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than the first three as a necessary condition for understanding nat­
ural language. Haugeland says, "Only a being that cares about 
who it is, as some sort of enduring whole, can care about guilt or 
folly, self-respect or achievement, life or death. And only such a 
being can read" (631 ). However, it certainly seems that somebody, 
such as a Buddhist monk, can eschew self-identity and the cares of 
life and still read. So I assume that Haugeland has something 
deeper in mind. Perhaps the condition is that in order to under­
stand a passage about certain cares or feelings one must have ex­
perienced those cares and feelings. But this claim is too strong, for 
one can understand discussions of death, for example, without ever 
having had cares about death. To insist that one does not really, 
really understand discussions of subjects one does not care about 
or has not experienced is to exclude much of what we usually take 
to be natural-language understanding. Although knowledge 1s es­
sential for natural-language understanding, caring is not. 
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AND PROPOSITIONS * 

I. THE NEED FOR A NEW FORMULATION 

T HE theory of properties, relations, and propositions prom­
ises to be an important tool in logic, philosophy, psy­
chology, and linguistics. Indeed, talk about properties, 

relations, and propositions (PRP's for short) is commonplace in 
informal discussions in these disciplines. However, no formal theory 
of PRP's has ever been completely and adequately formulated. To 
be convinced of this, consider two representative arguments: 

Whatever x believes y believes. 
x believes that A . 

.. y believes that A. 

Being a bachelor is the same thing as being an unmarried man. 
. . It is necessary that all and only bachelors are unmarried men. 
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Neither of these intuitively valid arguments is even expressible in 
standard first-order predicate logic even when epistemic and modal 
operators are adjoined. And though it is true that both of these 
arguments can be expressed in certain higher-order intensional 
logics, such higher-order logics are essentially incomplete, to men­
tion just one of their shortcomings. But things are better than they 
might seem. When an intensional abstraction operation is adjoined 
to first-order logic, the result is a logic for PRP's which is equipped 
to represent the above arguments-and indeed, nearly all problem­
atic arguments in intensional logic. At the same time, unlike higher­
order intensional logics, this first-order quantified intensional logic 
is, surprising as it might seem, provably complete. 

In what follows I will show how to construct such a first-order 
theory of PRP's. The construction requires the development of 
both a new formal language and a new semantic method. The 
new semantic method does not appeal to possible worlds, even as a 
heuristic. The heuristic used is simply that of properties, relations, 
and propositions taken at face value. And, unlike the various 
possible-worlds approaches to intensional logic, the approach de­
veloped here is adequate for treating not just the logical modalities 
but intentional matters as well. I will bring the paper to a close by 
speculating briefly on the intriguing philosophical question of why 
a complete logic for PRP's can be achieved in the setting of first­
order logic but not in the setting of higher-order logic. The answer 
to this question suggests an account of the origin of incompleteness 
in logic generally. 

II. TWO TRADITIONAL CONCEPTIONS 

Historically, there have been two fundamentally different concep­
tions of properties, relations, and propositions. 1 On the first concep­
tion, intensional entities are considered to be identical if and only 
if they are necessarily equivalent. A corollary is that, beyond the 
requirement of necessary equivalence, there are no constraints on 
what is to count as a correct definition. For example, both of the 

1 There are intermediate conceptions between the two that I isolate. No treat­
ment of PRP's would be satisfactory unless it addressed this and related topics 
including: the relation between PRP's and sets, the logic for the predication rela­
tion and the status of logicism, the logical and intentional paradoxes, the paradox 
of analysis, the relation between extensional and intensional logic, and the 
relation between theories of reference and theories of meaning. These topics are 
explored in my forthcoming book Quality and Concept, where the two traditional 
conceptions of PR P's are synthesized into a single theory of qualities and concepts. 
This synthesis leads to noncircular purely logical definitions of concepts ranging 
from truth and analyticity to necessary equivalence ""N, necessary connection, 
and intentionality. This synthesis also leads to a solution to Goodman's new 
problem of induction. 
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following sentences taken from contemporary philosophy: 

(a) x is grue iff x is green if examined before t and blue otherwise. 

(b) x is green iff xis grue if examined before t and ble~n otherwise. 

qualify as correct definitions on this conception. 
On the second conception, by contrast, each definable intensional 

entity is such that, when it is defined completely, it has a unique, 
noncircular definition. (The possibility that such complete definitions 
might in some or even all cases be infinite need not be ruled out.) 
Hence, on this conception, there are severe constraints on what is 
to count as a correct definition. For example, in view of its stipula­
tive character, the original definition of grue in terms of green 
(and blue) is certainly correct, even if green should itself be 
definable. Therefore, on the assumption that there is a unique way 
of completely spelling out the correct definition of grue, green 
must show up in that definition either as a defined or as an undefined 
term. Consequently, on the assumption that correct definitions 
cannot be circular, green cannot in turn be defined in terms of 
grue. Thus, although (a) and (b) above both express necessary 
truths, on the second conception of intensional entities (a) alone 
is a correct definition. Although necessary equivalence is a necessary 
condition for identity, it is not a sufficient condition. 

