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Abstract. It is widely thought that chance should be understood in reductionist terms:
claims about chance should be understood as claims that certain patterns of events are
instantiated. There are many possible reductionist theories of chance, differing as to which
possible pattern of events they take to be chance-making. It is also widely taken to be a
norm of rationality that credence should defer to chance: special cases aside, rationality
requires that one’s credence function, when conditionalized on the chance-making facts,
should coincide with the objective chance function. It is a shortcoming of a theory of chance
if implies that this norm of rationality is unsatisfiable. The primary goal of this paper is to
show, on the basis of considerations concerning computability and inductive learning, that
this shortcoming is more common than one would have hoped.
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1. Introduction

This paper is concerned with with the rational relation between credence (degrees of belief)

and chance (objective probability) and with reductionist theories of chance (according to

which facts about chance supervene on non-chance-y facts). There is, of course, already a

large and flourishing literature on these topics. Its dual centrepieces are: Lewis’s Best System

account of chance, on which laws of chance are scientifically ideal summaries of patterns of

events; and his Principal Principle, which says that the degrees of belief of rational agents

must defer, in a certain sense, to facts about chance.1 In giving us a relation between chance

and rational credence, the Principal Principle gives us interesting constraints on both relata:

Lewis thought of the Principal Principle as telling us something about what it means to be

rational and at the same time as encapsulating important truths about the concept of chance.2

Relative to a theory of chance, the Principal Principle picks out those prior credence functions

that are rationally permitted. At the same time it gives us possible grounds for criticizing

theories of chance. I suggest the following example: if we are thinking of theories of chance as

something like summaries meant to be used by beings like us, there is something pathological

about a theory of chance relative to which no priors count as rationally permitted.

Here I aim to make a contribution that is orthogonal to the directions pursued in most

of the literature, making elementary use of some tools from the theory of computation and

from the theory of inductive learning to clarify questions about which theories of chance are

pathological in the sense just mentioned. It will emerge below that it is much more difficult

than one might expect to find reductionist theories of chance that do not face difficulties of

this sort.

Very roughly speaking: on Lewis’s Best System account, the chance laws at a world are just

good scientific summaries of the patterns of events at that world; and his Principal Principle

says that if you are rational, then to the extent that you are confident in a chance hypothesis

it should guide your estimates of probability. So, taken together, the package seems to imply

that in order to be rational, you need to be a certain sort of universal learner: whatever

1See Lewis (1980/1986; 1994).
2In addition to the papers cited in the preceding note, see Beebee and Fisher (2021, Letters 659 and 660).
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the chance laws at your world are, if you are a good scientist and you see enough data, you

should become confident in something like those laws and so you should eventually mimic

those laws in your estimates of probability. But in many contexts we know that there can

be no universal learner.3

Almost all of the discussion below will take place in the special setting in which possible

worlds can be modelled by infinite binary sequences (simple enough to be tractable, complex

enough to provide a picture of inquiry in which typical questions are never definitively set-

tled by a finite number of observations). The framework we will be using is introduced in

subsections 1.1–1.3 below.

Section 2 is concerned with reductionist theories of chance. For present purposes, such

a theory of chance for a given space of possible worlds is a map (satisfying certain mild

technical conditions) that assigns to (some) worlds of that space a probability measure on

that space—for a world assigned such a probability measure, the measure plays the familiar

role of chance laws (telling us the chance for various events to happen, unconditionally or

conditionally on other events having happened). This section also introduces five very simple

paradigm examples of reductionist theories of chance for our chosen set of worlds. These will

be used throughout as illustrations.

Section 3 is concerned with a weak version of the Principal Principle, the Chance–Credence

Principle (CCP). We will see that it is straightforward to characterize the priors that satisfy

CCP with respect to any given theory of chance—and that some of our paradigm examples

do not admit any priors that satisfy this principle.

There would be something unsatisfactory about an account of rationality that required

rational agents to be able to perform some absolutely impossible task—squaring the circle,

say. In the same way, if we are interested in the rationality of finite agents—e.g., human

beings and the machines that they build—then there is something unsatisfactory about any

account of rationality that requires agents to be able to perform tasks that are impossible for

3For early results of this kind, see Putnam (1963a, 1963b). For elaborations, see Kelly (1996) and Jain et al.
(1999).
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finite agents—solving the Halting Problem, say.4 We will see in Section 4 that each of our

paradigm examples of theories of chance are unsatisfactory in this way. So there is a challenge

here for those attracted to reductionist theories of chance and to the Principal Principle: to

develop and to defend examples of reductionist theories of chance that are CCP-satisfiable

by computable priors (or to explain how norms of rationality can require agents to perform

tasks that are impossible for computable agents).

Motivated in part by the picture sketched above of the relationship between the Lewisian

package (Best System account of chance + the Principal Principle) and learning, Section 5

considers weaker analogs of CCP (and versions of them that require priors to be computable).

The upshot is that if CCP is replaced by a weak enough principle along these lines, then

some more reductionist theories of chance are consistent with Bayesian rationality. But many

obstacles remain: for those interested in the combination of a reductionist theory of chance

and a Principal Principle-style account of the relation between chance and credence there is

interesting work to be done.

Appendix A consists of some remarks concerning the relation between the Principal Princi-

ple, some of its principal rivals, and CCP. Appendix B plays some Whac-A-Mole against the

complaint that at various points, my discussion shows that I am being stiff-necked, closed-

minded, naive, or unimaginative in my handling of conditional probabilities and nullsets.

Ground-rules: all probability measures are real-valued and countably additive; the Ax-

iom of Choice is taken for granted; and, for the most part, the notational conventions of

Downey and Hirschfeldt (2010) are followed. Non-reductionist theories of chance are ne-

glected throughout—not because they are somehow immune from the problems encountered

below, but because their treatment would require an extension of the present framework.

1.1. Main Characters.

a. The set of bits, 2 := {0, 1} (note the sans serif font—2 denotes a set, 2 a number).

b. For each n ∈ N, 2n is the set of n-bit strings (we include the case of the empty string of

zero bits).

4For a dissenting perspective, see Earman (1992, §9.8).
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c. The set of all binary strings: 2<ω :=
⋃∞
n=0 2

n. If σ and τ are binary strings we write στ for

the string that results from concatenating σ and τ (in that order).We call a binary string

evenly-split if it contains the same number of 0’s as it does 1’s.

d. Cantor space: the set 2ω of all infinite binary sequences.5 For S ∈ 2ω, we write S(k) for

the kth bit of S and S�k for the string formed by concatenating the first k bits of S. We

call a binary sequence evenly-split if the limiting relative frequency of 0’s in it is .5.

e. For any binary string τ, we denote by JτK the set of S ∈ 2ω whose initial bits are given by

τ. We call the JτK basic subsets of 2ω.6 We use B to denote the σ-algebra of subsets of 2ω

generated by the family of basic sets: B is the smallest family of subsets of 2ω that includes

all the basic sets and which is closed under taking complements, countable unions, and

countable intersections. We call the members of B the Borel subsets of 2ω.7

f. The space P of Borel probability measures on 2ω: each µ ∈ P is a map from B to [0, 1]

such that: (a) µ(2ω) = 1; and (b) µ is countably additive (i.e., µ(
⋃
Uk) =

∑
µ(Uk), for

any countable family U1, U2, . . . of pairwise disjoint Borel sets). We call a map m from the

family of basic sets to [0, 1] a probability function if: (i) m(2ω) = 1; and (ii) for any binary

string σ, m(JσK) = m(Jσ0K) + m(Jσ1K).8 Any Borel probability measure determines via

restriction a probability function. And the restriction in fact determines the probability

measure: probability measures that agree on all basic sets agree on all Borel sets.9 Further,

every probability function can be extended to a Borel probability measure.10

5By sequence we always mean one-way infinite sequence indexed by the positive natural numbers.
6It is often convenient to take 2ω to be equipped with the topology generated by the basic sets—this coincides
with the product topology (induced by thinking of 2ω as a product of a countable number of copies of 2, each
equipped with the discrete topology). In this topology, each basic set is compact as well as open: 2ω itself is
compact (being the product of compact spaces); and each basic set is closed (if σ is a k-bit string, then the
complement of JσK is open, being the union of the basic sets determined by the k-bit strings other than σ).
7Note that since there are only countably many basic sets, each open set of the product topology (see fn. 6
above) is in B—so B is the σ-algebra generated by this topology.
8An argument by induction shows that for any k > 1, any probability function satisfies a generalized form of
condition (ii), with the sum ranging over all k-bit extensions of σ. From this it follows that any probability
function is finitely additive as a function on basic sets. And in this case finite additivity implies countable
(sub)additivity: recall from fn. 6 above that in the product topology each basic set is both open and
compact—so if a basic set arises as the union of a countable family of basic sets, then it also arises as the
union of a finite subfamily.
9See, e.g., Klenke (2020, Lemma 1.42).
10This follows via the Carathéodory Extension Theorem (since the family of empty-or-basic subsets of 2ω

is a semi-ring and the extension of m to this family, via the stipulation m(∅) = 0, is finitely additive and
countably subadditive). See, e.g., Klenke (2020, Theorem 1.53).
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Example 1.1 (Delta-Functions). For any S ∈ 2ω, the delta-function concentrated on S is the

Borel probability measure δS that for any binary string τ, assigns the basic set JτK probability

one if S begins with τ, and otherwise assigns it probability zero.

Example 1.2 (Bernoulli Measures). For any r ∈ (0, 1), the Bernoulli measure with parameter

r is the Borel probability measure νr such that for any binary string τ, νr(JτK) = rk(1− r)`,

where k is the number of 0’s in τ and ` is the number of 1’s in τ. So according to νr, bits are

selected by independent tosses of a coin with bias r in favour of 0’s. We call ν.5 the fair coin

measure.

Example 1.3 (Hybrids). At various points it will be helpful to have recourse to measures

that initially behave like delta-functions before switching to the behaviour of the fair coin

measure. For any binary string σ we define the measure νσ.5 as follows: νσ.5(JτK) is 1 if τ is an

initial segment of σ, is 1/2k if τ is a k-bit extension of σ, and is 0 otherwise.

Since there is a natural bijection between binary strings and the basic sets that they

determine, when we are focussing on the action of probability measures on basic sets we will

often simplify notation by writing µ(τ) for µ(JτK) etc. Similarly, if b is a bit, and τ is a

binary string, the expression µ(b | τ) stands for µ(JτbK | JτK), the probability that µ gives for

the next bit to be b, conditional on the sequence beginning with the bits of τ.

1.2. Computable Numbers and Measures. A binary sequence S ∈ 2ω is computable if

there is a Turing machine that on input of a natural number k gives as output the first k

bits of S.

We say that a binary string σ = b1b2 . . . bn is a k-bit approximation to a number x in the

unit interval if ∣∣∣∣∣x−
n∑
j=1

bj
2j

∣∣∣∣∣ ≤ 1

2k
.

A real number x in the unit interval is computable if there is a Turing machine that on input

of a natural number k gives as output a k-bit approximation to x.
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So, intuitively, a real number (or a sequence) is computable if and only if it can be com-

putably approximated in a controlled way. Similarly, a real-valued function on a computably

enumerable set is computable if there is a single machine that can approximate its value on

any argument in a controlled way (this is stronger than just requiring that each of its values

be computable). Specializing this to the case of probability measures—which, as we have

seen, are determined by their restrictions to the basic subsets of 2ω—it is natural to define a

Borel probability measure µ on 2ω to be computable if there there is a Turing machine that

on input of a binary string σ and a natural number k gives as output a k-bit approximation

to µ(JσK).

Note that a delta-function measure δS is computable if and only if the sequence S that it is

concentrated on is and that a Bernoulli measure νr is computable if and only if its parameter

r is. Note, further, that since there are only countably many Turing machines, there can

be only countably many computable sequences, computable real numbers, and computable

probability measures.

1.3. Worlds and Priors. We are going to use binary sequences to model certain simple

possible worlds: time at these worlds is discrete, has a first instant, and is infinite towards the

future; the state of one of these worlds at a time is encodable by a single bit. These worlds

are too simple to be realistic, but allow us to study problems about credence and chance

in a controlled setting (and of course they provide models of subsystems of more complex

worlds).

We are going to work in a Bayesian framework in which agents satisfy three conditions.

Probabilism: Each agent begins life in a credal state encoded in a probability measure µ

(the agent’s prior), defined over some salient set of possible worlds.

Evidential Regularity: Each agent’s prior must assign non-zero weight to any possible

evidence E that the agent might acquire.

Conditionalization: the credal state of an agent with prior µ and total evidence E is

encoded in µ(· |E).
7



In our setting, the natural explication of possible state of evidence is: a finite initial segment

of a world. So we will call a probability measure µ ∈ P a prior if it satisfies µ(τ) > 0 for

every binary string τ.

2. Chance

Our focus here is on reductionist theories of chance. The spirit behind these (broadly

Humean) approaches can be summarized as follows:

Philosophers are deeply divided on the status of modal truths in general and

nomic truths in particular—truths related to physical possibility and necessity.

