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AI technologies have recently shown remarkable capabilities in various scientific fields, 
such as drug discovery, medicine, climate modeling, and archaeology, primarily through 
their pattern recognition abilities. They can also generate hypotheses and suggest new 
research directions. While acknowledging AI’s potential to aid in scientific 
breakthroughs, the paper shows that current AI models do not meet the criteria for 
making independent scientific discoveries. Discovery is an epistemic achievement that 
requires a level of competence and self-reflectivity that AI does not yet possess. 
 

 

Over the past few years, artificial intelligence (AI) technologies (machine learning tools, 

in particular) have demonstrated their capabilities in various scientific fields, including 

but not limited to drug discovery, medicine, climate modeling and archaeology. This is 

usually achieved by AI’s astonishing ability to find patterns in the data. AI can also be 

a valuable tool in hypothesis generation, suggesting new research directions to 

scientists. And AI can find new scientific facts based on some background theory 

(Cockburn et al., 2018; Miao 2023; Wang 2023). In particular, automated scientific 

discovery is the field that – bringing together artificial intelligence, natural science and 

philosophy – studies the remarkable impact of AI in scientific discovery and how the 

process of making scientific discoveries can be modeled computationally (Giza 2021). 

Notably, Newell and Simon (1956) have argued that computer programs can surely go 

through the mechanism of problem solving and arrive at making scientific discoveries.  
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Though AI has the potential to make significant contributions to scientific discoveries, 

in this paper, I raised some questions surrounding the role of AI in scientific research. 

In particular, I raise some challenges to the claim that AI can, in fact itself discover 

anything. I will not deny that AI can find new things and do so reliably. I don’t deny for 

sure that AI can help us achieve scientific breakthroughs (Duede 2023). However, I will 

argue that as of now it does not look like AI models can make scientific discoveries. My 

claim will be based on the observation that making scientific discovery first requires 

having the right type of competence. Furthermore, discovery is a kind of epistemic 

achievement, which necessitates having some assessment on and exercising some 

control over one’s abilities. It is exceedingly difficult for us to determine whether AI has 

the right competence and it does not look like AI for now is able to assess and control 

its epistemic activities. 

 

Three quick clarifications before I start. I am not directly interested here in exploring 

the question: what is a scientific discovery? I am more focuses instead on the question 

of when an agent (of some sort) counts as a ‘scientific discoverer’.1 Furthermore, I have 

very little to say here on whether AI has a mind, real preferences or consciousness. In 

contrast, here I examine some of the key features that AI needs to possess to qualify as 

 
1 This approach, that focuses on an individual as the source of discovery, has been criticized 

because it fails to recognize the social, distributed element of science (Darden 2006; 

Copeland 2018: 695; Clark & Khosrowi 2022). However, here I am trying to ask about the 

role that AI could have in science, beyond just being a tool or aid for scientists. This does 

not exclude that, in practice, scientific discoveries are a communal affair. Also, the question 

on whether AI can be an agent of discovery, will be kept separate from the broader ethical 

and philosophical considerations about agency, autonomy and personhood. In this paper 

agency in the context of discovery can be defined narrowly, focusing on the functional and 

causal role that AI plays in generating new knowledge. 
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the author of scientific breakthroughs. In so far that these may require having a mind, 

thoughts and reasoning abilities, I will assume (for the sake of the argument) that AI 

does have those. Finally, I will focus my discussion to the use of deep neural networks, 

which have recently made impressive scientific findings. I cannot hope to make the case 

for all of AI in one paper, and deep neural networks seem the most promising AI 

architecture as of late.   

 

 

1. Scientific Discoveries 

 

In this paper, I won’t tackle the issue of scientific discoveries in general (Michel 2019, 

420; 2020) but focus on some of the conditions that allow us to make discoveries in 

science. I will argue that one of these conditions is that the person discovering needs to 

be competent in the field of discovery. The second related condition is that – because 

making a scientific discovery is an epistemic achievement – the ‘agent’ discovering needs 

to be someone able to assess her own competence and integrate that information into 

her reasoning. I will tackle these conditions in turn and then discuss whether AI 

possesses them.  

  

1.1. Competence 

 

I will start by stating something I believe should be quite uncontroversial: making 

scientific discoveries is the result of applying one’s skills and competence on the subject 

of discovery. To make this more vivid I will provide a comparison that will hopefully 

illuminate this point. One day, during the Renaissance period in Rome, a young boy 
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tripped and fell down a hole. The result was unexpected: he found the Domus Aurea, 

Nero’s long forgotten majestic palace. This child stumbled upon a great piece of 

archeological discovery but hopefully the reader will agree with me that he did not 

discover the Domus Aurea in the sense he did not make a scientific discovery. This 

archaeological finding happened by chance and the child had no clue about what he 

found. Interestingly enough, nobody at that time understood that those ancient ruins 

actually a Roman building: the entire palace was under ground and covered with dust 

and dirt and it was kind of hard to figure out what it really was.   

