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Abstract

Decision theory has had a long-standing history in the behavioural and social

sciences as a tool for constructing good approximations of human behaviour. Yet

as artificially intelligent systems (AIs) grow in intellectual capacity and eventu-

ally outpace humans, decision theory becomes evermore important as a model

of AI behaviour. What sort of decision procedure might an AI employ? In this

work, I propose that policy-based causal decision theory (PCDT), which places a pri-

macy on the decision-relevance of predictors and simulations of agent behaviour,

may be such a procedure. I compare this account to the recently-developed func-

tional decision theory (FDT), which is motivated by similar concerns. I also address

potentially counterintuitive features of PCDT, such as its refusal to condition on

observations made at certain times.
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Introduction

The purpose of decision theory is to determine what principles of instrumental

rationality govern choice. These principles are commonly encapsulated into a

formula for the expected utility of a given act: an agent adopting the principles

will seek an action that maximises her expected utility.1

Decision theory has had a long-standing history in the behavioural and social

sciences as a tool for constructing good approximations of human behaviour. Yet

as artificially intelligent systems (AIs) grow in intellectual capacity and eventu-

ally outpace humans, decision theory becomes evermore important as a model

of AI behaviour. What sort of decision procedure might an AI employ? What

epistemic perspective does an AI take when evaluating the actions it may take?

In this work, I propose a decision theory encapsulating our principles of in-

strumental rationality that an AI may employ. This decision theory places a pri-

macy on the decision-relevance of predictors and simulations of agent behaviour.

While the same considerations are in principle decision-relevant for humans, in

practice they are predominately pertinent to an AI, which is far more likely to

find itself in a world in which there exist copies employing the same decision

procedure, and in which the source code which governs that decision procedure

is openly available for others to see and potentially exploit. Since predictors and

simulations base their decisions on how an agent may act in a given scenario, I

call such a decision theory policy-based.

This work will not demand persistent reference to AIs and their architecture -

1I shall hereafter refer to the agent using female pronouns. Any other decision-making agent
that is present within a decision problem will take male pronouns.
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AIs and humans alike benefit from adopting the principles of instrumental ratio-

nality, which are agnostic about the recipient of utility. However, framing certain

decision problems as if they are faced by an AI helps to tease out certain intuitions

with regards to rational behaviour. The question of what decision theory it would

be ideal to program into an AI, distinct from the question addressed here,2 is of

independent interest.

Chapter 1 provides expository accounts of causal, evidential, and functional

decision theory (CDT, EDT, and FDT, respectively), each proposals for the ideal

normative theory of instrumental rationality. I take the crux of the disagreement

between these theories as determining what facts of the universe ought to be

held fixed in evaluating different actions, which I call finding the decision-relevant

notion of dependence. While I take CDT to possess the right such notion, I disagree

with its prescription in Newcomblike problems, in which predictors and simulations

are not taken to be decision-relevant.

Chapter 2 motivates the policy-based account and develops it formally as

policy-based causal decision theory (PCDT). In addition to giving expository

comparisons to similar decision theories, I also discuss the interpretation of the

novel components within the formalism of PCDT; in particular, what the nature

and temporal location of a policy is.

Chapter 3 discusses a counter-intuitive feature of PCDT - its refusal to condi-

tion on the observations made in its lifetime. I argue that this feature is essential

in order to accommodate the decision-relevance of predictors and simulations,

and that it becomes a virtue when the agent needs to issue reliable assurances.

2In answering this question, claiming that a particular decision problem would not in practice
be faced by an AI would be legitimate grounds for the dismissing that problem. However, a
decision theory intended to capture ideal instrumental rationality could not avail itself of such a
defence.
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Chapter 1

Decision-Relevant Dependence

This chapter sets out in detail the problem to be addressed in the thesis: that

of finding the ideal decision theory. Once this problem has been specified, I re-

view three decision theories that have been proposed as candidates for the ideal

decision theory: causal, evidential, and functional. I argue that all of them fail

to capture the correct notion of a decision-relevant link between choice and out-

come, which I claim can be seen by considering so-called Newcomblike scenarios

involving predictors and simulations. In explaining where I believe each of these

three decision theories fails in this regard, I provide a general motivation towards

my proposed decision theory, which I shall develop in subsequent chapters.

1.1 Formalising Decision Theory

In this section, I shall highlight some of the core assumptions that are made by

the most prevalent decision theories. In particular, I shall adopt Joyce’s account3

of decision problems, which I briefly review here. The purpose of doing so is

twofold: first, in order to highlight some of the key common features; and second,

in order to avoid misunderstandings regarding the basic task of decision theory.

The ideal decision theory is the formal decision procedure that best captures

our ideal normative theory of instrumental rationality. One suitable definition

3Joyce (1999, Chapter 2).
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of an ideal normative theory of instrumental rationality is what means one must

take to achieve certain outcomes given credences, beliefs, or information about

the probabilities that various means will achieve those ends.4

More formally, we can use Joyce’s definition of a decision problem as a common

framework for the decision theories to be discussed. According to this frame-

work, an agent chooses among acts, whose outcomes depend on the state of the

world. The decision problem is described by specifying a partition A of possible

acts among which the agent must decide, a partition O of outcomes that pro-

vides the list of desirable and undesirable things that could occur as a result of

the agent’s choice, and a partition S of states that each describe possible external

conditions that determine what outcome each act in A will produce.5 Notably,

states describe “descriptions of aspects of the world that lie outside the decision

maker’s control”,6 where the scope of the agent’s control is a matter on which

different decision theories disagree.

We seek only one such act, state, and outcome to obtain for a decision problem

in actuality. Consequently, we take the propositions of O,S,A to be mutually

disjoint within the sets themselves, and we take these sets of propositions to be

embedded within a larger set of propositions Ω that has the structure of a Boolean

σ-algebra. In particular, Ω is the smallest collection of propositions that includes

the partitions O,S,A, and is closed under negation and countable disjunction. A

decision problem is thereby formally given as D = (Ω,O,S,A). Furthermore, to

account for the views of Savage7 and Jeffrey8 that each act/state conjunctionA&S

will entail exactly one outcome, we stipulateO to be a coarsening of the partition

setW = {A&S | A ∈ A, S ∈ S}.

We represent the beliefs and desires of the agent by the functions Cr : Ω →

[0, 1] and U : Ω → R, referred to as the agent’s credence and utility functions.

4Kolodny and Brunero (2016).
5Joyce (1999, p. 48).
6Joyce (1999, p. 61).
7Savage (1972).
8Jeffrey (1990).
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Equipped with a credence and utility function, an agent, given a set of options

constituting a decision problem, ought to use her decision procedure to recom-

mend the option that maximises utility. Her own uncertainty about her situation

means that, for each option, the agent is in fact evaluating her expected utility: the

utility of the outcome weighted by her credence that the outcome will occur on

the option being taken.

The claim that an agent should choose an option with maximal expected util-

ity is known as the expected utility principle.9 The decision theories that I shall con-

sider in this thesis all agree with this principle: however, what they disagree on

is how one ought to define expected utility.10 This chapter will discuss approaches

to the definition that differ with respect to the nature of the dependence between

option and outcome that a decision-maker ought to take into account. Call such

a dependence a decision-relevant dependence. Equivalently, the definitions of ex-

pected utility disagree with respect to what varies with the option that the agent

takes, or what can be taken to be held fixed while the agent evaluates the outcome

on taking a certain option.

Finally, it is assumed that our decision-theoretic agent is idealised, in the sense

that she has unlimited computational resources to evaluate her credence and util-

ity functions, and perform calculations of expected utility.11

1.2 Causal Decision Theory (CDT)

In this section, I shall set out causal decision theory (CDT). In the terms of the

previous section: causal decision theory takes the decision-relevant dependence

between option and outcome to be causal.12 Therefore, a CDT agent evaluates
9Nozick (1969, p. 118). See, e.g., Joyce (1999, Ch. 1) and Briggs (2017) for discussions of this

principle.
10Joyce (1999) proves a general representation theorem that, in his words, ties the “‘global”

requirement to maximize expected utility [with] the “local” [...] constraints on individual beliefs
and desires’ (Joyce, 1999, p. 224).

11Weirich (2004) presents precise methods of evaluating decisions when idealisations concern-
ing an agent’s resources and decision problems are relaxed. Morton (2004) discusses the effects of
computational limits on decision procedures with specific reference to computational complexity.

12Weirich (2016).
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the expected utility of an option by weighting the utility of each outcome by her

credence that taking that option will effect the outcome.

1.2.1 Formalising CDT

Within the literature, there are a number of ways13 to specify an agent’s credence

that choosing an option will causally effect an outcome, which in turn leads to a

number of different formalisations of CDT. I favour the formalisation developed

by Pearl14 (amongst others15), which I shall informally review here and in further

detail in the Appendix.

Pearl’s account gives a clear depiction of the causal structure of the universe

in which the agent finds herself, and provides the clearest procedure for turning

an ordinary-language decision situation into a decision problem D. However,

as Joyce16 and Pearl17 argue, once one has described the essential features of the

causal situation correctly, then the incremental evidence that a cause provides

for its effect in virtue of being its cause will always work out to have the same

probabilistic value on any of the prominent formalisations of CDT. In particular,

one can reduce a decision problem in Pearl’s framework to a decision problem

D = (Ω,O,S,A) as specified by Joyce, and vice versa. Therefore, my preference

for Pearl’s account is mainly æsthetic.

In Pearl’s account, the agent possesses a directed acyclic graph (DAG), together

with an associated conditional probability distribution over the nodes of these

graphs, in order to evaluate her causal probabilities. The nodes of these graphs

are variables representing, formally, sets of propositions in Ω. For instance, in

a decision problem where the agent decides between acts a and b, the agent’s

13Joyce (1999, Chs. 5-6) reviews approaches to calculating efficacy values through imaging, a
means of transforming a credence function that shifts subjective probabilistic weight into possible
worlds in which the act in question has occurred. Alternatively, one may calculate these values
according to the probabilistic accounts of causation defended by Skyrms (1980), Suppes (1970), and
Eells (1991).

14Pearl (1996, 2009).
15Spirtes et al. (2000).
16Joyce (2010).
17Pearl (2010).

8



performed action will be represented by a variable ACT, whose value lies in {a, b}.

The connections between these nodes represent a causal dependence between

these outcomes. In particular, each value that a node N may take is determined

according to a conditional probability distribution by the values taken by the di-

rectly preceding nodes. We call the set of such nodes that contain edges whose

target is the node N the set of parents of N , denoted pa(N). Thinking of a DAG as

a family tree, the (causal) ancestors and (causal) descendants are defined as expected.

A node that is not a target for any edge is called exogenous: often such nodes are

used as ‘error terms’ that serve as a catchall for all relevant causal factors left out

of the model.

The graphs we use in a decision-theoretic context are characterised by two

conditions:18

Sufficiency If X and Y are correlated given a variable Z that is not among the

descendants of either X or Y , and neither X nor Y is a descendant of the

other, then there exists some variable C that is a common cause of both X

and Y .

Causal Markov Conditional on values for its causal parents, any variable X is

independent of all others, save its descendants. Therefore, if V = pa(X),

there exist values of X , Y , and V such that Cr(y | x&v) 6= Cr(y | v) only if

Y is a descendant of X .19

Informally, these two conditions require that every correlation is explained by

the existence of a common cause, and that a complete specification of the com-

mon causes of two variables will screen off any correlations between them, except

those generated by common descendants.

18Stated as in Joyce (2010, p. 144).
19We denote variables and sets of variables in uppercase, and the values of variables and sets

of variables in lowercase.
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1.2.2 Causal Counterfactuals as Interventions

CDT requires us to evaluate the agent’s credence that taking some act a would

effect an outcome o. To do so with the graphical apparatus, we imagine that

our graph contains a node representing the action we take, as well as a node

representing the outcome that occurs, whose utility we are ultimately trying to

evaluate and optimise for. Informally, we evaluate the aforementioned credence

as follows:

1. We ‘intervene’20 on the action node by fixing its value to the action a.

2. We ‘propagate the value forwards’ by sequentially evaluating all of the

node’s descendants.

3. If propagating action a forwards determines that the outcome node is eval-

uated as o, then the credence that action a causally effects outcome o is 1.

If the outcome node has ancestors that are not themselves descendants of

the action node, we consider each possible evaluation of these ancestors,

and evaluate the outcome in each case. This gives us a distribution over a

causally effecting each outcome by making use of our prior credence over

the evaluations of the exogenous variables that are ancestors of the outcome

node.

This procedure of intervention and propagation is captured by the do op-

erator, which takes evaluations of sets of variables as its input and outputs a

modified graph and credence function. Specifically, one can derive21 the post-

intervention credence to be

Cr(x, y, z | do(X = x∗)) =


Cr(x&y&z)/Cr(x | z) if x = x∗

0 if x 6= x∗.

(1.2.1)

20As Joyce (2010, pp. 146-147) points out, the talk of interventions is not meant to imply a nec-
essary connection to human purposes and activities, or import an interventionist metaphysics of
causation. Pearl-style interventions are best thought of as suppositions that stem from a particular
act.

