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P. BARTHA

TAKING STOCK OF INFINITE VALUE: PASCAL’S WAGER
AND RELATIVE UTILITIES

ABSTRACT. Among recent objections to Pascal’s Wager, two are especially com-
pelling. The first is that decision theory, and specifically the requirement of max-
imizing expected utility, is incompatible with infinite utility values. The second
is that even if infinite utility values are admitted, the argument of the Wager
is invalid provided that we allow mixed strategies. Furthermore, Hájek (Philo-
sophical Review 112, 2003) has shown that reformulations of Pascal’s Wager
that address these criticisms inevitably lead to arguments that are philosophically
unsatisfying and historically unfaithful. Both the objections and Hájek’s philo-
sophical worries disappear, however, if we represent our preferences using rela-
tive utilities (generalized utility ratios) rather than a one-place utility function.
Relative utilities provide a conservative way to make sense of infinite value that
preserves the familiar equation of rationality with the maximization of expected
utility. They also provide a means of investigating a broader class of problems
related to the Wager.

1. INTRODUCTION

It is striking that the earliest example of an argument in decision
theory, Pascal’s Wager, invokes the notion of an infinite reward.
As McClennen (1994) has observed, the intellectual descendants of
Pascal built decision theory around a set of assumptions that “logi-
cally excludes infinite utilities.” At worst, the concept of infinite util-
ity is incoherent; at best, its admission into decision theory leads
to numerous paradoxes and puzzles that are acknowledged even by
its advocates.1 Many people have given up on infinite utility (Jeffrey
1983; Duff 1986; McClennen 1994; Jordan 1998). There have been
attempts to reformulate the Wager in ways that invoke only finite
utilities (Mougin and Sober 1994; Sobel 1996; Jordan 1998; Hájek
2003).

But the Wager’s enduring fascination derives from its appeal to
an infinite reward that, even if discounted by allowing only a tiny
probability that God exists, swamps any expectation that can be
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derived from mere worldly pleasures. Following Hájek (2003), we
may think of the Wager as depending upon three premises.

Premise 1: The decision matrix in Table I describes the choice facing
the wagerer.

Here, f2, f3 and f4 are finite utility values. Wagering for God
involves taking steps that, one hopes, will lead to full belief. Wager-
ing against involves taking steps that shore up an agnostic or athe-
istic stance, or simply choosing to ignore the whole business.2

Premise 2: God’s existence has positive, finite probability q.3

Premise 3: We are rationally required to perform the act that has
maximum expected utility.

The expected utilities are as follows:

EU(Wager for God)=q ·∞+ (1−q)f2 =∞
EU(Wager against God)=q ·f3 + (1−q)f4 =finite

For we are supposing that q · ∞ = ∞ for any positive q, and that
∞+k =∞ for any finite number k. It follows that we are rationally
required to wager for God.4

I shall be concerned primarily with two recent objections to this
argument. The first has to do with Premise 3: decision theory, and
specifically the requirement of maximizing expected utility, is incom-
patible with infinite utility values. My response, developed in Sec-
tions 4 and 5, is that we can accommodate infinite utility ratios (I
call them relative utilities) and we can justify a modified version of
Premise 3. These changes provide a satisfactory response to this first
objection.

The second objection begins with an observation made by Jeffrey
(1983), Duff (1986) and most recently Hájek (2003): even if infinite
utility values are admitted and each of the three premises above
is granted, the argument is invalid provided that we allow mixed

TABLE I

Pascal’s Wager (standard form)

God exists God does not exist

Wager for God ∞ f2

Wager against God f3 f4
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strategies between wagering-for and wagering-against. Given the exis-
tence of mixed strategies, the premises do not entail that we are ratio-
nally required to wager for God. Any mixed strategy that gives a
positive probability to coming to wager for God also yields infinite
expectation. A strategy such as flipping a coin to decide whether or
not to wager for God has infinite expectation and appears to have as
great a claim on our rationality as the pure wager.

This second objection is compelling and has led people to
develop elaborate reformulations of the Wager. These reformulations
all yield valid arguments that bear some resemblance to Pascal’s
original argument. At this point, the ‘invalidity objection’ takes a
more sophisticated form. One can question the reformulations both
for their fidelity to Pascal and for their philosophical cogency. Hájek
(2003) maintains that existing reformulations of the Wager fail on
both counts, and presents an intriguing argument that no valid
reformulation will ever meet these two criteria. His argument takes
the form of a dilemma: our representation of the utilities in the
Wager inevitably produces either an invalid argument or one that is
philosophically unsatisfying and historically unfaithful.

My contention is that both objections to the Wager fail. We can
find a representation of our preferences in the Wager that escapes
both Hájek’s dilemma and the incompatibility objection. The strat-
egy is to represent our preferences using relative utilities rather than
a one-place utility function.

The two objections are explained in Section 2. Section 3 reviews
Hájek’s dilemma. Section 4 defines relative utilities. Section 5 employs
relative utilities in a reformulation of the Wager that is not vulnerable
to any of the objections. The final two sections explore how relative
utilities might illuminate a broader class of problems.

2. TWO CRITICISMS OF THE WAGER

2.1. The Incompatibility Objection

McClennen has noted a tension between Premise 3 and Premise 1.
Premise 3, that we ought always to maximize expected utility, is jus-
tified by a result referred to as the Expected Utility Theorem (Resnik
1987), or more simply as linearity. Yet as McClennen observes, the
admission of outcomes with infinite utility sanctioned by Premise 1
is incompatible with some of the very axioms that play a role in
deriving linearity. This undercuts the Wager, because if Premise 1
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and Premise 3 are not co-tenable, then the argument as stated must
be unsound.

The Expected Utility Theorem is a result about how our prefer-
ences can be represented if they satisfy certain standard axioms. To
appreciate McClennen’s objection, we need to understand what the
theorem says, the axioms upon which it depends, and its connection
to Premise 3. We begin with the axioms, here formulated following
Resnik (1987).

Let A, B and C stand for outcomes, and p and q for probabil-
ity values. Let [pA, (1−p)B] stand for a gamble with probability p

of yielding outcome A and probability (1 −p) of yielding outcome
B. Any pure outcome A is equivalent to the gamble [pA, (1−p)A]
for any p with 0 ≤ p ≤ 1, or to [1A, 0B] for any B. Accordingly,
the terms ‘gamble’, ‘outcome’ and so forth will be used interchange-
ably, although we shall occasionally distinguish between pure out-
comes and gambles.

Next, we assume a weak preference ordering � among outcomes.
Write A�B if we weakly prefer B to A (meaning that B is as good
as or better than A), and A∼B if both A�B and B �A (i.e., we
are indifferent between A and B). Write A≺B if we strictly prefer
B to A (i.e., A�B but not A∼B). With this notation in hand, we
can state the relevant axioms.

(A1) Ordering conditions.
The preference relation � is a total ordering (for any A and
B, either A�B or B �A) that is reflexive (A�A) and transi-
tive (A�B and B �C imply A�C).

(A2) Better-prizes condition.
A � B iff for any 0 ≤ p ≤ 1 and any C, [pC, (1 − p)A] �
[pC, (1 −p)B] and [pA, (1 −p)C] � [pB, (1 −p)C]. If A≺B

(and 0<p <1), the other preferences are also strict.
[Keeping the probabilities fixed, prefer gambles that substitute
better prizes.]

(A3) Better-chances condition.5

If A�B, then for any 0≤p, q ≤1,
p ≥q iff [pA, (1−p)B]� [qA, (1−q)B].

If A≺B and p >q, the final preference is strict.
[Keeping prizes fixed, prefer a gamble just in case it offers a
better chance for the better prize.]
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(A4) Reduction-of-compound-gambles condition.
For any A and B and any 0≤p, q, r ≤1,

[p [qA, (1 − q)B], (1 − p)[rA, (1 − r)B]] ∼ [tA, (1 − t)B]
where t =pq + (1−p)r.
[Evaluate compound gambles in accordance with the probabil-
ity calculus.]

(A5) Continuity (Archimedean) condition.
If A � B and B � C, then there is some number p such that
0≤p ≤1 and B ∼ [pA, (1−p)C].6

[Whenever an outcome B is ranked between two others A and
C, there is some gamble between A and C such that the agent
is indifferent between it and B.]

The Expected Utility Theorem states that if our preferences satisfy
these axioms, then they can be represented by a real-valued utility
function u with two important properties:

(1) A�B just in case u(A)≤u(B). The ranking of outcomes accord-
ing to our preferences agrees with the ranking assigned by u.

(2) u([pA, (1 − p)B]) = pu(A) + (1 − p)u(B), so that u is linear
in gambles. The utility of any gamble is exactly its expected
utility.

This function u is unique up to a positive linear transformation.
This result provides the justification for Premise 3. Following

Luce and Raiffa (1957), McClennen reminds us that rationality is
properly characterized as the maximization of preference satisfac-
tion. If our preferences conform to axioms (A1) – (A5), then there
is a utility function such that maximizing preference satisfaction
coincides with maximizing expected utility. If not, there is no guar-
antee that the optimal gamble is the one with the highest expected
utility. The actual utility of a gamble might exceed or fall short of
its expected utility.

It is a mistake, then, to divorce the principle of maximizing
expected utility from a highly structured set of preferences, as
reflected in the conditions (A1)–(A5). Those conditions are needed
to derive linearity, which in turn is required to justify Premise 3 of
the Wager. Only with Premise 3, it appears, can the argument of the
Wager succeed.

Now suppose that our utility function u can take on infinite val-
ues. We at once run into trouble with the axioms identified above.
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Failure of (A2): Suppose u(A)=0 and u(B)=1, so that A�B.
If we let C be an outcome with u(C)=∞, then [pC, (1 −p)A]
∼ [pC, (1−p)B] provided p >0, because by the Expected Util-
ity Theorem, each of these gambles has infinite utility.

Failure of (A3): Suppose u(A)=∞ and u(B)= k for any finite
k. Then [pA, (1 − p)B] ∼ [qA, (1 − q)B] so long as p ≥ q > 0,
because each of these gambles has infinite utility.

Failure of (A5): Suppose u(A)=∞, while u(B)=1 and u(C)=
0. We should be indifferent between B and some gamble
between A and C, but u[pA, (1 − p)C] = pu(A) + (1 − p)u(C).
This will be ∞ if p >0 and 0 if p =0, but never 1.

In each case, failure arises from a property of ∞ that Hájek terms
reflexivity under multiplication:

(Ref ·) For any p >0, p ·∞=∞
It follows from reflexivity that all gambles that offer any posi-
tive chance for an infinite prize turn out to be equally good. As
McLennen notes, this is a somewhat counter-intuitive position (and
one that we shall eventually reject), but one cannot give it up with-
out also giving up the idea that an agent’s preferences can be repre-
sented by a utility function with the feature that the agent must be
indifferent between acts that have the same expected utility. Further-
more, as Hájek points out, (Ref ·) is the very property that allows
the Wager to work independently of the probability q attached to
God’s existence, so long as this number is non-zero.

In summary, insofar as the axioms supporting Premise 3 are
incompatible with infinite utility values, the Wager’s appeal to that
premise is undercut. McLennen leaves open the possibility of identi-
fying, and justifying, some alternative principle in a framework that
admits of infinitely valued outcomes.

