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Rational dynamics in efficient inquiry
David L. Barack

Abstract 

Which premisses should we use to start our inquiries? Which transitions during 
inquiry should we take next? When should we switch lines of inquiry? In this 
paper, I address these open questions about inquiry, formulating novel norms for 
such decisions during deductive reasoning. I use the first-order predicate calculus, 
in combination with Carnap’s state description framework, to state such norms. 
Using that framework, I first demonstrate some properties of sets of sentences 
used in deduction. I then state some norms for decisions made during deductive 
reasoning, establishing initial benchmarks for efficient deduction by ideal rea-
soners. When deciding which transition to make next, reasoners should choose 
the most informative transition, the one that maximally reduces uncertainty in 
the sense of ruling out the largest number of state descriptions relevant to their 
inquiry. Finally, inspired by optimal foraging theory, I show that, under certain 
assumptions of ignorance, reasoners should change premiss sets when their 
information intake drops below the global average information intake across 
premiss sets.

Keywords: reasoning, inquiry, foraging, efficient, bounded rationality.

1.   Introduction

When inquiring, reasoners often must decide which steps to take next, such 
as deciding which conclusion to draw, premiss to select or line of inquiry 
to abandon. Much extant work (e.g. Alchourrón et al. 1985, Spohn 2012) 
focuses on how to formally model changes in belief, with less on how to 
choose beliefs, premisses, or lines of inquiry. The present work takes steps 
to address these questions from a normative perspective. A basic guiding 
principle is to seek premisses or transitions that help resolve inquiries in 
the smallest number of steps. Here I will outline a formalization of efficient 
deductive inquiry using the first-order predicate calculus and a state descrip-
tion framework, after Carnap. I have elected to use the first-order predicate 
calculus to illustrate the simple formalizability of norms for efficient inquiry.1 
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	 1	 My motivations for choosing the first-order predicate calculus are pragmatic, to make my 
account more accessible to the philosophical community. While at times inelegant, basic 
logic is still adequate for illustrating novel norms for rational inquiry.
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2  |  DAVID L. BARACK

The account is not purely logical, referring to sentences accepted by a rea-
soner and descriptions that are still live possibilities for the reasoner. The key 
intuition is that deduction involves deriving and accepting sentences between 
the starting point of inquiry and the conclusion, which provides a measure of 
progress by ruling out live possibilities. I discuss and prove several theorems 
about sets of sentences that help state principles for efficient inquiry. I will 
also discuss a general directive for such inquiry in the sense of maximizing 
the average reduction in uncertainty regarding a resolution, an approach 
motivated by foraging theory. These principles and directives are not usable 
by actual reasoners. The aim is to provide an initial account of how well 
reasoners could do were they unbounded and knowledgeable or ignorant in 
certain ways, laying the foundation for future work.

2.   State descriptions and sets of sentences

Let there be a name for every element in the domain 𝔇 of individuals and let 
there be a set of predicates for all properties and relations in which the indi-
viduals stand. Let Σ be the set of atomic sentences formed from the Cartesian 
product of the predicates and relations and constants for members of 𝔇. So, 
for example, if Rxy is a two-place predicate denoting some binary relation, 
then Σ will contain all atomic sentences formed from Rxy using all constants 
for members of 𝔇 (i.e. {Raa, Rab, Rba, …} ∈ Σ).

Intuitively a state description is a specification of who has which proper-
ties and who stands in which relations for some world. This can be formal-
ized after Carnap 1950, letting a state description 𝒮 be a set (herein, for a 
finite number of individuals, properties and relations) consisting of either 
the affirmation or the denial (exclusive) of every atomic sentence ϕ in Σ (e.g. 
for two-place predicate R and individuals named by a, b, c, …, {Raa, ~Rab, 
~Rba, Rac, …} = 𝒮). As Carnap notes, the construction of 𝒮 requires that 
all the atomic sentences be logically independent of one another, and that no 
combination of atomic sentences entails another or its negation. Otherwise 
some 𝒮 will be self-contradictory.

Call Δ the set of sentences accepted by the reasoner at time t discretized 
into steps.2 Assume that Δ is consistent and can contain atomic or non-
atomic sentences. As we reason, we use sentences in Δ to draw inferences and 
help close our inquiry. Assume further that, at the start of inquiry, not every 
sentence ϕ such that Δ ⊢ ϕ is in Δ, where the turnstile ‘⊢’ is interpreted as 
(say) derivable within a system of natural deduction (e.g. from Mates 1965).