21Pearl (2009, pp. 72-73).
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Here, z stands for any realisation of the set Z of non-descendants of X , and y is

any realisation of the set Y of descendants of X .

Letting our OUTCOME and ACT variables take values inO andA respectively,

the expected utility of an action a under this formalisation of CDT is given by

EUCDT(a) :=
∑
o∈O

Cr(o | do(ACT = a)) · U(o). (1.2.2)

A precise account of the do-calculus is given in the Appendix. Importantly,

Pearl22 provides a clear method to infer a causal model of a given state of af-

fairs that accurately reflects its causal structure, given the Sufficiency and Causal

Markov conditions. In many of the decision problems considered, drawing the

causal graph allows us to clarify the epistemic perspective of the agent. Moreover,

using this method, we are capable of evaluating the relevant causal credences in

a way that is both systematic, and provably well-defined.

1.3 Newcomblike Scenarios

In this section, I shall consider decision problems23 in which I regard CDT to fail

to recommend the rational course of action. The next chapter will address how

CDT can be modified to address these problems, while still maintaining the parts

of CDT that do capture the ideal normative theory of instrumental rationality.

In the remainder of this chapter, I shall identify the failure, argue for why I do

think it is indeed a failure, and consider some of the unsuccessful proposals for

decision-relevant dependence that aim to resolve this failure.

The problem, I claim, is that CDT fails to take into account certain decision-

relevant dependencies that involve predictions of your action, or simulations of

you whose actions will reflect your own. Decision problems involving these de-

pendencies are called Newcomblike, after the following problem:24

22Pearl (2009).
23In all of these problems, utility is taken to be linear in money.
24Nozick (1969). This version is due to Sobel, and is quoted by Joyce (1999, p. 146).
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Newcomb’s Problem (NP) Suppose there is a brilliant (and very rich) psychologist

who knows you so well that he can predict your choices with a high degree of ac-

curacy. One Monday as you are on the way to the bank he stops you, holds out a

thousand dollar bill, and says: “You may take this if you like, but I must warn you

that there is a catch. This past Friday I made a prediction about what your decision

would be. I deposited $1,000,000 into your bank account on that day if I thought

you would refuse my offer, but I deposited nothing if I thought you would accept.

The money is already either in the bank or not, and nothing you now do can change

the fact. Do you want the extra $1,000?” You have seen the psychologist carry out

this experiment on two hundred people, one hundred of whom took the cash and

one hundred of whom did not, and he correctly forecast all but one choice.25 There

is no magic in this. He does not, for instance, have a crystal ball that allows him

to “foresee” what you choose. All his predictions were made solely on the basis of

knowledge of facts about the history of the world up to Friday. He may know that

you have a gene that predetermines your choice, or he may base his conclusions

on a detailed study of your childhood, your responses to Rorschach tests, or what-

ever. The main point is that you now have no causal influence over what he did

on Friday; his prediction is a fixed part of the fabric of the past. Do you want the

money?

The causal decision theorist reasons as follows: the psychologist’s prediction

of my choice of action is causally independent from the action that I in fact take.

In this particular scenario, it is fixed in the past, over which I have no causal

influence. I must therefore evaluate the outcome under two different possible

state of affairs: either the psychologist deposited $1,000,000 in my bank account,

or he didn’t. Crucially, regardless of which of these two states of affairs holds, I

gain $1,000 by accepting the psychologist’s offer. Hence, I, a CDT agent, should

accept the offer and take the $1,000.

25All but one choice, that is, for each of the hundred. In other words, the empirical probability of
the psychologist making an incorrect prediction is 0.99. This is not made clear from the original
text, but it simplifies any calculations without loss of generality.
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ACT BOX B
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Figure 1.1: A causal graph for Newcomb’s Problem. The rectangular border for
the ACT node represents that it is the node upon which we intervene. Since inter-
ventions on ACT do not propagate to BOX B or any of its ancestors, the content
of the box is beyond our control, and so we hold its value fixed, leading to a
two-boxing recommendation.

In the original description of NP, there are two boxes. Box A, which is trans-

parent, contains $1,000. Box B, which is opaque, contains $1,000,000 if the pre-

dictor has predicted you will take only Box A, and is empty if the predictor has

predicted you will take both boxes. The two descriptions of NP are structurally

equivalent, though I take the former description to be more sympathetic to the

causal decision theorist’s argument that you should effectively ignore the psy-

chologist. This is since it specifically places the prediction in the temporal past,

which implies but is not implied by the more general stipulation that the predic-

tion is causally independent from our action. Yet, despite the structural equiv-

alence, our intuitions about the agent’s powerlessness over the psychologist are

stronger when we place the prediction in the past.26 By convention, I use the

terms one-boxing and two-boxing, taken from the original description, to refer to

the equivalent of these actions in all Newcomblike scenarios.

26Lewis (1979, pp. 236-237) makes a similar point. Gibbard and Harper (1978, pp. 181-182)
propose a case, Transparent Newcomb’s Problem (TNP), in which the contents of Box B are visible
to the agent, making the intuition for two-boxing stronger still. The decision theory I propose
advocates one-boxing in TNP, for reasons I shall later justify when considering a similar case, the
Curious Benefactor.
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1.3.1 If You’re So Smart, Why Ain’cha Rich?

The following argument has been given by a number of decision theorists27 in

favour of one-boxing, pace the recommendation of the CDT agent: in NP, the

agents that one-box will reliably end up richer than the agents that two-box. All

decision theorists acknowledge this. Even a CDT agent who does not currently

find herself in a Newcomblike situation acknowledges this. Given that it is pre-

supposed by a theory of instrumental rationality that utility is what we value in

decision problems, and utility is taken to be linear in money, it seems hard main-

taining that agents that two-box are acting rationally.

This argument is referred to as the ‘Why Ain’cha Rich?’ (WAR) argument.

Although I endorse one-boxing in NP, I believe WAR fails as a reason for making

such an endorsement. I give a popular reason for rejecting WAR below, which

I endorse. Subsequently, I motivate my intuition that one-boxing is the rational

choice in NP.

Joyce responds that WAR fails to address the charge that the one-boxer is be-

ing irrational. As Joyce observes,28 it is part of the definition of NP that the agent

must believe that what she does will not affect what the psychologist has pre-

dicted. Hence, it is irrational for the agent to ignore her belief and one-box, even

if one-boxers end up richer than two-boxers. Of course, the CDT agent holds

that it would be rational to become the type of agent that one-boxes in NP if one

knows one is about to face such a situation. However, Joyce claims29 that if one

already finds oneself in a Newcomblike situation, then regardless what type one

is, the prediction is fixed, and so two-boxing is in fact the better option. Joyce

adds that jointly endorsing two-boxing and being the type of person of one-boxes

are not inconsistent.

In other words, Joyce’s response is: Yes, it is true that a normative theory of

instrumental rationality seeks to maximise one’s utility. However, the WAR ar-

27See, e.g., Hargreaves Heap et al. (1992, p. 342). The argument is also discussed by Lewis
(1981a), Arntzenius (2008), and Ahmed (2014, pp. 181-194).

28Joyce (1999, p. 152).
29Joyce (1999, pp. 153-154).
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gument misidentifies the epistemic perspective from which this utility ought to

be evaluated in a decision theory. By taking an evaluation of utility which poses

the two choices as yielding either $1,000 (for being a two-boxer) or $1,000,000 (for

being a one-boxer), it ignores the fact that a decision theory is supposed to evalu-

ate expected utility from the perspective of the agent herself. The agent’s beliefs,

in particular her belief that she cannot influence the psychologist’s already-made

prediction, means that the choices available yield from the agent’s perspective

either $(N + 1000) or $N , where the value of N is fixed. Under this perspective,

the two-boxing agent is choosing the option that makes her richer, pace WAR.

1.3.2 Predictors and Simulations

I agree with Joyce that the WAR argument makes a mistake about the epistemic

perspective from which an agent’s actions are evaluated. However, I believe fur-

ther that two-boxers are behaving irrationally in NP. To wit: there intuitively ex-

ist decision-relevant dependencies stemming from the agent’s actions in NP that

CDT fails to capture.

The agent rightly believes that the psychologist’s prediction is a fixed part of

the past. In graphical terms, this means that we cannot draw a direct causal link

between the agent’s action and the psychologist’s prediction or the contents of

the agent’s bank account (see Fig. 1.1). Nonetheless, the agent also believes, im-

portantly, that the psychologist is a highly reliable predictor of her choices. Con-

sequently, the agent is aware of the fact that the psychologist’s prediction reliably

tracks the actions of any agent in a Newcomblike scenario. Even though the past

is fixed, the agent knows that she can reliably infer the content of this fixed past

through the choice that she makes. This is an intuitive dependency between our

choice and the outcome, acknowledgeable to any agent who finds herself within

a Newcomblike problem, that I take to arise from describing Newcomblike prob-

lems as involving predictor-like entities.

As a justification for one-boxing, this is distinct to the appeal to ‘a view-from-
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nowhere’ or ‘long-run utility’30 à la WAR. My justification for one-boxing respects

that the agent must reason from her epistemic perspective alone, and in such

an epistemic perspective she already finds herself within a Newcomblike sce-

nario. My intuition is that, if the agent is rational, she believes that whatever she

chooses, this will be reliably and relevantly tracked by the prediction of the psy-

chologist, even if this tracking does not constitute a direct causal link between ac-

tion and prediction. Therefore, the non-causal dependency between the agent’s

action and the psychologist’s prediction is decision-relevant, and so we cannot

hold the prediction fixed while varying the agent’s action. CDT fails to account

for all of the decision-relevant dependencies that I claim are epistemically avail-

able to an agent in Newcomblike scenarios.

There is a another Newcomblike scenario worth mentioning. It does not in-

volve predictors,31 though I shall show that it is equivalent to a scenario that

does. Moreover, such a scenario is important in understanding how near-perfect

prediction may be physically possible, particularly if the agent is an AI.

Psychological Twin Prisoner’s Dilemma (TPD) An agent and her psychological twin

must both choose to either ‘cooperate’ or ‘defect’. If both cooperate, they each receive

$1,000,000. If both defect, they each receive $1,000. If one cooperates and the other

defects, the defector gets $1,001,000 and the cooperator gets nothing. The agent

and the psychological twin know that they reason the same way, using the same

considerations to come to their conclusions. However, the agent’s twin has already

made her decision in a separate room, without communication. Should the agent

cooperate with her twin?

Lewis32 argues that this sort of problem is a Newcomblike scenario. To show

this, he claims that in NP, all that is required of a prediction is that some ‘poten-

tially predictive process’ should go on, which yields the outcome that constitutes

30See Yudkowsky and Soares (2017, p. 4) for an example of such talk.
31The dilemma is due to Nozick (1969, pp. 130-131). This description of the dilemma is adapted

from Yudkowsky and Soares (2017, p. 2).
32Lewis (1979).
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the psychologist’s prediction. A clear example of a potentially predictive pro-

cess is a simulation: to make a prediction, the psychologist simply has to make a

replica of the agent, put the replica in the agent’s predicament, and see whether

the replica takes her $1,000. A psychological twin is itself a clear example of a

replica. At this stage, we have arrived at TPD from NP.

It is also obvious that we can go in the other direction: just as we can regard

the choice of a twin in an identical predicament as the reliable prediction of a

psychologist, we can treat the reliable predictions of a psychologist as the choices

that constitute the twin. Consequently, any decision-theoretic account should

treat dependencies involving predictors as decision-relevant if and only if it also

treats dependencies involving simulations as decision-relevant.

Advocates of CDT believe that two-boxing in NP and defecting in TPD are the

rational choices. I, on the other hand, believe that one-boxing in NP and cooper-

ating in TPD are the rational choices. In doing so, I am holding that, even though

the actions of predictors and simulations may be causally independent from our

own actions, the dependencies between our actions and those of our predictors

and simulations are decision-relevant. My goal in this thesis is to develop a deci-

sion theory that is able to coherently incorporate such dependencies, while at the

same time avoid incorporating any spurious and irrational dependencies. First, I

shall consider two popular decision theories that fail to strike this balance.

1.4 Evidential Decision Theory (EDT)

Jeffrey’s33 evidential decision theory (EDT) treats the decision-relevant depen-

dence between choices and outcomes as being evidential: roughly, we ought to

make the choice that gives us the highest evidence of the outcome with the high-

est utility (also known as the auspicious choice). In order to do so, rather than

weighting the utility of an outcome by the agent’s credence that her choice will

causally effect the outcome, the agent instead weights the utility by her credence

33Jeffrey (1990).
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that the outcome will obtain, conditioned on the fact that the choice has been

made. Formally, with O any partition of outcomes,34 an EDT agent evaluates the

expected utility of an action A as

EUEDT(a) :=
∑
o∈O

Cr(o | a) · U(o). (1.4.1)

Here, the conditional credence is defined as

Cr(o | a) :=
Cr(o&a)

Cr(a)
. (1.4.2)

For any outcome, this conditional credence is only well-defined if Cr(a) > 0.

Hence, for an agent to consider a, she must have some non-zero credence that

she will take that action. If this not the case, then by convention EDT dismisses a

as an available option. As such, it is implicit in the cases in which a is a relevant

option that the inequality holds, so the conditional credences are well-defined.

