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Abstract

The dynamical hypothesis states that cognitive systems are dynamical systems. While dynamical
systems play an important role in many cognitive phenomena, the dynamical hypothesis as stated
applies to every system and so fails both to specify what makes cognitive systems distinct and to distin-
guish between proposals regarding the nature of cognitive systems. To avoid this problem, I distinguish
several different types of dynamical systems, outlining four dimensions along which dynamical sys-
tems can vary: total-state versus partial-state, internal versus external, macroscopic versus microscopic,
and systemic versus componential, and illustrate these with examples. I conclude with two illustrations
of partial-state, internal, microscopic, componential dynamicism.
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1. Introduction

Dynamical cognitive science is again on the rise. Dynamical systems in deep neural net-
works (Buckner, 2019; Krizhevsky, Sutskever, & Hinton, 2012; LeCun, Bengio, & Hinton,
2015) and in neuroscience (Barack & Krakauer, 2021; Barak, 2017; Favela, 2021; Sussillo,
2014; Sussillo & Barak, 2013; Vyas, Golub, Sussillo, & Shenoy, 2020) are increasingly used
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to understand the mind. But what is the relationship between dynamical systems and the
mind?

What is a dynamical system? I assume there is a general ontological category of system
that consists of every possible collection of objects, properties, and relations. Dynamical sys-
tems are systems that change over time or with respect to one another. The substrate of the
dynamical system are the objects, properties, and relations that undergo change. The dynam-
ics are those changes. Let “dynamical system” denote the objects, properties, or relations and
the changes in them of some system.

These systems are described using dynamical systems theory, a branch of mathematics
(Strogatz, 2001). Dynamical systems theory contains a set of concepts and tools for describing
how systems change. A system’s state space is the set of possible states for a system, where
a state is the set of determinate objects, properties, and relations for the determinable types
of the system. The dynamics of systems, the changes in systems over time, make up a series
of states called a trajectory. Some trajectories tend to converge on points in the system’s state
space, called attractors, whereas other points repel trajectories, called repellors. These states
are mathematically described by a set of values for all variables and parameters of the state
equations describing the system’s changes.

The seminal work of van Gelder provides an initial analysis of the relation between dynam-
ical systems and minds (van Gelder, 1995; van Gelder, 1998; Van Gelder, 2006). van Gelder’s
dynamical hypothesis (DH) posits that “cognitive agents are dynamical systems” (Van Gelder,
2006, p. 73). I begin the discussion with a critical assessment of his (DH). Every physical
system is a dynamical system of the sort defined by (DH), and so every cognitive agent
is a dynamical system. More restricted classes of dynamical system can be specified by
turning to four distinctions: total-state dynamical systems are contrasted with partial-state
ones, microscopic with macroscopic ones, internal with external ones, and finally systemic
with componential ones. Each type of dynamical system informs a type of dynamicism, a
claim about what type of dynamical systems are cognitive as well as a specification of the
modal scope of the claim (e.g., all, some, most cognitive systems are dynamical systems
of such-and-so a type). My goal herein is not an exhaustive discussion but rather to high-
light some distinctions for developing new dynamicisms. The intention is to outline dif-
ferent types of dynamical systems and so the distinctions are metaphysical. The concep-
tual geography complete, I present two examples that illustrate how partial-state, micro-
scopic, internal, componential dynamicism, my preferred approach, can describe cognitive
phenomena.

2. The dynamical hypothesis and the triviality challenge

The dynamical hypothesis (DH) maintains that cognitive agents are dynamical systems.
As stated, however, the (DH) is trivial; every system including cognitive ones are systems
that change over time or with respect to one another.! van Gelder proposes a more restricted
(DH); nonetheless, his proposal still fails to distinguish between different views on the nature
of cognitive systems.



