CURVE-FITTING FOR BAYESIANS?
GORDON BELOT

ABSTRACT. Bayesians often assume, suppose, or conjecture that
for any reasonable explication of the notion of simplicity a prior can
be designed that will enforce a preference for hypotheses simpler
in just that sense. But it is shown here that there are simplicity-
driven approaches to curve-fitting problems that cannot be cap-
tured within the orthodox Bayesian framework.

1. INTRODUCTION

Many philosophers (and others) take a form of no-frills subjective
Bayesianism to provide an analysis of rationality: rationality consists
in starting life with a probability measure (a prior) giving one’s cre-
dences at birth and in updating this measure by conditionalization to
give one’s credences at other times, given the evidence that one then
possesses.” And that is all: on this approach, the relevant probabil-
ity measure encodes everything there is to say about an agent’s credal
state—in particular, the relative plausibility for the agent of any two
propositions depends only on the probabilities assigned to those propo-
sitions by the relevant measure. For convenience, I will call this ap-
proach orthodox Bayesianism.?

This is a very permissive view. Rational agents facing a shared
body of evidence may disagree wildly in their doxastic attitudes so
long as they began life with suitably differing priors. This liberality is
often thought to be one of the strengths of the orthodox view (and its
near relatives). A major goal of the Bayesian school is to show that

Forthcoming in BJPS Revised version of July 2016
The originally posted version of this paper featured an appendix concerning the
Bayesian automatic Ockham’s razor. The argument of the appendix involved a
fallacy that was both embarrassing and pointless. The material on the automatic
razor is excised here. A corrected version will form a free-standing paper.

Here and throughout, probability measures are countably additive.

2The label is tendentious: arguably, the truly orthodox allow merely finitely additive
priors (see fn. 15 below). Note that in the hands of most statisticians—and of
some philosophers—Bayesian methods are pursued in a pragmatic spirit as tools of
statistical inference rather than being taken to provide an account of rationality.
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(at their best) scientists behave like Bayesian agents.* And here the
variety of rational responses to shared evidence is crucial—for example,
it underwrites a straightforward way to uphold the rationality of each
of several parties to a scientific dispute.*

My goal here is to show that there is a sense in which the ortho-
dox view is not as liberal as it is generally taken to be. It is often
assumed, supposed, or conjectured that for any reasonable explication
of the notion of simplicity a prior can be designed that will enforce
a preference for hypotheses simpler in just that sense.® In Section 3
it is shown that this is false—there are simplicity-driven approaches
to curve-fitting problems that cannot be captured within the orthodox
Bayesian framework. In Section 4 I give some grounds for thinking that
the most widely-discussed generalizations of the orthodox framework
are of no help in getting around this problem—at least if they aim to
replace the orthodox approach as an all-purpose account of rationality.
The damage is assessed in Section 5. Section 2 lays some preliminary
groundwork.

2. A CURVE-FITTING PROBLEM

Here is a highly idealized picture of one aspect of the scientific
method. One begins with a set of hypotheses, H, concerning the na-
ture of some system. As one gathers data concerning this system,
some hypotheses in H are ruled out by the data. At any stage of in-
quiry, however, a large number of hypotheses remain in the running. If
pressed to select the most plausible one, a scientist will rely on back-
ground knowledge, judgements of prior probability, theoretical virtues,
favourite statistical tests, and so on.

Elementary discussions of the scientific method often focus on a spe-
cial case of this general picture: curve-fitting. A scientist is interested
in the dependence of physical quantity Y on physical quantity X. Let
us call the function F' that encodes this dependence the mystery func-
tion. Data comes in the form of ordered pairs (z,y) consisting of a
value z of X and the corresponding value y = F'(x) of Y (in the noise-
free case) or a value y expected to be close to F(x) (in the case of
noisy data). After each data point is revealed, the scientist is expected
to make a conjecture: to choose the function in H that is the most
plausible candidate to be the mystery function, given the data seen.