EDT is usually taken to prescribe one-boxing in NP and cooperation in TPD.35

In the former case, recall that the agent believes that the psychologist is 99% re-

liable in making his predictions. Write our partition of outcomes in NP as the

possible amounts of money the agent can end up with. We arrive at the follow-

ing conditional probabilities:

Cr($1, 000, 000 | onebox ) = 0.99, Cr($0 | onebox ) = 0.01,

Cr($1, 000 | twobox ) = 0.99, Cr($1, 001, 000 | twobox ) = 0.01.

From these values, the reader may verify that EUEDT(onebox) > EUEDT(twobox),

from which it follows that EDT prescribes one-boxing.36

34EDT is partition-invariant. This is true of some forms of CDT (Joyce, 1999), but not others
(Lewis, 1981b).

35Eells (1984), amongst others, argues otherwise. Such arguments lie beyond the scope of this
thesis.

36Notably, for EDT to prescribe one-boxing, it is in fact sufficient (and necessary) for the psy-
chologist to be at least 50.05% reliable! In other words, the psychologist only has to perform
slightly better than chance for EDT to prescribe one-boxing, given the monetary values at stake
in this version of NP.
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1.4.1 Managing the News

I do not believe that auspiciousness is the correct property to capture the decision-

relevant dependence between action and prediction/simulation. As Lewis ar-

gues,37 EDT ‘commends an irrational policy of managing the news so as to get

good news about matters which you have no control over’. To see this, we re-

quire a decision problem that demonstrates to the one-boxing advocate that ‘man-

aging the news’ is irrational. Given that Lewis uses NP as his demonstration of

the irrationality of EDT, we require a separate, non-Newcomblike decision prob-

lem.

The following decision problem38 meets this requirement.

XOR Blackmail (XOR-B) An agent has been alerted to a rumour that her house has a

terrible termite infestation that would cost her $1,000,000 in damages. She doesn’t

know whether this rumour is true. A greedy psychologist with a strong reputation

for honesty learns whether or not the rumour is true, and drafts a letter:

“I know whether or not you have termites, and I have sent you this letter if

and only if exactly one of the following is true: (i) the rumour is false, and

you are going to pay me $1,000 upon receiving this letter; or (ii) the rumour

is true, and you will not pay me upon receiving this letter.”

The psychologist then predicts what the agent would do upon receiving the letter,

and sends the agent the letter if and only if exactly one of (i) or (ii) is true. We

assume that the psychologist is, in fact, infallible, in that his probability of making

a mistake is 0. Thus, the claim made by the letter is true. Assume the agent receives

the letter. Should she pay up?

In this case, the agent knows that the psychologist is honest and infallible.

Let us suppose our agent operates on EDT. She then knows that, conditional on

paying, (i) must be true, so that the rumour is false. However, conditional on

37Lewis (1981b, p. 5).
38Originally given as the ‘Evidential Blackmail Problem’ in Soares and Fallenstein (2015, p. 2).

This version is from Yudkowsky and Soares (2017, p. 24).
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TERMITES POLICY

PREDICTION

ACT

OUTCOME

Figure 1.2: A causal graph for XOR-Blackmail. Observe that TERMITES is a non-
descendant of PREDICTION, meaning that the psychologist has no control on
whether termites are present. This is unlike in NP, where the psychologist has
the choice of whether to put the money in the bank account or box.

not paying, (ii) must be true, so that the rumour is true. In the latter case, the

agent stands to lose more money. Therefore, she decides to pay up. This is mis-

taken: intuitively speaking, our choice to pay will have no effect on the presence

of termites, and so we should not be beholden to such blackmails.

XOR-B is structurally distinct from NP. The key difference is that, in XOR-B,

the psychologist learns of the presence or absence of termites, and then makes

his prediction. On the other hand, in NP, it is the psychologist’s prediction that

determines whether he puts the money in the agent’s bank account, which is the

‘big win’ that is analogous to the ‘big loss’ of having termites.

I share the intuition that, while we ought to treat the psychologist’s predic-

tion as varying with the agent’s choice, this co-variation does not extend to other

events that are beyond the psychologist’s control. The relevant distinction here

is that, while the psychologist makes his prediction based on a reflection of the

agent’s decision procedure (perhaps running a simulation of the agent in order to

do so), the presence of termites holds no such connection to the agent. This is in

spite of the fact that the psychologist makes his prediction before the agent makes

her choice, and we take the agent’s choice to be a genuine exercise of her free will.

The CDT advocate will respond that we are mistaken to hold this distinction

as being decision-relevant. Indeed, Joyce’s wording of NP above makes a clear
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attempt to describe the psychologist in a way that downplays his role as a predic-

tor, stressing that the prediction is something the agent now ought to hold fixed in

her deliberations. Yet despite such pleas, there remains in the philosophical com-

munity a vocal minority of inveterate one-boxers39 whose intuitions side with the

decision-relevance of predictors. It is my task in this thesis to develop a decision

theory catered to such intuitions that retains the strengths of CDT.

By treating correlation as the decision-relevant notion of dependence between

choice and outcome, we treat auspiciousness as inherently valuable. In XOR-

B, we see how this results in the agent irrationally giving in to the blackmail.

Therefore, EDT does commend an irrational policy of managing the news, though

we do not see this in Newcomblike scenarios.

A defender of EDT may respond by arguing that, even if the psychologist

does not determine through his action whether there are termites, the infallibility

of the psychologist together with the fact that the letter has been sent in effect

determines whether there are termites or not. To develop the defence further: the

agent knows that the letter has been sent, and takes the content of the letter to be

true. Therefore, the agent ought to deduce that, if she chooses not to pay, then she

will have termites. Why, then, should the agent treat the presence of termites as

beyond her influence, but not the psychologist’s prediction, which is also in the

past and so causally independent from the agent’s action?

My response, which shall be the basis of my proposed decision theory in

the following chapter, is that while the decision-relevant notion of influence we

should employ is a causal one, the decision-relevant causal influence stems not

from one’s action, but from one’s having been the kind of agent who takes that

action in the decision problem at hand. Under this categorisation of decision-

relevant influence, we do have influence over the psychologist’s prediction. Yet

we do not have influence over just anything that is correlated with our action.

39E.g., Ahmed (2014), Meacham (2010), and Spohn (2012).
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Figure 1.3: A causal graph for Smoking Lesion. Note the assumption that the
presence or absence of LESION is screened off from ACT by POLICY. Here, LUCK
signifies the possibility that one has the lesion but has avoided getting cancer,
playing a similar role to that of ACCURATE in NP.

1.4.2 The Smoking Lesion Problem

‘Medical Newcomb Problems’ are another category of decision problems that are

cited in order to underscore the irrationality of EDT. Consider the following:40

Smoking Lesion (SL) Susan is debating whether not to smoke or to smoke. She believes

that smoking is strongly correlated with lung cancer, but only because there is a

common cause - a lesion that tends to cause both smoking and cancer. Once we

fix the absence or presence of this lesion, there is no additional correlation between

smoking and cancer. Susan prefers smoking without cancer to not smoking without

cancer; and she prefers smoking with cancer to not smoking with cancer. Should

Susan smoke?

Neither EDT nor CDT agents differ from their reasoning in NP.41 The EDT

agent recognises the auspiciousness of refraining from smoking, and therefore

refrains, despite losing the small pleasure of smoking. The CDT agent, by con-

trast, notes that her actions cannot have any causal effect on whether she has lung

cancer (see Fig. 1.3). As a result, she accepts smoking and its utility, and hopes

that she does not have a lesion whose presence is beyond her control.
40Originally given by Stalnaker (1980). This version comes from Ahmed (2014, p. 90).
41Eells (1982, Chapter 7) argues that EDT should in fact endorse smoking, in an argument

known as the Tickle Defence. For a comprehensive account of this defence, refer to Ahmed (2014,
Section 4.3). Note that the EDT agent cannot avail herself of the tickle defence in XOR Blackmail
Yudkowsky and Soares (2017, p. 25).
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SL is not Newcomblike, in the same way that XOR-B is not Newcomblike. To

wit: the event that causally effects an outcome with large negative utility (the

presence of termites, or of the lesion) is not causally dependent on the nature of

the agent’s decisions. In XOR-B, this arises from the fact that the presence of ter-

mites is also beyond the influence of the predictor. In SL, this arises from the fact

that there is no such predictor: though the lesion functions as a common cause of

smoking and lung cancer (according to the agent), this alone is not sufficient for

the lesion to be a predictor. Of course, the presence of the lesion does causally in-

fluence the nature of the agent by affecting the utility she attaches to smoking. In

the causal framework discussed, however, this does not entail that in varying the

nature of the agent we should also vary the presence of the lesion. The lesion is a

causal non-descendant of the nature of the agent, and so its presence or absence

is held fixed. For this reason, I take EDT to be mistaken and CDT to be correct on

SL.

What the agent chooses in a given decision situation causally determines (up

to a reliability constant) what prediction a predictor makes. Since we take our

agents to operate according to a decision procedure that prescribes a choice when

given a decision problem, this amounts to the predictor being causally influenced

by the decision procedure that the agent employs. However, an agent’s choice of

decision procedure can causally influence neither the presence of a lesion, nor the

presence of termites. We desire for our ideal decision theory to correctly capture

these relations.

1.5 Functional Decision Theory (FDT)

Functional decision theory (FDT)42 has recently emerged as a candidate for a

decision theory that can correctly capture the decision-relevance of predictors and

simulations. The basic intuition behind FDT is that there is some decision-relevant
42Proposed by Yudkowsky and Soares (2017) and Soares and Levinstein (2017), as a progression

from Soares and Fallenstein (2015) and Yudkowsky (2010).
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respect in which predictor-like things depend upon an agent’s future action (such

as in NP), and lesion-like things do not (such as in SL). Advocates of FDT denote

their claimed decision-relevant notion of dependence as subjunctive dependence.43

In this section, I shall first suggest a precise definition of subjunctive depen-

dence, and show how taking subjunctive dependence to be the decision-relevant

notion of dependence may potentially yield the rational responses to TPD and

XOR-B, insofar as they accord to the intuitions of one-boxers such as myself.

However, I will conclude the section by arguing that, in spite of such successes,

FDT cannot be the ideal normative theory of instrumental rationality. This is

because FDT takes the wrong kind of counterfactual as decision-relevant when

evaluating the outcome of a different decision procedure.

1.5.1 Subjunctive Dependence

Functional decision theorists imagine that the agent thinks of her decision process

as an implementation of a fixed mathematical decision function. The function itself is

a collection of rules and methods for taking the agent’s desires and credences

and selecting an action. In this sense, the agent’s mathematical decision function

captures precisely the aforementioned notion of the kind of decision-maker the

agent is.

The functional decision theorist evaluates the consequences of her actions by

evaluating the different hypothetical scenarios in which her decision function

takes on a different logical output. Since the decision process is an implementa-

tion of a fixed function, this amounts to the FDT agent posing to herself for each

action under consideration the question: “What if this very decision process pro-

duced a different conclusion?”

What does subjunctively depend on the agent’s actions? The important cases

43The term originates from Drescher (2006). However, while Drescher defines subjunctive de-
pendence by making modifications to EDT-style evidential dependence, Yudkowsky and Soares
take the concept of subjunctive dependence as already given. Hence, despite being motivated
by similar intuitions in Newcomblike cases, it is unclear whether or not the similarity between
Drescher-style subjunctive dependence and FDT-style subjunctive dependence is merely verbal.

24



for this dependence involve predictors and simulations. Taking the latter as an

example: if two physical systems are computing the same function, Yudkowsky

and Soares say that the behaviours of these systems ‘subjunctively depend’ upon

that function. The function’s existence is posited as a common determinant of

the behaviour of the two systems, analogously to Reichenbach’s44 inference of a

common physical cause between two simultaneously correlated events.

Importantly, however, in the FDT agent’s world-model, the function does not

exist as a physical component of the universe, and the dependence relation be-

tween the function output and the system behaviour is not causal, in the sense

of CDT. Instead, subjunctive dependencies are taken as a strict superset of causal

dependencies. Moreover, evidential dependencies are taken as a strict superset of

subjunctive dependencies.

Yudkowsky and Soares do not give a strict definition of subjunctive depen-

dence that captures every instance of such a relation holding between two propo-

sition. However, their explanation of the concept suggests a definition in which

proposition B is said to subjunctively depend on proposition A just in case one of

the following conditions holds:

(i) A and B describe physical events, and event B causally depends on event A.

(ii) A describes an equation governing the logical output of an agent’s decision

function on a given input, and B states a logical consequence45 of A.

(iii) A describes an equation governing the logical output of an agent’s decision

function on a given input, and B describes the physical behaviour (the act)

of the agent.

Condition (i) captures the idea that all causal dependencies are subjunctive

dependencies. Condition (ii) describes the logical consequences of the logical

output of the agent’s very decision function having a different value. Condition

44Reichenbach (1991).
45The exact notion of logical consequence employed could arguably be taken as a free parameter

for FDT. Typically, however, the term is used to refer to proofs in classical logic.
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(iii) is intended to capture the link between the agent’s representations of physical

objects, and the agent’s representation of logico-mathematical objects.

