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Abstract. It is sometimes claimed that the Bayesian framework automatically imple-
ments Ockham’s razor—that conditionalizing on data consistent with both a simple the-
ory and a complex theory more or less inevitably favours the simpler theory. It is shown
here that the automatic razor doesn’t in fact cut it for certain mundane curve-fitting
problems.

1. Introduction

It is sometimes alleged that, across an array of interesting cases, the Bayesian framework
automatically implements Ockham’s razor: conditionalizing on data accounted for equally
well by both a simple theory and a complex theory more or less inevitably favours the
simpler theory.1

Roughly speaking, the idea is as follows. Suppose that we are able to account for the
data seen so far using members of a smaller family of hypotheses (with fewer adjustable
parameters) as well as members of a larger family of hypotheses (with more adjustable
parameters). Within the smaller family we expect that the live hypotheses are fairly
similar to one another compared to how similar the live hypotheses are to one another in
the larger family—that is just an expected byproduct of the difference in the number of
adjustable parameters. But this is to say that the smaller family in effect makes sharper
predictions about what future data will look like than does the larger family. So if new data
bear out the predictions of both families, the posterior probability of the smaller family
should be boosted more dramatically than the posterior probability of the larger family. If
the two families started out with even roughly equal prior probability, the smaller family
will soon pull ahead—and stay there so long as it is capable of accounting for the data
decently well. Something along these lines is indeed true in certain special cases—such as
when each family of hypotheses is finite, or when the smaller family contains only a single
hypothesis.2

To make the point vivid, consider the case of curve-fitting. Suppose that we are shown
three data points that happen to be collinear. The idea is that this sort of data set ought
to favour the theory that the true curve is linear at the expense of the theory that the true

Forthcoming in Erkenntnis.
1See, e.g., Rosenkrantz (1983, p. 82), Jefferys and Berger (1992), McKay (2003, ch. 28), White (2005),
and Henderson et al. (2010, §4). It will be assumed throughout that Bayesian priors are probability
measures—and in particular that they are both normalized and countably additive.
2For these cases, see, e.g., Henderson et al. (2010, §4) and Kelly and Glymour (2004, §4.4). For claims
that the automatic razor should function beyond these special cases, see, e.g., Rosenkrantz (1983, p. 82)
and White (2005, §3).



curve is, say, a cubic.3 For consider the situation between the revelation of the second and
third data points. The theory that the true curve is linear is essentially betting its life on
the third data point being more or less collinear with the first two, while the theory that
the true curve is a cubic is at best agnostic on this question. When the third data point
is revealed to be in truth collinear with the first two, Bayesian conditionalization rewards
the boldness of the linear theory by boosting its posterior probability at the expense of
theories, like the cubic theory, that did not stick their necks out.

The aim of the present note is to show that this plausible-sounding line of reasoning is
mistaken. Although the automatic razor functions well when everything in sight is finite,
it is easy to construct a curve-fitting problem in which the range from which possible
data points are sampled is infinite and in which conditionalization does not exhibit a
systematic tendency to favour smaller families of hypotheses over larger ones. In particular,
for problems of this kind, there is a sense in which typical data sets consisting of three
collinear points confirm the theory that the true curve is a cubic at the expense of the
theory that it is linear.

2. A Curve-Fitting Problem

Here is a highly idealized picture of one aspect of the scientific method. One begins
with a set of hypotheses, H, concerning the nature of some system. As one gathers data
concerning this system, some hypotheses in H are ruled out by the data. At any stage of
inquiry, however, a large number of hypotheses remain in the running. If pressed to select
the most plausible one, a scientist will rely on background knowledge, judgements of prior
probability, theoretical virtues, favourite statistical tests, and so on.

Elementary discussions of the scientific method often focus on a special case of this
general picture: curve-fitting. A scientist is interested in the dependence of physical
quantity B on physical quantity A. Let us call the function F that encodes this dependence
the mystery function. Data come in the form of ordered pairs (x, y) consisting of a value
x of A and the corresponding value y of B expected to be close to F (x). After each data
point is revealed, the scientist is required to make a conjecture: to choose the function in
H that is the most plausible candidate to be the mystery function, given the data seen.

We will specialize here to the case in which x and y range over the rational numbers
and the space of hypotheses H under consideration is the space of polynomial functions
in x with rational coefficients.4 Note that we do not restrict x, y, or the coefficients of
polynomials to bounded intervals of the rationals. We will assume that there is some
fixed probability measure σ defined on the rational numbers that determines the data
seen as follows: if the mystery function is F and the value of F is sampled at x, then the
probability of seeing (x, y) is σ(F (x) − y). We will make only one assumption about the
form of σ: it takes its maximum value σ̄ at zero (so although it may not be likely that one

3Here and throughout, these theories are to be understood as being incompatible: a polynomial of degree
k is required to have a non-zero coefficient for xk.
4The basic phenomenon that drives the argument of §3 below arises whether we work with real or rational
variables and polynomial coefficients: whatever probability a prior assigns to the linear polynomials, it
assigns almost all of this probability to some bounded subset of the space of linear polynomials, and hence
all but rules out linear polynomials of relatively large slope or with relatively large intercepts (thanks to an
anonymous referee for this way of putting the point). The restriction to rational variables and coefficients
allows the consequences of this phenomenon to be brought out in an especially stark fashion.
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will see the true value F (x) when sampling at x, it is more likely that one will see this
value than that one will see any other given value).