3For examples, discussion, and references, see, e.g., (Bovens and Hartmann [2003];
Earman [1992]; Horwich [1982]; and Howson and Urbach [2006]).

4See, e.g., (Franklin [1990], §6.1; Howson and Urbach [2006], §8.f; or Salmon [1990]).
For conjectures along these lines, see (Putnam [1979, p. 302; and Howson [2000],
p. 206). For some relevant positive results, see (Juhl [1993], [1996]).
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Our focus here will be on a special case of curve-fitting. We will
assume that the data shown to the curve-fitter are noise-free—so that
the curve-fitter should at each stage conjecture a function whose graph
passes through the available data points.® X and Y will both range
over the rational numbers.” There are, then, just a countable number of
data points of the form (z, F'(x)). Each will be shown to the curve-fitter
at some stage of inquiry. The space of hypotheses H will be the space
of continuous rational-valued functions over the rational numbers.®

There are lots of schemes for approaching problems of this sort. Here
is a representative one, personified.

PoLLy: At each stage of inquiry, choose as your conjec-
ture the lowest-degree polynomial whose graph passes
through the data points seen so far (i.e., the unique lin-
ear function if there is one; if not, the unique quadratic
function if there is one; if not, the unique cubic function
if there is one; etc).

This admittedly simple-minded method will be the initial focus of our
attention.

3. No BAYESIAN PoOLLY

Polly’s approach to the curve-fitting problem can be thought of as
being driven by simplicity considerations: she considers polynomial
functions simpler than other functions, considers linear functions sim-
pler than quadratic functions, quadratic functions simpler than cubic
functions, and so on.” And at each stage of inquiry she conjectures
that the mystery function is the simplest hypothesis consistent with
the data.

Can there be a Bayesian Polly? That is, is there some probability
measure on our H that, when conditionalized on any finite data set for

6This assumption will be relaxed below in Section 5 and in the Appendix.

"The use of rational rather than real numbers here allows us to restrict attention
to countable sets at certain crucial points—see fnn. 10 and 27 below. The conse-
quences of lifting this assumption will be discussed in Section 5 below.

8That is: in order for a function f:Q — Q to be in H, it must be the case that for
every rational x and for every € > 0 there is a § > 0 such that for every rational z’
such that | — 2’| < 4, |f(z) — f(2')| < e. In fact, just about any reasonable space
of rational-valued functions on the rational numbers would do here.

Tt takes two parameters to specify a linear function of the form f(z) = a1x + ag
(a1 # 0), three parameters to specify a quadratic function of the form f(z) =
asz? 4+ a1z + ag (az # 0), and so on. The intuition that lower-degree polynomials
are simpler than high-degree polynomials is widely shared: see, e.g., (Lewis [1994],
p. 479; Hempel [1966], §4.4; and Poincaré [1952], p. 50).
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our curve-fitting problem always assigns maximal probability to the
function that Polly puts forward as her conjecture when shown the
same data?!’

No. Consider the function Q(z) = 2. If shown the right data,
Polly is willing to conjecture this function. So the prior of a Bayesian
Polly would have to assign () some positive probability d. Now suppose
that the first two data points that Polly is shown lie on the parabola
y = x%. Of course, if shown that data Polly will not advance Q as her
conjecture—she will rather put forward the linear function L(z) whose
graph goes through those two data points. So a Bayesian Polly’s prior
would have to assign L a probability no less than . But there are
infinitely many pairs of points lying on the parabola y = 22 that could
be the first two data points that Polly and her would-be Bayesian
analogue see, each such pair lying on a distinct line—so a Bayesian
Polly’s prior would have to assign probabilities no less than ¢ to each
of infinitely many linear functions in H. But that is impossible—there
is only a single unit or probability to be split up among all of the
polynomial functions.