1.5.2 FDT in Action

Yudkowsky and Soares use Pearl’s graphical apparatus in order to calculate the

agent’s credences about subjunctive dependencies. Whereas the nodes and edges

in a CDT graph represented physical variables and the causal dependencies be-

tween them, in an FDT graph the nodes also represent logical function outputs

and the subjunctive dependencies between them. As in CDT, we suppose FDT

decision graphs contain a node OUTCOME, and an FDT agent seeks to maximise

U(OUTCOME). Unlike CDT graphs, FDT graphs will contain a node of the form

FDT(Cr,G), a variable that represents the output of FDT when run with a cre-

dence Cr over graph G.46 This node, by condition (iii), will always have an edge

directed towards the agent’s ACT node. Finally, we evaluate the expected utility

of different actions by intervening on the FDT(Cr,G) node, as opposed to the ACT

node. Therefore, expected utility for FDT is defined47

EUFDT(a) :=
∑
o∈O

Cr(o | do(FDT(Cr,G) = a)) · U(o). (1.5.1)

Using this formalisation, we can now construct the graphs for TPD and XOR-

B in order to determine FDT’s prescription in each of the cases.

Twin Prisoners’ Dilemma

The agent and her psychological twin in TPD are twins, in that they are two phys-

ical systems computing the same function. By Yudkowsky and Soares’ claim, this

means that the physical behaviour of the agent and the physical behaviour of the

46Here, we use underlines to represent dequoting, i.e. if x := 3 then Zx denotes the variable
name Z3.

47I have simplified the formalisation of FDT given by Yudkowsky and Soares (2017), which also
assumes that the FDT algorithm takes an observation history as another input. This complication is
not necessary for my assessment of FDT.
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psychological twin both subjunctively depend on the output of their shared deci-

sion function, FDT(Cr,G). Intervening on this node, it is clear that FDT(Cr,G) =

cooperate determines that both the agent and her twin will cooperate, and

FDT(Cr,G) = defect determines that both the agent and her twin will defect.

Mutual cooperation, having higher utility for the agent than mutual defection, is

therefore the output of the FDT algorithm: in other words, FDT agents rightly

mutually cooperate in TPD. By Lewis’ equivalence argument,48 FDT agents will

rightly one-box in NP.

XOR Blackmail

The important feature in this case is that TERMITES is not a descendant of

FDT(Cr,G). Therefore, we may hold the value of TERMITES fixed while we con-

sider the possibilities FDT(Cr,G) = pay and FDT(Cr,G) = refuse. Refusing, being

the better option regardless of the presence of termites, becomes the (rightly) ad-

vocated option in XOR-B.

1.5.3 The Problem of Counterlogicals

Ultimately, subjunctive dependence cannot be used as the decision-relevant no-

tion of dependence for ideal decision theory. It does appear to capture the decision-

relevance of predictors and simulations while avoiding the pitfalls of EDT. How-

ever, a closer inspection shows that the premise upon which subjunctive depen-

dence is based can lead to counterintuitive consequences that make FDT an inad-

equate choice of decision procedure for an ideally rational agent.

To wit: the idea that the rational decision-maker evaluates different hypo-

thetical scenarios in which the same decision function takes on different logical

outputs is problematic. Qua well-defined mathematical function, it is logically

necessary that the decision procedure has no more than one output for any given

input. Therefore, in any decision problem in which the agent evaluates the ex-

48Lewis (1979).
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pected utility of more than one potential output, all but one such evaluation will

begin from a logical contradiction (setting aside ties for maximal expected utility).

Under classical logic, by the principle ex falso quodlibet (EFQ), this means that any

proposition follows as a logical consequence (in that it can be proven) of the sup-

position that the decision function has that particular output. Using condition (ii)

of my proposed definition of subjunctive dependence, this means that we could

use EFQ to recommend any action by ‘showing’ it has an arbitrarily high utility!

To elaborate further: consider a decision problem in which there are two dis-

tinct available actions, i.e., A = {a, b}. Suppose further that actions a and b sub-

junctively determine outcomes oa and ob respectively, with U(oa) > U(ob). In this

case, FDT must prescribe action a. However, in its evaluation of the expected

utility of action b, the FDT agent uses the do-calculus to make the node-value as-

signment FDT(Cr,G) = b. Since the true value of FDT(Cr,G) is a, this is a logical

falsehood. By condition (ii) and EFQ, we may suppose this value assignment de-

termines that OUTCOME = o′b, where U(o′b) > U(oa). Therefore, FDT should in

fact prescribe action b, contradicting the original assumption.

We call a counterfactual whose antecedent is a logical falsehood a counter-

logical.49 Worries about reasoning counterfactually from contradiction are par-

ticularly salient when we represent FDT graphically, as Yudkowsky and Soares

propose. If any proposition can be proved from a contradiction, then is there

any limit on what the nodes of the graph can be? Are there any facts that we

can hold fixed while evaluating the expected utility of a particular function (de

re) producing a different output? If we cannot know what we are to hold fixed,

then we have not given an adequate specification of the decision-relevant notion

of dependence.

The problem of utilising counterlogicals in FDT is acknowledge by its advo-

cates.50 Yudkowsky and Soares dismiss the issue as being “technical rather than

49See Cohen (1990), Bjerring (2013), Bernstein (2016) for cases for the non-triviality of counter-
logicals.

50For instance, see Yudkowsky and Soares (2017, pp. 7-8) and Soares and Fallenstein (2015,
p. 12) for discussions. One proposed solution is to allow for an agent to reason probabilistically
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philosophical”:51 they claim that humans are generally capable of reasoning in

the face of uncertainty about logical claims, and in particular they are capable

of deducing the ‘true’ subjunctive consequences of a decision function having a

different logical output.

For the sake of argument, we can concede this point. After all, causal depen-

dence is an archetypal example of a relation whose instances we can intuitively

identify, yet which has eluded a precise metaphysical analysis.52 Nevertheless,

we do not take it to be a fatal flaw of CDT that we lack such an analysis.

However, the appearance of a problem as peculiar as the problem of counter-

logicals suggests that FDT may be mistaken in its approach to reasoning counter-

factually about different decision procedures. Rather than posing counterfactu-

als concerning the logical output of the agent’s decision function, the agent could

consider the consequences of her whole decision procedure changing. On a de re

reading, the claim that the agent’s decision function could prescribe a different

action is evidently false, by the above argument. However, on a de dicto reading,

the claim is more plausible. The de dicto reading has the further advantage that its

corresponding counterfactuals reason from antecedents that, while false, are not

logically impossible.

The de dicto reading accords better with the intuitions of one-boxers in TPD-

like cases. An advocate for cooperation in TPD will make a claim of the form:

‘Holding constant the knowledge that the agent and her twin employ the same

decision function,53 then whatever the agent does, her twin necessarily does the

same thing.’ On the de re reading, the agent’s decision function is treated as a

given part of the environment over which she has no control. On the de dicto read-

ing, the agent does decide which decision function she employs. The assumption

about logical statements such as the output of her decision function. See Garrabrant et al. (2017)
for a technical overview of this kind of doxastic reasoning. The above problem is a variant of the
‘5 and 10 Problem’ discussed by Benson-Tilsen (2014).

51Yudkowsky and Soares (2017, p. 7).
52For a sample of the debate around causality, refer to Sosa and Tooley (1993) and Collins et al.

(2004).
53This assumption about TPD is crucial to the claim.
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in TPD on the latter reading is that, no matter what decision function the agent

is employing, her twin employs the same one. I take this latter view to be a more

plausible reading of TPD (and any situation involving predictors and simula-

tions), and it is one I shall elaborate on in the next chapter.
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Chapter 2

Policy-Based Causal Decision Theory

2.1 Policy Selection

The previous chapter investigated functional decision theory (FDT),54 whose cen-

tral claim was that subjunctive dependence is the decision-relevant influence rela-

tion between acts and outcomes. This relation included causal links, in addition

to logical links. These links are an attempt to capture the line of counterfactual

reasoning in TPD-like cases that the output of a deterministic algorithm varies

with the output of any copies of that algorithm, even if the actions of such copies are

mutually causally independent.

Such an approach was found unsatisfactory: the exact nature and description

of situations whose nodes describe function outputs as well as physical acts and

outcomes is ambiguous when we take the possibility of the decision function

having a different output as de re.

However, I claim that we still ought to find a decision theory that views be-

havioural correlation between an agent and her simulators and predictors as aris-

ing from a non-evidential decision-relevant dependence. In this chapter, I ar-

gue that such a theory is possible within a framework where the model of our

decision-theoretic agent contains only a description of the physical world and

the causal relations between physical events in this world. Such an account will

54Yudkowsky and Soares (2017).
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make a distinction between the physical acts of an agent and the policy of the agent

that determines those acts.55

2.1.1 Three Problems for Policy Selection

Consider NP with a perfectly reliable psychologist. A regular causal decision

theorist argues that, since the physical act of taking one or two boxes has no causal

influence ex hypothesi on the prediction of the psychologist, we may hold the pre-

diction fixed while investigating the outcome of having performed one of these

physical acts. Regardless of the value at which we fix the prediction, the outcome

of having taken two boxes is always $1,000 greater than the outcome of having

taken one box. Hence we should take two boxes.

Previously, I asserted that we ought not to hold the prediction fixed while

varying the act. Yet if we are taking a graphical approach to deciding on the act,

and the act is indeed causally independent of the prediction, are we not justified

in doing so? We must conclude that our decision is about more than just which

physical act to take, and so the node in a decision graph representing our physical

act is not, in fact, the node on which we should intervene.

Indeed, there is a sense in which we do intervene on a node distinct from

the physical act. For when we make our decision about which act to take in NP,

say, there is a sense in which we make a decision about which act to take in all

such problems. For example, the CDT agent knows how she will behave in a

Newcomblike situation by virtue of what CDT prescribes. Her decision about

what to do in Newcomblike situations applies in all cases, not only the case she

happens to find herself in. However, according to Joyce,56 a CDT agent merely

wishes she had the options of the kind of agent that one-boxes, rather than treating

those options as actually available. This is mistaken.

Instead, I claim, choosing to one-box in NP for a decision-theoretic agent also

55Refer to Gauthier (1986, 1988, 1994), McClennen (1990), Meacham (2010), and Spohn (2012)
for earlier accounts in this vein.

56Joyce (1999, p. 153).
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means choosing to be (indeed, choosing to have been) the kind of agent that one-

boxes. And it is the latter choice that results in a Newcomb predictor making its

prediction that we one-box.

How ought we describe such a node? Recall that, in the previous chapter,

each decision theory is described as a procedure that maximises an expected

utility. The expected utility is itself a function of a decision problem D, and

the agent’s credence and utility functions. Fixing the latter two functions, the

decision-theoretic procedure is now a function from a decision problem to the action

to be taken in such a problem. Call such a problem-to-action mapping a policy.57

Intervening on a node that tells you what kind of agent you are, I claim, is the

same as iterating over possible policies to find one that is optimal with respect to

the right notion of expected value.58

Call a decision theory that intervenes on policies rather than acts a policy-based

decision theory.59 I will subsequently formalise a policy-based decision theory that

takes causal dependence as the decision-relevant notion of dependence. First,

however, I shall defend policy-based decision theory from three points of criti-

cism that one may make against such an account.

The Domain of Control

Firstly, one might claim that it is not within the power of a decision-theoretic

agent to choose which policy to employ. Instead, the agent is given by a policy,

who then makes a choice about which acts to take in each decision problem in ac-

cordance with the policy. An FDT advocate, holding the agent’s decision function

fixed while varying its output, may support such a claim.

57The term is borrowed from the field of reinforcement learning by way of Soares and Fall-
enstein (2015). In reinforcement learning, a policy is a map from observations to actions. In this
setting, the content of observations is encoded in the specification of the decision problem itself.

58FDT does incorporate this idea of policy selection by intervening on the output of a decision
algorithm, which in turn determines the physical action as a separate node. However, I wish
in this chapter to divorce the idea of policy selection from the problematic notion of subjunctive
dependence between algorithm outputs and predictors, and work with a physical model.

59The approach has also been referred to by Greene (forthcoming) as treating the decision theory
as the independent variable rather than the act.
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However, I would argue that if we have the choice of which act to perform

within each decision problem, we are in effect making a choice of policy, for a

policy is simply an aggregate of decision problem-action pairs (qua function from

decision problems to actions). Typically, the case for either one-boxing or two-

boxing in NP is made as a result of principles which may be applied in a determi-

nate fashion for other decision problems; consequently, the choice we make can

be seen as a choice between sets of policies that share a particular problem-action

pair. If we regard the agent as having the capacity to freely choose between all

available actions in a given problem, we must likewise attribute to the agent the

capacity to make the corresponding choice between these underdetermined poli-

cies. A supporter of CDT may grant this, while still regarding the dependencies

stemming from the policy change as decision-irrelevant.