D. L. Barack/Topics in Cognitive Science 00 (2023) 3

van Gelder’s (DH) is composed of two theses: the nature hypothesis and the knowledge
hypothesis. I set aside the knowledge hypothesis for this discussion.> Turning to the nature
hypothesis, van Gelder elaborates:

“Cognitive agents instantiate numerous systems at any given time. ...Second, cogni-
tive agents ‘are’,... as many systems as are needed to produce all the different kinds of
cognitive performances exhibited by the agent.... Another noteworthy fact about these
models is that the variables they posit are not low level (e.g., neural firing rates) but,
rather, macroscopic quantities at... the level of the cognitive performance itself.... [T]he
nature hypothesis is concerned... with how agents are causally organized at the highest
level relevant to an explanation of cognitive performances.... [T]he dynamical system
responsible for a given kind of cognitive performance might include variables not liter-
ally contained within the agent itself” (van Gelder, 1998, p. 619).

In short, the nature hypothesis is that cognitive agents instantiate dynamical systems
described by variables specified at the level of the cognitive phenomenon which may be both
internal and external to the agent.

A few clarificatory points. First, the nature hypothesis states that the relevant relation
between cognitive agents and their substrates is instantiation. Herein, I will assume that
instantiation is (some version of) token identity. Second, van Gelder discusses cognitive
“agents.” To sidestep issues of agency, I will speak of systems in the sense outlined above.

Two distinctions in van Gelder’s treatment will be important later. First, he distinguishes
between low-level and high-level quantities, where low-level is below the level of the cog-
nitive phenomenon and high-level is at that level. I assume these are spatiotemporal lev-
els of description (cf. Churchland & Sejnowski, 1992), not levels of explanation (Barack &
Krakauer, 2021), levels of analysis (Marr, 1982), levels of mechanism (Craver, 2015) or some
other sense of level. I will dub this the macroscopic versus microscopic distinction. Second,
he distinguishes between variables “literally contained within the agent itself” and those that
are not in the agent. I will dub this the internal versus external distinction.

Considering the foregoing discussion, is there a statement of (DH) that focuses on the most
contentious issues and sidesteps distractions? I propose the following statement:

(DS): For every kind of cognitive phenomenon, there is some dynamical system instan-
tiated by the cognitive system at the highest relevant level of causal organization such
that that kind of cognitive phenomenon is a behavior of that dynamical system.

In (DS), I retain the idea in van Gelder’s (DH) that cognition is a type of behavior and
that cognitive systems instantiate dynamical systems, where the behavior is a behavior of that
dynamical system.

Granted (DS) as the target for discussion, I will now argue that (DS) is trivial. For any
cognitive system, there will be a dynamical system instantiated by the cognitive system at
the highest relevant level of causal organization such that that kind of cognitive phenomenon
is a behavior of that dynamical system. A dynamical system is some collection of objects,
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properties, and relations and changes in them. But every cognitive system is some collection
of objects, properties, and relations and changes therein. Consequently, there will always be a
dynamical system instantiated by the cognitive system at the highest relevant level of causal
organization such that that kind of cognitive phenomenon is a behavior of that dynamical
system.

How to defend against the triviality charge? While van Gelder acknowledges ‘“‘some
dynamical system or other” is always instantiated by a cognitive system, “[i]t is certainly
not trivial that every cognitive performance is at the highest level a dynamical phenomenon.
This is not true of ordinary digital computers” for example (van Gelder, 1998, p. 623). How-
ever, it is the case that every cognitive performance is at the highest level a dynamical phe-
nomenon, as every such performance consists of objects, properties, and relations and how
those change. Setting that aside, van Gelder continues by arguing that the triviality charge
“...equivocates on the term ‘dynamical system’. The [(DS)] takes cognitive agents to be
dynamical systems in a much more specific sense, that is, quantitative systems” (van Gelder,
1998, p. 623). van Gelder continues: “[d]igital computers and dynamical systems are two
classes of systems picked out by reference to different properties: roughly, effectiveness and
interpretation as opposed to quantitativeness. ...Turing machines bounce around their state
spaces in ways [whose] order is based on formal properties, not quantitative properties” (van
Gelder, 1998, p. 623-624). For van Gelder, it is the dependence on quantitative properties
that is essential to dynamical systems: “a system is taken to be dynamical to the extent that
it is quantitative” (van Gelder, 1998, p. 619) in one of the following senses: “(1) Quantitative
in state. ...a system is quantitative in state when there is a metric over the state set such that
behavior is systematically related to distances as measured by that metric. ...(2) Quantitative
state/time interdependence. A system is quantitative in time when... there is a metric over
the time set such that system behavior is systematically related to distances as measured by
that metric. ...(3) Rate dependence. ...in some systems rates of change depend on current
rates of change” (van Gelder, 1998, p. 618-619). In short, there are three senses of quan-
titative: in state, in time, or dependent on rate. A measure over the system, which must be
“specifiable independent of system behaviour” (van Gelder, 1998, p. 655), is required to be
quantitative.