2.2. The Invalidity Objection

Following Jeffrey (1983) and Duff (1986), Hájek (2003) argues
convincingly that Pascal’s argument as presented in section 1 is
invalid. Any mixed strategy that results in a positive probability for
your eventually coming to wager for God yields maximal (infinite)
expected utility. The requirement to maximize expected utility does
not distinguish between wagering for God and flipping a coin to
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decide whether or not to wager for God, since both acts have infi-
nite expected utility. Hájek goes further: you can do your very best
to wager against God. So long as there is still a positive probability
you might wind up wagering for God, your expected utility is still
infinite. The source of trouble here is once again the reflexivity of
infinity under multiplication. Just as the Wager is insensitive to the
probability of God’s existence, it is insensitive to the probability that
one ends up coming to wager in favour of God.

In response to this objection, Schlesinger (1994) has proposed the
following principle:

In cases where two acts yield distinct probabilities for the same prize (or prizes of
equal value), we ought to prefer the act associated with the higher probability.7

The principle is clearly correct for prizes of finite utility – in
fact, it is just the Better-chances condition (A3). Schlesinger’s plau-
sible suggestion is that this should be extended to infinite prizes. No
need for much deliberation to choose between an act that gives us
a 99.9999% chance to win an infinite prize and one that gives us
a 0.0001% chance for the same prize! Although both possess infi-
nite expected utility, the choice is obvious. If Schlesinger’s Principle
is granted, the Wager becomes valid.

Following both Sorensen (1994) and McClennen (1994), however,
Schlesinger’s amendment appears ad hoc unless it can be embedded
within a systematic framework of assumptions about preferences.
Furthermore, as we have seen, it is not clear how we can distinguish
preferentially among outcomes with equal (infinite) expected utility
without giving up the virtues of traditional utility theory.

3. TWO REFORMULATIONS AND HÁJEK’S DILEMMA

A natural response to the objection of Section 2.2 is to try to refor-
mulate the Wager in some way that makes it valid. There are a num-
ber of ways to go about doing this. Before considering them, it is
helpful to take a closer look at the way we have represented the
value of infinity in the Wager.

The setting that seems best to reflect Pascal’s intuitions about
infinity is the extended real numbers.8 Typically, this set is defined by
adding two elements to the system of real numbers: ∞ and −∞. We
extend the ordering relation by postulating

−∞<x <∞ for each real number x.
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We extend the usual arithmetic operations by postulating that for
each real number x,

(Ref +) x +∞=∞
(Ref ·) x ·∞=∞ if x >0

x ·−∞=−∞ if x >0

and

∞+∞=∞, −∞+−∞=−∞
∞· (±∞)=±∞, −∞· (±∞)=∓∞

We leave ∞−∞ undefined, but set

0 ·∞=0.

We have already followed Hájek in calling the second postulate
reflexivity under multiplication. Again adopting Hájek’s terminology,
we call the first postulate reflexivity under addition.

These postulates provide a simple and natural way to model the
relationship of the infinite to the finite, and one that is congenial to
Pascal’s way of thinking.9 Of course, we know now that there is no
way to model the Wager directly using this number system. As we
saw in Section 2, that approach is bound to make the Wager invalid.
This observation has led to a number of reformulations that restore
validity. Hájek (2003) proposes two criteria that any such reformu-
lation should satisfy.

Overriding Utility. The utility of salvation must override any other
utility that enters into the expected utility calculations (rendering
irrelevant the exact value of the probability q assigned to God’s
existence).10

Distinguishable Expectations. The smaller the probability of wager-
ing for God associated with a strategy, the smaller should be the
expectation for that strategy.

The first requirement ensures fidelity to Pascal’s original argu-
ment. So long as the probability of God’s existence is positive, the
expected utility of salvation will swamp any of the other utilities in
the decision matrix. The second requirement incorporates the idea
behind Schlesinger’s Principle, and involves a partial relaxation of
(Ref · ): we cannot simply equate p · ∞ with q · ∞ where p and q

are distinct values between 0 and 1.
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Hájek goes on to discuss four reformulations of the Wager. Let
us briefly examine two of them. The first makes use of Conway’s
(1976) surreal numbers, which bear some resemblance to non-stan-
dard or hyperreal numbers. Without delving into Conway’s con-
struction, the idea is to replace ∞ with ω in Table I, where ω is
a particular infinite number. Addition, multiplication and the order
relation are well defined in this system, and if we define expected
utility by the usual formula, the expected utility of wagering for
God is

q ·ω+ (1−q)f2

which is infinite. This exceeds not only the expected utility of wager-
ing against God, but also the expected utility of any mixed strategy,
which will have the form

p ·ω+k

where k is finite and p<q. In Conway’s system, p<q implies p ·ω<

q ·ω for any infinite number, and hence the expected utility is lower
with the mixed strategy. Both requirements, Overriding Utility and
Distinguishable Expectations, are satisfied.11 Similar reformulations
can be given by replacing ∞ with ℵ0, or with an infinite hyperreal
number (Sobel 1996).

The second approach discussed by Hájek replaces one-dimen-
sional utilities with two-dimensional vector-valued utilities of the
form (earthly value, heavenly value). Outcomes thus have a utility
(x, y), where x represents earthly goods and y represents heavenly
goods. While x can be unbounded, Hájek assumes 0 ≤ y ≤ 1, with
the maximal value 1 reflecting salvation. The ordering on these utili-
ties is lexicographic, with heavenly value being the dominant dimen-
sion:

(x, y)≤ (x ′, y ′) ↔ y <y′ or (y =y ′ & x ≤x ′)

Any small increment in heavenly value is better than an arbitrarily
large increment in earthly value.

If we modify the decision matrix of Table I by replacing ∞ with
(f1, 1) and fi by (fi , 0) for i =2, 3 and 4, and if we define expected
utility by the usual formula, the expected utility of wagering for
God (where q is the probability that God exists) is

(k, q)
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for some finite k. Not only does this exceed the expected utility of
wagering against God, but also the expected utility of any mixed
strategy, which will be

(l, pq)

for some finite l.12 Since p < 1, we have pq < q. Once again, both
Overriding Utility and Distinguishable Expectations are satisfied.13

Both reformulations result in a valid argument for wagering in
favour of God. Yet Hájek maintains that both are unsatisfactory,
both as attempts to represent Pascal’s reasoning and on indepen-
dent philosophical grounds. Pascal believed that the utility of sal-
vation was absolutely infinite, in no way to be surpassed. This is
reflected in the postulate of reflexivity under addition: for any p>0,
∞ + p = ∞. Each reformulation discussed by Hájek fails in some
way to respect this Pascalian intuition. If one takes ω for the util-
ity of salvation in Conway’s system, ω+p is greater.14 For the two-
dimensional model, the problem is less clear because the value of
salvation is represented as (f1, 1), and (f1, 1) + p is undefined. Nev-
ertheless, analogues of (Ref +) fail. For instance, why should the
heavenly reward be (f1, 1) rather than (f1+1, 1)? More importantly
(in Hájek’s view), why should there be only two dimensions of util-
ity rather than three or more? The general problem is as follows.
Technical devices permit a value for the utility of salvation that will
swamp all other terms in the decision matrix (to satisfy Overriding
Utility) and ensure that wagering dominates mixed strategies (to sat-
isfy Distinguishable Expectations), but these devices also ensure that
ever larger utility values are conceivable (violating (Ref +)).

It is tempting to respond by distinguishing between the practi-
cal and logical unsurpassability of the utility of salvation. In the
reformulations of the Wager, the utility value attached to salva-
tion fails to be logically unsurpassable because larger numbers exist.
That value may nevertheless be practically unsurpassable because no
other possible outcome has a higher utility value.

I side with Hájek in rejecting this response as unfaithful to Pas-
cal’s intuitions about the absolute infinity of the value of salvation.
Furthermore, as Hájek notes, there are philosophical objections.
Why should human utility be capped at some arbitrary number
(such as ω) when there is plainly something better available (such
as ω+1)? Even if introducing surreal or vector utility values allows
us to formulate a valid version of the Wager, what do such values
mean? We can interpret real-valued utilities in terms of preferences
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for gambles, but such a straightforward approach is not available for
vector-valued or surreal utilities. In addition, considerations of sim-
plicity suggest that if we can defend the Wager without introducing
non-standard utility values, we should do so.

Hájek concludes by posing a dilemma for any attempted refor-
mulation of the Wager:

If the utility of salvation is both reflexive under addition and under multiplica-
tion by positive, finite probabilities, as ∞ is, then the argument is invalid. If the
utility of salvation is neither reflexive under addition nor under multiplication by
positive, finite probabilities, as is the case with the reformulations, then salvation
is so far from being the best thing possible that its utility is swamped by some-
thing that is swamped by something that is swamped . . . infinitely many times
over. What is wanted, then, is the seemingly impossible: a representation of the
reward of salvation that is reflexive under addition (so that it cannot be bettered),
but not reflexive under multiplication by positive, finite probabilities (so that the
mixed strategies can be distinguished in expectation from outright wagering for
God). (47–8)

Hájek’s reasoning is perfectly correct if we limit ourselves to repre-
senting preferences with a one-place utility function. The remainder
of this paper is devoted to showing that we need not restrict our-
selves in this way. With a three-place utility function, we can meet
all of Hájek’s desiderata. In effect, we do not assign utility values,
but only utility ratios. We can then construct a representation of the
Wager that uses nothing more complicated than the extended real
numbers. The result is, I hope, simple enough to count as faithful to
Pascal’s intentions. After developing the apparatus and applying it
to the Wager, I shall return (in section 5) to the question of whether
we have escaped Hájek’s dilemma.

4. RELATIVE UTILITIES

4.1. Introducing Relative Utilities

Pascal’s Wager involves a contrast between infinite and finite values.
Inevitably, that means non-Archimedean preferences, i.e., a prefer-
ence ordering that violates axiom (A5). We have seen two ways of
representing non-Archimedean preferences: a unidimensional
representation using surreal or non-standard numbers, and a multi-
dimensional representation employing a lexicographic ordering on
ordered pairs. Utility functions that represent non-Archimedean
preferences are generally of these two types.15
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Hájek’s dilemma can be expressed in the following way. The sim-
plest non-Archimedean representation, using the extended real num-
bers, fails because of the invalidity objection. Any representation
using a richer set of utility values fails because no matter what value
we designate as the utility of salvation, it can be surpassed.

The strategy in this section and the next is to escape this
dilemma by moving from direct representation of preferences with
a utility value to indirect representation with utility ratios. These
ratios contain all the information needed to present the argument
of the Wager using nothing more complicated than the non-neg-
ative extended real numbers. To appreciate how this works, let us
begin by considering how utility ratios behave in the ordinary case
of Archimedean preferences.

Suppose, then, that our preferences satisfy all the axioms of Sec-
tion 2.1 including (A5). By the Expected Utility Theorem, we can
represent them with a real-valued utility function u, unique up to a
positive linear transformation. Any other utility function that pre-
serves our preference ranking and has the linearity property is of
the form au + b, where a > 0. In addition to the standard axioms,
we suppose that among the relevant outcomes there happens to be
a worst outcome, W . (This simplifying assumption will be dropped
shortly.) For any two outcomes A and B (including gambles), define
the relative utility of A to B by

U(A,B)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[u(A)−u(W)]/[u(B)−u(W)] if u(B) 
=u(W)

1 if u(A)=u(B)=u(W)

∞ if u(A) 
=u(W) and
u(B)=u(W).

The value U(A,B) is independent of the choice of utility function.
If u′ =au+b, then the constants a and b cancel out. So we can sim-
plify matters by assuming u(W)=0.