At the start of reasoning, some subset of all state descriptions are ways the 
world might be that are relevant to the reasoner’s inquiry.3 Call this set 𝔖. For 
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	 2	 Reasoners perhaps do not accept sentences but rather propositions; for logical conveni-
ence, I will speak of accepting sentences.

	 3	 Determining relevance is an outstanding problem that space prevents me from discussing.
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RATIONAL DYNAMICS IN EFFICIENT INQUIRY  |  3

example, for predicate F and names a and b, at the start of inquiry 𝔖= {{Fa, 
Fb}, {~Fa, Fb}, {Fa, ~Fb}, {~Fa, ~Fb}}. Let 𝔖t(Δ) be the set of state descriptions 
explicitly consistent with Δ at time t (i.e. there is no δ ∈ Δ such that ~δ ∈ 𝒮 for 
any 𝒮 ∈ 𝔖(Δ)). Call this the set of live state descriptions. Using the example, if 
Δ = {Fa, Fa → ~Fb}, then 𝔖t(Δ) = {{Fa, Fb}, {Fa, ~Fb}}. Below I will show that, 
as reasoning proceeds, state descriptions are often ruled out and the cardinality 
of 𝔖t(Δ) will be less than or equal to the cardinality of 𝔖t–1(Δ) at the previous 
step. I will not be addressing cases where the cardinality of 𝔖t(Δ) grows in size, 
such as after retracting a rejected sentence (Harman 1986).

For every sentence ϕ such that ϕ ∉ Δ and Δ ⊢ ϕ, the change in the size of 
𝔖t(Δ) if the sentence is accepted and Δ becomes Δ* = Δ ∪ ϕ can be assigned a 
number. These calculated changes impose a preorder on the sentences:

Theorem 1 (Preordering theorem). The set Φ of all sentences ϕ such that 
Δ ⊢ ϕ can be preordered.

Lemma. For any sentence ϕ such that Δ ⊢ ϕ, the acceptance of ϕ would 
yield a change in the size of the set 𝔖(Δ) of state descriptions ≥ 0.

Proof of the lemma. Either ϕ is atomic or not. Suppose ϕ is atomic. Then 
accepting ϕ will rule out any state descriptions that contain ~ϕ. If no state 
descriptions contain ~ϕ, then the set 𝔖 stays the same size. Suppose ϕ is 
not atomic. The proof then proceeds by induction over the types of molec-
ular sentences. Accepting the negation of some atomic sentence ψ ∈ Φ will 
rule out any state descriptions that contain ψ; otherwise the set 𝔖 stays the 
same size. Accepting the conjunction of two atomic sentences ψ ∈ Φ and 
χ ∈ Φ will rule out any state descriptions that contain ~ψ or ~χ; otherwise 
the set 𝔖 stays the same size. Accepting the disjunction of two atomic 
sentences ψ ∈ Φ and χ ∈ Φ will rule out any state descriptions that con-
tain ~ψ and ~χ; otherwise the set 𝔖 stays the same size. The material 
conditional can be interchanged with disjunction, and the biconditional 
interchanged with two material conditionals. Let the universal quantifier 
sentence ∀x ϕ(x) be understood as a sentence ϕ such that ϕ contains 
the bound variable x. Replace every occurrence of x in ϕ with an arbi-
trary name for the members of 𝔇 and delete the quantifier (i.e. universal 
instantiation). Then ϕ is a quantifier-free atomic or molecular sentence 
and the proof proceeds as above. Repeat for every d ∈ 𝔇. The other quan-
tified sentences can be interchanged with the universal quantifier in the 
usual way (i.e. ~∃x ~ϕ(x) ≡ ∀x ϕ(x) etc.). More complex sentences can be 
treated by recursion over the connectives.□

Proof of Theorem 1. A set X is preordered iff for all xi, xj, xk ∈ X, xi ≤ xi 
and if xi ≤ xj and xj ≤ xk then xi ≤ xk. Now the acceptance of any sentence 
ϕ will yield a change in the size of the set of state descriptions ≥ 0 (from 
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4  |  DAVID L. BARACK

the lemma). But then every sentence can be assigned a natural number 
equal to the change in the size of the set of state descriptions. Since any 
set of natural numbers can be preordered, Φ can be preordered by such an 
assignment. □