van Gelder’s proposal does rule out some dynamical systems from being cognitive ones,
resolving the triviality charge. But the proposal fails to distinguish between proposals about
the nature of cognitive systems, such as differentiating dynamical systems from digital com-
puters. Digital computers are dynamical systems in the state quantitative sense (cf. Beer,
1998; Chater & Hahn, 1998).> All that is needed for such a measure is the following: for
deterministic Turing machine T and constant rate (i.e., one state per time step), the distance
between state S| and state S, is equal to the number of computational steps to get from S; to
S,. Behavior will then be systematically related to distance: for two behaviors starting from
the same state, if one behavior occurs after the other, then more computational states occurred
in the latter case than the former. Even if the behaviors are the same, the time of the behavior
implies something about the cardinality of the set of states visited by the system, that is, the
length of the system’s trajectory through its state space. All that van Gelder requires is some
systematic relation, and that is such a relation. Undoubtedly, this is a contrived measure, but



D. L. Barack/Topics in Cognitive Science 00 (2023) 5

regardless, something more is needed to demonstrate a sense in which cognitive systems are
dynamical systems but digital computers (say) are not.

A second reply from van Gelder is that cognitive systems are dynamical systems “...at the
highest relevant level of causal organization for a given kind of behavior. Digital computers
do not satisfy this condition” (Van Gelder, 2006, p. 86). But digital computers do instantiate
a dynamical system at the level of behavior because their behavior (e.g., changes in the text
on a screen, the movements of some effector, and even input from, say, a keyboard) consists
of changes of the objects, properties, and relations that make up the computer.*

van Gelder’s appeal to quantitativeness restricts the class of systems that can be cognitive
but fails to distinguish between different proposals about the nature of that class. Undoubtedly,
there is some way to formalize the difference between dynamical systems like Watt governors
and those like digital computers. For example, dynamical systems are typically described as
continuous in time or state-space, whereas digital computers are not. Perhaps some way can
be found to use this difference to infer a metaphysical difference between the two types of
system. Instead of exploring novel senses of quantitativeness, the problems faced by van
Gelder’s proposal motivate finding other ways to distinguish between types of dynamical
system. I turn to this project now.

3. Dimensions of dynamicism

My strategy is to offer novel resources for dynamicism by distinguishing types of dynami-
cal system. I will specify four dimensions along which dynamical systems can vary: total-state
versus partial-state, microscopic versus macroscopic, internal versus external, and systemic
versus componential dimensions. My goal herein is to briefly describe these duals. The pre-
sentation of these distinctions is just a first step in developing novel dynamicist positions that
are nontrivial and that may shine new light on the nature of cognitive systems. I hope that
future work can further characterize the nature and interactions of the different dimensions.

First, total-state can be distinguished from partial-state dynamicism. Total-state dynami-
cism maintains that cognitive systems are the totality of their objects, properties, and relations
(Clark, 1998; Port & van Gelder, 1995). Partial-state dynamicism maintains that cognitive
systems may be some subset of the system’s objects, properties, and relations. For example,
consider deciding between two options, say choosing a blue square on the left and a red square
on the right. A cognitive system that makes this decision will consist of some objects, prop-
erties, and relations, all of which are parts. These would include effectors like feet, hands,
and other limbs; objects, properties, and relations that instantiate other cognitive functions;
sensors like the eyes, ears, skin, and so forth; and more. On a total-state dynamicism, all these
parts must be instantiated for a decision-making phenomenon to be instantiated. On a partial-
state dynamicism, not all of these parts must be instantiated for there to be the cognitive
phenomenon.