Notice that the problem at hand is not a picky one or one limited
to small data sets.!! What we have seen is that if a prior assigns posi-
tive probability to a quadratic polynomial, then amongst the infinitely
many linear polynomials whose graphs intersect that of the given qua-
dratic in two points, only finitely many can be assigned as high prior
probability as is the given quadratic. So if a prior counts a given qua-
dratic as a live hypothesis, then it in fact prefers that quadratic to the
vast majority of its linear competitors. And, by parallel reasoning, if a
prior considers a given cubic as a live hypothesis, then it in fact prefers
that cubic to the vast majority of its linear and quadratic rivals, and so

10Gince H is uncountable, one expects that a typical prior will assign probability
zero to typical hypotheses when conditionalized on typical data sets—so it would
require some fancy footwork to make interesting sense of the notion of the hypothesis
assigned maximal posterior probability by a given prior relative to a given data
set. But in the present context, we can assume that the prior of a Bayesian Polly
would assign probability one to the set of polynomial hypotheses. So we can restrict
attention to those priors that distribute their unit of probability over H by assigning
positive probabilities to countably many polynomial hypotheses. In this context, it
makes perfect sense to ask which polynomial function is assigned highest probability.
Hindeed, if our space of hypotheses were the integer-valued functions on the inte-
gers, we could show the following: let B be a Bayesian agent whose prior assigns
non-zero probability to each polynomial; then for typical functions in the space of
hypotheses, there is an order in which the data points could be revealed that would
lead to B and Polly disagreeing infinitely often in their conjectures. For the relevant
notion of typicality and the technique of proof, see, e.g., (Belot [2013]).
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on. So any prior that assigns positive probability to each polynomial
prefers each polynomial of degree two or more to the vast majority of
its lower-degree rivals—and so fails radically to simulate Polly for data
sets of arbitrary size.'?

4. PROSPECTS FOR A GENERALIZED BAYESIAN POLLY

Orthodox Bayesianism aims to provide a comprehensive account of
rationality: agents are rational if and only if they have credal states
representable by probability measures that they update by condition-
alization.

The argument above shows that on this account polynomial curve-
fitting is irrational. It is natural to ask whether any of the standard
generalizations of the orthodox approach provide accounts of rational-
ity compatible with this method of curve-fitting. So far as I can see,
the answer is: No. At any rate, each of the five most widely-discussed
generalizations either have the feature that they judge Polly to be ir-
rational or they are implausible as accounts of rationality.'®

4.1. Imprecise Credences. One way to generalize the orthodox pic-
ture is to use sets of probability measures to represent rational credal
states.!* In effect, under this approach agents can be thought of as
being guided by committees of ordinary Bayesian agents. But this
is of no obvious help here, since it tends to make it harder rather
than easier to simulate Polly’s curve-fitting behaviour—a committee of
Bayesian agents who disagree with one another about which hypothesis
is rendered most plausible by a given body of data will at least some-
times find themselves unable to agree on a conjecture (or will resort
to randomization in order to choose conjectures)—which will make it
impossible for them to always simulate Polly’s behaviour.

4.2. Merely Finitely Additive Probability Measures. Let Aj,
As, ...be a countable family of mutually exclusive propositions. The

12And, of course, any prior that fails to assign each polynomial positive probability
also fails to simulate Polly for data sets of arbitrary size—namely, those consisting
of data points lying on the graph of a polynomial that it has ruled out a priori.
I3Readers who disagree with my judgements about plausibility here can read this
paper as providing an argument in favour of one or more of the approaches discussed
below that are capable of simulating Polly’s behaviour. Lexicographic probabilities
are not discussed here because in light of the results of (Halpern [2010]) it seems
likely (but not, perhaps, certain) that they are subject to the same problems as
infinitesimal-valued probability measures.

MFor discussion and references, see (Joyce [2010]).
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probability measures employed on the orthodox Bayesian approach sat-
isty
COUNTABLE ADDITIVITY: the probability of a disjunc-

tion of some or all of the Ay is equal to the sum of the
probabilities of those Ay.