The first conception of intensional entities is that which under­
lies Alonzo Church's "alternative 2" formulation of Frege's theory 
of senses.2 This conception is also built into the possible-worlds 
treatment of PRP's. Indeed, this conception is commonly attributed 
to Leibniz. Whether Leibniz actually subscribed to it, however, 
is open to doubt. 

The second conception of intensional entities has a far livelier 
history. Perhaps the clearest instance of it is to be found in Russell's 
doctrine of logical atomism. (On this doctrine it is required that 
all complete definitions be finite as well as unique and noncircular.) 
Traces of this conception are also clearly evident in Leibniz's 
remarks on the distinction between simple and complex properties. 
Moreover, if concepts (ideas, thoughts) are identified with proper­
ties, relations, and propositions, evidence of this conception can be 

2 "A Formulation of the Logic of Sense and Denotation," in Paul Henle, 
Horace Kallen, and Susanne K. Langer, eds., Structure, Method, and Meaning: 
Essays in Honor of Henry M. Sheffer (New York: Liberal Arts Press, 1951), 
pp. 3-24; and "Outline of a Revised Formulation of the Logic of Sense and 
Denotation," in two parts, Nous, vn, 1 (March 1973): 24-33, and vm, 2 (May 
1974): 135-156. For Church's theory of synonymy, see his "Intensional Iso­
morphism and Identity of Belief," Philosophical Studies, v, 5 (October 1954): 
65-73, and his "Outline ... ," op. cit. 
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found in the writings of philosophers from Descartes and Locke, 
through Kant, and on to even Frege. In spite of its lively history, 
this conception has never been invoked as the intuitive motivation 
for a formal theory of PRP's. Although Russell's informal doctrine 
of logical atomism provides us with perhaps the clearest instance 
of this conception, Principia Mathematica, ironically, is neutral with 
regard to the two conceptions. And despite what one might expect, 
Alonzo Church does not intuitively motivate his "alternative O" 
formulation of Frege's theory of senses with this conception of 
PRP's; instead, the intuitive motivation that Church explicitly 
invokes is a problematic conception of synonymy based on the 
notion of synonymous isomorphism. However, scrutiny of Church's 
axioms (axioms 63-65 and 66-68, ibid.) reveals that the second con­
ception does in fact implicitly underlie this formulation of Frege's 
theory. 

The first conception of intensional entities is ideally suited for 
treating the logical modalities-logical necessity, logical possibility, 
etc. It has proved to be of little value, however, in the treatment of 
intentional matters-belief, desire, perception, decision, assertion, 
etc. Indeed, it has led its major contemporary proponents to con­
struct theories that provide strikingly inadequate treatments of 
them. The second conception, on the other hand, though ideally 
suited for the treatment of intentional matters, has only complicated 
the treatment of logical modalities. 

The value of each conception of intensional entities is evident. 
Therefore, I propose to develop the two conceptions side by side. 
Once this is done, a natural synthesis will suggest itself. 

III. A NEW FORMAL LANGUAGE 

I will now specify the syntax for a first-order language with inten­
sional abstraction. This language will be called L,.,. Primitive 
symbols: 

Logical operators: &, ....,, 3 
Predicate letters: F11

, F21, F.,.n 
Variables: X, y, Z, ••• 

Punctuation: ( . ). [' J 
Simultaneous inductive definition of term and formula of L,.,: 
(1) All variables are terms. 
(2) If t1, •.• , ti are terms, then F;i(t1, ... , ti) is a formula. 
(3) If A and Bare formulas, then (A & B), -,A, and (3vk)A are formulas. 
(4) If A is a formula and v1, ... , Vm, 0 :$ m, are distinct variables, then 

[A]., ...• .,. is a term.3 

3 In the limiting case where m = 0, [A J is a term. All and only formulas and 
terms are well-formed expressions. An occurrence of a variable v; in a well-formed 
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L., is just like a standard first-order language except for its singular 
terms [A ]vi···Vm· On the intended informal interpretation of L.,, the 
singular term [A]v 1 ... vm denotes a proposition if m = 0, a property 
if m = 1, and m-ary relation-in-intension if m 2: 2. From a syntactic 
point of view the intuitively valid arguments mentioned at the 
outset of the paper can be perspicuously represented in L.,: 

('t;/z) (B(x, z)) B(y, z)) 
B(x, [A]) 
:. B(y, [A]) 

[B(x)]x = [(U(x) & M(x))]x 
:. N([('t;/x)(B(x) = (U(x) & M(x)))J) 

Of course, in order to guarantee that these and other intuitively 
valid arguments come out valid in L.,, we must first specify the 
semantics for L.,. 