Besides chance, prominent nomic phenomena include causation, counterfac-

tuals, dispositions, and laws of nature. One approach to the nomic, going

back to Hume and further to the medieval nominalists, holds that nomic facts

about what could or would or must are always reducible to facts about what

is. For the most part, Humeans do not deny the reality of nomic phenomena;

they agree that there are laws of nature, chances, dispositions, etc. But they

maintain that these things are derivative, determined by more fundamental,

non-modal elements of reality. Thus Humeans might identify laws of nature

with regularities in the history of physical events, and and chances with rel-

ative frequencies. This ensures that whenever two possible worlds agree in

non-nomic aspects, they also agree with respect to laws and chance.11

So what is a Humean reductionist theory of chance? The core idea is that:

the chance facts are reducible to certain facts about patterns to be found in

the whole panoply of events that happen in the history of our universe. What

kinds of patterns? Broadly speaking, and unsurprisingly, they are stable and

stochastic-looking or random-looking patterns.12

In our setting, a complete history of a world is a binary sequence—a good candidate for an

object that can be described in non-modal terms but which might or might not exhibit the

11Schwarz (2014, 425).
12Hoefer (2019, 2).
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sorts of patterns that could ground talk about chance. A probability measure ν on 2ω can be

thought of in the following terms: ν(0) gives a probability for the initial state of the world to

be 0 and ν(1) gives the probability for it to be 1; and given any binary string τ, ν(0 | τ) and

ν(1 | τ) give the probability for the next bit to be 0 or 1, if τ gives the history so far. So we

can picture ν as a book of instructions that tells Nature how to construct worlds: first, flip

a coin of such and such bias to generate the first state; at any later time, flip a coin of this

bias to generate the next state, if the history so far is that. More generally, for any (Borel)

subset A of 2ω, and any binary string τ, ν(A | τ) gives the probability for A to obtain, given

that τ encodes an initial segment of the history of the world.13

So in our setting, a reductionist theory of chance is an assignment of probability measures

to (some) worlds. It is convenient to build a couple of a couple of weak technical conditions

into the official definition.

Definition 2.1. A theory of chance is a (possibly merely partially-defined) map L : 2ω → P

such that for any λ in the image of L we have: (i) that L−1(λ) is a Borel subset of 2ω; and

(ii) that λ(L−1(λ)) > 0.

Interpretation: if L is a theory of chance and L(S) = λ for some S ∈ 2ω and λ ∈ P , then

we think of L as saying that λ encodes the facts about chance at S. We refer to any λ ∈ P

in the image of L as a law of chance of L (or a chance law of L). If λ is a law of chance of

L, then we refer to the proposition (= set of worlds) Λ := L−1(λ) as the chance hypothesis

determined by λ. If, on the other hand, L(S) is undefined, then L says that there are no

facts about chance at S. We will refer to the set of worlds Λ∗ at which L is undefined as the

proposition that the world is lawless (it is the negation of the disjunction of all the chance

hypotheses of the theory).

13So such a measure encodes the complete set of what Lewis (1980/1986, 97) calls “history to chance condi-
tionals,” and hence gives what he calls “the complete theory of chance” for a world.
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Clause (i) in Definition 2.1 requires that chance hypotheses be the sort of things that

probabilities can be assigned to.14 Clause (ii) rules out a certain sort of aberrant behaviour:

a law of chance that says that there is zero chance that it is the law of chance.15

In practice, we are most interested in theories of chance inspired by the heuristic con-

siderations that underlie various classic philosophical programs for understanding chance

reductively. Most prominent among these are: frequentist approaches, in which the chance of

any event type is identified with the relative frequency with which that type of event occurs

in some relevant reference class of events; and Best System approaches in which the facts

about chance at a world are provided by the (in general stochastic) hypothesis that provides

the best summary of facts at that world, according to ordinary scientific standards (very

roughly speaking—the best hypothesis is the one that in some relevant sense ideally balances

simplicity, logical strength, and fit with the data).16 It will be helpful below to also have in

mind a third (not especially popular) approach, super-determinism, on which the only laws

of chance are deterministic (i.e., are encoded in delta-functions).

Consider the fair coin measure, ν.5, on 2ω. What does it mean to think of it as the law of

chance at a world S ∈ 2ω? Well, for starters, ν.5 tells you that the probability of 0 occurring

at any time is .5—and that this probability is independent of what happens at other times.

In order to be acceptable to frequentists, a theory of chance must assign the fair coin measure

to all and only worlds that are evenly-split between 0’s and 1’s. Advocates of the Best System

approach may recognize some exceptions to this rule: perhaps (in the setting of finite worlds)

it sometimes makes sense to take the fair coin measure to give the law of chance at a world

at which the relative frequency of 0’s is given by a number r that is close to .5, when r itself

is sufficiently far from being simple.17 And perhaps some evenly-split sequences should be

assigned a law of chance other than the fair coin measure—e.g., one might well want to assign

14This is a weak measurability requirement. We will consider a stronger one in Appendix B.4 below.
15This clause will be invoked below only in Section 5.1 and in Appendix A.2.
16Schwarz (2014, 424) again provides a helpful encapsulation: “chances are identified with probabilities in
ideal physical theories whose aim is to provide a kind of summary statistic of actual outcomes; getting
close to the frequencies is one virtue of probabilistic theories, but it trades off against other virtues such as
comprehensiveness and simplicity.”
17For this suggestion, see Lewis (1994, §4).
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a particularly simple S ∈ 2ω the delta-function measure δS concentrated on S as its law of

chance, whether or not S is evenly-split.18

It will be helpful to have in mind a few theories of chance that can be thought of as very

simple-minded implementations of super-determinism, frequentism, and the Best System

approach.

Example 2.2 (Super-Determinism). Each S ∈ 2ω is assigned as its chance law δS, the delta-

function measure concentrated on S.

Example 2.3 (Computable Super-Determinism). Each computable S ∈ 2ω is assigned δS as

its chance law. All other worlds are lawless.

Example 2.4 (Basic Frequentism). If 0’s have relative frequency r in S ∈ 2ω, then the law of

chance for S is the Bernoulli measure νr. If this relative frequency is not defined, S is lawless.

Example 2.5 (Computable Frequentism). If 0’s have relative frequency r in S ∈ 2ω and r is

computable, then the law of chance for S is the Bernoulli measure νr. If the relative frequency

of 0’s in S is uncomputable or undefined, then S is lawless.

There may seem to be little reason to opt for Computable Frequentism over Basic Frequen-

tism: it doesn’t seem to follow from the thought that probabilities are relative frequencies

that those frequencies must be given by computable numbers. But a restriction to com-

putable chance laws is entirely natural on the Best System approach. If we are thinking of

candidate chance laws for a world as something like putative scientific summaries of that

world, with the actual chance law (if there is one) being the optimal such summary (as

judged by ordinary scientific standards), then it would appear to be essential that candidate

chance laws be finitarily specifiable. After all, what would it mean to compare the overall

virtues of two infinite texts, by the ordinary standards of scientific—or literary—criticism?

To directly specify a binary sequence (or, equivalently, a real number in the unit interval)

would be to specify the bits that make it up, one by one: an infinitary task. Turing launched

18On this point, see again Lewis (1994, §4).
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modern theoretical computer science with the assertion that “The ‘computable’ numbers

may be described briefly as the real numbers whose expressions as a decimal are calculable

by finite means.”19 Turing’s proposal is that the finitarily specifiable real numbers are the

Turing-computable real numbers. A probability measure on 2ω can be thought of as a certain

sort of real-valued function on the countably infinite space of finite binary strings. Direct

specification of such an object would be a doubly infinitary task, involving the specification

of an infinite number of real numbers. But some such objects are finitarily specifiable: the

Turing-computable measures (and the success of the Church-Turing thesis gives us reason to

think that these are all of the finitarily specifiable such objects). So it is natural for those

interested in Best System approaches to restrict their attention to theories in which all chance

laws are computable.20

Example 2.6 (A Toy Best System Theory). Any computable S ∈ 2ω is assigned the delta-

function measure concentrated on S. Any incomputable S in which 0’s have computable

relative frequency r is assigned the Bernoulli measure νr. All other S are lawless.

Remark 2.7. In a more plausible implementation of the best-system approach, it would be

natural to further require that any sequence assigned a given computable probability measure

as its law of chance must be algorithmically random relative to that measure.21 It would also

be natural to include further families of laws of chance: generalized Bernoulli measures (for

which the bias of the coin used to determine the nth bit is allowed to depend on n); Markov

chains (for which the bias of the coin used to determine the state at a time depends on the

states at some fixed number of immediately preceding times); and so on.

Definition 2.8 (Proper and Improper Theories). Let L be a theory of chance. We call a law

of chance λ of L with chance hypothesis Λ proper if λ(Λ) = 1, otherwise we call λ improper.

We call L proper if all of its laws of chance are proper; otherwise we call L improper.

19This is the opening sentence of Turing (1936).
20So here I am here denying that numbers that can in a sense be defined but which cannot be computably
approximated in a controlled way can play any role in science—maybe that is a mistake. For the most famous
examples of such numbers, see, e.g., Barmpalias (2020).
21See Belot (2023) for further discussion of this point.
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Remark 2.9. Each of the theories of chance mentioned above is proper. This follows from

three facts. (a) Each delta-function δS assigns measure one to {S}. (b) Each Bernoulli

measure νr assigns measure one to the set of sequences in which 0’s have relative frequency

r (the strong law of large numbers). (c) Each Bernoulli measure νr assigns measure zero to

each countable set.

Example 2.10 (An Improper Theory of Chance). As in Example 1.3, let ν0
.5 be the probability

measure that is certain that the first bit will be 0 but thinks that all subsequent bits are

sampled by tossing a fair coin. Consider the theory of chance that assigns the fair coin

measure to all sequences that begin with 1 and assigns ν0
.5 all sequences that begin with 0.

In this theory ν0
.5 is a proper chance law but the fair coin measure in an improper one.

3. Chance and Credence

It has seemed to many that rationality requires there to be a certain sort of relation between

chance and credence—that in certain situations, if you are rational, then your credence in an

event must coincide with the chance of that event.

Knowing only that the chance of drawing a red ball from an urn is 0.95,

everyone agrees, in accordance with the law of likelihood, that a guess of ‘red’

about some trial is much better supported than one of ‘not-red.’ But nearly

everyone will go further, and agree that 0.95 is a good measure of the degree

to which ‘red’ is supported by the limited data.22

[T]he chancemaking pattern in the arrangement of qualities must be something

that would, if known, correspondingly constrain rational credence. Whatever

makes it true that the chance of decay is 50% must also, if known, make it

rational to believe to degree 50% that decay will occur.23

I will codify the constraint on priors suggested as follows.

22Hacking (1965, 136).
23Lewis (1994, 478).
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Definition 3.1 (CCP). Let L be a theory of chance. We say that a prior µ satisfies the Chance–

Credence Principle (CCP) for L if: for any chance law λ of L with chance hypothesis Λ and

for any Borel subset A of 2ω we have:

µ(A |Λ) = λ(A).

If there exists such a prior, we say that L is CCP-satisfiable; otherwise we say that it is

CCP-unsatisfiable.

Remark 3.2 (Nomenclature.). The name Miller’s Principle is often given to principles in this

neighbourhood.24 With more justice (and less snark) it might perhaps be called Hacking’s

Principle, in light of Hacking’s somewhat earlier enunciation of a principle of this kind.25

But, really, it seems hopeless to try to identify the originator of an idea like this: as Hacking

notes in introducing his version of the principle, it “seems to be so universally accepted that

it is hardly ever stated.”26

CCP can be thought of as a weak form of the Principal Principle (see Appendix A below).

What does CCP require?

Definition 3.3. Let µ be a prior and λ a law of chance of a theory of chance L. We say that

µ contains λ as a nugget of truth if we can write µ = ν + c · λ with c > 0 and ν a (possibly

trivial) measure that considers the chance hypothesis Λ of λ a nullset.27

Proposition 3.4. Let L be a theory of chance and let µ be a prior on 2ω. Then µ satisfies

CCP for L if and only if L has a countable number of chance laws, each of which is proper

and contained in µ as a nugget of truth.

24Because Miller (1966) agued that a principle along these lines leads to contradiction.
25Hacking (1965, esp. 135 ff. and 193).
26Hacking (1965, 135). Hacking himself offers a reading on which Bayes was at least implicitly committed
to something like it—and also warns that although “many people readily grant [this principle], it is by no
means certainly correct” (1965, 193).
27That is: µ admits an orthogonal decomposition in which λ appears with positive weight. Compare with the
notion of a grain of truth of Kalai and Lehrer (1993): specialized to our setting, this requires that µ = ν+c ·λ
without requiring that ν(Λ) = 0.
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Proof. Suppose, first, that the chance laws of L are λ1, λ2, . . . (with chance hypotheses Λ1,

Λ2, . . . ), that each λk is proper, and that µ = ν+
∑
ck ·λk with each ck > 0 and ν a measure

that considers each Λk a nullset. We show that µ satisfies CCP for L. Fix j = 1, 2, 3, . . . and

a Borel set A. We have:

µ(A |Λj) =
µ(A& Λj)

µ(Λj)

=
ν(A& Λj) +

∑
ck · λk(A& Λj)

ν(Λj) +
∑
ck · λk(Λj)

=
cj · λj(A& Λj)

cj · λj(Λj)

= λj(A),

where the first equality holds by definition; the second follows from the expansion for µ given

above; the third follows from the fact that ν and the λk other than λj assign measure zero

to Λj; and the fourth follows via the propriety of λj.