 

Here is a different situation. Again Renaissance: Christopher Columbus left Europe and 

arrived to America. He mistook it for something else and did not realize he found a new 

(for the Europeans) continent.2 There is a lot of controversy on whether Columbus 

actually discovered America, but we can try to set those worries aside for now. My goal 

here is to prompt the intuition that there is something about his finding that makes it 

a possible candidate to be a scientific discovery (whether or not it is in the end deemed 

to be an actual scientific discovery).  In neither one of the two cases (Columbus and the 

boy), the “discoverer” was actually looking for what they found: their “discovery” was by 

chance. And, apparently, they never realized the nature of what they found either. And 

 
2 When Columbus arrived in 1492, the continents of North and South America were already 

inhabited by indigenous peoples with distinct cultures and civilizations. Those lands were 

unknown to contemporary Europeans, but the Native peoples had inhabited them for 

thousands of years. Hence, I acknowledge that saying that Columbus "discovered" America 

potentially disregards the history and existence of those peoples. And yet looking at it 

through the lens of the worldview of the late 15th century, Columbus's voyages may well 

represent a groundbreaking geographical "discovery" in that context, aka the context where 

science was made.  



 5 

yet, though the two cases are remarkably similar, we can say that, in the case of 

Columbus, it sounds more plausible to say that he made an actual scientific discovery 

whereas the boy merely found something new which then acquired scientific recognition 

(Whewell 1996 [1840]: 189)3. There is something that is at least closer to a scientific 

discovery in what Columbus did, whereas I think we can safely say the child is really 

just stumbling upon an important archeological finding by chance. 

 

If you agree with my intuition that Columbus was a little closer to a scientific discovery 

than the boy, you might also agree that what makes the difference here is that, in the 

case of Columbus, the discovery was the result of a process that revealed competence 

in the field of the discovery. The boy knew nothing about Roman buildings or ancient 

buildings. He knew nothing about archaeology. In contrast, although Columbus had 

gaps in his knowledge and understanding, he did have some competence in geography, 

navigation and so on. There seems to be a role played by knowledge and competence in 

the case of Columbus that allows us to qualify his finding as a possible scientific 

discovery.4 

  

It is time to dig a little deeper on the notion of competence at play here. In particular, 

there seem to be two ways in which Columbus’ discovery revealed or was the result of 

his competence. For starters, he got to America not completely by chance but by 

following a reasoning process that revealed understanding of navigation and geography, 

 
3 Whewell was skeptical there was such a thing as accidentally-made scientific discovery 

but I will set his worries aside here.  
4 Along similar lines, Clark & Khosrowi (2022) point out how the discovering agent is 

meant to have “particular qualities/abilities which play a significant role in the discovery.” 
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the kind of skills needed to discover new lands. Second, he would have known he made 

a new discovery had some background information been different. Had he, for instance, 

understood that the circumference of the Earth was bigger than he thought, he would 

have recognized that where he landed could not be the Indies. In this case, he would 

not only have found a new land but also become aware that he had it. He set out to 

reach the Indies, but failed at that. Nonetheless, his performance, his actions, and his 

discovery are partly the result of his competence (and not any competence, but 

competence in the area that was relevant to the discovery of a new land).   

 

We should try to generalize the conditions mentioned above: 

 

C1) For subject (or group) S’ finding5 F of object Y to count as a scientific discovery of Y, 

F should be linked to or express S’ competence concerning the field of discovery where 

Y belongs.  

 

It looks like C1 is a necessary condition for scientific discovery. It says that for any 

scientific discovery of Y, S’ finding Y should be linked to their competence in the field of 

discovery. 

 

Cognitive scientists, linguists and philosophers have been talking about competence 

and expertise for a while (Ericsson 2018; Watson 2021). For simplicity I will adopt a 

rough account of competence which should be enough for our purposes: an agent who 

is scientifically competent concerning Y is someone who has mastered what is taken to 

 
5 This need not be a first time finding: it is possible that Y was already known but not 

known as a new scientific entity.  
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be true concerning Y, within the scientific community at that particular period in 

history.6 I am aware that this formulation substitutes a mystery (i.e., competence) with 

another one (i.e., mastery). However, the scope of the paper is not to determine what 

kind of competence is needed in scientific discoveries, but how this competence is 

reasonably expressed and recognized in discoveries. And there are various possible ways 

in which a finding can express the subject’s relevant competence.  