Finaitely additive probability measures generalize probability measures
by requiring additivity to hold only for finite sets of propositions. It
is often maintained that the most defensible version of the Bayesian
account of rationality countenances rational agents with credal states
representable by merely finitely additive probability measures.'> What
is the advantage of such generalized measures? They allow one to assign
non-zero weight to a countable set, even while assigning zero weight to
each member of the set (probability measures do the same thing for
uncountable sets).

But this extra flexibility is of no help in constructing a generalized
Bayesian Polly. Suppose, for example, that a Bayesian Polly were to
assign a given linear hypothesis probability zero. Then that agent
would have to assign probability zero to each quadratic function whose
graph shared two points with that of the given linear function (after
all, these two points could be the first two data points seen—and if
our Bayesian Polly is to simulate Polly, she can’t consider a quadratic
function more plausible than a linear function after seeing two data
points). And similarly, the agent would have to assign prior probability
zero to any cubic function whose graph intersects that of the given
linear function in three points. And so on. There is nothing special
about our example of a linear polynomial: if you want to simulate Polly
and if you assign probability zero to a given polynomial, you must also
assign probability zero to many higher-order polynomials whose graphs
intersect that of the given polynomial. But now the problem is that
if you see data consistent with any of these polynomial hypotheses to
which you assign prior probability zero, this data will also be consistent
with many higher-order polynomials to which you likewise assign prior
probability zero. There would be then be no Bayesian grounds for
singling out the lowest-degree polynomial consistent with the data as
most plausible given the data seen—it is simply one of many hypotheses
assigned probability zero.

15See, e.g., (Arntzenius et al. [2004]; de Finetti [1972], Chapter 5; Howson and
Urbach [2006], §2.d; Kadane et al. [1986]; or Savage [1962], §3.4). For a dissenting
voice, see (Skyrms [1983], §3.4). For the bearing of the assumption of countable
additivity on the problem of skepticism, see (Juhl and Kelly [1994]; Kelly [1996],
Chapter 13).
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4.3. Hierarchical Bayesianism. In hierarchical Bayesian approaches,
the space of hypotheses is taken have additional structure beyond that
required in the orthodox approach.'® There are many things that can
be done with this additional structure.!” In our simple setting, a nat-
ural way to attempt to construct a hierarchical Bayesian Polly would
be to consider an agent whose prior is concentrated on the polynomials
with rational coefficients, and who takes these to fall into a hierarchy
of families in the obvious way (the linear polynomials, the quadratic
polynomials, the cubic polynomials, and so on), and who updates by
conditionalization. This agent keeps track of the prior and posterior
probability of each family as well of as each individual polynomial. So
far so good—but if her algorithm for curve-fitting has her just con-
jecturing whichever individual polynomial has the highest posterior
probability conditional on the data seen, then she will immediately be
subject to the objection of Section 3 above. However, a hierarchical
Bayesian agent has other options.'® In our setting, the natural method
of curve-fitting for a hierarchical Bayesian agent would be to deter-
mine, after each data point is revealed, which family has highest pos-
terior probability, and then to put forward as her conjecture whichever
member of that family has highest posterior probability within that
family.'?

But no procedure of this kind can simulate Polly. Consider again
by way of illustration Q(z) = x2. Any aspiring hierarchical Bayesian
Polly will have to assign () positive prior probability. Let L be a linear
polynomial whose graph intersects that of () in two points. If those two
points are the first data points seen, then Polly will advance L as her
conjecture. If our aspiring hierarchical Bayesian Polly is able to follow
suit, it can only be because after seeing the first two data points she
considers the family of linear polynomials to be more plausible than the
family of quadratic polynomials. But since the first two data points
have ruled out all linear polynomials other than L, it must then be the
case that our agent assigns higher prior probability to L than to ). But
of the infinitely many linear polynomials whose graphs intersect that
of () in two points, only finitely many can be assigned higher prior
probability than (Q—so in the vast majority of cases, when the first

6The following discussion benefitted immeasurably from the remarks of an anony-
mous referee.