Suppose, on the other hand, that µ satisfies CCP for L. Let λ be one of the chance laws of

L and let Λ be the corresponding chance hypothesis.

(a) From the fact that CCP is satisfied, it follows in particular that the conditional probability

µ(A |Λ) must be well-defined. So µ(Λ) > 0. Since λ was arbitrary, the corresponding fact

must hold for each chance law of L. Since the chance hypotheses corresponding to distinct

chance laws must be disjoint, this means that L must have only countably many laws of

chance.

(b) CCP tells us that a certain condition holds for all Borel sets A—so in particular, it holds

when we set A to Λ. So L is proper:

λ(Λ) = µ(Λ |Λ)

= 1.
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(c) Finally, let Λc be the complement of Λ in 2ω. Then µ|Λ and µ|Λc are measures on 2ω and

µ = µ|Λ + µ|Λc . Now, CCP says that for any measurable A,

λ(A) = µ(A |Λ)

=
µ(A& Λ)

µ(Λ)

=
1

µ(Λ)
µ|Λ(A).

So µ = µ|Λc + c · λ, where c := µ(Λ) > 0: µ contains λ as a nugget of truth. �

Corollary 3.5. Let L be a proper theory of chance with countably many chance laws λ1, λ2,

. . . (with chance hypotheses Λ1, Λ2, . . . ). A prior µ satisfies CCP for L if and only if it can

be written in the form

µ = ν +
∑

ck · λk,

with each ck > 0 and ν a (possibly trivial) measure on 2ω such that ν(Λk) = 0 for each k.

Corollary 3.6. A theory of chance is CCP-satisfiable if and only if it is proper and has only

countably many laws of chance.

Proof. The left to right implication follows immediately from the preceding proposition. For

the other half, let L be a proper theory of chance with chance laws λ1, λ2, . . . . It suffices to

show the existence of a prior µ that contains each of the λk as a nugget of truth.

Let µ0 =
∑

1
2k
λk. Let M := {τ ∈ 2<ω |µ0(JτK) = 0}. If M is empty, then µ0 is a prior

and we can take µ = µ0. Otherwise, enumerate M as τ1, τ2, . . . (M is countable, being a

subset of 2<ω, and is infinite, since any extension of a string in M is in M). Then, recalling

the notation of Example 1.3 µ1 :=
∑

1
2k
ντk.5 is a probability measure concentrated on the

L-lawless sequences. So we can take µ = 1
2
µ0 + 1

2
µ1. �
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Of our examples of theories of chance from §2 above, Super-Determinism and Basic Fre-

quentism are not CCP-satisfiable (they have too many chance laws), but Computable Super-

Determinism, Computable Frequentism, and the Toy Best System account are.28

4. Chance, Credence, and Computability

As noted above, fans of the Principal Principle like to present it as Janus-faced, both giving

us substantive information about the nature of chance and giving us a substantive constraint

on rational Bayesian priors. From this perspective, something has gone wrong if we find no

computable prior satisfies CCP for a certain reductionist theory of chance: the theory of

chance should be discarded; we need to replace CCP with some weaker condition relating

credence and chance; or we need to provide an account of the normative force of a putative

requirement of rationality that requires agents to perform supra-computable tasks.

Definition 4.1 (CCCP). Let L be a theory of chance and let µ be a prior. We say that µ

satisfies the Computable Chance–Credence Principle (CCCP) for L if µ is computable and

satisfies CCP for L.

Definition 4.2. We call a theory of chance CCCP-satisifiable if there is a prior satisfying

CCCP for it; otherwise we call it CCCP-unsatisifiable.

We are going to see that there are nontrivial obstructions to CCCP-satisfiability. Indeed,

none of our paradigm examples of theories of chance are CCCP-satisfiable.

4.1. Learning and Delta-Functions. Our first objective will be to show that Com-

putable Super-Determinism and the Toy Best System Theory are not CCCP-satisfiable. We

will approach this result indirectly via one of the classic computer science models of inductive

28If we consider the analogs of these theories in the context of worlds modelled by finite binary strings, we
find that obvious versions of Frequentism and of the Best System approach are unsatisfiable with respect
to the finite-world version of CCP (because they are improper), while the obvious finite-world version of
Super-Determinism is satisfiable for it.
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learning (this will give us purchase in Section 4.3 on the question of what sort of theories are

CCCP-satisfiable).29

Definition 4.3. An extrapolating machine is a computable map m : 2<ω → {0, 1}.

Definition 4.4. Let m be an extrapolating machine and let S ∈ 2ω. We say that m NV-learns

S if there is an N such that m(S�n) = S(n+ 1) for all n > N.

Informal picture: a learning agent is being fed an infinite binary data stream S bit-by-bit

and each time a bit is revealed, the agent makes a guess as to the identity of the next bit.

An extrapolating machine m is a computable strategy that an agent might use for arriving

at such guesses: when given a binary string τ (a finite data set), m outputs a bit m(τ).

Extrapolating machine m successfully NV-learns S just in case from some point onwards in

processing S, all of m’s guesses are correct (here NV=next value). Note that any binary

sequence NV-learned by an extrapolating machine must be computable.

Proposition 4.5 (Putnam 1963a,b). No extrapolating machine NV-learns each computable

sequence.

Proof. Let m0 be an extrapolating machine and define the binary sequence S as follows: the

first bit of S is 1−m0(∅) (the opposite of what m0 predicts on empty input); and in general,

S(k+1) is the opposite of what m0 predicts when shown the first k bits of S. S is computable

(since m0 is). And m0 does not NV-learn S (since it never predicts a bit correctly). �

Given a computable prior µ we can define an extrapolating machine mµ as follows. Let κ

be a computable number in the open unit interval that is not in the set Xµ := {µ(b |σ) | b ∈

2, σ ∈ 2<ω} (i.e., µ never uses κ as the conditional probability that the next bit will be 0 or

29This model of learning has its roots Putnam (1963a, 1963b) and was codified and developed in Bārzdiņš
(1972) and in Blum and Blum (1975). For classic surveys see Angluin and Smith (1983) and Odifreddi (1999,
Chapter VII).
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that it will be 1).30 Define mµ : 2<ω → 2 as follows: on input of binary string σ, mµ outputs

0 if µ(0 |σ) > κ and outputs 1 if µ(1 |σ) > κ. Since κ and µ are computable, so is mµ.
31

Proposition 4.6. Let µ be a prior on 2ω and let S be a binary sequence. If µ = ν + c · δS,

where c > 0 and ν is a measure, then mµ NV-learns S.

Proof. We can assume without loss of generality that ν({S}) = 0. We then have:

µ(S(n+ 1) |S�n) =
µ(S�(n+ 1))

µ(S�n)

=
ν(S�(n+ 1)) + c · δS(S�(n+ 1))

ν(S�n) + c · δS(S�n)

=
ν(S�(n+ 1)) + c

ν(S�n) + c
,

since δS(S�n) = 1 for all n. Since ν({S}) = 0, by making n sufficiently large we can make

ν(S�n)—and therefore also ν(S�(n+ 1))—as small as we like.32 So by making n sufficiently

large, we can make µ(S(n + 1) |S�n) as close to one as we like. So for sufficiently large n,

mµ always predicts the next bit of S correctly (i.e., mµ NV-learns S—no matter what choice

of κ we made in defining mµ). �

Proposition 4.7. Computable Super-Determinism and the Toy Best System Theory are CCCP-

unsatisfiable.

Proof. Any prior µ on 2ω that satisfied CCCP for one of these theories would in particular sat-

isfy CCP for that theory—and so, by Proposition 3.4 above, would contain each computable

delta-function measure as a nugget of truth. But then by Proposition 4.6, the extrapolating

30It is always possible to find such a κ: let τ1, τ2, . . . be a computable enumeration of the binary strings; then
µ(0|τ1), µ(1|τ1), µ(0|τ2), µ(1|τ2), . . . is an enumeration of some computable real numbers; since we have µ, we
can calculate any of these to any desired degree of accuracy; so the numbers listed are uniformly computable
and so must not include all computable numbers in the unit interval (see Remark 4.14 below). A variant of
this argument shows that we can choose a κ arbitrarily close to .5: otherwise the computable numbers in
some open subinterval around .5 would be uniformly computable—and by omitting some initial bits, we can
transform a listing of the computable numbers in such a subinterval into a listing of all computable numbers
in the unit interval. Note that it is not required for present purposes that identification of a suitable cutoff
κ for a given extrapolating machine need itself be a computable task.
31We choose κ /∈ Xµ because determining that two computable numbers are equal is not in general as
computable task. On this point see, e.g., Porter et al. (2017, Theorem 3.3).
32This follows from the general fact that measures exhibit continuity from above—see e.g., Klenke (2020,
Theorem 1.36).
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machine mµ induced by µ would NV-learn each computable sequence. But Proposition 4.5

shows that to be impossible. �

So Computable Super-Determinism and the Toy Best System Theory, although CCP-satisfiable

are CCCP-unsatisfiable: they admit priors that satisfy the weak form of the Principal Prin-

ciple that we have been considering; but all such priors are uncomputable.

Remark 4.8. Adleman and Blum (1991) show that if A is an oracle, then there exists a Turing

machine with access to A that NV-learns every computable sequence if and only if A is high

(i.e., A enables the computation of a function that grows more quickly than any computable

function). So the problem of NV-learning all computable sequences is unsolvable, but strictly

easier than the Halting Problem.

4.2. Learning and Bernoulli Measures. The above discussion shows that Computable

Super-Determinists must rein in their ambitions, maintaining that only a well-behaved proper

subset of computable delta-function measures can correspond to chance laws, if they want

their theory to support the existence of a prior satisfying CCCP. We will see next that

Computable Frequentists must likewise fall back to a position on which only some of the

computable Bernoulli measures arise as laws of chance, if they want their theory to support

the existence of a prior satisfying CCCP. And, of course, fans of the Toy Best System will

be driven to make both moves at once.33

We begin by recalling some basic notions from the theory of algorithmic randomness de-

riving from Martin-Löf (1966). A family U = {Uk}k∈N of subsets of 2ω is called a uniformly

effective family of open sets if there is a Turing machine that on input k ∈ N outputs a

sequence τ k1 , τ
k
2 , . . . of binary strings with the feature that

Uk =
∞⋃
j=1

Jτ kj K.

That is: each Uk can be effectively approximated as a union of basic subsets of 2ω; and this

approximation is uniform in k, in the sense that a single machine can handle each of the Uk.
34

33Much of the argument of this section was suggested by Christopher Porter (in private communication).
34And if we equip 2ω with the product topology (as in fn. 6 above), then each Uk is an open subset of 2ω.
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Let ν be a computable probability measure on 2ω. Then an effective ν-nullset is a subset T of

2ω that can be written in the form T =
⋂
Uk, for some uniformly effective family of open sets,

{Uk}, satisfying ν(Uk) ≤ 2−k.35 We say that a binary sequence is ν-Martin-Löf random if it

does not belong to any effective ν-nullset and we denote by MLν the set of such sequences.

Note that each computable ν ∈ P assigns measure one to its MLν .
36

Proposition 4.9. Let R = {rk}k∈I be a set of computable binary sequences and for each k ∈ I

let νk be the Bernoulli measure whose parameter admits rk as a binary expansion. If µ is a

prior that can be written in the form µ = ν +
∑
ck · νk (with ν a possibly trivial measure

and each ck > 0), then there is an extrapolating machine that NV-learns each rk.

Proof. (1) We claim that for any m ∈ I and any binary sequence S, if S ∈ MLνm , then

S ∈ MLµ. For suppose that S /∈ MLµ. Then there exists a uniformly effective family of open

sets, U1, U2, . . . , with µ(Uk) ≤ 2−k (for each k ∈ N) and S ∈
⋂∞
k=1 Uk. Choosing j large

enough to ensure that 1/cm ≤ 2j, we have

νm(Uk) ≤
1

cm
µ(Uk)

≤ 2−k+j

for each k ∈ N. So if we take Vk := Uk+j, then the Vk form a uniformly effective family of

open sets and satisfy νm(Vk) ≤ 2−k, with S ∈
⋂
Vk =

⋂
Uj. So S /∈ MLνm .

(2) Next, we invoke a result due to Porter: for any computable measure λ on 2ω, there is a

computable measure ζ on 2ω such that for each r ∈ [0, 1], if MLλ∩MLνr 6= ∅, then r ∈ MLζ .
37

Applied to our case, this implies that there exists a computable probability measure ζ such

that R ⊆ MLζ .