IV. A NEW SEMANTIC METHOD 

By what means should we characterize the semantics for L.,? Since 
the aim is simply to characterize the logically valid formulas of L.,, 
it will suffice to construct a Tarski-style definition of logical validity 
for L.,. Such definition will be built on Tarski-style definitions of 
truth for L.,. These definitions will in turn depend in part on specifi­
cations of the denotations of the singular terms in L.,. As already 
indicated, every formula of L., is just like a formula in a standard 
first-order extensional language except perhaps for the singular 
terms occurring in it. Therefore, once we have found a method for 
specifying the denotations of the singular terms of L.,, the Tarski­
style definitions of truth and validity for L., may be given in the 
customary way. What we are looking for specifically is a method for 
characterizing the denotations of the singular terms of L., in such 
a way that a given singular term [A ]v 1 ... vm will denote an appropriate 
property, relation, or proposition, depending on the value of m. 

Since L., has infinitely many singular terms [A ]a, what is called 
for is a recursive specification of the denotation relation for L.,. To 
do this we will arrange these singular terms in to an order according 
to their syntactic kind and complexity. So, for example, just as the 
complex formula ( (3x)Fx & (3y)Gy) is the conjunction of the simpler 

expression is bound (free) if and only if it lies (does not lie) within a formula of the 
form (3vi)A or a term of the form [A ]v1 ... vi .. ·vm· A variable is free (bound) in a 
well-formed expression if and only if it has (does not have) a free occurrence in 
that well-formed expression. A sentence is a formula having no free variables. 
The predicate letter F 1

2 is singled out as a distinguished logical predicate and 
formulas of the form F12 (ti, t2) are to be rewritten in the form t 1 = t .. V, ), =, 
=v,.··v; are to be defined in terms of 3, &, and-, in the usual way. If Vi occurs free 
in A and is not one of the variables in the sequence of variables a, then Vi is an 
externally quantifiable free variable in the term [A ]a. Let o be the sequence of 
externally quantifiable free variables in [A ]a. For readability [A ]a will sometimes 
be rewritten [A ]a•· 
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formulas (3x)Fx and (3x)Gx, we will say that the complex term 
[((3x)Fx & (3y)Gy)] is the conjunction of the simpler terms 
[(3x)Fx] and [(3y)Gy]. Similarly, just as the complex formula 
-, (3x) Fx is the negation of the simpler formula (3x) Fx, we will say 
that the complex term [ -,(3x)Fx] is the negation of the simpler term 
[(3x)Fx]. The following are other examples: [Rxy]yx is the conver­
sion of [ Rxy ]xy; [ Sxyz ]xzy is the inversion of [ Sxyz ]xyz; [ Rxx ]x is the 
reflexivization of [ Rxy ]xy; [ Fx ]xy is the expansion of [ Fx ]x; [ (3x) Fx J 
is the existential generalization of [ Fx ]x; [ Fy ]Y is the predication of 
[Fx ]x of y; [F[Gy ]y] is the predication of [Fx]x of [Gy]y; [F[Gy ]Y]Y 
is the relativized prediction of [ Fx ]x and [Cy ]y. Th us, nine syn tactic 
operations are isolated in this way: conjunction, negation, conver­
sion, inversion, reflexivization, expansion, existential generalization, 
predication, and relativized predication.4 

The complex singular terms of L., that are syntactically simpler 
than all other complex singular terms are those whose form is 
[Fhm(v1, ••• , Vm)]v,···vm· These will be called elementary. The 
denotation of such an elementary complex term is just the property 
or relation expressed by the primitive predicate Fhm· The denotation 
of a more complex term [A ]a is defined in terms of the denotation (s) 
of the relevant syntactically simpler term (s). However, to state 
this definition, we must have a general technique for modeling 
PRP's. 

