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Abstract. We explain and explore class-theoretic potentialism—
the view that one can always individuate more classes over a set-
theoretic universe. We examine some motivations for class-theoretic
potentialism, before proving some results concerning the relevant
potentialist systems (in particular exhibiting failures of the .2 and
.3 axioms). We then discuss the significance of these results for the
different kinds of class-theoretic potentialist.

Introduction

In this paper we examine a new kind of potentialism in set theory.
From the off, let’s state the difference between actualism and poten-
tialism:

Set-Theoretic Actualism: There is a maximal universe of sets that
is complete in the sense that we can quantify over all the sets it contains
using standard first-order quantifiers and it cannot be extended.

One natural such position is universist set-theoretic actualism; the
view that there is exactly one such universe. However, this is not nec-
essary for actualism; one could have multiple distinct incomparable
universes, each of which cannot be extended.1 Whatever one’s prefer-
ence, actualism contrasts sharply with:

Set-Theoretic Potentialism: The universe of sets is not a completed
totality, but rather unfolds gradually as parts either come into existence
or become accessible to us.2

A common way of making set-theoretic potentialism mathematically
precise is by viewing this ‘gradual unfolding’ as describing a space (or
spaces) of possible worlds. Modal operators are then often introduced,
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and we are able to ask several kinds of questions, including (i) what
holds non-modally at particular worlds, (ii) what modal principles cer-
tain worlds satisfy, and (iii) what the modal logic of different acces-
sibility relations are. For this reason, discussion of potentialism often
focuses on the nature of these set-theoretic worlds. For example, we
might (inspired by [Zermelo, 1930]) view the worlds as the study of ever
larger Vκ for κ inaccessible, with accessibility being coextensive with
the subset relation. Another is to have the worlds be all those that can
be obtained by set forcing (and moving to ground models) from some
starting universe, and have one world V be accessible from another V ′

just in case one can force from V ′ to obtain V . There have been sev-
eral results in this field, including isolating the modal logic of forcing
([Hamkins and Löwe, 2008]) and the study of potentialist maximality
principles ([Hamkins, 2003], [Hamkins and Linnebo, 2018]). One key
question (that we will deal with in detail later in this article) concerns
whether the modal axioms .2 and .3 are satisfied in addition to S4 in
the relevant potentialist systems.3 .3 indicates a kind of ‘inevitabil-
ity’ or ‘linearity’ to how the worlds unfolds, and .2 indicates a form of
‘convergence’ present on the frame. Moreover so called ‘mirroring theo-
rems’ (which allow us to move between potentialist and non-potentialist
theories via a natural translation) are only known to hold on systems
containing S4.2. This has lead some authors (e.g. [Hamkins, 2018a],
p. 33) to claim that the convergent forms of potentialism (i.e. those
with modal logic at least S4.2) are ‘implicitly actualist’. Whatever one
thinks of these specific claims, it is clear that .2 and .3 represent clear
dividing lines between different potentialist systems.

This greater understanding of set-theoretic potentialism has occurred
alongside an explosion in the study of second-order set theory (also
called class theory).4 These theories introduce a new kind of vari-
able to range over classes as well as sets, which are then governed
by theories such as variants of NBG and MK. Previously the key de-
bate to be settled was whether or not the comprehension axiom for
classes should be fully impredicative or rather whether only predica-
tive comprehension was licensed by our conception of classes (see, for
example, [Uzquiano, 2003]). However, recently we have discovered an

3It should be noted that S4 trivially holds in any potentialist system. See §3.
4The nomenclature of “second-order set theory” is perhaps unfortunate, as the

standard way to formulate these theories are as first-order theories with two sorts,
one for sets and one for classes. Equivalently, one can formulate them in second-
order logic using Henkin semantics. There is also a one-sorted version, where we
only have class variables but introduce a predicate for set-hood.
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entire space of possible second-order set theories with varying conse-
quences and consistency strengths. Moreover, the dimension in which
they can vary is not just along the axis of strength of comprehen-
sion. For example, class-theoretic versions of the axiom of choice are
independent even of full impredicative MK (see [Gitman et al., 2019]).
Moreover, class forcing (where the forcing partial order and generic
can be proper classes) has provided us with a controlled yet flexible
method for adding (sub)classes to a model, in a similar way to how set
forcing does for (sub)sets.

The above observations suggest that the various kinds of set-theoretic
potentialism are not the whole story. Instead, we might study the
following kind of potentialism:

Class-Theoretic Potentialism: The classes of the universe do not
constitute a completed totality, but rather unfold gradually as more
classes either come into existence or become accessible to us.

Notice that one need not be a set-theoretic potenialist if one is a
class-theoretic potentialist. One can perfectly well have the classes
over a model change whilst the sets remain fixed, say if one were a set-
theoretic actualist. In this paper, we explore the view that one might
be a set-theoretic actualist whilst being a class-theoretic potentialist.
We will argue for the following claims:

(1) Class-theoretic potentialism can be motivated on the basis of
several different philosophical conceptions of classes.

(2) Whilst there are class-theoretic potentialist systems that satisfy
S4.3 and S4.2, many exhibit failures of the .2 and .3 axioms.

(3) Depending on the desiderata that one has on class-theoretic
potentialism, there are constraints placed on the base theory to
be chosen and constructions allowed.

The strategy of our argument is to show how class-theoretic po-
tentialism relates to different conceptions of classes, mathematically
articulate the position and prove some results, and then discuss the
relevant philosophical implications. Here’s the plan in more detail:

After these introductory remarks, in §1 we’ll outline some philo-
sophical positions regarding classes that can be used to motivate class-
theoretic potentialism. We’ll divide these into two broad kinds: Bottom-
up approaches start with some fixed stock of classes and then individ-
uate new classes over these, whereas top-down approaches see class-
theoretic potentialism as arising from referential indeterminacy and the
ways we can interrelate sharpenings of the ranges of the class-theoretic
variables. §§2–3 set up the key mathematical notions we shall use to
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examine these views, namely potentialist systems (structures that for-
malise the notion of worlds and accessibility between them) and the
modal logics and axioms they satisfy. §4 proves some results about
some potentialist systems, in particular showing that for weak theo-
ries below the level of NBG + ETR, given suitable assumptions we can
exhibit failures of the .3 (Theorem 18) and .2 axioms (Theorem 19),
showing that some systems have non-inevitability and radical branch-
ing. We’ll then discuss some implications for bottom-up approaches to
classes (§5) arguing that whilst there are good motivations for handling
truth predicates, global choice is problematic in this context. We then
(§6) examine top-down approaches, arguing that our results are indica-
tive of more natural cases of radical branching than is normally seen
in potentialist context. §7 handles a natural objection to our approach
(regarding the use of countable transitive models) one which we feel
makes certain philosophical issues more perspicuous. §8 provides some
concluding remarks and identifies several open questions and directions
for future research.

1. Motivating Class-Theoretic Potentialism

In this section we’ll outline the links between class-theoretic poten-
tialism and a variety of conceptions of classes. Our aim is not to con-
clusively argue for class-theoretic potentialism, but rather to show that
it is a viable position (philosophically speaking) and in fact fits nicely
with a multiplicity of positions which we’ll divide into bottom-up and
top-down approaches. The former roughly corresponds to potentialisms
linked to process of individuation and the latter corresponds to consid-
erations regarding indeterminacy of reference.

Let’s assume hereon that one is a set-theoretic actualist—one has
accepted that some universe of sets is modally definite and cannot
have sets added. For ease of expression, we’ll speak as if there’s just
one such universe, but nothing we say will change if there are multiple
such. It still behooves the set-theoretic actualist to explain what classes
are. There are a number of options here. A mathematically popular
and expressively parsimonious option is to regard talk of classes as
merely shorthand for certain formulas holding within the universe. So,
for instance, “x ∈ Ord” can be rendered as “x is a transitive set lin-
early ordered by ∈”, or for a more complicated class such as a proper-
class-sized embedding j, the formula “j(x) = y” can be rendered as
some formula ϕ(x, y) only referring to sets, possibly involving param-
eters. A disadvantage of this view is that it appears to trivialise vari-
ous mathematical theorems under their natural interpretation, such as
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[Kunen, 1971]’s result that there is no nontrivial j : V → V and the
work by [Vickers and Welch, 2001] on embeddings from inner models
to the universe.5

We’ll now survey some of the options that have been proposed, and
explain how they might motivate class-theoretic potentialism. By re-
viewing the literature we can extract two main strands: bottom-up
approaches are those those view classes as given to us via some iter-
ated process of individuation, and top-down approaches are those that
view classes as existing within a potentialist framework in virtue of
indeterminateness of reference.

1.1. Bottom-up approaches. The key feature of a bottom-up ap-
proach to classes is that one begins with some antecedently specified
classes (e.g. the definable ones) and then builds up the classes by
forming new classes from old via some process.

1.1.1. Liberal Predicativism. The first interpretation we’ll look at is
derived from the work of Parsons (e.g. [Parsons, 1974]) with subsequent
development by Fujimoto (e.g. [Fujimoto, 2019]) and concerns viewing
classes as predicate extensions :

Class Predicativism: Classes are extensions of predicates.6

Once this perspective has been taken, class-theoretic potentialism
becomes a natural position. Simply put: Because classes are given by
language we might think that for any language there is another that
non-trivially extends it. This is borne out in the way that both Parsons
and Fujimoto express their position. Take the following illustrative
passage from Parsons:

...we do not have an independent understanding of what
predicates or abstracts denote, or what class or second-
order variables range over. It follows that “all exten-
sions...” will, unless set-theoretic notions are imported,
only mean “the extensions of all possible predicates”.
And it seems evident that the “totality” of possible pred-
icates is irremediably potential... ([Parsons, 1974, p. 8])

5The point that Kunen’s Theorem is trivialised when all embeddings are
viewed as definable was communicated to us by Sam Roberts and is raised in
[Hamkins et al., 2012], [Fujimoto, 2019] (esp. §III), and [Barton, F] (esp. §2.2).

6Fujimoto appears to suggest in [Fujimoto, 2019, p. 209] that classes just
are predicates whereas Parsons characterises them as predicate extensions (see
[Parsons, 1974, p. 7]]). Either way, the point remains the same: Predicates are
parts of language, rather than the combinatorially characterised objects of iterative
set theory.
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Similar sentiments are available in Fujimoto:

Our proposal is to interpret the quantifier ∃X as “there
exists an admissible predicate such that...” or “there is
a predicate we may admissibly introduce such that...”
and interpret the membership relation x ∈ X as “the
predicate X holds for x.” ([Fujimoto, 2019], p. 211)

Both Parsons’ and Fujimoto’s words suggest potentialist readings,
the former by referring to the introduction of classes as “irredeemably
potential” and the latter by talking about how we may “admissibly
introduce” predicates. Both, however, opt for non-modal theories, the
former via a theory of classes and satisfaction and the latter adopts
NBG augmented with a class-theoretic principle satisfying a version of
the KF truth-theoretic axioms.7

Given that both Parsons and Fujimoto think that there is no definite
collection of all predicates, one might think that it would be better to
consider a modal class-theoretic potentialist framework in ascertaining
the prospects for class predicativism. Beginning with some fixed lan-
guage, we come to individuate new classes at each additional stage by
adding predicates for them into our language. In this way, the classes
we have are irredeemably potential, much like the stock of predicates
we may admissibly introduce.