Since u represents our preferences, it follows that A � B iff
u(A)≤u(B), with strict preference corresponding to a strict inequal-
ity. Thus we have

B �A ↔ U(A,B)≥1,

again with strict preference corresponding to strict inequality. Fur-
thermore, from the linearity of u, we have for any outcomes A, A′,
B:

U([pA, (1−p)A′],B]=pU(A,B)+ (1−p)U(A′,B).



TAKING STOCK OF INFINITE VALUE 17

This holds even if u(B) = u(W) = 0. So relative utility is linear (in
the first component) over gambles.

It follows that maximizing expected utility corresponds to choos-
ing an action whose expected relative utility with respect to each
other available action is maximal. This criterion extends to mixed
strategies. Note also that we can recover a utility function u from U
by arbitrarily setting u(A)= 1 for any outcome A strictly preferred
to the worst outcome W , and then setting u(B) = U(B,A) for all
B. Nothing is lost, then, by representing our preferences in terms
of relative utilities instead of utilities. Of course, there is no gain
either.

The two approaches to representing preferences come apart when
we move to a non-Archimedean setting. One-place utility functions
give us no simple way to represent non-Archimedean preferences.
We have to resort to constructions such as those outlined in Section
3. Relative utilities offer a more conservative way to extend decision
theory to accommodate the notion of infinite value.

As a first step, we need to remove the restrictive assumption that
there is a fixed worst outcome W . Relative utility is defined as a
three-place function U(A,B;Z): the utility of A relative to B with
base-point Z. By analogy with the ratios above, we shall refer to the
argument A as the numerator and B as the denominator. The base-
point Z may be thought of as the designated origin or zero point,
the location where we plant our ‘measuring stick’ to determine the
ratio of the ‘distance’ to A over the ‘distance’ to B. The only con-
straint will be that Z must rank no higher in our preferences than
either A or B. So U(A,B;Z) will always be non-negative.

The shift from a one-place to a three-place utility function is
merely a shift in representation. It has no metaphysical significance;
preference remains a two-place relation. All of the objections to the
Wager discussed in Section 2 are problems about representation. We
are already in a position to see why a move to three-place utility
functions might be useful for thinking about the non-Archimedean
preferences that define Pascal’s Wager.

The main advantage is that the shift allows us to formulate a per-
fectly clear conception of infinite utility – or rather, of infinite rel-
ative utility. While infinite utility considered absolutely is a vexing
notion, there is a straightforward definition of what it means for rel-
ative utility to be infinite. Indeed, Pascal shows us the way. My util-
ity for A is infinite relative to B (with base-point Z) just in case I
prefer any non-trivial gamble between A and Z to B. I am willing
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to sacrifice B for any chance of obtaining A over Z, no matter how
slight. Formally:

DEFINITION 1 (INFINITE RELATIVE UTILITY). Suppose
Z �B and B �A. Then

U(A,B;Z)=∞ ↔ B � [pA, (1−p)Z]

for all 0<p ≤1.

No notions of infinity are needed in the definiens. Definition 1 sim-
ply employs the familiar idea of defining utilities in terms of prefer-
ences between gambles.16

The full definition of relative utility is given in the next section,
but it is worth pausing to consider Definition 1 more closely. The
definition takes a structured set of preferences, rather than a util-
ity function capable of taking the value ∞, as the starting point.
Adopting this approach to infinite value compels us to view Pascal’s
argument somewhat differently from its presentation in Section 1.
There, the argument ran:

1. Because salvation has infinite utility, the act of wagering for God
has infinite expected utility. Therefore, wagering dominates any
outcome with finite utility.

2. Not wagering for God has merely finite expected utility.
3. We ought to maximize expected utility.

Therefore, we should wager for God.
On the proposed understanding of infinite utility, steps 2 and 3

remain the same but step 1 gets things backwards. To assign salvation
infinite utility (relative to earthly outcomes) is to pre-suppose
‘Pascalian’ preferences that rate any gamble with a finite, positive
chance for salvation above any finite prize.17 That wagering for God
dominates any worldly prize is not the penultimate step in the argu-
ment. It is the starting point. The challenge for Pascal is not to con-
vince the rest of us to take the wager, but rather to rationalize his own
preferences. Pascalians need to find a utility function that can repre-
sent their preferences without succumbing to the objections raised in
Section 2. In particular, they need to preserve some version of the
criterion of maximizing expected utility.

In Section 5, we show that we can represent Pascalian preferences
using a relative utility function U , taken as primitive rather than
defined via utility ratios as above. This representation incorporates
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Hájek’s crucial requirements, Overriding Utility and Distinguishable
Expectations. Any mixed strategy giving us a shot at salvation will
have infinite utility relative to any mere worldly prize, but only the
pure wager will have maximal expected relative utility. Our relative
utility function will distinguish between the pure wager and the coin
toss.

4.2. Preferences and Relative Utility

In this section, I define relative utility and state an important result
(Theorem 6): the relative utility of a gamble is its expected relative
utility. In the next section, I state two corollaries that yield tests
analogous to the usual criterion of maximizing expected utility. All
proofs are deferred to Appendix A.

Begin by supposing that our preference ordering � satisfies the
basic assumptions (A1)–(A4) of Section 2.1, as well as a non-trivial-
ity condition that there are at least two outcomes A and B such that
not A ∼ B. For any P and R, define the preference interval PR =
{Q/P �Q�R}. PR is the set of all outcomes intermediate between
P and R. Provided P � R, this set is nonempty and includes its
endpoints P and R. We further restrict our attention to non-empty
intervals PR between whose endpoints we are not indifferent, i.e.,
P �R but not P ∼R. First, we have a preliminary result.18

LEMMA 2 (α-VALUE LEMMA). If Q∈PR, then there is a unique
α, 0 ≤α ≤1, such that one of the following three cases holds:

(a) Q∼ [αR, (1−α)P ];
(b) [kR, (1 − k)P ] � Q for 0 ≤ k < α and Q � [kR, (1 − k)P ]

for α ≤k ≤1, with α >0;
(c) [kR, (1 − k)P ] � Q for 0 ≤ k ≤ α and Q � [kR, (1 − k)P ]

for α <k ≤1, with α <1.

If we fix PR, Lemma 2 tells us that there we can assign a unique
α to each Q ∈ PR, indicating how far Q lies along the interval
between P and R.

Making use of the α-value lemma, it is helpful to define a rela-
tion of indifference relative to base-point Z. An agent is relatively
indifferent between A and B with base-point Z, written A ≈Z B, if
one of the following conditions holds:
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(a) B �A and the α-value of B in ZA is 1; or
(b) A�B and the α-value of A in ZB is 1.

≈Z is an equivalence relation. Observe that in case (a), we might
strictly prefer A to B but still prefer B to any non-trivial gamble
between A and Z. So A∼B implies A≈Z B for any choice of base-
point Z, but the reverse implication does not hold.

The following result is a straightforward consequence of Lemma 2.

LEMMA 3. If Z �A�B, then exactly one of three cases holds:

(i) The α-value of B in ZA is 1: then A≈Z B.
(ii) The α-value of B in ZA is strictly between 0 and 1: then B ≈Z

[αA, (1−α)Z].
(iii) The α-value of B in ZA is 0: then B � [ pA, (1–p)Z] for all 0

<p ≤ 1.

A final preliminary fact: substituting relatively indifferent outcomes
into gambles preserves the relationship of relative indifference.

LEMMA 4 (SUBSTITUTION LEMMA). If B ≈Z B ′, then for any
0 ≤p ≤ 1 and any A, C,

[pB, (1−p)C]≈Z [pB ′, (1−p)C] and

[pA, (1−p)B]≈Z [pA, (1−p)B ′].

We can now give the definition of relative utility and state the main
result of this section.

DEFINITION 5 (RELATIVE UTILITY, U(A,B;Z)). Recall that
by (A1), for any A and B, either A∼B, A≺B or B ≺A.

If A∼B, set U(A,B;Z)=1.
If A≺B, set U(A,B;Z)=α where α is the α-value of A in ZB.
If B ≺ A, set U(A,B;Z) = 1/α where α is the α-value of B in
ZA (taking 1/0=∞).

THOEREM 6. If (A1)–(A4) are satisfied, then there exists a unique
three-place relative utility function U with the following properties
(where A, B and C are any outcomes, and Z is always dominated
by all other relevant outcomes):
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(R1) U(A,B;Z) is a non-negative extended real number.
(R2) If U(A,B;Z)>1, then B ≺A.

If U(A,B;Z)<1, then A≺B.
U(A,B;Z)=1 iff A≈Z B.

(R3) U([pA, (1−p)A′],B;Z)=pU(A,B;Z)+ (1−p)U(A′,B;Z) for
0≤p ≤1.

(R4) U(Z,A;Z)=0 unless Z ∼A (in which case U(Z,A;Z)=1).
(R5) U(A,B;Z)=1 / U(B,A;Z) (where 1/0=∞ and 1/∞=0).
(R6) If B �A, then for any C, U(A, C; Z)≥U(B, C; Z).
(R7) If B �A and C �A and U(C,A;Z)>0, then

U(C,B;Z)=U(C,A;Z) ·U(A,B;Z).

(R1) tells us that we can represent relative utilities using the non-
negative extended real numbers. The other properties tell us that
U(A,B;Z) behaves just like the utility ratio function described in
Section 4.1. In particular, (R3) states that U(A, B; Z) is linear in the
first component. So we have a version of the expected utility theo-
rem, even though our set of allowed values now includes ∞.

To illustrate how relative utilities are evaluated, let us return
to Pascal’s Wager. Our original representation was the two-by-two
table reproduced in Table II.

We have added labels for the four different outcomes, indexed
by row and column. The first of these, O11, represents salvation,
to which we attached the value ∞. The other three outcomes are
worldly prizes with finite utility values. We assume here that the
finite values are assigned on an interval scale – i.e., preferences
among worldly prizes satisfy all of axioms (A1)–(A5) and the utility
function is linear among these worldly prizes. Further, we may
assume that all utility values in the table are positive and that there
is an outcome Z assigned zero utility, which we take as our base-
point.19

TABLE II

Pascal’s Wager

God exists God does not exist

Wager for God O11(∞) O12(f2)

Wager against God O21 (f3) O22 (f4)
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Relative utilities among the finite prizes can be calculated as
ratios, just as in Section 4.1.

U(O12,O22;Z)=f2/f4

U(O21,O12;Z)=f3/f2

and so forth. This is a straightforward application of Definition
5. For instance, supposing f2 < f4, linearity implies that we are
indifferent between O12 and the gamble [(f2/f4)O22, (1−f2/f4)Z].

As we shall see in the next section, relative utilities whose
denominator is an optimal outcome for the decision problem are
especially significant. The unique optimal outcome here is O11.
Using Definition 5 again, we obtain:

U(O11,O11;Z)=1

U(O12,O11;Z)=0 (and U(O11,O12;Z)=∞)

U(O21,O11;Z)=0 (and U(O11,O21;Z)=∞)

U(O22,O11;Z)=0 (and U(O11,O22;Z)=∞)

Finally, consider a gamble such as [qO11, (1 − q)O12], which repre-
sents the act of wagering for God (where q is the probability that
God exists). We might expect that its utility relative to O11 is q, and
this is indeed the case. By the linearity property (R3), we have

U([qO11, (1−q)O12],O11;Z)

=qU(O11,O11;Z)+ (1−q)U(O12,O11;Z)=q.