(3) It follows that ζ must assign positive probability to each {rk}: otherwise, since ζ and

35Commentary: such T are ν-nullsets that can be effectively specified in a certain sense. To belong to a
given effective ν-nullset is to be special in a certain effectively specifiable way. The intuition behind the
present approach is that a sequence is ν-random if it avoids each such nullset. You can think of the ν-Martin-
Löf random sequences as those that exhibit no effectively specifiable behaviour that would be arbitrarily
surprising to agents expecting to see data sampled from ν.
36Since there can only be countably many effective ν-nullsets, their union must be a ν-nullset.
37Porter (2019, Theorem 3.7).
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rk are both computable, we could choose initial segments τ1, τ2, . . . of rk so that the family

of basic sets Jτ1K, Jτ2K, . . . would be uniformly effectively open and satisfy ζ(JτmK) < 2−m,

with rk ∈
⋂

JτkK, contradicting rk ∈ MLζ . It then follows from Proposition 4.6 above that the

extrapolating machine mζ determined by ζ must NV-learn each rk. �

Corollary 4.10. Computable Frequentism and the Toy Best System are CCCP-unsatisfiable.

Remark 4.11. Vitányi and Chater (2017) develop a model of learning in which an agent

viewing a binary data stream attempts to guess a code number for a Turing machine that

calculates a probability measure on 2ω relative to which the data stream is Martin–Löf

random. Barmpalias et al. (2018, Theorem 1.6) show that the set of computable Bernoulli

measures is not learnable in this sense—indeed, they further show that this set is learnable

relative to an oracle if and only if that oracle is high. It is natural to conjecture that an

analogous result holds in our setting: there exists a prior satisfying CCP for computable

Frequentism that is computable relative to a given oracle if and only if that oracle is high.

4.3. Satisfying CCCP. So in order for a prior to satisfy CCCP for a given theory of chance,

the set sequences on which the theory’s delta-function laws of chance are concentrated and

of parameters of its Bernoulli measure laws of chance must both be NV-learnable. Here

we consider the contours of NV-learnability. We denote by NV (m) that set of sequences

NV-learned by extrapolating machine m.

Definition 4.12. A set F of binary sequences is dense if for each binary string τ, there is a

sequence S in F with τ as an initial segment.38

Definition 4.13. A set F of binary sequences is uniformly computable if there is an enumer-

ation S1, S2, S3, . . . of the elements of F such that the map that sends (k, `) ∈ N2 to Sk(`)

is computable.

38This is just the usual topological notion, if we impose the product topology on 2ω (see fn. 6 above).
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Remark 4.14. It is immediate that each member of a uniformly computable set of sequences

is computable. A straightforward diagonalization argument shows that the set of computable

sequences is not itself uniformly computable. And since any finite subset of 2ω is uniformly

computable and the union of any two uniformly computable sets of sequences in uniformly

computable, it follows that any uniformly computable family of binary sequences must ex-

clude infinitely many computable binary sequences. Moral: to say that a set of sequences is

uniformly computable is to say that it is computationally tractable in a certain sense.

Proposition 4.15. Let F be a set of binary sequences. The following are equivalent:

i) F is uniformly computable and dense.

ii) There is an extrapolating machine m such that F = NV (m).

Proof. Let F ⊂ 2ω be uniformly computable and dense. Fix an enumeration S1, S2, . . . of

the members of F such that the map (k, `) 7→ Sk(`) is computable. Define an extrapolating

machine m as follows: on input of an n-bit binary string τ, m finds the least k such that

Sk�n = τ and gives output m(τ) = Sk(n + 1) (such a k always exists since F is dense).

For any Sk ∈ F , we can find n large enough so that there is no j < k with Sj 6= Sk and

Sj�n = Sk�n. It follows that m NV-learns each sequence in F . Suppose, on the other hand,

that m NV-learns S and let τ be an initial segment of S that contains all of the bits that m

predicts incorrectly. On input τ, m uses some Sk that has τ as an initial segment to predict

that next bit. This prediction is correct, so m also uses Sk to predict the next bit—and all

subsequent bits. So S = Sk. So each sequence NV-learned by m is in F . So F = NV (m).

Suppose that there is an extrapolating machine m such that F = NV (m). Then F must

be dense, since it must include, for each binary string τ, the sequence Sτm that has τ as

an initial segment and in which all subsequent bits are chosen to vindicate m’s predictions.

Further, if τ1, τ2, τ3, . . . , is a computable enumeration of the binary strings, then Sτ1m , S
τ2
m ,

Sτ3m , . . . is an enumeration of the sequences NV-learned by m and the map (k, `) 7→ Sτkm (`)

is computable, since m and our enumeration of the strings are both computable. So F is

uniformly computable. �
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Corollary 4.16. Let F be a set of binary sequences. There is an extrapolating machine that

NV-learns each sequence in F if and only if F is a subset of a uniformly computable set of

binary sequences.

Proof. Note that the union of a uniformly computable set of sequences with the set of periodic

sequences (i.e., those sequences that can be written in the form σσσ . . . for some binary string

σ) is both uniformly computable and dense. �

Remark 4.17. This corollary gives a version of one of the two standard characterizations of

NV-learnability.39 The other is: A set F of computable binary sequences is a subset of some

NV (m) if and only if it is a subclass of an abstract complexity class.40 One gloss that has been

given to this latter characterization: “It says, in essence, that the [computably] extrapolable

sequences are the ones that can be computed rapidly.”41 Perhaps a more accurate gloss would

be: for any computably NV-learnable set S of sequences, there is an at least somewhat natural

notion of rapidly computable relative to which every sequence in S is rapidly computable.

All of this may seem congenial to fans of the Best System approach. True, they may have

to recognize fewer chance laws than they might have originally hoped—but to the extent

that we can think of there being some sort of complexity cut-off that rules out certain delta-

function measures and Bernoulli measures as respectable chance laws, that may seem to

uphold the spirit of the Best System approach. (But here it is important to keep in mind

the arbitrariness entailed by the considerations canvassed in Remark 4.14 above.)

Let us end this discussion on a positive note.

Definition 4.18. We say that a setM of probability measures on 2ω is uniformly computable

if there is an enumeration ν1, ν2, . . . of the elements of M and a Turing machine that on

39It is usually given in the form: a set of sequences is a subset of some NV (m) if and only if it is a subset of
a computably enumerable family of computable binary sequences. See the references of fn. 29 above.
40See the references of fn. 29 above. Roughly, one defines an abstract complexity class by choosing a way of
measuring the complexity of a computation (satisfying certain weak conditions) and choosing a computable
upper bound on this complexity, and then restricting attention to sequences satisfying this bound. For a
brief introduction to abstract complexity classes, see Hopcroft and Ullman (1979, §12.7). For a thorough
treatment, see Odifreddi (1999, Chapter VII).
41Blum and Blum (1975, 127). For natural senses in which any NV-learnable set of computable sequences
forms a ‘small’ subset of the set of computable sequences, see Fortnow et al. (1998). For further discussion,
see Belot (2020).
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input of a binary string σ and non-zero natural numbers j and k, give as output a k-bit

approximation (as in Section 1.2 above) to νj(σ).

Proposition 4.19. If L is a proper theory of chance whose set of chance laws is uniformly

computable and includes a prior, then L is CCCP-satisfiable.

Proof. Let λ1, λ2, . . . be an enumeration of the chance laws of L in virtue of which these

laws are uniformly computable. Consider the measure:

µ :=
∑ 1

2k
λk

It is a prior (since by assumption one of the λk’s is). It is immediate that µ satisfies CCP

for L. And it is straightforward to show that µ is computable.42 �

5. Will We Never Learn?

A reaction that people sometimes have to the Principal Principle: Who cares how my prior

behaves conditional on an event E like that of the coin being fair? If I am a true Humean,

I should regard this E as something that could never be part of my evidence, since it is a

holistic fact about the history of the entire universe.43

Lewis has an answer to this challenge.44

To the believer in chance, chance is a proper subject to have beliefs about.

Propositions about chance will enjoy various degrees of belief, and other propo-

sitions will be believed to various degrees conditionally upon them.45

42See, e.g., Belot (2020, Proposition 4.7).
43For this point of view, see Roberts (2001, S104). For critical discussion, see Briggs (2009, §3.3).
44See Lewis (1980/1986, 84–86 and 106–109).
45Lewis (1980/1986, 84). Lewis (1980/1986, 86) offers the following example: suppose that you have credence
.27 that the chance of Heads is .5, credence .22 that the chance of Heads is .35, and credence .51 that the
chance of Heads is .8—what credence should you have in Heads? The obvious answer is:

(.5× .27) + (.35× .22) + (.8× .51) = .62.

This makes sense as an application of the law of total probability (writing H for the event of Heads, A for
the chance being .5, B for it being .35, and C for it being .8),

p(H) = p(H |A)× p(A) + p(H |B)× p(B) + p(H |C)× p(C),

so long as the probability function p, which represents your credences, satisfies p(H |A) = .5, p(H |B) = .35,
and p(H |C) = .8. That is: the obvious calculation works here so long as you credences satisfy a basic form
of the Principal Principle.

25



To the subjectivist who believes in objective chance, particular or general

propositions about chance are nothing special. We believe them to varying

degrees. As new evidence arrives, our credence in them should wax and wane

in accordance with Bayesian confirmation theory. It is reasonable to believe

such a proposition, like any other, to the degree given by a reasonable initial

credence function conditionalized on one’s present total evidence.46

We are interested in the Principal Principle, not because we want to be prepared just in

case we should learn the truth of some law of chance, but because chance laws can be

confirmed and disconfirmed: we have varying degrees of credence in various chance laws and

the Principal Principle is a constraint on the rational connection between those theoretical

beliefs and concrete expectations about future events.47

Learnability is in fact an important (if largely subterranean) Lewisian theme in the paper

in which the Principal Principle made its debut.48 He has recourse to non-standard-valued

priors because he thinks that rational priors must be regular (i.e., assign non-zero probability

to each non-trivial proposition):

it is required as a condition of reasonableness: one who started out with an

irregular credence function (and who then learned from experience by condi-

tionalizing) would stubbornly refuse to believe some propositions no matter

what the evidence in their favor.49

In a post-script he suggests that “if we start with a reasonable initial credence function and

do enough feasible investigation, we may expect our credences to converge to the chances.”50

Now, within the standard framework that we have been working in, only Bayesians who

assign non-zero prior probability to a chance hypothesis can become more confident of that

chance hypothesis through experience. And within our standard framework, no Bayesian

agent can assign non-zero prior probability to each chance hypothesis of a theory of chance

46Lewis (1980/1986, 106).
47On this point, see Briggs (2009) as well as Lewis (1980/1986, 106–109).
48On the other hand, in this strand of his work, Lewis shows no interest in considerations of computability.
49Lewis (1980/1986, 88—see also 96).
50Lewis (1980/1986, 121).
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that has uncountably many laws of chance. It is natural to think that something has gone

wrong here. Surely Basic Frequentism, despite having uncountably many laws of chance,

should provide an extraordinarily hospitable environment for a Bayesian agent attempting

to learn the chance facts!

One option would be too simply excuse priors from having to defer to chance laws when

they assign the corresponding chance hypothesis probability zero.51

Definition 5.1 (CCP∗). Let L be a theory of chance and let µ be a prior. We say that µ

satisfies CCP ∗ for L if: for any Borel subset A of 2ω and for any chance law λ such that µ

assigns positive probability to Λ := L−1(λ), we have µ(A |Λ) = λ(A).

Relative to Basic Frequentism, the fair coin measure satisfies CCP∗ (but not CCP of

course). Someone who begins life with this prior is certain from birth that the chance of a

0 at any particular future time is 1/2 and remains certain of this no matter how strongly

the data speaks against this hypothesis and in favour of others.52 To accept CCP∗ as an

explication of the idea that a rational agent’s credence function should defer to chance is to

give up entirely on the idea that part of what deference to chance involves is being open to

learning chance hypotheses.53

I think that we should be interested in finding variants of CCP that require priors to

be open to the learning of chance hypotheses.54 To this end, let us zoom out. The thought

behind the Best System approach is that a chance law of a world is a sort of optimal scientific

summary of the pattern of events at that world (relative to the ordinary standards of scientific

practice). The thought behind the Principal Principle is that (in ordinary circumstances at

51Compare with, e.g., the version of Miller’s Principle offered in Pettigrew (2012, §1).
52Some seem to feel the temptation to say: Yes, but if that if the fair coin is your prior that is exactly what
you should do! That is of course correct according to subjective Bayesianism. But the Principal Principle
is not consistent with subjective Bayesianism: it was put forward as a part of an attempt to to articulate
constraints on rational priors beyond mere coherence. There is not much point to such constraints unless one
is willing to say: some agents who are coherent and update by conditionalization are nonetheless irrational.
53The same sort of case can be made against a reformulation of CCP in terms of regular conditional
probabilities—see Appendix B.4 below. Dmitri Gallow pointed out to me that a version of this problem
arises for New Principle of Hall (1994) and Lewis (1994) (discussed in Appendix A below): in the setting
of finite worlds, the fair coin measure satisfies the New Principle for the theory of chance that assigns each
world the Bernoulli measure whose parameter gives the relative frequency of 0’s at that world.
54Further remarks about alternative directions can be found in Appendix B.
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least) to the extent that you are confident that the chance law of your world is given by λ,

your credences should be close to the λ-chances. Suppose that a given prior µ satisfies at

least the spirit of the Principal Principle and embodies the canons of scientific rationality

(preferring simpler theories to more complex ones, etc.).55 Then it seems that if µ sees larger

and larger portions of a world with chance law λ0, it should become more and more confident

that the law of chance is λ0-like (since µ is a good scientist, it will eventually home in on the

best scientific description of its world) and hence, upon being conditionalized on larger and

larger data sets, the probabilities that µ assigns events will approach those that λ0 assigns

them (since µ satisfies the spirit behind the Principal Principle).