Theorem 1 states that, for all ϕ ∈ Φ, those ϕ can be placed in an order 
corresponding to the calculated change in the size of the set of state descrip-
tions, with ties permitted. Using the above example, a reasoner could derive 
(among others) Fa, Fa → ~Fb or ~Fb from Δ; Fa and Fa → ~Fb are both 
assigned 0 and ~Fb is assigned 1.

Ruling out live state descriptions requires there to be some sentence ϕ 
derivable from Δ such that ϕ is explicitly inconsistent with some of those 
live state descriptions. This does not trivialize the above proof, however. The 
sentences in Δ are both explicitly consistent with the elements of 𝔖(Δ) and 
can imply a sentence ϕ that is inconsistent with them. Because only atomic 
sentences are contained in any 𝒮 ∈ 𝔖(Δ), only atomic sentences in Δ are 
available to rule out state descriptions; atomic sentences derivable from but 
not yet in Δ can then rule out elements of 𝔖(Δ).

The following theorem states that there exists some sentence such that 
accepting it would maximize the change in the size of the set of live state 
descriptions.

Theorem 2 (Maximum change theorem). There is a sentence ϕ such that 
Δ ⊢ ϕ and the cardinality of the live state description set before the infer-
ence (|𝔖t-1(Δ)|) minus the cardinality of the live state description set after 
the inference (|𝔖t(Δ ∪ {ϕ})|) is maximal, i.e. ∀ψ ∃ϕ(maxψ(|𝔖t-1(Δ)| – | 
𝔖t(Δ∪{ψ})|) ≤ maxϕ(|𝔖t-1(Δ)| – | 𝔖t(Δ∪{ϕ})|)), where maxη(∙) means that 
there is some sentence η that maximizes the formula in (∙).

Proof. The set of sentences Φ such that Δ ⊢ ϕ ∈ Φ can be preordered 
(Theorem 1). But then there is some ϕ ∈ Φ that is at the end of this pre-
ordering, the sentence that changes the size of the set of state descriptions 
more than or equal to any other ϕ ∈ Φ.□

Granted some set of live state descriptions, there is at each step during 
reasoning a best next sentence to accept (or many, if there are ties), the one(s) 
that maximally reduce the size of the set of possible state descriptions.

If the best next sentence is an atomic sentence and is not in Δ, half the 
remaining state descriptions are ruled out: either ϕ or ~ϕ is derivable from 
Δ, which rules out all state descriptions that contain ~ϕ or ϕ respectively. 
Sometimes this sentence will be derivable in one step, but at other times an 
inference chain, a finite sequence of derivations from the set of accepted sen-
tences, will be required (such as moving from ϕ & ψ to ϕ and ψ). These infer-
ence chains can themselves be preordered by the number of state descriptions 
ruled out. Let Γ1 be an initial set of sentences and Γi for step i is Γi–1 ∪ {ϕi–1} 
where Γi–1 ⊢ ϕi–1.
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RATIONAL DYNAMICS IN EFFICIENT INQUIRY  |  5

Theorem 3 (Chain ordering theorem). The set G of all non-total inference 
chains can be preordered.

Proof. Let G be the set of non-total ordered n-tuples of sentences such that, 
for all g ∈ G, ∀ϕi ∈ g Γi ⊢ ϕi where Γi is constructed by starting with Γ1, 
taking some ϕj such that Γ1 ⊢ ϕj, adding ϕj to Γ1 to yield Γ2, and so on for 
a finite number of steps until some Γn ⊢ ϕi. Each n-tuple g ∈ G is composed 
of sentences in the order in which they are entailed by the premisses and 
the earlier sentences in the sequence. The members of Γ1 are not in the g. 
Non-total ordered n-tuples are such that ∀g ∈ G, g does not contain every 
sentence of every other g ∈ G. In virtue of their construction, each g is an 
inference chain and G is the set of all non-total inference chains.

