of
effective connectivity. Thus, eventual limitations are not cognitive, but epistemic. They’re
not connected to the depiction of contexts as kinds of situations. They’re indifferent to
what’s typical to a given circumstance, for the specifics of each situation is only indirectly
connected to the templates. In other words, if a cognitive template involves a given
articulation of 24 different mechanisms, and none of them involves any sensitiveness to
a feature x, then no permutation of those mechanisms will enable the system to render
that feature x as salient. But by the same token, if any of those 24 mechanisms eventually
learn about the feature x, then the same template will be able to render it salient in any
situation. That is, we can become attentive to an increasingly higher number of clues as
the comprising mechanisms learn something new, for the sensitiveness is now part of every
pattern of effective connectivity rendered by a given template. We have, in a nutshell, a
productive yet tamed capacity for context production that can extrapolate from the set of
familiar contexts without implying that the involved cognitive mechanisms are able to
spin freely in a void.

Finally, RP was first introduced as a challenge facing accounts of two large-scale
human capacities: commonsense holism and situation holism. Can the provided account
handle them inasmuch as RP is involved? Time will tell, but I’m cautiously optimistic.
Commonsense is hard inasmuch as it relies on open-ended sets of non-saturable contexts.
But our cognitive style provides context-productivity, that is, as we go from context to
context, our templates guides into what must be rendered salient, whatever that context
amounts to. Moreover, the fact that the cognitive templates are always operative helps
us to explain the real time character of commonsense. It accounts for the fact that we
continuously reassess information as it flows. In this sense, to manifest commonsense is
simply to constrain one’s own inferential productivity to one’s cognitive style. It places
our cognition between the Scylla of an inflexible routine and the Charybdis of a completely
unconstrained inferential process.

At last, the capacity to keep track of two (or maybe more) situations at the same
time is not mysterious anymore. The context productivity afforded by our cognitive style,
as well as the bottom-up and top-down mechanisms of context-switching can be articulated
in parallel without begging any fundamental question. There can be of course empirical
concerns about the practical limits of such capacities. How many distinct perspectives of
the world are we capable of articulating at once? Nothing in RCP puts a principled limit
to this capacity.

4.7 Paragraph-by-paragraph summary

Each entry below summarizes a paragraph of the main text.



276

Where are we at?

Let’s start by taking stock: RP seems to bother everyone.
But not equally, for those insisting on systems employing absolute contents face a

dead-end, which is FP.
Given everything we discussed, it seems clear that determining whether something

is relevant cannot be the goal of any particular, cognitive task, for it would suffer from
RP itself, which means that relevance must be some kind of emergent property. This is
problematic, though.

On the one hand, the claim that relevance-sensitivity must be a consequence of the
system’s overall dynamics is specially worrisome for those commited to the idea that
cognition can only be properly explained by subsuming performances under some kind of
epistemic rationale.

On the other, there seems to be no underlying rationale capable of figuring out what’s
relevant.

Switching from absolute to relative contents helps by getting us rid of FP, but it won’t
do much more than that RP-wise.

This is so because every representational content (as well as every target the system
fixes on) is aspectual.

Going for a non-cognitive account is not an option, for relevance sensitivity must
be potentially exploitable as a source of knowledge, otherwise we wouldn’t be able to
extrapolate from it, and extrapolation is essential to handle non-saturable contexts.

My suggestion for achieving this will rely on structural representational contents and
the capacity for representational redescription.

First, we’ll discuss how a broadly mechanistic approach can handle the high level
of flexibility that context-sensitivity requires, and then proceed to the suggestion of a
bootstrap story in which we can “learn to learn” what’s relevant with the help of culturally
inherited gadgets.

Effective connectivity

How can the brain be flexible yet organized?
There are frameworks that seem to enable a high level of cognitive flexibility, but with

a catch: whenever the requirement for flexibility becomes too complex or too broad, only
a broadly dynamic account can be formulated (i.e. we give up on a mechanistic account).

But most of the skepticism towards mechanistic accounts of very flexible systems
involves conceptions of functional analysis and computational architectures coming from
classic cognitivism.

The main issue is that cognitive machinery must be broadly integrated while, at the
same time, not restricted to a single organization. But how can such wide reorganization
takes place if the reorganizing process must itself rely on the current organization?

The first step is to realize that functional and mechanistic analysis can themselves be
context-sensitive.

The second step is to sketch a mechanism through which wide functional reorganization
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could be achieved: we find a clue in what Andy Clark dubbed neural control structures.
They are responsible to modulate the flow of activity between cortical areas.
The hypothesis is that there are mechanisms specialized in modulating the flow of

information, and that these have a crucial role in how distinct mechanisms are articulated
and how they can influence one another.

The influence that neural mechanisms have over one another at a given moment
comprises the systems’ overall pattern of effective connectivity, enabling the system to
comprise transient sub-systems that are tailor-made for the situation at hand.