Suppose that we were to use one of the previous approaches to 
this subject-namely, the approach of Russell, of Church, or of the 
possible-worlds theorists Montague, Kaplan, D. Lewis, et al. In 
that case we would be led to identify properties and relations with 
certain functions. I find such identification highly unintuitive. But 
this is not all. The identification of properties and relations with 
functions leads naturally-and perhaps inevitably-to a hierarchy 
of artificially restricted logical types. Since the thesis that properties 
and relations are functions is linked in this way to type theory, 
it proves to be more compatible with the higher-order approach 
to the logic of PRP's than it is with the first-order approach. In a 
first-order setting-such as that provided by L.,-the identification 
of properties and relations with functions merely generates a 
jungle of unwanted and unnecessary complications and restrictions. 
The alternative is to take properties and relations-as well as 
propositions-at face value, i.e., as real, irreducible entities. This 
is what I will do. 

4 These nine syntactic operations are precisely defined in my Quality and Concept, 
op. cit. 
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The identification of intensional entities with functions lies at 
the very heart of the possible-worlds semantic method. If, as I have 
proposed, intensional entities are taken at face value and not as 
covert functions, then the possible-worlds semantic method will 
be of no use to us. But how, then, is the denotation of a given 
complex term [A]a determined from the denotation(s) of the 
relevant syntactically simpler terms? My answer is that the new 
denotation is determined algebraically. That is, the new denotation 
is determined by the application of the relevant fundamental 
logical operation to the denotation (s) of the relevant syntactically 
simpler term (s). Let me explain. 

Consider the following three propositions: [(3x)Fx], [(3y)Gy], 
[ (3x)Gx & (3y)Gy]. (Note: in this paragraph I will be using-not 
mentioning-terms from Lw.) What is the most obvious relation 
holding among these propositions? Answer: the third proposition 
is the conjunction of the first two. Similarly, what is the most obvious 
relation among the properties [Fx]x, [Gx]x, and [(Fx&Gx)]x? As 
before, the third is the conjunction of the first two. And what is the 
most obvious relation holding between the propositions [(3x)Fx] 
and [-, (3x) Fx]? Answer: the second is the negation of the first. 
Similarly, what is the most obvious relation holding between the 
properties [ Fx ]x and [ -,Fx ]x? As before, the second is the negation 
of the first. In a like manner we arrive at the following fundamental 
relationships: [Rxy]yx is the converse of [Rxy]xu; [Sxyz]xzu is the 
inverse of [Sxyz]xyz; [Rxx]x is the refiexivization of [Rxy]xu; [Fx]xu 
is the expansion of [Fx]x; [(3x)Fx] is the existential generalization 
of [Fx]x; [Fy]v is the result of predicating [Fx]x of y; [F[GyJvJ is 
the result of predicating [Fx]x of [Gy]y, and [F[Gy]vJv is the result 
of a relativized predication of [Fx]x of [Gy]u. The above examples 
serve to isolate nine fundamental logical operations on intensional 
entities. These nine fundamental logical operations, of course, 
correspond to the nine syntactic operations listed earlier. 

The first two fundamental logical operations are intensional 
analogues of the two operations from Boolean algebra. A Boolean 
algebra having two elements (T and F) is an extensional model of 
first-order sentential logic. The next four operations are intensional 
analogues of operations from the algebra of relations, whose origins 
are found in the work of Pierce and Shrader. The algebra of relations, 
or transformation algebra, as it is called, is the algebra for exten­
sional relations. A transformation algebra is an extensional model of 
first-order predicate logic without quantifiers. The next operation, 
existential generalization, is an intensional analogue of the special 



THEORIES OF PROPERTIES, RELATIONS, AND PROPOSITIONS 641 

new operation found in polyadic algebra. Polyadic algebra is just 
the algebra for extensional relations with quantification. A polyadic 
algebra is an extensional model of first-order predicate logic with 
quantifiers. Finally, predication and relativized predication are 
two further operations that I have isolated for the purpose of 
modeling first-order quantifier logic with distinguished singular 
terms, including in particular intensional abstracts. 

Taken together, these nine fundamental logical operations have 
the following the following property. Choose any complex term 
[A]a in Lw that is not elementary. If [A]a is obtained from [B],s 
via the syntactic operation of negation (conversion, inversion, 
reflexivization, expansion, existential generalization), then the 
denotation of [A ]a is the result of applying the logical operation 
of negation (conversion, inversion, reflexivization, expansion, 
existential generalization) to the denotation of [B],s. The same thing 
holds mutatis mutandis for complex terms that, syntactically, are 
conjunctions, predications, or relativized predications. In this way, 
therefore, these nine fundamental logical operation make it possible 
to define recursively the denotation relation for all of the complex 
in tensional terms [A ]a in Lw. 5 

The algebraic semantics for Lw is thus to be specified in stages. 
(1) An algebra of properties, relations and propositions-or an 
algebraic model structure, as I will call it--is posited. (2) Relative to 
this an intensional interpretation of the primitive predicates is 
given. (3) Relative to this, the denotation relation for the terms of 
Lw is recursively defined. ( 4) Relative to this, the notion of truth for 
formulas is defined. (5) In the customary Tarski fashion, the notion 
of logical validity for formulas of L"' is defined in terms of the notion 
of truth. 

