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Abstract

Set-theoretic and category-theoretic foundations represent dif-
ferent perspectives on mathematical subject matter. In particu-
lar, category-theoretic language focusses on properties that can
be determined up to isomorphism within a category, whereas set
theory admits of properties determined by the internal structure
of the membership relation. Various objections have been raised
against this aspect of set theory in the category-theoretic liter-
ature. In this article, we advocate a methodological pluralism
concerning the two foundational languages, and provide a the-
ory that fruitfully interrelates a ‘structural’ perspective to a set-
theoretic one. We present a set-theoretic system that is able to
talk about structures more naturally, and argue that it provides
an important perspective on plausibly structural properties such
as cardinality. We conclude the language of set theory can pro-
vide useful information about the notion of mathematical struc-
ture.
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Introduction

Two approaches (and, as the current volume shows, maybe more) in
current debates on foundations provide radically different perspec-
tives on mathematical subject matter. The set-theoretic1 perspective
holds that all mathematical objects may be modelled in the sets, a for-
malism given in terms of a primitive membership-relation, and that
this (in some sense) provides a useful foundation. The category-theoretic
perspective, on the other hand, holds that all mathematical objects
may be modelled by the kinds of mapping properties they have with re-
spect to others. As we shall see below, the two provide somewhat dif-
ferent perspectives on mathematics. In light of this datum, a question
which has sprung up in the literature is which foundation we should
use for interpreting mathematics (assuming that a foundation is desir-
able at all).

One particular application to which category theory has been seen
as especially suited to is elucidating the notion of mathematical struc-
ture.2 A definition of mathematical structure is somewhat difficult to
provide, but for the purposes of this paper we will take it that the ex-
istence of an isomorphism is sufficient for sameness of mathematical
structure, and that this provides a useful way of getting at the notion
(even if only partially).

This paper is directed at the following question:

Main Question. To what extent is (material) set theory
a useful tool for discovering interesting facts about struc-
tures?

We will argue that set-theoretic language can be useful for convey-
ing important structural information. In particular, we provide a the-
ory of sets and classes which better respects isomorphism invariance,
but nonetheless makes extensive use of the ambient material set the-
ory. This is especially important if one holds that cardinality is a struc-
tural property; the theory we provide allows us to see how theories
and cardinality interact (via a version of the Morley Categoricity The-
orem).

Our strategy is as follows. First (§1) we briefly outline the set-
theoretic and categorial approaches, and explain the tasks to which

1This term is slightly coarse since it is ambiguous between material and categorial
set theories (we will distinguish these later). For those that know the difference
between the two types of set theory, we mean “material set theory” by “set theory”
until we make the distinction, and lump categorial set theories in with category-
theoretic foundations for now.

2See, for example, [Awodey, 1996].
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each is best suited. Next (§2) we examine the difficulties that some
proponents of each foundation have seen for the other party, and pro-
vide some responses on behalf of each. We argue that they are not
in themselves problematic, but raise a challenge for the advocate of
set-theoretic foundations. We then (§3) present a theory of sets, urele-
ments, and the classes that can be built over them. We argue that this
language provides a modification of (material) set theory that better
respects structural properties, whilst providing us with the resources
to easily talk about notions like cardinality and how it interacts with
structural notions. Finally (§4) we make some concluding remarks and
present some open questions.

1 Two perspectives on foundations: Set-theoretic
and Categorial

In this section we’ll explain the basic difference we see between category-
theoretic and (material) set-theoretic foundations. We’ll then refine
both our set-theoretic and category-theoretic perspectives to give a bet-
ter account of the subject matter they concern.

The distinction between the set-theoretic and category-theoretic per-
spective may be cast in different ways, however the most basic contrast
is in how they approach the representation of garden-variety mathe-
matical entities. The question is one of a perspective on which math-
ematics is about objects (and the internal membership-structure those
objects exhibit), versus one on which mathematics is about particu-
lar kinds of roles a mathematical object can perform within a wider
context. Under set-theoretic foundations, we focus on translating the
language of a particular mathematical theory T into the language of
set theory L∈ (consisting of only the language of first-order logic and
a single non-logical symbol ∈), and then find a model for T in the sets
(given, of course, some antecedently accepted set theory). From the
category-theoretic perspective, we would rather see what the essential
relationships T-objects have to one another, and then try and capture
these relationships through the notions of arrow and composition. To
see this difference, a couple of examples are pertinent:

Example 1. Singletons. In set theory the singleton of an object x is
the one-element set {x}. Different singletons can look very differ-
ent from the set-theoretic perspective; for example {∅} and {iω}
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are both singletons, but have very different properties (for exam-
ple, their transitive closures look very different).

Conversely in category theory, we have the notion of a termi-
nal object 1, where an object 1 is terminal in a category C iff there
is one and only one arrow from any other C-object to 1. Terminal
objects can have a variety of different properties in different situ-
ations. For example, if we think of a partial order P = (P,≤P) as
a kind of category (so there is an arrow from p0 to p1 just in case
p0 ≤P p1), then if P has a maximal element it will be terminal. In-
terestingly, in the set-theoretic context, we can form a category Set
consisting of all sets as objects and the functions between them as
arrows. We then see that between any set A and any singleton {x}
there is exactly one function given by the rule f(a) = x for every
a ∈ A, and so the terminal objects of Set are exactly the singletons.
Nonetheless, from the category-theoretic perspective it doesn’t re-
ally matter which terminal object we talk about, since all terminal
objects are isomorphic within any particular category. This con-
trasts sharply with the set-theoretic case where different single-
tons can have different interesting set-theoretic properties (such as
identity of transitive closure).

Example 2. Products. In set theory, we define the product A × B
of two sets A and B by first picking a canonical choice of ordered
pair, and then letting A × B = {〈a, b〉|a ∈ A ∧ b ∈ B} (giving us
the ‘rectangle’ of A and B). Products of more complicated objects
are then defined component-wise. For example, the direct product
of two groups G = (DG, ∗G) and H = (DH , ∗H) is defined as the
following group:

G×Group H = (DG ×DH , ∗G×H)

Where ∗G×H is defined component-wise for g ∈ G and h ∈ H :

〈g1, h1〉 ∗G×H 〈g2, h2〉 =df 〈g1 ∗G g2, h1 ∗H h2〉

Conversely, in category theory, a product of two C-objects A
andB is another C-objectA×B together with two C-arrows PrA : A×B → A
and PrB : A× B → B, such that for any pair of arrows f : C → A
and g : C → B, there is exactly one arrow 〈f, g〉 : C → A × B
making the following diagram commute:
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C

A A×B B

f g
〈f,g〉

PrA PrB

From the category-theoretic perspective, any objects that ful-
fil this role are a product (and, indeed, products are unique up
to C-isomorphism). In the case of sets and groups, the definition
of set-theoretic product will (in Set) fulfil this role (using the rel-
evant projections as PrA and PrB), as will the definition of di-
rect product for groups (when we consider the category Grp con-
sisting of all groups as objects and group homomorphisms as ar-
rows). However, any other definition of product resulting from a
different definition of ordered pair would equally well qualify as
a category-theoretic product (and indeed, we could find a func-
tion between the sets involved in the two products, ‘factoring’ one
product through the other).

The difference in the above cases is the following: In set-theoretic
foundations, representations of mathematical objects are obtained by
construction from the membership relation and a suitable coding. On
the category-theoretic perspective, we simply state what arrow-theoretic
properties an entity must have in order to fulfil the functions it does in
normal mathematical reasoning.

The eagle-eyed and/or well-informed reader may regard the dis-
tinction between set-theoretic and category-theoretic as a false dichotomy,
since one can give categorial theories of sets by axiomatising the exter-
nal functional properties attaching to the objects in a (or maybe ‘the’)
universe of sets. This is precisely what is done on many categorial3 set
theories such as on Lawvere’s4 Elementary Theory of the Category of Sets
(ETCS), which we’ll examine in a little more detail later. In this way,
it seems like the term ‘set theory’ can be correctly applied to certain
categorial theories. For this reason we make the following distinction:

Definition 3. (Informal.) Material set theories are those that axiomatise
a primitive notion of membership (denoted by ‘∈’), from which math-
ematical objects may be coded. Categorial set theory on the other hand

3There is some dispute over the use of the term ‘categorial’ versus ‘structural’
when axiomatising sets in category theory. We use the term ‘categorial’ since we
reserve structure-like terms for the philosophical notion of structure.