4.3. Expected Relative Utility and Optimal Strategies

Just as standard linearity leads to the criterion of expected util-
ity maximization, the linearity property (R3) leads to an analogous
requirement that we maximize expected relative utility. In standard
decision theory, maximization gives us a simple way to identify the
optimal action or strategy, but as yet we have no equally simple test
for relative utilities. The main result of this section is that there is
such a test (with certain limitations), provided our decision prob-
lem is finite (i.e., there are finitely many pure actions and finitely
many possible states). In what follows, we regard an action or strat-
egy (pure or mixed) as a gamble over outcomes and identify its util-
ity as the utility of this gamble.
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Consider a decision problem involving pure actions (or strat-
egies) A1, . . .,An and mutually exclusive possible states S1, . . .,Sm.
Write Oij for the outcome associated with action Ai and state Sj .
There are m · n of these possible outcomes in our decision prob-
lem. Let qj be the probability of Sj , and assume each qj > 0.20

Let us begin by recalling some basic facts from ordinary decision
theory. Assume the utility function u is linear. The expected utility
of action A is the weighted sum of the utilities it yields in each
of the m possible states, i.e., �qju(A&Sj ). If A is a mixed strat-
egy of the form [p1A1, . . ., pnAn] where �pi = 1, then its expected
utility is �qj�piu(Oij ). Any action that maximizes this quantity is
optimal.

We would like to find an analogous principle for relative utili-
ties. Just as in the ordinary case, we want to define a function that
assigns a number to each possible action A, and we want maximi-
zation of this function to correspond to the optimality of A. Rela-
tive utility is a three-place function U(A,B;Z), however, so we shall
need to fix a denominator B and a base-point Z. The choice of
Z is discussed in later sections; here, we simply assume that Z is
a fixed lower bound for all possible outcomes. Indeed, the choice
that makes the most sense is to take the largest possible such lower
bound, which is well defined since our decision problem is finite.
We then have two interesting questions. First, can we find a fixed
denominator B such that when we let A vary, a maximal value for
U(A,B;Z) indicates that A is optimal? Second, is there an easy
way to compute the values U(A,B;Z)? A positive answer to both
questions would provide a test for optimality analogous to what
we have in ordinary decision theory. Corollaries 8 and 9, respec-
tively, answer these two questions in the affirmative, though with a
caveat.

To begin with, we define the expected utility of A relative to
B (with base-point Z) as the weighted sum of relative utilities,
�qjU(A&Sj , B; Z). (R3) tells us that this is equal to U(A,B;Z):
the relative utility of a gamble is its expected relative utility. If
A is one of the pure strategies Ai , then this sum is equal to
�qjU(Oij ,B;Z). It can be obtained by forming a relative deci-
sion matrix, the matrix whose entry in row i and column j is
U(Oij ,B;Z), and then computing the weighted sum of these val-
ues along row i, just as with normal expected utility calculations.
In the more general case where A is a mixed strategy of the form
[p1A1, . . ., pnAn] where �pi =1, we have
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U(A,B;Z)=�qjU(A&Sj ,B;Z) by (R3)

=�qj�piU(Ai&Sj ,B;Z) by (R3)

=�qj�piU(Oij ,B;Z) since Oij =Ai&Sj .

All of this is directly analogous to the case of a one-place utility
function.

Our first result is a simple consequence of this equality.

LEMMA 7. Suppose U(A,Oij ;Z) = U(B,Oij ;Z) for all i, j . Then
U(A,B;Z)=1.

Relative to Z, we are indifferent between any two actions that have
the same set of utilities relative to the possible outcomes Oij .

Call an action A Z-optimal if for any B, either B �A or A≈Z B.
The following corollaries show that we can find a Z-optimal action
by maximizing expected utility relative to (1) all possible outcomes
Oij , or more simply, relative to (2) any single optimal outcome in
this set.

COROLLARY 8.
(8.1) An action A is Z-optimal if and only if U(A,Oij ;Z) is

maximal for each outcome Oij : U(A,Oij ;Z) ≥ U(B,Oij ;Z) for all
actions B.

(8.2) A is Z-optimal if and only if U(A,O;Z) is maximal for any
outcome O that is optimal among the Oij : U(A,O;Z)≥U(B,O;Z)

for all B.

This result immediately yields a test for finding Z-optimal actions.
The key idea, expressed in (9.2), is to compute the appropriate rel-
ative decision matrix. From that point on, the calculations are just
the same as in ordinary decision theory.

COROLLARY 9. (Z-OPTIMALITY = MAXIMAL EXPECTED
RELATIVE UTILITY).

(9.1) For each possible outcome Okl, form the relative decision
matrix whose entry in row i and column j is U(Oij ,Okl;Z). Calcu-
late expected relative utilities. A is Z-optimal if and only if in every
case (i.e., for each Okl), A has maximal expected relative utility.

(9.2) Let O be an optimal outcome, and form the relative deci-
sion matrix with entries U(Oij ,O;Z). Calculate expected relative
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utilities. A is Z-optimal if and only if A has maximal expected rel-
ative utility.

In each of these two corollaries, part 1 shows that maximizing util-
ity relative to each of the m ·n possible outcomes is good enough to
secure Z-optimality. Part 2 shows that by maximizing utility relative
to just one of these outcomes, so long as it is optimal, we automati-
cally maximize it relative to all of them. Corollary 9.2 enables us to
do everything with just one relative decision matrix in which all val-
ues will be between 0 and 1.21 We use 9.2 exclusively in the remain-
der of this paper. A good slogan might be: maximize expected util-
ity relative to the best outcome. The next section illustrates the prin-
ciple with several examples.

We have the criterion we sought, the analogue for the familiar
principle of maximizing expected utility. It reduces to that princi-
ple if our preferences are Archimedean: the relative decision matrix
is what we get when we scale our utility function to assign 0 to Z

and 1 to the best possible outcome. But we now have a more gen-
eral principle that lets us handle non-Archimedean preferences.

Here is the caveat: our test identifies not optimality, but Z-opti-
mality. We pick out a class of outcomes or actions between which
we are relatively indifferent from the perspective of the base-point
Z. This is not a sufficient condition for optimality. Z-optimality (for
any choice of Z) is, however, a necessary condition for optimality.
Furthermore, when we apply the test to Pascal’s Wager and other
puzzles below, there is frequently just one Z-optimal action, which
is therefore truly optimal. In Section 6, we refine this test to handle
cases where we encounter more than one Z-optimal action.

5. RELATIVE UTILITY AND PASCAL’S WAGER

In our original two-by-two decision matrix for the Wager (Tables
I and II), we saw that the infinite value attached to salvation
was problematic. The reformulation in terms of relative utilities,
however, is quite simple. First, we know that the unique opti-
mal outcome is O11 in the top-left corner: salvation. So we can
apply Corollary 9.2. As in Section 4.2, we may assume a base-
point Z with utility 0.22 As we showed in Section 4.2, we have
U(Oij ,O11;Z) = 0 for all outcomes Oij except salvation, and
U(O11,O11;Z)=1. So the relative decision matrix is just this:
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Since we have assumed q > 0, the expected relative utility of
Wagering-for is q, while that of Wagering-against is 0. Hence, given
only the choice between the two pure strategies, we ought to wager
for God. No other action is Z-optimal.

The same table can be used to handle mixed strategies of the
form Wp = [p (Wager-for), (1 − p) (Wager-against)]. By linearity,
the expected relative utility of Wp is pq, which is less than that of
the pure wager unless p = 1. So even when we allow mixed strat-
egies, the pure wager is the unique Z-optimal choice and hence
the optimal choice. This answers the invalidity objection of Section
2.2. Schlesinger’s response is essentially correct. We have simply pro-
vided a systematic way to incorporate his principle into decision
theory. We ought to prefer the gamble giving us the higher proba-
bility for a fixed, infinite prize, and we can make sense of this by
means of expected relative utility calculations no more difficult than
ordinary expected utility calculations.

It can easily seem, however, that Table III is a gross misrep-
resentation of the Wager. In one sense, the table nicely captures
Pascal’s dictum: ‘the finite is annihilated in the presence of the infi-
nite and becomes pure nothingness.’23. This is accomplished by the
assignment of 0 to every outcome other than salvation. What is
troublesome, though, is that Table III fails to preserve distinctions
among the earthly rewards. The table is a kind of projection of data
about our preferences onto the highest plateau; inevitably, infor-
mation about our lower-order preferences gets lost. In discussing a
somewhat similar proposal by Swinburne (1969) that assigns utili-
ties 1 and 0 on row 1 and −1 and 0 along row 2, Sobel (1996, 19)
writes:

Pascal’s comparative evaluations cannot be measured on a bounded scale. It is
sufficient to note that Pascal differentiates amongst ordinary worldly valuables,
holds that the infinite quite annihilates the finite, and says that highest eternal
valuables are infinite. This means that on a bounded scale his ordinary valuables,
in order to fix their relations to highest valuables, would all have measure 0,
which, however, would misrepresent their relations amongst themselves.

TABLE III

Pascal’s Wager (utilities relative to best outcome)

q 1−q

God exists God does not exist

Wager for God 1 0
Wager against God 0 0
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TABLE IV

Pascal’s Wager (relative to happy secular outcome)

God exists God does not exist

Wager for God ∞ f2/f4

Wager against God f3/f4 1

When worldly prizes are stacked up against the standard of infinity,
it becomes impossible to differentiate between them. Sobel’s point
is valid if our intention is to locate all the outcomes in the Wager
along a single, unidimensional utility scale. This difficulty vanishes,
though, when we move to relative utilities. All the information we
might desire about the ranking of earthly prizes can be recovered by
looking at relative utilities among those prizes.

Consider, for instance, the relative decision matrix with entries
U(Oij ,O22;Z) relative to the happy secular outcome (wager against,
no God), as given in Table IV.

Once again, we can calculate expected relative utilities. In this
case, the calculations look exactly like the standard analysis of Pas-
cal’s Wager, as presented in Sections 1 and 2. Just as in that dis-
cussion, this table demonstrates the superiority of Wagering-for to
Wagering-against but fails to show why the pure Wager is better
than any mixed strategy. By considering relative utilities with respect
to a non-optimal outcome, we come up with a less informative
answer about the optimal choice – even though it is more informa-
tive about the ranking of the finite outcomes. Corollary 9.2 assures
us that Table III, not Table IV, is the appropriate choice when our
objective is to identify an optimal action.

We have seen how to respond to the invalidity objection of Sec-
tion 2.2. What of McClennen’s incompatibility objection, raised in
Section 2.1? We have already dealt with his main concern. We must
give up Premise 3, the familiar principle of maximizing expected
utility, but in its place we have an analogous principle: maxi-
mize expected utility relative to the best outcome. This principle
is compatible with assigning some prizes infinite utility relative to
others. Furthermore, we can retain all the standard axioms (A1)–
(A4), giving up only (A5), Continuity. The violations of the Better-
prizes condition and Better-chances condition discussed in Section 2.1
disappear.24
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Before claiming that we have an acceptable reformulation of
Pascal’s argument, let us return to Hájek’s dilemma. It is clear that
our version of the Wager satisfies Overriding Utility. Tables III and
IV above preserve the idea that the utility of salvation relative to
any other pure outcome is infinite. Our version of the argument also
satisfies Distinguishable Expectations: the smaller the probability of
wagering for God associated with a strategy, the smaller the (rela-
tive) expectation for that strategy. We have the resources to distin-
guish between the pure wager and mixed strategies.