1.1.2. Property Potentialism8. The idea that classes are successively
individuated by the addition of predicates to language can be tied to
the thought that class membership corresponds to property application.
The two are closely linked, since properties are often taken to be the
semantic values of predicates, with an application of a property to an
object corresponding to a predicate holding of that object (or a name
for that object). This kind of view, when taking in unrestricted gen-
erality, leads quickly to the semantic paradoxes (cf. [Linnebo, 2006]).
A restriction is therefore needed, and one suggestion (made by both
[Linnebo, 2006] and [Fine, 2005a]9) is that the application relation for
properties is successively individuated. This successive individuation

7See [Fujimoto, 2019], p. 223 for details.
8We are grateful to Øystein Linnebo for suggesting this interpretation of classes

as leading to class-theoretic potentialism and Sam Roberts for several helpful dis-
cussions here.

9[Fine, 2005a] does not expressly use property-theoretic language. How-
ever, since his view is so close to that of Linnebo’s (for example allowing self-
membership/application for classes) and he uses the same picture of successively
specifying an application relation, we will include them together. See [Roberts, Ua]
for discussion.
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of the application relation can then lead to a version of class-theoretic
potentialism by obtaining different domains of classes by letting each
domain be those classes that are co-extensional with properties at some
stage of the iteration.

In more detail, Fine conceives of us starting with only the ideological
resources of set membership (and first order logic) at our disposal. We
can then specify all the properties that correspond to some condition
in this initial language. At the next stage, we have an enhanced under-
standing of what properties apply to, and so can specify which objects
fall under the conditions given these expanded ideological resources.
We iterate this process along the ordinals in a stage-theoretic manner
taking unions at limits. Fine thinks of this process as yielding the ZFC
sets as the extensions of properties within this framework, but we may
also view ourselves as building the properties over an initial fixed stock
of sets (since the class of all sets is identified by the condition of being
a set at the very first stage).

[Linnebo, 2006]’s approach is very similar though different in motiva-
tion. Rather than being concerned with classes directly, he is concerned
with providing a response to the semantic paradoxes. For this reason,
he makes a distinction between sets and properties, with properties the
semantic values of conditions. The exact technical details of his project
needn’t trouble us here (for details see [Roberts, Ua]), the important
point for us is that he proposes a theory of properties on which the ap-
plication relation is successively individuated along the ordinals. In this
respect both Fine and Linnebo’s theories are very similar—they have
theories for non-set-like entities defined by conditions on which the ap-
plication/membership relation is successively individuated. Thus the
two accounts come down to essentially the same picture of (potential-
ist) classes: classes can be viewed as the extensions of properties at
some stage of the process of individuation.

Linnebo’s theory and Fine’s theory are also very similar from a math-
ematical perspective. The strength of these theories has recently been
examined by Roberts [Roberts, Ua]. These property theories are prov-
ably consistent in NBG + Π1

1-Comprehension. More strength can be
obtained by the addition of a reflection principle for properties in this
context. In particular, the principle that (for ϕ in the language of
property theory) “ϕ holds concerning all properties iff ϕ true at some
stage of the iteration” yields full impredicative comprehension when we
let classes be interpreted in the above manner. Moreover, these prop-
erty theories are mutually interpretable with ZFC with the addition for
Ord-iterated truth predicates (see [Roberts, Ub]).
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Whilst both Fine and Linnebo give an actualist theory of proper-
ties (within which we can interpret certain fragments of class theory)
their philosophical claims admit a potentialist interpretation. Talk of
successively individuating the application relation (and the new classes
that are available each time we do) can be naturally thought of in a po-
tentialist manner. Indeed, one can see this potentialism concerning the
classes that are the extensions of properties in the sets as being given
formal codification in a stage-theoretic version of Linnebo’s property
theory given by [Roberts, Ua]. Philosophically speaking though, the
way that the two constructions are phrased also suggest this interpre-
tation. For example, Fine writes:

On the usual conception of the cumulative hierarchy of
Zermelo-Fraenkel set theory (ZF), we think of the mem-
bership predicate as given and of the ontology of sets
or classes as something to be made out. Thus given an
understanding of membership, we successively carve out
the ontology of sets by using the membership predicate
to specify which further sets should be added to those
that are already taken to exist. Under the present ap-
proach, by contrast, we think of the ontology of classes
as given and of the membership predicate as something
to be made out. Thus given an understanding of the
ontology of classes, we successively carve out extensions
of the membership predicate by using conditions on the
domain of classes to specify which further membership
relationships should obtain. ([Fine, 2005a], p. 547)

Linnebo expresses a similar sentiment:

We begin by individuating some class of set-theoretic
properties. For concreteness, assume we individuate
those set-theoretic properties definable...allowing for pa-
rameters referring to pure sets. Now we want to use the
set-theoretic properties we have just individuated to in-
dividuate more properties. ([Linnebo, 2006], p. 173)

For both Fine and Linnebo, given this idea of successively individ-
uating the application relation, there will be new classes appearing as
the application relation progressively individuates certain properties as
holding of more and more sets. For instance as we move through the
first few levels of individuation, we will individuate a truth-predicate
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for the language of ZFC (after the first stage), and then a truth predi-
cate for the expanded language, and so on.10

1.1.3. Postulationism. A different bottom-up approach can be obtained
from Kit Fine’s ‘procedural postulationism’ (as in [Fine, 2005b]). Ac-
cording to Fine, we gain knowledge of mathematical objects by postu-
lating their existence. For Fine, however, postulation amounts to more
than the mere postulation of a truth of a proposition, rather it concerns
providing a rule for the construction of a particular entity (or entities):

[Procedural postulationism] shares with traditional forms
of postulationism, advocated by Hilbert (1930) and Poincare
(1952), the belief that the existence of mathematical ob-
jects and the truth of mathematical propositions are to
be seen as the product of postulation. But it takes a
very different view of what postulation is. For it takes
the postulates from which mathematics is derived to be
imperatival, rather than indicative, in form; what are
postulated are not propositions true in a given mathe-
matical domain, but procedures for the construction of
that domain. ([Fine, 2006], p. 89)

Fine links these imperatival conditions to sets of rules (what he
calls procedures or postulational rules) for the construction of the do-
main. These procedures can be thought of as analogous to computer
programs—similar to how a computer program moves a machine from
one state to another, a postulational rule tells us how to go to one com-
position of a mathematical domain to another. Of course, the analogy
cannot be completely tight, even with the relatively liberal definition
of Turing computability we will not get us many of the mathematical
objects we want (e.g. uncountable sets). We thus need a liberalised
notion of procedure. Go too liberal though and we encounter a fur-
ther problem—obviously certain imperatival rules (e.g. “Introduce the
Russell set!”) will be inconsistent. Fine thus attempts to sharpen his
account by making explicit the kinds of rules we are allowed imple-
ment. Specifically, he introduces the following rules (letting C(x) be
some condition on objects):

Introduction: !x.C(x)

which is to be read as “introduce an object x conforming to the condi-
tion C(x)”. This act of postulation creates an object satisfying C(x) (if
one does not exist already), and otherwise does nothing. The complex
rules are:

10For details, see [Roberts, Ub].
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Composition: Where β and γ are rules then so is β; γ, which may be
read as “First execute β and then execute γ”.
Conditionality: Where β is a rule and A is an indicative sentence,
then A→ β is also a rule, which may be read as “If A then do β”.
Universality: Where β(x) is a rule (that can be applied to an arbi-
trary object x), then so is ∀xβ(x), which may be read as “for each x
(simultaneously) do β”). We also allow the rule ∀Fβ(F ), where F is a
second-order variable ranging over any plurality of the initial domain.
Iteration: Where β is a rule, so is the operation of executing β any
finite number of times (we call this operation β∗).

Fine suggests that an imperatival logic can be obtained for these con-
ditions, but again the details are not important.11 What is salient in
this context is that his postulationism leads naturally to class-theoretic
potentialism. Assume that the sets are given (which might be them-
selves previously constructed through postulational acts). We can then
consider postulational rules for introducing classes, such as“add a truth
predicate!”. Such postulational acts are naturally thought of in poten-
tialist terms. It should be noted that there are potentially many differ-
ent postulational processes that might lead to different class-theoretic
potentialisms. Whilst one might view postulationsism as telling us
how ‘the’ domain of classes can be obtained via postulation, this is not
essential to the position. It could be (for instance) that we instead
view different postulational processes as yielding different conceptions
of modal space, with no single one being privileged.

That concludes our introduction of bottom-up approaches to class-
theoretic potentialism. There may be others, but this is not so impor-
tant for our purposes—we just want to motivate consideration of the

11It should be noted that the details are not clear to us either—[Fine, 2005b]
contains several promissory notes concerning technical specifics, but we do not know
of anywhere that they have appeared. Nonetheless, the view (on many families of
sharpenings) naturally suggests class-theoretic potentialism and that is enough for
present purposes.
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view, not provide a comprehensive description of its possible motiva-
tions, and there may well be others.12 Just to review, the key facets of
bottom-up approaches are:

Initial World: We obtain classes beginning with some initially spec-
ified classes and then...
Individuation: ... we individuate new classes over the existing classes.

1.2. Top-down approaches. A different route to class-theoretic po-
tentialism is top-down in nature. Instead of starting with some an-
tecedently given collection of classes and iterating a process of individ-
uation, we might instead view potentialism arising out of referential
indeterminacy. This is the core approach of top-down views: We state
some conditions we would like domains of classes to satisfy, but it may
be that there is no single domain that is thereby referred to. We can
then take class-theoretic potentialism to be telling us how we may move
around within these domains that satisfy our basic class-theoretic prin-
ciples. More concretely, we may see the following views as motivating
class-theoretic potentialism.

1.2.1. Multiverse approaches to class-theoretic potentialism. The first
is relatively simple in nature—we may view class-theoretic potentialism
as being motivated by garden-variety set-theoretic potentialism. If one
thinks that any universe of set theory appears as a set in a larger uni-
verse (i.e. for universe V there is another universe V ′ such that V ′ ∈ V )
and that any universe can be extended by set forcing,13 then class-
theoretic potentialism considers multiversally-interesting set-theoretic
structures. For example given a universe V , we can always make V
countable by moving to a universe V ′ in which V appears as a set, and
then collapsing |V | to ω by forcing over V ′ (call this universe V ′[G]).

12For example, a slightly unusual way of motivating class-theoretic potential-
ism would be to view classes as parts of the universe of sets (which is trivially
a part of itself). Such an approach is taken by [Welch and Horsten, 2016], but
with a very Platonistic flavour. They regard the classes (i.e. parts) of V as inde-
pendently existing but non-mathematical objects, instead opting to view them as
metamathematical objects. (They then use this account of classes to motivate an
embedding-theoretic characterisation of a reflection principle.)