4See [Lawvere and McLarty, 2005] for an updated version. A clean and concise
presentation (with some informal commentary) is available in [Leinster, 2014].
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provides a theory of sets formulated in the language of category the-
ory, and on which objects are coded by systems of arrows resembling
the usual properties we expect set-theoretic functions to have. Mem-
bership in categorial set theory is a defined relation, often5 explained
in terms of functions x : 1 → A (read: “x is a member of A”), since
one can think of any such function (from a ‘singleton’) as ‘picking’ a
member of A.6

To make our initial question more precise, we are interested in the
extent to which material set theory tell us interesting information about
structures. Where the term “set theory” occurs without a qualifier, we
mean material set theory and take categorial set theory to be a part of
categorial foundations.

Both set theory and category theory allow us to identify objects up
to structural equivalence. Exactly how they do so is a tricky issue, and
provides us with a third:

Example 4. Isomorphisms. In set theory, working within first-order
logic, we settle upon some relevant coding of vocabulary (i.e. func-
tion, constant, and relation symbols), of structure (usually as an
ordered tuple), and satisfaction on a structure of formulas in this
language (given by an interpretation function on a structure). We
then say that two structures in the same vocabulary A and B are iso-
morphic iff there is a (coded) bijection between their domains such
that for every relation symbol R of the vocabulary (respectively
for function and constant symbols) and for every finite sequence ~a
from A, RA(~a) iff RB(f(~a)).

Importantly (an issue often glossed over in mathematics)a dis-
cussion of isomorphism only makes sense once the vocabulary
(and some suitable coding thereof) has been chosen (on top of the
coding-dependence of the set-theoretic analysis of bijection).

In category theory, however, the notion of isomorphism is dealt
with by external arrow-theoretic properties. An arrow f : X → Y
is an isomorphism (in a category C) iff there is a C-arrow g : Y → X
in such that g ◦ f = IdX and f ◦ g = IdY (i.e. composing the func-
tions in either direction yields the identity morphism). Two objects
are said to be isomorphic (in C) iff there is an isomorphism be-

5As with many notions in category theory, there are different arrow-theoretic
ways of getting at the same idea. See, for example, [Goldblatt, 1984] (Ch. 4) for
some discussion.

6We are grateful to Michael Shulman and Dimitris Tsementzis for emphasising
the importance of making this distinction.
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tween them. Importantly, the notion of isomorphism only makes
sense within a category.

The treatment of isomorphism through a particular kind of ar-
row results in contexts in which the notion of set-theoretic and
category-theoretic isomorphism come apart. For example, there
are cases where we have category-theoretic isomorphisms that are
not bijective homomorphisms (in the material set-theoretic sense).
One such kind is when the relevant arrows are simply not func-
tions, such as in the category of proofs which has sentences as ob-
jects and equivalence classes of proofs as arrows (so there is a sin-
gle arrow f : P → Q when Q is derivable from P ). Here, since iso-
morphisms are equivalence classes of proofs between equivalent
sentences, we have isomorphisms that are not (properly speak-
ing) bijections of any kind. In the context where there is a func-
torial relationship between the category and Set, however, there
can be no non-bijective isomorphisms (since functors preserve iso-
morphisms).

However, in the case where there is no functor between the cat-
egory and Set, this is possible. An interesting (yet complex) case is
the homotopy category that has topological spaces as objects and
homotopy classes of continuous functions as arrows. Here, the
inclusion of the unit circle into the punctured plane is an isomor-
phism (its inverse is the radial projection map), which is not bijec-
tive. In fact, [Freyd, 1970] showed that this is not a concrete cate-
gory (i.e. there is no nice faithful functor from this category to Set),
which facilitates the consideration of non-bijective iso-arrows.b,c

aSee [Baldwin, 2018] (Ch. 1, esp. §1.2) for an argument that this is an often
ignored distinction.

bWe are grateful to Andrew Brooke-Taylor for bringing this example to our
attention, and some further discussion of the issue. We would also like to thank
Ingo Blechschmidt and Jean-Pierre Marquis for some further helpful conversa-
tions, in particular emphasising the pervasiveness of the non-concreteness phe-
nomenon. For additional discussion see [Marquis, 2013], and for results show-
ing how non-concreteness permeates see [Di Liberti and Loregian, 2018].

cA further simple (but somewhat silly) example is the following category
which we define material-set-theoretically. The category has just one object
{a, b}, and a single morphism defined by f(a) = f(b) = b. Here f = Id{a,b}
(in the category), and so is trivially iso, but is nonetheless non-bijective.

The above example is important, since it shows that even the notion
of structural similarity (as captured by the notion of isomorphism) is
differently interpreted by the two perspectives. Thus, whether or not
a property is ‘isomorphism’ invariant depends already on whether one
holds one of the two perspectives to be privileged.
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A second issue is whether or not there are notions of sameness of
structure that are not underwritten by isomorphism. For example two
categories C andD are said to be equivalent iff there are functorsF : C → D
andG : D → C, such that there are natural isomorphisms f : IdC → G◦F
and g : IdD → F ◦ G. In other words, when composing the functors
one does not get the identity back, but rather something isomorphic.
This has significant consequences; for example the category of finite
sets is equivalent to the category of finite ordinals, but the former has
proper-class-many elements whereas the latter has only ω-many. Some
authors (e.g. [Marquis, 2013]) maintain that it is categorial equiva-
lence, rather than isomorphism, that constitutes the ‘correct’ notion
of sameness of structure for categories (a fact also supported by the
development of the subject).

These cluster of issues show that there are plausibly notions of
structure that are not underwritten by isomorphisms as understood
through bijection. In order to focus discussion, we will focus on the
notion of ‘sameness of structure’ as given by isomorphisms that are
bijective (what [Marquis, 2013] terms the ‘extensional’ perspective). It
is an important open question (one we shall identify in §4) how the
current work might be modified to handle different cases.

It should also be noted that talk of ‘objects’ is dispensable from the
category-theoretic perspective. Really, by taking the notion of domain
and co-domain as part-and-parcel of the arrow, we could just speak
purely in terms of arrows and composition. Material set theory and
category theory thus represent two different perspectives on the na-
ture of mathematical subject matter; on the one hand, we might think
of mathematical objects as constructed and determined by their inter-
nal membership-structure, and on the other we might think of them
as determined (up to isomorphism) by their relationships to other en-
tities, and the role they play in the category as a whole.

This underlying difference in perspective represents two sides of
a long-standing7 philosophical divide: Should we think of the subject
matter of mathematics as given by individual objects with particular
intrinsic relations determining their properties, or should we rather
think of the subject matter of mathematics as concerned with purely
structural properties (i.e. those invariant up to isomorphism)? The
material set-theoretic and categorial perspectives are interesting rep-
resentatives of different sides of this divide (though, as we shall see,
issues are more subtle than they first appear).8

7At least since [Benacerraf, 1965].
8A salient third option (especially given the topic of the current volume) is Ho-

motopy Type Theory. Here type theory endowed with a homotopy-theoretic inter-
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2 Objections: Refining the perspectives

As it stands, however, there are puzzles for each conception of foun-
dations. In this section, we explain some of the complaints that have
been made about the different foundational viewpoints and argue that
these are easily resolvable. We’ll argue that this suggests a possible
route of inquiry for the friend of set-theoretic foundations; to modify
their language in order to better respect isomorphism invariance and
structure.

2.1 Objections to categorial foundations and schematic
types

One supposed ‘problem’ for the friend of category-theoretic founda-
tions concerns its subject matter. What, exactly, is category theory about?
For, as it stands, category theory merely defines particular kinds of
algebraic structure. The discipline seems to be of a piece with alge-
braic enterprises such as group theory or other areas of abstract al-
gebra. One begins by laying down conditions on what a system of
arrows must satisfy in order to be a category (existence of identity and
composition morphisms, and associativity of composition). This de-
fines an algebraic structure much like that of group (in fact, there is a
corresponding abstract algebraic structure for category that is slightly
more general than that of group; namely then notion of being a monoid),
which can then be made more specific with additional constraints. For
example, insisting that particular diagrams exist and commute in a cat-
egory yields the definition of a topos: a Cartesian closed category with
a subobject classifier. This kind of category is very useful for studying
the algebraic properties instantiated by various logical and mathemat-
ical systems, and while it is exceptionally rich in structure, it still (in
the spirit of category theory) just corresponds to particular algebraic
properties that a system of arrows can instantiate. Hellman sums up
this thought:

“...this theory [i.e. category theory] itself is presented alge-
braically, via first-order ‘axioms’ only in the sense of defining
conditions telling us what a category is, together with further
ones defining topoi of various sorts. As such these ‘axioms’
are like the conditions defining a group, a ring, a module, a

pretation is employed, providing a foundation that meshes elegantly with category-
theoretic methods. See the excellent [The Univalent Foundations Program, 2013] for
discussion.
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field, etc. By themselves they assert nothing. They merely tell
us what it is for something to be a structure of a certain kind.”
([Hellman, 2006], p. 134)

Hellman’s point (an important one) is that the axioms of category
theory (even when expanded to isolate categories of more complex
varieties) make no existential claims (this is what Hellman means by
saying that the axioms “assert nothing”) in that they specify what it is
for a system of objects to satisfy certain axioms, without asserting that
anything satisfying them actually exists.