Now, every set of sentences has a best next sentence (proved above). 
This property is also possessed by every ordered n-tuple of sentences since 
(for our purposes) an ordered n-tuple is a type of set whose elements are 
ordered. So too then does every g, since g is an ordered n-tuple of sentences 
formed from Γi. Consequently, ∀g ∈ G can be pre-ordered by their best 
sentences. Let the maximal set be the proper subset of G each member of 
which is an ordered n-tuple that has the same, largest number assigned to 
it. Call this g*. By definition, some Γi ⊢ ϕi* where ϕi* is the sentence that 
gives the number assigned to g*. Call Γi* this set of sentences of Γi.

Note that there may be many such Γi* and they may imply ϕi* after dif-
ferent numbers of steps. Each Γi* has some size, the length of the ordered 
n-tuple, which is a natural number. Every Γi* then maps on to a rational 
number, the ratio of its assigned number to the number corresponding 
to the length of the n-tuple. But the rational numbers can be preordered. 
Hence, the members g∈G can be preordered.□

The chain ordering theorem applies the notion of a best next sentence to infer-
ence chains. All chains will score some value (m–n)/s for 𝔖 of size m before 
the inference chain, size n after, and s steps in g. Let the maximal sentence be 
a sentence that initiates one of the chains at the end of the ordering. The chain 
ordering theorem will be used below to formulate a norm for reasoning.

3.   Norms of selection

The preceding theorems demonstrate that sentences the reasoner could 
accept can be ordered by the number of state descriptions they rule out were 
the sentence to be accepted. These theorems can be used to state norms for 
selecting sentences.

One norm in reasoning is always to select a maximal sentence, a sentence 
that initiates some maximal chain. The maximal chain principle can be stated:

(MCP: Maximal chain principle) Of all the possible inference chains 
deducible from Δ, choose a chain at the end of the preorder established 
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6  |  DAVID L. BARACK

over G. Call this chain g⋆. Since g⋆ is an ordered n-tuple of sentences, 
there will be some sentence ϕ that is the first sentence in the n-tuple corre-
sponding to g⋆. Select that ϕ.

Proof sketch. The proof follows from Theorem 3. 

MCP says of the sentences in Δ, select (one of) the best sentence(s) derivable 
from Δ, namely a sentence ϕ such that ϕ is derivable from Δ in a single step 
and is the first step in a chain of inferences leading to ϕ* at the end of g⋆. 
Intuitively, MCP says to choose the sentence that follows from the premisses 
and leads to the greatest overall reduction in uncertainty in the sense of a 
decrease in the size of the set of live state descriptions.

A more complex version of our working example above can illustrate 
MCP. Instead of two individuals, suppose there are four, a, b, c and d. At 
the  start of inquiry, suppose Δ = {Fa, Fa v Fb v Fd → Fc, ~FavFc}, and so 
𝔖(Δ) = {{Fa, Fb, Fc, Fd}, {Fa, Fb, ~Fc, Fd}, {Fa, ~Fb, Fc, Fd}, {Fa, ~Fb, ~Fc, 
~Fd}, {Fa, Fb, Fc, ~Fd}, {Fa, Fb, ~Fc, ~Fd}, {Fa, ~Fb, Fc, ~Fd}, {Fa, ~Fb, ~Fc, 
~Fd}}. There are multiple sub-total inference chains from Δ, including those 
that insert unhelpful moves that reduce their scores; consider for simplicity 
just these two:

Chain 1: Fa => Fa v Fb; Fa v Fb => Fa v Fb v Fd; Fa v Fb v Fd, Fa v Fb v 
Fd → Fc => Fc.

Chain 2: Fa, Fa → (~Fb & Fc) => (~Fb & Fc); (~Fb & Fc) => ~Fb; (~Fb & Fc) 
=> Fc.

Chain 1 scores (8 – 4)/3 = 1.333 whereas chain 2 scores (8 – 2)/3 = 2. Of 
these two chains, chain 2 should be selected as it has the higher score.

The existence of a maximal sentence and the use of MCP is an idealization. 
Clearly, to prove the truth of some theorem, the reasoner should choose the 
maximal sentence, the step that resolves the uncertainty in the fewest number of 
steps. However, that maximal sentence may not be available because of the rea-
soner’s ignorance or lack of confidence, cognitively bounds (e.g. finite attention 
or memory) or resource constraints (e.g. finite time). Consequently they may not 
be able to select the maximal sentence, leaving it unclear which step to take next.