We will consider a Bayesian agent who has a prior probability distribution, Pr, defined
over the space of hypotheses H—for any hypothesis h in H, P r(h) measures our agent’s
credence, prior to seeing any evidence, that the mystery function is h. For convenience,
we will count a prior as admissible only if it assigns positive weight to each hypothesis in
H. We work in a context (such as gravitational wave astronomy) in which Nature chooses
the order in which the values of x are sampled (and we will assume that no value is ever
sampled twice). Our agent has no opinion at all about the order in which the values of x
are liable to be sampled—but also does not think that the order in which they are sampled
provides any relevant evidence about the identity of the mystery function.

In this setting, the following provides the natural model of our agent’s response to
evidence. Suppose that the first n values of x sampled are given by ∆ ={x1, x2, . . . , xn}.
Then a possible data set will have form D ={(x1, y1), (x2, y2), . . . , (xn, yn)}. We will say
that such a D is a data set based on ∆. If our agent knows that ∆ gives the first values of
x to be sampled, then her credences will be encoded in a probability measure Pr∆ that
assigns probabilities to pairs of the form (h,D) where h is a hypothesis in H and D is a
data set based on ∆. P r∆(h,D) for D = {(x1, y1), (x2, y2), . . . , (xn, yn)} is calculated in
the obvious way:

Pr∆(h,D) := Pr(h) · σ(h(x1)− y1) · . . . · σ(h(xn)− yn)

(recall that σ(h(xk)− yk) is the probability of getting value yk when sampling at xk if the
true value at xk is h(xk)).

With the joint probability distribution P∆(h,D) in hand, we can go on to define various
marginal and conditional probabilities such as Pr∆(h), P r∆(D), P r∆(h|D), and Pr∆(D|h)
in the usual way. For any ∆ and any h in H, P r∆(h) = Pr(h)—so our agent does indeed
consider the order in which values of x are sampled to provide no relevant evidence con-
cerning the identity of the mystery function. Informally, we can think of Pr∆(·) as Pr(·|∆),
but this is merely a heuristic (since Pr does not assign probabilities to propositions like
∆, the conditional probability Pr(·|∆) is, strictly speaking, undefined).

3. The Razor Malfunctions

If one wants to understand the extent to which something like the envisioned automatic
Bayesian razor really works, it is natural to ask whether conditionalization generically
favours the simpler theory over more complex alternatives, for data sets that are accom-
modated equally well by both.5

Let us consider a concrete special case. We useH1 to denote the set of linear polynomials
of the form `(x) = a1x + a0 (a1 6= 0) and H3 to denote the set of of cubic polynomials
of the form c(x) = a3x

3 + a2x
2 + a1x + a0 (a3 6= 0). Consider any ∆ consisting of three

values of x and any D based on ∆ consisting of three collinear data points. We have

Pr∆(H3|D)

Pr∆(H1|D)
=
Pr∆(H3)

Pr∆(H1)
· Pr∆(D|H3)

Pr∆(D|H1)
.

5For a related point made in a somewhat different context, see Seidenfeld (1979, pp. 414 f.).
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In order for the automatic razor to do its job, the second quotient on the right hand side
must be less than one. In that case, Pr∆ views D as confirming the theory that the
mystery function is linear relative to the theory that it is a cubic. Ideally, one would like
to show that, for suitably plausible priors, every three-point collinear data set D favoured
H1 over H3, in the sense that Pr∆(D|H3) < Pr∆(D|H1)—so that the only way that Pr∆

could assign higher posterior probability to H3 than to H1 is if Pr (and hence also Pr∆)
assigned higher prior probability to H3 than to H1.6 More realistically, one might hope
that all but finitely many of the countably infinitely many possible D under consideration
had this feature.

We will show, however, that for any admissible prior Pr, there are infinitely many data
sets D consisting of three collinear points such that Pr∆(H3|D) > Pr∆(H1|D) (for the ∆
on which D is based).

Claim: Let Pr be an admissible prior and let c0 be a cubic polynomial.
Then there is an r > 0 (depending only on Pr and c0) such that if ∆ is a set
of three values of x at least one of which has absolute value greater than r,
and D is any data set based on ∆ consisting of three collinear points lying
on c0, then Pr∆(H3|D) > Pr∆(H1|D).