Changing the Problem

A CDT agent, if forewarned that she is to enter a Newcomblike scenario and

given the opportunity to change her decision procedure, would self-modify to

become the type of agent that one-boxes (like an EDT agent, say). Yet that fact

is widely considered irrelevant to the question of what to do when one already

finds oneself in a Newcomblike scenario. Consequently, one may argue that a

decision theory which reasons about what it would be like to have a different

decision policy in order to arrive at its prescriptions may be changing the decision

problem.60

I reject this criticism. We can still specify a policy-based decision theory as a

procedure for identifying an expected utility-maximising act, rather than policy.

What changes in a policy-based account is the way in which one evaluates the

expected utility of a given act.

60An analogous criticism is made by Arntzenius (2008) and Joyce (2012) about the invocation
of mixed acts in the decision problem Psychopath Button, proposed by Egan (2007).
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Rational Precommitment and Rational Irrationality

Thirdly, we may worry that a policy-based decision theory commits us to certain

principles governing rationality that are widely regarded as implausible. I agree

that policy-based decision theories do carry such commitments: however, I will

show that they are more benign than they first appear.

The first concerns the idea of rational precommitment. Having chosen the op-

timal policy, the recommendations of that policy for which act to perform if and

when one observes that one is in a given decision problem will be fixed both be-

fore and after that observation has been made (if it has been made at all). Hence,

an agent following a policy will always act upon receiving such an observation

as she would have precommitted to acting on that observation, before receiving

said observation. Yet the principle

‘if it is rational to precommit to something, then it is rational to pre-

dictably behave as though one has precommitted’

does not appear to be universally valid.

Consider the following counterexample:61

Greaves’ Gym (GG) The date is January 1st, 2018. I am offered a gym membership for

this year costing $600 that will give me the equivalent of $550 in utility. Last year,

an offer was made that if I filled in a preregistration form with the gym expressing

an intention to get a 2018 membership, I would be offered a $100 discount on

signing up for that membership at the beginning of the year. I am uncertain as to

whether I preregistered last year: in fact, I have only a credence p in having done

so. Should I now sign up to the gym?

In this case, the act of preregistering represents our precommitment. This act

is evidently part of the rational course of action: by preregistering and signing

up for the membership, an agent in GG stands to gain $50 in utility, whereas not

61The set-up of the problem here in which one has uncertainty over one’s prior actions is due
to Hilary Greaves (personal communication). The original scenario and treatment of the problem
is my own.
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preregistering and signing, or not signing at all, result in -$50 and $0 in utility,

respectively.

However, while it is rational in GG to precommit by preregistering, it is not ra-

tional to predictably behave as though one has preregistered. Indeed, the smaller

p is, the less rational such behaviour becomes, since it becomes more likely that

one stands to make a net loss in utility. CDT is capable of capturing this: prereg-

istration occurs in the causal past to signing up to the gym, and so it can be held

fixed. The reader may verify that

EUCDT(sign) = (p · $50) + ((1− p) · −$50) = $(100p− 50), (2.1.1)

so the CDT agent signs up to the gym just in case p ≥ 0.5. In particular, CDT

rightly treats p as a relevant factor when deciding whether to sign up to the gym.

On an initial reading, it would appear that a policy-based decision theory may

neglect this nuance and behave irrationally. The rational agent is the one who

preregisters and subsequently signs up for the membership: if a policy-based

decision theory requires that one acts in accordance with the best possible policy,

then the theory will endorse signing up regardless of the value of p. In other

words, the principle (and policy-based decision theory) fail to account for the

possibility that one has acted irrationally in the past.

A policy-based version of CDT can be rescued from this consequence, and can

be shown to endorse the same rationale as CDT in GG. To show this requires a

clear formalisation of a policy-based account, and so I defer the full treatment of

the case until after such a formalisation has been given.

The second problematic principle concerns rational irrationality. In general,

unlike CDT, adopting a policy-based decision theory precludes the possibility

that a predictor can reward an agent for behaving in accordance with a policy

that she takes to be irrational. This is because, on a policy-based theory, as soon

as a large enough such reward is present, the policy-based theorist (unlike the
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CDT agent) takes behaving in accordance with that policy to be rational.62

One may worry, then, that there are examples in which irrational behaviour

clearly is rewarded. If so, then the rational course of action before entering such a

decision problem would be to make oneself temporarily irrational. Yet a policy-

based decision theorist cannot, as argued above, ever wish to be the kind of agent

whose actions in a given decision problem would differ from her own: she bases

her decisions on the best kind of agent she could be for a particular decision

problem.

CDT advocates would claim that NP serves as an example: if a CDT agent

could bind herself to one-boxing before the psychologist makes his prediction,

then she would, even if she takes two-boxing to be the rational course of action

in NP. Given that I hold one-boxing to be rational, NP cannot serve as our coun-

terexample here. Instead, we may consider the following example as one in which

policy-based decision theory may conflict with the rational course of action:63

Schelling’s Answer to Armed Robbery (SAAR) A man breaks into my house. He

hears me calling the police. But, since the nearest town is far away, the police cannot

arrive in less than fifteen minutes. The man orders me to open the safe in which I

hoard my gold. He threatens that, unless he gets the gold in the next five minutes,

he will start shooting my children, one by one.

It would not be rational to give this man the gold. The man knows that, if he simply

takes the gold, either I or my children could tell the police and make the number of

the car in which he drives away. So there is a great risk that, if he gets the gold, he

will kill me and my children before he drives away.

It would also be irrational to ignore the man’s threat. There is a great risk that he

will kill one of my children, to make me believe his threat that, unless he gets the

gold, he will kill my other children.

However, I have a special drug, conveniently at hand. This drug causes one to be,
62Meacham (2010, p. 56) makes a similar point regarding EDT on NP, as a response to the claim

that in NP the psychologist ‘rewards irrationality’.
63Abridged from Parfit (1984, pp. 12-13).
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for a brief period, very irrational. Before the man can stop me, I reach for the bottle

and drink. Within a few seconds, it becomes apparent that I am crazy. Reeling

about the room, I say to the man: ‘Go ahead. I love my children. So please kill

them.’ The man tries to get the gold by torturing me. I cry out: ‘This is agony. So

please go on.’

Given the state that I am in, the man is now powerless. He can do nothing that

will induce me to open the safe. Threats and torture cannot force concessions from

someone who is so irrational. The man can only flee, hoping to escape the police.

And, since I am in this state, he is less likely to believe that I would record the

number of his car. He therefore has less reason to kill me.

While I am in this state, I shall act in irrational ways. There is a risk that, before

the police arrive, I may harm myself or my children. But, since I have no gun, this

risk is small. And making myself irrational is the best way to reduce the great risk

that this man will kill us all.

As Parfit claims, on any plausible theory about rationality, it would be rational

for an agent in SAAR to cause herself to become for a period irrational by taking

the drug. Given his description of the alternative options available to the agent,64

I would agree with Parfit’s claim that taking the drug is the rational option.

However, it is unclear to me why one’s behaviour after having the taken the

drug is irrational. After all, the series of actions described by Parfit do result

in the outcome with the highest utility for the agent. In which case, a policy-

based decision theory would seemingly treat such actions as part of the policy

that yields the highest expected utility, making the actions rational by the agent’s

lights. How might we understand what mistake is being made in the claim that

the ‘irrational’ actions are genuinely irrational in this circumstance?

The key to understanding the claim that the actions are irrational is in Parfit’s

assumption that the agent cannot make herself merely appear irrational.65 To elab-

64I assume that one’s choices in SAAR are exhausted by the three options give the gold, refuse to
give the gold, and take the drug.

65Parfit (1984, Fn. 4a).
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orate, we know that the home invader wishes to not get caught by the police, and

will therefore kill the agent’s children unless he can be sure that the agent will not

record his number plate when he flees. The problem for the agent is that, once

the home invader has fled, she will no longer face any repercussions from him for

recording his number plate, and a world in which she does so is preferable to a

world in which she does not (since the former makes it more likely that the man

is brought to justice). Therefore, the drug is necessary in order to bind the agent

not only to the actions she will take in the home invader’s presence, but also to

her choice to allow the home invader to avoid capture.

Yet even this final action will not be irrational by the policy-based theorist’s

lights: being a component of the ideal course of action, the policy-based theorist

will dutifully neglect to record the number plate. This is true even if, by some

miracle, the agent survives the ordeal unscathed without having had to take the

drug - ceteris paribus, taking the drug and not recording the number plate is part

of the ideal course of action, and so the policy-based theorist executes the second

part of that plan.66 Consequently, not recording the number plate is best under-

stood as irrational only insofar as it is irrational for a CDT agent, who holds the

past fixed. For a policy-based theorist, it is perfectly rational to not record the

number plate.

Regardless, the policy-based theorist still chooses to take the drug - and ratio-

nally so! Ex hypothesi, taking the drug is the unique signal to the home invader

that he can certainly avoid capture. We do not endow the home invader with

the same predictive capacity of the psychologist in NP, and so taking the drug is

the only way that the agent can signal her policy. All of the actions taken while

under the influence of the drug are recommended by a policy-based decision the-

ory, and are therefore rational. Hence SAAR is not a counterexample to policy

selection.
66The virtue of a policy-based theorist being able to rationally execute previously-made assur-

ances in this way reoccurs in Chapter 3.
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2.1.2 Decision-Relevant Dependence for Policy Selection

Finally, it is worth asking whether, when iterating over different policies, we

should consider the consequences of those policy choices by considering their

causal effects, or by conditioning probabilistically on the event that the policy in

question has been chosen. I argue that we should take the causal rather than the

evidential approach. While both advocate one-boxing in NP, only the causal ap-

proach advocates smoking in SL. While being the kind of person who one-boxes

in NP determines that that box will contain $1,000,000, being the kind of person

who smokes in SL does not determine whether one gets cancer - only the presence

of the lesion, which does not depend on one’s policy, does. However, the corre-

lation still exists, and so an evidential approach to policy selection will advocate

refraining from smoking, hence advocating Lewis’ irrational policy of managing the

news.67

2.2 Formalising PCDT

We are now in a position to give a formal account of policy-based causal decision

theory (PCDT). PCDT is a theory that accords with the intuitions of one-boxers

by factoring in the behaviour of predictors and simulations, yet at the same time

treats causal dependence as the decision-relevant notion of dependence between

events.

Informally, then, our PCDT agent finds the best action by evaluating, for each

possible policy, the causal expected utility of choosing that policy. Once she has

found the optimum policy, she simply evaluates that policy for the decision prob-

lem at hand to find the appropriate course of action.

Formally, PCDT may be specified analogously to CDT. Take D = (Ω,O,S,A)

to be the decision problem for which we seek the correct action a ∈ A. As in CDT,

the agent comes equipped with a graph G representing the causal structure of D:

67Lewis (1981b).
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the nodes of the graph represent variables (with subsets of Ω as their ranges), with

a node OUTCOME taking values inO and a node ACT taking values inA. A PCDT

graph must contain a node POLICY, representing the agent’s decision problem-to-

action mapping. As one might expect, any PCDT graph should contain a directed

edge from POLICY to ACT.

We specify the range of POLICY node by supposing that, for each act a ∈ A

causally depending on the policy, POLICY may take as a value the proposition

πD,a meaning ‘be the kind of agent that in decision problem D takes action a.’ If

Π ⊂ Ω is the range of the POLICY variable, let us suppose for now that

Π = {πD,a | a ∈ A}.

In other words, all policies that agree with their prescribed action in the decision

problem the agent finds herself in are considered equivalent. Finally, in order to

assure the relationship between taking an action and being the kind of agent that

takes that action, we stipulate for each a ∈ A that

Cr(ACT = a | POLICY = πD,a) = 1. (2.2.1)

The PCDT agent seeks to find the action a ∈ A that maximises

EUPCDT(a) :=
∑
o∈O

Cr(o | do(POLICY = πD,a)) · U(o). (2.2.2)

As with regular CDT, we can employ Pearl’s framework68 to evaluate

Cr(o | do(POLICY = πD,a)), which is interpreted as the agent’s degree of belief

that her being the kind of agent that takes action a will effect outcome o.
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Figure 2.1: A PCDT graph for Greaves’ Gym. This may be modified to a CDT
graph by shifting the node of intervention from POLICY to ACT.

Revisiting Greaves’ Gym

We are now in a position to discuss the response of PCDT to GG, and the relation

such a response has to idea of rational precommitment. Fig. 2.1 depicts the causal

graph for GG. The same graph may be used for the CDT agent, though with the

intervention on ACT rather than POLICY. Let sign and refuse be the available acts

of signing and refusing to sign, respectively. A PCDT agent must evaluate the

outcome of the policies πD,sign and πD,refuse in order to make her decision. What

of her uncertainty over whether she has preregistered? PCDT can accommodate

this by using the following conditional credences:

Cr(PREREGISTER = yes | POLICY = πD,sign) = p

Cr(PREREGISTER = no | POLICY = πD,sign) = 1− p

Cr(PREREGISTER = yes | POLICY = πD,refuse) = p

Cr(PREREGISTER = no | POLICY = πD,refuse) = 1− p.

With the credences assigned thus, both possible values of PREREGISTER must be

considered, with the utility of the overall outcome weighted accordingly. This

leads to precisely the same evaluation of expected utility as in the CDT case de-

scribed earlier.
68Pearl (2009).
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The crucial step here is in PCDT treating two policies as distinct only insofar

as they disagree on the act presently being decided upon. Hence, πD,sign denotes

the proposition that one signs up for the gym membership, and says nothing

about whether one has already preregistered.