4.   Norms of search

Granted that the maximal sentence is often unavailable, how can reason-
ers inquire efficiently? The problems include which inference to make next, 
which chain to select next, when to switch chains of inference and when to 
switch premisses. Here I will present a principle to guide decisions about 
when to change premiss sets, providing an answer to the question of how 
to inquire efficiently using the above formalization of reducing uncertainty 
about the state of the world.
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RATIONAL DYNAMICS IN EFFICIENT INQUIRY  |  7

Consider the following marginal ranked information principle for chang-
ing premiss sets (after Charnov 1976, Stephens and Krebs 1986):

(MRIP: Marginal ranked information principle) Given some premiss set 
P, reasoners should select inference chains in the rank order determined 
by the reverse preordering from P until the information intake rate drops 
below the expected information intake rate across all chains, at which time 
they should choose new premisses.

A reverse preorder is the preorder from Theorem 3 flipped from greatest to 
least. MRIP states that when the information intake from the current infer-
ence chain drops below the expected across all chains, the reasoner should 
change their premiss set to generate new inference chains. By a change in 
premiss set, I refer to either using other unused sentences in Δ or adding 
new sentences to Δ drawn from some other source (such as perception, 
background knowledge, testimony or others) and using those. The expecta-
tion across all chains should reflect the central tendency of the information 
intake; I will assume that the average is the relevant central tendency, but 
different contexts of inquiry may commend other measures.

What is the information intake? The preordering over inference chains is 
determined by the expected change in the size of the set of live state descrip-
tions. As inference chains are followed, the size of the set of live state descrip-
tions decreases, reducing uncertainty about the state description that resolves 
the current inquiry. This reduction in uncertainty is what is meant by ‘infor-
mation’. Information intake, then, refers to the change in the size of the set of 
live state descriptions resulting from deriving sentences, and the information 
intake rate refers to the information intake divided by the number of steps 
required to gather that information.

There are questions about the scope of the average information intake. 
Should every chain from all possible inquiries go into this average, and how 
should we compute such averages? In reply, unlike the next best sentence, 
which requires a global search across all next steps, these averages are com-
puted from past progress, which reasoners have access to. Keeping track of 
past performance is also a topic of long interest in foraging, and numerous 
models have been developed for understanding how organisms might track 
these quantities (see e.g. Ollason 1980, McNamara and Houston 1985). 
These averages are also a measure of progress in an inquiry, and keeping 
track of how well an inquiry is proceeding is a reasonable thing for rea-
soners to do. Even when restricting the scope of the average to the current 
inquiry, should the average apply to just the current premisses or to all rele-
vant premiss sets? Different averages will be relevant to different questions. 
For changing premisses, the average should be computed over the relevant 
premiss sets; for changing inference chains, the restriction to the current 
premiss set is justified. So different restrictions will apply depending on the 
question.
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Granted some assumptions about reasoners and their inquiry, a proof can be 
sketched that MRIP is the most efficient norm for changing premiss sets. Suppose 
reasoners cannot gather information and search for premiss sets simultaneously 
and that outcomes of choices occur with unity probability. Suppose premiss sets 
can be categorized into types i, perhaps based on how much information they 
provide, their subject matter or some other feature. Let λi be the proportion of 
premiss sets of type i found by the reasoner. Let ti be the time spent gathering 
information in time steps and let gi(ti) denote the information gain function for 
premiss sets of type i. Assume gi(ti) has three properties: (i) gi(0) = 0; (ii) gʹi(0) > 0; 
(iii) there exists some ̂t such that g″i(t) < 0 for all t ≥ ̂t. The first property is that 
at the start of information gathering there is no information gain, the second 
property is that the first step provides some information and the third property 
is true of any finite set of propositions that satisfy the chain ordering theorem 
in their reverse preordering and that stand in at least one strict inequality inter 
alia in their reverse preorder. Hence MRIP is evaluated over inference chains, not 
individual steps. Finally, let ui be the average time in time steps between premiss 
sets of type i and si(ui), the information cost of searching per time step. Then the 
fully general long-run information intake rate R is given by

R =

∑n
i=1 λigi(ti)−

∑n
i=1 λiwisi(ui)∑n

i=1 λiui +
∑n

i=1 λiti
,

that is, over all patch types, the information gain minus the information cost 
due to time spent searching for premiss sets, divided by the sum of the time 
spent searching for premiss sets and the time spent gathering information.