However, we might take a potentialist attitude to reference to these parts. The
idea is somewhat similar to property-theoretic or predicativist account, but rather
than viewing the potentialism as arising out of individuation or language expansion,
we can regard it as arising out of subsequent increasingly fine-grained reference to
parts. Since the view of ‘parts as potential’ is somewhat unusual we won’t consider
this possibility here, but it merits further consideration.

13Views of this kind include [Hamkins, 2012], [Arrigoni and Friedman, 2013],
and [Scambler, 2021].
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Within V ′[G], we can consider various class-theoretic potentialist sys-
tems (to be discussed in greater detail in §2), such as those collections
X of subsets of V in V ′[G] for which (V,X ) |= NBG.

For certain versions of multiversism, this kind of potentialism can
be motivated on philosophical as well as mathematical grounds. If one
thinks that the concept of arbitrary set is indeterminate (and holds
a multiversism on these grounds), one is likely to hold also that our
concept of class is also indeterminate. Thus, even if I fix some uni-
verse V as a starting position (within the multiverse), it is unlikely to
be determinate exactly what classes exist over V . Similarly, for the
usual set forcing potentialist, even if I fix the natural numbers, they
are unlikely to hold that the reference to all sets of natural numbers
is determinate. Thus, given a universe V in the multiverse, we can
construe reference to all classes of V as referentially indeterminate and
yielding a potentialist system of its own.

1.2.2. Plurals and Potentialism. Plural resources have been used to
interpret proper-class talk (see, for example, [Uzquiano, 2003]). Of-
ten the ranges of plural variables are taken to be determinate
(e.g. [Hossack, 2000], [Uzquiano, 2003]). However, this view has
recently been challenged by the work of Florio and Linnebo (in
[Florio and Linnebo, 2016]) who show that there are versions of Henkin
semantics for plural logic, and argue that this calls into question the
determinacy of plural quantification.

We won’t get into the details about whether or not one should ac-
cept that plural resources are in fact indeterminate—our focus here is
on considering a range of possible views that might motivate the more
general idea of class-theoretic potentialism, rather than trying to settle
this tricky matter. However, if one does accept that such resources are
indeterminate, one might be able to motivate a class-theoretic poten-
tialism. Namely, the referential indeterminacy in the plural quantifica-
tion extends to referential indeterminacy about classes. Once we have
this indeterminacy in the picture, it is a short step to class-theoretic po-
tentialism, understood as the study of different precise interpretations
of the plural variables and how we may move between these interpre-
tations.

So, to conclude this section, in addition to bottom up approaches
and their twin pillars of Initial World and Individuation, we have
top-down approaches that are based on the following two ideas:

Referential Indeterminacy: Over a given universe of sets V , refer-
ence to the classes of V is not determinate (i.e. does not pick out a
unique privileged interpretation).
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Interrelation of Interpretations: Class-theoretic potentialism can
be understood as interrelating these distinct possible interpretations
(e.g. how one can move between them, what theories they satisfy,
etc.).

2. Class-theoretic potentialist systems

With these motivations for the broad idea of class-theoretic poten-
tialism in hand, it is time to lend some mathematical precision to their
study. In this section we’ll discuss some different kinds of class-theoretic
potentialist systems and how some of the philosophical views relate to
these potentialist systems.

2.1. Class theoretic principles. We will use a two-sorted approach
to class theory, with sets and classes as the two types of objects. A
model of class theory will be denoted (M,X ), where M is the sets and
X is the classes. We are interested in transitive models, for whom their
membership relation is the true ∈, and will suppress the membership
relation in the notation.

We call a formula in the language of class theory elementary if its
quantifiers only occur over set variables (but class parameters are al-
lowed).

Definition 1 (Class theories). All our class theories will include ZFC
for the sets. Where they differ is in their axioms for classes.14 They also
include an extensionality axiom for classes and a replacement axiom for
classes—if F is a class function and a is a set then F ′′a is a set.

• Adding the predicative comprehension schema, viz. the in-
stances of comprehension for elementary formulas, gives von
Neumann–Gödel–Bernays class theory NBG.
• Adding the full impredicative comprehension schema, viz. all

instances of comprehension, including those with class quanti-
fiers, gives Morse–Kelley class theory MK.

Beyond these two class theories certain class theoretic principles will
arise in our investigation.

Definition 2. Global choice is the assertion that there is a global choice
function for all nonempty classes. Equivalently, it may be formulated
as the assertion of a bijection Ord → V or the assertion of a global
well-order.

14Though the reader should be clear that these class axioms can have conse-
quences for the sets, e.g. implying the existence of transitive models of ZFC.
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It is well-known that MK does not imply global choice, but that
global choice has no consequences for sets. Given a model of class
theory a generic global well-order can be added by a forcing which
does not add sets.

Definition 3. Elementary transfinite recursion ETR is the principle
asserting that transfinite recursion of elementary properties along well-
founded classes have solutions.

Observe that MK proves ETR, since one can define the solution to
an elementary transfinite recursion with an impredicative formula. On
the other hand, ETR exceeds NBG in consistency strength, since the
Tarskian truth predicate for V can be given by elementary transfinite
recursion, and thereby ETR proves the consistency of ZFC.

Indeed, ETR is closely connected to truth predicates, and can equiv-
alently be expressed as a truth-theoretic principle.

Theorem 4 (Fujimoto [Fujimoto, 2012]). Over NBG, ETR is equiva-
lent to the assertion that iterated truth predicates15 of any length relative
to any class parameter always exist.

One can restrict ETR to get a hierarchy of transfinite recursion prin-
ciples. If Γ is a class well-order let ETR(Γ) denote the restriction of ETR
to recursions along well-founded classes of rank ≤Γ and let ETR(< Γ)
denote the restriction of ETR to rank <Γ. These principles separate
from full ETR and from each other based on Γ, according to consistency
strength; see [Williams, 2019] for details.

2.2. Explaining the systems. A potentialist system is a collection
of structures of the same type, ordered by a reflexive and transitive
relation ⊆ which refines the substructure relation. They give a for-
malisation of a domain we can think of as dynamically growing. In
this section, we will provide the basic definitions for the potentialist
systems we plan on considering.

Our two philosophical approaches to class-theoretic potentialism
(viz. bottom-up and top-down) correspond to two different (but re-
lated) ways of studying potentialist systems mathematically. For top-
down approaches, we consider all possible collections of classes which
meet some basic criteria. We begin with the following:

Definition 5. Let T be a second-order set theory, such as NBG or MK.
Fix a countable M |= ZFC. The T -class potentialist system for M is
the collection of all countable (M,X ) |= T . Of course, these can be

15See the beginning of §4 for definitions and fuller discussion of truth predicates
and iterated truth predicates.
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identified with their second-order parts X . The relation here is just
the usual substructure relation.

For ease of writing, we will call such X a T -expansion for M .

It could be that M has no T -expansion. For example, MK has first-
order consequences which go beyond ZFC and so M might have no
MK-expansions due to having a bad theory, e.g. if M has no worldly
cardinals. We will implicitly assume that this does not happen, and
that our potentialist system is nontrivial.

Top-down approaches then can be viewed as considering different T -
class potentialist systems. A top-down potentialist might, for instance,
hold a view of classes that legislates they should satisfy MK. But, due
to indeterminacy of reference, they cannot point to a single definite
collection of classes, and instead want to consider all possible collection
of classes which could be put on the sets.

Bottom-up approaches to potentialist systems, by contrast, specify
rules for extension, and then consider which potentialist systems satisfy
these rules. Rather than starting from the outset with a fixed poten-
tialist system, we consider axioms governing the accessibility relation
and what extensions must exist, and then ask which, if any, potential-
ist systems satisfy these axioms. For example, we will consider what
happens when we require having extensions which arise from the ad-
dition of truth-predicates or, by taking (tame) class-forcing extensions
which do not add sets. Some of the views we consider motivate fur-
ther restrictions on the accessibility relation. For instance, the systems
of Linnebo and Fine both have built in that the accessibility relation
must be well-founded, since for them the process of property-theoretic
membership individuation is well-founded.

For both approaches, an important question will be to understand
the modal logic of the potentialist systems in play. We provide some
definitions and background for this before we give a more fine-grained
analysis.

3. Modal logics of class-theoretic potentialism

Given a potentialist system (A,⊆) there is a natural modal interpre-
tation: ϕ holds at a world M ∈ A if ϕ holds in every N ⊇ M and
ϕ holds at a world M ∈ A if ϕ holds in some N ⊇ M . A modal

assertion is valid at M ∈ A if it’s true for any substitution of formulae
for the propositional variables. For example, p ⇒ p is valid at every
world because if ϕ holds in every extension of M it in particular holds
at M .
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A key mathematical question is then: what are the modal validities
of A, the collection of modal assertions valid at every world in A?

An easy observation is that S4 is valid for any potentialist system.

Definition 6. S4 is the modal theory axiomatised by the following
axioms

(K) (p⇒ q)⇒ ( p⇒ q)

(D) ¬ p⇔ ¬p
(S) p⇒ p

(4) p⇒ p

and closed under the inference rules of modus ponens and necessitation.

K and D hold for free for any modal logic which comes from a Kripke
frame; they come from the corresponding rules for universal quantifi-
cation applied to quantifying over worlds in the frame. S holds on any
frame whose accessibility relation is reflexive, and 4 holds on any frame
whose accessibility relation is transitive. Since potentialist systems are,
by definition, reflexive and transitive they will always validate S4.

Some other modal axioms we consider in this article are:

Definition 7.

(.2) p⇒ p

(.3) ( p ∧ q)⇒ [(p ∧ q) ∨ ( p ∧ q)]
Adding these to S4 gives, respectively, the theories S4.2 and S4.3. One
way to think of them is the corresponding frame conditions: .2 holds
for any frame whose accessibility relation is directed and .3 holds for
any frame whose accessibility relation is linear.

In the next section we will compute the exact modal validities of a
few potentialist systems. Let us briefly describe the main tools, control
statements, which are used for such arguments.

Definition 8 ([Hamkins and Löwe, 2008, Hamkins et al., 2015]).

• A button is an assertion β so that β holds at every world.
If β holds at a world M , we say β is pushed for M , otherwise
we say β is unpushed. The intuition is, you can push a button,
making β true forevermore, but once you push it you can never
unpush it.
• A switch is an assertion σ so that σ and ¬σ holds at every

world. The intuition is, you can toggle the truth value of σ
freely back and forth.
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• A ratchet is a finite sequence ρ0, . . . , ρn of buttons so that push-
ing ρi pushes ρj for all j < i. The intuition is, you can ratchet
forward but never back.
• A long ratchet of length Γ is is a uniformly definable sequence

of buttons rξ, indexed by ξ < Γ, so that pushing rξ pushes rη
for all η < ξ and so that in no world are all buttons on the
ratchet pushed. Observe that this second condition forces the
ratchet to have limit length, as if there were a last button then
we could push it to push all the buttons.

A collection of control statements is called independent if any subcol-
lection of the control statement can be manipulated without affecting
any of the other control statements.

By showing that a potentialist system admits certain control state-
ments, we get upper bounds for their modal validities.