 

One way is to stress the reasoning process that leads to discoveries:  

 

C1-r) F’s expresses S’ competence concerning the type of object Y if F is at least in part 

the result of a reasoning process common in the field in which discoveries of Y would 

take place (at the time in which it took place) 

 

Let me tackle an initial worry. The idea is that if one is competent in a field of inquiry, 

one should be able to make inferences and those inferences would at least partially 

cause one to arrive at a particular discovery.7 Here is an example. In 1928 Dr. Alexander 

Fleming – after a few days away from his lab –noticed that a petri dish containing 

Staphylococcus bacteria was overtaken by mold. To his utter surprise, he also observed 

 
6  Ptolemy was considered an expert astronomer of his time. However, if he were alive today, 

many of his beliefs and theories would be regarded as false based on our current scientific 

understanding. This underscores the point that being an expert or being competent does 

not necessarily require having mostly accurate beliefs or knowledge. Rather, an expert or a 

competent person is someone who has mastered what is taken to be true within the scientific 

community at that particular period in history.   
7 This does not exclude that a discovery could also be the result of an eureka moment in 

which intuition and creativity allow one to envision some new, more successful 

explanation of some scientific phenomena. 
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that the mold seemed to inhibit the growth of the Staphylococcus nearby. Further 

investigation revealed that the mold produced a potent chemical with antibacterial 

properties. This substance was named "penicillin" by Dr. Fleming. Though the 

significance of the breakthrough was not understood by the scientific community at 

first, it eventually was recognized as a world changing discovery. Though one may say 

that Fleming’s discovery was serendipitous, it was also the result of a pattern of thinking 

that was grounded in the best biology and chemistry of his time. Hence, his finding 

expressed his competence in biology and chemistry, as one could trace a partial causal 

path from his expert reasoning to the discovery itself. His stumbling upon a new 

scientific discovery was fortuitous but not completely by chance.  

 

There is another crucial aspect to consider. Even if we insist that Fleming’s discovery 

was the result of chance, he still had the knowledge and competence to understand the 

importance of what he found. That suggests that another possible way to understand 

competence in discovery is based on the idea of explanation:  

 

C1-k) F’s expresses S’ competence concerning the type of object (they found) Y if, given 

some key background information, S would be able to explain the scientific relevance 

(and novelty) of Y.  

 

Condition (C1-k) does not require any direct causal relation between one’s competence 

concerning Y and the act of finding Y. An example will illuminate this point further. 

Apparently, Gibbons discovered the Fiji crested iguana completely by chance during a 

screening of the 1980 film The Blue Lagoon, when he spotted a new type of lizard and 

traveled to Nanuya Levu, Fiji, to identify the animal (Gibbons 1981). When he spotted 
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the new Iguana, Gibbons was not looking for a new species or even doing any science, 

but simply watching a movie. However, his knowledge and expertise allowed him to 

make the discovery: his unorthodox ‘finding’ became a discovery when he was able to 

explain why the new iguana was a new species. 

One way to make sense of (C1-k) and how it differs from (C1-r), is to relate them to the 

distinction, common in philosophy of science, between the contexts of “justification” and 

“discovery” (Reichenbach 1938, Popper 2002).  The context of discovery is the thinking 

process that allows to make progress. Some have argued that such a thinking may not 

even be rational (Strevens 2020). In contrast, the context of justification is where 

rationality gets employed: it is the phase where a theory gets assessed, the discovery of 

a new scientific object gets explained and so on.8 (C1-k) expresses the idea that, no 

matter how the process of discovery was achieved, any scientific discovery needs to be 

recognized, justified and understood. An agent of discovery needs to be able to explain 

and understand the scientific relevance of what they did and found: they employ their 

own competence to shed light on the novelty and importance of the findings.  

 

Let me conclude this section by saying that it is reasonable to assume that these two 

conditions (C1-r and C1-k) are each sufficient for showing competence, though they 

might not be strictly necessary. They may also not be the only possible sufficient 

conditions for showing competence (both in general and in scientific discovery). 

However, they seem to be quite central to the process of scientific discovery. Again, take 

the boy who found the Domus Aurea: he may have been competent in many things, but 

his finding did not reveal any kind of mastery of archeology. More specifically, he did 

 
8 Admittedly I may be culpable of what Darden (2006) calls a "simplistic dichotomy" between these two 
contexts which is common in philosophy of science.  
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not find the Domus Aurea as a result of a reasoning process typical of the field of 

archeology. In addition, no (reasonable) amount of background condition would have 

presumably let him recognize that what he found was a Roman palace. This indicates 

that he probably did not have the right competence to scientifically discover what he in 

fact found. Hopefully, this example is enough to motivate the intuition that failing to 

conform to (C1-r and C1-k) is a reasonable indicator that one is not an agent of discovery 

in science. 

  

2. Scientific Discoveries as Epistemic Achievements  

 

Scientific discoveries are praiseworthy endeavors: we consider them an epistemic 

achievement, possibly the pinnacle of any scientific activity. Similarly, those who make 

discoveries are usually praised, and their achievements may be honored with fame.  

Assigning blame or praise requires assigning a degree of responsibility: the agent subject 

to epistemic praise for making a discovery, needs to be the type of agent that can exercise 

a degree of epistemic control over the ways they came to make and/or understand the 

discovery. This ability is something above and beyond the agent having competence: it 

is the ability to have insights about one’s own competence.  