Some (including [Hellman, 2006]) have taken this as an objection to
category-theoretic foundations. An appropriate foundation for math-
ematics should state that some objects exist and that mathematics can
be interpreted within this structure, thereby laying a framework on-
tology on which mathematics can be built. Thus category theory ap-
pears to contrast with the usual set-theoretic foundations, where the
axioms of Infinity, Power Set, and Replacement all make existential
claims within ZFC, and many other axioms extending ZFC also make
existential claims.9

This objection should not trouble the friend of category-theoretic
foundations. One salient response (made by [Mclarty, 2004]) is that
no-one has ever proposed the axioms of category theory as a founda-
tion, the proposal is rather to assert that some topos or other exists
and mathematics either can or should be interpreted there. Good ex-
amples here are categorial theories of sets (such as ETCS) or attempts
to axiomatise a category of all categories (e.g. CCAF).

Moreover, we might also think that Hellman’s objection simply
misses the mark. His remarks reveal something about the general
practice of category theory: It is an algebraic discipline, no matter
whether it can be modified to yield assertory content, as McLarty sug-
gests. When practising category theory, we care only about whether
we have the relevant relations between objects, and this does contrast
with set theory where (largely speaking) we are interested in the prop-
erties of some specific structure (namely the cumulative hierarchy).10

This feature of the two frameworks is further witnessed by attitudes
to categoricity. In a categoricity proof, we aim to show that a certain

9Good examples here are so called large cardinal axioms, as well as forcing axioms,
and inner model hypotheses.

10Here we are playing slightly fast-and-loose with debates in the foundations of set
theory; under a natural interpretation of Joel Hamkins’ multiverse perspective, set
theory also should be understood as purely algebraic. See [Hamkins, 2012] for the
original presentation of this view and [Barton, 2016] for an argument to the effect
that this results in a purely algebraic interpretation.
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theory has just one model (up to isomorphism). In the context of set
theory (or indeed number theory and analysis) the project of providing
a categoricity proof makes sense; we wish to see that our axiomatisa-
tion has been successful and we have (given the determinacy of the
concept) pinned down a single structure up to isomorphism.11 In the
case of number theory and analysis we have proofs of full categoric-
ity (by the work of Dedekind), and in the case of set theory we have
quasi-categoricity: We can show that ZFC2 augmented with anti-large
cardinal axioms can be fully categorical, and any two ZFC2 structures
are either isomorphic or one is isomorphic to an initial segment of the
other.12 In the case of category theory though, to attempt such a proof
for a categorial theory would be an absurd endeavour, the whole point
of category theory is to isolate structural properties that can be shared
by radically non-isomorphic structures.

Thus categories demand no single place to be interpreted, and the
complaint that category theory fails to delimit a determinate range of
objects is misplaced. The friend of set-theoretic foundations, for exam-
ple, will regard it as of a piece with group theory; if category-theory
has any subject matter at all, it is the category-theoretic structure that
can be instantiated in various ways in the sets (and so she should coun-
tenance category theory as a useful foundational language, even if it is
not her favourite foundation). There is no pressure to find ‘the’ struc-
ture of ‘the’ category-theoretic world; the discipline is designed to be
flexible and resist such a characterisation.

A friend of category-theoretic foundations might thus regard the
subject matter of mathematics as fundamentally algebraic, category
theory as providing a good axiomatisation of this perspective, but
nonetheless resisting the characterisation of a unique concrete subject
matter. If category theory has a subject matter at all, then it is a purely
structural one.

An immediate and difficult question is how we should think of
this category-theoretic structural subject matter. Landry and Marquis
provide the following interesting idea:

“A category, too, is neither a privileged abstract kind of
system nor is it an abstract Fregean “structure” qua an “ob-
ject”: it is a Hilbertian style abstract structure qua a schematic

11The exact dialectic import of a categoricity proof is something of a vexed
question, see [Meadows, 2013] for discussion. An argument that the quasi-
categoricity of ZFC2 shows that our axiomatisation has been successful is available
in [Isaacson, 2011].

12The original proof of this is available in [Zermelo, 1930], and is subsequently
tidied up in [Shepherdson, 1951] and [Shepherdson, 1952].
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type, to be used as a framework for expressing what we can
say about the shared structure of the various abstract kinds
of structured systems in terms of ‘having’ the same type of
structure.” ([Landry and Marquis, 2005], p. 35)

The thought here is to think of categories as providing structure
as a ‘schematic type’, rather than a ‘particular structure’. Of course,
it bears explaining what a ‘schematic type’ is. One kind of schematic
type is well known to mathematical logicians—the notion of first-order
theory. These, if they can be instantiated in any infinite context, can be
instantiated in many infinite contexts. We leave it open whether non-
first-orderisable content can be expressed categorially. If higher-order
content (with a version of the full semantics) can be encoded in a cat-
egorial language, then it is at least possible that we might determine a
structure up to (set-theoretic) isomorphism categorially. Whether or
not this is possible we leave open; for now, we note that the ability to
systematise relationships across non-isomorphic contexts just is one of
the main strengths of category theory, and many proponents of catego-
rial foundations do see category theory in this light (e.g. [Mac Lane, 1986]).

Thus we take the target of category theory to be showing the basic
relationships objects have to have to one another to fulfil their func-
tional roles. In order to understand better the notion of schematic type,
it is useful to return to the analogy with group theory. While it makes
sense to speak of ‘the group-theoretic structure’, there is not a single
way the group-theoretic structure can be instantiated, rather it admits
of satisfaction in multiple different ways and contexts (and indeed this
is one of the reasons why abstract algebra has been so fruitful in con-
temporary mathematics). This is much the same for categories, which
provide a useful framework for systematising these relationships. We
thus provide the following:

Definition 5. (Informal and philosophical) A schematic type is a sys-
tem of relationships that can be instantiated in many different non-
isomorphic contexts.

Viewing category theory as the appropriate theory for formalising
schematic types, we see that the problem of ‘subject matter’ is not
really a problem at all. Rather, category-theoretic foundations pro-
vide a language and context in which to study algebraic relationships,
and for this reason precisely resist the identification of a concrete sub-
ject matter.13 Categories correspond to theories of mappings and can

13Moreover, one might think that category theory formalises these schematic types
in a way that highlights privileged conceptual routes (such as when we know that a
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be multiply instantiated throughout concrete systems of objects, and
there is no pressure to identify a unique subject matter or make it as-
sertory in nature.14

2.2 Objections to set theory and the combinatorial per-
spective

In this subsection, we’ll delve into some of the criticisms of material
set theory. We’ll show that when set theory is understood as applying
to an appropriate subject matter (namely providing an analysis of pos-
sible combinations of objects) the objections fail to gain traction. We’ll
therefore suggest that a methodological pluralism is an attractive atti-
tude to foundations. Before moving onto the final section, we’ll iden-
tify that a possible line of inquiry for the friend of set-theoretic founda-
tions is to provide a modification of her language that better respects
isomorphism invariance.

The objections to set-theoretic foundations come in two broad kinds,
as Feferman (speaking about [Mac Lane, 1971]) explains:

“Two views are intermixed in [Mac Lane, 1971] as to cur-
rent set-theoretical foundations, namely that (i) they are in-
appropriate for mathematics as practised, and (ii) they are
inadequate for the full needs of category theory.” ([Feferman, 1977],
p. 149)

Our strategy will be the following. We expand on Feferman’s two
dimensions, articulating the different objections we find in the litera-
ture. For reasons that will become apparent (we find the former di-
mension to be the more challenging of the two), we deal with these

particular property is universal). Marquis, for example, writes:

“The point I want to make here is extremely simple: category theory,
and not just its language, provides us with the proper code to represent
the map of mathematical concepts.” ([Marquis, 2017a], p. 92)

14A second objection, one that we will not consider here, is the point raised by
[Mathias, 2000] and [Mathias, 2001] that category theory lacks the logical strength
to discuss certain strong statements of analysis that relate to large cardinal axioms.
While the objection merits a response, we set this aside for several reasons: (1) re-
search is ongoing here, and it is unclear that category theory cannot do the job, (2)
there are, in any case, logically strong category-theoretic statements (see below),
and (3) the possible responses to the objection do not help us elucidate the philo-
sophical role being played by category theory in terms of schematic types. See also
[Ernst, 2017] for some discussion of these issues, as well as a general survey of the
comparisons between categorial and set-theoretic foundations.
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in reverse order, starting with inadequacy. As we go, we will provide
responses from the set-theoretic standpoint. We do, however, have
to be careful about dialectical strategy. In ‘defending the set-theoretic
viewpoint’ we could be doing one of (at least) two things:

1. We could be arguing that, despite the category-theoreticians best
efforts, set theory is still the best foundation for discussing math-
ematical structure.