Theorem 9 ([Hamkins and Löwe, 2008]). If a potentialist system ad-
mits arbitrarily large finite families of independent buttons and switches
then its modal validities are contained within S4.2.

Theorem 10 ([Hamkins et al., 2015]). If a potentialist system admits
arbitrarily long ratchets which are independent with arbitrarily large
families of switches then its modal validities are contained within S4.3.

Corollary 11. If a potentialist system admits a long ratchet whose
length Γ is closed under addition <ω2 then S4.3 is an upper bound for
its modal validities.

Hamkins, Leibman, and Löwe proved this result for long ratchets of
length Ord, but it is simple to check that what they used is that Ord
is closed under addition <ω2.

Proof sketch. By Theorem 10 it is enough to see that having a long
ratchet as in the statement of the lemma can simulate arbitrarily long
ratchets which are independent with arbitrarily large finite families of
switches. To this end, write the unpushed indices on the long ratchet
as ξ + ω · α + k, where ξ is the supremum of the pushed indices and
k < ω. The α part gives a position in the ratchet (sitting at the end if
α is too large) and the bits of k simulate the switches. These can be
freely changed without increasing the position on the ratchet, and we
can move further along the ratchet without affecting the pattern of the
switches. The condition on the length Γ ensures that there is always
space to do this, no matter what ξ is for the current world. �
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With the set up of potentialist systems and their modal validities
in hand, we can begin to examine class-theoretic potentialism mathe-
matically and draw some philosophical conclusions on this basis. As
we shall see, many potentialist systems violate the .2 and .3 axioms.
These results will help us to raise some challenges for class-theoretic
potentialism and help us to elucidate the position further, in particular
relating these results to the philosophical motivations considered in §1
(we do so in §5 and §6).

4. Truth predicates and potentialism

In this section we present some mathematical results about class
potentialist systems which involve truth predicates. Especially relevant
for philosophical purposes will be failures of the .3 (Theorem 18) axiom
and .2 axiom (Theorem 19) for certain systems. Most of the results are
phrased in terms of certain bottom-up potentialist systems, but some
of the work also applies to top-down potentialist systems; failures of
modal principles for the smaller systems can sometimes be pushed up
to a larger system.

Let us begin by fixing some notation and definitions. We will use
capital Greek letters—e.g. Λ,Γ—to refer to class well-orders. Addition,
multiplication, and exponentiation on these are defined as usual. To
match the familiar notation for ordinals, we write ξ < Λ to mean
ξ ∈ dom(Λ). To compare elements ξ and η of Λ we write ξ < η. Given
class well-orders Λ and Γ say that Λ is closed under addition <Γ if
whenever ξ < Λ and η < Γ we have that ξ+η < Γ. That is, Λ is closed
under addition <Γ if every element of Λ has an η-th successor in Λ for
each η < Γ.16

Consider a fixed transitive M |= ZF.17 The truth predicate for M is
the Tr ⊆M which satisfies the recursive Tarskian rules for the satisfac-
tion class for (M,∈). In case we wish to emphasise for which structure

16Observe that if Λ ∼= Λ′ then pushing forward along the isomorphism transforms
a definition along Λ into a definition along Λ′. As such, even though in the class
theoretic context we do not have access to the Mostowski collapse lemma to select
representatives of well-order types, our choice of a representative is harmless.

17One can also consider truth predicates over even ω-nonstandard models, in-
stead asking for a class which satisfies the Tarskian recursion for the internal notion
of formula, including nonstandard formulas. The usual terminology in this context
is full satisfaction classes, to distinguish from the externally-defined truth predi-
cate. It is well-known that in this context full satisfaction classes need not be unique
[Krajewski, 1976], though a model of NBG can have at most one full satisfaction
class. Since the interest in the current article is in transitive models, we work only
in that setting.
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Tr is a truth predicate we will write TrM . Observe that TrM is uniquely
determined by a formula which only quantifies over sets, and so any
NBG-expansion of M can verify whether a class is TrM . Given a class
A ⊆M the truth predicate relative to A is the unique class Tr(A) ⊆M
which satisfies the Tarskian recursion to be the satisfaction class for
(M,∈, A). Again, it is uniquely determined and can be recognised as
such by any NBG-expansion of M .

Given the truth predicate Tr ⊆M , we can consider Tr(Tr), the truth
predicate relative to Tr, and so on transfinitely. These can be unified
in the single definition of an iterated truth predicate.

Working over our fixed transitive M |= ZF, let Λ be a well-order,
possibly a proper class. A Λ-iterated truth predicate is a class Θ of
triples (ξ, ϕ, a) where (ξ, ϕ, a) ∈ Θ intuitively means that ϕ(a) is true
at level ξ < Λ. Here ϕ is a formula in the language where we added
a predicate symbol Θ̂ for Θ. Formally, this is defined by a modified
form of the Tarskian recursion, with an extra clause in the definition
asserting that (ξ, pΘ̂(x, y, z)q, 〈η, ϕ, b〉) ∈ Θ if and only if η < ξ and
(η, ϕ, b) ∈ Θ. As with the ordinary case, we can consider iterated truth
predicates relative to a class parameter A via the obvious modification.

Note that NBG suffices to prove the uniqueness of iterated truth
predicates. Given two classes which satisfy the definition of being a Λ-
iterated truth predicate relative to A, by predicative comprehension we
can form the class of indices where they disagree. So if they disagree
they must disagree at a minimal stage, from which we can derive a
contradiction. We will use TrΛ to denote the Λ-iterated truth predicate
and TrΛ(A) to denote the Λ-iterated truth predicate relative to A. If
ξ < Λ then we write Trξ to mean TrΛ�ξ.

Observe that, up to recoding, Tr1 is the same as Tr and TrΛ+1 is the
same as Tr(TrΛ), and similarly for relativised truth predicates.

The reader should also note that a class being well-founded can be
expressed just by quantifying over sets. Accordingly if a class relation
R is in two NBG-expansions for M then they agree on whether R is
well-founded.

With these definitions in hand, let us now describe a species of class
potentialist systems meant to capture the idea that we can always
expand by adding truth predicates. First, a bit of notation. If X
is a collection of classes over M and A is a class over M then let
X [A] ⊆ P(M) be the smallest NBG-expansion for M which extends
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X and contains A.18 Specifically, X [A] consists of the classes over M
definable using A and finitely many classes from X .

Definition 12. Say that a class potentialist system over M |= ZF is a
truth potentialist system if it satisfies the following three properties.

(1) (M,Def(M)) is a world, where Def(M) is the collection of para-
metrically first-order definable classes over M .

(2) If (M,X ) is a world then it satisfies NBG.
(3) If (M,X ) is a world and A ∈ X then (M,X [Tr(A)]) is a world.

We can modify the third condition to require truth predicates of a
longer length, say of length <Λ. We call such a system a length <Λ-
length truth potentialist system.

(3Λ) If (M,X ) is a world, ξ < Λ, and A ∈ X then (M,X [Trξ(A)]) is a
world.

Observe that (ordinary) truth potentialist systems are the special case
where Λ = 2. This condition can be further modified, in the obvious
way, to require truth predicates along class well-orders of unbounded
length. The latter situation we call an unbounded truth potentialist
system.

Before we analyse truth potentialist systems, let us briefly remark
that they place restrictions on which M we may consider.

Proposition 13 (Krajewski [Marek and Mostowski, 1975, page 475]).
Consider (M,X ) a transitive model of NBG with TrM ∈ X . Then M
contains a club of ordinals α so that V M

α is an elementary submodel of
M .

Proof. By reflection using Tr as a parameter we get club many α so that
(V M

α ,∈,Tr ∩ V M
α ) is a Σ1-elementary submodel of (M,∈,Tr). But we

can express that (V M
α ,∈) is an elementary submodel with a Σ1-formula

referring to the truth predicate. �

Thus if M admits a truth potentialist system then M must have
many undefinable ordinals. This rules out, for instance, pointwise-
definable models like the minimum transitive model, or models without
large cardinals in inner models.19

18The reader may worry about whether there is any such NBG-expansion for M .
It is right to worry, since in general there need not be. But we will confine ourselves
to a context in which it is defined.

19For instance, the Inner Model Hypothesis of [Friedman, 2006] states that any
parameter-free first-order sentence that is true in an inner model of an outer model
is already true in an inner model. In the modal setting, we can think of this as the
assertion (using directed modal operators) that if it is upwardly possible that it is
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We next present some results about smallest truth potentialist sys-
tems over a fixed M . First, however, let us clarify in what sense a
potentialist system may be smallest among a collection of systems.
One way to compare potentialist systems is by containment: if A and
B are potentialist systems then A ⊆ B if every world in A is a world in
B. But this comparison is inadequate for many purposes; for instance,
B could have more worlds than A because it breaks the worlds of A
into finer-grained worlds . Say that A covers B if every world in B is
contained in some world in A. If A ⊆ B and A covers B then we say
that B refines A. A potentialist system is refined relative to a collec-
tion of systems if it has no proper refinements within the collection.
Given a collection of systems, the smallest potentialist system in the
collection, if it exists, is the refined system which is covered by every
other system.

Theorem 14. If M admits a truth potentialist system then it admits
a smallest truth potentialist system. This potentialist system validates
S4.3.

Proof. Set X0 = Def(M) and, for n > 0, set Xn = X0[Trn]. We claim
the potentialist system consisting of these worlds, call it X, is as desired.
By construction, each world satisfies all axioms of NBG except possibly
the class replacement axiom. Because M admits some truth poten-
tialist system, an easy induction shows that each Xn is contained in a
world in a truth potentialist system over M , whence we conclude that
(M,Xn) does indeed satisfy class replacement. The other properties of
X being a truth potentialist system are clear from the construction. In
particular, to find the truth predicate relative to a class in Xn look in
Xn+1.

Now we must see that this is the smallest truth potentialist system
on M . To this end, fix some other truth potentialist system A on
M . An easy induction shows that, for each n, some world in A must
contain Trn. So we see that A covers X. And X is refined because an
easy induction shows that X contains as a subset any A which X covers.

To see that X validates S4.3, merely observe that X is linearly ordered
and recall that linear orders validate S4.3. �

This construction generalises to length <Λ truth potentialist sys-
tems, and for lengths with the correct closure property we can exactly
characterise the modal validities.

downwardly possible that ϕ, then it is already downwardly possible that ϕ. This
principle implies that there are no worldly cardinals in M (see [Friedman, 2006],
[Antos et al., 2021], and [Barton, S]).
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Theorem 15. Fix a length Λ ∈ Def(M) where Λ is well-founded as
seen externally from V . If M admits a length <Λ truth potentialist
system then it admits a smallest one.

Proof. The strategy is the same as before. The smallest truth poten-
tialist system, call it X, will contain X0 = Def(M) and consist of other
worlds Xξ = X0[Trξ], where we want to take the smallest segment of
ξs which makes this work. For this, we must split into cases. If Λ is
closed under addition <Λ then we take ξ < Λ. Else, we take ξ < Λ ·ω.
In either case, we get that if ξ, η < Λ then we can find the η-iterated
truth predicate for a class in Xξ by looking in the world Xξ+η. The
other properties of being a truth potentialist system are checked as in
the previous result; we use that Λ really is well-founded to ensure the
validity of the inductive argument that each Xξ is contained in a world
in some truth potentialist system over M .