We wish to find the optimal time at which to cease information gathering 
from a premiss set. I will make several idealizations to simplify this problem. 
First, suppose there is only one premiss set type. Then there is no summation 
over premiss set types and λ = 1:

R =
g(t)− us(u)

u+ t
.

Note that this supposition implies that the rate at which premiss sets provide 
information, g(t), is the same across all premiss sets. Though clearly false, this 
implication can be conceptualized as some global average intake function g(t). 
Second, suppose that searching costs only time and not information. Then

R =
g(t)
u+ t

.†

We wish to maximize this quantity. To do so, we take the derivative with 
respect to time, which yields

R′(t) =
g′(t)(u+ t)− g(t)

(u+ t)2
.
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RATIONAL DYNAMICS IN EFFICIENT INQUIRY  |  9

Now set the resulting equation to 0, which, given the properties of g(t) above, 
implies (see Stephens and Krebs 1986: 29 for proof)

g′(̂t)(u+ t̂)− g(̂t) = 0

for optimal leave time ̂t. By rearrangement of terms, this further implies

g′(̂t) = g(̂t)/(u+ t̂).

Note that this equality has the instantaneous information intake rate on the 
left-hand side and the average long-run information intake rate on the right 
(compare to † above). Consequently, the maximum information intake rate 
occurs when the instantaneous intake rate equals the long-run average. So 
reasoners cannot do better when reasoning from the current set of premisses, 
in the sense of improving their information intake rate, than when the cur-
rent information intake equals the average. When the information intake rate 
from the current premisses equals that average, reasoners should decide to 
change premisses and search for new ones, proving MRIP.

A few comments on MRIP. MRIP states that after each inference chain 
using Δ, reasoners evaluate their information intake rate and, if that rate falls 
below the average, they should shift to new premisses, even if the current 
premiss set remains promising. However, MRIP assumes the goal is to maxi-
mize the long-run information intake, whereas the real goal is to resolve our 
inquiries. So there are contexts in which MRIP should be ignored. Suppose I 
am attempting to deduce the truth of some theorem. As I near the end of the 
proof, there may only be smaller amounts of information left to gather. In 
that case, instead of switching when my information intake rate drops low, I 
should ignore MRIP and persevere to see out the end of my inquiry. Similar 
conclusions follow regarding inductive and other types of inquiry.

5.   Conclusion

In this article, I have presented a normative analysis of efficient inquiry. 
Granted general conditions of ignorance, normative principles can be stated 
for guiding inquiry. The statement of these novel principles, such as the 
maximal chain principle for choosing chains of inferences or the marginal 
ranked information principle for when to select new premisses, demonstrates 
that guidance can be provided for how to efficiently conduct one’s inquiry, 
advancing our understanding of reasoning. The principles stated are gener-
ally outside the cognitive capacities of actual reasoners. Nonetheless, they 
provide a first-pass benchmark for understanding how (perhaps ideal) rea-
soners should make such decisions during inquiry. The discussion of these 
principles also highlighted important constraints on when to change prem-
iss sets, as nearing the end of inquiry demands sticking with our premisses 
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10  |  DAVID L. BARACK

instead of changing them. Next steps include adapting the account to meas-
ures for continuous time or for open-ended state descriptions, a shift to a 
more powerful logical formalisms such as Hintikka’s model sets (Hintikka 
1973) or dynamic epistemic logic (van Benthem 2011) and formulating feasi-
ble norms for actual reasoners. More broadly, outside of consistency, validity 
and related norms, how one should guide one’s reasoning is under-addressed 
in philosophy. By characterizing reasoning as a process of gathering infor-
mation and drawing formal analogies to foraging, my account offers oppor-
tunities to better understand how to guide our reasoning, including which 
inferences to make, which premisses to choose and when to switch between 
the different activities involved in reasoning. Future work will draw connec-
tions to work on bounded rationality, investigate the nature of the search 
space in reasoning and explore creativity in reasoning such as uncovering 
next steps or new premisses.4  
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