2. Slightly weaker, we could contend that despite arguments to the
contrary, set theory is still interesting as a foundation as it has
plenty to tell us about mathematical structure.

We wish to emphasise that it is this latter claim we wish to sup-
port. We wish to claim that despite many criticisms in the literature,
set theory can still provide interesting information about how certain
structural properties are instantiated.

2.2.1 Inadequacy

The problem of inadequacy is roughly the following: Set theory does
not provide enough of something (either objects or information). The
key issue is raised by Mac Lane:

“Our fundamental observation is just this: There is an ap-
preciable body of results about categories...but the received
methods of defining categories in terms of sets do not pro-
vide any one single context (i.e. any one model of a stan-
dard set theory) within which one can comprehensively
state these results.” ([Mac Lane, 1971], p. 235)

The fundamental idea is the following: It is undeniable that the
methods of category theory have provided a versatile method for mod-
ern mathematics. This raises the question for the friend of set-theoretic
foundations: “Given that category theory provides structural informa-
tion, what sets should we interpret category theory as about?”.

Mac Lane’s point is that there is no single context in which we can
interpret category theory unrestrictedly. This is visible in two related
but distinct dimensions: (i) Which model15 we should take to found
category theory, and (ii) Which categories we should expect set theory
to found.16

15We use the term ‘model’ in a loose and informal way here, and intend it to apply
to possibly proper-class-sized structures. For example, we will at least allow (L,∈)
as a model, even though it is proper-class-sized.

16In the quotation above, Mac Lane is specifically interested in the first point we
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What model? The first issue concerns exactly what the relevant model
should satisfy. Simply put, the widespread independence phenomenon
in set theory has challenged the classical idea that there is a single max-
imal universe of sets in which we may interpret all mathematical dis-
course. This is discussed by Mac Lane:

“These results, and others too numerous to mention, show
that many interesting Mathematical questions cannot be set-
tled on the basis of the Zermelo-Fraenkel axioms for set
theory. Various additional axioms have been proposed, in-
cluding axioms which insure the existence of some very
large cardinal numbers and an axiom of determinacy (for
certain games) which in its full form contradicts the axiom
of choice. This variety and the undecideability results in-
dicate that set theory is indeterminate in principle: There
is no unique and definitive list of axioms for sets; the intu-
itive idea of a set as a collection can lead to wildly different
and mutually inconsistent formulations. On the elemen-
tary level, there are options such as ZFC, ZC, ZBQC or
intuitionistic set theory; on the higher level, the method of
forcing provides many alternative models with divergent
properties. The platonic notion that there is somewhere the
ideal realm of sets, not yet fully described, is a glorious il-
lusion.” ([Mac Lane, 1986], p. 385)17

Since our expertise is primarily in higher-set theory (i.e. ZFC and
its extensions) and independence, we approach the issue from that
perspective. As is well-known, there are many set-theoretic sentences
independent of our canonical set theory ZFC (e.g. CH). Mac Lane
takes this to show that there is no one notion of ‘set’ and hence no one
place that category theory can be interpreted. We have two responses
to this argument:

Response 1. This explicitly takes a stand on the status of certain
questions in the philosophy of set theory. In particular, it turns on
how many universes of set there are (or at least how many distinct
but legitimate concepts of set there are). While the independence phe-
nomenon is certainly challenging, this does not mean that there are
multiple ‘meanings’ to the word “set”. Thus, for the theorist who sim-
ply rejects the claim that the independence phenomenon indicates se-

consider. However, the intuition expressed transfers naturally to other objections he
makes, as outlined below.

17Similar remarks are made repeatedly in [Mac Lane, 1986], cf. pp. 359–360, 373.
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mantic or ontological indeterminacy, the objection gains no traction
(without further argument).

Response 2. Even if we allow the existence of different universes
or concepts of set, Mac Lane’s criticism is subject to a tu quoque. This
is because, as we explained above, category theory by its nature does
not demand a single context for interpretation (in fact quite the reverse).
Rather, we argued, category theory should be understood as provid-
ing a uniform language in which to study algebraic properties and
schematic types. Thus to insist on a single model or axiomatisation in
which category theory should be interpreted is to impute content to
it that is simply not there. Thus, insofar as this is a problem for set
theory at all, it is also one for categorial foundations.

This allows a quick response to Mac Lane’s objection: Even if there
are multiple set-theoretic concepts or universes, and no overarching
context, this does not matter. Wherever we study category-theoretic
properties set-theoretically (discussion of particular set-theoretic inter-
pretations is provided below), we know that our results will transfer to
the alternative cases via the schematic properties of category theory. It
is enough for us to study category-theoretic structure set-theoretically
to find one set-theoretic structure exemplifying the relevant schematic
type. For the purposes of set-theoretic foundations, we do not need to
find the set-theoretic subject matter corresponding to category theory.18

Which categories? The second problem of inadequacy concerns what
one has within a particular context. Simply put, category theory seems
to speak about structures that are proper-class-sized, and so do not
have any set-theoretic representative. An obvious example here is Set,
the category of all sets that has as arrows set-theoretic functions (this
can be given direct category-theoretic axiomatisation by ETCS or its
extensions).19 There are, however, many such categories (e.g Grp, Top,
Fld, etc.).

There are two main strategies for overcoming this problem. The
first is to posit the existence of Grothendieck universes and interpret cat-
egory theory there. More formally:

Definition 6. A Grothendieck universe is a setU with the following prop-
erties:

18A similar point is made in [Maddy, 2017]. For some other remarks on what
we would like from set-theoretic foundations, see also Maddy’s contribution to the
present volume [Maddy, F].

19The topos axiomatised by ETCS is that of a well-pointed topos with a natural
number object and satisfying the categorial version of the Axiom of Choice.
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(i) U contains the set of all natural numbers.

(ii) U is transitive.

(iii) U is closed under the formation of pair sets.

(iv) U is closed under the formation of power sets.

(v) U is closed under set-theoretic union.

(vi) If x ∈ U , f : x→ y is a surjection, and y ⊆ U , then y ∈ U .

We can then interpret category theory as concerned with any such
universe. For instance, Set can be interpreted as concerned with the
sets in some U (let’s call this category SetU ), and this (along with any
functor categories) is a perfectly legitimate object formed in the stages
of the cumulative hierarchy above U .

Grothendieck himself (in proposing a set-theoretic interpretation
of category theory) suggested the axiom that there should be an un-
bounded sequence of these universes. In fact, being a universe is
clearly equivalent to being Vκ where κ is an inaccessible cardinal, and
so the proposal comes down to interpreting category theory within
any one of an unbounded sequence of inaccessible universes.

The standard objection to this strategy is that it apparently ‘pre-
vents’ considering perfectly acceptable categories, such as the actual
category of all sets. Given any such interpretation of category the-
ory, there are sets outside of that interpretation. But (so the objection
goes) category theory is about any and all sets instantiating the rele-
vant category-theoretic interpretation. Any such restriction seems ad
hoc. Muller expresses the point as follows:

“Any stipulation to the effect that the category-theoretician
is only allowed to grab at some fixed set whereas outside
this set there are more sets, so that he is not permitted to
grab at all of them, is artificial and barks at his explicit
intentions. The category- theoretician has every right to
refuse to dance to the cardinality tunes [of] the set-theoretician
whistles. Category-theory is about form & structure, irre-
spective of how much & how many; it ‘only’ wants to have
everything which is available. The category-theoretician
means all sets when he makes the category Set of all sets,
period. Set-theories which cannot accommodate this are
flawed.” ([Muller, 2001], p. 11–12)
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A different strategy then is to allow proper-class-sized categories
(so-called ‘large’ categories), and adopt a two-sorted class-theoretic
language and theory (such as NBG or MK) in providing a category-
theoretic interpretation. The problem here is that often category-theorists
will consider functor categories between two categories. Taking two
categories C and D, it is natural to consider the category DC consist-
ing of all functors from C to D as objects, and natural transformations
between functors as arrows. Such a category, however, is often one
type higher than both C andD. In the case then when both C andD are
large, even with proper classes we are not guaranteed the existence of a
class-theoretic representative concerning CD (normally proper classes
cannot be members).20 The issues concerning both interpretations are
summed up as follows:

“Using universes, all the functor categories are there, but
there is no category of all groups. Using Godel-Bernays,
one has the category of all (small) groups, but only a few
functor categories.”21 ([Mac Lane, 1971], p. 235)

What should we take from this? Again we hold that these objec-
tions fail to gain traction:

Response 1. A simple point, but one based on a non-trivial theo-
rem, is that for certain categories (in particular the category of all re-
flexive graphs), it is not clear that the requirements Mac Lane wishes
to place on interpretations of category theory are consistent. Specifi-
cally [Ernst, 2015] shows that there are restrictions on what categories
one can have. The proof proceeds by considering a version of Cantor’s
Theorem in the category of all reflexive graphs and shows that certain
desirable conditions on the existence of categories are jointly inconsis-
tent.22 Thus we cannot simply naively insist on the existence of any
category whatsoever without some restrictions.