What of the reflexivity conditions? Recall Hájek’s desideratum:

What is wanted, then, is the seemingly impossible: a representation of the reward
of salvation that is reflexive under addition (so that it cannot be bettered), but
not reflexive under multiplication by positive, finite probabilities (so that the
mixed strategies can be distinguished in expectation from outright wagering for
God).

With relative utilities, the reward of salvation is not reflexive under
multiplication by positive, finite probabilities. Reflexivity under addi-
tion merits careful discussion, though, since the reformulations con-
sidered by Hájek founder on this point.

In one sense, reflexivity under addition is trivially satisfied.
If O11 represents salvation and E is any earthly reward, we
have U(O11,E;Z) = ∞. There can be no outcome O for which
U(O,E;Z)=∞+1 because we are using the extended real numbers.
In fact, U(O11,O;Z)≥1 for every possible outcome O: salvation can-
not be bettered. So there is no obvious failure of reflexivity under
addition.

Going beyond this purely technical answer to Hájek, we need to
consider whether there is some more general philosophical failing in
our formulation of the Wager. Hájek’s real problem with the two
reformulations of Section 3 is that they fail to represent salvation
as absolutely maximal: “salvation is so far from being the best thing
possible that it is swamped by something that is swamped by some-
thing . . . infinitely many times over.” This problem appears to be
inevitable if we use an unbounded unidimensional utility scale (such
as the hyperreal or surreal numbers), or a finite-dimensional lexico-
graphic utility function. We have to make an arbitrary choice for
the utility of salvation – an arbitrary value on the one-dimensional
scale, or an arbitrary number of dimensions. We have no response
to the question, “why stop there?”
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Against the present proposal, this sort of objection might take
the form: why can’t there be something whose utility relative to sal-
vation is ∞? We have earthly prizes and we have a heavenly reward,
but what prevents an unending ‘staircase’ of higher and higher lev-
els of relative utility? Just as with the alternative formulations, salva-
tion would be swamped by any reward on one of these higher steps.
So the present reformulation is just as vulnerable to the problem of
arbitrary cut-off as any other version of the Wager.

This objection can be put in a different way. Suppose that our
preferences regarding the Wager can actually be modelled by a one-
place utility function. That is, suppose that some such model –
either a unidimensional or lexicographic ordering – is equivalent to
our relative utility function. We know from Section 3 that in this
equivalent model, the value of salvation must be fixed at an arbi-
trary point along an unbounded scale. We cannot duck the problem
of arbitrariness simply by refusing to settle on one of these one-
place utility functions.

To the contrary, I maintain that a significant advantage of the
relative utilities approach is that it remains neutral between the
many alternative representations employing a one-place utility func-
tion. Because we are describing only relations of utility, there is
no need to pre-suppose a definite number of dimensions or to
attach a definite value to the utility of salvation. It is only once
we assign such a value that we violate reflexivity under addition
because greater rewards become conceivable. With the present pro-
posal, that outcome is avoided. There might be many (even infinitely
many) jumps in utility, but it is perfectly consistent to suppose that
salvation is absolutely maximal.

As we noted earlier, the problem concerns the representation of
our preferences, not our preferences themselves. We want a utility
function that preserves the idea that salvation is absolutely the best
possible outcome. We cannot accomplish this with a one-place util-
ity function without sacrificing the validity of the Wager. Our alter-
native is to use a three-place function. We represent the reward of
salvation not with any chosen value, but rather as infinite relative
to any other possible outcome (with the exception of gambles that
give us a shot at salvation).25
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6. VARIATIONS ON A THEME

Relative utilities help to shed light on a traditional objection to the
Wager, and to analyse two different versions of the argument.

6.1. The Many-gods Objection

In its simplest form, this famous objection runs: if Pascal’s argu-
ment for infinite expectation succeeds for the Christian god, then it
succeeds for any rival deity who offers an infinite reward to believers
and has non-zero probability of existing. The argument proves too
much! Confronted with a choice between incompatible options, each
of them offering infinite expectation, there is no basis for a decision.
This is the problem of Buridan’s ass on a large scale: the symmetry
of the situation induces paralysis.

This difficulty closely resembles Hájek’s problem of mixed strat-
egies. When competing options all have infinite expectation, there
is no way to choose between them. The response we gave to that
objection works just as well here. We can break the symmetry by
using relative decision tables. A decision based on relative utilities
recommends selecting the god with the highest probability. Table V
is the relative decision table analogous to Table III, for the simplest
case of two gods, A and B.

We assume here, and throughout this section, that the infinite
rewards offered by rival deities are identical (so that their relative
utilities are clearly 1); this restriction will be lifted in the next sec-
tion. For this example, it is clear that the expected relative utilities
are q1 if you wager for A, q2 if you wager for B, and 0 if you wager
against both. You should make your decision on the basis of your
subjective probabilities.

In this way, we get beyond the paralysing symmetry of options
in the standard presentation of the many-gods objection. That

TABLE V

Pascal’s Wager with two gods

q1 q2 1− (q1 +q2)

A exists B exists No god exists

Wager for A 1 0 0
Wager for B 0 1 0
Against all 0 0 0
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symmetry only remains if the subjective probabilities are equal.
Even in this case, atheism (‘wager against all’) is ruled out so long
as that common probability is non-zero.

Of course, subjective probabilities differ among agents, but that
is a point readily conceded both by advocates and critics of Pascal’s
argument. If we change our subjective probabilities enough, atheism
can become the best wager even if God’s existence has positive prob-
ability. We might assign high subjective probability to a god who
rewards atheists. Or, following Mougin and Sober (1994), we might
worry about “X-theology,” which asserts that atheists go to heaven
and theists go to hell regardless of whether God exists. If you assign
sufficiently high positive probability to X-theology, atheism will be
prudent. If the point of such stories is that some subjective prob-
ability assignments justify a decision to wager against a particular
god or even against all gods, the insight is legitimate but not very
troublesome for the Pascalian. Such an objection does not challenge
the appropriateness of the wager for somebody who does possess
the requisite subjective probabilities. Peaceful co-existence of theists
and atheists is possible.

It is more interesting to see these alternative scenarios as signal-
ling the need to justify certain subjective probabilities tacitly pre-
supposed by the simple Wager. The beauty of that argument is
that it does not depend on the probability of God’s existence, so
long as that is non-zero. The many-gods objection exposes the hid-
den assumption that any other deity, and indeed any other state of
affairs that might lead to an infinite reward, has zero probability.
That assumption is both unjustified and implausible. If we are pre-
pared to assign positive probability to at least one god, why stop
there?

The subjective probabilities upon which the Wager rests have not
been our concern in this paper. Nevertheless, once we employ rela-
tive utilities to remove the stumbling block of “infinite expectations
all-around,” we open up new avenues for investigating these back-
ground probabilities and our decision of how to wager. For one thing,
we can immediately lighten the burden on the Pascalian. The analy-
sis above already shows that there is no need to defend a dogmatic
assignment of zero probability to other states of affairs that offer an
infinite reward. In Table V, Pascal’s argument justifies wagering for
the deity with highest subjective probability, even though the other
deity has non-zero probability. This point clearly generalizes to deci-
sions involving finitely many gods. The same result can be achieved
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by replacing the infinite reward of salvation with a large finite reward
(Mougin and Sober 1994; Jordan 1998), but that drastic measure is
not necessary if we employ relative probabilities.

The general point is that by representing all information using
finite values, relative decision matrices allow us to apply familiar deci-
sion-theoretic tools to many-gods versions of the Wager. This opens
the way to more sophisticated analyses of the many-gods objection.

6.2. A Super-Pascalian Wager

As a variation on the many-gods objection, a super-Pascalian Wager
occurs when we have to make a decision involving more than one
level of infinite relative utility. Argle offers believers regular salva-
tion, an unending life whose every moment is filled with large but
finite happiness. Meanwhile, Bargle offers believers deluxe salvation,
an unending life whose every moment is filled with infinite happi-
ness, or in Pascal’s words, “an infinity of infinitely happy life”. As
before, assume a finite, non-zero subjective probability for the exis-
tence of each of these two deities. How are we to make our choice?

There are at least three plausible answers (apart from denying the
coherence of gradations of infinite happiness). First, on the naı̈ve
view of infinite utility exemplified in the early part of this paper, we
have no basis for distinguishing between the two wagers: both have
infinite expectation. Second, it might strike us as sensible to wager
for Bargle: the chance for infinite gain that drives the Pascalian to
make the ordinary wager seems to favour the switch from Argle to
Bargle, no matter how much less likely Bargle’s existence might be.
Third, following the pattern of Section 6.1, we might be inclined to
use subjective probability as the sole criterion for our decision.

As it turns out, the problem as stated is poorly formulated. Rel-
ative utilities help both to clear up the question and to provide
answers. Let SA stand for the regular salvation that Argle offers,
and SB for Bargle’s deluxe salvation. Our decision table is a 3 × 3
matrix similar to Table V:

Argle exists Bargle exists No god exists

Wager for A SA – –
Wager for B – SB –
Against all – – –
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All outcomes other than SA and SB consist of mere earthly goods.
It looks like SB is infinitely better than SA, which in turn is infinitely
better than any of the worldly outcomes. But things are not so sim-
ple. The choice of, and assumptions about, the base-point Z turn
out to be crucial.

The base-point Z is the outcome with respect to which util-
ity ratios are computed. It represents the default outcome in all
gambles used for determining relative utilities. The only compul-
sory requirement in designating a base-point, given that all relative
utilities are non-negative extended real numbers, is that it must be
a lower bound for all possible outcomes in the decision at hand.
Beyond this constraint, the appropriate choice of Z is governed by
pragmatic considerations. We have to determine the fallback posi-
tion in our assessments of relative utility. As it turns out, though,
the precise designation of Z is usually unimportant. All that matters
is the ‘level’ of the base-point. This is certainly the case in an Archi-
medean setting, where a shift in origin makes no essential difference.
Analogously, in a non-Archimedean context, any two base-points
that occupy the same level (and are lower bounds for all possible
outcomes) will lead to the same ranking of outcomes by relative
utility. So the choice of Z is not particularly problematic.

Typically (but not always), Z will be some finite worldly outcome
that is a lower bound for all those under consideration. But in the
examples below, we will also consider cases where the base-point is
infinitely good or infinitely bad.

Suppose first that as in the ordinary Wager, Z denotes some
earthly reward dominated by all those appearing in the table. For
any two worldly outcomes F and G in the table, U(F, G; Z) is finite.
It is also plain that U(SA, F; Z) = U(SB, F; Z)= ∞, by the same
reasoning as in the ordinary Wager. The key question is what value
to assign to U(SB, SA; Z). It is tempting to let this be ∞ as well,
but we should consider carefully what that would mean. By Defini-
tion 1,

U(SB,SA;Z)=∞ if and only if SA � [pSB, (1−p)Z].

For the relative utility to be infinite, you must prefer any gamble
that offers a slight chance for deluxe salvation to regular salvation –
even when that gamble entails a very high probability for ordinary
finite existence! You must be willing to sacrifice the certainty of a
comfortable, unending life for the virtual certainty of a finite exis-
tence, given only a tiny chance of the deluxe reward. Although it
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is certainly possible to have such preferences, they are not on par
with those of the ordinary Pascalian who, after all, is making only
a finite sacrifice for a shot at salvation.

In my view, U(SB, SA;Z)=1 is the most reasonable value. Some
people may want to assign a value higher than 1, signalling a kind
of high-level Pascalian preference structure. I won’t present an argu-
ment for my position – de gustibus non est demonstrandum – but I
do offer a formal postulate and an analogy.

