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Abstract. The twin goals of this essay are: (i) to investigate
a family of cases in which the goal of guaranteed convergence
to the truth is beyond our reach; and (ii) to argue that each of
three strands prominent in contemporary epistemological thought
has undesirable consequences when confronted with the existence
of such problems. Approaches that follow Reichenbach in taking
guaranteed convergence to the truth to be the characteristic virtue
of good methods face a vicious closure problem. Approaches on
which there is a unique rational doxastic response to any given
body of evidence can avoid incoherence only by rendering episte-
mology a curiously limited enterprise. Bayesian approaches rule
out humility about one’s prospects of success in certain situations
in which failure is typical.
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1. Introduction

In the broad, non-judgemental sense in which I will use the term
here, a bias is a factual or methodological commitment that one brings
to empirical inquiry. Biases can stand in the way of our desire to form
accurate beliefs in response to evidence. Suppose, for instance, that
we aim to determine whether a certain coin is fair from knowledge of
the outcomes of a sequence of tosses. If I begin in a state of certainty
that the coin is fair and update this opinion in the standard Bayesian
fashion, I am guaranteed to maintain my certainty no matter how the
tosses turn out.1 Given my starting point, the only way that I can end
up with a true belief is if I start out with one—in effect, my belief that
the coin is fair is perfectly insulated from any evidence that I might
see.

We want our methods of inquiry to be objective, in the sense that
they avoid those objectionable biases that tend to undercut our desire
to respond to evidence by forming true beliefs. Various notions of
objectivity can be defined in terms of the sorts of biases that they
permit or prohibit. At one extreme we have:

Strict Objectivity. A method of inquiry is strictly
objective if it is entirely free of bias.

This notion is mere fantasy. It is a commonplace that no inductive
learning is possible in the absence of substantive expectations about
what the world is like.2 Only against a background of such expectations
will I turn to a microscope rather than a telescope or a kaleidoscope
if I am interested in the spread of disease. In the limit in which we
imagine a scientific tabula rasa, we imagine someone who sees every
similarity and every dissimilarity as being equally important—and who
is therefore unable to form any coherent expectations about the future.

Bias-free inquiry is impossible, then. What sorts of biases are ac-
ceptable and which are to be avoided? What sort of objectivity should
we aim for? One natural thought is that bias is admissible so long as
it washes out in the long run—one is entitled to any starting point, so
long as it does not prevent one from arriving at the truth when exposed

1Here and below, all claims about responses of Bayesian agents to evidence from
coin-tossing experiments follow from the result discussed in Savage 1972 (Sect. 3.6).
2On this point see, e.g., Hempel 1966 (Sect. 2.3), Jeffreys 1933 (pp. 524 f.), and
Kuhn 1963 (pp. 3 ff.).
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to sufficient amounts of the right sort of evidence.3 Here is one way to
make this thought precise.

Long-Run Objectivity. A method of inquiry is ob-
jective in the long run for a given problem if, for each
hypothesis under consideration, if that hypothesis were
true, someone following the method would be more or
less guaranteed to eventually settle on the truth (given
sufficient amounts of data).

Suppose that there are only three options: the coin is fair, it is so-
weighted that it always comes up tails, or it is so-weighted that it always
comes up heads. If you are a Bayesian and you initially give each option
non-zero credence, then you are more or less guaranteed to end up with
credence close to one in the true hypothesis as you see more and more
tosses.4 So your method is long-run objective for this problem—even
though it is of course not strictly objective. But if I am still following
my method described above, beginning in a state of subjective certainty
that the coin is fair and updating by conditionalization, then I remain
certain that the coin is fair no matter what evidence I see. So my
method fails to be long-run objective: if the coin happens to be so-
weighted as to always come up heads, my initial bias prevents me from
ever latching on to this fact, even though I will have as my evidence
arbitrarily long sequence of outcomes consisting entirely of heads.

There are clearly some problems for which long-run objectivity is
out of reach. Suppose, for instance, that we attempt to determine the
denomination of a fair coin just from knowledge of whether it came up
heads or tails on each of a sequence of tosses. No method can be long-
run objective for this problem, because the sort of evidence available
fails to distinguish adequately between the relevant hypotheses.

But long-run objectivity can also exceed our grasp even when the
evidence available is, intuitively, of the right sort for the problem at
hand. Return to the problem of guessing the propensity of a coin to
come up heads from knowledge of the outcomes of a sequence of tosses.
But suppose now that we countenance each real number between zero
and one as a live possibility to be the bias of the coin in favour of heads.

3The notion that scientific inquiry is objective in the sense that, properly practised,
it is destined to wash out any differences in doxastic and methodological starting
points is a perennially popular one. For discussion, see, e.g., Hacking 2000, Hempel
1983, Railton 1994, and Weinberg 2001 (Chs. 12 and 13). For the historical roots
of this notion of objectivity, see Daston and Galison 2007 (Ch. V).
4That is: no matter which one of these hypotheses is true, in the infinite long run
there is zero chance that you will see a sequence of tosses that would frustrate your
desire to end up with credence arbitrarily close to one in the true hypothesis.
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And suppose further that we are required to announce after each toss
which hypothesis we consider most plausible given the data that we
have seen so far. Two famous methods for addressing this problem:

The Straight Rule: if you have seen m heads in
n tosses, conjecture that the propensity of the coin to
come up heads is given by m

n
.

The Rule of Succession: if you have seen m heads
in n tosses, conjecture that the propensity of the coin to
come up heads is given by m+1

n+2
.5

Notice that no matter what data these methods see, they always con-
jecture that the propensity of the coin to come up heads is given by a
rational number. But that means that if the true propensity is given by
an irrational number, these methods can never arrive at the truth—so
most hypotheses under consideration have the feature that they could
never be discovered by these methods. They fail, in a fairly dramatic
fashion, to be long-run objective for this problem.

The difficulty is not special to the straight rule and the rule of suc-
cession. In the present context, we can think of methods as being (or,
at any rate, as determining) functions that take as input a finite data
set and give as output the hypothesis that they consider most plau-
sible given that data. The set of finite data sets for our problem is
countable (we can enumerate it—H, T, HH, HT, TH, TT, and so on)
while the space of hypotheses is uncountable. There can be no function
from a countable set to an uncountable set with the feature that every
member of the latter is the image under the function of some member
of the former: countably many members of the target set will be the
image of some member of the given countable set, uncountably many
will not be. But this is just to say that for the problem at hand, for
every method, most hypotheses have the feature that they will never
be conjectured by that method—no matter how much and what kind of
data it sees. And should such a hypothesis be the true one, the method
in question will never arrive at the truth, no matter what data it sees.
So long-run objectivity fails dramatically for every possible method.6

But surely the problem of determining the propensity of a coin to
come up heads is one that can be handled objectively, if any nontrivial

5This rule, due to Laplace, may look strange—but it is the rule followed by
Bayesians who start out with flat priors over the space of possible biases of the
coin. For its history and justification, see Zabell 1989.
6More generally, long-run objectivity fails whenever the cardinality of the space of
data sets is smaller than the cardinality of the space of hypotheses. But this sort
of mismatch of cardinality is not the only obstruction to long-run objectivity—see
fn. 60 below.
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problem can be. Even though we cannot have methods that will even-
tually fix upon the true propensity-for-heads, no matter what it should
be, there are plenty of methods with the feature that they will output
a sequence of conjectures more or less guaranteed to converge to the
truth in the long run—the straight rule and the rule of succession being
among the most simple-minded such methods.

Asymptotic Objectivity. A method of inquiry is
asymptotically objective for a given problem if, for each
hypothesis under consideration, if that hypothesis were
true, the beliefs of someone following that method would
be more or less guaranteed to converge to the truth
(given sufficient amounts of data).

Something in the area of this notion plays a prominent role in our
thinking about objective inquiry.

The twin goals of this essay are: (i) to investigate a family of cases
in which even asymptotic objectivity is beyond our reach; and (ii) to
consider the implications of such cases for three sorts of approaches
prominent in contemporary epistemological thought (each of which can
be thought of as taking a stance on questions of objectivity and bias).
The point will not be to criticize these approaches for failing to under-
write methods that solve intractable problems—that it cannot under-
write a method guaranteed to converge to the truth is no strike against
your favourite approach if no method comes with such a guarantee.
The point rather is that each of the three epistemological strands has
undesirable consequences when confronted with the existence of such
problems. Approaches that follow Reichenbach in taking asymptotic
objectivity to be the characteristic virtue of good methods face a vi-
cious closure problem. Approaches on which there is a unique rational
response to any body of evidence can avoid incoherence only by fencing
epistemology into a very small plot. Bayesian approaches rule out hu-
mility about one’s prospects for success in certain cases where failure
is typical.

Section 2 sets up the sort of problems that we will focus on. Sections
3–5 develop these problems and explore their implications for our three
strands of epistemology. In section 6 we return to the question of which
forms of bias are admissible, drawing some inconclusive conclusions.
An appendix is devoted to showing that the difficulties we turn up are
not artifacts of the special sort of space of hypotheses that is in play
in sections 2–5.
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2. Curve Fitting!!

Here is a highly idealized picture of one aspect of the scientific
method. One begins with a set of hypotheses, H, concerning the na-
ture of some system. As one gathers data concerning this system, some
hypotheses in H are ruled out. At any stage of inquiry, however, many
remain in play. If pressed to select the most plausible one, a scien-
tist will rely on background knowledge, judgements of prior probabil-
ity, theoretical virtues, methodological principles, favourite statistical
tests, and so on. This is of course a stylized picture. But it reflects
fairly accurately the workings of some parts of science—especially those
concerned with discovering the structure of individual systems rather
than discovering laws of nature.