Now a structure {3 is a Boolean algebra if and only if (i) {3 is an 
ordered set consisting of a universe or domain '.D and two operations 
on '.D x '.D and '.D, respectively, and (ii) the elements of {3 satisfy 
certain finitely specifiable conditions. By analogy, ;:irr is an algebraic 
model structure if and only if (i) ;:irr is an ordered set consisting of a 
universe or domain '.D and nine fundamental logical operations on 
'.D x '.D, '.D, .•. , respectively (plus certain supplementary ele­
ments), and (ii) the elements of ;:Jl1 satisfy certain finitely specifiable 
conditions. In section II, I mentioned that, historically, there have 

' Notice that the meaning relation for L., may then be defined simply as follows: 

The meaning of A =df the denotation of [A Jvr··vm 

(in order of their first free occurrences, V1, .• • Vm are the free variables in A). 
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been two competing conceptions of intensional entities. According 
to conception 1, intensional entities are identical if and only if they 
are necessarily equivalent. According to conception 2, each definable 
intensional entity is such that, when it is defined completely, it has 
a unique, noncircular definition. By suitably adjusting the conditions 
imposed on the elements of a given algebraic model structure :m:, 
we can fix the exact character of the intensional entities that :m: is 
designed to model. In particular, by suitably formulating the condi­
tions imposed on the elements of :m:, we can make precise what it 
takes for the intensional entities modeled by :m: to conform to 
conception 1 or conception 2. 

In this way we actually arrive at two distinct types of algebraic 
model structures-type 1 and type 2. In turn, we arrive at two 
distinct notions of logical validity for Lw-validity1 and validity2, 
i.e., truth-in-all-type-1-model-structures and truth-in-all-type-2-
model-structures. (Specifications of both types of model structure 
and both notions of logical validity are laid out in greater detail in 
the Appendix.) 

V. THE LOGIC FOR PRP'S ON CONCEPTION 1 
On conception 1 intensional entities are identical if and only if 
they are necessarily equivalent. Thus, on conception 1, the following 
definition captures the properties usually attributed to the modal 
operator D: 

oA = d1 [A] = [[A] = [AJJ6 

For the purpose of formulating the logic for L"' on conception 1, this 
definition will be adopted as a notational convenience. The modal 
operator <> is then defined in terms of o in the usual way: <>A 
= df-, o -,A. The logic Tl for L"' on conception 1 consists of (a) 
the axiom schemes and rules for the modal logic SS with quantifiers 
and identity and (b) three additional axiom schemas for intensional 
abstracts. 

Axiom Schemas and Rules of Tl 

Al: Truth-functional tautologies 
A2: ('v'v;)A (v;) ) A (t) (where tis free for v; in A) 7 

&That is, necessarily A iff the proposition that A is identical with a trivial neces­
sary truth. Since on conception 1 there is only one necessary truth, this definition 
is adequate. 

1 A term tis free for v; in A iffdf for all Vk, if vk is free int, then no free occurrence 
of Vi in A occurs either in a subcontext of the form (3vk) ( ... ) or in a subcontext 
of the form [ ... ]a•k~· Thus, if tis free for Vi in A, the result of substituting t for the 
free occurrences of vi in A produces no "collision of variables." [Recall that 
('rlvk) ( ••. Vk . •. ) is an abbreviation for -, (3vk)• ( ... Vk . •• ). J Let A (v1, ... , Vk) be 
any formula; v1, ••• , Vk may or may not occur free in A. Then, we write 
A (t1, ... , tk) to indicate the formula that results when, for each j, 1 S j S k, the 
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('</v;) (A ) B) ) (A ) ('</v;)B) (where v; is not free in A) 
Vi = Vi 

v; = Vj ) (A (v;, v;) = A (v;, Vj)) 
[where A (v;, Vj) is a formula that arises from A (v;, v;) by replacing 
some, but not necessarily all, free occurrences of v; by Vj, and Vj 

is free for the occurrences of v; that it replaces] 

[AJvr··vp 7"'- [B]u1···u 0 (where P 7"'- q) 
[A (v1, ... , Vp) ]vi···vp = [A (u1, ... , up) ]ur··up 
(where the externally quantifiable free variables in these two 
complex terms are the same and, for each k, 1 s k s p, Vk is free 
in A for uk, and conversely) 
[A]a = [B]a = D (A =a B) 
D (A)) A 
D(A) B)) (DA) DB) 
<>A) DOA 
if f-A and f-A ) B, then f-B 
if f-A, then HVv;)A 
if f-A, then f-DA 