One might charge that the reliance on such a step is ad hoc. It is equally plau-

sible, a critic may add, that a PCDT agent should be able to further fine-grain

the available policies so as to treat preregistering and signing (y&s), and not pre-

registering but still signing (n&s), as two distinct possibilities, πD,y&s and πD,n&s

respectively. Yet if one does so (and continues to assume a credence 1 in acting ac-

cording to your policy), we again arrive at y&s, and hence signing, as the rational

action.

I claim in response that the step is only as contrived as the original decision

problem. If we are stipulating a genuine uncertainty over the previous act of pre-

registering, we are effectively taking that act as being independent of the policy

that we exercise control over. Taking the contrapositive, if our choice of policy

is sufficiently fine-grained so as to distinguish preregistering and not preregis-

tering, then we cannot assume as in the decision problem that we are in fact

uncertain as to how we have acted. As a result, it is the particular structure of

GG that imposes a more coarse-grained partition of the available policies, rather

than some external, ad hoc principle. PCDT is thus better described as adhering

to the principle of rational precommitment only in the cases in which the agent is

not genuinely uncertain about her past actions.

2.3 Comparison with Related Accounts

2.3.1 Causal Decision Theory

The key difference between CDT and PCDT is what we take our choice to be about,

and so using Pearl’s graphical apparatus, the node upon which we intervene. In

both cases, however, we are interested only in the causal effects of such an inter-
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Figure 2.2: NP, as modelled by a PCDT agent. The sole difference is the node at
which the agent intervenes.

vention.

Figs. 1.1 and 2.2 show this distinction at work in NP. Both CDT and PCDT

employ the same graph, with the same variables.69 The difference stems from

the node at which one intervenes to calculate the relevant causal probabilities,

represented by the node having a rectangular (as opposed to round) border.

In the case of CDT, our choice for ACT has no causal effect on the value of

BOX B, whose value stems from that of PREDICTION, which in turn takes its value

solely from the POLICY node. This allows us to hold the value of BOX B fixed,

while looking at the effect of ACT on OUTCOME. Since setting ACT = twobox

always yields a greater pay-off than ACT = onebox regardless of the value of

BOX B, we conclude that CDT prescribes two-boxing.

PCDT, however, intervenes on the POLICY node, which takes the values πD,onebox

and πD,twobox . If the psychologist is perfectly reliable, setting the value of POLICY

completely determines the values of all of the other nodes, from which we easily

see that setting POLICY = πD,onebox (which in turn tells us what our action should

be) is the most lucrative option.
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Figure 2.3: Spohn’s reduced (left) and reflexive (right) causal diagrams for NP.

2.3.2 Spohn’s CDT

Spohn70 defends a different account that attempts to defend the compatibility of

CDT with the act of one-boxing in NP. Fig. 2.3 shows his two graphical represen-

tations of the problem.

According to Spohn, the right-hand diagram gives the full picture for NP:

a ‘reflexive decision graph’ in which intention to perform a realisation of ACT,

modelled by DECISION, is the common cause of both the act and the prediction.

The graph is reflexive insofar as it reflects on the ordinary decision situations de-

liberating on and causing the actions, in addition to the relevant action and non-

action (elliptical) nodes.71

The left-hand diagram represents a ‘reduced’ version of this graph, which the

agent may use to determine the appropriate course of action in the decision prob-

lem. Spohn shows how we may systematically ‘reduce’ a reflexive decision graph

to a regular Pearl-style decision graph, deleting any bold-rectangular nodes that

represent the decision situation itself and drawing new arrows that capture the

influence that stems from the agent’s deliberation on how to act leading to the

decision problem. In particular, the new arrows make any non-rectangular child

of the DECISION node directly causally dependent on all the parents and all the

rectangular children of the DECISION node.72

This leads to a graph containing arrows that may seemingly be interpreted as

cases of backwards causation, as shown by the arrow drawn between ACT and

69The design of the graph is from Yudkowsky and Soares (2017).
70Spohn (2012).
71Spohn (2012, p. 100).
72Spohn (2012, pp. 118-119).
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PREDICTION in the left-hand diagram. Yet Spohn insists that there is no such

thing as backwards causation. Instead, the new arrow is instrumentally useful

in showing the connection between the action and prediction, and is justified

by the implicit presence of a bold-rectangular node as the true common cause

between ACT and PREDICTION. Querying the left-hand diagram, we arrive at

the conclusion that one-boxing is the rational option.

The motivation behind Spohn’s account and my own remains the same - the

common cause between one’s act and any prediction of one’s act is the decision

rule that leads to the act, something over which one has control. Indeed, this

shared motivation leads me to believe that the decision theory I have indepen-

dently arrived at turns out to be equivalent to that of Spohn’s.73

However, I believe my exposition to be clearer than that of Spohn’s. In PCDT,

the values of the POLICY node are transparent propositions of the form πD,a,

which state that the agent’s policy is such that she takes action a in decision prob-

lem D. In Spohn’s account, this meaning is far more opaque: the values of the

DECISION node are ‘decision situations’, essentially causal Bayesian networks

for use in a Pearl-style decision theory. Moreover, the (earliest) DECISION node

takes only one value, δ0, with probability 1, representing the reduced version of

the present decision problem with the DECISION node deleted. The shape of any

other value of a DECISION node74 is left as the subject of further theoretical work.

Moreover, Spohn merely sketches what the relevant decision rule is that pre-

scribes for each decision situation δ that is a realisation of a DECISION node a

rational action.75 Yet, as Spohn must make use of such a decision rule in order to

determine the relevant conditional probabilities of any acts that directly causally

depend on that decision situation, it makes his account far more unwieldy. By

73This may turn out to be false if Spohn disagrees on ‘veil of ignorance’-type cases discussed in
Chapter 3. However, it is unclear from Spohn (2012) how his version of CDT would respond to
such cases.

74Spohn allows for more than one bold-rectangular DECISION node in a given graph, in order
to accommodate cases in which one’s credence and utilities change as a result of previous actions.
As I shall mention in Chapter 4, I leave this as an open area of development for PCDT. One might
ask in particular whether multiple POLICY nodes are the best model for credence and utility shifts.

75Spohn (2012, pp. 120-121).
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contrast, the prescribed action of a given policy in PCDT can be clearly read from

the notation.

2.3.3 Meacham’s Cohesive Expected Utility Theory

Meacham76 claims that it is a regrettable feature of any decision theory that an

agent employing it would act differently as she would have bound herself to act if

she had had the prior opportunity to do so.77 In other words, Meacham takes the

consequence of PCDT that SAAR seeks to refute (which he calls cohesiveness) as a

feature, rather than a bug. To show that this regrettable feature need not always be

the case for a decision theory, he proposes a kind of policy-based decision theory.

In Meacham’s terminology, a decision problem is an ordered triple consisting

of an agent’s current credences, utilities, and the set of available acts. A com-

prehensive strategy is a function which maps every decision problem to one of its

available acts - in other words, it is a policy that is specified not only for the de-

cision problem at hand, but for every decision problem. The agent then seeks a

policy π to maximise her cohesive expected utility, defined as

EUCoDT(π) :=
∑
i

Cr(ICri)
∑
o∈O

ICri(o : π) · U(o). (2.3.1)

Here, the ICri(·) represent the agent’s possible ‘initial credence’ functions

(with i ranging over such functions), and the credence ICri(o : π) uses ‘:’ as an

intentionally ambiguous symbol between different readings of decision-relevant

dependence. As previously argued, however, a rational response to NP, XOR-B,

and SL demands that this dependence relation is taken as a causal one. Fur-

thermore, we must now assume that the set of propositions O is sufficiently fine-

grained so as to respect the difference in outcomes in all decision problems, rather

than the decision problem in question, since we are choosing a policy rather than

76Meacham (2010).
77This is as a response to Arntzenius et al. (2004), who is taken to support the principle: If a the-

ory of decision making has a counterintuitive result that only arises for agents who cannot bind themselves,
this result is not a mark against the theory of decision making in question.
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an act.

What are the agent’s initial credences, and why ought we use them as part

of the decision procedure of an ideally rational agent? Meacham develops his

account with respect to the first question, yet has little to say with regard to the

second. He proposes that one takes ICr to be the agent’s ur-priors: the credences

that an agent ought to have if she had no evidence whatsoever.78

It is more difficult to motivate an answer to the second question. Indeed, as

Greene79 has noted, when reasoning about cases such as NP and TPD, we are

reasoning causally from a different temporal perspective, rather than a different

evidential perspective. Therefore, even if an agent’s ur-priors could be specified

in a non-arbitrary way, by disposing of them in our reasoning we fail to capture

the truly relevant factors in a given decision problem. PCDT, using the agent’s

current credences to reason causally from a different choice of policy by the agent,

does not suffer from this difficulty.

2.3.4 Graphical Updateless Decision Theory

Finally, I compare PCDT to updateless decision theory (UDT).80 According to

UDT, we choose an optimal policy by calculating the expected value of adopt-

ing that policy - this effectively gives an expected utility formula that we seek

to maximise that is formally identical to (2.2.2). However, as in the case of FDT,

the arrows in a Graphical UDT graph represent “logical relations”, in addition to

causal relations.81 These logical relations tell us the consequences of a given pol-

icy, considered as the ‘logical output of the agent’s decision algorithm’.82 Hence

Graphical UDT is a policy-based, or updateless, version of FDT.

While we should consider our decision to be about policy rather than actions,

78Meacham (2010, p. 70, Fn. 34). As Meacham goes on to note, objective Bayesians will hold
that all agents have the same ur-prior, while subjective Bayesians will hold that different agents
can have different ur-prior functions.

79Greene (2013, pp. 37-41), Greene (forthcoming, pp. 15-17).
80As mooted in Soares and Fallenstein (2015) in tandem with Pearl’s graphical apparatus. The

original UDT proposal is due to Dai (2009).
81Soares and Levinstein (2017, p. 2) consider FDT as a generalisation of UDT.
82Soares and Fallenstein (2015, p. 9).
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our story about the consequences of our policy choice should be purely causal,

with the policy node itself standing for a physical representation of the policy as

opposed to the abstract, logical representation favoured by UDT.83

Consequently, despite their similarities, the prescriptions of PCDT and Graph-

ical UDT may in fact diverge for a certain class of decision problems. Indeed,

PCDT is the decision theory that one obtains if one rejects the claim of Soares and

Fallenstein that the logical/subjunctive relations between events is what matters

in decision-making. This claim is motivated in response to the following decision

problem:84

Retro Blackmail Problem (RBP) There is a wealthy artificially intelligent agent, and

an honest AI researcher with access to the agent’s original source code. The re-

searcher may deploy a virus that will cause $150 each in damages to both the agent

and the researcher, and which may only be de-activated if the agent pays the re-

searcher $100. The researcher is risk-averse and only deploys the virus upon be-

coming confident that the agent will pay up.

The agent knows the situation and has an opportunity to make a certain self-

modification after the researcher acquires her original source code but before the

researcher decides whether or not to deploy the virus. (The researcher knows this,

and has to factor this into their prediction.) The effect of this self-modification is

that the agent will always refuse to pay if she is being blackmailed in the manner

above. Should the agent self-modify?

In this case, such a self-modification is advisable. According to Soares and Fal-

lenstein, the researcher will consequently deduce from the agent’s original source

code that she is the type of agent which would self-modify so that she always re-

fused to pay up, and so would not deploy the virus in the knowledge that she

83It is telling that Soares and Fallenstein do not pursue the the graphical approach to UDT
very far, arguing that there is no principled, formalised way to construct the right ‘logical’ graph,
as there is for Pearl’s CDT. Nevertheless, the graphical approach re-emerges with the same issues
highlighted for FDT in Yudkowsky and Soares (2017). I discuss some of the issues raised by Soares
and Fallenstein about graphical representations of decision algorithms later in this chapter.

84Soares and Fallenstein (2015, p. 6).
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would lose $150 if she were to do so.

Soares and Fallenstein claim further that a policy-based CDT agent would not

choose to self-modify. Their argument is as follows: since the behaviour of the

copy of the agent that the researcher reasons about is causally independent to that

of the agent herself, performing a self-modification would not have any impact

over whether the researcher chooses to blackmail her. Indeed, if the agent did

self-modify, then in the case where the researcher does choose to issue the black-

mail (considered possible due to the presumed causal independence between the

agent’s and the researcher’s choice), then the agent would lose $150, rather than

potentially getting away with losing over $100.

While this account seems to hold of the regular CDT agent, I reject the claim

that a PCDT agent would not self-modify. On the contrary, PCDT successfully

captures the result that it is rational to self-modify. A PCDT agent, evaluating

how to respond in the case of a blackmail, will reason that choosing to pay up

effectively guarantees that such a blackmail will occur. Hence, she will advocate

not paying up in the case she receives the blackmail. This will be reflected in

the original source code of the PCDT agent, provided that that original source code

determines that the agent will act according to PCDT.

The original source code is what we represent by the POLICY node in PCDT.