Do any philosophers endorse total-state dynamicism? Clark (1998) does, saying “[b]ecause
it is assumed that there is... interanimation between multiple systemic factors..., the dynam-
icist chooses to focus on changes in total system state over time. The... models... thus reflect
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motion in a space of possible overall system states, with routes and distances defined rel-
ative to points, each of which assigns a value to all the systemic variables and parame-
ters” (Clark, 1998, p. 364). Clark concludes his discussion by recommending “...the addi-
tion of an irreducibly dynamical dimension to the analysis” of mind (Clark, 1998, p. 375—
376). Since this recommendation is couched in an understanding of dynamicism as total-
states, he endorses a total-state dynamicism. What of partial-state dynamicism? In dis-
cussions of neural representation, some philosophers have implicitly sanctioned a partial-
state description of dynamical systems underlying cognitive phenomena (see, e.g., Burnston,
2021a; Shagrir, 2012). I will briefly illustrate the partial-state approach with two case studies
below.

Second, microscopic dynamicism can be distinguished from macroscopic. Macroscopic
dynamicism describes dynamical systems with macroscopic properties, where macroscopic
properties are those at the same spatiotemporal level of the cognitive phenomenon and micro-
scopic ones are below that.’ The distinction is carried over from van Gelder. A macroscopic
dynamicism requires every property of the cognitive system to be at the level of the cogni-
tive phenomenon; a microscopic one does not. Admitting microscopic properties provides a
serious empirical boost to dynamicism since an appeal to these properties, notably including
the mechanisms that give rise to the cognitive behavior, can distinguish between cognitive
systems and noncognitive ones.

To illustrate the macroscopic versus microscopic distinction, consider synchronized fin-
ger movements, an example common in discussions of dynamicism (see, e.g., Haken, Kelso,
& Bunz, 1985; Kelso, 1995). This example is typically described in terms of “macroscopic
variables” (Haken et al., 1985) like the change in phase between finger movements. These
“macroscopic variables” correspond to the macroscopic properties of the dynamical system.
Because the phase of finger movements is described at the same level as the synchrony phe-
nomenon, the phase is a macroscopic property. An alternative description in terms of “micro-
scopic variables” of the nervous system and musculature can also be readily imagined; these
would be microscopic properties.

Third, internal dynamicism can be distinguished from external. The external/internal divi-
sion is relative to some boundary of the cognitive system; for my purposes, the skull or skin
is a convenient dividing line. According to extended views of cognition, objects outside of
the skin, such as phones, can still be part of the cognitive system (Clark & Chalmers, 1998).
Events within the system and outside the system are linked in complex causal webs that can
be taken to imply the importance of external properties for cognition (Clark, 1998). While an
external dynamicism allows some properties external to the cognitive system to be essential
to the cognitive phenomenon, an internal dynamicism does not.

Finally, fourth, systemic dynamicism can be distinguished from componential (Barack,
2019b). Systemic dynamical systems are those composed only of subsystems; typically, these
take the form of brains/minds, bodies, and environments. Componential dynamical systems,
in contrast, are those that permit both subsystems and subsubsystems, sub-sub-subsystems,
and so on. The difference, then, is whether the components of subsystems are themselves
parts of cognitive systems. A systemic dynamicism permits only subsystems; a componential
dynamicism permits both subsystems and subsubsystems (and lower, i.e., sub...subsystems).



D. L. Barack/Topics in Cognitive Science 00 (2023) 7

Consider again the above example of the cognitive system choosing between two options.
On a systemic dynamicist view, the cognitive system is coupled to the decision environment,
including the options and their associated outcomes. These can be thought of as a system
composed of the option, the properties of the options like their colors, and the outcomes,
which stand in a relation to their corresponding options. Often the decision environment is
characterized by the difference in values between both options. How does the system change?
There are a number of ways to conceptualize the dynamics underlying value-based decisions,
but a recent approach models the agent as sampling the values of the options over time,
integrating those samples over time, and then making a decision when the integrated evidence
crosses a threshold (Krajbich & Rangel, 2011; Krajbich, Armel, & Rangel 2010). The state
equations for the cognitive system include variables for the values of the options, implying
that the two systems are coupled on the systemic approach. Alternatively, on a componential
approach, there is a decision process that includes the values of the options but not the options
themselves as a subsystem of the cognitive system.