Let L be a proper theory of chance and let λ be a chance law of L with corresponding

chance hypothesis Λ = L−1(λ). Let S be typical in Λ. Our line of thought above tells us

that as n→∞, we expect that µ(· |S�n) comes closer and closer to λ(· |S�n) in some sense.

So let us consider generalizations of CCP of the form: there exists a prior µ such that for

every chance law λ, for λ-almost all sequences S in the corresponding chance hypothesis, the

µ(·, |S�n) converge to the λ(· |S�n) as n→∞. The question is: What notion of convergence

should we be using here?

5.1. Merging. Recall that the total variation distance between probability measures λ and

ν on 2ω is supA∈B |ν(A)−λ(A)|.56 The following is a specialization to our context of the notion

of merging introduced in Blackwell and Dubins (1962) and subsequently widely discussed by

statisticians and game theorists.

Definition 5.2 (Merging). Let λ and µ be probability measures on 2ω. We say that µ merges

with λ if there is a set of sequences of λ-measure one such that for each S in that set:

lim
n→∞

sup
A∈B
|µ(A |S�n)− λ(A |S�n)| = 0.

55I do not actually believe that it is possible to design priors that always prefer simpler hypotheses—see
Belot (2017). But here I bracket my various heretical views about the shortcomings of the Bayesian account
of rationality.
56For background on this notion of distance and its relation to other ways of topologizing spaces of probability
measures, see, e.g., Gibbs and Su (2002).
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Definition 5.3 (M-CCP). Let L be a theory of chance. We say that a prior µ on 2ω satisfies

the Merging Chance-Credence Principle (M-CCP) if µ merges with each chance law of L.

If a prior µ merges with a proper law of chance λ of a theory of chance, then we can take

the set of sequences that witnesses merging to be a subset of the chance hypothesis of λ.

Definition 5.4. We call a theory of chance L M-CCP-satisfiable if there is a prior that satisfies

M-CCP for L. If there is a computable prior with this feature, we call L M-CCCP-satisfiable.

A pair of classic results clarify what it takes for a prior to merge with a probability measure

ν. Recall that if ν1 and ν2 are measures on a measurable space, then we say that ν1 is absolutely

continuous with respect to ν2 if for each measurable set A, ν1(A) > 0 implies ν2(A) > 0. In

this case we write ν1 Î ν2.

Remark 5.5. Note that if we have some measures satisfying µ = ν1 + ν2, then ν1, ν2 Î µ. So,

in particular, if a prior µ contains a proper law of chance λ as a nugget of truth, then λ Î µ.

Proposition 5.6 (Blackwell and Dubins 1962). Let λ be a probability measure on 2ω and let

µ be a prior on 2ω. If λ Î µ, then µ merges with λ.

Proposition 5.7 (Lehrer and Smorodinsky 1996). Let λ be a probability measure on 2ω and

let µ be a prior on 2ω. If µ merges with λ, then λ Î µ.

Each prior merges with uncountably many probability measures.57 But only countably

many of these can be chance laws of any given reductionist theory of chance.

Proposition 5.8. Let L be a theory of chance. If L is M-CCP satisfiable, then L has only

countably many chance laws.

Proof. Suppose that µ satisfies the M-CCP for L. Let λ be a law of chance of L with chance

hypothesis Λ = L−1(λ). Since L is a theory of chance, we have λ(Λ) > 0. Since µ merges

with λ, Proposition 5.7 then implies that µ(Λ) > 0. So µ must assign positive probability to

each chance hypothesis of L—so L can have only countably many chance laws. �
57See, e.g., Belot (2020, Proposition 4.4).
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Corollary 5.9. Super-Determinism and Basic Frequentism are M-CCP-unsatisfiable (and

hence also M-CCCP-unsatisfiable).

As an immediate consequence of Remark 5.5 and Propositions 3.4 and 5.6 we have:

Proposition 5.10. If a prior satisfies CCP for a theory of chance, then it also satisfies M-CCP

for that theory.

Corollary 5.11. A theory is M-CCP satisfiable if it is CCP satisfiable. In particular, Com-

putable Super-Determinism, Computable Frequentism, and the Toy Best System Theory are

M-CCP-satisfiable.

Remark 5.12 (Mixtures and Merging). Let {µk}k∈I be a countable family of probability

measures at least one of which is a prior and for each k ∈ I, let qk > 0 with
∑

k∈I qk = 1.

Then µ :=
∑
qk · µk is a prior. And µ merges with any measure merged with by one of the

µk: if ν is merged with by µk, then ν Î µk (by Proposition 5.7), so ν Î µ (given how µ was

defined), and so µ merges with ν (by Proposition 5.6).

In the case of Computable Super-Determinism, a prior satisfies CCP if and only if it

satisfies M-CCP. But, for more typical theories, we expect that there will be priors that

satisfy M-CCP without also satisfying CCP.

Example 5.13. A theory L and a prior µ may satisfy M-CCP without satisfying CCP (even

if L is proper and µ is computable): let L be the theory that assigns the fair coin measure

ν.5 to every sequence and let µ† be the prior that thinks there is a .9 chance that the first bit

is a 0 and thinks that each subsequent bit is chosen by flipping a fair coin. We have merging

(because ν.5 and µ† agree completely when conditionalized on any non-trivial initial segment)

but CCP is violated.

Example 5.14. Improper theories of chance are never CCP-satisfiable. But they can be M-

CCCP satisfiable. Consider the theory of chance that assigns the measure µ† of the preceding

example to each sequence that begins with 0 as its law of chance (and which considers
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sequences that begin with 1 to be lawless). This theory is CCP-unsatisfiable (because it

is improper—µ† assigns its chance hypothesis probability .9). But the fair coin measure

(considered as a prior) satisfies M-CCP for this theory.

We have a partial converse to Corollary 5.11.

Proposition 5.15. Any proper theory of chance that is M-CCP-satisfiable is also CCP-satisfiable.

Proof. Let L be a proper theory of chance that is also M-CCP satisfiable. We know from

Proposition 5.8 above that L has a countable family of laws of chance: λ1, λ2, . . . . Let µ be

a prior that merges with each λk. A result of Ryabko tells us that if K is a set of probability

measures on 2ω and there exists a probability measure µ that merges with each measure in K,

then there exists a measure µ∗ that merges with each measure in K and which can be written

as a sum of measures, each of which is a positive multiple of a measure in K.58 Applied to

our case: there must be a µ∗ that is a weighted sum of the λk and which merges with each

λk. By Proposition 5.7, each λk Î µ∗—so each λk appears with positive weight in µ∗. So µ∗

(or the result of adding something to it to make sure that we have a prior as in the proof of

Corollary 3.6) satisfies CCP for L (by Proposition 3.4). �

Of course, it does not follow from this that M-CCCP-satisfiability implies CCCP-satisfiability

for a proper theory of chance L: it could be that the only computable priors that merge with

every chance law of L are not themselves weighted sums of the chance laws of L. So, in par-

ticular, the above results leave open the questions whether Computable Super-Determinism,

Computable Frequentism, and the Toy Best System Theory are M-CCCP-satisfiable. We will

see in Proposition 5.25 below that Computable Super-Determinism is M-CCCP-unsatisfiable.

We can use a variant of the proof of Proposition 4.9 above to show that there are no com-

putable priors that satisfy M-CCP for Computable Frequentism or for the Toy Best System.

Proposition 5.16. Let R = {rk}k∈J be a set of computable binary sequences and for each

k ∈ J, let νk be the Bernoulli measure whose parameter admits the binary expansion rk. If µ

58Ryabko (2010, Theorem 4).
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is a computable prior that merges with each νk, then there is an extrapolating machine that

NV-learns each rk.

Proof. it suffices to show that for each rk ∈ R, MLµ ∩ MLνk 6= ∅, and then to argue as in

steps (2) and (3) of the proof of Proposition 4.9 above.

For each k ∈ J, let Nk be the set of sequences in which 0’s have limiting relative frequency

rk. Then we can write µ = ν +
∑

k∈J ckµk, where ν is a (possibly trivial measure) that

considers each Nk a nullset, each ck > 0, and each µk is a probability measure that assigns

Nk probability one (so ck · µk is the restriction of µ to Nk). Since µ merges with each νk, we

know via Proposition 5.7 that νk Î µ, from which it follows that νk Î µk.

The µk may or may not be computable. But the notion of Martin-Löf randomness can be

generalized to apply to arbitrary probability measures: we call a sequence S blindly Martin-

Löf random relative to the probability measure µ if there is no uniformly effective family of

open sets U1, U2, . . . such that S ∈
⋂
Uk and µ(Uk) ≤ 2−k for each k.59 We write BMLµ to

denote the set of sequences blindly Martin-Löf random relative to the probability measure

µ (of course BMLµ = MLµ when µ is computable). Note that we have µ(BMLµ) = 1 for any

probability measure µ.60

We claim that for any k ∈ J, we have BMLµk ∩MLνk 6= ∅. For suppose otherwise. Then of

course µk(MLνk) = 0 (since µk(BMLµk) = 1). But since νk(MLνk) = 1, this contradicts the

fact that νk Î µk.

And we can now argue, as in the first step of the proof of Proposition 4.9 above, that since

µ can be decomposed as a sum of measures in which each µk appears with non-zero weight,

every sequence in BMLµk must also be in MLµ. So we have, as desired, that for each rk ∈ R,

MLµ ∩MLνk 6= ∅. �

Corollary 5.17. There are no computable priors that satisfy M-CCP for Computable Fre-

quentism or for the Toy Best System.

59For this notion, see Kjos-Hanssen (2010). For some purposes it is natural to work with another general-
ization of the notion of Martin-Löf randomness to the setting of arbitrary measures, on which one requires
µ-random sequences to avoid all µ-null sets that are effectively definable relative to an oracle encoding µ. See
Reimann (2009).
60The reasoning of fn. 36 carries over unchanged.

32



5.2. Weak Merging. M-CCP is weaker than CCP and M-CCCP is weaker than CCCP.

But for proper theories of chance M-CCP satisfiability is equivalent to CCP-satisfiability

and it would be surprising if there were a significant gap between M-CCCP-satisfiability and

CCCP-satisfiability for such theories. So it makes sense to consider a further alternative to

CCP. Here is another criterion of learning that has played some role in game theory.61

Definition 5.18 (Weak Merging). Let λ and µ be probability measures on 2ω. We say that µ

weakly merges with λ if there is a set of sequences of λ-measure one such that for each S in

that set:

lim
n→∞

|µ(0 |S�n)− λ(0 |S�n)| = 0.

Definition 5.19 (WM-CCP). Let L be a theory of chance. We say that a prior µ on 2ω

satisfies the Weak Merging Chance-Credence Principle (WM-CCP) for L if µ weakly merges

with each chance law of L.

If a prior µ weakly merges with a proper law of chance λ of a theory of chance, then we can

take the set of sequences that witnesses weak merging to be a subset of the chance hypothesis

of λ.

Definition 5.20. We call a theory of chance L WM-CCP-satisfiable if there is a prior that

satisfies WM-CCP for L. If there is a computable prior with this feature, we say that L is

WM-CCCP-satisfiable.

The following is immediate.

Proposition 5.21. If one probability measure merges with another, then the first also weakly

merges with the second. If a theory of chance is CCP- or M-CCP-satisfied (CCCP- or M-

CCCP-satisfied) by a given prior, then it is also WM-CCP-satisfied (WM-CCCP-satisfied)

by it. If a theory is CCP- or M-CCP-satisfiable (CCCP- or M-CCCP-satisfiable) then it is

also WM-CCCP-satisfiable (WM-CCCP-satisfiable).
61Weak merging was introduced in Kalai and Lehrer (1994). The presentation here follows that of Lehrer
and Smorodinsky (1996). For further discussion, see Belot (2020) (where weak merging is called next-chance
learning).
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Remark 5.22 (Stronger than it Looks). In moving from merging to weak merging we lower our

sights—rather than requiring that, in the limit of large data sets sampled from λ, for every

event, the judgement of µ of the probability of that event must conform to the judgement of

λ (in a fashion uniform across events) we require this only for a special class of events—the

identity of the next bit to be revealed.