To understand this distinction, it is worth looking at some of the work done in value 

epistemology. Ernest Sosa (2007; 2011) famously draws the distinction between 

performances that are apt and performances that are meta-apt. A performance that is 

apt is a performance that achieves as a result of exercising competence. A performance 

that is meta-apt has something more: it reveals the competent assessment that the 

performance would be apt. Such an assessment reveals that the subject has good 

insights into their own competence and on the conditions in which such a competence 
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can and cannot be successful. To adopt Sosa’s famous analogy, an “apt” performance is 

when an archer successfully hits the target by competently exercising their archery 

skills. It’s a skilled performance that achieves the intended goal. However, a “meta-apt” 

performance has an additional layer. It’s when the archer not only hits the target 

competently, but also has insights that the shot would be successful given the specific 

conditions at play (e.g., distance, wind, her abilities). This meta-aptness demonstrates 

the archer has reflective knowledge about the limits of her competence and the kinds of 

conditions where her skills can reliably achieve the intended result versus not: she does 

not just unreflectively fire accurate shots, but understand why they are successful.9 

 

Similarly, the key idea is that for a discovery to be considered a true epistemic 

achievement worthy of praise, the discoverer needs to not only possess the requisite 

competencies, but also have insights into the scope and limits of their own 

competencies.10 In other words, it’s not enough for an agent to simply perform well by 

 
9 Sosa argues that an apt true belief amount to knowledge: “its correctness derives from 

manifesting certain cognitive virtues of the subject, where nothing is a cognitive virtue unless 

it is a truth-conducive disposition” (2009, p. 135. My emphasis). On top of knowledge that 

p, reflective knowledge that p requires also “that under the light of reflection one must be 

able to defend the reliability of one’s sources” for the belief that p (2009, p. 139). 
10 With Sosa, Greco (2010, p.3) claims that knowledge, an apt-performance, is already an 

epistemic achievement. I do not disagree. However, lack of control over one’s performance, 

namely lack of reflective insight, prevents us from praising the agent herself. As Audi puts 

it, “(as Sosa realizes) knowledge in general cannot be considered to be true belief grounded 

in virtue – unless perhaps we distinguish what might be called animal virtue, which would 

be a kind of epistemic power, from reflective virtue, which would be a trait for which one 

merits a measure of praise” (2004, p.8). Also, one could employ Riggs’ distinction between 

credit (as attributability) vs. praise. Apt performances should be credited to agents, but they 

are not praiseworthy (Riggs 2009).  
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exercising their capabilities in a competent way (an “apt” performance). To be 

epistemically praiseworthy as the source of a significant discovery, the agent must also 

demonstrate a reflective grasp of the conditions under which their competencies can 

successfully achieve the intended goal (a “meta-apt” performance). Without this 

reflective dimension, the agent cannot be fully praised as the true epistemic source of 

the discovery because they cannot quite exercise control over the process.11  

Let me be clear that this requirement does not exclude serendipitous discoveries. As I 

mentioned above, some discoveries are made by chance. When that is the case, however, 

we expect the agent of discovery to still be able to direct her activities based on her 

understanding of her competence. Either in the context of discovery or in the context of 

justification, we would need to see her reflective insights at work. Thus, even if scientific 

discoveries are frequently recognized and validated post hoc, and agent’s understanding 

of their competence in an area of inquiry should direct her analysis and her justificatory 

procedures in a way that is worth of praise.12   

  

 
11 In the case of scientific discoveries, they are praiseworthy qua exercise of epistemic 

abilities (and epistemic agency) even though, all things considered, they may not be 

praiseworthy. For instance, discovering the atomic bomb may have not have been morally 

praiseworthy, though from a scientific and epistemic standpoint, it surely was worthy of 

praise.  
12 Scientific discoveries often occur in a context where understanding and competence are 

distributed across a community. The notion that an individual must fully understand their 

competence at every step might be too restrictive, especially considering the collaborative 

nature of modern scientific research. However, here we are trying to understand the role of 

one agent in this process and whether that agent qualifies as a discoverer at all. I take it 

that an agent who is blind to what she knows and how she reasons does not qualify as an 

agent of discoveries.  
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Hence, some level of insights about the agents’ competence seems to be a key condition 

for making a discovery: 

 

C2) For subject (or group) S’ finding F of object Y to count as a scientific discovery of Y, 

S should have reflective insights of their own competence in the field in which 

discoveries of Y are made13 

 

The reference to “insights” is meant to be broad enough to encompass different types 

states. Having reflective insight does not require awareness or (phenomenological) 

consciousness. Having reflective insight of one’s own competence may mean having 

metacognition and metaknowledge, or simply being able to produce assessments about 

or signaling one’s competence in a reliable way. And metaknowledge need not require 

any meta-representation either: for instance, some non-human animals have a sense 

for what they know without having to represent their mental states (Proust 2010). 

Similarly, (C-2) does not require one is able to go through a deliberate, fully articulated, 

explicit assessment of one own’s competence: intuitive insights on one’s own abilities 

given the context of performance should be enough to satisfy (C-2).    