While a full discussion of the different dimensions must await a different venue, I will
briefly illustrate how the systemic versus componential distinction is orthogonal to the macro-
scopic versus microscopic one. The macroscopic versus microscopic distinction is anchored
to the level of the cognitive phenomenon. Consider retrieving an item from memory, and
let that cognitive phenomenon be described at the level of parts of the brain. Suppose the
retrieval is the result of the interaction of brain networks (Ben-Yakov, Dudai, & Mayford,
2015; Nyberg, Cabeza, & Tulving, 1996), at the same spatiotemporal level as the retrieval
phenomenon and so a macroscopic system. Now suppose the brain networks have parts such
as brain areas or subnetworks that are at that same macroscopic scale and that are included
in the dynamical system; then the dynamical system would be a componential one. Alterna-
tively, the parts might be excluded, and so the dynamical system is a systemic one. Suppose
instead the retrieval is the result of a synaptic mechanism (Aljadeft, Gillett, Obilinovic, &
Brunel, 2021) at a lower spatiotemporal level than the retrieval phenomenon. This would be a
microscopic system. The parts of the synapses that are at the same scale might be included in
the dynamical system and so it would be a componential one; or, the parts might be excluded
and retrieval explained due to the interaction of synapses, and so be a systemic one. The key
is that the systemic versus componential distinction is defined in terms of parthood, whereas
the macroscopic versus microscopic distinction is defined in terms of scale; as a result, the
two distinctions are orthogonal.

Many philosophers who endorse dynamicism are systemic dynamicists (Beer, 1995; Beer,
2000; Chemero, 2011; Chemero & Silberstein, 2008; Port & van Gelder, 1995; Stepp,
Chemero, & Turvey, 2011; van Gelder, 1995; Wheeler, 2005; Zednik, 2008; Zednik, 2011;
Zednik, 2015). As van Gelder says, “...the true cognitive system is a single unified system
embracing all three” of brain, body, and environment (van Gelder, 1995, p. 373). Because the
“true” cognitive system is made up of all three subsystems, van Gelder (1995) endorses a sys-
temic dynamicism. What of componential dynamicism? The distinction is drawn by Barack
(2019b), who endorses a componential approach; such an approach is also discussed by a
number of philosophers writing on the topic of the decomposability of dynamical systems
(e.g., Bechtel, 1998; Burnston, 2021b; Kaplan, 2015; Zednik, 201 1).6
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Not every dynamical system instantiated by a cognitive system may fall under the same
type of dynamicism. The nature of the relevant dynamical system could be relative to the
cognitive phenomenon under discussion. Multiagent coordination to play a team sport may
differ dramatically from paying attention to a stimulus. The former may be constituted only
by multiple subsystems, a type of systemic dynamicism, while the latter need not. Insofar as
this implies a sort of pluralist dynamicism across different cognitive phenomena, a pluralism
is warranted.

The foregoing distinctions can have a range of impacts on our understanding of cognitive
systems. First, they are meant to individuate different ontological types of dynamical system.
Dynamicist claims have a metaphysical modal scope. For example, if cognitive systems are
necessarily componential ones, then systemic dynamical systems, such as the system formed
from the interaction of mind, body, and world as proposed by dynamicist proponents like van
Gelder, are not the right kind of entity to be a cognitive system. The distinctions can also
have methodological implications. If cognitive systems are usually componential ones, then
some cognitive phenomena might be approached first with a componential dynamical sys-
tem in mind; only after that assumption proves unfruitful would, say, a systemic dynamicism
be adopted instead. The distinctions also suggest certain questions. For example, if cogni-
tive systems are often but not always systemic ones, then componential dynamical systems
might be possible but are relatively infrequent. But then why are they infrequent? Is this
the result of some contingent fact about the way that cognition has evolved or manifests in
the actual world? Or is it some deeper metaphysical truth about the nature of cognition that
constrains their manifestation? The modal implications, the methodological implications, and
the questions raised by dynamicist claims are important areas of debate that are all informed
by drawing these distinctions. Most importantly, classifying dynamical systems using these
categories will rule in some systems and rule out others, thereby providing new ways to dis-
tinguish between different proposals regarding the nature of cognition.