20Of course, the material set-theorist might just accept the existence of proper-
classes, hyper-classes, hyper-hyper-classes and so on. This is naturally interpretable
in an ontology on which every universe can be extended in height, but there is also a
question of whether the believer in one maximal unique universe of sets could also
make use of nth-order hyper-classes. Normally it is assumed not, but this question
remains philosophically open.

21Given the topic of the present volume, there is an interesting question as to the
extent to which this difficulty is avoided in homotopy type theory. We thank Dimitris
Tsementzis for the suggestion that this difficulty could possibly be overcome in this
foundation.

22See [Ernst, 2017], [Maddy, 2017] and [Maddy, F] for further discussion of the sig-
nificance of this result.
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Response 2. The problem implicitly takes a stand on issues in the
philosophy of set theory, though in the opposite direction to the pre-
vious section. For, in the case where we think there is no maximal
conception of the notion of ordinal, and rather that any universe of set
theory can be extended in height, we are always implicitly restricted
to a particular bounded universe of sets anyway. Thus, to the theorist
who holds that there are no ‘maximally high’ universes, the objection
fails to gain any traction.23

Response 3. Even if we do allow that there can be ‘maximally high’
universes of set theory, the objection again fails to account for the
schematic nature of category theory. Given this algebraic character,
when a category theorist asks us to consider “The category Set which
has as objects all sets and arrows all functions” this should be un-
derstood as shorthand for communicating various category-theoretic
properties. Some of these are captured by first-order axiomatisations
such as ETCS and its extensions, but again, they are about a schematic
type (in particular a first-order one) rather than a particular concrete
subject matter. So for studying this schematic type, it is enough that
we have just one structure exemplifying the schematic type. Results
proved about this schematic type can then be exported to other con-
texts (and other structures instantiating the category-theoretic prop-
erties), the results are about the schematic type and not the concrete
instantiation of it in the sets.

Consider the case where we have both the Grothendieck-universe
and class-theoretic interpretations available to the set theorist. More
precisely, suppose she believes the following: (1.) There is a single
unique universe of sets, (2.) There are unboundedly many inaccessi-
ble cardinals, and (3.) There is a satisfactory interpretation of Morse-
Kelley class theory over V . Now, consider the category theorist’s con-
sideration of Set, and how this relates to the set theorist’s universe.
The category-theoretic structure of Set is multiply instantiated, both
by each individual Vκ where κ is inaccessible, and also V (as well as
many other structures besides, some of them countable24). Now sup-
pose we consider some ‘super-large’ functor category SetC (for some
category C). The SetC schematic type will be instantiated by the vari-
ous Vκ with the sets above them, but not by V (since there are no levels
above V ). But this does not matter, any properties proved about the

23One might even think, in the opposite direction, that some distinction between
‘small’ and ‘large’ is essential for making sense of certain category-theoretic results.
See [Shulman, 2008] for arguments to this effect, and [Ernst, 2017] for some addi-
tional discussion.

24An example of such a structure would be the Skolemisation and Mostowski Col-
lapse of any set-theoretic structure satisfying an appropriate amount of set theory.
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schematic type Set using the schematic type SetC can just be exported
back to V , the proof concerning Set just depends on there being some
set-theoretic counterpart in which SetC is instantiated, not that every
instantiation of Set has a corresponding SetC representative. While it
is the case that when a category theorist states a theorem of the form
“Set has an extension to SetC” can only be interpreted to concern the
small instantiations, this does not harm the results about the schematic
type Set, and the fact that any results proved on the basis of SetC about
that structure can perfectly well be exported back to V . This is much
like the case with first-order ZFC, it would be bizarre to claim that re-
sults proved about ZFC using extensions in the model theory of sets
are inapplicable to V because V lacks extensions.25

A natural rejoinder is that occasionally category theorists will con-
sider explicitly large categories like SET (i.e. the category of all sets)
rather than just Set (interpreted as the category of small sets in the first
universe). Nonetheless, exactly the same considerations apply con-
cerning schematic types. Even if one insists that there is a distinction
between ‘small’ and ‘large’ sets, one can still have SET instantiated in
some small structure, it is just that that structure does not think it is
small. These considerations are familiar from the set-theoretic frame-
work; one can easily have a particular Vκ satisfying the claim that there
are proper-class-many cardinals of some kind Φ, without Vκ witness-
ing that there are literally (i.e. in V ) proper-class-many such cardi-
nals. One just requires that the Φ-cardinals are unbounded in Vκ for
there to be a universe satisfying this property. Indeed, as above, any
conclusions based on the theory ZFC+ “There is a proper class of Φ-
cardinals”, made by considering the extension of a model thereof can
be exported back to V (on the assumption of course that V does contain
such a proper class). Similarly, one just needs a universe containing an
inaccessible (in fact if the schematic content of category theory is only
first-order, one needs much less) for there to be set-sized set-theoretic
contexts in which there is a meaningful distinction between small and
large categories capable of instantiating the relevant algebraic content.
To argue that set theory fails to provide an appropriate surrogate for
SETC is to impute non-algebraic content to category theory which is
quite simply not there.

25There may, nonetheless, be certain philosophical considerations here, as well as
technical issues concerning how much higher-order reasoning we can capture using
extensions. See [Barton, S] and [Antos et al., 2021] for discussion.
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2.2.2 Inappropriateness

The inappropriateness dimension of Feferman’s taxonomy concerns
set theory giving us too much of something (either objects or informa-
tion). We’ll see that while these problems are also resolvable, an ad-
ditional line of inquiry is suggested by the complaint that set theory
provides too much non-isomorphism-invariant information; namely
to modify set theory so that the language respects isomorphism in-
variance.

Logical strength. The first issue concerns the logical strength of set
theory. For the practical purposes of founding mathematics, so the
argument goes, we do not need anything like the strength of ZFC set
theory. Landry and Marquis record this sentiment:

“Second, it is fair to say that category theorists and cate-
gorical logicians believe that mathematics does not require
a unique, absolute, or definitive foundation and that, for
most purposes, frameworks logically weaker than ZF are
satisfactory. Categorical logic, for instance, is taken to pro-
vide the tools required to perform an analysis of the shared
logical structure, in a categorical sense of that expression,
involved in any mathematical discipline.” ([Landry and Marquis, 2005],
p. 19)

We do not wish to disagree that large portions of mathematics do
not require the logical strength of ZFC set theory. However, we do
wish to make two rejoinders:

Response 1. First, set theory does not aim at being ‘minimal’ in
any sense. Rather, we wish to provide the most generous theory possi-
ble (often understood through maximising consistency strength) to be
used in interpreting any conceivable mathematics we might consider.
So, while the objection might be convincing to a theorist who has a
penchant for minimising logical strength, it fails to be convincing to
the friend of set-theoretic foundations.

Response 2. Second, we have another tu quoque here: There are in-
teresting category-theoretic principles that turn our to have significant
large cardinal strength. Bagaria and Brooke-Taylor, for example, note
the following (in an article on colimits and elementary embeddings):

“Many problems in category theory, homological algebra,
and homotopy theory have been shown to be set-theoretical,
involving the existence of large cardinals. For example, the
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problem of the existence of rigid classes in categories such
as graphs, or metric spaces or compact Hausdorff spaces
with continuous maps, which was studied by the Prague
school in the 1960’s turned out to be equivalent to the large
cardinal principle now known as Vopĕnka’s Principle... An-
other early example is John Isbell’s 1960 result that SetOp is
bounded if and only if there is no proper class of measur-
able cardinals.” ([Bagaria and Brooke-Taylor, 2013], p. 1)

A key point to attend to in the above is that these are not category-
theoretic principles that were dreamt up by set theorists. These are
principles that were naturally studied by category theorists that turned
out to not just be independent from ZFC, but also have substantial
large cardinal strength (Vopĕnka’s Principle is quite high in the large
cardinal hierarchy). Moreover, with certain additional assumptions
one can find models of material set theories like ZFC in categorial
set theories like ETCS.26 In virtue of this, the claim that set theory
is somehow unfavourably distinguished by its logical strength when
compared to category theory (in all its guises) seems dubious.