But to require weak merging is to require more than may be immediately apparent. It turns

out that µ weakly merges with ν if and only if: as the size of the data set goes to infinity,

for each k, µ must asymptotically learn to defer to ν in a way uniform across all events

that look k time-steps beyond the data about the chance of all such events.62 So merging

is stronger than weak merging precisely in paying attention to events involving an infinite

number of times (a type events about whose epistemological salience a Humean might well

be suspicious).

Example 5.23. Consider the Bayes-Laplace prior ν̄.63 This is the computable probability

measure ν̄ determined by the rule that if τ is an m-bit string containing ` 0’s, then

ν̄(JτK) :=
`!(m− `)!
(1 +m)!

.

Famously, there is a sense in which ν̄ is a Lebesgue-uniform mixture of the Bernoulli measures—

and from this it follows that ν̄ weakly merges with each Bernoulli measure.64 It then follows

that ν̄ satisfies WM-CCP (indeed, WM-CCCP) for Basic Frequentism and for Computable

Frequentism.

This example shows that theories with uncountably many laws of chance can be WM-

CCP-satisfiable (and even WM-CCCP-satisfiable), even though they must be CCCP-, CCP-,

M-CCCP, and M-CCP-unsatisfiable. But there are limits.

62See Lehrer and Smorodinsky (1996, Definition 9 and Remark 5).
63For more on this prior, see, e.g., Feller (1968, 119–121); Zabell, (2009, 740 f. and 750); and Hoyrup and
Rute (2021, Examples 7.2.4, 7.2.27, and 7.4.14).
64See, e.g., Freedman (1963, 1965).
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Proposition 5.24. Let L be a theory of chance and let µ be a prior that satisfies WM-CCP for

L. Then the laws of chance of L include only countably many delta-functions. In particular,

Super-Determinism is WM-CCP-unsatisfiable.

Proof. We generalize the notion of an extrapolating machine: an extrapolator is a (not neces-

sarily computable) function from binary strings to bits. We extend the notion of NV-learning

to extrapolators: extrapolator m NV-learns sequence S if when shown S bit by bit, m is

eventually always correct in its predictions about the next bit. The set of sequences NV-

learned by an extrapolator m is always countable (each such sequence can be generated by

extending some binary string by asking m what it expects to see next). Any prior µ deter-

mines an extrapolator m∗µ via the rule: m∗µ(σ) = 0 if µ(0 |σ) ≥ .5, otherwise m∗µ(σ) = 1.

Suppose that prior µ satisfies WM-CCP for theory of chance L. Suppose that for some

S ∈ 2ω, δS is a law of chance of L. We can make µ(0 |S�n) as close as we like to δS(0 |S�n)

by choosing n sufficiently large. It follows that m∗µ NV-learns S. Since m∗µ cannot NV-learn

an uncountable set of sequences, there can only be countably many delta-functions among

the laws of chance of L. �

Computable Super-Determinism and the Toy Best System Theory are WM-CCP-satisfiable

(being CCP-satisfiable). But they are not WM-CCCP-satisfiable.

Proposition 5.25. No computable prior weakly merges with each delta-function concentrated

on a computable sequence.

Proof. Let µ be a computable prior with associated extrapolating machine mµ (as in Section

4.1) and let S be a binary sequence. Arguing as in Proposition 5.24 we see that if µ weakly

merges with δS, then mµ NV-learns S. But Proposition 4.5 implies that no extrapolating

machine NV-learns each computable sequence. �

Remark 5.26 (Mixtures and weak merging). In Remark 5.12 above, we saw that when we

build a prior by taking a non-trivial mixture of some measures, that prior merges with

every probability measure merged with by any component of the mixture. The picture is

different with weak merging: Ryabko and Hutter give an example in which µ is a prior, ν
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is a probability measure, and 1
2
(µ + ν) fails to weakly merge with a delta-function measure

that is weakly merged with by µ.65 So it is not obvious that you can build a prior suited to

a Best System theory of chance by taking a mixture of a prior (such as the Bayes-Laplace

prior) that weakly merges with a desirable range of Bernoulli measures with a measure that

weakly merges with a desirable range of delta-function measures.

6. Scorecard

Super- Computable Basic Computable Toy
Satisfiable? Determinism Super- Frequentism Frequentism Best System

Determinism Theory
CCP No Yes No Yes Yes
M-CCP No Yes No Yes Yes
WM-CCP No Yes Yes Yes Yes

Computably Super- Computable Basic Computable Toy
Satisfiable? Determinism Super- Frequentism Frequentism Best System

Determinism Theory
CCCP No No No No No
M-CCCP No No No No No
WM-CCCP No No Yes Yes No

Super-Determinism: Because this theory has uncountably many chance laws, it is

CCP-unsatisfiable (Proposition 3.4) and M-CCP-unsatisfiable (Corollary 5.9). A

learning-theoretic argument shows that it is also WM-CCP-unsatisfiable (Proposi-

tion 5.24). It is, then, of course also CCCP-unsatisfiable, M-CCCP-unsatisfiable, and

WM-CCCP-unsatisfiable.

Computable Super-Determinism: For this theory, any prior that can be written as

a sum in which each delta-function measure concentrated on a computable sequence

appears with non-zero weight will satisfy CCP (Proposition 3.4); it will therefore

also satisfy M-CCP (Corollary 5.11) and WM-CCP (Proposition 5.21). However, it

65Ryabko and Hutter (2007, Proposition 10). In this connection, see also Lehrer and Smorodinsky (1996,
Corollary 6).
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turns out that no such prior is computable—and, indeed, that the theory is CCCP-

unsatisfiable (Proposition 4.7). It is WM-CCCP-satisfiable (Proposition 5.25) and

therefore (via Proposition 5.21) also M-CCCP-unsatisfiable.

Basic Frequentism: Because this theory has uncountably many chance laws, it is

CCP-unsatisfiable (Proposition 3.4) and M-CCP-unsatisfiable (Corollary 5.9). It is

of course therefore also CCCP-unsatisfiable and M-CCCP-unsatisfiable. But it is

WM-CCP-satisfiable and even WM-CCCP-satisfiable (Example 5.23).

Computable Frequentism: For this theory, any prior that can be written as a sum

in which each Bernoulli measure νr with a computable parameter r appears with non-

zero weight will satisfy CCP (Proposition 3.4). Priors of this form will also satisfy

M-CCP (Proposition 5.10) and WM-CCP (Proposition 5.21). But since no prior

that can be written as a sum in which each computable Bernoulli measure appears

with non-zero weight can be computable (Corollary 4.10), Computable Frequentism

is not CCCP-satisfiable (by Proposition 3.4). Nor is it computably M-CCP satisfiable

(see Corollary 5.17). On the other hand: Computable Frequentism is WM-CCCP-

satisfiable (Example 5.23).

Toy Best System Theory: The Toy Best System is not CCCP-satisfiable (see Propo-

sition 4.7 or Corollary 4.10). It is also not WM-CCCP-satisfiable (Proposition 5.25)—

from which it follows that is not M-CCCP-satisfiable (Proposition 5.21—or see Corol-

lary 5.17). On the other hand, this theory is CCP-satisfiable (Proposition 3.4). So

it is also M-CCP-satisfiable (Corollary 5.11) and WM-CCP-satisfiable (Proposition

5.21).

7. Conclusion

The main goal of this paper has been to show that it is more difficult one might think

to find a consistent package consisting of a reductionist theory of chance and a principle
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encoding the rational relation between credence and chance—especially if one expects there

to be rationally permitted computable priors.66

In Section 3 we saw there exists a prior probability measure satisfying CCP relative to a

given proper theory of chance if and only that theory has only countably many chance laws.

This is, of course, a direct consequence of the choice to use ordinary (i.e., countably additive)

probability measures to model rational credal states. Some reductionists about chance may be

happy to ignore theories with uncountably many chance laws—e.g., advocates of best-system

approaches who take fully seriously the idea that each chance law should be something like

a humanly expressible theory of the world. But many reductionists will, I suspect, regard

Basic Frequentism, the laws of chance of which are the Bernoulli measures, as a theory that

should be compatible with our account of the relation between chance and credence. In

the first instance, such reductionists face a choice between accepting that credal states can

be represented by objects more general than probability measures and replacing CCP with

something weak enough to accommodate the existence of rationally permitted priors adapted

to theories of chance with uncountably many chance laws.

In Section 4 we saw that even if priors exist that satisfy CCP relative to a given theory

of chance, there may be no computable priors with this feature. In particular this happens

when the laws of chance of a theory include each delta-function measure concentrated on

a computable sequence—the root of the problem being that the the computable sequences,

though enumerable, are not computably enumerable. A related problem arises for theories

whose chance laws include each Bernoulli measure with a computable parameter. I do not

think we should rest content with an account of chance and credence that tells us that ratio-

nality requires us to adopt a non-computable credence function—any more than we would

be satisfied with an account of rationality that required rational agents to be able to solve

the Halting Problem. Some reductionists may be happy with the moral that certain prima

facie attractive theories of chance are unsuited to computable agents—such reductionists will

66Let me reiterate that non-reductionist accounts of chance are neglected here not because I take them to
be immune to the sort of problems encountered above, but because the present framework would need to be
extended in order to accommodate them.
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then need to be careful to avoid using computationally intractable sub-families of the delta-

function measures and Bernoulli measures as laws of chance. Others may again be interested

in investigating the whether the problem can be avoided by generalizing the Bayesian frame-

work or by endorsing a constraint of theories of chance on rationally permitted priors weaker

than CCP.

There are a number of standard strategies that Bayesians have explored in other contexts in

which the presence of an uncountable number of alternatives and/or awkward nullsets causes

trouble, including infinitesimal-valued credence functions, merely finitely additive probabil-

ities, regular conditional probabilities, and primitive conditional probabilities. These are

considered briefly in Appendix B below, where it is argued that none of them offers much

help in our current predicament.

Section 5 explored two ways of weakening CCP with an eye to satisfying those desiderata:

M-CCP and WM-CCP. The latter turns out to be the more fruitful for our purposes. It says,

roughly, that that the rational priors are those with the feature that, almost certainly, in

the limit of large data sets the posterior probabilities will converge to the true chances for

events that depend on only finitely many times. WM-CCP has the attractive feature that

it is satisfied by the computable Laplace–Bayes prior, both relative to Basic Frequentism

(with its uncountable family of chance laws) and relative to Computable Frequentism (with

its enumerable but computationally intractable family of chance laws). So it is a substantive

constraint on priors that is consistent with the intuition that frequentism in its several forms

is one of the more forgiving of reductionist approaches—and with the thesis that rationality

should be consistent with computability. But like CCP, WM-CCP cannot be satisfied by any

computable prior relative to a theory of chance that includes among its laws of chance all

delta-function measures concentrated on computable sequences.

Other responses to the problems encountered in Sections 3 and 4 are of course possible.

One of the most natural would be to reject the assumption that we have implicitly carried

over from the literature on the Principal Principle: that our account of the relation between

credence and chance should be the basis of a dichotomy between priors that are rationally
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permitted and those that are not rationally permitted. Perhaps we should instead think of

considerations about chance as inducing a partial ordering more rational than on possible

priors. For instance, given a theory of chance L and a prior µ we could look for the largest

sub-theory of L (= restriction of L to a subset of its domain of definition) such that µ satisfies

one of our principles (CCP, M-CCP, or WM-CCP) for that sub-theory, considering µ1 to be

no more rational than µ2 if the sub-theory L1 of L associated with µ1 is itself a sub-theory of

the sub-theory L2 or L associated with µ2. If there are priors that satisfy the given principle

for a given theory of chance then they will be fully rational in the sense that no prior is more

rational then them—but otherwise, there will just more and less rational priors without any

being fully rational.

Applied to CCP or to M-CCP, this strategy is not particularly enticing: it tells us that

the fair-coin measure is a more rational prior for Basic Frequentism than the Laplace-Bayes

indifference prior—even though agents with the fair coin measure as their prior will remain

certain the the chance that the next bit will be 0 is .5 no matter what data they see, while

the posterior probabilities that agents with the Laplace-Bayes prior assign to the that event

will converge (almost surely) to the true chance (if one there be) in the limit of large data

sets. But applied to WM-CCP, this strategy suggests a way forward for fans of the best-

system-type approaches in grappling with the problems surrounding delta-function measures

concentrated on computable sequences (although some challenges would remain).

This is far from a complete account of possible responses to problems exposed above. But

I hope, at least, that one moral is clear: interesting work remains to be done for anyone who

is attracted to Lewis’s accounts of chance and credence and who is also inclined to take the

computability of priors to be consistent with their rationality.

Appendix A. Lewisiana

This appendix examines the relation between the approach adopted above and the main

stream of literature on the Principal Principle. The two chief goals are to clarify the relation

between the Chance-Credence Principle and the Principal Principle and to examine the

proper role of improper theories of chance.
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A.1. CCP and the Principal Principle. Lewis thought of his Principal Principle (PP)

as a generalization of the sort of principle associated with Miller and Hacking.67 Roughly

speaking: PP says not only that a rational prior should agree with the chance facts when

conditionalized on the chancemaking facts, but also there are many further propositions that

are screened off by the chance facts.68 CCP is intended to be a special case of (a reasonable

explication of) Lewis’s PP in which we ignore such further screened-off propositions (along

with attendant complications about admissibility). For the curious, I offer further comments

on the relation between CCP and PP.