This source code has a causal link to the policy of her copy, since the copy orig-

inates from the original source code. Hence, the original source code acts as a

common cause of the behaviour of the copy (and hence, the behaviour of the

researcher), and of the action that one takes after the copy has been made.

Soares and Fallenstein picture an agent reasoning causally, even if deciding

on the policy she has always had, to have no causal influence over her original

source code, even if her eventual choice in the decision problem is to be reflected

in the original source code. This seems incoherent. Soares and Fallenstein assume

the decision the agent makes will be reflected in her original source code. Yet if

this is the case, then the original source code is what the POLICY node represents,
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as it is meant to tell you about the kind of agent you are with respect to how you

choose to act in the given decision problem.

I hold RBP to not be relevantly different to NP: the agent’s choice of action

is reflected in her policy, which has a causal influence over the psychologist. In

both cases, the actionable policy node should represent the original source code,

which in RBP has a causal influence over the researcher by way of the copy made

of the source code.

To elaborate, if we take the original source code of the agent to be the repre-

sentative of the POLICY node, we may use our graph for NP to construct a graph

for RBP, making the substitutions

PREDICTION ↔ COPY

BOX B ↔ BLACKMAILER.

It is worth noting that this equivalence demonstrates that CDT does not pre-

scribe self-modification. To elaborate: the CDT agent in RBP is causally inde-

pendent to her copy, and so she is also causally independent to the researcher’s

choice of whether or not to send the blackmail. This means that we can hold the

researcher’s decision fixed, assigning her probability of sending the blackmail as

p, while varying the choice of whether to self-modify.

If the agent does self-modify so as to bind herself to refusing the blackmail,

her expected utility in doing so is −$150p. If she does not self-modify, then if she

receives the blackmail she will act according to CDT. Since paying up is causally

efficacious for de-activating the virus, and not paying will mean the virus dam-

ages the agent, CDT prescribes paying if the blackmail is issued and the virus is

deployed. This means that not self-modifying has an expected utility of −$100p.

Hence, a CDT agent will not self-modify in such a circumstance.
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2.4 What a Policy Node Represents

Though Soares and Fallenstein do not discuss the issue in great detail, I take the

crux of our disagreement in RBP to be the temporal location of the POLICY node

upon which the agent has the ability to intervene. As such, if we are to construct

a graph for a given decision problem that (exclusively) describes the causal re-

lation between the agent’s policy, her physical action, and other simulations and

predictors, it should be made precise exactly what the policy node represents, in

addition to the temporal location at which it is located.

As such, here is my proposal: The POLICY node stands for the earliest repre-

sentative of the physical system that faithfully implements the decision proce-

dure that the agent employs.

The principal motivation of the proposal is as follows. We wish for the POLICY

node to stand for a configuration of particles that actually represents and imple-

ments the decision procedure that the agent employs.85 Without this stipulation,

then in a deterministic universe, we might imagine that the POLICY node would

simply represent the configuration of particles at the initial state of the universe!86

This is because, under the assumption of determinism, one could infer precisely

what the agent’s policy would be from an observation of the initial state of the

universe.

This would be an unfortunate construal of the term policy.87 In the initial mo-

tivating examples for a policy-based decision theory, I claimed that there was a

sense in which the agent had control over the kind of agent she was, insofar as this

is defined with respect to how she chooses to act in a given decision problem.

The scope of this control does not, however, extend to facts about the universe

85For a discussion of what it means for a physical system to represent an abstract computation,
see Piccinini (2015). Chalmers (1994) provides an alternative account of implementation in which
a physical system implements a computation if the causal structure of the system mirrors the
formal structure of the computation. Both accounts are non-trivial, in that no physical system is
said to implement every abstract computation.

86Thanks to Hilary Greaves for pointing this out.
87This issue does not seem to occur if we do not assume determinism. If this is the case, then

the agent’s decision procedure is not guaranteed to be determined completely until her inception
in the physical universe.
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that have a causal influence over the nature of the policy that obtain before the

policy has been designed. Concretely: suppose in RBP that the agent’s original

source code was written by another researcher. Whereas we may imagine that

the agent has control over her original source code (according to which she is

currently operating), we would not extend that control to be over the researcher

who originally wrote that source code.

My proposal precludes this construal: even if knowledge of the initial state of

the universe is sufficient to determine what the policy is, that initial state does not

implement the policy under any satisfactory account of implementation, nor does

it represent a future implementation under any satisfactory account of representa-

tion.

Using the proposal, we see that if the agent is an artificially intelligent system,

the node will represent the agent’s original source code. The medium of this

source code is irrelevant - it can be the (physical implementation of) a .py file

or pseudocode written on a napkin - provided that there is a causal nexus to the

physical system implementing the code. This physical system will itself, if the

agent is a digital computer, be some collection of transistors. If the agent is a

human, then the node will consist of some collection of neurons.88

This proposal compels us to be much more precise in specifying the physical

story of any decision problem. For example, consider the earlier case of TPD, in

which you are an agent playing against a distinct physical agent employing the

same decision algorithm. FDT may identify such a twin as a ‘logical copy’ of the

agent, whose actions will necessarily co-vary with the actions of the agent herself.

In contrast, I claim that such a story is underspecified: we need to know just what

is it about the physical origin of these two agents that makes one a ‘logical copy’

88You might worry that, in the Smoking Lesion (SL) case, the lesion cannot be considered dis-
tinct to the policy, due to its being an influential factor in whether you smoke. This would be
problematic for PCDT: in subsuming the lesion into POLICY, we would pretend to assume control
over the presence of the lesion and thus over the presence of cancer, which would lead to the irra-
tional decision to refrain from smoking. Though it intuitively seems to be the case that we should
treat the lesion as merely an influential factor in our policy rather than an essential component of
it, the question of where in general to draw the line appears worryingly arbitrary.
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of another. Consider these two potential scenarios:

Scenario 1 A professor writes a precise decision algorithm on a whiteboard. Two

graduate students see this writing, and each one faithfully implements the

same algorithm on two distinct physical systems. One of these systems

represents the agent, and one represents the ‘logical copy’ of the agent. Both

employ the same decision procedure.

Scenario 2 A professor writes the instruction ‘Design an agent employing your

favourite decision theory’ on a whiteboard. Two graduate students see this

writing, and each one, without having communicated to the other, imple-

ments the same algorithm on two distinct physical systems. One of these

systems represents the agent, and one represents the ‘logical copy’ of the

agent. Both employ the same decision procedure.

The graphical representation of the decision problem in PCDT identifies the

POLICY node with the earliest configuration of particles completely determining

the policy that the agent employs. Assume that our graduate students cannot

make any mistakes, and will faithfully follow any instructions left on the white-

board. In the first scenario, then, it is the fully-specified decision algorithm writ-

ten on the whiteboard that completely determines the agent’s policy, and so the

whiteboard writing is what the POLICY node represents. The infallibility assump-

tion will also entail that there is no possible world in which the graduate students

implement distinct algorithms.

In the second scenario, however, the POLICY node cannot stand for the pro-

fessor’s instruction, since it is not a faithful implementation of the decision pro-

cedure that the agent will employ. Instead, the POLICY node will stand for the

design of the agent as devised by just one of the graduate students. Hence, un-

der the assumption that our graduate students are infallible, it is not necessarily

true (either logically or metaphysically) that the same decision algorithm will be

employed by the two agents. In particular, there exists a possible world in which
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Figure 2.4: A comparison of the causal graphs depicting Scenario 1 (left) and
Scenario 2 (right) for TPD.

the two graduate students prefer different decision theories, and so implement

different decision procedures.

This will result in different decision graphs, and hence different recommen-

dations, for the two disambiguations of TPD. The graphical representation of the

two disambiguations can be seen in Fig. 2.4.

To summarise, policy-based causal decision theory (PCDT) is a procedure

that captures the idea that, under certain circumstances, an agent has an influ-

ence over predictors and simulations that she ought to take into account in her

decision-making process. In contrast to FDT and Graphical UDT, it does so while

taking into consideration only the causal effects that one’s choice of policy may

have, making it more readily specifiable. Moreover, I have made clear the key

modelling choice that one must make in constructing the appropriate decision

graph: namely, the choice about what physical system the POLICY node over

which the agent has power represents.
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Chapter 3

The Veil of Ignorance

One of the challenges of decision theory is in disambiguating an ordinary-language

decision problem: depending on how one formalises a particular problem, the

same decision theory may prescribe different outcomes. Though unavoidable to

some extent, we should be wary of decision theories that demand of a seemingly

clear decision problem too many hidden structural assumptions in order for a

clear outcome to be specified, and we should be even more wary if the outcome

is overly dependent on seemingly unmotivated assumptions.

In this chapter, I consider a decision problem in which PCDT appears to pos-

sess this disadvantage over CDT and EDT. In response, I motivate a principle that

may be applied to disambiguate such decision problems for PCDT, and show this

principle to be advantageous in other cases.

3.1 The Curious Benefactor

Consider the following problem:89

The Curious Benefactor (CB) A wealthy psychologist decides to play a game with

you. He flips a fair coin. If it comes up tails he will ask you to pay him $5. If

it comes up heads, he will give you $1,000,000, but only if he predicts that you

89Problem originally due to Nesov (2009), under the name Counterfactual Mugging. This version
is adapted from Hintze (2014, p. 3).
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would have given him the $5 if the coin had come up tails. He then flips the coin

and it comes up tails. He explains the situation to you, and asks you for the $5.

Should you give him the $5?

In CB, the prescriptions of both CDT and EDT coincide. An agent following

either decision procedure must condition her credences on the evidence she has

observed, viz., the coin having come up tails.90 Given that the coin has come up

tails, both CDT and EDT agree that giving the $5 yields a lower expected utility

than not giving the $5. Hence both CDT and EDT prescribe not giving the $5.

Conditioning on the coin’s having come up tails effectively holds that fact fixed,

rendering the hypothetical scenario in which the coin comes up heads irrelevant.

Does PCDT recommend the same course of action? It is not immediately clear.

Recall that PCDT, rather than evaluating interventions of the form ACT = a,

instead evaluates interventions of the form POLICY = πD,a. In CB, the agent

makes her choice about the POLICY node before coin is flipped. We therefore

have a choice between two modelling assumptions when propagating the value

of POLICY = πD,a forwards: we either (i) respect our observation of the actual

coin outcome and fix the value of COIN as tails; or we (ii) forget our observation

of the coin outcome, and model COIN as a stochastic variable taking values either

h or t each with credence 1/2.

Our choice between (i) and (ii) is crucial. If we choose (i), then PCDT advo-

cates not giving the $5, by a similar line of reasoning to that of CDT. However, if

we choose (ii), PCDT advocates giving the money. This is because we must now

take into account what would happen if the coin came up heads instead of tails:

EUPCDT(give) =

(
1

2
×−$5

)
+

(
1

2
× $1, 000, 000

)
= $499, 997.50,

EUPCDT(refuse) =

(
1

2
× $0

)
+

(
1

2
× $0

)
= $0.

90Both CDT and EDT agents condition on all evidence they have collected up until the present.
This is a feature of the theories I have thus far omitted to mention, though the expected utility
formulas for both theories may be straightforwardly adjusted to reflect this requirement. For an
account of how the CDT and PCDT agents update their causal credences on receiving evidence,
refer to the Appendix.
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Figure 3.1: CB, as modelled by a PCDT agent. Modelling choices (i) and (ii) cor-
respond with the range of COIN being {t} and {h, t}, respectively.

Responding that the PCDT prescription depends on the formalisation of the prob-

lem won’t cut it. As we have seen, this nuance in modelling CB is not present in

CDT or EDT, which condition on all observations up until ACT. In order to de-

fend PCDT, one must therefore propose some well-motivated principle whose

purpose it to disambiguate all such cases.

3.1.1 Generalising the Problem in CB

Call the time that lies strictly after the temporal location of the POLICY node and

strictly before the temporal location of the ACT node the pre-act post-policy (PAPP)

time.91 Suppose that, at the time of the decision problem, the agent has observed

that a set X of variables located in the PAPP time has value x. The question for

PCDT is as follows: should a PCDT agent condition her credences on the fact

X = x when evaluating EUPCDT? In other words: where should one draw the veil

of ignorance over observations in the PAPP time?

I claim that the PCDT agent should not condition her credences in X = x. In

particular, if the value of X is defined according to some joint probability distri-

bution over the variables in X , the agent should treat the value of X as if it is

drawn randomly from that distribution, even if the agent knows the actual out-

91We may assume without loss of generality that, in an agent’s causal graph, no two variables
are temporally co-located.
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come for X . Therefore, in CB the agent should take choice (ii) and give the $5.

Better luck next time! I shall now defend this principle from two criticisms.

Susceptibility to Blackmail

One might worry that, like with XOR Blackmail and Retro Blackmail, an agent

who is predisposed to paying in CB can be duped by a psychologist into giving

all of her money away. For example, the psychologist might flip his coin until

it comes up tails, and then propose the problem to an unwitting PCDT agent to

extract $5, at no monetary cost to the psychologist. Given that a scam of this form

is perfectly avoidable, it would be irrational if PCDT were to reliably lose money

through such a scheme.