But how do neural control structures “know” the pattern of effective connectivity that
accounts for what’s relevant in the current situation?

Perhaps it can rely on the set of situations (i.e. previously employed patterns of effective
connectivity) it is already familiar with and simply bring to the fore the most similar one?

Unfortunately, similarity-based recognition requires (rather than provides) a solution
for RP, for the comparison must regard only the relevant set of potentially similar features
(given that everything is similar and dissimilar in indefinitely many ways). We have thus
the required flexibility, but it remains blind to relevance. Perhaps it can learn to see it?

Can we learn what’s relevant?

Fodor’s classic take depicts relevance as an objective property that must be adressed
through scientific endeavours.

But that is misleading, for science is about what’s true, while relevance is about what’s
fit to a given context.

As we learn to inhabit the human world, we learn to cope with what’s relevant for the
activities that take place within, and in this sense, relevance emerges as a structural trait
that’s out there for us to cognize.

Unfortunately, even these learning tasks suffer from RP, which is why one doesn’t
simply learn what’s relevant: the learning system must be able to select and track the
relevant set of features.

A version of this difficulty can be found in artificial neural networks: sometimes it may
take an inessential feature as essential and vice versa.

Thus, we can’t simply appeal to the availability of the relevant information in the
environment, for the question is just how the learning mechanisms can discern relevant
from irrelevant features when learning about any given target.

To see what’s at stake, consider the example of the mutilated checkerboard to see how
a small difference in how the problem is formulated may require a deep insight about what
features are relevant.

Can 32 domino pieces cover the 64 squares of a normal checkerboard? Yes.
Now say we remove two diagonally opposite corners of the board: can 31 domino pieces

cover the remaining 62 squares? No. In order to solve it now, we have to pay attention to
a so far irrelevant feature: the fact that each square has a color (black or white), and the
color alternates.

The point is that the checkerboard has indefinitely many properties other than parity,
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none of them equally helpfull, but we only know that after realizing what’s relevant. How?
This amounts to Clark and Thornton’s distinction between type-1 and type-2 regularities.

Type-1 regularities can be grasped directly, while type-2 require framing the data in the
circumstantially appropriate way. Let’s unpack this.

A type-1 regularity enables direct grasping. We check each available input-output pair
and come up with a probabilistic conclusion (e.g. half the times that 1 is in the input data,
the output is also 1, which means that there’s a 1/2 chance of getting 1 as the output).

However, there are statistical relationships of this kind that only become available for
direct inspection after the application of some arbitrary function.

By framing the input set under a given framing function, a whole new set of inferences
become immediately available by the same kind of statistical inspection previously available
with the raw data.

RCP’s previously discussed cognitive tools (schemes, encodings, task-embedding, and
so on) are all akin to framing functions in this sense: they may render type-2 information
to type-1 exploitation.

However, as the authors notice, now we have the problem of selecting the contextually
appropriate way to render the available information intelligible among indefinitely many
possible ways.

Selecting the contextually appropriate framing function under which to subsume infor-
mation is essential, and it is also what triggers RP even in regular episodes of learning.
This is why one can’t simply learn what’s relevant.

In learning, a framing function is akin to a developmental bias, but where do these
biases come from? Let’s consider some possibilities.

Option one: general-purpose learning

The first possibility is that general-purpose learning are able to figure out type-2
regularities without any framing functions.

This idea is reminiscent of the hope that we can find the algorithm comprising general
intelligence.

Though some non-specialized algorithms can figure out some type-2 regulatities, this is
not fully generalizable.

As the “no free lunch” theorems have shown, every learning algorithm will inevitably
embody certain domain-specific assumptions that will favor some framing functions over
others.

Option two: meta-learning

Meta-learners try to learn the best learning approach for each circumstance, but the
threat of infinite regress is evident.

Vervaeke and others believe that this threat can be mitigated if we conceive the meta-
learner as relying on opponent processing (i.e. it would learn the best balance between
competing goals).

Every subsystem would be sensitive to specific elements of the environment, somewhat
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like the resulting balance of the sympathetic and parasympathetic systems. The meta-
learner would work to achieve the appropriate balance in every situation.

Thus, finding what’s relevant is understood as the capacity to find the contextually
appropriate balance between the many opponent processes going on.

This is a nice step in a promising direction, for it takes relevance to be not just about
efficiency, but the balance between efficiency (using one’s cognitive knowledge in the best
possible way) and diversification, which the authors dub resiliency (trying out new things,
even if it may lose time and energy with inneficient attempts).

But this is just another kind of CRC (which we studied when discussing Wheeler’s
approach in chapter 1) and thus subject to the same kind of criticism: it may account for
the cognitive flexibility, but it throws no light on what guides the system in figurint out
the contextually appropriate balance.