 

 

3. AI and Scientific Discoveries 

 
13 How reliable need those insights to be? What if a scientist is wrong about what they know 

and don’t know? As mentioned above, Ptolemy probably thought he knew a lot of things 

about planets and stars, though now we can say that some of his beliefs on the subject were 

wrong. Recall that competence is contextually situated, though: for his times, Ptolemy was 

competent in astronomy and his assessments about his own competence were correct.  
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In this section of the paper, I will discuss whether AI can be an agent of discovery by 

looking at whether AI matches the conditions mentioned above (C-1 & C-2).  Two 

decades ago, symbolic AI enjoyed widespread popularity, yet AI research has since 

moved to a different paradigm: machine learning. And within the domain of machine 

learning, neural networks have emerged as prominent in the last ten to fifteen years. 

Among neural networks, those characterized by numerous layers, commonly referred to 

as deep learning architectures, have produced some fantastic results (Zhavoronkov et 

al 2019). In the context of this paper, the term “AI” primarily denotes deep learning 

methodologies, as they currently represent the principal cause for excitement 

surrounding AI’s applications in scientific research.14 One groundbreaking artificial 

intelligence system is AlphaFold, a deep learning model developed by Google’s DeepMind 

(Abramson at al 2024). This system has demonstrated a remarkable capability to 

accurately predict the complex three-dimensional structures of proteins at a level of 

precision that has not been achieved before. AlphaFold could unlock new frontiers in 

fields like drug development, disease research, and our fundamental understanding of 

biological processes (Jumper at al 2021). Artificial intelligence techniques can also be 

employed in the field of archaeology for predictive modeling as well as automated object 

recognition and detection. Remote sensing data from satellite platforms can be utilized 

to survey vast geographic areas. Advanced computer vision algorithms trained on 

archaeological examples appear capable of identifying subtle patterns and features 

indicative of potential undiscovered archaeological sites. This raises the possibility that 

 
14 Deep learning models with a lot of layers are usually opaque systems: a ‘black box’ 

whose outputs are nearly impossible to explain based on the system’s innerworkings 

(Pasquale, 2015). I will come back to this point. 
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artificial intelligence systems could lead to the discovery of previously unknown ancient 

settlements or urban centers, such as a Roman city, by leveraging object recognition 

approaches to analyze remotely sensed data (Bickler 2021).15  

 

The question remains as to whether – beside helping humans make discoveries – AI 

can itself actually make a scientific discovery. If my analysis above is accurate, for AI to 

be capable of making discoveries, it must demonstrate capabilities similar to those of C-

1 and C-2. It cannot simply function as a reliable finder; it must be a finder that 

exercises its competence and reflects on its abilities. 

  

Let’s start with the first one: 

 

C-1) For AI’s finding F of object Y to count as a scientific discovery of Y, F should express 

AI’s competence concerning the field of discovery where Y belongs. 

 

This is one way in which this could happen:  

 

C1-r) F’s expresses AI’s competence concerning the type of object Y if F is at least 

in part the result of a reasoning process common in the field in which discoveries 

of Y would take place (at the time in which it took place) 

 

 
15 A similar application in archeology is the ArchAIDE app that leverages AI techniques 

and automatically recognizes archaeological ceramics from a single photographic image 

(Anichini et al. 2021). 



 16 

Let me tackle an initial worry. C1-r) suggests that the AI’s reasoning should at least 

partially mirror or incorporate the typical modes of reasoning, methodologies, and 

inferential patterns that scientists employ when investigating scientific matters. This 

may seem a tall order for AI. It is true that many current machine learning techniques, 

like deep neural networks, operate very differently from human cognition by finding 

patterns in large datasets using techniques like gradient descent and backpropagation. 

However, in principle they could mirror human thinking: machine learning algorithms 

inductively learn generalizable patterns from data samples, similar to how scientists 

inductively reason from observations to theories. Therefore, while replicating human-

level scientific reasoning is certainly a challenge for AI, some existing AI techniques 

already share important commonalities with our methods of inquiry.16 We will discuss 

this point further below, for now I would like to side step this worry.  

 

Another possible way to understand competence in discovery is in terms of explanation 

(and, possibly, understanding):  

 

C1-k) F’s expresses AI’s competence concerning the type of object (they found) Y 

if, given some key background information, AI would be able to explain the 

scientific relevance of Y.17  

 
16 It is worth noticing here that symbolic AI techniques can explicitly represent 

hypotheses, axioms, rules, thus closely mirroring how we reason in science. Bayesian 