Now let’s see that X is the smallest length <Λ truth potentialist
system on M . Fix some other such system A on M . Using that Λ
is externally well-founded, an inductive argument shows that each Trξ
must be in some world in A. Thus A covers X. And X is refined
because an external induction, along either Λ or Λ · ω depending on
the above bifurcation, shows that X contains as a subset any A which
X covers. �

Theorem 16. Fix a length Λ ∈ Def(M), where Λ is externally seen
to be well-founded. Consider the smallest length <Λ truth potentialist
system X on M as constructed in the previous result. Every axiom of
S4.3 is valid in this potentialist system. Moreover if either Λ ≥ ω2 is
closed under addition <Λ or Λ · ω is closed under addition <ω2 then
the modal validities are precisely S4.3.

Proof. That S4.3 is a lower bound for the modal validities is again the
observation that X is linearly ordered. To get the upper bound, we will
use Corollary 11 and demonstrate a long ratchet for this potentialist
system. Let rξ be the assertion “Trξ exists”. Then 〈rξ : ξ < Λ∗〉 gives
a long ratchet for this potentialist system, where Λ∗ is either Λ or Λ ·ω
depending on which case we are in for constructing X. The assumptions
on Λ ensure that Λ∗ is closed under addition <ω2, allowing the corollary
to apply. �

Next let’s see an analogous result where we do not bound the lengths
of truth predicates. To carry out the argument we again need M to be
correct about the well-foundedness of the would-be lengths Λ, which
we encapsulate in the following definition. Say that (M,X ) |= NBG is
a β-model if it is correct about which of its classes are well-founded.



VARIETIES OF CLASS-THEORETIC POTENTIALISM 23

A short argument yields that if OrdM has uncountable cofinality then
(M,X ) is a β-model. In contrast, if OrdM has countable cofinality then
(M,X ) may fail to be a β-model.20

Theorem 17. Suppose M admits an unbounded truth potentialist sys-
tem whose every world is a β-model. Then M admits a smallest un-
bounded truth potentialist system, and this potentialist system validates
exactly S4.3.

Let us remark that the condition on M is satisfied if M has an expan-
sion to a β-model of NBG+ETR, by considering the trivial potentialist
system consisting of just that one world.

Proof. We construct this smallest unbounded truth potentialist system
X in stages. Start with X0 consisting only of X0 = Def(M). Given
Xn, let Xn+1 consist of all worlds of the form X0[TrΛ] where Λ is a
well-order in some world in Xn. Finally, set X =

⋃
n<ω Xn. By an

external induction see that each Xn is covered by a truth potentialist
system consisting of β-models. Therefore, X consists of β-models. This
also establishes that each world in each X satisfies class replacement,
whence we know they satisfy NBG. It is clear from the construction
that X is closed under adding truth predicates of any length (in the
current world), so we conclude X is an unbounded truth potentialist
system.

Showing that X is smallest proceeds as before, using an external in-
duction along the the supremum of the lengths of well-orders in worlds
in X. Note that even if another truth potentialist system A has worlds
which are not β-models, an induction on ω shows it must contain worlds
with the lengths in each Xn, and so it must be that A covers X. The
calculation of the modal validities for X again uses a long ratchet of
iterated truth predicates. Since the lengths of iterated truth predicates
are unbounded in this potentialist system, they are closed under addi-
tion <ω2 and so we always have room from the longest length in the
current world to extend for our long ratchet. �

We next address the existence of global well-orders. There are a
few ways one might ensure a potentialist system includes global well-
orders. Observe that if M has a definable global well-order then any
truth potentialist system for M satisfies the condition (1), modified
to require the base world to satisfy global choice. So we get truth-
potentialist systems with global well-orders which validate exactly S4.3.
However, this puts a firm restriction on the first-order theory of M ,

20See e.g. [Williams, 2019] for constructions. The following theorem can be seen
as a reworking of Theorem 5.1 of that article into the potentialist system context.
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namely M |= ∃x V = HOD({x}). One way very well think that this
extra restriction is unwarranted, and so consider the general case. Here
we can get different behaviour.

Here are two ways to approach the general case. First, we could start
by building up from a world of the form (M,Def(M,G)), where G is
a global well-order for M , rather than building up from the definable
classes. Alternatively, we could add a new rule saying that we can
expand to a larger world to add a generic global well-order. We consider
both approaches.

For the first approach, the way to formulate this is to replace con-
dition (1) in the definition of a truth potentialist system (respectively
<Λ or unbounded truth potentialist system) with the following.

(1G) There is a world of the form (M,Def(M,G)) where G is a global
well-order for M , and all worlds extend this base world.

At first glance this may look innocuous. But, as we will now show,
the choice of global well-order can affect the structure of the potentialist
system.

As a warmup, let us see that some global well-orders are inter-
definable with Cohen-generic classes of ordinals. For one direction of
this, note that if C ⊆ Ord is Cohen-generic then, by density, every set
is coded into the bit pattern of C. So we can define a global well-order
by comparing where sets are first coded. Now note that if we take such
a global well-order we can rearrange it so that it has the ordinals, in
increasing order, placed precisely on the indices where C has value 1.
Such a global well-order is still definable from C, and notice that if we
have such a global well-order we can recover C by looking at the indices
for where ordinals appear. So the two are inter-definable. Indeed, we
can say more about generic global well-orders. There is a natural class
forcing to add a global well-order without adding new sets. Namely,
let Q consist of set-sized well-orders, ordered by end-extension. By
density a generic H for Q will have all of V as its domain. And given
such H we can define a Cohen-generic C by putting i ∈ C if and only
if the i-th element of H is an ordinal. So the two forcings are forcing
equivalent.

Theorem 18. There are truth potentialist systems modified to require
a global well-order in the base world whose modal validities are precisely
S4.2. In particular, .3 is invalid for these systems.

Proof. We construct a length <Ord truth potentialist system, and dis-
cuss after the proof to what extent this generalises.

Consider (M,Y) |= NBG + ETR(Ord) which has no global well-
order. Force over this model to add a Cohen generic C. Gitman and
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Hamkins showed that tame class forcing, such as Cohen forcing, pre-
serves ETR(Ord) [Hamkins and Woodin, 2018, Theorem 16]. Consider
the truth-potentialist system X starting with the base world (M,X0),
where X0 = Def(M,C), and closing off under the requirement that any
world can be extended by adding a ξ-iterated truth predicate relative
to a parameter for any ordinal ξ. That is, X consists of worlds of the
form X0[Trξ(A)] where A ∈ X0. Observe that we can meet this require-
ment to obtain a truth potentialist system, as all worlds reachable in
this way are coded in (M,Y [C]), and so all worlds must satisfy NBG.

We claim this truth-potentialist system has precisely S4.2 as its
modal validities. For the lower bound, it suffices to observe it is di-
rected: if (M,X0) and (M,X1) are two worlds, then they both are
contained within (M,Def(M,Trξ(C))) for some large enough ordinal
ξ.

For the upper bound, by Theorem 9 it is enough to show that there
are arbitrarily large families of independent buttons and switches. To
do this, recall that Add(Ord, 1) is equivalent to Add(Ord, ω). So we
can split C into ω many classes Ci so that the Ci are mutually generic
over (M,Y). Further note that this splitting process is definable, so
the Ci are uniformly definable from the parameter C. (Namely, you
can take Ci to be formed from the bits on the coordinates equivalent
to i modulo ω.) In particular, this means that given any ordinals ξ
and η, if i 6= j then Trξ(Ci) is not definable from Trη(Cj). This is just
because Trη(Cj) is in (M,Y [Cj]) and Ci is generic over that model.

Fix a world (M,X ) in this potentialist system to work inside. Let λ
be the supremum of the lengths of the iterated truth predicates over
the Ci’s which are in X . We will use the even coordinates i for our
buttons and the odd coordinates i for our switches. For the buttons, let
βi be the statement “Trλ+1(Ci) exists”. For the switches, let σi be the
statement “if ξ is the largest ordinal for which Trξ(Ci) exists, then ξ is
even”. It is manifest that these are, respectively, buttons and switches.
By the consequence of mutual genericity from the previous paragraph
we get that they are independent; we can add a longer truth predicate
relative to Ci without affecting which truth predicates exist relative to
the Cj for j 6= i. This completes the proof. �

It may be helpful to see an explicit example of an instance of .3
which is invalidated by this potentialist system. Suppose we are living
in a world (M,X ) and define λ as in the proof. Let ϕ be the assertion
“Trλ+1(C0) exists but Trλ+1(C1) does not exist” and ψ be the asser-
tion where we swap the two coordinates, namely “Trλ+1(C1) exists but
Trλ+1(C0) does not exist”. Then ϕ and ψ are both possible at (M,X ).
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However, if ϕ is true at a world then ψ is impossible at that world,
and if ψ is true at a world then ϕ is impossible at that world, giving a
failure of .3.

Let us remark that the definition of the independent family of in-
finitely many buttons and switches was uniformly definable across the
worlds in the truth-potentialist system. Moreover, the only parameter
needed in the definition was C itself.

Let us also comment this construction generalises to give a truth-
potentialist system of any limit height. If you want height λ, then
instead of allowing extensions by adding any ordinal-length iterated
truth predicate, only allow extensions that keep the length below λ.
Because no world in this system has the full λ-iterated truth predicate
relative to Ci, there is enough space for the definition of the buttons
and switches to work out.

Let’s now turn to the other option for introducing global well-orders.
Rather than add a condition asserting that the base world contains a
global well-order, we instead allow the addition a global well-order by
class forcing. That is, we want to expand our potentialist system by
adding a new rule to get new worlds: if (M,X ) is a world then so is
(M,X [C]) whenever C is a Cohen subclass of Ord generic over (M,X ).
We will start with the definable classes as the smallest world, and keep
the old rule about being able to add truth predicates relative to extant
classes.

The problem is that this is actually quite destructive. Specifically,
adding a global well-order may kill off the possibility of adding a truth
predicate whilst preserving the basic axioms of NBG.

Theorem 19. Let M be a countable transitive model of ZF and let
A ⊆ M be a class over M so that (M,Def(M,A) |= NBG. Then there
is C Cohen-generic over (M,Def(M,A)) so that no NBG-expansion for
M can contain both C and Tr(A)M .

Proof. If no NBG expansion for M contains Tr(A)M then we are triv-
ially done. So suppose we are not in this case.