Elementary discussions of the scientific method often focus on a spe-
cial case of this general picture: curve-fitting. Here is a typical set-up.
Physical quantity Y is known to depend only on physical quantity X. A
scientist aims to determine which function F encodes this dependence
(typically, the scientist will restrict consideration to some special class
of hypotheses, such as the space of smooth functions relating X to Y ).
Data come in the form of ordered pairs (x, y) consisting of a value x of
X and the corresponding value y = F (x) of Y. After each data point
is revealed, the scientist is expected to make a conjecture: to choose
the function in H that is the most plausible candidate to be F, from
among those consistent with the data seen so far (and also perhaps to
guess whether F has or lacks some further property of interest). As
far as the problem of identifying F goes, the scientist should plot the
data points on a piece of graph paper, and select the most plausible
candidate for F among those functions whose graphs pass through the
data points.

We will focus on a special case of this sort of curve-fitting problem.

(i) X will range over the natural numbers, 1, 2, 3 . . . .
(ii) Y takes as values only 0 and 1.
(iii) The space of hypotheses, H, is the space of all functions from

the set of natural numbers to the set {0, 1}. There is a natural
correspondence between functions of this form and infinite bi-
nary sequences: F ↔ (F (1), F (2), F (3), . . .). It will normally be
convenient to think of our hypotheses as sequences rather than
functions.

(iv) The ‘curve-fitter’ is shown the bits of the true hypothesis one by
one in the obvious order—first F (1), then F (2), etc. (Think here
of F as a rule that deterministically generates the data points.)

(v) There are two sorts of problem a ‘curve-fitting’ agent may face.
5



(a) The Identification Problem: to guess which sequence is
being revealed bit by bit.

(b) The Property Problem: for a given property, to guess
whether or not the sequence being revealed has that property.

After each new bit is revealed, agents facing the Identification
Problem must offer a conjecture as to the true identity of the se-
quence being revealed and agents facing a Property Problem must
offer a conjecture as to whether the sequence has the property in
question.

A method for addressing a problem of either sort is a function from
the set of possible finite data sets (the set of finite binary strings) to
the set of possible answers to the relevant question (sequences in the
case of the Identification Problem, Yes-No answers in the case of a
Property Problem).

Asymptotic Reliability. A method is asymptoti-
cally reliable for a given problem and hypothesis if: were
that hypothesis true (i.e., were the agent shown the se-
quence in question bit by bit), the method would gen-
erate a sequence of conjectures that converged to the
truth about that hypothesis (more on convergence in a
second). A method that is asymptotically reliable in
this sense for each of the hypotheses in play is called
asymptotically reliable for the given problem.

This last notion will henceforth be our official explication of the notion
of asymptotic objectivity for problems of the above type.

What sort of convergence is relevant for these problems? Informally,
to say that a sequence of objects converges to a given object is to say
that one can achieve any desired degree of approximation to the given
object simply by taking objects that occur sufficiently far along in the
given sequence. There are many explications of this informal idea,
adapted to different mathematical contexts. For present purposes, we
can get by with restricting attention to the case of real numbers: a
sequence (x1, x2, . . .) of real numbers converges to the real number x
just in case for any ε > 0 there is an N such that |x − xk| < ε for all
k > N.7 So in order to approximate the target x as well as you like, you

7A more natural route to the characterizations arrived at in the next two paragraphs
would proceed via the topological notion of sequential convergence: a sequence
(x1, x2, . . .) of points in a topological space X converges to a point x ∈ X just in
case for every open set U containing x, there is an N such that xk ∈ U for all
k > N. For the Property Problem, the relevant space would be a two-point space
with the discrete topology (according to which every subset of the space is open).
For the Identification Problem, it is natural to think of H as equipped with the
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need only look sufficiently far down the sequence (x1, x2, . . .); for any
small but finite neighbourhood of x, the xk eventually all lie in that
neighbourhood.

In our Property Problem, the true binary sequence σ is revealed
to the agent one bit at a time—and the agent is required to hazard
a guess, after each bit is revealed, as to whether σ instantiates some
property of interest. Let us encode Yes as two and No as minus two.
On the one hand, we have a number encoding the truth about whether
σ has the property of interest—two if it does, minus two if it does
not. On the other hand, we have a sequence of twos and minus twos
encoding the successive guesses regarding this issue hazarded by the
curve-fitter after the revelation of each bit of the true sequence. The
curve-fitter converges to the truth for the Property Problem just in case
the sequence of twos and minus twos encoding these guesses converges
to the number encoding the truth about whether σ has or lacks the
property of interest. Applying the standard criterion of convergence
we find that the sequence of the agent’s guesses converges to the truth
in the relevant sense if and only if there is a point in time after which
the agent permanently gives the correct answer (to see this, consider
ε < 4). Example: the following is an asymptotically reliable method for
determining whether the sequence being revealed is all zeroes—assume
that it is unless and until you see a one.

Consider next the Identification Problem. Let σ ∈ H be the true se-
quence being revealed. After each each bit is revealed, the agent puts
forward as a conjecture one of the elements of H—let σ1 be the con-
jecture put forward after the first bit is revealed, σ2 be the conjecture
put forward after the second bit is revealed, and so on. Each element
of H is a binary sequence and so can be identified with a real number
between zero and one in a natural way.8 And so we can again apply the
ordinary notion of convergence for sequences of real numbers. Now we
find: the sequence of conjectures (σ1, σ2, . . .) converges to the truth, σ,
if and only if for each k > 0 there is an N such that if m > N then σm
has the same first k bits as σ—the agent’s conjectures are eventually

product topology induced by thinking of it as the product of countably many such
two-point topological spaces. When equipped with this topology, H is known as
the Cantor space. For each finite binary string w, let Bw be the set of all sequences
that begin with that string. Each Bw is an open subset of the Cantor space; and
each open subset of the Cantor space is a union of such sets.
8Usually it is fine to think in terms of the ‘obvious’ correspondence σ =
(x1, x2, . . .) 7→

∑
k

xk

2k
. But this map has its pathologies—e.g., it counts both

(1, 0, 0, . . .) and (0, 1, 1, . . .) as corresponding to 1
2 . The map σ 7→

∑
k

2xk

3k
is better—

it is a homeomorphism from the Cantor space to the standard ternary Cantor set.
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right about arbitrarily long initial segments of σ.9 (Compare: if a se-
quence (x1, x2, . . .) of real numbers converges to π, then from a certain
point onwards in this sequence, if we look at decimal expansions, each
xk begins with a 3, and from a certain point onwards each xk begins
with a 3.1, and from a certain point onwards, each xk begins with a
3.14, and so on—and if this fails, then the sequence does not converge
to its target.)

That, then, is going to be our model of inquiry: agents facing the
Identification Problem or versions of the Property Problem as a binary
sequence is revealed to them one bit at a time. This model constitutes
the simplest possible example of a setting in which the supply of data
in principle available is never exhausted at any finite stage of inquiry.
It is this feature—along with a certain more technical condition—that
drives the considerations developed below.10 So the problems that we
encounter will also bedevil more interesting models of empirical inquiry
(see the appendix for an example that is more obviously related to real
science).

Before proceeding, it is worth noting a couple of features of the
Identification Problem our curve-fitters face. (i) As is common in dis-
cussions of curve-fitting, we are in effect assuming that our data are
error-free. This is unrealistic. But it should strengthen rather than
weaken the prospects of the epistemological approaches under consid-
eration below.11 (ii) In our model, every false hypothesis is eventually
ruled out definitively by the data (since any false hypothesis would
have to disagree at some point with the true sequence—and eventually
this disagreement will be revealed to our agent). This too serves to
stack the deck in favour of the approaches under consideration.

3. Reichenbachian Approaches

Let us for the time being take as our fundamental unit of evaluation:
a method of inquiry in application to the problem of determining which

9To see this, note that each of the sets Bw defined in fn. 7 above is open and apply
the topological criterion of sequential convergence.
10The technical condition: that certain ways of constructing data streams corre-
spond to hypotheses in the relevant space of hypotheses; see Step (v) in the proofs
of Facts 1 and 6 below (and also fn. 61).
11There are approaches to making sense of inductive inquiry that turn crucially on
the fact that real data are not perfectly accurate: see, e.g., Kemeny 1953 or Forster
and Sober 1994. I do not here have space to address these interesting approaches.
In brief: I believe that they ultimately push the bump under the carpet to another,
very interesting, corner of the same room.
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of a set of mutually exclusive (but not necessarily exhaustive) alterna-
tives obtains. Sipping and tasting is a good method for distinguishing
between water and wine, a lousy method for distinguishing between
water and heavy water, an absolutely hopeless method for determining
whether one is a brain in a vat.12

It is natural to view a tendency to lead to the truth as more and
more evidence is seen as a desirable feature of methods of inquiry. And
it is also natural to look askance at methods that lack this feature—if
we know that our method may well not be tracking the truth, then
we know that the beliefs we form, even after seeing large bodies of
evidence, may well be determined by our starting point rather than
by the world. These reflections ought to get one in the mood to take
asymptotic objectivity as the key epistemic notion, if anything will.