Networks explicitly represent causal relationships using probabilistic graphical models, 

allowing reasoning about evidence and conclusions. 
17 To satisfy this AI would need to be able to know, understand and so on. If we consider the 

philosophical approach to knowledge as justified, true belief, the question some ask is 
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An agent of scientific discovery is usually someone who is understandable to a scientific 

community so that their discoveries can be framed in terms of concepts, laws, models 

and current theories that explain their scientific relevance. Similarly, to be an agent of 

discovery, AI needs to be able to contribute to an understanding of the factors 

underlying complex scientific phenomena. That means that the AI should provide 

insight into the causal mechanisms and factors underlying its discoveries – not just 

showing correlations, but illuminating the explanatory “why” behind the relevance of 

complex scientific phenomena (Hempel 1965). Relatedly, AI should transmit its findings 

in a way that at least in part maps to existing scientific concepts, models, and theories 

that the community is already working with. Arguably, part of what makes a discovery 

“scientific” is this ability to cohere it with our systematic, accumulating knowledge base 

and the shared epistemic norms and practices of the scientific method. If the discoveries 

cannot be properly framed within the scientific method, their scientific status is in 

question.18 

 

Finally, as for C-2, this is how it could apply to AI: 

 

C-2) For AI’s finding F of object Y to count as a scientific discovery of Y, AI should have 

reflective insights of its own competence in the field in which discoveries of Y are made  

 
whether current AI can have beliefs at all. Though there is general skepticism around the 

idea that AI believes anything, I’ll put these worries aside here. 
18 Famously Kuhn talks about ‘accumulation of anomalies’ that lead to paradigm shifts: 

anomalies and failures to fit into the current paradigm can still fit into the intellectual 

endeavor of science. 
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As experts in fields like archaeology need to be able to assess their own competence, 

evaluate the validity of their answers based on that competence, gauge their confidence, 

and identify ways to address gaps in their understanding, an AI system should ideally 

possess similar capabilities. This condition requires AI to have reflective insights of its 

own abilities. As previously said, this condition does not necessitate consciousness or 

fully developed metacognitive representations. Whatever insights AI may have vis-à-vis 

its own competence, it may not reflect what happens with humans either (Kammerer 

and Frankish 2023). However, some degree of introspection and metaknowledge seems 

important for AI to be able to direct its inquiry. Absent those, it is hard to imagine how 

AI could be seen as an agent of discoveries at all. 

 

 

4. Can AI meet the requirements?  

 

The main question of this paper is whether AI can make scientific discoveries. In this 

section, I would like to present a few possible hurdles that we face when answering that 

question in the positive. In particular, I believe that, even for high functioning models, 

it is quite difficult to assess whether they satisfy (C1). And for making sure current 

models meet (C2), we need to endow them with the abilities to assess their own 

uncertainty, which is a challenging task as well. 

  

Let’s take these points in turn. AI can be used to advance many sectors of scientific 

endeavor, as we saw above. However, one may wonder whether it really possesses the 

competence one needs to make scientific discoveries. The answer seems to be obvious, 
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at least at first blush: if one adopts a form of reliabilism about competence, one may say 

that an AI is competent in some field of inquiry if it reliably succeeds in making 

predictions and classifications in that field of inquiry. I believe this is not a good strategy 

and this section is devoted to show why even an apparently reliable model may lack 

competence.  

Let me begin by reminding the reader that I am solely referring to data-based models 

with multiple layers (Knüsel and Baumberger 2020). What the models learn - their 

ability and competence - come from data. Furthermore, while deep neural networks 

demonstrate exceptional performance on numerous tasks, these models struggle to 

generalize their learning to examples that deviate from the data they were trained on. 

And data can be biased, insufficient or missing in a way that is hard to detect: even 

when seemingly reliable, those models may actually fail to have the required knowledge 

and competence.  

To make these worries more clear, let’s use an illustrative example of how things can go 

wrong when training machine learning models. Imagine you want to train a model to 

recognize cats, and you are building your training dataset. However, for some reason, 

the images you choose are only of white cats. In this scenario, you are training and 

testing your model on data that lacks diversity and comprehensiveness. The goal is to 

build a model that understands cat images in general, but your training data is limited 

to only white cats. In this case, your model might be reliable at recognizing white cat 

images, but it lacks knowledge about cats of other colors or breeds. More precisely, while 

your model may perform well when tested on white cat images (the data it was trained 

on), it will likely struggle to generalize to identify cat images outside of that narrow 

training distribution. The correct predictions made by your model on cat images would 

not be based on a comprehensive understanding of ‘cats’ in general; they would solely 
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rely on the knowledge of whatever is present in the training data. Hence, the model’s 

reliable performance in spotting cats is the result of luck, namely what happens when 

the model is tested and deployed only on inputs that match the training distribution. 

However, once the model encounters cat images that deviate from the training data (e.g., 

black cats), it will fail to recognize them as cats.  

This highlights a significant issue: the correct predictions made by the model are not 

based on knowledge of cats, but rather on the biases and limitations of the training data 

to only particular types of cats. So based on its performance one may think that the 

model is competent about cats, when in fact it is only competent about white cats.  

Now imagine that your AI is making a discovery about a new type of white cat. The fact 

that the AI model has insufficient data, hinders its ability to know about cats in general. 