17See, e.g., (Gelman et al. [2013], Chapter 5; and Henderson et al. [2010]).

18See (Henderson et al. [2010], §2) on the role and treatment of higher-order hy-
potheses in the hierarchical approach.

9A procedure of this kind is discussed (but not endorsed) by (Henderson et al.
2010], p. 183).
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two data points seen lie on (), our hierarchical Bayesian will end up
advancing @ (or some other higher-order polynomial) rather than L as
her conjecture. And likewise, mutatis mutandis, for other higher-order
polynomials.

4.4. Primitive conditional probabilities. At the heart of Bayesian-
ism is the idea that for every prior P and every possible body of evi-
dence F, should agents with prior P come to possess evidence E they
ought to be in a credal state represented by P(-|E). What are our
agents to do if P(F) = 07 The standard definition of conditional prob-
ability gives no answer.?? But there are many cases in which it seems
like agents ought to have well-defined credences after conditionalizing
on a proposition of probability zero.*!

This motivates the suggestion that we should be able to help our-
selves to certain facts about conditional probabilities in addition to
those underwritten by the standard definition.? Essentially, in order
to represent our credal state prior to seeing any evidence, we need not
only an official prior probability measure P, but also, for each B such
that P(B) = 0, a further measure Pg that is in effect the prior we will
switch to in the unexpected event that we should learn B.%3

This gambit makes it possible to construct generalized Bayesian
agents that simulate Polly. Consider a prior that assigns positive weight
to each linear polynomial in such a way that the proposition that the
mystery function is linear is given probability one; backed up by a
measure that assigns positive weight to each quadratic polynomial in
such a way that the proposition that the mystery function is quadratic
is given probability one, to be used in case the data show that the
mystery function is not linear; backed up by a measure that assigns
positive weight to each cubic polynomial in such a way that the propo-
sition that the mystery function is cubic is given probability one, to
be used in case the data show that the mystery function is not qua-
dratic; and so on. An agent with this system of priors will output
the same conjecture as Polly for any multi-point data set. But note
that such agents are absolutely mad—willing, before having seen any

20Conditional probabilities are normally defined via: P(A|B) := P(A&B)/P(B),
when P(B) > 0.

2For instance, if A is the proposition that a certain coin toss came up heads while
FE is the proposition that a spinner came to rest in a certain position, it seems
pretty clear that reasonable agents will take P(A|E) = P(A), even though their
prior probability for E will be zero.

22For discussion and references, see (Hajek [2011]).

23Gee (Halpern [2010], §§2 f.) for a framework in which this can be made precise.
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data, to bet their lives against any stake whatsoever on the proposi-
tion that the mystery function is linear. So to the extent that the point
behind the challenge to simulate Polly was to challenge Bayesians to
show that they could accommodate agents with reasonable attitudes
towards curve-fitting, this is a rather hollow victory.

4.5. Infinitesimal-valued probability measures. There is a big,
awkward difference between the way that countable and uncountable
sets are treated in the standard framework.?® There is a sense in which
it is possible to spread probability evenly over an uncountable set like
the unit interval—but each point must be assigned zero probability,
and some sets of points cannot be assigned a probability at all. On
the other hand, although it is possible to assign non-zero probability
to each subset of a countable set, it is impossible to do so in a way
that is spread evenly over the members of that set. The impetus for
considering infinitesimal-valued probability measures—gizmos just like
probability measures except that they take their values in extensions of
the ordinary real number system that include infinitesimal numbers—
comes from a desire to overcome this awkwardness: whether one is
considering a spinner that might come to rest at any point on a circle or
a lottery in which any natural number might be drawn, one can assign
non-zero probability to each subset of the space of hypotheses under
consideration, in a way that assigns the same infinitesimal probability
to each individual hypothesis.