POSTULATE 10 (PARALLAX POSTULATE). Let A and B be
pure outcomes. Suppose that for some C strictly preferred to Z we
have U(A,C;Z)=∞. Then U(B,A;Z)=1 whenever A�B.

Roughly: if A already looks infinitely good from base-point Z, then
you are relatively indifferent between A and any superior outcome
B. You are unwilling to risk losing A to upgrade to B when the fall-
back is Z.26 From an earthly base-point, Bargle’s paradise does look
much better than Argle’s, but no non-trivial gamble for the former
justifies the sacrifice of the latter.

Of course, either your preferences conform to this principle or
they do not. The postulate is not compulsory, but rather an interest-
ing test of intuition. I regard it as a prudent piece of advice; others
may see it as overly restrictive.

Now for the analogy. Stellar parallax refers to the angular dis-
placement of a nearby star, relative to distant stars, as the earth
orbits the sun. This displacement can be used to determine the
nearby star’s distance from earth. For all practical purposes, we can
treat the background stars as infinitely remote. If we look at any
two of these ‘infinitely’ distant stars, A and B, we see no angu-
lar displacement. They remain fixed in the same position relative to
each other as the earth traces its orbit, and yield the same angu-
lar displacement for any nearby star C. Analogously, two infinitely
good prizes A and B have a fixed relation to each other, and to any
worldly prize C, from our worldly perspective. It shouldn’t matter
that B is actually ‘further’ (better) than A.

The Parallax Postulate gives us one way to resolve the super-
Pascalian Wager. If we embrace the postulate, then U(SA, SB; Z)
= 1. Hence, if we form the decision matrix relative to the optimal
outcome SB as required by Corollary 9, the result is identical to
Table IV. It follows that the correct choice is to go with the god who
has higher subjective probability. Indeed, if the Parallax Postulate is
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granted, the resolution of the many-gods argument in Section 5.1
becomes perfectly general. Pairwise comparison of salvation under
different divinities always yields a relative utility of 1, provided that
Z denotes a mere earthly reward. Subjective probability is then the
sole guide to selecting a divinity.

If we reject the Parallax Postulate, we get a different solution to
the super-Pascalian Wager. The only real alternative is to set U(SB,
SA; Z)=∞. Then the decision matrix relative to SB is the same as
Table IV except that we replace the top-left 1 with a 0. Wagering
for Bargle becomes the optimal choice, regardless of the probabil-
ity values. If you have these preferences, the super-Pascalian Wager
is essentially the same as the ordinary Wager. Argle’s paradise is a
trifling distraction more or less on par with earthly prizes, since it
cannot compete with Bargle’s paradise.

There is yet a third solution if the agent making the choice is an
angelic being who already enjoys low-grade immortality. The base-
point Z represents this current state, from which both SA and SB

are upgrades. The assumption U(SB, SA;Z)=∞ is reasonable here,
because the default prize Z is not so much worse than SA. The solu-
tion here is the same as in the second case: we should wager for
Bargle.

The foregoing discussion highlights the importance of designat-
ing the base-point Z. Different solutions can be justified, depend-
ing upon our specification of Z and the crucial value U(SB, SA;
Z). It is worth comparing this analysis to what we might obtain
using a standard representation of non-Archimedean preferences.
One approach is to modify the vector-valued utility function of Sec-
tion 3 and employ a three-dimensional representation. Outcomes
have utility (x, y, z), where x represents earthly goods, y represents
regular heavenly goods and z represents deluxe heavenly goods. We
have a lexicographic ordering, with priority given to the third and
then the second component. By reasoning as we did in Section 3, it
is easy to see that the optimal choice is wagering for Bargle, regard-
less of the probabilities (so long as both are positive). By contrast,
I argued for a choice based on subjective probability. The impor-
tant point, though, is that relative utilities bring options into view
that one does not have with the lexicographic approach. With rela-
tive utilities, we can formulate criteria that might lead to quite dis-
tinct decisions. The representation of preferences by relative utilities
with a variable base-point offers greater flexibility in analysing such
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decisions than does a one-place utility function, whether unidimen-
sional or multi-dimensional.

6.3. Harsh versions of the Wager

In our formulation of the Wager in Section 1, we represented the
outcome in the bottom-left corner, where you wager against God yet
God exists, with a finite utility value. Let us call this the humane
version of the argument. Suppose that a harsh version of the argu-
ment is contemplated, in which this value is set at −∞ to signify
damnation, some form of ceaseless punishment. Such a decision
table might seem to make the argument for wagering in favour of
God even more compelling, but it complicates things when we con-
sider mixed strategies and the many-gods argument. Some deities
may mete out eternal torment to those who wager for their rivals.
How are we to compute sums involving both +∞ and −∞? Just as
relative utilities clarify our reasoning for the humane version of the
Wager, they are helpful in discussing the harsh version.

The basic idea is to let Z signify damnation, the worst outcome.
In fact, this choice is practically forced upon us by the constraint
that the base-point be a lower bound for all outcomes under con-
sideration.27 Note that U(O,Z;Z) = ∞ for any of the other out-
comes O that might occur in the Wager: all are infinitely better
than damnation. If the Parallax Postulate is granted, then we have
U(O1,O2;Z) = 1 for any two such outcomes. Even for the sake of
salvation, nobody will take the risk of landing in Hell. Relative to
the best outcome (salvation), then, the decision matrix looks like as
given in Table VI.

In this case, maximizing expected relative utility justifies the pure
wager over all mixed strategies. Without the Parallax Postulate, we
can assume that Salvation has infinite utility relative to both earthly
rewards in the right column. The resulting relative decision matrix
looks the same as Table V except that both values in the right

TABLE VI

Pascal’s Wager (harsh version)

God exists God does not exist

Wager for God 1 1
Wager against God 0 1
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column change to 0. Again, the pure wager comes out ahead of all
mixed strategies. The Parallax Postulate makes no difference in this
case.

We can also employ relative utilities to find a solution when we
combine the harsh wager with many gods. Suppose that our theol-
ogy encompasses two possible deities, both of whom reward believ-
ers with salvation and punish non-believers with damnation. Table
VII is the naı̈ve decision matrix.

Our reasoning reaches a dead end at once: a naı̈ve calculation
of expected utility involves the quantity ∞ − ∞, which is unde-
fined. Letting Z stand for damnation and relativizing everything to
the best outcome (salvation), however, we have the relative decision
matrix given in Table VIII.

This table assumes the Parallax Postulate, but without that
assumption we would simply replace the right column of 1’s with
three 0’s. Either way, the solution is what we might expect: to wager
in favour of the deity whose existence is assigned the highest subjec-
tive probability.

For another variation, let Bargle be relatively benign. Replace
the two occurrences of −∞ in column two of Table VII with finite
values. Perhaps Bargle rewards believers, but is not especially hard
on non-believers or believers in other divinities. The corresponding
change to Table VIII is that column 2 now consists entirely of 1’s.

TABLE VII

Harsh wager, many-gods I

q1 q2 1− (q1 +q2)

Argle exists Bargle exists no god exists

Wager for A ∞ −∞ f1

Wager for B −∞ ∞ f2

Against all −∞ −∞ f3

TABLE VIII

Harsh wager, many-gods II

q1 q2 1− (q1 +q2)

Argle exists Bargle exists no god exists

Wager for A 1 0 1
Wager for B 0 1 1
Against all 0 0 1
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Not surprisingly, to maximize expected relative utility we must now
wager for Argle. The same thing happens if Bargle is really nice and
rewards everyone with salvation – once again, Argle wins our alle-
giance. Nice gods finish last!

Finally, suppose that Argle perversely metes out infinite punish-
ment to those who wager for Argle and rewards everyone else with
salvation, while Bargle is a more conventional deity who rewards
only Barglites. When we relativize everything to the best outcome
(with damnation as the base-point), we get the following table if we
assume the Parallax Postulate:

q1 q2 1− (q1 +q2)

Argle exists Bargle exists no god exists

Wager for A 0 1 1
Wager for B 1 1 1
Against all 1 1 1

This lets us rule out wagering for Argle, but no more. That appears
to spell trouble for our whole approach. Even though we know that
wagering for Bargle should come out ahead of wagering against all
gods, both options have equal expected relative utility.

There is a natural way to supplement Corollary 9 that lets us
handle this and similar examples. Employ a mixture of admissi-
bility reasoning and maximization of expected relative utility. Here
is how it works. If two or more rows are tied when we calculate
expected relative utilities, strike out the rows that are dominated.
The initial base-point is now irrelevant, so we move to a base-
point that is essentially the minimum of the remaining outcomes
under consideration, and re-calculate utilities relative to the opti-
mal outcome. If this does not single out a unique choice, repeat the
process.

In the example at hand, we strike out the first row and move to
a base-point that represents a finite worldly outcome no better than
any in the table. The new table of utilities relative to the optimal
outcome (salvation) looks like this:

q1 q2b 1− (q1 +q2)

Argle exists Bargle exists no god exists

Wager for B 1 1 0
Against all 1 0 0

We now have a justification for wagering in favour of Bargle.



TAKING STOCK OF INFINITE VALUE 39

7. CONCLUSION: BEYOND PASCAL’S WAGER

Relative utilities give us a conservative way to do infinite decision
theory. The proposal is a simple generalization of finite utility the-
ory that lets us retain the idea that rationality is characterized by
maximizing expected (relative) utility while avoiding the technical
and philosophical difficulties associated with attempts to model infi-
nite value using lexicographic orderings or non-standard number
systems. The approach works well when applied to problems like
Pascal’s Wager, where relative utilities are either supplied or read-
ily computed. Its potential for treating other puzzles about infinite
value lies in its flexibility for modelling different intuitions about
preferences among gambles.

While this paper has focused entirely on the Wager, relative
utilities may have a valuable application in the analysis of moral
reasoning. Moral preferences, even in mundane settings where the
question of infinite value does not arise, are non-Archimedean.
Consider a model of moral decision-making that combines Kantian
and utilitarian intuitions. Let us suppose that we regard some out-
comes as permissible and others as intolerable. We use utilitarian
principles in making comparisons among the permissible outcomes
and among the intolerable ones (a gentle murder is better than a
cruel one), but we cannot employ a common scale to make cross-
boundary comparisons. That is, we can never be indifferent between
a permissible outcome and a gamble that gives a positive probabil-
ity for an intolerable result. The Archimedean condition is violated.
Furthermore, there might be downward hierarchies of increasingly
intolerable actions. We may regard both massive fraud and murder
as intolerable, but view murder as infinitely worse than fraud.

To model this sort of relationship is a challenge for utilitarians.
Following the strategies of Section 3, we could make use of a vector-
valued utility function with lexicographic ordering, or non-standard
utility values. In my view, it is simpler to use relative utilities.
This approach has a clear advantage when it comes to updating
our preferences. For example, suppose we have employed a two-
dimensional lexicographic ordering to represent earthly and heav-
enly rewards, but now find (as in Section 6.2) that we need to make
decisions involving different grades of salvation. We have to add a
third dimension, and this means that all of our utility assignments
must be changed. By contrast, adding information about previously
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unknown relative utilities may be perfectly compatible with existing
relative utility assignments.

If relative utilities are used to model our preferences, then we
have a generalized utilitarian framework that lets us model decision-
making even in cases where no trade-offs are possible. We can do
this by using relative decision matrices and expected relative utilities.
Here is a simple illustration.