In short: we claim that for any prior Pr and any cubic c0, there is a sense in which typical
data sets consisting of three collinear points lying on c0 render H3 more probable than
H1 by Pr’s lights. For if the x-axis carries its usual metric structure, then no matter how
large r is, the interval J := [−r, r] is finite in extent while its complement is infinite in
extent—so only very special data sets result from sampling only within J.7

The Claim above is easily established. Let Pr, c0, ∆, and D be as in the Claim. As
emphasized above, our agent considers the values at which x is sampled to be irrelevant—
so Pr∆(c0) = Pr(c0) and Pr∆(H1) = Pr(H1). Further, since D consists of three collinear
points lying on c0, P r∆(D|c0) is just σ̄3 (where σ̄ is the probability of finding the true
value of the mystery function when sampling at any value of x). So if we define

ε :=
Pr∆(c0) · Pr∆(D|c0)

Pr∆(H1)
,

then ε depends on Pr and c0 but not on a D or ∆. We then have:

ε

Pr∆(D|H1)
=

Pr∆(c0)

Pr∆(H1)
· Pr∆(D|c0)

Pr∆(D|H1)

=
Pr∆(c0|D)

Pr∆(H1|D)

≤ Pr∆(H3|D)

Pr∆(H1|D)
.

So in order to show that Pr∆(H1|D) < Pr∆(H3|D) it suffices to show that Pr∆(D|H1) < ε.

6For a claim that something along these lines does in fact hold in contexts like ours, see Rosenkrantz
(1983, p. 82).
7Bayesians might rather rely on a Pr-relative notion of typicality of data sets at this point. But such a
notion is not easy to come by in our context, since Pr doesn’t assign probabilities to the proposition that
the first data points are given by D or that the first values of x sampled are given by ∆.
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Figure 1. Up to a choice of units for
the axes, every graph of the cool kids and
a cubic looks like this: the y intercept of
each curve is indistinguishable from zero;
and far from the origin, the cubic soars
far above/below the cool kids.

That is not difficult (given a suitable assumption about ∆). Here is the idea. We break
the linear polynomials making up H1 into two groups: a finite set (the cool kids) of linear
polynomials that collectively eat up almost all of Pr∆(H1), and the remaining infinite set
of linear polynomials (the uncool kids). Since there are only finitely many of them, if we
go out far enough towards ±∞ along the x-axis the graph of c0 will be far above or below
the graphs of all of the cool kids (see Figure 1). So if our data sets involve sampling at
sufficiently large values of x, the chance of getting any data points that lie on c0 if the data
points are being generated by one of the cool kids is as small as we like. And of course the
remaining uncool kids are collectively so unlikely that the chance of getting data points
lying near one of them is also ignorably small. So Pr∆(D|H1) < ε as desired.

Here are the details. Enumerate the linear polynomials in decreasing order of probability
conditional on H1 : `1, `2, . . . . Choose N large enough so that

∑N
i=1 Pr∆(`i|H1) > 1− 1

2
ε.

As a consequence we have:

∞∑
i=N+1

Pr∆(D|`i)Pr∆(`i|H1) ≤
∞∑

i=N+1

Pr∆(`i|H1)

<
ε

2

(in the first line we use the fact that each Pr∆(D|`i) ≤ 1; in the second, our choice of N
above).

Next, notice that because c0(x)→ ±∞ as x3 while the `i(x)→ ±∞ as x, the graph of
c0 is arbitrarily far above or below the graphs of each of `1, . . . , `N for sufficiently large
values of x. So there is an r such that if |x| > r, then if the true value of mystery function
at x is given by `i(x) (i = 1, 2, . . . , N), then the probability of getting a point on c0 if
sampling at x is less than 1

2N
ε (σ is a probability measure on the rationals, so σ(y) → 0
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as y → ±∞). So if at least one of the data points in D satisfies |x| > r, then we have:

N∑
i=1

Pr∆(D|`i)Pr∆(`i|H1) ≤
N∑
i=1

Pr∆(D|`i)

<
N∑
i=1

ε

2N

=
ε

2

(in the first line, we use the fact that each Pr∆(`i|H1) ≤ 1; in the second, our choice of r
above).

So if at least one of the data points in our set D of three collinear data points on c0

satisfies |x| > r, then Pr∆(D|H1) < ε, as desired:

Pr∆(D|H1) =
∞∑
i=1

Pr∆(D|`i,H1)Pr∆(`i|H1)

=
∞∑
i=1

Pr∆(D|`i)Pr∆(`i|H1)

=
N∑
i=1

Pr∆(D|`i)Pr∆(`i|H1) +
∞∑

i=N+1

Pr∆(D|`i)Pr∆(`i|H1)

<
ε

2
+
ε

2

(in the first line we use the law of total probability, in the second the fact that for each
i, Pr∆(D|`i,H1) = Pr∆(D|`i), the third line is book-keeping, the fourth follows from
observations made above).

It will be clear from the method of proof that the assumptions that the data points are
precisely collinear and that they lie precisely on the graph of c0 could have been relaxed—
and similarly that instead of cubics and linear polynomials, we could have used mth-order
polynomials and kth-order polynomials for any m > k.

What, then, was wrong with the intuitive argument for the automatic Bayesian razor?
The problem is that while it is true that before seeing the third data point, the theory that
the mystery function is linear is betting its life on the third point being at least roughly
collinear with the first two, it is also betting its life on a stronger proposition—that the
three data points will at least roughly lie on the graph of one of the handful of linear
functions that eat up almost all of the available probability. And losing a single wager in
which you have staked your life can spell trouble.
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