What we have here, I think, is another attempt to stop a vicious regress of reformulations
disguised as explanations of RP by appeal to a change in the explanatory strategy.

Option three: innate tweaks

A different approach involves heavy reliance on innate framing functions: we’re born with
the appropriate set of tweaks programmed to come to the fore at the right developmental
stage.

Though plausible in some cases, this leaves a lot unexplained: we most certainly do not
genetically inherit developmental tendencies to learn the right way to behave in classrooms
or airplanes.

Option four: incremental learning

The idea behind incremental learning is that complex type-2 problems can be factored
in developmental sequences of easier type-1 problems.

Unfortunately, as it stands this is just a reformulation of the problem: how do we figure
out the right developmental sequence?

Either we have a set of framing functions bounded to a specific domain, or we have
a set of framing functions that tries to handle every domain equally, without the proper
treatment of its particularities.

This difficulty is similar in nature with those we’ve been discussing so far. We can’t
simply learn what’s relevant.

But I believe we can find a way out of this maze in Cecilia Heye’s framework of cognitive
gadgets.

The cognitive gadgets framework

As things stand, we already know that in a very general and explanatorily trivial sense,
we learn to recognize what’s relevant as we learn to cope with the world. However, as we
try to make sense of this capacity at the sub-personal level, things remain quite challenging.
Perhaps Cecilia Heyes’ framework can be of help.
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Heyes goes beyond the traditional picture (in which we use innate mechanisms to
process cultural information) by claiming that we can culturally inherit also the set of
techniques we employ when handling cultural information.

To ground this, Heyes provides a selectionist account of cultural evolution: mental
mechanisms evolve and are replicated through social learning.

Social learning can do that because it’s not only about “copying” information from
a mind to another, but rather gradually shaping one’s behavior through continuous
instruction and encouragement.

Thus, rather than concentrating on finding peculiarly human “cognitive instincts”, we
can instead focus on accounting for what’s peculiar about human culture.

Heyes ground’s what’s peculiar in our culture in three genetic traits: higher sociability,
enhanced social motivation and more powerfull general-purpose information-processing
machinery.

Thus, the distinctive innate developmental biases are those that enhance our sociability.
These traits enable a kind of social learning that’s responsible for the peculair traits of

human culture. Heyes calls them mechanisms for cultural learning, which are specialized
for our peculiar cumulative culture.

In this picture, the claim that cognitive gadgets are products of cultural evolution
amounts to the claim that they were shaped by cultural group selection.

An example of how a cognitive gadget can develop out of the presented starter pack is
the human capacity to imitate.

The problem, in a nutshell, is how the cognitive apparatus can associate the movement
the agent produces with the movement from third-parties that the agent only sees.

Her core idea is that we learn in increasingly larger repertoire of associations between
what we see and what we do: babies can learn such associations by self-observation and
by being exposed to their mother’s imitation of their own behavior (frowning, etc.).

This kind of association is an example of what framing functions can look like in the
real world.

Only now, thanks to Heyes’ framework, we have a plausible source for culturally shaped
framing functions and their role in developmental trajectories.

This is a cultural account of why humans are so good at imitation: even though we
may share some employed capacities with other primates, their environment is not so rich
(neither cumulative) as the one available for humans.

Culturally inherited framing functions can explain developmental trajectories that only
make sense within the current setting in human culture.

In a nutshell, by providing the right set of framing functions at the right developmental
stage, culture is able to provide the right developmental sequence of tractable type-1
learning problems.

Relevance sensitivity as a cognitive gadget

Let us now concentrate on how what’s culturally relevant gets stored and how it can
constrain further cognitive processing.
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Every contextual tonality involves a correspondent pattern of effective connectivity
(ec-pattern).

The dynamics comprising a sequence of ec-patterns may constitute routines, and such
routines may be deemed as templates for the system’s dynamics.

But routines are not the only source of templates, for they can be learned through
social learning as well.

Moreover, at any given moment, there can be multiple templates taking care of their
business in parallel.

Also, it is important to remark that a template depicts a trajectory from one ec-pattern
to another, so there’s no clear-cut boundary between them.

The templates we live by resemble — with varied accuracy — the templates comprising
the world of human activities, so it is tempting to claim that, as we learn our way in the
world, culturally inherited routines, habits or traditions are all we need to store information
in appropriate ways.

This is tempting because it avoids worries about circularity: lots of “local” culturally-
pervaded learning tasks give rise to the culturally adequate way to store that information.
The long-time goal of finding the right way to organize knowledge can thus be achieved in
a blind and emerging way, at least from the system’s perspective.

But we must reject it because social learning is frequently non-local. Whenever someone
provides instructions, learning targets or maybe problem formulations in the hope that we
can solve them, one frequently expects us to rely on a proper (and sometimes creative)
articulation of what is already known, i.e. one relies on our commonsense.