The finding of a new type of white cat is matching exercise, not an actual scientific 

discovery. As we said above, C-1 requires the discoverer to have competence in the field 

of inquiry. But if a model only knows white cats, its competence is too narrow because 

it does not have any real idea on what cats are. If an AI model lacks a robust grounding 

– even in the training data – in the fundamental nature and defining characteristics of 

the concept in question (in this case, "catness" or what makes a cat a cat), then any 

proclaimed “discovery” of a new type of cat is a finding based on superficial features, 

rather than a substantive insight based on grasping of the subject matter. 

The key question we should be asking when dealing with AI is: when the AI provides 

good predictions and assessments, are those outputs based on its competence of the 

subject matter? Or are the predictions merely a result of chance or insufficient 

knowledge, stemming from training on incomplete or biased data? If an AI model is 
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trained on insufficient or skewed data that fails to capture the full scope of the domain, 

that will hinder the model’s outputs. The model may excel at making predictions on 

examples similar to its training data, but it will lack the foundations required to 

generalize its understanding to novel scenarios or edge cases. Therefore, a purely 

reliabilist assessment of a model based on its track record is not enough to establish 

competence.  

Before concluding this section, let me consider a reliabilist rejoinder here. The reliabilist 

may argue that all we need to assess competence is to (1) make sure the model in 

question is reliable about some Y (e.g., cats), and (2) it is trained on a set of data that 

represents Y enough to be sure that the model’s knowledge is not limited to some subset 

of Y (e.g., white cats). There are rigorous validation and testing processes many AI 

systems undergo, and these may often be able to limit the gaps in the training data. 19 

Unfortunately, that does not work either. The issue I am raising in this section is not 

simply about having a representative data set. The issue is that we do not know what 

the model is latching onto when making its (reliable) assessments. This epistemological 

worry is grounded on the fact that black box models often leverage hidden features: 

patterns in the data that are not apparent to human observers. While this capability 

can be advantageous, it also means that errors based on these hidden features are 

 
19 This solution is actually too optimistic. The gaps in a model's training do not merely reflect 

a lack of specific knowledge (about, say, black cats are). The point goes deeper: models do 

not seem able to generalize. And it is still not clear how much training data they would need 

to be able to actually acquire the right competence and ability to generalize. Some scientists 

believe we need to train these models on so much more data and at some point, they will 

‘get it’. Others believe it is an architectural issue. As long as this is not solved, we cannot 

really attribute them competence only based on reliable performance.   
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harder to detect. One major concern with black box models is their potential reliance on 

spurious correlations: these models might learn to associate irrelevant features with the 

target variable simply because those features appear frequently in the training data. 

Hence, unbeknownst to us, high performing black box models may be inadvertently 

learning to rely on irrelevant features in the environment. That means that a model may 

be performing well but for the wrong reasons.20 

  

4.1 AI and C1-r 

In this section I ask whether – when AI finds some previously unknown scientific object, 

process or theory – it does so at least in part as a result of a reasoning process21 common 

 
20 Another significant issue that limits a model’s competence, is the noise or errors in the 

training data. Suppose you realize the need to expand your training examples and start 

collecting images of cats from different angles, colors and breeds. Even with this diverse 

data, the labeling process (where you identify each image as containing a cat or not) can 

inadvertently introduce noise. For example, a human labeler might incorrectly label an 

image containing both a cat and a dog as just a “cat”. As long as you feed the model with 

examples that match the training data, it may perform well. However, in real-world scenarios 

where the model encounters images containing cat with dogs, the noise in the training data 

can cause the model to make incorrect predictions, such as labeling images of cats and dogs 

as simply cats.   

21 One worry this may not be the case is that, condition (C1-r) above talks about the 

reasoning process leading up to scientific discoveries. One may be skeptical that AI is able 

to reason at all. Even if we adopt a very liberal view of what this reasoning amounts to, it 

does seem to involve some sort of representations of – what we may call – scientific ‘facts’. 

Several accounts of explicitly reject the possibility of AI having representations. For instance, 

Giere (2010) advocates an intentional conception of representation in science that 

necessitates considering scientific agents and their intentions. Similarly, Suárez (2004) 
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in the field in which discoveries of that type of object, process or theory would take 

place. This may seem a tall order for deep learning models, as we said. It seems that the 

most promising AI models work very differently than human reasoning, as they are able 

to extract patterns and learn correlations among huge amount of data.  

To be sure, humans learn from experience through a process of trial and error, 

observation and feedback. This learning is often reinforced by successes and failures, 

leading to improved understanding and skills over time. Supervised learning in machine 

learning involves training a model on a labeled dataset, where the model learns to make 

predictions or classifications based on the data it has seen. This is not too dissimilar 

from how humans learn from experience, either. Reinforcement learning, where an 

agent learns to make decisions by receiving rewards or penalties, also closely mirrors 

human learning from consequences. Finally, even in science human ingenuity involves 

making judgments without explicit reasoning, often based on subconscious pattern 

recognition and prior experience. Deep learning models, particularly neural networks, 

can make complex predictions that may seem unintuitive, involving making unexpected 

associations.  