Al is of course concerned with the truth-functional sentential 
connectives & and -,. A2 and A3 are familiar axioms for first-order 
quantifiers. A4 asserts the reflexivity of identity. AS is Leibniz's 
law. A6 asserts the distinctness, respectively, of propositions, proper­
ties and relations. A7 asserts the validity1 of a change of bound 
variables within intensional abstracts. A8 asserts the necessary 
equivalence of identicals and the identity of necessary equivalents. 
This principle is, of course, the hallmark of conception 1. A9-Al 1 
are the standard SS axioms for D and <). Rl is modus ponens. R2 
is universal generalizaLion. R3 is the necessitation rule from SS.8 

Given the definition of D and <> in terms of identity and inten­
sional abstraction, modal logic may be viewed as just the identity 
theory for intensional abstracts. In this connection, notice that, 
whereas the principle of necessary identity: 

X=Y) DX=Y 

is an immediate consequence of Leibniz's law AS (given the 
reflexivity of identity A4), the SS axiom All is just an instance of 
the principle of necessary distinctness: 

x,ey) Dx-;t-y 

term t; replaces each free occurrence of v; in A. Example: if A (v) is F[Gv] and tis 
[Hw], then A (t) is F[G[Hw]]. In this example t is free for v in A (v); v is an 
externally quantifiable free variable in A (v), and w is an externally quantifiable 
free variable in A (t). 

s Tl is the simplest formulation of conception 1. In it the Barcan formula and 
its converse are derivable. This feature can be removed by slightly complicating 
the axioms and rules. Corresponding adjustments would then be made in the 
semantics. 
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In fact, the SS axiom and the principle of necessary distinctness 
are actually equivalent. For, given Al-A.10 and Rl-R3, not only 
is All derivable from the principle of necessary distinctness, but 
also the principle of necessary distinctness is derivable from A 11. 

Now I will state the primary result for Tl: 

THEOREM (Soundness and Completeness) : 

For all formulas A in Lw, A is valid1 if and only if A is a theorem of Tl 
(i.e., l=1A iff h1A). 9 

VI. THE LOGIC FOR PRP's ON CONCEPTION 2 
On conception 2, each definable intensional entity is such that when 
it is defined completely, it has a unique, noncircular definition. The 
logic T2 for Lw on conception 2 consists of (a) axioms Al-A7 and 
rules Rl-R2 from Tl, (b) five additional axiom schemas for inten­
sional abstracts, and (c) one additional rule. In stating the additional 
principles, I will write t(FPq) to indicate that t is a complex term of 
Lw in which primitive predicate FPq occurs. 

Additional Axiom Schemas and Rules for T2 

G,8: [A]a = [B]a ) (A = B) 
G,9: t r! r 

(where t and r are non-elementary complex terms of different 
syntactic kinds) 

ct 10 : t = r = t' = r' 
(where t and r are the negations (existential generalizations, 
expansions, inversions, conversions, reflexivizations) of t' and r', 
respectively) 

ct 11 : t = r = (t' = r' & t" = r") 
(where either tis the conjunction oft' and t" and r is the conjunc­
tion of r' and r" or t is the predication oft' oft" and r is the predi­
cation of r' of r" or, for some term t*, tis the relativized predication 
oft, t*, t" and, for some term r*, r is the relativized predication of 
r' r* r") 10 

ct12: t(F/)' = r(Fhk) ) q(F;j) ;,o: s(Fhk) 
[where t(F/) and s(Fhk) are elementary, and r(Fhk) or q(F/) 1s 
non-elementary J 

<R3: Let FkP be a nonlogical predicate that does not occur in A (v;); 
let t(FkP) be an elementary complex term, and let t' be any com­
plex term of degree p that is free for v; in A (v;). If f-A (t), then 
f-A (t'). 

9 The proof of this theorem is given in Quality and Concept. An important 
corollary of this theorem is that first-order logic with identity and extensional 
abstraction (i.e., class abstraction) is complete. 

10 For the explanation of the clause concerning relativized predication, see 
Quality and Concept. For the present suffice it to say that the clause is stated this 
way in order to handle relativized predication generally, not just the simple 
example given earlier. 
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ag affirms the equivalence of identical intensional entities. Schemas 
d9-ll capture the principle that a complete definition of an inten­
sional entity is unique. And schema dl2 captures the principle 
that a definition of an intensional entity must be noncircular. <R3 
says roughly that, if A (t) is valid2 for an arbitrary elementary 
p-ary term t, then A (t') is valid 2 for any p-ary term t'. 