Alex is being robbed by a highwayman. Escape, injury, murder,
brutal murder: all are possible outcomes. His options are to flee or
to co-operate with the thief. He believes that the outcome depends
upon his assessment of the thief’s temperament (nasty or not) and
physical condition (fit or flabby), as summarized in the following
table.

NASTY NOT NASTY

Fit Flabby Fit Flabby

Flee Brutal Escape Injury Escape
murder

Co-operate Gentle Gentle No injury No injury
murder murder

If he flees, he escapes unharmed provided the thief is slow, but risks
a beating or brutal murder (plus theft) if caught. If he co-operates,
the theft is assured and the thief will either kill him quickly or leave
him unharmed.

How should Alex make his decision? Dominance reasoning gives
no clear verdict, so he turns to naı̈ve expected utility reasoning.
Since murder is intolerable to Alex, he assigns −∞ to either type of
murder, a large negative value to theft with injury, a moderate neg-
ative value to theft without injury, and zero or a positive value to
escape. But Alex soon discovers that both actions have an expected
value of −∞. Just as in naı̈ve versions of Pascal’s Wager, expected
utility calculations are of no use. Nevertheless, it seems clear that
the prudent thing to do is to flee, because flight offers some chance
of escape in the more important case of a nasty assailant.

We can capture this reasoning using relative utilities. If Z repre-
sents the violent murder (or something even worse) and O repre-
sents the optimal outcome of escape, then the relative utility values
U(−,O;Z) give us the following relative decision matrix:
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NASTY NOT NASTY

Fit Flabby Fit Flabby

Flee 0 1 1 1
Co-operate 0 0 1 1

Here I have assumed the Parallax Postulate. Any outcome where
Alex survives is more or less equally good relative to the hor-
rific base-point.28 From this table, it is clear that Alex should
flee, regardless of the probabilities. Flight is transformed into a
dominant choice. The relative decision matrix collapses distinctions
between the two murder outcomes and distinctions among the three
non-murder outcomes, but that is in accordance with intuition.

Many of the assumptions in this analysis are debatable. Alex
might think that if he co-operates, there is some chance that a nasty
criminal will let him live. Or perhaps flight might provoke even a
mild-mannered thief to murder. Such modifications can be accom-
modated along lines similar to the treatment of the cases in Section
6.2. Decisions can still be made by maximizing expected relative
utility.

Can we employ relative utilities to analyze even more complex
examples involving infinitesimal probabilities, or decisions that must
take into account infinitely many options or states? Despite some
obvious difficulties, I’d wager that it’s worth a try.

APPENDIX A: PROOFS

A.1. Redundancy of (A3), the Better-chances Condition

Assume A�B. If q ≤p, then we have

A∼ [ q/pA, (1−q/p)A]� [ q/pA, (1−q/p)B] by (A2).

It follows that

[pA, (1−p)B]� [p[ q/pA, (1−q/p)B], (1−p)B] by (A2)

∼ [qA, (1−q)B] by (A4).

Strictness follows from (A2) if both A≺B and q <p. If q >p, the
reverse inequality holds by symmetry.



42 P. BARTHA

A.2. Proof of Lemma 2

The set of all k such that [kR, (1 − k)P ] � Q is non-empty and
bounded above by 1. Let α be the supremum of this set. If α = 0
then case (c) obtains; if α = 1, then we have case (b). If 0 < α < 1,
then it is easy to show that one of cases (a)–(c) obtains.

A.3. Proof of Lemma 4

Lemma 4 states:
If B ≈Z B ′, then for any 0 ≤p ≤ 1 and any A, C,

(1) [pB, (1−p)C]≈Z [pB ′, (1−p)C] and
(2) [pA, (1−p)B]≈Z [pA, (1−p)B ′].

We show only (1), since the proof of (2) is similar. Further, if B ∼
B ′ then (1) follows at once from the Better-Prizes Condition. So we
may assume B �B ′ where the preference is strict.

The assumption B ≈Z B ′ means that

(a) [qB ′, (1−q)Z]�B, all 0≤q <1
(b) [qB, (1−q)Z]�B ′, all 0≤q <1.

The proof divides into two cases: B ′ �C and C �B ′, but we give the
argument only for the case B ′ �C (since the arguments are similar
for the second case). Assume, then, that B ′ �C.

By Lemma 3, one of the following holds:

(i) C ≈Z B ′;
(ii) B ′ ≈Z [aC, (1−a)Z] for a unique a with 0<a <1;

(iii) B ′ � [aC, (1−a)Z] for all 0<a <1.

For (i): it suffices to show that [pB, (1 −p)C] ≈Z C, since then, by
parity of reasoning and transitivity of ≈Z, we have [pB, (1−
p)C]≈Z C ≈Z [pB ′, (1−p)C]. So we need to show that

[kC, (1−k)Z]� [pB, (1−p)C] if 0≤k <1.

But this follows because [kC, (1 − k)Z] �B (since B ≈Z C)

and [kC, (1−k)Z]�C (by (A3)). (Note: the fact that B ′ �
C is not used in this argument.)

For (ii): To prove (1), it suffices to prove that

[α[pB ′, (1−p)C], (1−α)Z]� [pB, (1−p)C](1*)

for all 0≤α <1,
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since given that B �B ′, the other half of (1) is an imme-
diate consequence of the Better-Prizes Condition (A2) and
the Better-Chances Condition (A3).
Since ≈Z is transitive, we have B ≈Z [aC, (1−a)Z] as well.
Hence for any 0<β <1 we have

[β[aC, (1−a)Z], (1−β)Z]�B

and so by (A2),

[pB, (1−p)C](3)

� [p[β[aC, (1−a)Z], (1−β)Z], (1−p)C]

∼ [p[βaC, (1−βa)Z], (1−p)C] by (A4)

∼ [tC, (1− t)Z] by (A4) ,

where t =pβa + (1−p).
Also, since B ′ ≈Z [aC, (1−a)Z], we have

B ′ � [bC, (1−b)Z] ifa <b≤1,

and so for all such b,

[α(pb+ (1−p))C, (1−α(pb+ (1−p)))Z](4)

∼[α[(pb+(1−p))C, (1−(pb+(1−p)))Z], (1−α)Z]

by (A4)

∼ [α[p[bC, (1−b)Z], (1−p)C], (1−α)Z]

by (A4)

� [α[pB ′, (1−p)C], (1−α)Z]

by (A2).

But we can choose b and β so that a <b≤1 and 0 <β <1
and

pβa + (1−p)>α[pb+ (1−p)].

(1*) then follows from (3), (4) and (A3).
For (iii): it suffices to show that [pZ, (1 − p)C] ≈Z [pB, (1 − p)C],

since by parity of reasoning and transitivity of ≈Z we will
have [pB, (1−p)C]≈Z [pZ, (1−p)C]≈Z [pB ′, (1−p)C]. So
we need only show that

[k[pB, (1−p)C], (1−k)Z]� [pZ, (1−p)C]

for 0≤k <1.
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But B � [αZ, (1−α)C] for all 0 ≤α< 1, so that if t =α(1−
k(1−p))

[tZ, (1− t)C]
∼ [(1−k(1−p))[αZ, (1−α)C], k(1−p)C]] by (A4)
� [(1−k(1−p))B, k(1−p)C] by (A2)
∼ [k[pB, (1−p)C], (1−k)B] by (A4)
� [k[pB, (1−p)C], (1−k)Z] by (A2).

The required result now follows via (A3) provided that we
can choose α so that t >p, i.e., 1>α >p/[1−k(1−p)]. Since
p<1, we have p(1−k)<(1−k), so that p<1−k(1−p), and
we can find such an α.

A.4. Proof of Theorem 6

Step 1: Definition of U . This is Definition 5.

Step 2: Proof of simple properties of U .

(R1), (R2), (R4) and (R5) follow immediately from the definition
and the fact that ≈Z is an equivalence relation. (For (R4), we need
to observe that if A ≈Z Z, then A ∼ Z. For if A ≈Z Z and Z ≺
A (strict preference), then for 0 < p < 1, [pA, (1 − p)Z] would be
strictly preferred to Z by (A2), contradicting [pA, (1−p)Z]�Z.)

Property (R3) is proven below, at Step 3.

Proof of (R6):
If U(A,C;Z)=∞, the inequality is obviously true.
If U(A,C;Z) = 0, then A � [pC, (1 − p)Z] for all 0 < p < 1
and so B � [pC, (1 − p)Z] for all 0 < p < 1, implying that
U(B,C;Z)=0.
If U(A,C;Z) = k ≤ 1, then A ≈Z [kC, (1 − k)Z]. Applying Lem-
mas 3 and 4 together with (A4), either B ≈Z [αkC, (1−αk)Z] for
some 0<α ≤1 or B � [αkC, (1−αk)Z] for all such α. In either
case, U(B,C;Z)≤U(A,C;Z).
Finally, if U(A,C;Z) = k > 1, then [(1/k)B, (1 − (1/k))Z] �
[(1/k)A, (1 − (1/k))Z] ≈Z C by (A2) and it follows that
U(B,C;Z)≤k.

Proof of (R7):
Let U(C,B;Z) = d, U(C,A;Z) = e and U(A,B;Z) = f . We
know 0<e≤1≤f .
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If f =∞, then for any p > 0 we have

B � [peA, (1−pe)Z]

≈Z [p[eA, (1− e)Z], (1−p)Z]

≈Z [pC , (1−p)Z] by the Substitution Lemma,

so that R(C,B;Z)=∞ and d = ef as required.

If f is finite, then from (R5) and (R6) it follows that e≤d ≤f ,
so d is also positive and finite. If d ≤ 1, then C ≈Z [dB, (1−d)Z]
and B ≈Z [(1/f )A, (1−1/f )Z], so by the Substitution Lemma,

C ≈Z [d[(1/f )A, (1−1/f )Z], (1−d)Z]

≈Z [(d/f )A, (1−d/f )Z] by (A4)

which proves that e=d/f as required.

If d > 1, then B ≈Z [(1/d)C, (1−1/d)Z] and C ≈Z [eA, (1−e)Z],
so by the Substitution Lemma,

B ≈Z [(1/d)[eA, (1− e)Z], (1−1/d)Z]

≈Z [(e/d)A, (1− e/d)Z] by (A4)

and we have f =d/e, as required.

Step 3: Proof of (R3)
(R3) states:

U([pA, (1−p)A′],B;Z)=pU(A,B;Z)+(1−p)U(A′,B;Z)

for 0≤p ≤1.

Write L for [pA, (1−p)A′], and assume 0<p <1 for non-triviality.

Case 1: At least one of U(A,B;Z) or U(A′,B;Z) is ∞. Suppose
U(A,B;Z)=∞; the argument is similar if U(A′,B;Z)=∞.
In this case, the right side of (R3) is ∞.
Let L′ = [pA, (1–p)Z]. First note that U(L′,B;Z) = ∞ for
p > 0: for B �L′ because U(A,B;Z) = ∞, and if [kL′,
(1 − k)Z] ≈Z B for 0 < k < 1, then by (A4) we would have
[kpA, (1−kp)Z]≈Z B which contradicts U(A,B;Z)=∞.
It now follows that U(L,B;Z)=∞, from (R6) and L′ � L.

Case 2: Both U(A,B;Z) and U(A′,B;Z) are finite.

We first prove the following result, a special case of (R3).