Consider again the straight rule and the rule of succession (discussed
in Sect. 1 above) applied to the problem of determining the bias of a
coin from knowledge of the outcomes of a sequence of tosses.13 These
methods are (essentially) guaranteed to output sequences of conjectures
that converge to the truth as more and more data is seen. Of course,
for some sequences of tosses, the straight rule will perform better than
the rule of succession—and for other sequences of tosses, vice versa. If
all we care about is convergence to the truth, then there is no sense in
which one rule is better than the other in overall performance.14

In its pure form, Reichenbachianism consists of two theses.15

(R1) A method of inquiry counts as a good approach to addressing a
given problem if and only it is asymptotically objective for that
problem.

(R2) One is justified in taking a first-rate doxastic or pragmatic at-
titude towards the outputs of a method of inquiry applied to a
given problem just in case it is good in this sense.

12Note, though, that habitual guzzling can be part of a good method for distin-
guishing between water and heavy water—see Leslie 2013 (p. 151).
13Structurally similar points could be made using various methods for handling
traditional curve-fitting problems, such as piece-wise linear interpolation (connect-
the-dots) and Lagrange interpolation (use the lowest-degree polynomial consistent
with the data). See the discussion of Hempel 1966 (Sect. 4.4).
14For this sort of point, see Reichenbach 1949 (Sect. 91).
15For canonical presentations, see Reichenbach 1933, 1938 (Ch. V), and 1949 (Sect.
91). Elements of Reichenbach’s account can be found in, e.g., Anderson 2004,
Earman 1993, Enoch and Schechter 2008, Feigl 1934 and 1954, Kelly and Glymour
1989, Kelly 1996, and Wright 2004. The label is of course somewhat arbitrary.
Reichenbach doesn’t always sound thoroughly Reichenbachian. And ideas similar
to Reichenbach’s can be found already in Peirce: see Reichenbach 1939 (pp. 187
ff.) and Madden 1964 (pp. 132 ff.).
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Pure Reichenbachian approaches differ from one another concerning
which attitudes towards theories are involved; there are also exist less
pure strains of Reichenbachianism that take asymptotic objectivity to
be necessary but not sufficient for goodness.16

Every relatively pure Reichenbachian faces some awkward facts.17 If
a problem admits an asymptotically objective method, then it admits
many such methods: the straight rule and the rule of succession are
just two of many asymptotically objective methods for determining the
bias of a coin; likewise, there are many asymptotically objective tech-
niques for standard curve-fitting problems. Worse, because asymptotic
objectivity is a condition on the behaviour of a method in the infinite
long run, methods that respond in bizarre ways to data sets below some
fixed size can still be asymptotically objective. In short, it is natural
to worry that Reichenbachianism is far too permissive in drawing the
line between acceptable and unacceptable methodological biases.

Perhaps one can learn to live with this—if, for instance, one thinks of
Reichenbach’s approach as embodying the strongest interesting thing
one can say in response to Hume’s problem of induction. My goal
here is to develop another sort of objection—one that is, in my own
experience, more difficult to live with.

Consider a pure Reichenbachian account in the context of the prob-
lem described in the preceding section. Here the account tells us to
(say) believe our conjectures if and only if our method is asymptoti-
cally reliable for the problem at hand.

Consider first the Identification Problem, in which our agent is asked
to guess the identity of the sequence being revealed. Asymptotically
reliable methods for this problem are easy to come by: so long as
at each stage one conjectures a sequence that is consistent with the
data seen so far, one’s sequence of conjectures will converge to the
true sequence (since from the kth stage onwards, each conjecture will
be correct about the first k bits of the true sequence). Here are two
simple-minded methods that do the trick for this problem:

Method A: conjecture the sequence that results from
tacking an infinite sequence of alternating zeroes and

16It is natural to read Reichenbach 1938 (Sect. 43) as counting a method as good
just in case it is asymptotically objective and as taking us to be justified in acting
on the outputs of good methods but not others. It is natural to read Earman 1993
(Sect. 11) as requiring further that good methods be Bayesian—and as advising
Bayesians to take a non-alienated attitude towards their credences just in case the
methods determined by their priors are asymptotically objective.
17For further discussion and references, see Salmon 1991. For further objections
special to probabilistic contexts, see Hacking 1968 and Sober 1988.
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ones on the end of the data seen so far.

Method B: conjecture the sequence that results from
tacking an infinite sequence of zeroes on to the data seen
so far.

Our Reichenbachian approach will consider both of these to be good
methods in virtue of their asymptotic reliability—and so will advise
anyone following these methods to believe their conjectures.18

Consider next what happens if we further confront our agent with a
version of the Property Problem involving a property of the following
special sort.

Slippery Properties. A property P of infinite binary
sequences is called slippery if, for any finite data set,
among the sequences that extend this data set, some
have P while others lack it.19

Lots of interesting properties of sequences are slippery in this sense:
being eventually constant (all zeroes or all ones from some point on-
wards); being periodic; encoding a binary expansion of a rational num-
ber; being a sequence in which the limiting relative frequency of 0’s
exists and is equal to 1

2
. The main arguments below go through for

any slippery property. For purposes of illustration I will often use the
last-mentioned one, which I will call the property of being fifty-fifty.20

What happens if we ask our agents to guess whether the sequence
being revealed is fifty-fifty as well as guessing its identity? If you are
following Method A, you had better always guess that the true se-
quence is fifty-fifty—after all, every sequence that you will ever con-
jecture in response to the Identification Problem has this feature, and

18It may be surprising that the identification problem can be handled so easily. In
this regard note: (i) that in the case of more traditional curve-fitting problems,
too, asymptotic objectivity is often fairly easily achieved (see, e.g., Hempel 1966,
Sect. 4.4); (ii) working in the Bayesian framework, it is easy to construct priors on
H that, when conditionalized on data sets for our problem, lead to posteriors that
become arbitrarily tightly peaked about the true hypothesis (Belot 2013a, fnn. 31
and 32).
19Equipping H with the topology described in fn. 7, this is equivalent to: the set
of sequences with P and the set of sequences without P are both dense in H.
20Each of the properties mentioned in this paragraph corresponds to a subset of
H that happens to be small. Indeed, each is meagre as a subset of H (for this
notion, see fn. 53 below): each countable set is meagre; for an argument showing
that the set of fifty-fifty sequences is meagre, see Oxtoby 1980 (p. 99). But that
is inessential. We could just as easily work with a subset of H such that neither
it nor its complement is small—e.g., the set of sequences that either begin with a
zero and are fifty-fifty or begin with a one and are not fifty-fifty.
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because Method A is asymptotically reliable you believe those conjec-
tures. Likewise, anyone following Method B ought to always guess that
the true sequence is not fifty-fifty.

Although though Methods A and B are asymptotically reliable for
the Identification Problem, they lead to unreliable methods for our
slippery version of the Property Problem. For suppose that the true
sequence is not in fact fifty-fifty—suppose, for instance, that the true
sequence is (1, 1, 1 . . .). At each stage of inquiry, the follower of Method
A will guess that the true sequence is fifty-fifty—and the sequence Yes,
Yes, Yes, . . . does not eventually settle down to No. Similarly, if
the true sequence is something like (1, 0, 1, 0 . . .) then the follower of
Method B will put forward the sequence of conjectures No, No, No,
. . . . And this fails to settle down eventually to the true answer, Yes.

Our pure Reichenbachian approach will tell followers of Method A
or Method B that they should distance themselves from the output of
their method for guessing whether or not the sequence they are being
shown is fifty-fifty. And it is easy to think that this is the right thing
to do. After all, the followers of Method A in effect begin inquiry in
effect certain that the sequence is fifty-fifty—and no evidence that they
could see would change their minds. And the followers of Method B
are biased just as strongly in the opposite direction. Methods that thus
insulate a belief about a matter under investigation from any possible
evidence are not ways of finding out about how the world is.

Note where this leads: our Reichenbachian approach is advising peo-
ple to work with a notion of belief that is not closed under logical
implication. The followers of Method A are advised, at each stage of
enquiry, to adopt a Grade-A doxastic attitude towards their guess as
to the sequence being revealed but to distance themselves from their
conjecture that this sequence is fifty-fifty—but at each stage, the se-
quence that they put forward as being the most plausible candidate to
be the true one will in fact be one that is fifty-fifty. It would be deeply
bizarre—and not merely funny or a bit odd, as would be the case if it
involved a mere violation of pragmatic constraints—if a scientific ar-
ticle were to argue that a detailed model was well-supported by the
evidence, but then went on to warn the reader not to leap to the con-
clusion that the evidence offers the same sort of support for the claim
that the true model belongs to a family containing the given model.
Imagine that in announcing his discovery that gravitational attraction
varies as the inverse square of distance, Newton had cautioned against
leaping to the conclusion that it varies inversely as some polynomial or
other of distance!
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Of course, some epistemologists hold that knowledge or justified be-
lief fail to be closed under logical implication. Advocates of this view
advertise it as the lesser of two evils—with the greater evil being skep-
ticism about knowledge or justification (see, e.g., Dretske 2005a,b).
Perhaps in our case, too, denying closure is the least evil path. But it
is important to note that skepticism is nowhere in view in the present
context. We ought to be happy to say that at the fine-grained level
none of the hypotheses in play counts as a skeptical scenario: we are
interested in the long-run behaviour of methods in a setting in which
each false hypothesis is eventually conclusively falsified. The propo-
sition that the true sequence is fifty-fifty is just a disjunction of such
fine-grained hypotheses—and we do not normally think that a disjunc-
tion of non-skeptical scenarios should count as a skeptical scenario.21

Nor should the sort of failure of closure that we see here be assim-
ilated to that which occurs on metaontological accounts in the tradi-
tion of Carnap 1950. Perhaps it is a good idea to say that questions
internal to the thing framework (such as whether the animal you hear
is Grisbi the dog) admit of empirical confirmation and disconfirma-
tion even while maintaining that questions external to this framework
(such as whether things exist) have a different status. But in the case
at hand, the analog of an external question might be something like the
question whether our chosen space of hypotheses is a suitable one—the
question whether the true sequence is fifty-fifty is no more external to
our framework than the question whether the animal you hear is a dog
is external to the thing framework.