Of course, one can also define infinitesimal-valued measures that as-
sign different weights to different hypotheses. Thus, in our case one
might assign the set of polynomial functions probability one; assign
each linear function the same infinitesimal probability ¢; assign each
quadratic function probability £/2; assign each cubic function proba-
bility £/3; and so on.?® Such a prior perfectly simulates Polly’s curve-
fitting behaviour.

24The problem at hand is not special to this particular way of simulating Polly.
The whole point of introducing primitive conditional probabilities is to allow us to
construct agents that know how to respond should they see a data set to which
they assigned zero prior probability—but before seeing any data, such agents are
of course willing to bet their lives against seeing such a data set.

Z5Concerning each of the points that arise in this paragraph, see (Skyrms [1983])
for discussion and references.

26This can be done, e.g., by using an arbitrary enumeration to identify the rational
polynomials with the natural numbers, then adapting the machinery of (Benci et
al. [2013], §5.2).
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However, it is far from clear that priors taking infinitesimal values
play any role in representing rational agents. Indeed, there are situa-
tions in which any agent who assigns infinitesimal probability to each
member of a countable set of alternatives is obliged to behave in a
deeply irrational manner. Example: such an agent can start out be-
lieving that there is a one in six chance that the fair die just rolled came
up six and then learn which ticket won a certain lottery—and end up
assigning probability within an infinitesimal of one to the proposition
that the die came up six, no matter which ticket won, although the
lottery is held no matter how the die comes up (see Pruss [2012], pp.
82 f.).

5. How DAMAGING?

The argument of Section 3 shows that the conjecture made by Put-
nam and others is false—there are notions of simplicity that cannot
be captured in the orthodox Bayesian framework. The discussion of
Section 4 provides grounds for thinking that none of the most widely-
discussed generalizations of the orthodox approach constitutes a viable
response.

Fine. But is there an objection here to the orthodox Bayesian ap-
proach and its near relatives? This is a delicate question. As noted
above, many Bayesians aim to show that (at their best) scientists be-
have like Bayesian agents. So there is an objection here if Polly’s ap-
proach to her curve-fitting problem is judged to be interestingly similar
to things that happen in scientific practice. There are of course ways
of eschewing this judgement. I canvass the three most salient—and
hope to leave the reader convinced that there is indeed something for
Bayesians to worry about here.

5.1. Who cares about Polly? Polly is not a great candidate to be
a rational agent—her response to some data sets will strike anyone as
bizarre (e.g., no matter what data she sees, she will never conjecture
that the true function is f(z) = |z|). But Polly’s basic strategy is
typical of a wide variety of techniques used in scientific contexts. And
it is the basic strategy rather than her particular approach that causes
the trouble here.

Note that for any method of addressing our curve-fitting problem,

the set of functions that method is willing to conjecture is always count-
able.?”

2TA method of curve-fitting can be thought of as a function from the space of
possible finite data sets to H that maps each data set to a function consistent with
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So if a method responds to every two-point data set by conjecturing
that the mystery function is linear, then essentially the same argument
given above in Section 3 shows that that method cannot be simulated
by a Bayesian agent. And standard curve-fitting procedures do have
this feature.

Or, again, if a method proceeds as Polly’s does, by segmenting the
family of conjecture-worthy functions into a hierarchy of (nonempty)
subfamilies (at least one of which is infinite), then always selecting as
its conjecture the unique lowest-ranking function consistent with the
data, then that method too will fall under the argument of Section 3.
And standard curve-fitting techniques do have this structure.

5.2. Who cares about this curve-fitting problem? The focus on
functions that take rational numbers as arguments and values is un-
usual (to say the least). But it allows the basic problem to be sharply
isolated: a Bayesian Polly would have to consider all polynomial func-
tions as live candidates, while considering every linear function to be
more probable than every quadratic function—so standard curve-fitting
techniques are inconsistent with Bayesianism when the magnitudes of
interest take their values in the rational numbers.