The upshot is that even what looks like local learning processes may frequently rely
on the complex context-sensitive articulation of what we already know about the world.
Consequently, relevance-sensitivity must be part of the storing-information tale and there
has to be more than a mere resemblance between the organization of the stored information
and the world. We need to dig deeper.

Storing relevance-sensitive knowledge about the world

At first, some information is indeed isomorphic to what is out there.
This results in structural representations of the world’s dynamics that are available for

exploitation.
Such structure does not depict the full-fledged contents of the cognitive assets involved

in the particular functionally identifiable mechanisms articulated, but it does resemble how
they were articulated throughout our developmental trajectory. Such dynamics comprise
a second-order structure that captures how the information is routed and exploited.

These ec-patterns can be representationally redescribed into full-fledged representational
schemes.

But who’s responsible for doing this work within the brain? We have to avoid getting
back to the image of a central processor.

Multiple mechanisms can learn to become a neural control structure and modulate the
flow of the mechanisms it happens to interact and integrate with (i.e. their encompassing
subsystems): they don’t capture information about the knowledge being employed, but
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their dynamics over time (when they’re active, and who they’re interacting with).
Together, these subsystems help to create the overall brain-wide pattern of effective

connectivity in which every task is going to be embedded.
This is the answer to the first question: the system does not store only knowledge

in a way that resembles wordly activities, it stores information about the system’s own
dynamics as well.

Relevance-sensitive influence over cognitive processing

The second question is how this knowledge that represents — with varied accuracy —
what is culturally relevant can affect cognitive processes.

As neural control structures representationally redescribe the system’s dynamics, they
can effectively exploit simulations of the architecturally available set of permutations
afforded by the underlying scheme, and they can provide guidance for other tasks. This
allows the system to go beyond what’s merely familiar.

But how can the system preclude an explosion of contextually alien permutations?
Again, Heyes’ framework can be of help: lots of small culturally inherited gadgets

comprise tools that the system can use to guide its exploitation of the possible articulations
of its own dynamics.

This supplies the system with the required flexibility without begging questions about
how they can be harmonic with what’s culturally relevant, and with principled means of
control.

Thus, relevance-sensitivity involves culturally inherited knowledge about how to exploit
cultural information. This way, whatever permutation of our typical patterns of effective
connectivity we exploit, we’ll remain loyal to what’s culturally relevant inasmuch as we
rely on cognitive gadgets to guide the exploitation of our own dynamics.

One threat remains, though: there may be an overwhelming number of gadgets to
employ, and we need to abide by the relevant ones. How?

Relevance-sensitive context extrapolation

Extrapolating from familiar contexts without losing track of what’s relevant is the core
cognitive capacity underpinning the possibility of handling non-saturable contexts.

Thus, we can summarize our current goal like this: how do we avoid idle permutations
when exploiting representations of our dynamics of ec-patterns?

What we need is what I’ll dub cognitive style: a culturally established collection of
strategies used to make inferences without loosing track of what’s culturally relevant. A
cognitive gadget that embodies relevance-sensitivity.

A cognitive style is constituted of cognitive templates for the overall dynamics of the
cognitive apparatus: these are large-scale, in the sense they can involve many distinct
routing mechanisms.

Such cognitive templates boils down to what Dennett called “story outlines” that
humans employ in trying to make sense of the world.

Many of such story outlines may resemble large-scale expected dynamics in multiple
domains of life (at multiple temporal scales), such as relationships, health and work. As
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we master the whole dynamics, it can play the role that Dennett attributes to it and keep
“trying to happen”, occasionally tipping us by whispering “this is the part where you’re
expected to do x”.

Dennett’s story outlines are, I suggest, the peculiarly human way to generalize about
the world. In RCP, they amount to our cognitive style: a set of cognitive templates, which
in its turn is the set of cognitive gadgets involved in exploiting the system’s own dynamics.

The importance that the templates comprising a cognitive style are limited in number
should not be underestimated, for a huge number of cognitive templates would simply
bring RP back.

This implies that the human-world comprises also templates rather than just kinds of
situations.

Two quick remarks before going further on how cognitive style enables RP-free context
switching: first, I see a cognitive style as a mechanism that is specialized for cultural
evolution in Heyes’ sense (it provides means of enhancing the fidelity and accuracy with
which information is passed on).

Second, I think that a cognitive style can be regarded as a metacognitive mechanism,
at least in the conception advanceed by Joelle Proust.

Relevance-sensitive context switching

Here we’ll sketch two possible ways in which a system may switch from context to
context: a bottom-up in which the system simply “finds itself” within a new context, and
a top-down, in which the system can actively engage into bringing about a contextual
tonality.

Perkins claims that behavior is largely controled by a bottom-up activity swiching
mechanism he dubs emergent activity switching: it describes the dynamics of subsystems
towards an attractor, just like incresing thirst eventually takes over and leads to water-
seeking behavior.