So I do not think that this closure problem can simply be brushed
aside. But it is still natural to suspect that the problem is an artifact
of our focus on Methods A and B. These are ridiculous methods—for
instance, no matter what evidence they see, neither will ever conjecture
that the true sequence is (1, 1, 1, . . .). Anyone facing our Identification
Problem would use a method incomparably more subtle than these
methods—and it is natural to hope that methods one might actually
use would be immune to the closure problem developed here, so that
the moral of all of this would just be that we should be looking for
impure forms of Reichenbachianism that don’t count Methods A and
B as good. This is a beguiling hope but it is a false one.

21Note that Reichenbachian approaches are closely related to a standard response to
skepticism, contrastivism about knowledge—and contrastivists take it for granted
that knowledge is closed under weakening (see, e.g., Schaffer 2006, p. 262).
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Fact 1. There is no asymptotically reliable method for determining
whether the true sequence is fifty-fifty. (And likewise for other slippery
properties.)

Proof. Suppose for reductio thatM is an asymptotically reliable method
for this problem.22

(i) M will have to settle down after a finite time to the correct an-
swer, whichever hypothesis is generating the data seen: the only
sequences of Yes-No answers that converge to Yes are those
that are Yes permanently from some point onwards; and likewise
for No.

(ii) For this problem, any finite data set is consistent with either an-
swer to the question being asked.

(iii) It follows from the preceding that for any finite data set, no matter
which answer our asymptotically reliable M gives when shown
that data, there are ways of continuing the data set that would
make M change its answer.

(iv) So we can construct a data stream of bits that will make M flip-
flop ad infinitum on the question being asked.

(v) And this data stream corresponds to a binary sequence in our
space of hypotheses (since it includes all binary sequences).

(vi) But of course when shown the data generated by this hypothesis,
M never settles on the true answer to the question asked.

This contradicts our initial assumption that M was asymptotically re-
liable for this problem. So no such M can exist. �

So every method for handling this sort of problem faces the same
sort of closure problem that bedevils Methods A and B. Such closure
problems cannot be escaped by moving to more restrictive impure forms
of Reichenbachianism—unless they are so restrictive that they do not
recognize any good methods for identifying which binary sequence our
agent is being shown (which would not leave very much of the basic
approach intact). And, in any case, we will see in the appendix below
that the same sort of closure problem arises in other settings as well.

The knock against Reichenbachianism has always been that it gets
us too little—sure, it counts our method as good, but it also debases it
by counting as good many other methods, including some pretty crazy-
looking ones. The response to this has always been that one cannot
always get what one wants, but one can sometimes get what one needs.
The closure problem under discussion shows that Reichenbachianism
delivers even less than people have thought. In scientific contexts our

22The following is essentially the proof of Prop. 12 in Kelly and Glymour 1989.
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method (whatever that is) presupposes that warrant is closed under
logical consequence. So the closure problem unearthed above shows us
that Reichenbachians are not able to vindicate our method after all.

4. Uniquarianism

Epistemologists are divided on the status of the following thesis.

Uniqueness: there is a unique rational doxastic re-
sponse to any given body of evidence (where ‘doxastic’
should be understood broadly, to cover both full belief
and degrees of belief).

Permissivists deny it, uniquarians uphold it.23 Here is the best motiva-
tion for uniquarianism.24 Epistemology should be adequate to the jury
room as well as to debates about the objectivity of science. Presum-
ably few of us would vote to convict unless we believed the defendant
to be guilty. But if there are multiple rationally acceptable responses
to a given body of evidence, then it seems that no matter how respon-
sible one is in weighing the evidence, factors irrelevant to the question
at hand (upbringing, neurochemistry, etc.) must be playing a role in
determining one’s beliefs. And it can be hard to see how one’s beliefs
concerning serious questions can survive reflection on the fact that
they depend in this way on what are essentially chance matters.25 This
would seem to give us some reason to reject permissive approaches in
favour of uniquarianism.26

The classic worry about uniquarianism derives from the fact that
uniquarians have made so little progress towards identifying the prin-
ciples of universal rationality.27 Here it would be hard here to top
Ramsey’s blistering criticism of Keynes. A taste:

23Apologies for the neologism. I know of no standard term for partisans of Unique-
ness. There exists already an English word uniquity, standing to unique as antiquity
stands to antique. Here the analogy is extended: uniquarian stands to uniquity as
antiquarian stands to antiquity.
24Uniquarian views can be found in, e.g., Carnap 1945, Feldman 2007, Keynes
1921, Maher 2006, White 2005 and 2009, and Williamson 2000 (Ch. 10). In later
writings, Carnap adopted an agnostic attitude on this question: see, e.g., Carnap
1962 (p. 316); for further discussion and references, see Skyrms 1991 (Sect. 6).
25Reflections of this sort unsettle thoughtful Reichenbachians: the threat of the
alienation from one’s own epistemic norms is a common theme among Reichen-
bachian epistemologists. See, e.g., Reichenbach 1938 (Sect. 43) and 1949 (Sect.
91) and Wright 2004.
26The case is put forcefully in White 2005; see also Feldman 2007. For quite different
reactions to the same sort of considerations, see Rosen 2001 and Schoenfeld 2014.
27Another worry, concerning the rationality of scientific disagreement, will be dis-
cussed briefly in Sect. 5 below.
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But let us now return to a more fundamental criticism
of Mr Keynes’ views, which is the obvious one that there
really do not seem to be any such things as the probabil-
ity relations he describes. He supposes that, at any rate
in certain cases, they can be perceived; but speaking for
myself I feel confident that this is not true. I do not per-
ceive them, and if I am to be persuaded that they exist
it must be by argument; moreover I shrewdly suspect
that others do not perceive them either, because they
are able to come to so very little agreement as to which
of them relates any two given propositions. (Ramsey,
1931, p. 161)

My aim here is to add another sort of worry.28

Suppose, for the time being, that uniquarians accept that two agents
facing the same data points have the same evidence relevant to the
Identification Problem and our Property Problem. The uniquarian
thesis that there is only one rational doxastic response to any given
body of evidence then implies that rationality determines a function
from possible data sets to conjectures about the true identity of the
sequence being revealed and as to whether or not it is fifty-fifty. In the
terminology used above, rationality determines a method for addressing
the Identification Problem and our Property Problem. I make the
following claims about this picture.

(1) The unique rational method is in some sense optimal. Otherwise,
why care about rationality?

(2) The range of asymptotic reliability of a method for addressing a
problem counts towards its optimality. That is, if all we are told
about two methods is that one is asymptotically reliable for a
strictly larger subset of our space of hypotheses than is the other,
then that gives us reason to prefer the former to the latter. Other-
wise, it is difficult to see how to do justice to our sense that part
of the point of being rational is that it is, in general, the best way
to end up with true beliefs.29

28In effect, what follows is a generalization and simplification of Putnam’s argument
against (his conception of) Carnap’s program in inductive logic. The role played
by recursion-theoretic results in Putnam 1963a,b is played here by elementary facts
about slippery properties.
29It might seem that someone like Williamson, for whom there is a distinguished
prior that ‘measures something like the intrinsic plausibility of hypotheses prior
to investigation’ (2000, p. 211), can afford to deny this—since it seems that all
constraints on rationality are loaded into the input end of things on this sort of
view. But I doubt that Williamson himself would be willing to take this sort of
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(3) In measuring optimality, asymptotic reliability is not to be traded
off against other virtues. Consider, by way of illustration, a uni-
quarian position on which in determining the one true method, we
should trade reliability off against tractability of implementation.30

To keep things simple, let us imagine that these are the only factors
that are relevant—so we are imagining a uniquarian who maintains
that the one true method is the method that achieves an optimal
balance of reliability and tractability. This is an untenable posi-
tion. Uniquarians hold that there is one rational response to a
given body of evidence. Their notion of rationality is species- and
world-independent. But a notion like ‘ideal balance of reliability
and tractability’ is going to be species-dependent: my dog is not
willing (or able) to trade very much tractability for even quite a bit
of reliability; I am able to do more—but presumably as I stand to
my dog, so some (actual or possible) species of brainiacs stand to
me, some species of super-brainiacs stands to them, and so on with-
out end. Each species has an exchange rate at which its members
are willing to trade a gain in reliability for a loss in tractability.
It is incredible that the species-independent notion of rationality
should be arrived at by plugging the exchange rate corresponding
to some particular actual or possible species into the formula:

rational = ideal balance of reliability and tractability.

Indeed, suppose, for definiteness, that the rationality-defining rate
corresponds to that of brainiacs. Then, of course, humans will,
very, very, often be irrational because they are not following a
method that they are incapable of following, while super-brainiacs
will very, very, often be irrational because they do not live down to
the standards of brainiacs. Why should such beings of either sort
care about rationality?