The following is the primary result for T2: 

THEOREM (Soundness and completeness) : 

For all formulas A in L.,, A is valid2 if and only if A is a theorem of T2 
(i.e., hA iff 1-T2A). 

Now recall the two intuitively valid arguments mentioned at the 
outset of the paper. Symbolized in L.,, these arguments are both 
valid 1 and valid 2, and, relatedly, in both Tl and T2 the conclusion 
of each argument is derivable from its premise(s). 

To bring out the difference between Tl and T2 (and between 
validity1 and validity2), an example will be helpful. Consider the 
following invalid argument involving the intentional predicate 
'wonders': 

x wonders whether there is a trilateral that is not a triangle. 
Necessarily, all and only trilaterals are triangles. 
:. x wonders whether there is a triangle that is not a triangle. 

In L., this argument is symbolized as follows: 
xW2[(3y)(Trilateral (y) &....,Triangle (y))J 
D('v'y)(Trilateral (y) =Triangle (y)) 
:. x W2[ (3y) (Triangle (y) & ...., Triangle (y))] 

In Tl-but not in T2-the conclusion of this argument is derivable 
from the two premises. And, relatedly, the argument is valid1 but 
not valid 2. So, clearly, the formal logic-and semantics-that is 
based on conception 2 is that which is appropriate for the treatment 
of intentional matters. The fact that Church's "alternative 2" and 
the various possible-worlds constructions of intensional logic 
(including Carnap's original construction in Meaning and Necessity) 
are all based on conception 1 is what lies at the root of their failure 
to provide adequate treatments of intentional matters. 

Now for the synthesis of the two approaches. In relevant type 2 
algebraic model structures, single out a new distinguished logical 
relation Necessary Equivalence. Adjoin an associated primitive 
2-place logical predicate ""N to L.,. Add to T2 axioms and rules for 
""N fashioned after the Tl axioms and rules for =. (That is, add ""N 

analogues of A4, A6-All, R3, plus two ""N analogues of AS, viz., 
""wsymmetry and ""wtransitivity.) The resulting system T2 1 is a 
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unified logic for both modal and intentional matters. It appears that 
T2' can also be proved sound and complete. 

VII. THE ORIGIN OF INCOMPLETENESS 

Why is it that complete logics for PRP's can be achieved in the 
setting of first-order logic but not in the setting of standard higher­
order logic? 

Consider the following intuitively valid argument: 

x is red and y is red 
:. There is something that x is and that y is. 

There are two approaches to the representation of this argument: 
the first-order approach and the higher-order approach. On the 
higher-order approach the argument is represented as an instance of 
second-order existential generalization: 

Rx&Ry 
:. (3f) (fx & fy) 

where R is a name of the color red and f is a predicate variable for 
which R is a substituend. On the first-order approach the argument 
is represented as an instance of first-order existential generalization: 

x.:ir & yAr 
:. (3z) (x.:iz & y.:iz) 

where r is a name of the color red and .:i is a distinguished 2-place 
logical predicate that expresses the predication relation, i.e., a 
relation expressed by the copula in natural language. 

As I have said, the logics Tl and T2 for Lw are provably complete 
relative to the standard notions of validity-i.e., validity1 or 
validity 2• But suppose that a 2-place predicate (e.g., .:i) is singled 
out as a distinguished logical predicate and that the interpretations 
of Lw are restricted in such a way that this 2-place predicate always 
expresses the predication relation. In this event, the logic for Lw 
would be rendered essentially incomplete relative to the resulting 
special notion of validity. In this sense, then, it is not the apparatus 
of intensional abstraction-nor is it the associated infinite abstract 
ontology of intensional entities-that is responsible for incomplete­
ness in the logic for PRP's. Rather, it is a fundamental logical 
relation on that ontology, namely, the predication relation. The 
reason that higher-order logics are essentially incomplete relative 
to their standard notions of validity is that the notation for the 
predication relation is built into the very syntax of higher-order 
languages, and consequently, the semantic import of the notation 
for the predication relation is never permitted to vary from one 
standard interpretation to another. 
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Completeness is possible in the first-order setting because the 
standard interpretations of Lw are not restricted in such a way that 
a distinguished logical predicate (e.g., .:i) must always express the 
predication relation. Such a restriction on the interpretations of Lw 
would be relevant if the theory of PRP's were being used in a 
construction of classical mathematics. It is not relevant, however, 
if the theory is being used merely to treat modal and intentional 
matters. Modal and intentional matters require a theory of proper­
ties, relations, and propositions of decidedly less logical power. 