4. Partial, microscopic, internal, componential dynamicism

The fruitfulness of the foregoing distinctions will depend on the insight that they can pro-
vide for understanding cognition. As a brief illustration, I discuss two case studies from recent
cognitive science: the neurocognitive mechanisms behind temporal interval estimation (Sohn,
Narain, Meirhaeghe, & Jazayeri, 2019) and multitasking in recurrent neural networks (RNNs)
(Driscoll, Shenoy, & Sussillo, 2022). I maintain that these two case studies from cognitive sci-
ence are illustrations of partial, microscopic, internal, componential dynamicism. I have cho-
sen these case studies because I contend that they are exemplary of much recent work in the
neurocognitive sciences and that they illustrate a relatively overlooked type of dynamicism.

4.1. Temporal interval estimation

Consider first the investigation of mechanisms for estimating temporal intervals from Sohn
et al. (2019). In the ready-set-go task, monkeys estimated an interval of time (Fig. 1A).
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Fig. 1. The curved neural manifold and computational account for the temporal interval estimation task from Sohn
et al. (2019). (A) The ready-set-go task for temporal interval estimation. (B) Behavior from the ready-set-go task.
Monkeys showed a clear influence of the prior on their posterior estimates of intervals. (C) The projection of
population activity during the estimation epoch into a 3-space derived from PCA during eye movements to the
left for one monkey. Blue curve: Population activity from trials from the long interval distribution; orange curve:
population activity from trials from the short distribution. Black arrows in C indicate the direction of time. (D)
Ilustration of how the projection of a curve on to a line warps the estimation of arc lengths along the curve. The
effect of this warping is to pull the estimates closer to the mean of the distribution.

Source: https://www.sciencedirect.com/science/article/pii/S0896627319305628

Monkeys first saw a start cue (“ready”) that indicated the start of the time to be estimated.
Another cue (“set”) signaled the end of this interval. The time from ready to set was the esti-
mation epoch. Monkeys then estimated the elapsed time, after which they made a movement
to a cue on a screen (“go”). Intervals were drawn from two different distributions, short and
long, which were signaled by the color of the trial start cue. Notably, monkeys’ estimates of
intervals were skewed toward the means of the distributions (Fig. 1B).

To understand temporal interval estimation, neurons in the dorsomedial prefrontal cortex
were recorded while monkeys completed the task. The neural activity was dimensionally
reduced using principal components analysis (PCA) and projected into a low-dimensional

space,’ revealing a one-dimensional curved set of trajectories, or manifold, during the
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estimation epoch for each distribution of intervals (Fig. 1C). Different prior distributions map
on to manifolds with different curvatures (the curvature of the longer distribution manifold
was greater than the shorter distribution’s manifold), which in turn map on to differences in
the estimates of the intervals from each distribution (Fig. 1C). Further, differences in intervals
map on to different points along the curved manifolds at the end of the interval, which in
turn map on to differences in the estimates of the intervals within each distribution (Fig. 1C).
Similarities in intervals from the same distribution map on to similar points along the curved
manifolds, which in turn map on to similarities in the estimates of the intervals. Finally, for
a given input interval and distribution, the skew toward the mean of the distributions could
be explained by a linear read-out from the curvature of the manifold (Fig. 1D). In sum, the
discovery of the manifold helps explain how monkeys estimate temporal intervals.

What about this case makes it relevant to dynamicism? The neural trajectories are defined
in terms of changes in the location of the neural activity in the low-dimensional space. As
they state, “firing rates for each [time interval] were estimated.... Neural trajectories... were
analyzed within the subspace spanned by the top PCs that accounted for at least 75% of total
variance. ...In the estimation epoch, we examined the curvature in neural trajectories during
the support of each prior by projecting” the neural state onto an axis in that low-dimensional
space (Sohn et al., 2019, p. e3). These trajectories, then, are dynamical systems composed of
firing rates computed from observed spiking in neurons, dimensionally reduced using PCA,
and then projected into the lower-dimensional space.

What sort of dynamicism is supported by the findings from Sohn and colleagues? The
work supports partial-state dynamicism, as it addresses only temporal interval estimation,
ignoring other cognitive phenomena altogether. The objects and properties (such as the curved
manifold) are below the organismic level of the cognitive phenomenon, temporal interval
estimation, and as such supports microscopic dynamicism. The dynamics are changes in low-
dimensional neural activity, which are internal to the system, and the analysis and modeling
do not refer to other systems such as the body or environment, in support of a componential
approach. In short, this case study of temporal interval estimation supports the conclusion
that cognition is the result of partial-state, microscopic, internal, componential dynamical
systems.