A related point. Those uniquarians who are objective Bayesians
typically assume that rationality requires logical omniscience: the
degrees of belief of rational agents satisfy axioms of the probability
calculus, which means that such agents always assign probability
one to logical truths. Since the decision problem for first-order
logic is undecidable, there is a sense in which Bayesian agents have

step—see his remarks (2000, Sect. 8.7) on rationality as ‘a sub-goal on the way
to truth’. Of course, some philosophers do deny that there is any close connection
between rationality and truth; for discussion and references, see Hookway 2007.
30Couldn’t there be virtues immune to the sort of argument given here? It is difficult
to imagine what they would be like—certainly virtues like short-term reliability,
naturalness, and rate of convergence all seem to be relevantly similar to tractability.
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computational resources that outstrip the classical models of com-
putation.31 Bizarre, then, to take tractability into account at all—
it is as if, having been handed a magical computer with infinite
capacities, we then cavil at using up disk space.

Uniquarians who accept the foregoing are in trouble. For they are com-
mitted to the view that rationality determines an optimal method for
approaching our Property Problem, where optimality implies maximal
asymptotic reliability (i.e., there can be no method asymptotically re-
liable on a set of hypotheses larger than the set of hypotheses on which
the rational method is asymptotically reliable). But there is no max-
imally asymptotically reliable method for the problem of determining
whether or not the sequence being revealed is fifty-fifty.

Fact 2. For any method of forming conjectures as to whether the true
sequence is fifty-fifty, there is another method that is asymptotically
reliable on a strictly larger subset of the space of hypotheses. (And
likewise for other slippery properties.)

Proof. Let M be any method. And let σ0 be a hypothesis with respect
to which M is not asymptotically reliable. Suppose for definiteness
that σ0 is not fifty-fifty. Define a new method M∗ as follows: if fed
a data set consistent with σ0, M

∗ conjectures that the true sequence
is not fifty-fifty; otherwise M∗ mimics the conjecture made by M on
the same data. If the true sequence is not σ0, then from a certain
point onwards M∗ will always make the same conjecture as M. So M∗

is at least as asymptotically reliable as M. But if the true sequence is
σ0, then M∗ always makes the correct conjecture—so unlike M, M∗ is
asymptotically reliable for σ0. So M∗ is asymptotically reliable for a
strictly larger set of hypotheses than is M. �

Uniquarianism is incoherent—if it involves (1)–(3) above and con-
dones the identification of an agent’s evidence with the data seen.

But wait! This accusation of incoherence is easily avoided: the de-
nial of the supervenience of evidence on data is built into some promi-
nent uniquarian accounts. Some hold that evidence cannot supervene
on data because when we consider two different situations in which a
given agent might face a given body of data, we in general find differ-
ences in the evidence that the agent would possess. And some hold
that evidence cannot supervene on data because when we consider two

31Well, that is too quick—in principle, computable Bayesians can assign probability
one to each logical truth, so long as they are willing to assign probability one to
some contingent formulas. But this approach has very high costs—see Field 2009
(pp. 257 f.).
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different agents facing a given body of data, we in general find a dif-
ference in the evidence available. Let us consider these two approaches
in turn.

Williamson (2000, Ch. 9) defends an account of the first kind.32 On
his view, an agent’s evidence is the set of propositions known by the
agent. Imagine that a given curve-fitter faces a data set consisting of
a zillion zeroes. If the true sequence is all zeroes then, presumably, at
some point the curve-fitter comes to know that the true sequence is
the zero sequence (to deny this would be to deny that induction can
produce knowledge).33 On Williamson’s view: in this case, the curve-
fitter’s evidence will include the fact that all future bits revealed will
be zero.34 But clearly, there will be other cases in which the same
curve-fitter facing the same zillion data points lacks that evidence—
e.g., because the next bit of the true sequence is in fact a one.

Now, it may well be that the central contention here is correct: what
it is rational for an agent to believe does not, in general, supervene on
the publicly available scientific evidence because what it is rational for
an agent to believe is determined by that agent’s evidence—and this in
general depends not only on the publicly available scientific evidence
but also on further facts external to the agent. But one might well
have hoped that in certain cases at least—such as highly idealized toy
models of scientific inference—such complications could be set aside so
that one could give an account of scientific inference that involved only
scientific evidence and that was operational in Williamson’s sense—‘a
set of rules such that one is, at least in principle, always in a position
to know whether one is complying with them’.35 If it is insisted that
no such cases exist, then one rescues uniquarianism from the threat of
incoherence at the price of severing the connection between epistemol-
ogy and the many projects in statistics, artificial intelligence, machine

32It is also an account of the second kind—indeed, Williamson (2000, p. 210)
suggests that it may be impossible for perfectly rational beings to have the same
evidence as us in any situation.
33In conversation, Williamson suggests that whether there is knowledge here may
depend on why the true sequence is all zeroes—e.g., whether it is so by law or by
fluke. Let us assume that it is so by law in our case.
34Actually, there is considerable tension between this consequence of Williamson’s
view and one of the main arguments he gives for his thesis that Evidence = Knowl-
edge (2000, pp. 200 f.). Thanks to Daniel Drucker for discussion of this point.
35Williamson 2008 (p. 277). See also Williamson 2000 (Sect. 8.7). Williamson’s
arguments against the possibility of operationalizing epistemology turn on Sorites
considerations that are inapplicable in the present context.
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learning, and confirmation theory that presuppose that there are sub-
stantive things to be said about what curve-fitters and their ilk should
believe, given the data they have seen.36

As I understand them, Conee and Feldman defend an account of
the second kind.37 They distinguish (2008, Sects. 1.1 and 4.2) be-
tween scientific evidence (that is publicly available and reliably indi-
cates truth) and justificatory evidence (that may be private, and is the
sort of evidence upon which justification supervenes). Agents may face
the same scientific evidence but differ in the justificatory evidence that
they possess (2008, Sects. 1.1 and 3.5): two detectives with the same
background knowledge and looking at the same clues at a crime scene
can differ in their justificatory evidence (and hence also in what they
are justified in believing) because only one of them sees that the guilt
of a certain suspect would best explain the presence of these clues.
Suppose that you and I face the same set of data for the Identification
Problem. You are an expert who can just ‘see’ very early on that the
best explanation for the data we are seeing is that the true sequence
corresponds to the binary expansion of π while I am a neophyte who
cannot—so early on you will have more justificatory evidence than I
do, even though we are looking at the same data.38

But if the legitimacy of idealizations in which evidence is determined
by data is denied on grounds of this sort, we land in a new kind of trou-
ble. For now uniquarianism becomes something like: relative to each
data set and each cognitive constitution, there is a unique rational dox-
astic response. But what does it mean to take my cognitive limitations
into account in considering what it would be rational to believe were
my evidence to include all quadrillion data points surveyed in the ex-
periment that led to the discovery of the Higgs boson? It seems that
the only sensible answer is that since my cognitive limitations render
it impossible for me to comprehend such a data set, the unique ratio-
nally prescribed response must be some kind of doxastic neutrality, or
some other state that will not depend in any interesting way on sub-
tle features of the data. But it does not seem absurd to ask what we

36The flip-side is that on an account like Williamson’s, activities like curve-fitting
becomes at least quasi-mystical endeavours—in that they involve at least the cru-
cial first two of the four marks of mystical experience (ineffability, noetic quality,
transiency, and passivity) identified by James 1902 (Lectures XVI and XVII).
37It may also be an account of the first kind—Feldman and Conee (2004, Afterword
Sect. 2) maintain that it is consistent with their view that Evidence = Knowledge.
38Compare with the discussion of Examples 3 and 4 in Feldman and Conee 2004
(Sect. II).
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should believe in light of this body of data—and to expect the answer
to depend nontrivially on its detailed structure.

Uniquarians must deny, on pain of incoherence, that our agents’ ev-
idence can be taken to supervene on the data they have seen, even
in the most idealized of settings. Such denial in fact has fairly deep
roots in some contemporary forms of uniquarianism. But the price is
steep: scientists or others who come knocking, hoping that epistemol-
ogy might have helpful advice for those puzzling over what we should
believe given this or that vast body of data in the contemporary sci-
ences must be sent packing—and told to come back only when they
are in a position to also tell us something about the answers to certain
substantive open questions that go beyond the data or when they are
ready to ask questions about data sets surveyable by human beings.
Many will find this price too high—and will prefer an account of epis-
temology on which there is at least sometimes room to ask what it is
rational to believe on the basis of a large body of scientific evidence.