GEORGE BEALER 

Reed College 

Appendix 

An algebraic model structure is any structure (5), CP, JC, g, Conj, Neg, Exist, 
Exp, Inv, Conv, Ref, Pred, RelPred, Id) whose elements simultaneously 
satisfy the conditions set forth below. 5) is the domain of discourse and is 
nonempty. CP is an equivalence relation on 5) that serves to partition 5) into 
a denumerable number of disjoint subdomains: 5)_1, 5)0, 5)1, 5)2, 5)3, ... 
Although 5)i, i 2': 0 may not be empty, we do permit 5)_1 to be empty. The 
elements of 5)_1 are to be thought of as particulars; the elements of 5)0, 
as propositions; the elements of 5)1, as properties, and the elements of 
5)i, for i 2': 2, as i-ary relations. JC is a set of functions on 5). These func­
tions are to be thought of as determining alternate or possible extensions 
of the elements of 5). g is a distinguished element of JC and is to be 
thought of as that function which determines the actual extensions of 
the elements of 5). The next nine elements of an algebraic model structure 
are operations each of which must satisfy an associated defining condition. 
For example, for all H €JC and for all x1, ... , Xi€ 5): 

1.a. (x1, ... ,xi)€H(Conj(u,v)) = ((x1, ... ,xi)€H(u) 
& (x1, ... , Xi)€ H(v)) (for u, v € 5)i, i ;::>: 1) 

b. H(Conj (u, v)) = T = (H(u) = T & H(v) = T) (for u, v € 5)0) 
2.a. (x1, ... , Xi_J) € H(Exist(u)) = (3xi)((xi, ... , Xi_J, Xi)€ H(u)) 

(for u € 5)i, i ;::>: 2) 
b. H(Exist(u)) = T = (3x1)(x1€H(u)) (foru€5)1) 
c. H(Exist(u)) = T = H(u) = T (for u € 5)0) 

3.a. (x1, ... ,Xi-1)€H(Pred(u,xi)) =(xi, ... ,Xi_J,Xi)€H(u) 
(for u € 5)i, i .$ 2) 

b. H(Pred(u, x1)) = T = x1 € H(u) (for u € 5)1) 

The last element of a model structure is Id. Id is a distinguished element 
of 5)2 and is thought of as the fundamental logical relation-in-intension, 
Identity. Id must, of course, satisfy the following condition: 

('rJJI €JC) (H(Id) = {xy € 5): x = y)) 

That is, every H €JC singles out the extensional identity relation on 5) 
to be the extension of the intensional identity relation Id. 
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An algebraic model structure is type 1 iffdr it satisfies the following 
further condition: 

('rjx, y E '£>;) (('rJH EX) (H(x) = H(y)) --> x = y) for all i :'.:: -1 

This condition provides us with precise statement of conception 1. 
Specifically, this condition rules out the possibility of there being two 
(or more) elements of any given subdomain 'J); which are necessarily 
equivalent in extension. 

An algebraic model structure is type 2 iffdr its nine operations Conj, Neg, 
Exist, Exp, Inv, Conv, Ref, Pred, RelPred are (i) one-one, (ii) disjoint 
in their ranges, and (iii) noncycling. Conditions (i)-(iii) provide us with 
a precise formulation of conception 2. For, taken together, (i) and (ii) 
guarantee that the action of the inverses of the nine fundamental logical 
operations in a given type 2 model structure :Jn: is to decompose the 
elements of 'J) into unique (possibly infinite) trees. And condition (iii) 
ensures that, for each item u in such a decomposition tree, u cannot 
occur on any path descending from u. So the following is the sort of 
situation ruled out by condition (iii): 

u 

v 
w 

x 
u 

Hence, whereas conditions (i) and (ii) ensure that the elements of 'J) 

have at most one complete definition in terms of the elements of 'J) plus 
the nine fundamental logical operations, condition (iii) ensures that such 
definitions are never circular. 

Notice that in the formal characterizations of what it is to be a type 1 
or type 2 algebraic model structure no use is made of any of the following 
intuitive notions: particular, property, relation, proposition, alternative 
or possible extension, actual extension, complete definition. For what it is 
worth, type 1 and type 2 model structures are characterized formally in 
exclusively set-theoretic terms. 

An interpretation ff for Lw relative to model structure ::m is any function 
that assigns to the predicate letter F12 (i.e., =) the distinguished element 
Id e :Jn: and, for each remaining predicate letter F;; in Lw, assigns to F;i 
some element of the sub-domain '£>; C 'J) e :Jn:. Given the above notions, 
denotation and, in turn, truth for Lw relative interpretation ff and algebraic 
model structure :Jn: are definable in a relatively straightforward manner. 
And then Tarski-style definitions of type 1 and type 2 validity are 
immediate. 

GB 