We claim that from Tr(A)M we can define a sequence 〈Dα : α ∈ Ord〉
of dense subclasses of Add(Ord, 1) so that meeting every Dα guarantees
genericity over (M,Def(M,A)). This is because we can take Dα to be
the intersection of all open dense classes definable from A with param-
eters from Vα. The point is, from the truth predicate we can define this
sequence, because the truth predicate gives us uniform access to de-
finability. Then Dα is open dense because the forcing is κ-distributive
for every κ. And clearly meeting every Dα implies getting below every
definable dense class.
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Now let’s use this sequence of Dαs to code a bad real into a generic.
Fix a binary sequence B : Ord→ 2 so that the set of i so that B(i) = 1
is cofinal in the ordinals of M and has ordertype ω. Note that no NBG-
expansion for M can contain B, as B reveals that M ’s ordinals have
countable cofinality. Define a sequence of conditions: start with p0 = ∅.
Given pα, extend to meet Dα, where we require the extension to be of
minimal length to get into Dα. Then add on the bit B(α) to get pα+1.
And at limit stages, set pλ =

⋃
α<λ pα. Then C =

⋃
pα meets every

dense class in Def(M,A).
Finally, note that if you have both the sequence 〈Dα〉 and C, you

can recover the coding points and thereby recover B. This is because,
given these data, it is a definable property to see the shortest distance
you need to extend to meet the next dense class. So if you had both C
and the truth predicate in an NBG expansion for M , then you would
also have B in the NBG expansion. This is impossible. �

Let us remark that this result immediately implies that we can kill
off iterated truth predicates, since TrΛ+1(A) is inter-definable with
Tr(TrΛ(A)).

5. The bottom-up approach

In this section we discuss what light the mathematical results from
the previous sections shed on bottom-up approaches to class potential-
ism. The core point is the following: Our results indicate that various
bottom-up class potentialist systems might not be convergent.

Before we discuss how this plays out in specific cases, it is helpful to
think about why this is relevant for bottom-up approaches. Bottom-up
approaches begin by specifying some initial starting world (i.e. Initial
World) and then individuating new classes over this and subsequent
worlds (i.e. Individuation). What a lack of convergence shows is that
within these systems there are ‘choice-points’—positions in the system
where we must choose to go one way rather than another.

This has some precedent within other potentialist systems. For in-
stance consider the following two species of set-theoretic potentialism:
In forcing potentialism the worlds are composed of forcing extensions
of some ground model and in rank-extensionalism potentialism the
worlds are the countable models of ZFC, including nonstandard mod-
els, with accessibility given by rank-extension. Both exhibit branch-
ing; i.e. in each case there are worlds W and W ′ such that there
is no common extension of both. However, the branching in rank-
extensionalism potentialism is much more severe. In particular, they
get different modal logics. The modal logic of forcing potentialism
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is S4.2 [Hamkins and Löwe, 2008], whereas for the rank-extensionalist
potentialist it is S4 [Hamkins and Woodin, 2017]. Some of the poten-
tialist systems we have considered exhibit explicit failures of the .2
axiom. If we imagine progressively building up the classes in such
a system, we face choices of permanent consequence—statements like
“There is a truth predicate for A” (where A is some class or other)
can be made true (and hence also necessary), but equally can be made
impossible.

The failure of .2 has two important ramifications, one philosoph-
ical and one mathematical (though perhaps they are different man-
ifestations of the same state of affairs). On the philosophical side,
non-convergence indicates a kind of further indeterminacy in our con-
cept of class. It is not just that the classes themselves are modally
indefinite, but there are also important choices about what is pos-
sible to be made within this modal space, ones that cannot be re-
versed.21 The second (more technical) point to be made is that it
creates obstacles for proving mirroring theorems, as in [Linnebo, 2013]
or [Hamkins and Linnebo, 2018]. These results, which come in both
proof-theoretic and model-theoretic versions, give a translation from
a non-modal language to the modal language22 so that proof (respec-
tively, truth, in the case of the model-theoretic versions) in the poten-
tialist realm corresponds to proof (respectively, truth) in an actualist
realm.

The existence of a mirroring theorem for a potentialist system shows
that there is a sense in which one can continue using ‘actualist’ the-
ories even in the presence of a non-actualist ontology. We can move
backwards and forwards seamlessly between the modal and non-modal
theory, the modal theory is just able to look at the subject matter un-
der a finer (and perhaps more ontologically honest) grain. Importantly
though, current treatments of mirroring theorems require at least S4.2
in order to go through.

There are at least two ways one might react to such non-convergence.
One is to view non-convergence as a substantial cost—we want our no-
tion of class, even if modal, to not contain these choice points both
for philosophical cohesiveness and mathematical expedience. Another

21A similar point made in [Hamkins, 2018b, §7], where Hamkins argues that S4
potentialist systems exhibit “radical branching” whereas the “directed convergence”
of S4.2 systems are closer to an actualist conception. Whilst we do not compute the
exact modal logic of our systems in which .2 fails, this failure puts these systems
on the radical branching side of the divide. See also the discussion in §8.2 where
we conjecture that certain top-down class potentialist systems validate exactly S4.

22In brief, the translation is to replace every ∃ in a non-modal formula with ∃.
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way to view them is as interesting but not any special cost—they indi-
cate interesting structural properties of the relevant potentialist system
(and perhaps the underlying conception of class), but this feature is un-
problematic. Whether or not they are taken to be a cost or merely a
point of interest may depend somewhat on one’s philosophical outlook.
For now, let’s think about how this possible desiderata of convergence
might affect the class-theoretic potentialist.

If we want convergence, smallest systems are good. We know
that various kinds of classes can interfere with the addition of truth
predicates, resulting in non-convergence. However, the smallest sys-
tems (in the sense outlined in Theorems 14 and 15) do not exhibit
branching, and validate S4.3. (Indeed, some of these systems validate
precisely S4.3.) Thus, if we want to ensure non-branching, a good way
to do so is to insist that we consider smallest potentialist systems.

There is a question as to how well this response meshes with the
various philosophical views essayed in §1. On the one hand, the pred-
icativist who is only interested in adding truth predicates may have
some motivation to take this position. (The case where other pred-
icates are allowed significantly complicates things for them, and we
consider this situation below when discussing Global Choice.) Whilst
it is somewhat contingent upon the nature of the space of possible
language expansions, it seems reasonable to assume that when we in-
troduce individual new truth predicates into our language we do not
thereby introduce further predicates beyond what is required by (i.e.
definable in) the expansion. In this case, one clearly obtains the small-
est such system any time one introduces a new truth predicate.

For property theories, we can simply note that the generation of
properties is (by construction) limited to entities definable in a specific
way. The new properties available at each additional stage are those
whose application relation is definable over previous stages. One can
see this as constructing a class-theoretic version of the constructible
hierarchy, call it the L(V ) hierarchy, generating more and more classes
by iterating the definability operator.23

For the truth-theoretic postulationist, it is part of her view that no
more than is necessary be introduced to comply with a given rule.24 It

23The reader should be warned, however, that there are technical hurdles in
formulating this. The existence of the class LΓ(A) for every well-order Γ and every
class A is equivalent to ETR—see [Williams, 2018, Theorem 3.14]. So if one wants
to formally talk about levels of L(V ) in full generality one must already presuppose
ETR. Nevertheless, it is a helpful intuition to keep in mind.

24See here [Fine, 2006], p. 93.
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is thus reasonable that the potentialist system obtained for the various
kinds of truth-theoretic potentialism be the smallest such.

Larger systems often admit branching. A critical point, in
contradistinction to the foregoing, is that for larger systems we do
get branching. If a certain kind of richness is needed or wanted by the
bottom-up theorist, and in particular if they wish to transcend smallest
systems, we often can get branching in those systems. If one thinks that
branching is a cost (say because it indicates a kind of non-inevitability
in how the classes unfold), then such a richness assumption seems like
a dangerous desideratum.

The larger systems we considered can be seen as larger in width,
not larger in height. Whilst our intention here is to bring to mind the
familiar width versus height distinction for sets, the notion is differ-
ent here, since all classes have the same height in the sense of ordi-
nal rank. Here, height refers to the length of truth predicates, which
one can think of as corresponding to how far one can build L(V ) in
the classes—cf. earlier discussion in this section. The wider systems
we considered were those that allowed the addition of generic global
well-orders (equivalently, Cohen-generic classes of ordinals). Genericity
ensures that adding these does not increase the height of a world.25

One might view these two observations (concerning smallest and
larger systems) as a point in favour of the pictures articulated by the
versions of bottom-up truth-theoretic potentialism we have considered
here. If one views branching as a cost, one way to ensure branching is
avoided is to consider smallest potentialist systems. As it turns out,
this is precisely what the truth-theoretic versions of liberal predica-
tivism, property theory, and postulationism motivate (the former two
since they just involve adding truth predicates and closing under de-
finability, and the latter because we add truth predicates in such a way
that no more than is necessary is added). Thus for these views there is
conformity between desirable properties of the potentialist system and
the details of what the relevant philosophical view motivates. As we
shall see, however, allowing class-forcing greatly complicates the issue.

Global Choice and class-forcing are problematic. A theme
in some of our results is that Global Choice is problematic (or at least
raises several questions) in the class-theoretic potentialist context. One
possibility is that we could require the global well-order to be there from

25 If you drop the requirement for genericity then global well-orders can add
height. Given (M,X ) |= NBG with a global well-order, you can find a global well-
order in X which codes any given A ∈ X , say by placing A on the even indices in
the order. So you could add, over the definable classes, a global well-order which
codes a very long truth predicate.
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the start. For many of our potentialists (e.g. the predicativist and the
property theorist) the base world contains just the definable classes.
To insist then that the base world contains a global well-order is just
equivalent to the base world having a first-order definable well-order
of the universe. This has serious first-order consequences, in particular
it is equivalent to ∃x V = HOD({x}). We might be suspicious of our
class-theoretic commitments delivering such strong set-theoretic con-
sequences, especially given that we are thinking of building the classes
after (in the class-theoretic potentialist’s modal sense) the universe of
sets has been constructed.

Another possibility is that the global well-order is generic, in the
sense of class forcing. (See the discussion in §4 of how to force to
add a global well-order.) Under various motivations, a potentialist
might not want a global well-order which codes complicated undefin-
able classes, and instead want it to be “random” with respect to the
definable classes.26 This amounts to asking it to be generic; extending
by a generic global well-order is adding the well-order and, through the
use of forcing-names, closing off under definability from the well-order
and classes in the ground model.

But in this case, as we noted in Theorem 19, there is no prima facie
guarantee that the generic not be a bad one which kills off the addition
of truth predicates. One response to this predicament is to require
worlds to satisfy a theory which ensures the existence of all desired
truth predicates. For example, if our first world satisfies NBG + ETR
then all the truth predicates are already there, and so a bad ‘truth-
killing’ well-order cannot also be there. This, however, incurs the cost
that the truth-theoretic potentialism is essentially trivial—all parama-
terised truth predicates are there from the get-go. This contravenes the
basic set up of the liberal predicativist and property theorist (though
it is unclear what the situation is for the postulationist) and so would
necessitate some revision of these positions.27

If the global well-order is to be neither definable nor generic, then
what is it to be? It would be overly hasty to claim those as the only
two possibilities, but the other possibilities of which we know strike us

26For example, a Finean postulationist might have a rule saying “introduce a
global well-order”. But adding a global well-order shouldn’t add more than neces-
sary; cf. Footnote 25. If other mathematical objects are desired, then they should
have their own introduction rules.