It is natural to worry that the same sort of problem persists in a
subtler form if one works with real-valued rather than rational-valued
quantities. But even if that should turn out not to be the case, I think
that a problem would remain here for Bayesians. Many scientists claim
to be agnostic about the fine structure of space, time, and physical
magnitudes—e.g., about the question whether they are more faithfully
modelled by the rational numbers or by the real numbers. According to
Bayesians, such scientists are making a mistake in combining this ag-
nosticism with commitment to standard curve-fitting techniques. For
according to the Bayesian analysis of rationality, commitment to stan-
dard curve-fitting techniques for ordinary empirical problems rationally
forbids certain beliefs about the fine structure of physical magnitudes
(such as that they have the structure of the rational numbers). That is,
to put it mildly, a surprising consequence of a theory of rationality—
and, to my mind, an unwelcome one.

5.3. Who cares about curve-fitting? Curve-fitting problems of the
kind considered here are highly stylized models of scientific inquiry. But

it. Since the set of finite data sets is countable in our setting, the image of the map
encoding a given curve-fitting scheme must also be countable.
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they reflect fairly accurately the workings of some parts of science—
especially those concerned with discovering the structure of individual
systems rather than the discovery of laws of nature.?®

However, one element of the curve-fitting problem discussed above is
highly suspicious—the assumption that data are noise-free. One might
hope that if this assumption were dropped, the problem would go away.
That is not the case. Let us allow some sort of noise in our data—if
we attempt to sample the value that the mystery function F' takes at
x, we often observe a value y that differs somewhat from F'(x). Let us
model this as follows: there is a probability measure o defined on the
rational numbers such that o(0) > o(x) for x # 0; when one samples
the value of F' at x, the probability of getting outcome y is o(y— F(z)).
This is a natural way to generalize the usual Gaussian distribution of
measurement errors to the present context.

There are lots of techniques for polynomial curve-fitting in this sort
of setting. The hallmarks of such techniques are that they always
conjecture polynomial functions and that in looking for the curve that
best fits a given data set, they pit against each other a desire to fit the
data accurately (to posit a conjecture that makes the data highly likely)
and a desire to posit polynomials of lower degree. Neither consideration
is absolute. When shown two data points, such methods will posit the
linear function whose graph passes through them. Shown more data,
they will stick for a time with linear hypotheses, even though that
means imperfect fit with the data. But if shown appropriate data, they
will eventually put forward conjectures of arbitrarily high-degree—e.g.,
for any polynomial, if shown enough data points lying on the graph of
that polynomial, they will eventually conjecture it, no matter how high
its degree.

It follows from all of this that if a Bayesian agent is to simulate a
technique of polynomial curve-fitting for noisy data, then it must assign
non-zero prior probability to each polynomial. So let us proceed as
usual. Consider the quadratic Q(z) = 2. Suppose that this is assigned
prior probability § > 0. Consider two points that lie on the graph of
() and suppose that these are the first two data points shown to our
curve-fitters. Suppose that our Bayesian agent considers some linear
polynomial L to be more plausible than () after seeing this evidence
E. That is, suppose that P(L | E) > P(Q | E). Next, note that

P(L|E) P(L) PE]|L)

PQ[E) PQ) PE[Q)

2See, e.g., (Parker [1994]).
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Now, no hypothesis can make this evidence more likely than () does
(since the data points lie on Q). So the second quotient on the right
hand side is no greater than one. So our supposition that P(L | E) >
P(Q | E) implies that P(L) > P(Q). But of course, there can only
be finitely many L with this feature—so of the infinitely many linear
hypotheses that Polly prefers to ) when she sees the right sort of data,
our agent prefers () to all but finitely many when shown this sort of
data. And, of course, this argument can be generalized to apply to
higher-order polynomials and larger data sets. So the impossibility of
a Bayesian Polly is not an artifact of the assumption of noise-free data.

The bottom line: there is a challenge here for Bayesians who want
to uphold the rationality of scientific practice.
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