The critical phase primes the system towards a certain contextual tonality. In RCP
terms, this means it makes it enter a sequence of ec-patterns as described by a template.

This is a plausible account of how there can be stories that are always “trying to
happen”. Different processes tend to build up to the point where some critical phase
triggers a contextual tonality.

This pictures the system’s cognitive machinery as a dupe of such low-level undergoings,
as if the background in which the system’s cognitive tasks take place was always a given,
at least from the perspective of the system’s cognitive activity.

This brings forth a picture in which we don’t have to monitor deliberately whether it’s
time to prepare for an interview (or a presentation, or a thesis defense). We can instead
“trust our worry”. This is how our cognitive style interact with and preempt the cognitive
tasks we put forth.

But there’s something unsatisfactory with this unidirectional account of the relation
between contextual tonality and the cognitive tasks we engage in. Up to this point, this
view pictures the system as a dupe of its own cognitive style. There are cases in which a
system (like us) can actively engage in bringing the proper contextual tonality to the fore.

United Kingdom’s George VI had no previous familiarity nor was prepared for being a
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king, which means almost nothing he was already familiar with could help him in the task
of facing his stutter while giving a speech in the radio as king.

However, by training with preparatory routines, George could work out his own cognitive
style and bring to the fore a new contextual tonality, and with it he brought up a distinct
articulation of worldly knowledge and behavioral dispositions he could use to act differently
in a very unfamiliar context.

The described process should not be taken as a full inner power that can fully overcome
external circumstances or bring about a new contextual configuration out of the blue.
Rather, we’re pointing to a process of context-switching that is not a direct response to
environmental changing, but a strategy actively adopted by the agent.

Closing remarks

Ultimately, relevance-sensitivity is the product of a cognitive gadget dubbed cognitive
style, which is produced by cultural evolution and inherited through social learning.

Can a cognitive style handles non-saturable human-world contexts?
Yes, for we have, in a nutshell, a productive yet tamed capacity for context production

that can extrapolate from the set of familiar contexts without implying that the involved
cognitive mechanisms are able to spin freely in a void.

It is possible that we finally have what we need in order to have RP out of the way
inasmuch as it bothers commonsense holism.

And the same goes for situation holism.
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CONCLUSION

To conclude, let’s recapitulate the big picture and then take stock. The two central
theses presented in this work were: (1) relevance sensitivity is a cognitive gadget; and (2)
a representational account of this gadget can be provided by using frameworks compatible
with representational cognitive pluralism (RCP).

Let’s start with (1). I argued that we need culturally established cognitive styles
in order to handle relevance in a culturally enriched environment. But “enriched envi-
ronment” doesn’t mean one that’s simply embedded in any kind of culture. After all,
in a sufficiently loose sense, many non-human animals can be said to inhabit culturally
enriched environments. However, human culture is known to have peculiarities, such as its
cumulative character. This enables humans to reach an unprecedented level of complexity
and richness in their behavioral outputs. If indeed we’re the only animal with cumulative
culture, then it’s likely that we’re the only animal in need of culturally assembled cognitive
styles. That’s one of the reasons why simply accounting for cognition’s flexibility is not
enough. Showing that some system is able to exhibit a complex and flexible trajectory
within the space of its possible states is necessary, but far from sufficient.

The case for the non-saturable character of human contexts is a way to shed some
light on this. Humans can cope with an open-ended set of contexts. And each of these
contexts has a non-saturable character, i.e. pretty much any feature within reach of the
system’s integrated capacities can impact the resulting behavior. This is why thinking
about contexts as subsets of features is so misleading. Even absent features can play a
role through their absence, and this cannot be modeled as the absence of a representation
(or indication) for that feature in the model. That’s also why we can’t simply build a
huge look-up table depicting every single possible context. And after a while, it should
be somewhat clear that thinking about the human world in terms of types of situations
leads to a dead end - at least while thinking about RP. It should be clear, but it’s not.
Just remember Wheeler’s insistence of his accounts of m-contexts through SPACs. That
of course doesn’t mean that there’s no possible role for typified situations. It does mean
that they can’t tell the whole story, though.