Isomorphism invariance. The second problem of inappropriateness
concerns the earlier discussed fact that set theory makes decisions about
non-isomorphism invariant facts. The key issue is that a central prac-
tice in set-theoretic foundations involves specific choices of ‘canonical’
representatives.

For example, in the earlier discussion of products, the exact object
that is eventually selected as ‘the’ product will vary depending on nu-
merous conventional stipulations. We might, for example, represent
the ordered pair 〈a, b〉 along the lines of Hausdorff as {{a, 1}, {b, 2}}
(rather than the usual Kuratowski definition:
〈a, b〉 =df {{a}, {a, b}}) resulting in a different choice of product. This
then raises the following question: If set theory is meant to tell us what
mathematical objects exist, then what is the fact the matter about which
definition of product is the actual product?

The problem was noticed in the philosophical literature at least as
early as the seminal [Benacerraf, 1965]. There, he presses this problem
of non-isomorphism invariant choices to be made via the existence
of ‘junk’ theorems, where a theorem is ‘junk’ when it concerns non-
isomorphism invariant properties. For example, is it true that 5 ∈ 7?

26For instance one way to do this is to find arrow-theoretic trees in a model of
strengthened ETCS that correspond to the relevant membership trees required to
build a model of ZFC. We are grateful to Michael Shulman for discussion here, and
directing us to his useful [Shulman, 2010] and [Osius, 1974].
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A natural answer is “Yes”; the canonical choice of ordinals is the von
Neumann definition, and under that definition it is the case that 5 ∈ 7.
However, under the Zermelo definition, it is not the case that 5 ∈ 7. So,
if we think that mathematical objects ‘are’ sets (or, as Benacerraf points
out, any objects) what is the fact of the matter concerning whether or
not 5 ∈ 7? Since the truths of number theory are invariant under do-
main (we just need some things that have the standard natural num-
ber structure under the relevant relations of the required vocabulary
for arithmetic to be true in that context) there seems to be no good re-
sponse; whatever objects we pick as ‘the’ natural numbers, they satisfy
the same arithmetic sentences.

The simple response is that the many (if not most) set theorists do
not subscribe to the heavy-duty set-theoretic reductionism required to
generate the problem. Rather, most friends of set-theoretic founda-
tions (or, at least, this is the line we shall present here), take set theory
to be a device of representation. Using the membership relation and
axioms of first-order logic we are able to interpret mathematical claims
as ones about sets, with axioms telling us how these objects can be
combined to yield other mathematical properties, providing a context
in which different mathematical claims can be interrelated.

Claims like “5 ∈ 7” just do not make sense for the friend of set-
theoretic foundations until we have settled on a particular interpreta-
tion of number theory. If we pick the von Neumann ordinals, then the
question of whether 5 ∈ 7 corresponds via our chosen interpretation to
whether 5 < 7 in number-theoretic terms, and so is obviously true (in
fact trivially so). If we had picked a different representation, however,
it may have been false (as is the case on the Zermelian conception of
finite ordinals).

This has implications for the purposes to which set theory is put
in foundations. The language is excellent for studying what kinds of
mathematical properties are compossible, and what kinds of objects
are required to find an interpretation of a piece of mathematics. Hence,
the default context for studying independence results (and their im-
plications) is models of set theory,27 and the indexing of consistency
strength is accomplished using set-theoretic principles. If one wishes
to know whether it is possible to have one mathematical property with
or without another, one studies the models of set theory in which they
have interpretations. If one wishes to know how much logical strength
is implied by the adoption of a particular mathematical system, a stan-
dard technique is to find a model of the principle in the sets. However,
once a model has been found, few set theorists (if any) would sug-

27This said, there are category-theoretic options here. See [Bell, 2011].
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gest that the mathematician should change their practice and adopt
the (highly baroque) set-theoretic language. The interpretation has
been given, and this acts as a certificate that the original (and prob-
ably more fluid) language is in good working order.28

This has implications for the kind of applications that we see for set
theory to mathematical structure. Rather than seeing it as a language
and framework for the working mathematician, it should rather be
used in finding interpretations of the working languages and compar-
ing them. Structurally, this might have important consequences. One
might, for example, see cardinality as an important structural prop-
erty. Set theory then provides us with a useful framework in which
schematic types of certain kinds and cardinality interact, to yield help-
ful structural information. A good example here is the celebrated:

Theorem 7. The Morley Categoricity Theorem. Suppose that a countable
first-order theory T has exactly one model up to isomorphism in a sin-
gle uncountable cardinal. Then it has one model (up to isomorphism)
in every uncountable cardinal.

The standard proof of this proceeds against a background of mate-
rial set theory. Assuming that one does hold that cardinality is a struc-
tural property, it yields information about how first-order schematic
types and cardinality interact, specifically if one has a first-order schematic
type T (this could even be given categorially) it provides conditions
that tell us when there is only one way (up to isomorphism) that T
could be instantiated in a structure of a particular size.

We thus make the preliminary conclusion; though material set the-
ory is baroque and choices must be made about canonical represen-
tatives in a fashion that is not isomorphism invariant from the per-
spective of certain vocabularies (e.g. number theory), it nonetheless
provides a useful perspective for stating how schematic types interact

28Vladimir Voevodky himself was clear about this role for ZFC with respect to
Homotopy Type Theory. See, for example, his abstract for the 2013 North American
Meeting of the Association of Symbolic Logic, where he says:

“Univalent foundations provide a new approach to the formal reason-
ing about mathematical objects. The languages which arise in this ap-
proach are much more convenient for doing serious mathematics than
ZFC at the cost of being much more complex. In particular, the con-
sistency issues for these languages are not intuitively clear. Thus ZFC
retains its key role as the theory which is used to ensure that the more
and more complex languages of the univalent approach are consistent.”
([Voevodsky, 2014], p. 108)

We are grateful to Penelope Maddy for bringing this to our attention.
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with other structural properties (namely cardinality). We thus sub-
scribe to a methodological pluralism in foundations; category theory
is the appropriate theory for explaining how schematic types inter-
act with one another, but set theory is the appropriate language for
explaining how schematic types interact with concrete systems of ob-
jects.29

This response is satisfactory as far as it goes. However, a challenge
remains for the set theorist: Could we possibly factor out the use of
canonical representatives to yield a conception of set on which we are
able to use the combinatorial power of set theory whilst considering
isomorphism invariant properties?

The point is brought into especially clear focus when contrasting
material set theory with categorial theories of sets (like ETCS). We
should note that meaningful statements of categorial set theories like
ETCS are not fully isomorphism invariant. Take, for example, the
claim “f has co-domain B” for some f and B. This interpretable as a
perfectly good formula in the language of category theory, but is ob-
viously not isomorphism invariant; there might be objects isomorphic
to B which differ as to whether they are the co-domain of f or not.30

However, something that ETCS does offer is a way of ‘modding out’

29The following analogy may be helpful. Viewing mathematics as describing a
kind of quasi-computational enterprise, set theory is something like a theory of
machine-code: It tells us what kinds of things can be built, and what we need to
build them. Category theory on the other hand is like a high-level programming lan-
guage, codifying what effects can be achieved by different structural relationships in
different contexts. Both the set theorist as computational engineer and the category
theorist as programmer have important roles to play in mathematics. This analogy
(or, at least, something similar) was originally communicated to the first-author by
David Corfield after a talk at the LSE in November 2013. He is also grateful to Dr.
Corfield for subsequent discussion of categorial foundations.

30Strictly speaking, we have used a formulation of category theory here on which
we have variables for objects as well as arrows. In a purely arrow-theoretic frame-
work (where equality is only defined between parallel morphisms) one has the
result that any two equivalent categories satisfy the same sentences. (We are
grateful to Ingo Blechschmidt for helpfully forcing us to be precise about this is-
sue.) However, if one wants to use parameters, for instance if one is developing
the theory of modules in ETCS, or using more than one variable, then the re-
sult no longer holds. (Thanks here are due to Jean-Pierre Marquis for this use-
ful comment.) There are some theories that aim to make it impossible to state
non-isomorphism-invariant properties in their language. Two candidates here are
Makkai’s FOLDS (see [Makkai, 1998], [Marquis, 2017b]) and Univalent Founda-
tions (see [The Univalent Foundations Program, 2013], [Tsementzis, 2016]). We are
grateful to Dimitris Tsementzis for stressing this use of Univalent Foundations and
making us aware of the non-isomorphism invariance of category theory (in conver-
sation and his [Tsementzis, 2016]), as well as directing us to Theorem 8. We are also
grateful (again) to Jean-Pierre Marquis for emphasising to us the interest of FOLDS.
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this non-isomorphism invariant noise. For instance, one can prove:

Theorem 8. (ETCS) Let φ(X) be a formula in the language of ETCS
with no constants and no free variables except the set variableX . Then
if X and Y are isomorphic, then φ(X) iff φ(Y ).31

Thus ETCS provides us with a clean-cut class of formulas for which
we have isomorphism invariance. Our task for the rest of this paper
is to make a preliminary step in providing a material set theory that
does the same for structure. We will do so by proposing a theory of
sets and classes built over structures composed of urelements, and end
up with a theory that better respects isomorphsim invariance whilst
facilitating the consideration of how schematic types and systems of
concrete objects interact (as in the Morley Categoricity Theorem).