1. As Lewis formulates it PP has no relativity to a theory of chance. But such relativity

is unavoidable: PP is intended to compatible with a range of reductionist theories of

chance (Lewis was not committed to the Best-System account when he first formulated

PP); and priors that satisfy the spirit of PP with respect to one such theory may be

incompatible with the spirit of PP with respect to other such theory (consider, e.g., the

question whether it is rationally required to put non-zero prior credence on the sequence

that eternally alternates between 0 and 1).

2. As Lewis formulates PP, it involves talking about the chances at a time, which in the

present framework would involve conditionalizing a law of chance on a binary string. Of

course, one such string is the empty string—and specializing a Lewis-style formulation to

that case gives a version in which time no longer plays a role. And: no content is lost in

via this specialization.69

3. Omitting all the bits about the screened-off event E and the time t, Lewis’s PP reads:

Let C be any reasonable initial credence function. Let x be any real number in

the unit interval. Let X be the proposition that the chance of A’s holding equals

x. Then C(A |X) = x.70

67See Beebee and Fisher (2021, Letters 659 and 660).
68It is not clear that Lewis achieves what he set out to do: if a prior satisfies CCP then it is (essentially) a
weighted sum of the laws of chance—so the only freedom available in choosing a prior reduces to choosing
these weights, and screening-off conditions are not going to help to fix these. In this connection, see the
discussion of Pettigrew (2012, §1).
69On this point, see Pettigrew (2012, fnn. 3 and 4).
70Adapted from Lewis (1980/1986, 87). See also Lewis (1994, §5).
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For Lewis, a proposition is a set of worlds. So in our context, the X must correspond

to a subset of 2ω. Which one? Recall that on p. 13 above we quoted Lewis as saying

that the idea behind PP is that a rational prior should have the feature that it says that

the chance of an outcome is 50% when conditionalized on the proposition that makes it

true that the chance of that outcome is 50%. So in the schema above, X should be the

proposition that the chancemaking pattern obtains in virtue of which the chance of A is x.

In the case where λ is the only law of chance that assigns A chance x, this is the pattern

that makes λ be the law of chance—that is, the chance hypothesis Λ corresponding to λ.

More generally, there may be more than one chance law that assigns A chance x—and

then X will be the disjunction of the corresponding chance hypotheses. But if a prior

satisfies a Lewis-style principle that deals in such disjunctive events, then it also satisfies

one in the style of CCP (since you can always replace A by the conjunction of A with the

proposition that a certain chance law holds, which lands you in the simple case considered

above). And, at least in the case where the disjunction of chance laws under consideration

involves only finitely many chance laws, the converse also holds.71

A.2. What About the New Principle? Each of the five paradigmatic theories of chance

that we have been concerned with is proper. If we were to work with worlds whose complete

histories corresponded to finite binary strings instead of to infinite binary sequences, it would

have been difficult to find interesting proper theories of chance.72 For instance, since the fair

coin measure assigns positive probability to each finite string, it can be a proper law of chance

of a theory for finite worlds only if it is the sole law of chance.

However, there are improper theories of chance even in the infinite setting. Example 2.10

above provided a toy example: a theory of chance in which all and only sequences beginning

with 1 get the fair coin measure ν.5 as their (improper) law of chance.

It is not obvious that it makes sense to assert the proposition corresponding to an improper

law of chance. In Example 2.10, for instance, the relevant proposition implies both that the

71To see this, use Titelbaum (2013, Lemma C.10).
72The literature on the Principal Principle largely focusses on this case. There is something odd about that:
the New Principle (a modification of the original Principal Principle crafted to handle improper theories of
chance) does not do its job in this setting. See fn. 53 above.
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first bit will be 1 and that for each bit, there is only a 50-50 chance that it will be 1. Now,

corresponding to any theory of chance L there is a proper theory of chance L̄ whose laws of

chance are given by λ̄ := λ(· |L−1(λ)) (so that L = L̄ if and only if L is proper).73 To my

mind, it is more natural (because less Moore-paradoxical) to interpret someone apparently

advancing an improper chance L as having chosen an clumsy way to assert L̄.74

The observation that the Principal Principle is inconsistent with improper theories of

chance launched the large and messy literature on undermining with its many attempts to

correct the Principal Principle. If you are the sort of person who likes improper theories of

chance, then it is worth noting the following. Specialized to our setting, the New Principle

of Hall (1994) and Lewis (1994) takes the following form.

Definition A.1. Let L be a theory of chance and let µ be a prior. We say that µ satisfies the

New Principle for L if: for any chance law λ of L with chance hypothesis Λ = L−1(λ) and

for any Borel subset A of 2ω, we have µ(A |Λ) = λ(A |Λ).

Let L be a improper theory of chance with countably many chance laws, λ1, λ2, . . . . Let L̄

be the corresponding proper theory with laws λ̄1, λ̄2, . . . . Let A be any measurable set. Note

that for each k we have Λk = Λ̄k and λ̄k(A) = λk(A |Λk). It follows that any prior µ satisfies

CCP for the proper theory L̄ if and only if it satisfies the New Principle for the improper

theory L. So if you think that improper theories make sense, you can understand the New

Principle as saying: a prior µ is rationally permitted relative to a (not necessarily proper)

theory of chance L if and only if µ satisfies CCP for the corresponding proper theory L̄.75

Of course, given an improper theory of chance L we can also ask whether there are any

computable priors that satisfy the New Principle for it. In the exceptional case (as in Ex-

ample 2.10) where all of the chance hypotheses of L are basic subsets of 2ω, there will be a

computable prior satisfying the New Principle for L if and only if there is a computable prior

satisfying CCP for L̄. But in general there need be no such direct relation. The following toy

73For the transformation L 7→ L̄, see Arntzenius and Hall (2003).
74On this point, see Belot (2016). For critical discussion, see Hoefer (2018).
75One could of course also consider conditions that stand to M-CCP and to WM-CCP as the New Principle
stands to CCP.
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example of a variant of Computable Super-Determinism, shows, however, that working with

improper theories of chance and the New Principle does not on its own allow one to evade

the problems encountered in Section 4 above.

Example A.2. Fix some distinction between those 100-bit sequences that are random-looking

(= anyone would reasonably suspect them of being generated by a fair coin) and others.

Consider the theory of chance that only assigns laws of chance to computable sequences,

assigning any sequence whose first 100 bits are random-looking and which is afterwards all

0’s the law of chance ν†.5 that says that the first 100 bits are sampled from the fair coin

measure and the rest are all 0’s; and assigning any other computable sequence S the law of

chance δS. Note that ν†.5 considers each sequence that is all 0’s after the first hundred bits

to be equally likely. So it is just the equal-weight mixture of the delta-function measures

concentrated on those sequences (and it is an improper law of chance since, for instance, the

all 0’s sequence is not included in its chance hypothesis). It follows that if S is computable

then λ = L(S) can be written in the form λ = ν + c · δS for some c > 0 and some (possibly

trivial) measure ν. It then follows that λ̄(·) := λ(· |L−1(λ)) can also be written as a sum

in which δS appears with non-zero weight. From this it follows that if µ satisfies the New

Principle for L, then µ can be written as a sum in which each computable delta-function

appears with non-zero weight. So µ cannot be computable.

Remark A.3 (An Alternative to the New Principle). A Chance-Credence constraint suggested

by Roberts and by Ismael has been widely discussed as an alternative to the New Principle.76

Specialized to our setting, the Roberts-Ismael constraint says that, relative to a theory of

chance L, a rational prior µ should satisfy µ(A) =
∑
µ(Λk)λk(A), where λ1, λ2, . . . are

the chance laws of L, each Λk = L−1(λk), and we do not assume that the λk are proper.

Applied to the theory of Example 2.10, this proposal is implausibly restrictive, requiring

that a rational prior must put probability one on one of the theory’s two laws of chance.

76See Roberts (2001) and Ismael (2008) (their proposals differ in general, but coincide in our setting). For
critical discussion see Briggs (2009, §§3.3 f.).
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Appendix B. I am Not a Zero

CCP embodies a straightforward way of understanding the idea that credence should defer

to chance: for a given theory of chance, it requires of priors that when conditionalized on the

set of worlds corresponding to a law of chance of that theory they give the same probability

to each event that the law of chance itself does. The discussion in the main body of this

paper took for granted that the conditional probability of A given B is the ratio of two real

numbers, the probability of A&B and the probability of B, and so is undefined when the

probability of B is zero. This led to Proposition 3.4—and from there, along the path that

led us to consider CCCP, M-CCP, and the rest. Many readers will want off the boat as soon

as CCP appears—either because they think it is too intolerant of nullsets (see the discussion

of CCP∗ in Section 5) or because they prefer some more sophisticated approach to handling

conditional probabilities.

Here I will briefly give my reasons for cleaving to the simple-minded approach followed

above. In brief: allowing primitive conditional probabilities to model rational credal states

would in any case push us in the direction pursued in Section 5; allowing merely finitely addi-

tive probabilities (or non-standard-valued probabilities) to model rational credal states would

not help us to evade the delta-function version of the computational obstruction encountered

in Section 4 above; and reformulating CCP in terms of regular conditional probabilities re-

quires us to abandon the connection between learning and deference to chance discussed in

Sections 1 and 5 above.

B.1. What about Primitive Conditional Probabilities? The idea that conditional

probability should be taken as primitive rather than unconditional probability has its attrac-

tions. Why not just skip all the aggravation and work in a formalism in which the basic

probabilistic notion takes two arguments, rather than one?

There are several of ways of working this idea out.77 Note that under the most plausible

ones, we can always conditionalize on logical truths and (when defined) the result of condi-

tionalizing on a proposition is a probability measure. So we always have a surrogate within

77For some options, consult Easwaran (2019) and Halpern (2010).
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this framework for our ordinary one-place prior probabilities. So we can think of primitive

conditional probabilities as plans of the following form: I will start life with prior µ0 (an

ordinary probability measure); if I face evidence assigned positive probability by µ0, then I

update by conditionalization; if I face evidence corresponding to a nullset of µ0, then I deploy

a backup plan (essentially, a fall-back prior that happens to assign the evidence in question

probability one).

Fix some fancy gizmos to your liking that encode primitive conditional probabilities. Cook

up a version CCP‡ of CCP adapted to such fancy gizmos. Fix a well-behaved theory of chance

L with uncountably many laws of chance that is CCP‡-satisfied by a fancy gizmo γ relative

to this theory of chance. Let us call an ordinary prior on µ on 2ω L-admissible if it arises

by conditionalizing a fancy gizmo satisfying CCP‡ for L on a logical truth. It will count

against this approach if there are no L-admissible priors: this would tell us that in order to

obey the principle that credence should defer to L-chance, we must assign prior probability

zero to some possible finite data sets (and so be willing to bet our lives against observing

such data etc.). It would also be bad if the fair coin measure were L-admissible: when it

comes to forecasting probabilities of future events, someone with this prior never learns from

experience—so it is hard to see how they could be deferring to L-chance.

So, presumably, there must be some interesting difference between priors that are L-

admissible and those that are not. And since we are working in a context in which possible

data sets are finite binary strings and in which all priors assign positive probability to each

such string, any agent whose initial credal state is given by a fancy gizmo γ0 that determines

an admissible prior µ0 is always going to behave exactly like someone whose initial credal

state is given by µ0. Now, we know that µ0 doesn’t satisfy CCP (no prior does). This

strongly suggests that it will be more fruitful to search directly for a generalization of CCP

that focusses on the response of priors to finite data sets (as M-CCP and WM-CCP do)

rather than proceeding indirectly via the apparatus of primitive conditional probabilities.

B.2. What About Merely Finitely Additive Priors? Note, first, that merely finitely

additive priors defined on σ-algebras are non-constructive objects: the existence of such
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objects cannot be proven without recourse to some choice-like axiom.78 So such objects can,

presumably, be set aside given our interest in computable priors.

At the same time: any finitely additive probability measure on 2ω defined only on the

algebra of sets A generated by the basic sets is in fact countably additive (see fn. 8 above).79

So in order to be of interest for present purposes, a finitely additive prior would need to be

defined on an algebra intermediate between the algebra A generated by the basic sets and the

σ-algebra B generated by them. Our notion of a computable probability measure on (2ω,B)

exploits two facts: there is a natural sense in which by computably enumerating the binary

strings, we effectively list the basic sets; and the behaviour of a probability measure on the

basic sets determines its behaviour on all Borel sets. Presumably, in order for finitely additive

probability measures defined on an algebra intermediate between A and B to be candidates

for computability, we would want to demand something similar: that there be a sense in

which we can effectively list a set of generators for this algebra and that any finitely additive

probability measure on this algebra is determined by its restriction to these generators.