The missing dimension in this story, as suggested, comprises the broad templates
that characterize a cognitive style. They can “carve out” the world in terms of story
templates or outlines. Such stories do not aim at describing specific situations, but the
dynamics of broader aspects of human life (work, health, relationships, etc.) That’s why
they can be relatively few and yet ground such a rich and open-ended set of behavioral
outputs. They are always “trying to happen” in the background of the way we cope with
the world, just like their counterparts within the cognitive machinery are (according to
the presented suggestion), always “trying to happen”. In this sense, a cognitive style can
guide and tame the system. It does so by both helping it to figure out which cognitive
assets must be employed at any given moment, and by helping it to exploit those assets
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with flexibility, but without going astray.
So, is RP solved? I wouldn’t dare to say so. The issue affects a large portion of

human cognition. There are just too many places from which something groundbreaking
can emerge and require an overhaul of our way of thinking. As the cognitive sciences
develop, one has to make sure that science and philosophy remain in tune. Philosophical
reflections must be driven by the needs and traits of the relevant sciences, not the other
way around. Thus, one must always be ready to rethink one’s understanding of some
phenomenon. Having said that, I do think there are reasons for being cautiously optimistic
about making RP less mysterious. And I did my best to present these reasons as the
discussion progressed. But of course, time and further empirical research will have to play
their part. Therefore, in what follows, rather than making claims I can’t fully ground,
I’d rather talk about this work’s contributions. There are some things that I regard as
important steps towards a full-fledged account of relevance sensitivity. And at least with
regard to these steps, I believe that this work makes (potentially) significant improvements.

First, this dissertation goes deeper and beyond most of the works dedicated to
RP. For instance, relevance issues were sometimes regarded as problems grounded in the
system’s lack of flexibility. This is likely due to the rigid and static nature that mind
mechanisms take in classic accounts of cognition (e.g. Fodor’s idea that the mind comprises
a limited number of well-defined specialized modules; minskyan frames, etc.). Thus, some
think that by showing how a system can be flexible and enact a broad self-restructuring,
one has already shown everything that’s needed. As we saw in chapter 4, that’s not at
all the case. Showing that a system is capable of traversing many trajectories fluidly and
flexibly is necessary, but not sufficient. Inasmuch as RP is concerned, what really matters
is why the system took a certain trajectory rather than the other. That’s what a cognitive
style is supposed to tell us.

Furthermore, as exemplified in chapter 1, sometimes the problem is taken as that of
being able to navigate what one already knows, i.e. what one is already familiar with. But
this amounts to a rather inaccurate characterization of the phenomenon. Grasping what’s
relevant cannot simply rely on the knowledge obtained from encounters with previously
familiar situations. That is problematic not just because it raises the bootstrap question:
what about the first time in which the agent faced that situation? It is problematic
because, as exhaustively discussed, even situations of the same kind can vary drastically.
Avoiding this mistake is what motivated the depiction of commonsense as the ability
to extrapolate from what one already knows. A similar point can be found in Dreyfus;
Dreyfus (1987). They were discussing the jockey example presented in chapter 1: a horse
racing gambler who’s trying to figure out her bet learns that a given jockey had hay-fever
and that the race-course landscaping is in full-flower. How can we accommodate the
fact that this emerges as immediately relevant for us, even though facts about health are
usually decoupled from facts about horse-race betting? Here is what they say about it:
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Data structures of preclassified, commonsense facts dear to AI researchers
cannot account for this amazing capacity to see new relevance; but our
claim that through experience each person has embodied a great deal
of commonsense know-how does not help either. Such new facts would
not be included in a frame for horse-race betting, but neither would
they show up as salient for a skilled human being, even though his past
went ahead of him organizing his world. There is a sort of everyday
creativity which seems to be equally beyond the grasp of cognitivism
and of phenomenology. (Dreyfus; Dreyfus, 1987, p. 111)

Quite curiously though, the same Dreyfus seems to have forgotten his own insight.
In later work, he praises dynamic models as a viable alternative to computational ones.
And he does that for thinking that these models exhibit the necessary flexibility to
reorganize the world according to the system’s previous experiences (Dreyfus, 2007). As
for me, I think the need to handle what Dreyfus dubbed “new relevance” is one of the most
important insights regarding RP. It is an essential feature of our sensitivity to relevance.
And yet it seems like a bunch of important work (including that of Dreyfus himself,
Wheeler, Vervaeke and others) don’t give it enough importance. Emphasizing this trait
and providing an explicit account for it is, I believe, another important contribution of this
work. Cognitive styles are not just routines or situations with which the system is already
familiar: it comprises also a way to exploit their permutations while still constrained by
relevance sensitivity.

Second, the work inherits some purchases of Heyes’ cognitive gadgets framework.
It brings into focus (and renders tractable) questions about how cognitive mechanisms are
assembled over time. Though some cognitive tools can be understood in isolation of their
origin and formation, that does not seem to be the case with relevance sensitivity. Indeed,
an important lesson of the discussion we put forth is that if we don’t have a story to tell
about the mechanism’s origin, it might remain functionally mysterious. This is the kind
of emphasis that we find in the cognitive gadgets framework:

Evolutionary psychologists tend to assume that, if something is a cognitive
instinct, it is the responsibility of some other discipline — perhaps
genetics or paleoarchaeology, but not cognitive science — to explain
how it was constructed. In contrast, cultural evolutionary psychology
encourages cognitive scientists and others to develop and test theories
about how cognitive gadgets are put together over time. (Heyes, 2018a,
p. 222)

The upshot is that Heyes’ framework can not only buy us a way out of a hard
issue. It also helps us to keep the problem always on the horizon of our empirical research.
Relevance sensitivity cannot remain in the background.