27Moreover, there is the worry that the killing truth phenomenon can be gen-
eralised higher, to prevent expansions in worlds satisfying stronger theories. We
leave fleshing out this worry to future work.
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as artificial.28 The explication of further possibilities would be a useful
contribution to our understanding of classes, and we leave it to further
work.

Some of the participants to the debate may have philosophical ob-
jections against the use non-definable well-orders. For example, a non-
definable well-order of the sets does not seem to mesh particularly well
with predicativist intuitions. A couple of points are relevant here.

First: Global well-orders have various applications in second-order
set theory. Two examples are:

(1) In the study of determinacy of class games, it plays an essen-
tial role in moving from quasi-strategies to strategies. For ex-
ample, the equivalence of ETR and clopen class determinacy
[Gitman and Hamkins, 2016] requires Global Choice.

(2) The standard arguments to prove some properties of the surreal
numbers, such as them forming a universal ordered field, go
through Global Choice.

These examples (and others), one might think, suggest a constraint
on what we want out of a potentialist class theory. The ability to have
some worlds where we have the required classes to nicely interpret the
reasoning of set theorists is, ceteris paribus, a plus. The specific case of
liberalised predicativism provides an example here—part of what is at
issue for them is to provide an account of classes that is predicativist
in spirit, but nonetheless yields enough strength to be able to inter-
pret parts of set theory that use non-definable classes. Fujimoto, for
example, writes:

The second desideratum is (ii) an appropriate interpre-
tation of classes should provide a mathematical frame-
work in which (or, at least, should be compatible with
mathematical presuppositions under which) widely ac-
cepted and/or mathematically fruitful uses of classes in
set theory can be meaningfully expressed and imple-
mented. ([Fujimoto, 2019], p. 217)

Given the applications of global choice then, a class-theoretic poten-
tialist who is more liberal in spirit should accept the possible existence
of non-definable well-orders.

Second: The existence of a global well-order is an assertion about
the existence of a single class and does not ascribe any complicated
global structure to classes as a whole. In this respect, the existence of

28For example, see the sketch in Footnote 25.
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a global well-order is relatively innocent as far as liberal predicativism
is concerned. Consider the following remark:

Liberal predicativism does well in most cases, when it
comes to an axiom asserting something about a specific
type of class... In contrast, if an axiom asserts some-
thing strong about the entire structure of classes or the
totality of classes, liberal predicativism might be faced
with a difficulty. ([Fujimoto, 2019], p. 225)

Given this, there is at least prima facie reason for the liberal pred-
icativist to accept their possible existence. Similar remarks apply to
the addition of any class-forcing generic (that is otherwise acceptable
to the class-forcing potentialist).

The postulationist also has reason to accept the possible existence
of generics, including non-definable well-orders. Since the properties of
the forcing (e.g. non-atomicity), denseness, and genericity are definable
in NBG we can easily formulate the postulationist condition required to
introduce generics (including global well-orders) and the same is clearly
true for truth predicates.

The situation is different for the property theorist. As noted ear-
lier, the classes obtained by the property theorist are essentially those
obtained by building L over V (i.e. L(V )). But given this, whilst
some generics over our initial model are obtainable we will never get a
generic that can conflict with a truth predicate and arbitrary generics
are prohibited (only those that cant be obtained in some Lα(V ) are
legitimate). Thus, the property theorist rules out non-convergence by
keeping a strict control on the classes that could exist. (One might, of
course, view this as a cost—especially if one wants to enforce as few
restrictions as possible on the classes that one is allowed to form.)

What emerges from this discussion is that there is the following ten-
sion at the heart of of bottom-up approaches. If we (i) regard non-
convergence as a cost, (ii) want to allow the addition of truth predi-
cates, and (iii) wish to allow unrestricted addition of generics, then we
have a problem. The property theorist resolves this issue by rejecting
(iii). This problem bites for the predicativist, and we will suggest a
solution via additional modal principles (rejecting (iii)) in §8.1 (as it
turns out, this strategy can also be appealed to by the postulation-
ist). The postulationist can also ‘resolve’ the issue by accepting ETR
as holding of the initial world, thereby trivialising (ii). We leave as-
sessment of these options to interested readers and future work. For
now, we move on to top-down approaches.
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6. The top-down approach

In this section we discuss what the mathematical results from §4
say about top-down approaches to class potentialism, and in particular
the interplay between what is satisfied on these pictures, Referential
Indeterminacy, and Interrelation of Interpretations. First let’s
make clear just what assumptions are needed for the formal results to
apply.

Recall that the formalisation for top-down approaches is to fix a
countable model M |= ZFC and consider the potentialist system con-
sisting of all expansions of M to a model of T , where T is a class
theory. This potentialist system is meant to reflect the properties of
the potentialist system of classes over the true universe V . (For the set
multiversists: a universe V .) Results from §4 tell us something about
this potentialist system, making some assumptions about T and M .
Two main tools were used in §4: truth predicates, and class forcing.
We need both to be applicable.

Let’s discuss truth predicates first. Proposition 13 tells us that asking
to have any world with a truth predicate puts a limitation on the choice
of M . This limitation has negligible cost; it amounts to requiring
that M satisfy a certain (second-order) reflection principle, and such
principles are commonly taken to give basic properties of the universe
of sets. Accordingly, it has negligible cost to assume V satisfies these
properties.

More substantively, these tools do not apply to any choice of T . The
results in § 4 were stated in terms of iterated truth predicates. There is
a limit to how far this generalises. If T outright proves the existence of
iterated truth predicates of any length—that is, if T proves ETR—one
cannot have a nontrivial truth potentialist-like system whose worlds
are models of T .

Let’s now discuss forcing. This puts a limit on the worlds—we need
that generics exist—which we handled by the simplifying assumption
that worlds are countable. We assume this technology reflects upward
to apply also to the true universe V ; see §7 for further discussion of
this move. It also puts restrictions on T . As discussed in §4 adding a
Cohen-generic class of ordinals adds a global choice function. So these
results do not speak to the class theorist who holds global choice is
definitely false at every world, if any such exist.

This also rules out the inclusion of axioms that limit the classes by
definability. Here’s an illustrative toy example. Let T− be NBG plus
the assertion that length n iterated truth predicates exist for any finite
n. In T− we can express “every class is definable from Trn for some
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finite n”. Call T the theory you get by adding this assertion to T−.
Then nontrivial forcing destroys T , and so the results in §4 do not
apply to T . Indeed, T is categorical over a fixed transitive M : given a
transitive model M of ZFC there is at most one T -expansion for M .

Thus, if we are considering some class theory T over the universe V
such that (i) T does not require the classes to be thin (in the sense of the
previous paragraph), (ii) T does not prove that arbitrary iterated truth
predicates exist, and (iii) T does not have a principle implying global
choice is false, then Theorems 18 and 19 both give information about
the top down potentialist system for T on M . Namely, Theorem 18
gives failures of .3 in this system, and Theorem 19 gives failures of .2
in this potentialist system.

For such a potentialist, these results illuminate in a concrete way
how the indeterminacy of reference underlying top-down potentialism
might manifest. Exactly as in §5, weak base theories (like NBG) seem
to correspond to a conception of class that is radically divergent, it
is just that in this context this radical divergence is underwritten by
Referential Indeterminacy and Interrelation of Interpretations
rather than what is built up from Initial World and Individuation.

This observation is interesting for both our motivations for the top-
down approach. Let’s examine the set-theoretic multiversist first. Re-
call that she regards talk using some class theory T as just more set-
theoretic mathematics up for reinterpretation. Fixing some appropri-
ate M in the multiverse, each M ′ with M ∈M ′ will have a conception
of what the T -class-potentialist system over M looks like (for some
reasonable T ). What our results show is that for T = NBG (and ap-
propriate M) we get failures of the .2 and .3 axioms, indicative of strong
branching.

Some multiversists (e.g. [Hamkins, 2018a]) distinguish between the
extreme branching of S4 and the ‘inevitability’ of S4.3 as well as the
‘convergence’ implied by S4.2, arguing that the mirroring theorem for
systems containing S4.2 represents a quasi-actualist picture of the uni-
verse of sets—whilst one could use the modal theory, practically speak-
ing nothing hangs on this since the mirroring theorem guarantees that
a modal-free theory can be used. For a view to be strongly potentialist,
one might think, non-convergent branching possibilities are required
(and for this non-convergence to show up in the modal validities).
There are many such varieties of multiversist-inspired set-potentialism
on offer; rank-extension potentialism (discussed earlier) is one where
the modal validities are S4. Critically though, known examples of rea-
sonable kinds of potentialism with branching possibilities are limited
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to non-well-founded models of set theory, potentialisms with only tran-
sitive models are generally S4.2 or stronger (e.g. both forcing and
countable transitive model potentialism have S4.2 as their modal va-
lidities29). If one then accepts (as many do) that we have an absolute
understanding of well-foundedness, and that intended set-theoretic uni-
verses are all transitive/well-founded, then one seems to be (currently)
linked to ‘quasi-actualist’ potentialist systems satisfying S4.2 and a
mirroring theorem. Not so for the multiversist-inspired class-theoretic
potentialist. Here, whilst we have not calculated the modal validities to
be exactly S4, for the NBG-class-potentialist system we do have failures
of .2 and .3 and hence no mirroring theorem. Moreover, these results
still go through if we insist that the worlds of our potentialist systems
all be transitive (indeed we can even restrict to β-models if so desired).
These potentialist systems are the first to our knowledge systems of set
theory to exhibit non-convergent branching even when we restrict to
well-founded models.30

For the theorist who holds that plural quantification is indetermi-
nate, the situation is subtle. On the one hand, plural logic (in its
standard formulation) contains all impredicative instances of the plural
comprehension scheme and indeed the Henkin interpretations for plural
logic obtained by [Florio and Linnebo, 2016] all satisfy it (they restrict
to what they call faithful models—those that satisfy every instance of
the comprehension scheme). This can then be leveraged to provide an
interpretation of MK class theory (as in [Uzquiano, 2003]). This inter-
pretation can be carried through whether or not the range of the plural
quantifiers is determinate, if it is indeterminate but nonetheless every
legitimate interpretation satisfies the impredicative plural quantifica-
tion scheme, this impredicativity extends immediately to obtain the
impredicative class-theoretic comprehension scheme of MK within each
world. As noted earlier, MK violates the presuppositions required to
make our arguments go through since it trivialises truth-theoretic po-
tentialism by implying the existence of arbitrarily iterated truth pred-
icates. Thus, our results do not have much to tell the advocate of this
kind of top-down class-potentialism. To say more, further results are
needed about the MK-class-potentialist system, and we leave this as an
open question; see the discussion around Question 21 for fuller details.