5. Bayesianism

On Bayesian accounts of rationality, rational agents can be thought
of as beginning life equipped with a probability measure (their prior)
over some relevant space of hypotheses, and as having their doxastic
states at later times determined by conditionalizing this measure on
the evidence available to them at that time.39 Orthodox subjective
Bayesianism recognizes no substantive constraints on rational priors.
Various forms of tempered Bayesianism recognize some such constraints—
objective Bayesianism being the limiting case in which a unique ratio-
nally permitted prior is posited. For expository convenience, I will
focus on the subjectivist approach—but, as will be clear, my argument
applies equally well to tempered and objectivist approaches.40

By my lights, the best route to subjective Bayesianism is the follow-
ing (this may be completely different for others). A standard criticism
of uniquarianism is that because it makes rational disagreement be-
tween people sharing the same evidence impossible, it makes it difficult
to account for the behaviour of scientists during scientific revolutions.41

Reichenbachian approaches do not have that problem—but they are

39For guides to the literature on Bayesianism in its ever-proliferating varieties, see,
e.g., Earman 1992, Howson and Urbach 2006, and Joyce 2010.
40Since objective Bayesianism is a form of uniquarianism, it also faces the challenge
developed in the preceding section. Some generalizations of the basic Bayesian
approaches will be briefly discussed at the end of this section.
41Howson and Urbach 2006 (Sect. 8.f). Something along these lines is implicit in
Kuhn 1963 (Ch. XII) and 1970 (pp. 134 f. and 156 ff.).
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generally taken to err in the opposite direction by endorsing all sorts of
patently crazy methods. Wouldn’t it be nice if we had an account with
the flexibility to treat (selected) actual disagreement as rational that
also required agents to follow rules that could be given some sort of mo-
tivation beyond their asymptotic behaviour? Subjective Bayesianism is
an especially simple and attractive account of this kind. In a sense, all
rational agents obey the same canon (updating by conditionalization).
Nonetheless, agents facing the same evidence need not agree—and in
general will not if their priors differ. Famously, the account has an
interesting, but not fully compelling, rationale: unless one’s instanta-
neous degrees of belief are representable by a probability measure, one
is a potential mark of Dutch bookies; and unless one’s credences evolve
by conditionalization, one is a potential mark of Dutch bookies.42 In a
sense, subjective Bayesianism blames all rational disagreement between
evidentiary peers on initial doxastic differences. They are at pains to
argue that the amount of room this leaves for rational disagreement is
just right. On the one hand: the space of doxastic starting points is
rich enough—e.g., Bayesians are capable of providing models of actual
scientific behaviour.43 On the other hand: for a range of problems,
Bayesian agents are certain that their posterior probability distribu-
tions will become more and more tightly peaked around the true hy-
pothesis (i.e., they assign probability zero to the set of data streams
that would frustrate such convergence); and for a (somewhat different)
range of problems, Bayesian agents are in fact certain to converge to
the truth, provided that their priors are suitably spread out over the
entire space of hypotheses in play.44

For present purposes, it is convenient to note two of the many ob-
jections to subjective Bayesianism.45

(i) If all priors are on a par so far as rationality is concerned, then
patently irrational priors will count as rational.46

(ii) Scientists give arguments intended to have objective force. We
want to know whether the evidence adduced really supports the
conclusions in question. It is of no interest to reconstruct the

42There are many worries about each of these pillars; see, e.g., Hájek 2008 and Moss
(forthcoming). For discussion of several other important rationales for subjective
Bayesianism, see Joyce 2010.
43For doubts about this claim, see Belot (forthcoming).
44For discussion and references, see Earman 1992 (Ch. 6) or Belot 2013a.
45For discussion of further objections, see, e.g., Earman 1992, Howson and Urbach
1989 (Ch. 11), and Joyce 2010.
46See, e.g., Boghossian 2008 (p. 423) and Salmon 2005 (Sect. 4). For further
discussion, see Joyce 2004 (Sect. 5).
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arguments given so that they are about the personal opinions of
scientists.47

These are often thought to provide grounds for tempering subjective
Bayesianism—for placing more or less strong constraints on rationally
permitted priors. My goal is to show that consideration of our Property
Problem pushes in the opposite direction: it is not (just) that subjective
Bayesianism is too liberal, it is (also) too strict, in that it deems certain
apparently rational stances to be irrational.

It will take a while to work up to the point. Let us first of all consider
a bit more the obstructions to asymptotic reliability that stand in the
way of any method for determining whether the sequence being revealed
has some particular slippery property.

Let us say that a hypothesis flummoxes a method for resolving a
Yes-No question if it makes the method flip-flop ad infinitum between
Yes and No. And let us say that it fools the method if it leads the
method to eventually settle permanently on the wrong answer to the
question asked. Let the failure set of a method relative to a given Yes-
No question be the set of all hypotheses that flummox or fool it. Let
us call a method for determining whether the true sequence has some
given property open-minded if it has the feature that no matter what
data it sees, there are ways of extending the data set that would make
it change its mind regarding this question.48

From Facts 1 and 2 above it follows immediately that every method
for determining whether the true sequence has a given slippery property
has an infinite failure set: for every method, there is another whose
failure set is strictly smaller; so if any method had a finite failure set,
then there would be a method with an empty failure set; but every
method has a non-empty failure set.

By exploiting the fact that methods that are difficult to flummox
are easy to fool and the fact that open-minded methods are easily
flummoxed, we can show that this is only the first of several senses in
which the failure sets of interest are large.49

47See, e.g., Chalmers 1976 (p. 188), Glymour 1980 (pp. 74 f.), Horwich 1982 (pp.
28 ff.), and Salmon 2005 (Sect. 4).
48It is not difficult to find an open-minded prior for the problem of determining
whether the sequence being revealed is fifty-fifty: e.g., one can take a (non-trivial)
mixture of the fair coin measure with a measure corresponding to some other (non-
extreme) bias that a coin might have.
49Proofs of Facts 3–5 below can be found in Belot 2013a (Sect. 4).
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Fact 3. Any open-minded method for determining whether the true
sequence is fifty-fifty is flummoxed by uncountably many hypotheses.
(And likewise for other slippery properties.50)

Comparisons of size need not end with questions of cardinality. We
think of natural numbers as more special and rare, qua real numbers,
than rational numbers—even though both the natural numbers and
the rational numbers form countable subsets of the real numbers. In-
tuitively, this is because there are appreciable gaps among the natural
numbers but not among the rational numbers. The topological notion
of a dense subset of space explicates the intuitive notion of a subset
without such gaps.51 A subset S of our space of hypotheses is H is
dense if and only if for each finite data set there is sequence in S that
extends that data set.52

Fact 4. For any method M for determining whether the true sequence
is fifty-fifty, the failure set of that method is dense in the space of
hypotheses. (And likewise for any other particular slippery property.)

So for the problems we are interested in, open-minded methods
have failure sets that are both uncountable and dense in the space
of hypotheses. There is a further topological notion that allows us to
recognize some uncountable dense subsets of a given space as being
so small as to be essentially ignorable and others as being so large
as to correspond to properties possessed by typical members of the
space.53 Thus, mathematicians will say that typical continuous func-
tions are nowhere differentiable, while only very special functions are

50Note that non-open-minded methods can have countable failure sets. Consider,
e.g., the problem of determining whether the true sequence encodes a binary ex-
pansion of a rational number and the method that always conjectures that it does
not. This method is never flummoxed and is fooled precisely by the countable set
of sequences that do encode rational numbers.
51Recall that a subset S of a topological space X is dense if every non-empty open
subset of X contains a member of S, and is called nowhere dense if the closure of
S in X contains no (non-empty) open subsets of X.
52Recall from fn. 7 above that for any finite data set w, Bw denotes the set of
sequences that begin with w, and that we are working with a topology on H in
which each Bw is open and in which each open set is a union of sets of this form.
So a subset of H is dense just in case it intersects each Bw.
53A subset S of a topological space is meagre if it is a countable union of nowhere
dense set; S is residual if its complement is meagre.
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polynomials—although both the polynomials and the nowhere differen-
tiable functions form uncountable dense subsets the space of continuous
functions.54

Fact 5. Any open-minded method for determining whether the true
sequence is fifty-fifty is flummoxed by typical hypotheses. (And likewise
for any other particular slippery property.)

So far, so good—and so far, so general. How does all of this apply
to Bayesians?

A Bayesian agent who begins with a prior P0 defined onH and whose
posterior after seeing n data points is Pn (the result of conditionalizing
P0 on the data seen) will conjecture at that point that the true sequence
is fifty-fifty if and only if Pn assigns the set of fifty-fifty sequences a
probability of at least one-half.55 So among the methods covered by
Facts 3–5 above are the methods followed by Bayesian agents.

Of course, this just puts Bayesians in the same boat with everyone
else. But something sets Bayesian agents apart—a confidence prob-
lem. Bayesian agents faced with the problem of determining whether
the sequence they are seeing has some particular slippery property are
required to be certain that they will succeed: all Bayesian agents as-
sign probability zero to the failure set of their own method when facing
problems of this kind.56

This is odd. Suppose that God tells you and your chum Cholmonde-
ley that you will pass your time in the Garden of Eden by trying to
guess whether or not the binary sequence you are being shown is fifty-
fifty (with one of you being shown a sequence of one type, the other
a sequence of the other type). The problem is patently an intractable
one—for open-minded methods, failure to latch on to the truth, even
in the infinite long run, is the typical outcome. Here all attractive
methods are bad in much the same sense in which the method of being
sure come what may that the coin is fair is a bad method for deter-
mining its bias. Any normal person faced with this game will think: I
need to adopt some method or other; I will look for the best one I can

54For a proof that the nowhere differentiable functions form a residual set, see
Oxtoby 1980 (Sect. 11). The complement of this set is of course meagre—and
contains the polynomials.
55Note that the set of fifty-fifty sequence forms a measurable subset of our space of
hypotheses; see, e.g., Kechris 1995 (Sect. 11.B). From now on we restrict attention
to slippery properties that correspond to measurable subsets of H. Note that every
countable subset of H is measurable.
56That is: if the agent begins with prior P0, then the failure set of the corresponding
method has P0-measure zero. This follows, e.g., from Theorem 2 of Schervish and
Seidenfeld 1990.
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find; but knowing the facts about this game, I have to think that my
method may well not lead me to the truth. On the Bayesian account
of rationality, this line of thought is incoherent.