4.2. Multitasking in RNNs

The second case comes from the study of RNNs, neural networks part of whose output
is input back into the network, a central tool to help understand how brains can instantiate
cognitive systems (Sussillo, 2014; Barak, 2017). The basic state equation of an RNN is the
standard firing rate equation formulated for a neural population (cf. Barak, 2017):

dx
T i —x()+Wx(¢t)+Bu(),
where T is a vector of relaxation constants (one for each neuron in the network), x(7) is a
vector of neuron activities at time #, W is a connectivity matrix specifying the weights from
all neurons on to each other, B is a matrix of weights from input neurons on to the neurons in
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x, and u(?) is the activity vector for all the input neurons. This differential equation describes
the change in activity in the RNN over time.

Driscoll and colleagues used RNNs to investigate how these networks learn to perform
many different tasks (Driscoll et al., 2022). They trained the RNN on 15 different tasks, rang-
ing from simple cued response tasks to delayed response tasks to delayed match to sample
tasks. To understand how their networks were able to perform different tasks, they analyzed
the RNN'’s activity by examining the network’s location over time in the low-dimensional
space that resulted from a PCA decomposition of the activity. In particular, they examined
the trajectories around “fixed points” in this space, those points where the change in the RNN
is zero. This revealed the presence of “dynamical motifs,” “the high-dimensional nonlinear
dynamics around a fixed point skeleton that implements computation for a specified input”
(Driscoll et al., 2022, p. 3—4). In philosophy, Barack has called these “neurodynamical sys-
tems” (Barack, 2021). These dynamical motifs occurred for distinct phases of the task and
are reused across tasks (Barack, 2019a).

To illustrate, consider the “MemoryAnti” and “MemoryPro” tasks. In the MemoryAnti
task, the network was instructed to respond in a certain direction, waited through a memory
timeout period, and then had to respond in the opposite direction. The MemoryPro task was
similar, but the network had to respond in the instructed direction. The network’s activity
was projected into the first two dimensions of a PCA, and the trajectories during different
epochs were examined. During the Memory period, when the network maintained the indi-
cated direction in working memory, a ring attractor was observed for both MemoryAnti and
MemoryPro tasks (Fig. 2A, left and right panels; MemoryAnti, purple; MemoryPro, yellow).
Ring attractors are dynamical structure consisting of a ring-shaped series of attractors. This
ring attractor was the same in both tasks (Fig. 2A, middle panel; smooth transition from pur-
ple to yellow), with distinct attractors around the ring for each stimulus direction the network
kept in working memory. This explains how the RNN’s activity maintains in working mem-
ory the different stimulus directions. A similar, shared ring attractor was observed during
the Response period (Fig. 2B, middle panel), when the network generated a response, with
distinct attractors for each response direction. Numerous such shared dynamical motifs were
revealed in analyzing the RNNs, including across different RNNs, with different numbers of
neurons, different activation functions, and more.

What sort of dynamicism is supported by these RNN findings? While they may seem to
support a total-state dynamicism because Driscoll and colleagues constructed the network and
specified its properties such as the number of units, the unit activation function, and the rule
for learning network weights, further investigation revealed that “if the output of a particular
cluster of units was set to zero, then all tasks involving a particular computation decreased
their performance, while other tasks were unaffected” (Driscoll et al., 2022, p. 14). This sug-
gests that only a subset of the network’s properties is required for the cognitive phenomenon,
supporting a partial-state view. The cognitive phenomenon resulted from the dynamics of
regions in the low-dimensional space of the network: “Shared motifs are implemented by
organizing the state in the appropriate region of state space to evolve on the relevant shared
dynamical landscape” (Driscoll et al., 2022, p. 10), where “appropriate region” here means
that “[t]asks with similar stimulus computations... organized their initial conditions for the
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Fig. 2. Investigation of dynamical motifs in multitasking recurrent neural networks from Driscoll et al. (2022).
(A) Microscopic dynamics for the memory phase of both the MemoryAnti task and the MemoryPro task. (B)
Microscopic dynamics for the response phase of both tasks.