3 How set theory helps the structural perspec-
tive

We now have a challenge for the friend of set-theoretic foundations;
find a use of set-theoretic language that better respects isomorphism
invariance. In this section, we do just that. The broad idea is to think
of material set theory as built over some mathematical subject matter,
conceived of as composed of structures with urelements and the func-
tions and relations between them. Our point is the following; we can
factor out the arbitrary choices of coding to find a material set theory
that by design respects isomorphism invariance.

3.1 Set Theory with Structures (ZFCS)

In taking inspiration from structuralism32, we will consider structures
as composed of featureless points, and the functions and relations be-
tween them. Treating a featureless point as a kind of urelement, we
will build a theory of sets and classes over these urelements, and show
how by doing so we can develop a more structurally respectful the-
ory in the language of sets and classes. However, this will also be a
framework in which it is possible to use the rich combinatorial power
afforded by material set theory in discussing notions of cardinality and
structure.

Definition 9. The theory of Set Theory with Structures (or ZFCS) is de-
fined as follows:

31See here [McLarty, 1993], p. 495.
32See here, for example, [Shapiro, 1991].
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(i) Symbols:

(a) We have three sorts of variables: u0, u1, ..., un, ... will range
over urelements (to be featureless points in the domains of
structures), s0, s1, ..., sn, ...will range over structures, and x0, x1, ..., xn, ...
will range over sets.

(b) The usual logical symbols (so one’s favourite connectives and
quantfier(s)), and one non-logical symbol ‘∈’ (to denote ma-
terial set membership).

(c) Symbols: A single symbol U (for the universe), fm,n (for m-
ary functions),Rm,n (form-ary relations) and cn (for constants),
where m,n are natural numbers and m > 0. These will be
used to describe structures.

(ii) Atomic formulas:

(a) a = b where a, b are variables of the same sort.

(b) a ∈ b where a is a variable and b is a set-variable.

(c) U(s, a) where s is a structure-variable and a is an urelement-
variable. (Intended meaning: a belongs to the universe (or do-
main) of the structure s.)

(d) fm,n(s, u1, ..., um) = u where s is a structure-variable, the ui
and u are urelement variables. (Intended meaning: the ui and
u belong to the universe of the structure s and the interpreta-
tion of the m-ary function symbol fm,n in s sends (u1, ..., um)
to u.)

(e) Rm,n(s, u1, ..., um) where s is a structure-variable and the ui
are urelement variables. (Intended meaning: Them-tuple (u1, ..., um)
belongs to the interpretation of the m-ary predicate symbol
by the structure s.)

(f) cn(s) = uwhere s is a structure-variable and u is an urelement
variable. (Intended meaning: The interpretation of the constant
symbol cn by s is u.)

(iii) Compound formulas: Obtained from atomic formulas by closing
under connectives and quantifiers in the usual way. (Though,
since the language is 3-sorted, there will be three kinds of quan-
tifier; one for urelements, one for structures, and one for sets.)

(iv) Axioms:

(a) Extensionality for sets.
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(b) Formula-Foundation for Sets: If a formula holds of some set
then it holds of some set which is disjoint from all other sets
for which the formula holds.

(c) The Axiom of Infinity: Usually rendered as concerning the
existence of an inductive pure set.

(d) Pairing, Union, Powerset, Separation and Collection for sets.

(e) Axiom of Choice for sets.

(f) The domain of every structure is a set: i.e. ∀s∃x∀a(U(s, a)↔ a ∈ x).

(g) The Anti-Urelement Set Axiom: No set contains all of the ure-
lements.

Some remarks concerning the definition are in order:

Remark 10. First, whilst the Anti-Urelement Set Axiom merits philo-
sophical discussion33, consideration in detail would take us too far
afield here. We make this assumption simply to avoid bounding the
sizes of the structures we have available, and settle for the pragmatic
justification that we are trying to show that material set theory can
convey important structural information, not that it must in every sit-
uation.34

Remark 11. Second, we are taking inspiration from the structuralist
literature in the following sense: Structures are to be understood as
composed of featureless points (given by the urelemente) and the ways
they may correspond (with functions and relations). Effectively, we
layer sets on top of antecedently given structures conceived of in this
sense. As we’ll see, this facilitates cardinality comparisons whilst al-
lowing for a theory that respects isomorphism invariance.

3.2 Class Theory with Structures (NBGS)

We are now in a position where we have a theory of structures and the
sets that can be built over them. In order to arrive at a language that re-
spects isomorphism invariance we now augment with class variables.
As we shall see, this allows us to latch onto a range of isomorphism
invariant classes.

Definition 12. Our Class Theory with Structures (or NBGS) comprises
the following:

33For two examples of such discussion, see [McGee, 1997] and [Rumfitt, 2015].
34An alternative would be to take the ‘wide sets’ approach of [Menzel, 2014] and

modify Replacement.
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1. Symbols: All the symbols of ZFCS, with an additional kind of
variables X0, X1, ..., Xn, ... for classes.

2. Atomic formulas: In addition to the well-formed formulas of
ZFCS, we admit Xn = Xm for class variables Xn and Xm as
well-formed, as well as v0 ∈ Xn for class-variable Xn and v0 is
either a set, structure, or urelement variable.

3. Compound formulas: Obtained inductively from the connec-
tives, ∈, urelemente quantifiers, structure quantifiers, set quanti-
fiers, and class quantifiers.

4. Axioms:

(a) All axioms of ZFCS.

(b) Extensionality for classes (i.e. Xn and Xm are equal iff they
have the same members).

(c) Predicative Class Comprehension:
∃X∀u∀s∀x[(φ(u)↔ u ∈ X)∧(ψ(s)↔ s ∈ X)∧(χ(x)↔ x ∈ X)]

(Where u is a urelement variable, s is a structure variable, and
x is a set variable, there are no class quantifiers35 in φ, ψ, and
χ, and each of φ, ψ, and χ is free for u, s, and x respectively.)

Effectively we allow extensional classes composed of objects of mixed
types. The intuition behind the theory is this; once we have built our
sets and structures out of sets and urelements, we can then talk defin-
ably about them (much in the same way as it is legitimate to talk about
definable classes in the ZFC context). As we’ll shortly see, we can then
restrict to certain classes in using our set and class-theoretic language
to latch onto isomorphism invariant properties.

One technical issue is how to treat isomorphism within this frame-
work. We really have two notions available:

Definition 13. Two structures s0 and s1 are structure-theoretically iso-
morphic iff there is a third structure s within which there is a binary
relation between the universes of s0 and s1 satisfying the usual rules
of isomorphism.

35We make this assumption merely for technical hygiene since NBGS will do the
job we want neatly. One could also drop this restriction, and use an impredicative
comprehension scheme yielding a structural form of Morse-Kelley (call it MKS).
This may well have interesting additional properties, such as the ability to define a
satisfaction predicate for the universe and first-order formulas.
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Definition 14. Two structures s0 and s1 are set-theoretically isomorphic
iff there is a set-theoretic bijection between the domains if s0 and s1
satisfying the usual rules of isomorphism.

Remark 15. Effectively the set-theoretic notion of isomorphism is the
usual one, whilst the structure-theoretic notion pulls talk of structures
and isomorphism into the prior given theory of structure.

What this prior given theory of structure satisfies will be impor-
tant for our results and arguments, since we require the closure of our
NBGS world under isomorphism. What we show below will always
hold for the set-theoretic notion of isomorphism, but there is a chance
that if the antecedent theory of structures over which we layer NBGS
is too impoverished, then set-theoretic isomorphisms might not be
mirrored by structure-theoretic ones. For example, consider a world
which has NBGS layered over a theory of structure on which there is
only one structure s0 composed of an isolated point u0 with no rela-
tions on it. This is be perfectly legitimate as a NBGS structure. How-
ever, while there are set-theoretic isomorphisms in this world (specifi-
cally f defined by the rule f(u0) = u0), the underlying theory of struc-
ture lacks the resources to even see that s0 is isomorphic to itself.