46 P. BARTHA

LEMMA 11. (PARTIAL LINEARITY). For all A,B and 0≤p ≤1,
U([pA, (1−p)Z],B;Z)=pU(A,B;Z).

Proof: Let L′ = [pA, (1−p)Z]. We may assume 0<p <1.

If U(A,B;Z)=∞, the result is entailed by Case 1.
If U(A,B;Z) = 0, then from L′ � A and (R6), we have

U(L′,B;Z) ≤ U(A,B;Z) = 0 and both sides of the
equality are 0.

If U(A,B;Z) = k ≤ 1, then A ≈Z [kB, (1 − k)Z], which implies
L′ ≈Z [pkB, (1 − pk)Z]. Then U(L′,B;Z) = pk

=pU(A,B;Z), as required.
Finally, suppose U(A,B;Z)=k>1, k finite. We have B �A and

L′ �A. By (R7),

U(L′,B;Z)=U(L′,A;Z)U(A,B;Z)=pU(A,B;Z).

We complete the argument for Case 2 by considering three sub-
cases.

Case 2a: Both U(A,B;Z) and U(A′,B;Z) are zero.
The right side of (R3) is 0. The left side is also 0, because
either A′ � A or A � A′. By (A2), either L � A or L � A′.
It follows that U(L,B;Z)=0.

Case 2b: U(A,B;Z)=c>0 and U(A′,B;Z)=0 (i.e., just one of the
two terms is zero). The right side of (R3) is pc.
By (A2) and Lemma 11, U(L,B;Z) ≥ U([pA, (1 −
p)Z],B;Z)=pc.
From (R7), U(A′,A;Z)=0.
By (A2) and Lemma 11, for every 0<k we have

U(L,B;Z)≤U([pA, (1−p)[kA, (1−k)Z]],B;Z)

=U([tA, (1− t)Z],B;Z) where t =p + (1−p)k

= (p + (1−p)k)c.

As required, it follows that U(L,B;Z) = pc (since k can
be as small as we please).

Case 2c: Both c = U(A,B;Z) and c′ = U(A′,B;Z) are finite and
non-zero.



TAKING STOCK OF INFINITE VALUE 47

If A � B and A′ � B, then A ≈Z [cB, (1 − c)Z] and A′ ≈Z

[c′B, (1− c′)Z]. It follows by substitution that

L≈Z [p[cB, (1− c)Z], (1−p)[c′B, (1− c′)Z]]

≈Z [tB, (1− t)Z] where t =pc+ (1−p)c′,
by (A4)

and this gives the required result

U(L,B;Z)=pc+ (1−p)c′

=pU(A,B;Z)+ (1−p)U(A′,B;Z).

The other possibility is that either A or A′ is the dom-
inant outcome; we may suppose A′ � A and B � A, and
the argument will run similarly if A′ is dominant. Let k =
U(A′,A;Z); we know from (R7) that c′ = kc. By substitu-
tion,

L≈Z [pA, (1−p)[kA, (1−k)Z]]

≈Z [tA, (1− t)Z] where t =p + (1−p)k,

by (A4)

and by Lemma 11, this gives the required result

U(L,B;Z)= (p + (1−p)k)U(A,B;Z)

=pU(A,B;Z)+ (1−p)U(A′,B;Z).

A.5. Uniqueness of U in Theorem 6

We first prove a preliminary result.

LEMMA 12. Suppose the ordering � satisfies (A1)–(A4), and U is
as defined at Step 1. Then

(i) A=Z B ↔ 0 <U(A,B;Z)<∞ defines an equivalence relation on
the set {A/Z �A}. Write [A]Z for the equivalence class of A.

(ii) If [A]Z 
= [B]Z and B �A, then B ′ �A′ for any A′ =Z A and B ′ =Z

B. In this case, we may write [B]Z � [A]Z.

Proof: (i) is evident from (R2), (R5) and (R7).
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For (ii), if [A]Z 
= [B]Z and B �A, it must be that U(B,A;Z)=0. So

B � [pA, (1−p)Z] for every 0<p ≤1.

By considering cases, it is easily shown that U(B ′,A′;Z)=0.

Once we fix the base-point Z, the equivalence classes of Lemma 12
are steps along which outcomes are comparable, i.e., Archimedean.
Successive steps are infinitely preferable to their predecessors.

Now we can complete the uniqueness proof. Suppose that U ′ has
the properties (R1)–(R7). We must show that for any A and B,
U ′(A,B;Z)=U(A,B;Z).

• If [B]Z � [A]Z, then U(B,A;Z) = 0 and B � [pA, (1 − p)Z] for
0<p ≤1. It follows that for all 0<p ≤1,

U ′(B,A;Z) ≤U ′([pA, (1−p)Z],A;Z) (R6)

=pU ′(A,A;Z)+ (1−p)U ′(Z,A;Z) (R3)
=p (R2), (R4)

and hence U ′(B,A;Z) = 0 = U(B,A;Z). The argument is similar if
[A]Z � [B]Z.

• If [A]Z = [B]Z, suppose first that B �A. Then if c=U(B,A;Z)

we have

B ≈Z [cA, (1− c)Z]

and so we must have

U ′(B,A;Z) =U ′([cA, (1− c)Z],A;Z)

= cU ′(A,A;Z)+ (1− c)U ′(Z,A;Z) (R3)
= c (R2), (R4)

and again we have U ′(B,A;Z) = U(B,A;Z). The argument is
similar if A�B.

A.6. Proof of Lemma 7

First, U(Oij ,A;Z) = U(Oij ,B;Z) for all i, j by property (R5). So
we have

U(A,B;Z) =�qj�piU(Oij ,B;Z) since Oij =Ai&Sj

=�qj�piU(Oij ,A;Z) as noted above
=U(A,A;Z)

=1 by (R2)
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A.7. Proof of Corollary 8

Proof of (1). The ‘only if ’ claim follows from (R6) and (R7). To
prove the ‘if ’ claim, observe first that if we have U(A,Oij ;Z) >

U(B,Oij ;Z) for even a single Oij , it must be (by (R6)) that B �
A. But if U(A,Oij ;Z) = U(B,Oij ;Z) for all Oij , then A ≈Z B by
Lemma 7. Hence A is Z-optimal.
Proof of (2). The ‘only if ’ claim follows from part (1). To prove the
‘if ’ claim, suppose U(A,O;Z)≥U(B,O;Z) for all available actions
B. Fix B. We know that if U(A,O;Z) > U(B,O;Z) we must have
B � A by (R6), so we may suppose U(A,O;Z) = U(B,O;Z). We
show that U(A,Oij ;Z) = U(B,Oij ;Z) for all i, j, so that A ≈Z B.
This result is derived as follows:

U(A,Oij ;Z) = U(A,O;Z) ·U(O,Oij ;Z) by (R7)
= U(B,O;Z) ·U(O,Oij ;Z)

= U(B,Oij ;Z) by (R7).

For the application of (R7), however, we need U(A,O;Z)>0. Recall
that O = Okl for some k and l, and we know that U(Ak,Okl;Z) ≥
q1 > 0, where q1 is the probability of state S1. Since by assumption
U(A,O;Z) is maximal, we have U(A,O;Z)≥U(Ak,O;Z)>0.

NOTES

1 In addition to McClennen, others who discuss infinite value include Sorensen
(1994), Sobel (1996), Vallentyne (1993) and Vallentyne and Kagan (1997).
2 We might doubt whether deliberate action can alter one’s degree of belief in
God, but in this paper I take it for granted that it can.
3 I shall assume that all probabilities are real-valued. Infinitesimals are not
allowed. This restriction is partly for the sake of simplicity and partly for fidelity
to Pascal’s original argument.
4 As Hacking (1972) points out, Pascal provides several distinct arguments,
though most discussion has focused on versions similar to the one just presented.
5 Resnik adopts this as an independent axiom. In fact, it may be derived from
(A1), (A2) and (A4) (see Appendix A.1 at the end of this paper). I include it
because it is useful in discussion.
6 Weaker versions of this axiom are common (see Fishburn 1971), but I shall not
discuss them since we are going to dispense with all of them.
7 Schlesinger (1994) puts the point this way: “In cases where the mathematical
expectations are infinite, the criterion for choosing the outcome to bet on is its
probability” (90).
8 For a brief informal presentation, see Royden (1968).
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9 In support of attributing something like (Ref +) to Pascal, we have his remark
in Pensées 233: “unity joined to infinity adds nothing to it”. In support of
attributing (Ref ·), we have the Wager itself.
10 Here we continue to assume that the argument is as represented in Table I,
where all other utilities reflect mere worldly prizes. In particular, no outcome is
assigned negative infinite utility.
11 One thing Hájek does not do, pace McClennen, is show that one can jus-
tify the Expected Utility Theorem in the setting of Conway’s construction. Pref-
erences are clearly non-Archimedean (i.e., (A5), the Continuity condition, fails),
so a justification is required. Continuity can be restored if we allow not just the
utilities but also the probabilities to take on surreal values, and in this case it
may be that an analogue of the Expected Utility Theorem can be proven.
12 Multiplication of a utility vector by a real number is just scalar multiplication.
13 Once again, though, an independent justification should be provided for the
requirement of maximizing expected utility.
14 The same problem affects infinite hyperreals, though not ℵ0; however, the
Cantorian formulation is vulnerable to the broader objection to arbitrary cut-off
points discussed below.
15 See Fishburn (1974) for a survey and also Skala (1975).
16 Jeffrey (1983, ch. 5) provides a good account of this approach, ultimately due
to Ramsey.
17 Putting things in this way also makes it starkly clear how hard it would be
to adopt such an utterly detached attitude to worldly values – and how fanati-
cal one’s attachment to salvation might appear to be. On this analysis, it is clear
that Pascal’s argument would have no grip whatsoever on someone who does not
have such preferences.
18 The definition of preference intervals and Lemma 2 are both found in
Fishburn (1971).
19 It is possible to take one of the outcomes in the decision table – O21 for exam-
ple – as the base point. That would change some of the relative utilities, but it
would make no difference to the analysis of the Wager developed below (Sec-
tion 5).
20 We assume independence, but there is no essential difficulty if we drop this
assumption and move to conditional probabilities.
21 Note that there is no difficulty if the optimal outcome is not unique. By (R7),
we get the same relative decision matrix with respect to any optimal outcome.
22 Alternatively, we may take Z to be the worst of the four outcomes in the deci-
sion table, consistent with the practice we shall adopt later.
23 Pensées 233.
24 We might still be worried about the choice of the base-point Z. This concern
will be addressed shortly.
25 One could assert that God’s happiness has to be represented as infinitely great
relative to human salvation. This is the problem of interpersonal utility compar-
isons writ large! It is sufficient that salvation be absolutely maximal for humans.
Pascal’s original argument demands no more than this.
26 The restriction of the Parallax Postulate to pure outcomes A and B is nec-
essary. If Wp is the gamble [pSA, (1 −p)Z], then we have U(Wp,C;Z)=∞ for
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any earthly reward C, but U(Wp,SA;Z)=p. For non-trivial gambles, we can use
linearity to figure out relative utilities.
27 A Dante-like series of infinitely worse hells would complicate matters, but
might be handled in a way analogous to the super-Pascalian Wager of the preced-
ing section. This scenario raises problems for the Parallax Postulate, though, since
it dictates that from the lowest levels of the inferno, all higher levels (including
paradise!) have approximately equal attraction. The approach developed in this
paper seems to work best where the successive infinite jumps in utility move in
the positive direction.
28 It is important here that the two types of murder be seen as different only in
degree.
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