What about (2)? RCP is an alternative answer to the challenge of representational
productivity. It enables a broadly representational account of cognition that won’t suffer
from FP. But it does so not by taking for granted that cognition is broadly representational.
Rather, it allows the formulation of empirical hypotheses involving representations. The
point is that, even if it turns out that cognition is broadly representational, the large-scale
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articulation of representational assets won’t bring FP back with it. RCP can buy us that
because it employs a plurality of domain-targeted structural schemes. And the expressive
power of these domain-specific schemes can be gradually enhanced through representational
redescription.

Within this work, the main goal of RCP is to enable the empirical possibility of
a broadly representational account of cognitive styles. Non-representational frameworks
need not worry about FP, but in order to do that, they must give up a potentially valuable
cognitive asset (i.e. representations). RCP can overcome FP, which is unsolvable in
representational systems that rely on the absolute contents of language-like schemes. And
it does so without giving up on representational productivity. Thus, what seemed to be a
disadvantage of representational frameworks (i.e. FP) towards handling RP becomes a
strength. We can have the explanatory purchases that representational contents afford
without worrying about foundational issues like FP.

Now, it is true that those who don’t like the story as I told may have an easy
time picking up just the points they like (if any) and commit the rest to the flames.
One can, for instance, tell a story of what a cognitive style is or does within another
framework. Perhaps a friend of massive modularity might think that cognitive styles can be
stored in something like Sperber’s physiological markers. Or maybe a friend of Wheeler’s
Heideggerian approach regards styles as drawing on the activation patterns of the many
CRC mechanisms comprising the system. Providing this kind of account is certainly a
plausible goal. Throughout the research, I considered these possibilities myself. What took
me away from them is that they would bring to the table predicaments and difficulties that
do not emerge within RCP, specially when considering offline capacities. After all, the
knowledge stored as physiological markers and environmental couplings must be somehow
rendered portable and available for further exploitation (consider again the examples of
top-down context switching). A representational approach strikes me as the one with the
best trade-off between theoretical commitments and explanatory purchases. That makes
it worth pursuing as much as allowed by the available evidence. Thus, my point is not
that there’s a knock-down argument against these non-representational alternatives, only
that I think they would result in a less flexible and less powerful framework (assuming
they can be made to work, of course).

Despite its role in accounting for cognitive styles, RCP has its own merits, and
its potential contributions can go beyond that. First, it is broadly compatible with
contemporary work within cognitive sciences (including cognitive neurosciences). For
instance, one need not give up on any core tenet of situated cognition. Indeed, I’m an
advocate of situated cognition myself, and anything incompatible with it would certainly
bother me. But even those still wary of situated cognition — for whatever reason I don’t
imagine — can still benefit from RCP. That is so because, as discussed, the main differences
among frameworks concern the dimension of target fixation, not representational contents.
Thus, if anyone wants to use RCP within a broadly non-situated approach, so be it. She’ll
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have to deal with the empirical difficulties stemming from her outmoded approach, but
RCP will not be in her way.

As I see it, this framework-wise flexibility is a very important trait. An approach
that enables the formulation of empirical hypotheses involving certain cognitive assets
(representations, m-contexts, etc.) should be preferred over one that promptly assumes or
rejects them a priori. This is why, for instance, I do not try to provide a direct argument for
the necessity of representations. I’m not interested in reenacting Andy Clark’s argument
for “representation-hungry” cognitive tasks (1997a). My goal is to allow both friends
and foes of representational contents to formulate empirical hypotheses regarding their
existence and role in explanations of specific cognitive capacities or performances. That
must be done for each and every capacity we’re interested in explaining. And in each case,
may the best available explanation wins.

Another significant contribution of RCP comes from the extra degrees of freedom in
the formulation of empirical hypotheses. The first is a gift from Cummins’ theory of repre-
sentational contents. It provides a purely semantic account of misrepresentation, enabling
us to conceive of well-functioning mechanisms under ideal environmental circumstances
that nonetheless misinform. In other words, we have an account of misrepresentation that
need not boil down to malfunction, inappropriate circumstances, inapt behavior and the
like. This makes Cummins’ theory of representational contents quite resilient versus the
most well-known arguments against representations: it overcomes classic naturalization
challenges, and they can play an evidently non-trivial explanatory role.

The second extra dimension unfolded by RCP comes from its reliance on structural
representations. They can represent the dynamics of some domain, rather than just
computing it. In other words, rather than representing the current state and compute
its changes, the change itself can be “pictured”. This is quite a feature, and it plays a
fundamental role in the account of cognitive gadgets provided here. After all, templates for
dynamics are nothing but representations of that dynamics. A representational account
of cognitive styles would not be possible without it, for any language-like account of
such dynamics would inevitably suffer from FP. Needless to say, this feature of structural
representations is available for explanations of other cognitive capacities as well.