Though one might hold that the indeterminate plural interpreta-
tion yields MK on the basis of the ‘standard’ conception of the logic,

29See here [Hamkins and Löwe, 2008] and [Hamkins and Linnebo, 2018].
30Note that such occur in the context of second-order arithmetic; see §8.2.
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this is far from controversial. As [Florio and Linnebo, 2016] note, of-
ten the impredicative plural comprehension scheme is motivated by the
assumption that every non-full Henkin semantics for the plural quanti-
fiers is unintended. For example Hossack writes the following regarding
the determinateness of plural quantification:

Plural set theory has no non-standard31 models, so the
indeterminacy problem does not arise for pluralism.
([Hossack, 2000], p. 440) 32

Such an assumption leads immediately to the impredicative com-
prehension scheme for plurals (and hence classes) as Uzquiano notes
(referring to §3.2 of [Lewis, 1991]):

To the extent to which one accepts unrestricted plural
quantification over sets as unproblematic, one will be
moved by what David Lewis refers to as the evident
triviality of plural comprehension, and thus one will ac-
cept all instances of plural comprehension as true. After
all, one may explain, in order for an instance of compre-
hension to be false, there must be a formula ϕ such that
it is neither the case that no sets satisfy it nor is it the
case that some sets satisfy it. But this could never be
the case. ([Uzquiano, 2003], pp. 76–77)

Of course, if we allow plural quantification to be indeterminate then
we have an immediate response—an instance of a formula ϕ in the
plural comprehension schema might be neither true nor false of some
sets in virtue of there being some interpretations of the plural variables
on which it is true, and other interpretations on which it is false. For
example, consider the following sentence:

ϕ(x) = “x = x and there exists a truth predicate for V ”

If we do not assume that quantification is determinate and have
doubts about impredicative comprehension (and so adopt NBG) then
it is neither the case that no sets satisfy ϕ nor is it the case that some
sets satisfy ϕ—in some worlds ϕ picks out V and in others it picks out
∅.33 Throwing in impredicative plural quantification at the start simply

31Hossack means non-standard in the sense of non-full Henkin semantics, not in
the sense of the models being ill-founded.

32Examples of this kind can be multiplied. For a review of the literature see
[Florio and Linnebo, 2016].

33This example generalises beyond just NBG. E.g. if MK is our base theory then
instead of asking whether truth exists we should ask whether there is a class coding
an MK-extension for V , an assertion not decided by MK.
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prejudices the debate in favour of MK, and the water becomes much
muddier once we allow many different interpretations of the range of
the plural variables.

Nonetheless, the view that Lewis’ thought about pluralities is some-
how part of our conception of pluralities is tempting. Even if we think
the quantification is indeterminate, we might think that within a world
his intuition should motivate us to accept impredicative plural quantifi-
cation over that world, yielding MK locally. The thought then that this
reasoning should apply schematically to every world—thereby trivial-
ising truth-theoretic potentialism—merits further scrutiny. Here is not
the place to adjudicate these difficult issues concerning the relation-
ships between the philosophies of plural quantification and mathemat-
ics. However, these observations point to a substantial philosophical is-
sue: There is a critical choice point in the selection of theory for the be-
liever in the indeterminateness of plural quantification. Acceptance of
the impredicative plural comprehension scheme despite indeterminacy
has immediate mathematical ramifications, not just regarding what
non-modal statements of class theory are supervaluationally valid but
also the nature of the relevant potentialist systems corresponding to
their plural talk regarding the sets.

7. Responding to an objection: A remark on the use of
countable transitive models in studying potentialism

One tempting way of objecting to the import of our results is to point
to our use of countable transitive models. For example, Theorem 19
depended on adding a generic that, once we introduce the relevant truth
predicate, encodes a cofinal sequence in the ordinals. In getting this
generic, however, we assumed that the ground model is countable—we
view the model externally as countable and talk about the ways bits
can be encoded into a particular countable sequence. One might object:
For many species of class-theoretic potentialist V is uncountable, and
so there is no such generic.

There are some points to be made about this objection. First, ac-
cepting this response entails you accept that apparently perfectly good
parts of model theory cannot tell you about the multiverse proper (or
at least their use must be justified). This in itself, is a substantial cost
(without further argument) and goes against much of the practice in
the field. For example the Mostowski result ([Mostowski, 1976]) that
there are incompatible generics over any countable transitive model is
standardly taken to show that the generic multiverse contains universes
with incompatible reals, despite the dependence on countability of the
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models in the proof. Those who seek amalgamation within the generic
multiverse generally do so via other considerations, e.g. placing a re-
quirement on no information loss (e.g. [Steel, 2014]) or a desire for
axiomatisability ([Maddy and Meadows, 2020]), rather than objecting
to the use of countable models as providing the relevant the model
theory.

This plays out in one’s attitude to the role of the completeness theo-
rem.34 A key desideratum when concerned with first-order set-theoretic
mathematics is being able to move seamlessly between provability and
satisfaction in all set-sized first-order models. If one wishes to pro-
vide a first-order axiomatisation for your multiverse, one needs it to
be the case that if ϕ is true in all set-sized class-theoretic multiverses,
then it’s provable in the multiverse theory. If there is a set model
of a class-theoretic potentialism in which truth predicates are killed
off, then by completeness one cannot rule out this prospect. In some
sense, when studying any kind of potentialism that allows for the ad-
dition of classes (and hence for the range of the second-order variables
to change) countable transitive models are the natural place in which
to conduct the model theory, since this is the place where extensions
of the required kind are always uncontroversially available. To deny
legitimate constructions in this context is to take on a substantial ex-
planatory burden: One must come up with principled reasons as to
which extensions are legitimate and why.

Consider the following analogy with the case of the set forcing poten-
tialist. She says: “The modal logic of forcing in S4.2” whilst brandish-
ing a copy of [Hamkins and Löwe, 2008]. Along comes a character we’ll
call the facetious potentialist who says: “I understand that you have a
nice model for this in terms of countable transitive models, but really
the modal logic of forcing is S5, since there is just one non-extendible
universe and all forcing is trivial.” In this context, we’d rightly say that
the facetious potentialist was effectively denying important potential-
ist principles about the plenitude of extensions. If one wants to make
such a proposal, one has to come up with good reasons and criteria for
saying when one extension is an acceptable extension of another and
an alternative model theory that can be used in studying the poten-
tialism. We do not wish to argue that such an argument is impossible,
and indeed would welcome a response on behalf of the class-theoretic
potentialist on this issue. It seems to us, however, that no easy solution
is available.

34We thank Sam Roberts for this suggestion.
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8. Conclusions and further directions

In this paper we’ve argued that there are natural interpretations of
class talk over a fixed domain of sets that yield potentialisms of different
kinds. We’ve also argued that it makes sense to divide these pictures
into two kinds: bottom-up approaches begin with some fixed stock of
classes and then individuate new ones, and top-down approaches take
the modal variation of classes to arise from referential indeterminacy
and the ways possible sharpenings of the ranges of the class variables
relate to one another. We’ve proved several results about potential-
ist systems, in particular exhibiting failures of the .2 and .3 axioms
for potentialist systems corresponding to weak theories of classes. Fi-
nally, we’ve discussed some philosophical payoffs of these results for
the various bottom-up and top-down approaches.

This is very far from the end of the story, however, and we hope
to have merely made a first-step in discussions about class-theoretic
potentialism and possible responses to the challenges we have outlined.
For this reason, we raise several open questions that may be of interest
to others wishing to pursue this line of research. This will make the
conclusion slightly longer than is usual, but we feel that identifying
salient problems is important and hope that the reader will indulge us.

8.1. Additional modal principles? As discussed in §6, the failure of
.2 for top-down potentialism for weak class theories is particularly de-
structive, being witnessed by a world which cannot be further extended
to add in a certain truth predicate. A top-down potentialist may very
well think this catastrophic world is an artifact of the formalisation,
one which does not occur in the real multiverse of classes. Her task
then is to explain why this phenomenon does not occur and formulate
principles prohibiting these worlds.

One approach to this latter problem is to provide additional modal
axioms, going beyond just the resources of class theory. For instance,
the following modal principle manifestly rules out the killing truth phe-
nomenon:

∀X ∃Y (“Y is a truth predicate for X”).

It is easy to formulate versions of this for iterated truth predicates. And
one could consider yet more modal principles to express properties of
the true multiverse of classes.

Examples of this kind already exist in the case of the set-forcing po-
tentialist. For example, maximality principles, assertions of the form

ϕ ⇒ ϕ, have been considered in the context of set forcing poten-
tialism; see e.g. [Hamkins, 2003] and [Hamkins and Linnebo, 2018].
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An example of a different flavor, one closer in motivation to what we
give here, can be found in [Steel, 2014] (with subsequent development
by [Maddy and Meadows, 2020]). Steel is investigating a multiversist
framework arising from set forcing. Given a countable model of set the-
ory, it has pairs of Cohen extensions which do not amalgamate—there
is no outer model which contains both Cohen extensions as submodels
[Mostowski, 1976]. To exclude this phenomenon, Steel includes an ax-
iom asserting that models in the generic multiverse always amalgamate.
His principle is in fact higher order, referring to worlds as objects, not
just to what is true of sets within each world. And one could also
consider higher order principles in the context of class potentialism.

We leave the consideration of these higher order or modal principles
to future work.

8.2. An analogy to second-order arithmetic, and universal fi-
nite sequences? A potential area for further study concerns the anal-
ogy between the use classes in the contexts of second-order arithmetic
and set theory. Predicativism in mathematics often takes the total-
ity of natural numbers as given, with the predicatively-given “classes”
then being sets of natural numbers, e.g. [Feferman and Hellman, 1995,
Hellman and Feferman, 2000]. There has been work addressing to what
extent results about predicativism over ω generalise to predicativism
over V—see e.g. [Fujimoto, 2012, Sato, 2014]. Similar to how it was
formalised in the set theoretic context, one could formalise potentialism
over ω by considering potentialist systems of ω-models of second-order
arithmetic. To what extent does the mathematical and philosophical
work about class potentialism carry over to the arithmetic context?

We also wish to mention a question arising from the analogy going in
the other direction. Here, Z2 is the theory of second-order arithmetic
with full impredicative comprehension.

Theorem 20 (Hamkins–Williams). Let T be a computably axiomatiz-
able extension of Z2 + Π1

∞-Bounding. Then the modal validities of the
potentialist system consisting of countable ω-models of T are precisely
S4, whether or not we allow parameters in formulae.

Proof sketch. It is well-known that Z2 + Π1
∞-Bounding is bi-

interpretable with ZF− + V = Hω1 , the assertion that every set is
hereditarily countable. Given (ω,X ) a model of arithmetic call the
corresponding model of ZF− its companion model. Such companion
models must be well founded beyond ω, and if (ω,X ) is a submodel
of (ω,Y) then the companion model of (ω,X ) is end-extended by the
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companion model of (ω,Y). Consider now the potentialist system con-
sisting of these countable, ω-standard companion models, ordered by
end-extension. Up to coding this is the same as considering the po-
tentialist system of countable ω-models of T directly. An instance of
[Hamkins and Williams, 2021, Theorem 6] yields that this potentialist
system admits a universal finite sequence and thus its modal validities
are precisely S4.35 �

Does this theorem generalise to the set theoretic context? More
precisely:

Question 21. Let T be MK plus Class Bounding and let M be a
countable transitive model of ZFC which has a nontrivial T -class po-
tentialist system. Does the potentialist system consisting of countable
T -expansions for M have S4 as its modal validities?

A positive answer to this question would imply that the fundamental
branching phenomenon for top-down potentialism for weak theories
also occurs for very strong theories.
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