Example B.1. Let C0 algebra generated by the basic sets together with {0ω} (the singleton set

containing the all 0’s sequence).80 In order to specify a finitely additive probability measure

M on (2ω, C) it suffices to specify: (i) the probability that M assigns to each basic set; (ii)

the probability that M assigns to {0ω} (freely chosen, subject to the constraint that it does

78On the one hand, any merely finitely additive probability measure on a measurable space determines a
merely finitely additive probability measure on the natural numbers, equipped with the power-set σ-algebra,
that considers every finite set a null set—see, e.g., the proof of Theorem 13.5 in Wagon (1985). And it
follows from results due to Solovay and to Shelah that the existence of such a measure on N cannot be proven
in ZF—for discussion and references see Luxemburg and Väth (2001). On the other hand, the existence of
merely finitely additive probability measures on (2ω,B) can be proven using the axiom of choice (or somewhat
weaker assumptions)—see Bhaskara Rao and Bhaskara Rao (1983, §2.1) and Luxemburg and Väth (2001).
79A is the family of finitely determined subsets of 2ω—i.e., the empty set and finite unions of basic sets. See,
e.g., Bhaskara Rao and Bhaskara Rao (1983, Theorem 1.1.9(3)).
80C0 consists of the empty set plus finite disjoint unions of sets of the following kinds: the singleton {0ω},
basic sets, and the result of deleting {0ω} from basic sets. See, e.g., Bhaskara Rao and Bhaskara Rao (1983,
Theorem 1.1.9(3)).
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not exceed R := inf{M(J0kK) | k ∈ N}).81 So long as these data are computable, we can

reasonably consider the finitely additive measure M : C0 → [0, 1] to be computable.82

More generally, it is clear how to make sense of the notion of a computable but merely

finitely additive probability measure on an algebra Ck whose generators include the basic sets

together with k singleton sets of computable sequences.

Let C be the algebra generated by the basic sets together with the singleton sets of all of

the computable sequences.83 A C-prior is a finitely additive probability measure on (2ω, C)

that assigns positive probability to each basic set. We say that a C-prior M satisfies C-

CCP for Computable Frequentism if for each computable sequence S and each B ∈ C we

have: M(B | {S}) = δS(B). There are two reasons that this will not allow us to evade the

obstruction to CCCP-satisfiability that we encountered in Section 4 above.

1. In order for us to think of a finitely additive measure M on C as being computable, we

need to think of there being an effective listing of its generators, the basic sets and the

singletons of computable sequences. This would appear to require that the computable

sequences be uniformly computable—which they are not (see Remark 4.14).

2. Let M be a C-prior on (2ω, C) and let µ be the unique prior on (2ω,B) that whose restriction

to basic sets coincides with that of M. Note that if M({S}) > 0 for some sequence S,

then µ({S}) > 0 as well.84 So if M satisfies C-CCP for Computable Frequentism, then

µ({S}) > 0 for each computable S—which means that µ cannot be computable. So

M cannot be computable even in the weak sense that its restriction to the basic sets is

computable in the usual sense.

81Further, every finitely additive probability measure on (2ω, C0) arises in this way. See, e.g., Bhaskara Rao
and Bhaskara Rao (1983, Propositions 3.2.7 and 3.3.1 and Theorem 3.3.3).
82Let µ be the unique (countably additive) probability measure on (2ω,B) that agrees with M when restricted
to basic sets. Then R = µ({0ω}) and M is the restriction to C0 of µ if and only if M({0ω}) = R.
83A finitely additive probability measure on C is determined by its behaviour on sets of the following kinds:
basic sets, finite unions of singleton sets of computable sequences, and basic sets with such finite unions of
singletons deleted. And C consists of finite disjoint unions of sets of these kinds (plus the empty set). See,
e.g., Bhaskara Rao and Bhaskara Rao (1983, Theorems 1.1.9(3) and 3.5.1(ii)).
84See Bhaskara Rao and Bhaskara Rao (1983, Propositions 3.2.7 and 3.3.1).
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B.3. What about Priors taking Non-Standard Values? Many philosophers follow

Lewis (1980/1986) in using as representors of rational credal states generalized probability

measures taking values in extensions of the unit interval that include infinitesimals. The

real part of such an object is a finitely additive probability measure. So the considerations

adduced above against the helpfulness of merely finitely additive priors carry over the case

of non-standard-valued priors.

B.4. What about Regular Conditional Probabilities? In the following, 2ω always

carries the product topology (generated by the basic subsets), any subspace of 2ω always

carries the corresponding subspace topology, the unit interval always carries its standard

topology (generated by its open subintervals), and P always carries the weak topology.85

Unless otherwise noted, when considered as measurable spaces, we take these spaces to be

equipped with the Borel σ-algebra generated by their open sets.86

For any theory of chance L, we denote by Λ+ the set of sequences to which L assigns

chance laws and by Λ∗ the set of lawless sequences. We have all along required that each

chance hypothesis of a theory of chance be Borel. The following is a natural strengthening

of that requirement.

Definition B.2. A theory of chance L is measurable if it is measurable as a map from Λ+ to

P .87

85Recall that the weak topology on P can be characterized as follows: for any p, q ∈ Q with p < q and any
basic set JτK of 2ω we let Sp,q,τ := {ν ∈ P | p < ν(JτK) < q}; the open sets of the weak topology are the
unions of finite intersections the Sp,q,τ . For details, see Kechris (1999, §17E).
86For case of P, again see Kechris (1999, §17E).
87When considering a theory of chance L, it is sometimes helpful to consider the σ-algebraM on 2ω generated
by Λ∗ together with the chance hypotheses of L. Note that if L is measurable, then M is a sub-σ-algebra of
B.
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Our five paradigmatic reductionist theories of chance are measurable. This is more or less

immediate for Super-Determinism, Computable Super-Determinism, Computable Frequen-

tism, and the Toy Best System.88 And the measurability of the Basic Frequentism is implicit

in standard proofs of the de Finetti Representation Theorem.89

Remark B.3. 2ω and P can both be viewed as computable metric spaces in a natural way.90

So it makes sense to ask whether an acceptable theory of chance should be computable as

well as measurable. There is a powerful intuitive reason for resisting the idea that they

should be: even computable frequentism is not computable as a map from 2ω to P .91 How-

ever, computable frequentism satisfies the weaker condition of layerwise computability.92 So

it would perhaps be reasonable to require an acceptable theory of chance to be layerwise

computable.93

Definition B.4. Let L be a measurable theory of chance and let L be the set of chance

hypotheses of L. The kernel of L is the map pL(· ‖ ·) : B × L → [0, 1] defined by:

pL(B ‖ Λ) = λ(B)

(where λ is the chance law corresponding to Λ).94

88For the case of Super-Determinism, see, e.g., Kallenberg (2021, Lemma 3.1). For the others, note that for
any theory of chance L and any Borel subset D of P, L−1(D) will be a union of chance hypotheses of L.
When L has only countably many chance laws, each such union is Borel (being a countable union of Borel
sets).
89See, e.g., Klenke (2020, §12.3)—thanks to Chris Mierzewski for this labour-saving observation. For a direct
proof of the measurability of Basic Frequentism note that by Kallenberg (2021, Lemma 3.1.iii) it suffices to
show that for any fixed string τ and any closed interval J with rational endpoints, the set of sequences S
such that νr(S)(JτK) ∈ J is Borel (where r(S) is the limiting relative frequency of 0’s in S, if defined). This
will just be the set of sequences in which the limiting relative frequency of 0’s lies in some closed interval,
which is Borel—see, e.g., Kechris (1995, 70).
90See, e.g., Gács (2021, Appendix B).
91The problem is that because for each r, the set of sequences in which 0’s have relative frequency r forms
a dense subset of 2ω, there is no way to force the relative frequency of 0’s in S�n to be close to the limiting
relative frequency of 0’s in S by choosing n sufficiently large. On this point see, e.g., Bienvenu and Monin
(2012, §IV).
92See, e.g., Bienvenu and Monin (2012, §IV). For further discussion, see Hoyrup (2020, §3).
93Thanks to Chris Mierzewski and to Francesca Zaffora Blando for discussion of these points.
94Let M be as in fn. 87 above and let S∗ be some L-lawless sequence. Define κ : B × 2ω → [0, 1] by
κ(B,S) := pL(B ‖ L−1(L(S))) (unless S is lawless, in which case set κ(B,S) = δS∗(B)). Then for any
sequence S, κ(·, S) ∈ P (by the definition of pL) and for any B ∈ B, κ(B, ·) is measurable as a function from
(2ω,M) to the unit interval (by the measurability of L, via Lemma 3.1 of Kallenberg 2021). So pL determines
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Definition B.5. Let L be a proper and measurable theory of chance with kernel pL. Let µ be

a prior that considers the set of lawless sequences of L to be a nullset. Then pL is a proper

regular conditional probability for µ if for each B ∈ B we have

µ(B) =

∫
p(B ‖ Λ(S)) dµ(S)

(where we write Λ(S) for L−1(L(S))).95

Example B.6. Suppose that L is a proper theory of chance with only countably many chance

laws λ1, λ2 . . . (with chance hypotheses Λ1, Λ2, . . . ). Then L is measurable (see fn. 88). If

µ is a prior that assigns positive probability to each Λk and probability zero to the lawless

sequences of L, then pL is a proper regular conditional probability for µ if and only if, for

each B ∈ B,

µ(B) =
∑

pL(B ‖ Λk)µ(Λk),

which happens if and only if pL(B ‖ Λk) = µ(B
⋂

Λk)/µ(Λk).

The core idea behind the Principal Principle, codified in the Chance-Credence Principle, is

that, conditional on knowing which law of chance is actual, your credences in events should

coincide with their actual chances. In the setting of a proper theory of chance with only

countably many chance laws this says:

Adopt any prior you like, so long as the probability measure that results from

conditionalizing it on a chance hypothesis is the corresponding chance law.

The preceding example shows that one way to generalize this advice to the setting of un-

countably many chance laws is to advise:

a probability kernel from (2ω,M) to (2ω,B). If Λ∗ is empty, then this probability kernel is proper, in the
sense that for each M ∈ M we have κ(M,S) = 1 if S ∈M. Otherwise, it is proper modulo Λ∗ (in the sense
that the given condition holds for any M disjoint from Λ∗).
95For a helpful philosophical introduction to regular conditional probabilities, see Easwaran (2019). Blackwell
and Dubins (1975, §1) observe that if (X, C, ν) is a probability space and D is a sub-σ-algebra of C, then a
proper probability kernel κ : C×X → [0, 1] from (X,D) to (X, C) is a regular conditional probability for ν (in
the standard sense) if and only if µ(·) =

∫
κ(·, S) dν(S). Here we specialize to the case (X, C, ν) = (2ω,B, µ)

and D =M (with M as in fn. 87). Since Λ∗ is by assumption a µ-nullset, the distinction of fn. 94 between
being proper and being proper modulo Λ∗ is immaterial.
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Adopt any prior you like, so long as the kernel for the theory of chance under

consideration is a proper regular conditional probability for it.

Think of this kernel as a plan: if you find out which chance hypothesis obtains, then you

will adopt credences given by the corresponding chance law; requiring that the kernel be a

proper regular conditional probability is a way of constraining priors so that this plan can

be thought of arising naturally out the priors rather than being wholly arbitrary.

Definition B.7 (CCP∗∗). Let L be a proper and measurable theory of chance and let µ be

a prior that considers the set of L-lawless sequences to be nullset. We say that µ satisfies

CCP ∗∗ for L if the kernel pL of L is a regular conditional probability for µ.

Good news: the Laplace-Bayes prior of Example 5.23 above satisfies CCP∗∗ for Basic

Frequentism.96 Bad news:

Proposition B.8. Let L be a proper and measurable theory of chance. Then any law of chance

of L that is also a prior satisfies CCP∗∗ for L.

Proof. Let λ be a prior that is also law of chance of L (with chance hypothesis Λ). Let B be

a Borel subset of 2ω. Then we have:∫
pL(B ‖ Λ(s)) dλ(s) =

∫
Λ

pL(B ‖ Λ(s)) dλ(s)

=

∫
Λ

pL(B ‖ Λ) dλ(s)

=

∫
Λ

λ(B) dλ(s)

= λ(B)

∫
Λ

dλ(s)

= λ(B).

where the first equality follows because L is proper (so that λ(Λ) = 1), the second because

Λ(s) = Λ for each S ∈ Λ, the third by the definition of the kernel pL, the fourth because

λ(B) doesn’t depend on the variable of integration, and the fifth again via propriety. �

96On this point see, e.g., Klenke (2020, §8.3).
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Corollary B.9. The fair coin measure satisfies CCP∗∗ for Basic Frequentism.

Example B.10 (Super-Determinism). Also worrying: every prior satisfies CCP∗∗ for Super-

Determinism (i.e., the map L : S 7→ δS). For let µ be a prior and B be Borel subset of 2ω.

For any Borel set B and any binary sequence S, we have

pL(B ‖ Λ(S)) = IB,

where IB is the characteristic function of B. So∫
pL(B ‖ S) dµ(S) =

∫
IB(S) dµ(S)

= µ(B).

(Super-Determinism is of course a pathological theory—but it would be more considerably

more reassuring to be told that no prior is rational for someone who hopes to defer to this

theory of chance.)
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