However, if the psychologist were to behave in the way described in the pre-

vious paragraph, it would create a different decision problem. Applying PCDT

to that decision problem, we see that in that case PCDT would not recommend

giving the $5, although it does in the original CB case.

Only the Actual World Matters

The biggest issue for PCDT is that it is prima facie irrational to ignore one’s ev-

idence about the state that one in fact finds oneself in. Why should a possible

world in which one knows one is not located have any relevance when choosing

an action? To quote Gandalf:92

All we have to decide is what to do with the time that is given us.

Of course, there is some sense in which PCDT takes into account the actual ob-

servations. In particular, having chosen a policy, the PCDT agent uses that policy

to decide which act to take depending on what actual observation is made.

Yet this is not enough to defend PCDT from this criticism. For while PCDT

may act on its actual observations, the claim is that a PCDT agent is acting irra-

tionally by considering what would be the case were she to have made observa-
92Tolkien (1954, p. 60). Wedgwood (2013) proposes a decision theory based upon this principle.
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tions she knows she has not made. This is the kind of behaviour alluded to by

the original name of CB, Counterfactual Mugging: the idea that one should make a

sacrifice that will only pay out in a world that is not the actual one.

I believe that, in cases such as CB, one should simply bite the bullet and take

as decision-relevant a state of the world one knows one does not find oneself

in. Regrettably, I see no compelling argument that endorses such behaviour in

the specific case of CB. Instead, in order to make my case that the bullet is worth

biting in CB, I shall consider a different case in which ignoring PAPP observations

is rationally motivated.

3.2 Making Reliable Assurances

In this section, I give an example in which the ability to ignore one’s observations

by using unconditional credences is in fact a virtue. The case is as follows:93

Parfit’s Hitchhiker (PH) Suppose that I am driving at midnight through some desert.

My car breaks down. You are a stranger, and the only other driver near. I manage

to stop you, and I offer you a great reward if you rescue me. I cannot reward you

now, but I promise to do so when we reach my home. Suppose next that I am

transparent, unable to deceive others. I cannot lie convincingly. Either a blush, or

my tone of voice, always gives me away.

Neither the CDT nor the EDT agent will be able to convincingly make this promise.

Having reached her home, the agent will condition on her observation and straight-

forwardly deduce that paying the reward will be worse for her than not paying

it. Being aware of this, however, the driver will choose not to rescue the agent.

This does not hold for the PCDT agent. She will not condition on her observa-

tion that she is home, since this variable occurs in the PAPP time. This means that

she will evaluate paying the money to be the better outcome, since she believes it

is worse to die than it is to pay the great reward (and her refusal to condition on
93Parfit (1984, p. 7). For a version of this scenario as a decision-theoretic problem, see, e.g.,

Hintze (2014, p. 3).
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her observation means she still entertains the possibility of dying in the desert,

despite having been rescued). Knowing this, the driver rescues the agent.

This opportunity arises for the PCDT agent only because of her ability to

evaluate policy outcomes unconditionally, even when there is evidence available

upon which one may condition. Therefore, the PCDT treatment of the veil of

ignorance allows for PCDT agents to make credible assurances to predictors, an

ability which CDT and EDT agents lack.94

A CDT or EDT advocate may question why the ability to make credible as-

surances is taken as a desideratum of instrumental rationality. In response, I say

that it is clear that making the assurance and then keeping it is the path of deci-

sions that makes the agent’s life go as well as it possibly can for her. Moreover, by

acting according to the prescriptions of PCDT, the agent can make these choices

without having to utilise some additional ability to make binding commitments

that later force one to make a certain choice.

The agent has control over the kind of decision procedure she employs: such

is the underlying motivation behind PCDT. CDT and EDT do not grant the agent

this degree of control, thus denying the agent her opportunity to escape the desert

in PH.95 If making credible assurances results in a better outcome for the agent

overall, the agent should have the capability to make these assurances. PCDT

grants the agent this opportunity, and it does so crucially through its refusal to

condition on observations made in the PAPP time. Consequently, we should treat

this refusal as a feature of PCDT, rather than a bug.

94Refer to Gauthier (1994) for a discussion of assurances and threats in the context of decision
theory. Bratman (1987) develops an account in which the intention to perform an act affects the
rationality of performing the act, which would be applicable in PH if we take the driver to read
intentions. PCDT does not require this addition to the agent’s ontology.

95Meacham (2010) shows that Arntzenius et al. (2004)’s response to such a case, that the inability
to bind oneself should not be taken as a mark against CDT, leads to undesirable consequences for
decision theory as a whole.
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Chapter 4

Conclusion and Future Work

I have developed policy-based causal decision theory (PCDT) as a decision theory

that (i) respects the decision-relevance of predictors and simulations; (ii) correctly

identifies causal dependence between physical entities as being decision-relevant;

and (iii) is capable of executing ideal sequences of decisions. The distinctive fea-

tures of PCDT are more likely to show up for an AI than for any other kind of

agent, motivated as it is through examples in which access to the AI’s source code

provides an easy means of prediction or simulation. Yet, in principle, PCDT cap-

tures the ideal normative theory of instrumental rationality for any kind of agent.

Moreover, it is sufficiently well-specified so as to allow for clear predictions of

behaviour.

Throughout this thesis, I have assumed that the utility and credence functions

of the agent remain constant throughout the time period considered. However,

there exists a rich literature of decision problems96 in which this assumption is

relaxed, and even a decision theory - deliberational decision theory97 - intended

to account for the time-instability of credence functions. It remains to be seen

how PCDT interacts with such scenarios, or even whether any modification is

necessary to the theory in order to allow for the possibility of such deliberation.98

96Egan (2007) introduces Psychopath Button and Murder Lesion as cases intended as counterex-
amples to CDT. Joyce (2009, 2012) shows how CDT may be developed to account for these cases.

97Arntzenius (2008) develops this account. See Skyrms (1990) for an earlier development of
deliberation in decision theory.

98Omohundro (2008, pp. 5-6) claims that, in most circumstances, an AI will in fact try to pre-
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Furthermore, as alluded to in the Introduction, it is unclear whether as hu-

mans we ought to program PCDT into an AI. The goals that determine what de-

cision theory an AI should employ from our perspective - the avoidance of human

catastrophe for one - do not necessarily align with the goals an AI might other-

wise have. Both questions are of interest to those who seek long-term human

flourishing.

serve its utility function.
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Appendix A

A Review of Causal Bayesian

Networks

A.1 Bayesian Networks

Causal Bayesian networks have enjoyed widespread use in the field of AI since

the 1980s, when they were developed as a tool for statistical modelling by Pearl,

amongst others.99 However, the tool is less well-known amongst the philosophi-

cal community, and so I briefly develop the account here insofar as it is necessary

in order to specify Causal and Policy-Based Causal Decision Theory.

Definition A.1.1 (Nielsen and Jensen (2009), Definition 2.3). A Bayesian network

consists of the following:

• A set of variables and a set of directed edges between variables.

• Each variable has a finite set of mutually exclusive states.

• The variables together with the directed edges form a directed acyclic graph

(DAG); a directed graph is acyclic if there is no directed path A1 → ...→ An

where A1 = An.
99Pearl (2009) remains the most comprehensive account of modelling causation with networks.

See Spirtes et al. (2000) for an alternative account.
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• To each variable A with parents B1, ..., Bn, a conditional probability table

P (A | B1, ..., Bn) is attached. If A has no parents, then the table reduces to

the unconditional probability table P (A), referred to as the prior probabil-

ity for A.

Rather than requiring the whole table of probabilities, the chain rule for Bayesian

networks yields a more compact means of calculating the required probabilities.

Theorem A.1.2 (Nielsen and Jensen (2009), Theorem 2.1). Let BN be a Bayesian

network over A = {A1, ..., An}. Then BN specifies a unique joint probability distribu-

tion P (A) given by the product of all conditional probability tables specified in BN:

P (A) =
n∏

i=1

P (Ai | pa(Ai)), (A.1.1)

where pa(Ai) are the parents of Ai in BN , and P (A) reflects the properties of BN .

A.1.1 Adjusting for Evidence

Bayesian networks can also capture observations that a given variable has a cer-

tain value, or that it in fact has a certain set of values. If A is a variable with n

states with P (A) = (x1, ..., xn) and e is the information that A can be only in state

i or j, then P (A, e) = (0, ..., 0, xi, 0, ..., 0, xj, 0, ..., 0).

Definition A.1.3 (Nielsen and Jensen (2009), Definition 2.4). Let A be a variable

with n states. A finding on A is an n-dimensional table of zeros and ones.

Theorem A.1.4 (Nielsen and Jensen (2009), Theorem 2.2). Let BN be a Bayesian

network over the universe A, let e1, ..., em be findings, and let e be the statement repre-

senting these findings. Then

P (A, e) =
∏
A∈A

P (A | pa(A)) ·
m∏
i=1

ei, (A.1.2)

and for A ∈ A we have

P (A | e) =

∑
A\{A} P (A, e)

P (e)
. (A.1.3)
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This result holds also for likelihood evidence that expresses a relative distribu-

tion over certain states. For instance, if A has possible states a1 and a2 and we

receive the evidence that a1 is three times as likely to be the state of A than a2, we

represent such evidence with the vector (0.75, 0.25).

A.1.2 d-separation

Following the rules of d-separation, we can decide for any pair of variables in a

Bayesian network whether they are independent given the evidence entered into

the network. These rules, which cover all of the ways in which evidence may be

transmitted through a variable, are formulated in the following definition.

Definition A.1.5 (Nielsen and Jensen (2009), Definition 2.1). Two distinct vari-

ables A and B in a Bayesian network are d-separated if for all (undirected) paths

between A and B, there is an intermediate variable V (distinct from A and B)

such that either

• the connection is serial (i.e., A → ... → V → ... → B) or diverging (i.e.,

A← ...← V → ...→ B) and the value of V is known; or

• the connection is converging (i.e., A → ... → V ← ... ← B), and neither V

nor any of V ’s descendants have received evidence.

The link between d-separation and conditional independence is given in the

following theorem.

Theorem A.1.6 (Pearl (2009), Theorem 1.2.4). If setsX and Y are d-separated by Z in

a DAG G, then X is independent of Y conditional on Z in every Bayesian network with

graph G. Conversely, if X and Y are not d-separated by Z in a DAG G, then X and Y

are dependent conditional on Z in at least one Bayesian network with graph G.
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A.2 Learning Bayesian Networks

We say that the skeleton of a Bayesian network N is the undirected graph ob-

tained by removing directions from all edges in N . Assume we have a set of

variables, and access to queries of the form I(A,B,X ), which denote that A is

d-separated from B given X (or equivalently, that A is independent from B given

X ). We wish to determine the causal structure behind these variables. We can

learn the skeleton of N by making the link A− B part of the skeleton just in case

¬I(A,B,X ) for all X not containing A or B.

Suppose now we wish to recover the directions of these edges. We can do so

by following only four rules:100

Introduction of v-structures If you have three nodes, A,B,C, such that A − C

and B − C, but not A − B, then introduce the v-structure A → C ← B if

there exists an X (possibly empty) such that I(A,B,X ) and C /∈ X .

Avoid new v-structures When the first rule has been exhausted, and you have

A→ C −B (and no link between A and B), then direct C → B.

Avoid cycles If A→ B introduces a directed cycle in the graph, then do A← B.

Choose randomly If none of the above rules can be applied anywhere in the

graph, choose an undirected link and give it an arbitrary direction.

A.3 Causality

Evidently, the last of these rules might appear too arbitrary for a Bayesian net-

work to truly represent the causal structure of a decision problem. Indeed, the

causal graphs used in CDT and PCDT will obey further constraints:

Definition A.3.1 (Pearl (2009), Definition 1.3.1). Let P (ν) be a probability distri-

bution on a set V of variables, and let Px(ν) = P (ν | do(X = x)) denote the

100Nielsen and Jensen (2009, Section 7.1).
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distribution resulting from the intervention do(X = x) that sets a subset X of

variables to constants x. Denote by P∗ the set of all interventional distributions

Px(ν) such that X ⊆ V . A directed acyclic graph G is said to be a causal Bayesian

network compatible with P∗ just in case the following three conditions hold for

every Px ∈ P∗:

1. Px and G form a Bayesian network;

2. Px(vi) = 1 for all Vi ∈ X whenever vi is consistent with X = x;

3. If pai is a value of pa(Vi), then Px(vi | pai) = P (vi | pai) for all Vi /∈ X

whenever pai is consistent with X = x.

We assume that any decision problem can be accurately represented thus.

Once we do, we are able to calculate the effect on an intervention on a set of

variables, as the following theorem shows.

Theorem A.3.2 (Pearl (2009), Theorem 3.2.2). Let Y be any set of variables disjoint of

{Xi} ∪ pa(Xi). The effect of the intervention do(Xi = x′i) on Y is given by

P (y | do(Xi = x′i)) =
∑
pai

P (y | x′i, pai) · P (pai). (A.3.1)

Equation (A.3.1) calls for conditioning P (y | x′i) on the parents of Xi and then

averaging the result, weighted by the prior probability of pa(Xi) = pai. The op-

eration defined by this conditioning and averaging is known as ‘adjusting for

pa(Xi).’
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