One fix would be to introduce the following axiom:

Axiom 16. The Structural Richness Axiom. Any set-theoretic isomor-
phism has a corresponding extensionally equivalent structure-theoretic
isomorphism.36

This would guarantee the existence of the isomorphisms we need
for our results both set-theoretically and structure-theoretically. In-
deed, we might derive the Structural Richness Axiom from the idea
that any set-theoretic structure should be mirrored by a structure-theoretic
one, postulating the following:

Axiom 17. The Structural Radical Richness Axiom. Any set-theoretic
structure is mirrored by a corresponding structure-theoretic structure.37

The extent to which our theory of structure should mirror what
we have going on in the sets is an interesting one, but we shall set it
aside from our technical result. Since we wish to leave it entirely open

36In fuller formalism: If f is a set-theoretic isomorphism between s0 and s1, then
there is an s such that s maps uα to u′α iff f does.

37In fuller formalism: For any setX of urelements and set-theoretic functions fXm,n,
relations RXm,n on X , and constants cXn in X , there is an s such that U(s, uα) (for each
uα ∈ X), and structural relations fsm,n, Rsm,n, and csn equivalent to fXm,n, RXm,n, and
cXn in the obvious way.
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what the underlying theory of structure should satisfy (maybe, for ex-
ample, we just want to build NBGS over the structural groups and
nothing else) we shall simply concern ourselves for the technical work
with the set-theoretic notion of isomorphism. Later, we will reconsider
structural richness axioms in discussing how set theory has interesting
things to say about the interaction of schematic types with structures.

We now have the resources to factor out non-isomorphism invari-
ant properties from our theory whilst having combinatorial sets around
to facilitate proof. This is shown by the following analogue of the ear-
lier mentioned ETCS theorem concerning isomorphism invariance:

Theorem 18. (NBGS) Suppose that φ(v) is a formula without param-
eters in the language of NBGS and v is a variable ranging over struc-
tures. Suppose that M is a model for NBGS and s0 and s1 are struc-
tures in M which are isomorphic in M. Then M |= φ(s0)↔ φ(s1).

Proof. The idea of the proof is simply to take an isomorphism π be-
tween s0 and s1 and then use it to build an automorphism π′ from M
to M, moving M’s satisfaction of φ(s0) to φ(s1) (dual reasoning ob-
tains the converse implication). So, let π be the witnessing structure-
theoretic isomorphism. We define π′ as follows:

(i) π′(u) = π(u) if u is an urelement in dom(π).

(ii) π′(s) is obtained from s by replacing each urelement u in the uni-
verse of s by π(u).

(iii) We can then (by induction and the well-foundedness of member-
ship) replace a set x by defining π′(x) as {π′(y)|y ∈ x}.

(iv) We similarly replace a class X by π′(X) =df {π′(y)|y ∈ X}.

(v) This π′ yields an automorphism of M sending s0 to s1. Thus M
satisfies “φ(s0) iff φ(s1)”.38

Remark 19. A very similar theorem holds for formulas with more
free variables, providing that the domains of the structures are non-
overlapping. In this way, NBGS can provide a kind of isomorphism
invariance stronger than the one for ETCS as given in Theorem 8.

38This can be proved by the usual tedious induction on the complexity of φ.

31



Thus, while there are many non-isomorphism invariant facts we
can state within NBGS (e.g. for an urelement or structure v, “v ∈ X”),
we can factor out this non-isomorphism invariant ‘noise’ in a precise
way. Thus, for φ of the appropriate form, if we use the ambient ma-
terial set-theoretic properties to prove φ about s, we can transfer φ to
any structure isomorphic to s.

If we then allow ourselves some axiom of structural richness (e.g.
either Axiom 16 or Axiom 17) we can talk about inter-structural re-
lationships such as embeddability and cardinality of structures using
set-theoretic resources, whilst factoring out the structural content. For
example, concerning cardinality, every cardinal number exists, both
with respect to the relevant set-theoretic code living in the universe of
NBGS under consideration, but also there is (given an assumption of
structural richness) a structure of pure cardinality (i.e. of featureless
points with no relationships between them). In this way the theory
provides a way of combinatorially linking bona fide structures with
their set-theoretic codes.

This has ramifications for how we treat theorems best suited for
material set theory. The Morley Categoricity Theorem, for example,
can be recast as the claim that for any countable T in Lω,ω (i.e. T is a
particular kind of first-order schematic type) if T is satisfied by exactly
one structure (up to isomorphism) for structures with domain of some
particular uncountable size, then given any two structures satisfying
T, if their domains are uncountable and the same size, then they are
isomorphic.

This version of the Morley Categoricity Theorem facilitates extrac-
tion of structural information: All the above can be recast as talk di-
rectly about theories and structures. However, the ambient material
set theory provided by NBGS has a role to play: The proof could be
formalised exactly as is usually done in the material set-theoretic case,
since we have the relevant set-theoretic resources, set-theoretic codes,
and model theory lying around.39 It is just that in the end we can easily
extract the purely structural content from Morley’s result using Theo-
rem 18 and assumptions of structural richness, and then talk directly
and transparently about structures conceived of in a sense indepen-
dent of set-theoretic coding.

Moreover, not only do we now have a way to extract the purely
structural information from the material set theory, but we can also
find non-arbitrary representatives for structures:

Definition 20. In NBGS, we say that a classX consisting of structures

39See, for example, [Tent and Ziegler, 2012] for a presentation of the usual proof.
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is (set- or structure-theoretically) invariant if X is closed under isomor-
phism between structures. If in addition any two structures in X are
isomorphic we refer to X as a (set- or structure-theoretic) isomorphism
type.

Thus, in NBGS we can equate specific mathematical structures
with isomorphism types. This then gives us a non-arbitrary, non-
coding dependent representative for the structure in question (since
isomorphism types include all and only the structures isomorphic to
one another). However, all this occurs in a framework where we have
the full resources of material set theory available to speak about their
relationships.

4 Conclusions and open questions

How does this perspective provide philosophical progress? Our main
claim (as specified in the introduction) was to show that material set
theory seems to be interesting from the structural perspective. In par-
ticular, it still represents our best theory of cardinality, and how car-
dinality interacts with properties of syntactic theories. In this respect
it is of interest to friends of both set-theoretic and category-theoretic
foundations.

Of course one might simply reject that cardinality is a structural
property, and that cardinality considerations fade away when one takes
seriously a structural perspective as coded categorially.40 This raises
an important first question for future research:

Question 21. To what extent should cardinality be viewed as a struc-
tural property?

If we accept that cardinality is structural, however, it is interest-
ing that we can, by taking much structural talk at face value, come up
with a theory (namely NBGS) that allows us to easily extract struc-
tural content from set-theoretic claims. In this way, we have both the
combinatorial power of set theory but also a way of factoring out non-
isomorphism invariant content.

The theory represents a small first step on a wider research pro-
gramme in the foundations of mathematics: How can we fuse different
perspectives to yield new mathematical and philosophical perspec-
tives and results? In particular, we have left open the following ques-
tions:

40We are grateful to Steve Vickers for pressing this point.
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Question 22. There is the possibility of looking at categorial structure
of theories like NBGS. Some, are easy: The category of isomorphism
invariant classes that has as objects isomorphism types and equiva-
lence classes of embeddings as arrows is an obvious choice. However,
there is also the possibility of looking at the categorial structure of the
classes of mixed type. What sorts of categorial relationships does this
world support?

One remaining challenge is the following: In the introduction it
was noted that certain categories have non-function-like relationships
either for trivial reasons (such as the category of proofs of a logical sys-
tem) or deeper ones concerning the nature of the category itself, such
as with non-concrete categories like the homotopy category. There is
also the question of how to understand non-bijective notions of struc-
tural similarity like categorial equivalence. The framework we have
provided depends explicitly on a notion of structure on which isomor-
phism is understood as a functorial (in fact bijective) relationship be-
tween structures. A question then is:

Question 23. Can a similar perspective be found that brings set-theoretic
combinatorial power to bear on non-concrete categories? What about
for more relaxed notions of sameness of structure such as categorial
equivalence?

This would further help to inform the following project:

Question 24. Aside from the normal interpretations of category theory
in set theory (either through universes or classes) or set theory in cate-
gory theory (say via the use of objects and arrows coding membership-
trees), what further ways are there of combining the different perspec-
tives? We have shown how this can be done with respect to ‘structure’
and ‘cardinality’, but can we have further philosophically and mathe-
matically fruitful fusions of these two perspectives?

For the moment, we hope to have shown that there is at least the
possibility of combining different perspectives to yield interesting fu-
sions of foundational theories.
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