Contrast this situation with a couple of others in which one finds
priors fully confident of success although failure is typical.

First, consider a problem in which convergence to the truth is easy:
using knowledge of the outcomes of a sequence of tosses to determine
whether a coin is fair, has a bias of two-thirds in favour of heads, or has
a bias of two-thirds in favour of tails. No matter which hypothesis is
true, any Bayesian agent who initially assigns non-zero credence to each
of the three hypotheses will be more or less guaranteed to converge to
the truth in this setting. Of course, no such guarantee obtains for other
priors: if I initially assign probability one to the coin’s being fair and
update by conditionalization, then I will never assign anything other
than probability zero to the other hypotheses, no matter what data I
see. If I adopt such a prior, then most hypotheses have the feature that
should they be true, I would never become confident in their truth—in
this sense failure is typical for this prior in this setting. Nonetheless,
every prior assigns probability zero to the set of sequences that would
lead it to do anything other than become arbitrarily confident in the
true hypothesis as more and more data is seen. Here, certain priors
combine certainty of success with typical failure—and many will feel
that there is something rationally defective about the priors that do
so.

Consider next a problem in which no Bayesian agent is driven to-
wards the truth by seeing more and more evidence: attempting to
determine the denomination of a fair coin (penny, nickel, dime, quar-
ter) from knowledge of the outcomes of a sequence of tosses. In this
setting, whatever prior one begins with will be left unaltered by the
data. If asked which hypothesis is most likely, one will always give the
same answer, no matter what data one sees. One might happen to be
correct—but of course one is typically wrong (in the sense that, most
hypotheses have the feature that if they were correct, one would never
consider them most plausible). The problem is a patently intractable
one. Nonetheless, certain extraordinary priors are fully confident of
success: if I assign probability one to the proposition that the coin is a
quarter, then I assign probability zero to the set of hypotheses with the
feature that, should they be true, I would fail to come to believe them
to be true. Here again, it is natural to think that there is something
rationally defective about priors that combine certainty of success with
typical failure.
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It is not, in general, a good idea to be certain of success in contexts
in which failure is typical. In problems like the two just mentioned,
only certain unusual priors involve this combination—priors that are,
in any case, rather pathological. The situation is quite different with
our slippery Property Problems—here every prior is fully confident of
success, while failure is typical for open-minded priors. This repre-
sents a surprising limitation of Bayesian rationality: whereas any rea-
sonably attractive Bayesian agent is able to appreciate that the coin
denomination guessing game is an intractable one, no Bayesian agent
can appreciate that the problem of guessing whether a sequence has a
given slippery property is intractable. It is difficult to believe that it
is rationally mandatory to consider such problems tractable.

But wait! In the problems at issue, failure is typical only for open-
minded priors. Perhaps it is reasonable for other priors to be fully
confident in their success? This strikes me as a desperate ploy—open-
minded priors provide intuitively attractive methods for addressing
these problems. Worse: there are variants of our setting in which
failure is typical for all priors (see Belot 2013b).

But wait! For all that has been said here, it is not clear that the
notion of typicality at issue in Fact 5 should be of interest in this
context. That is true. But there is more to be said by way of motivating
this notion (see Belot 2013a). And there is a long tradition among
Bayesian statisticians of looking askance at priors which fail to converge
to the truth for hypotheses that are typical in this sense.57

But wait! At best the above shows that orthodox subjective Bayesian-
ism and its tempered alternatives have a problem—what about general-
izations of the orthodox framework in which rational agents are allowed
to have credences representable by objects more general than probabil-
ity measures? Here the situation is less clear: the objection developed
above turns on the availability of theorems (such as the result cited in
fn. 56 above) that show that each Bayesian agent is subjectively cer-
tain of convergence to the truth in the infinite long run. But most work
on asymptotic questions has been conducted by statisticians working
in the standard framework and thus concerns probability measures.58

57See, e.g., the classic papers Freedman 1963 and 1965 and Diaconis and Freedman
1986.
58For discussion and references concerning the case of merely finitely additive prob-
ability measures, see Zabell 2002. Regarding primitive conditional probabilities:
note that Gaifman (1986, p. 341) reports that the paradigmatic convergence result
of Gaifman and Snir 1982 carries over unchanged to this setting.
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But there are some intriguing positive results. Weatherson (forth-
coming) shows how to construct an imprecise prior (=a set of proba-
bility measures) that does not consider itself certain to succeed prior
to inquiry when facing a version of the problem discussed above. Elga
(manuscript) does the same in the setting of merely finitely additive
probability measures. This is encouraging. But it is far from a suffi-
cient response to the problem for anyone interested in defending some
form of generalized Bayesianism as an account of rationality, as op-
posed to as a theory of statistical inference. The point of the contrast
is this: a Bayesian theory of statistical inference just needs to tell you
how to behave in the face of data within a given problem context—one
looks at the problem being asked and then selects a prior suitable for
one’s purposes. A theory of rationality aims to do more: if God tells
you in the Garden of Eden that you are to be shown a binary sequence,
one bit at a time, then at that point there must be some sort of (gen-
eralized) prior that sums up your credences about which sequence you
will be shown—and you are rationally committed to forming beliefs by
conditionalizing on that prior. You do not get to use one prior if God
goes on to ask you after each bit is revealed how likely it is that the
sequence being revealed encodes a rational number and another prior
if you are instead asked how likely it is that the sequence is fifty-fifty.
Those seeking to defend one or another form of generalized Bayesian
account of rationality here have their work cut out for them.

6. Difficulty Itself

We started with the observation that there is a tension between
objectivity and bias, and with the idea that it would be nice to identify
those forms of objectivity that are obtainable and to understand the
range of biases compatible with them. We saw that strict and long-run
objectivity are beyond our reach: there is no way to conduct genuine
inquiry in the absence of bias; and it is too much to ask of a method
that it should always eventually be able to settle on the truth. This led
us to an investigation of asymptotic objectivity. Can we find methods
that lead to conjectures that are more or less guaranteed to converge
to the truth as more and more data points are seen?

For some problems, this can easily be achieved. We might be inter-
ested in determining the propensity of a coin to come up heads and
expect to see a sequence of outcomes of tosses. Or we might be trying
to guess the identity of a binary sequence that is being revealed to us
one bit at a time. For problems like this it is easy to come up with
asymptotically objective methods—the problem is that there are far
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too many of them, that it is difficult to choose between them, and that
they differ all too often in their recommendations at finite stages of
inquiry.

But we have seen that even when asymptotically objective methods
exist for identifying fine-grained hypotheses, there may be harder prob-
lems lurking: for instance, there can be no asymptotically objective
method for determining whether the binary sequence being revealed
to you is fifty-fifty (i.e., split evenly between zeroes and ones in the
infinite long run). And any method that is open-minded in a certain
sense (never making up its mind irredeemably about this problem on
the basis of a finite amount of evidence) is flummoxed by typical se-
quences in the space of hypotheses, flip-flopping ad infinitum between
Yes and No.

This phenomenon causes trouble. For those who would follow Re-
ichenbach in taking asymptotic objectivity to be the characteristic
virtue of good methods, a vicious closure problem follows—they have
to maintain, for example, that we can be warranted in believing that
the true sequence is 0101010. . . (or be willing to act as if we do), but are
forbidden from taking the same attitude towards the claim that zero
and one occur with the same frequency in the sequence. If we want
anything like our own methods to count as objective, we need to allow
that asymptotic objectivity is not a necessary condition for objectivity.

The same phenomenon causes problems for other approaches. At
the opposite end of the spectrum from Reichenbachians, who often
find themselves embarrassed by a surfeit of methods approved by their
official standard, lie uniquarians, who maintain that there is only one
rational doxastic response to any given body of evidence. If we identify
the evidence available to a curve-fitter with the data points seen, then
this leads us to expect that the unique rational method for determining
whether the sequence being revealed is fifty-fifty must be optimal with
respect to its domain of asymptotic objectivity. But it is demonstrable
that optimality is unobtainable here—there is better and better but
no best. So uniquarians must deny, on pain of incoherence, that the
evidence available to a curve-fitter should be identified with the data
points seen. But to go down that road is to render epistemology a
curiously limited enterprise, with nothing to say about how one should
respond to the sort of data sets and questions prevalent in the sciences.

Somewhere between the relatively wide range of biases permitted by
Reichenbachians and very narrow range imagined by uniquarians, lies
the realm of subjective Bayesians, who build all degrees of freedom into
the choice of an initial probability distribution over the relevant space
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of hypotheses. Bayesian agents run into a special difficulty when con-
fronting problems like that of determining whether a binary sequence
is fifty-fifty—they are sure that they will succeed, even though failure
is typical for this task. It is difficult to believe that this sort of self-
confidence can be rationally mandatory. (And it is note-worthy that
when facing other sorts of intractable problems, reasonable Bayesian
agents are able to arrive at reasonable views about their chances of
success.)

So what sort of account of obtainable objectivity and acceptable
bias should we be looking for? One that allows for objective inquiry in
the absence of a guarantee of convergence to the truth, under at least
some conditions. One that neither postulates a single standard for all
possible beings, nor severs all connections between epistemology, on
the one hand, and the sciences and philosophy of science, on the other.
One that allows us to take a realistic view of our chances of success
when faced with intractable problems.