The third remarkable extra degree of freedom is in the huge flexibility with which
we can model distinct cognitive systems. LOT-powered systems imply that anything
endowed with cognitive capacities must be assembled with a specific architecture. In
other words, all capacity potentially cognitive must be in a single continuum towards
increasingly powerful versions of that same architecture. That makes it hard to account for
discrepancies such as those we find between human and non-human animals. This quite
inflexible picture of the cognitive machinery is inevitably connected with the tendency
to be excessively reluctant or excessively inclined to attribute cognitive capacities to
non-human animals. Consider, for instance, how Povinelli is sometimes misrepresented as
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someone who denies cognitive capacities for apes.24 All he does is deny that apes’ cognition
is human-like. But of course if there’s no clear choice between the Scylla of behaviorism
and the Charybdis of a LOT architecture, then whenever we see apes behaving like we do,
we’ll be certainly tempted to attribute them cognitive mechanisms like ours.

My point here is just this: RCP sheds light on a dimension encompassing very
distinct cognitive capacities whose underlying machinery can nonetheless be put on the
same evolutionary continuum. Examples abound: ape cognition and human cognition
may be distinct in how much they rely on representations rather than, e.g. encodings or
indicator signals. They might also imply distinct structural schemes, or perhaps exploit
them differently. Another possibility is that they may differ in how much (or if) they can
engage in representational redescription. Thus, even if humans share some architectural
feature with apes (as is likely the case), humans might be the ones that, say, learned how
to task-embed stuff from other domains within it. All of these possibilities are available for
investigation within a framework compatible with RCP. That’s what make it a powerful
choice to account for the differences and similarities within the cognitive apparatuses of
any two species.

There’s one last contribution I’d like to remark. It concerns neither (1) nor (2)
in isolation, but rather their conjunction. That is, it emerged as the result of pursuing
both at the same time. It’s about the role of context in cognitive explanations, i.e. the
role of context qua explanatory resource rather than a capacity to be explained. This
is what I called m-context. In most of the relevant literature, the potential explanatory
role of m-contexts was conflated with the potential explanatory role of representational
contents. As discussed in the first chapter, this conflation is widespread since Dreyfus’
early critique of AI. In his view, m-contexts are useless because they necessarily amount
to some kind of data structure used to represent a context (e.g. a minskyan frame). But
this amounts to thinking the role of m-contexts within the boundaries of a very specific
framework. It is true that, for Dreyfus, modeling contexts as data structures was the only
game in town. But even when new games started to pop out, the conflation stayed on.
Even today, it is not hard to find researchers redirecting the whole discussion from one
about m-contexts to one about the expressive power of the employed representational
scheme. Such a proposal clearly conflates issues about representational productivity with
issues of inferential productivity. But if the discussion in the first chapter contains any
lesson, it is that the potential roles and caveats of m-contexts happens also in broadly non-
representational approaches like Wheeler’s. This allowed me to avoid taking a discussion
about the potential explanatory role of m-contexts to be a discussion about whether
m-contexts can be representations of contexts.

Given the distinction, one can finally concentrate on the potential explanatory role
of m-contexts. In standard stories, the role of m-contexts is that of being a mechanistic
24 He talks a bit about it in Povinelli (2012).
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counterpart for the system’s current context. That is, we can explain the system’s capacity
to properly behave within a given context (say restaurant) in terms of some internal
organization of the relevant cognitive knowledge involved in handling restaurants (i.e. a
restaurant m-context). But as we’ve seen, cognitive styles need not rely on m-contexts in
order to play their role. Cognitive styles are not collections of structured m-contexts, but
rather collections of large-scale templates of the cognition’s dynamics, and collections of
strategies employed when exploiting those templates. The upshot is that the potential
reliance on m-contexts, once considered the heart of the matter, was revealed as tangential
to RP. Thus, the possibility arises that, just like the explanatory role of representations,
the role of m-contexts (if any) is also a matter for empirical research. For instance, consider
again the discussion between Rietveld and Wheeler around patients of utilization-behavior
that took place in chapter 1. Their disagreement was essentially about whether m-context
has a role to play in the explanation of that condition. Whatever turns out to be the best
account, it can be easily accommodated within RCP, and it won’t be a problem for (1).

This means that neither (1) nor (2) implies a commitment to neither the reliance
nor the rejection of m-contexts. In this sense, both theses are attempts to rely on
cognitive assets quite distinct from those traditionally employed by most researchers. As
a consequence, even if they turn out to be wrong, it’s going to be for a new reason. In my
view, that’s what makes philosophical endeavors so interesting: to find a new way to be
wrong may also bear fruits.
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