Source: https://www.biorxiv.org/content/10.1101/2022.08.15.503870v 1.abstract

stimulus period to be nearby in state space and evolved in a similar way after stimulus onset”
(Driscoll et al., 2022, p. 11). Hence, the activity in subspaces of the total activation space gave
rise to the behavior of the whole network; insofar as the level of the cognitive phenomenon
is determined by the network’s behavior, the subspaces are below that level and so the micro-
scopic properties of the network are included in the dynamical system. The dynamical system
performing the cognitive task did not include properties outside of the network, supporting an
internal dynamicism.® Finally, the case study implies the presence of components, whether
those components are taken to be the dynamical motifs (as argued by Barack, 2019b) or
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the network neurons themselves. If the cognitive phenomenon is the behavior of the RNN
coupled to a simulated environment, characterized in a way similar to the decision example
above, then the RNN is a subsystem and the components would be subsubsystems, implying a
componential dynamicism. The styles of analysis and the finding of shared dynamical motifs
commend the view that the cognitive phenomenon in this case is the result of partial-state,
microscopic, internal, componential dynamical systems.

5. Conclusion

Dynamicism in the neurocognitive sciences is alive and well—in fact, it is positively boom-
ing. While prescient, the formulation of the dynamical hypothesis by van Gelder applies to far
too many systems and overlooks important distinctions between types of dynamical systems.
Here, I described four duals: total-state versus partial-state; macroscopic versus microscopic;
external versus internal; and systemic versus componential. These distinctions outline a land-
scape of dynamical systems, only some of which I explored herein, which can inform different
dynamicisms. Different cognitive phenomena may be better described and explained by dif-
ferent types of dynamical system. Nonetheless, a type of dynamical system, one that is part
of a larger system but that need not include it, that contains properties below the spatiotem-
poral level of description of the cognitive phenomenon, that consists of properties internal
to the cognitive system, and that includes subsubsystems without requiring treatment of the
body or environment, underlies some cognitive phenomena. I supported my claim with two
case studies, one in cognitive neurobiology and the other from computational neuroscience.
In short, at least some cognitive systems are partial-state, microscopic, internal, componential
dynamical systems, illustrating the fruitfulness of the distinctions. Much more work on the
nature of the distinctions is required. In particular, how the distinctions can be formally ana-
lyzed and whether they are all orthogonal remains to be determined. Nonetheless, I hope that
laying out some of the space of types of dynamical system will lead to further refinements
in our understanding of the nature of dynamical systems and in dynamical approaches to the
mind.
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Notes

1 This includes static systems if stasis is a type of zero change.

2 The knowledge hypothesis regards the nature of cognitive science. There is the nontrivial
hypothesis that the nature of cognitive systems is, in part, determined by the nature of
cognitive science. I set aside this possibility herein.
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3 For an extended philosophical treatment of computational systems as dynamical systems,
see Giunti (1997).

4 Philosophers have raised other problems for van Gelder’s argument. For example, Pic-
cinini notes that van Gelder’s focus on descriptions of dynamical systems “...does not
affect the nature of the system” (Piccinini, 2020, p. 250). Other critiques have been lev-
eled (see, e.g., other commentaries attached to van Gelder, 1998 or in this volume).

5 To make good on this notion of levels, phenomena must be at some spatiotemporal scale.
Notoriously, cognitive phenomena are often across-scales or scale-free (Barabasi and
Albert, 1999; Bechtel, 2015; Marom, 2010). A scaled dynamicism must be supplemented
to the extent that such scale-free phenomena are real and required for explaining cogni-
tive phenomena.

6 Componential dynamicism is also compatible with representational and computational
theories of mind. I endorse representational approaches, though I will not discuss them
herein.

7 This is a dimensionality reduction technique in linear algebra; for details, see, for exam-
ple, Strang (2016).

8 Unless the stimulus input and the rule signal, which dictated which task the network
was to perform, are considered part of the system; but even then, this is not the typical
sort of external property often alluded to in discussions of externalism (e.g., in Clark &
Chalmers, 1998).
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