Appendix

Above we considered agents who seek to learn facts about a binary
sequence that is being revealed to them one bit at a time. This consti-
tutes the simplest possible model of empirical inquiry in the regime in
which the amount of in-principle relevant evidence is inexhaustible. In
this sense, it provides a natural idealization of scientific investigation.
At the same time, it is natural to worry that the difficulties encoun-
tered above might be artifacts of certain special features of the problems
considered above. In physics, for example, data typically come in the
form of real or complex numbers and the spaces of hypotheses in play
are usually spaces of of real- or complex-valued functions—spaces that
are quite different in structure from the space H of binary sequences.
Further, in the discussion above, we relied heavily on the fact that H
includes all binary sequences, no matter how well- or ill-behaved. But
in scientific contexts, one almost always restricts attention to functions
that are well-behaved in one or another sense (e.g., by requiring certain
degrees of smoothness or by imposing boundary conditions). So it is
natural to wonder whether the difficulties we have been concerned with
arise in more sophisticated settings. We will see that they do.

First some background. Consider the space C∞(S1) of infinitely-
differentiable, real-valued functions on the circle (we will think of these
as defined on the closed interval [−π, π] subject to the condition that
they take the same value at each endpoint).59 Recall that functions

59The same argument would work for C∞(Tn), where Tn is an n-dimensional torus.
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in C∞(S1) have well-defined Fourier expansions. For f ∈ C∞(S1) we
define

ak :=
1

π

∫ π

−π
f(θ) cos kθ dθ (k = 0, 1, 2, . . .)

bk :=
1

π

∫ π

−π
f(θ) sin kθ dθ (k = 1, 2, 3, . . .).

and call a0, (a1, b1), (a2, b2), and so on, the Fourier coefficients of f.
We call

a0
2

+
k=∞∑
k=1

(ak cos kx+ bk sin kx)

the Fourier series of f. In the context of Fourier analysis, it is natural
to equip C∞(S1) with the norm

||f || = (|a0|2 +
∑
|ak|2 + |bk|2)

1
2

(the norm of a function in C∞(S1) is a non-negative real number).
This norm induces a notion of convergence for sequences of functions
in C∞(S1): fn → f if and only if ||f − fn|| → 0 as n → ∞. Note,
in particular, that this provides one of the several senses in which the
Fourier series of a function f ∈ C∞(S1) converges to f : let SN(x)

denote a0
2

+
∑k=N

k=1 (ak cos kx + bk sin kx), the Nth partial sum of the
Fourier series of f ; then ||f − SN || → 0 as N →∞.

Now we can set up our problems. A curve-fitter is gradually shown
the Fourier coefficients of some function in C∞(S1) (first a0, then a1
and b1, then a2 and b2, and so on). At each stage the agent is asked
to conjecture the true identity of the function generating this data and
also to guess whether this function has a finite Fourier expansion (i.e.,
whether all but finitely many of its Fourier coefficients vanish). This
new model, while still very simple, features a space of hypotheses that
is both rich enough and sufficiently constrained to seem like a decent
stand-in for the sorts of spaces of hypotheses that arise in scientific
practice. And the sort of data involved is also a good stand-in for the
sorts of data that arise (for instance) in geophysics (see Parker 1994,
Ch. 2).

We find something familiar. It is easy to come up with an asymp-
totically reliable method for identifying the function f generating the
data. For example, one can at each stage just guess the function whose
only non-zero Fourier coefficients coincide with the data one has been
shown so far—this is asymptotically reliable because, as noted above,
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the partial sums SN of the Fourier series of any function in C∞(S1)
converge to that function.

Fact 6. There can be no asymptotically reliable method for determining
whether the function generating the data has a finite Fourier expan-
sion.60

Proof. The argument is parallel to that for Fact 1 above. Suppose that
M is an asymptotically reliable method for determining whether the
function generating the data has a finite Fourier expansion.

(i) No matter which function is generating the data, M will have to
settle down after a finite time to the correct answer.

(ii) Any finite data set is consistent with either answer.
(iii) So if after seeing a given data set, M conjectures that the true

function does not have a finite Fourier expansion, it is always pos-
sible to get M to change its mind by showing it a sufficiently large
block of data consisting of nothing but zeroes; likewise, whenever
M conjectures that the true function does have a finite Fourier
expansion, it is always possible to get it to change its mind by
showing it a sufficiently large block of non-vanishing coefficients.

(iv) Here is a recipe for constructing a data stream that will cause
M to flip-flop ad infinitum. Let f ∈ C∞(S1) be a function with
Fourier coefficients a0, a1, b1, . . . , all of which are non-zero.We
define a sequence a∗0, a

∗
1, b
∗
1, . . . as follows:

a) a∗0 = a0;
b) (a∗k+1, b

∗
k+1) = (ak+1, bk+1) (k ≥ 0) if, when shown a∗0, . . . , b∗k,

M guesses that the true function has a finite Fourier expansion;
c) (a∗k+1, b

∗
k+1) = (0, 0) otherwise.

That is, we construct the sequence a∗0, a
∗
1, b

∗
1, . . . by alternating

blocks of data consisting of the Fourier coefficients of f with blocks
of data consisting of all zeroes in such a way as to ensure that M
flip-flops ad infinitum.

60This lets us make good on a promise made in Sect. 1 above. In the present
model, the space of hypotheses and the space of finite data sets both have the
cardinality of the continuum. But there can be no method for guessing the true
identity of the function generating the data that is long-run objective in the sense
of Sect. 1 above. For if there were, that method would allow us to construct an
asymptotically reliable method for determining whether the true function has a
finite Fourier expansion (conjecture that it does if and only if the conjecture of
the long-run objective method for the Identification Problem has this property)—
but there can be no such method. So here we have a context in which long-run
objectivity is unobtainable even though there is no mismatch in cardinality between
the space of hypotheses and the space of finite data sets.
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(v) The a∗0, a
∗
1, b

∗
1, . . . are the Fourier coefficients of a function f ∗

in our space of hypotheses C∞(S1). This is because a sequence
(a0, a1, b1, . . .) gives the Fourier coefficients of a function in f ∈
C∞(S1) if and only if the ak and bk go to zero sufficiently quickly
(see, e.g., Taylor 2011, Sect. 3.1)—and that is a feature that
cannot be spoiled by setting some of the elements of the sequence
to zero.

(vi) So there is a function on our space of hypotheses that generates
a data stream that flummoxes M.

The contradicts our original assumption that M was asymptotically
reliable for this problem. So there can be no such M. �

This shows that even if we restrict attention to ‘nice’ hypotheses, we
still get a counterpart of Fact 1.61 And a counterpart of Fact 2 also
holds (the argument given above for Fact 2 carries over directly). It
follows that every method for trying to determine whether the function
generating the data has a finite Fourier expansion will have an infinite
failure set. Further, there is no obstacle to applying the Bayesian
framework to this problem (the set of functions with finite Fourier
expansions is a Borel subset of C∞(S1) and hence measurable).

Weaker versions of Facts 3 and 4 hold in the present setting. Call
a method regular if, no matter what data it has seen so far, it can
always be brought to guess that the function f generating the data has
a finite Fourier expansion by being shown a sufficiently large block of
vanishing Fourier coefficients and can always be brought to guess that
f doesn’t have a finite Fourier expansion by being shown a sufficiently
large block of non-vanishing Fourier coefficients.

Fact 7. The flummoxers of any regular method M form an uncountable
dense subset of C∞(S1).

Proof. First note that for any f ∈ C∞(S1) and any ε > 0, there is an N
such that ||f−SN || < ε. And if g ∈ C∞(S1) is a function whose Fourier
series is identical to that of f except maybe that some of the coefficients
with order higher than N have been set to zero, then ||f − g|| < ε as
well. This means that for any regular method M and any f ∈ C∞(S1)
we can construct a sequence (f1, f2, . . .) of flummoxers of M that cov-
erage to f as follows: choose each fk to match f in enough of its initial

61The same sort of argument works for other classes of functions admitting Fourier
or other sorts of expansions, so long as the class of functions can be characterized
as those whose expansion coefficients fall off at least as fast as some target rate. For
instance, we could work certain Sobolev spaces and with Fourier expansions (see
Taylor 2011, Sect. 4.3) or with Schwartz class functions and Hermite expansions
(see Simon 1971, Theorem 1).
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Fourier coefficients to ensure that ||f−fk|| < 1
k
, given that the remain-

ing Fourier coefficients are going to be chosen as in the proof of Fact
6 above to ensure that fk flummoxes M. So the flummoxers of M are
dense in C∞(S1).
Next, let α be a real number between zero and one with binary expan-
sion .α1α2α3 . . . . Let M be a regular method and let f be a function in
C∞(S1) all of whose Fourier coefficients are non-zero. We construct a
flummoxer for M as follows: show M the first Fourier coefficient of f ;
look at what M conjectures; then show M a block of coefficients that
makes it change its mind (either a block of zeroes or a block of Fourier
coefficients of f); the first coefficient it sees after it changes its mind is
α1 times the next coefficient of f ; followed by a (possibly empty) set
of coefficients designed to make it change its mind a second time; then
α2 times the next coefficient of f ; and so on. In this way we construct
a distinct flummoxer for M for every real number between zero and
one. �

It is natural to hope that Fact 5 also carries over in some form.
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