 

That said, however, with current black box models we struggle to understand what is 

really going on under the hood: their internal processes remain largely inscrutable, 

obfuscated by the complex interplay of millions of parameters and non-linear 

transformations. Black box models like deep neural networks consist of numerous 

 
defends the idea that only intentional agents can produce inferences (Boge 2021; Tamir and 

Shech 2022; cf Sullivan 2023). On these views at least, AI does not reason. Though this is 

a valid concern, I will put it on one side here.  
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layers and connections, where each layer applies various transformations to the input 

data. These transformations are influenced by millions of parameters that adjust during 

training to minimize errors. The intricate adjustments and interactions among these 

parameters contribute to the model’s ability to make accurate predictions but also 

render the process opaque. The non-linear nature of these transformations further 

complicates interpretability: non-linearity allows models to capture complex patterns in 

data, but it also means that small changes in input can lead to disproportionately large 

and non-intuitive changes in output, making it hard to trace the logic behind specific 

predictions. The inscrutable nature of opaque AI systems obscures the causal pathways 

that underlie their predictions, making it challenging to ascertain the origin and 

foundation of what they generate (Khalifa 2017; Creel 2020). Without clear insights into 

what is going on in the model, it is hard to see how AI can match a requirement such 

as C1-r. 

To be sure, this epistemological issue is in a sense orthogonal to whether an AI model 

has the right competence and performs the right reasoning when operating within 

science. Nonetheless, in asking the question of whether AI models can make discoveries, 

we are faced with the problem of determining their level of competence in relation to our 

current scientific practice, and C1-r highlights one way in which that competence could 

be expressed. Unfortunately, in black box models we do not have a clear view on the 

reasoning patterns that brought the model to output a certain solution (Duede 2023).22 

 
22 We have technical tools that promise to look into backboxes and gain some insights on 

their functioning and even abilities (Gunning et al 2019; Barredo et al 2020; (Wexler 2017; 

Guidotti et al 2018). Creel (2020) highlights an important perspective on the nature of 

opacity in AI systems by arguing that depending on the type of opacity (overall functional 

opacity, structural opacity, or specific run opacity) different Explainable AI methods can be 
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Absent that, we need to at least suspend judgement on whether high performing models 

satisfy C1-r.   

 

4.2 AI and C1-k 

Whereas AI can help in the process of discovery (Duede 2023; Tamaddoni-Nezhad et al. 

2021), it rarely offers an explanation for why such finding is a scientific discovery. As 

they stand, deep neural nets could be successful in making predictions and 

categorizations but they do not provide explanations of the right kind (Boge 2022; Boge 

et al 2022). In particular, deep neural networks do not provide the logical or causal steps 

that link these results to scientific laws or principles: they might identify that, e.g., 

certain pixel patterns are associated with a disease in medical imaging, but cannot 

explain the biological or medical reasoning behind the association. Let me give another 

example: though outstanding in their own right, the predictions made by AlphaFold still 

require human interpretation and validation. Scientists must integrate these predictions 

into existing knowledge, design experiments to test them, and provide the broader 

theoretical context that gives meaning to these structures. AlphaFold can be seen as 

part of a hybrid model where AI and human scientists collaboratively engage in the 

justification process. AI provides data-driven insights and preliminary validations, while 

humans integrate these insights into broader scientific narratives. Thus, while 

 
applied to make AI models transparent enough to meet the specific goals of scientists. 

However, none of these techniques is for now able to fully address the issues mentioned 

above (Awotunde et al 2022). 
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AlphaFold aids in discovery, the context of justification remains largely a human 

endeavor. Thus, AlphaFold does not satisfy C1-k.  

The limits of this kind of technology seem to rest in part23 on the fact that they are black 

boxes: AI’s opacity seems to limit its ability to satisfy C1-k and engage in the context of 

justification (Creel, 2020). In addition, if we adopt a more demanding reading of C1-k, 

what AI is lacking is ability to understand its outputs and their relevance for science. 

Skow (2018) maintains that to understand why Q one also needs to appreciate how Q 

happened, or why it happened. According to Hills (2016) understanding often requires 

grasping expectations and being able to anticipate and explain outcomes under different 

conditions. This implies an ability to connect explanations to a broader conceptual 

framework or theory.  

Having some understanding seems an important step in taking part in the context of 

justification which is key to being able to be an agent of discovery in science. This lack 

of explainability and related understanding is thus a significant barrier to deep neural 

networks’ acceptance as full-agents of discovery within the scientific community, where 

the ability to engage in the context of justification is important. 24  

 

 

4.3 AI and uncertainty  

 

 
23 Sullivan (2022) argues that the real issue is not that these models are inscrutable but 

that they fail to link up with the real target of inquiry and can at best provide possible 

explanations but not actual ones.   
24 Michel (2019) argues that for scientific discoveries we need an element of external 

recognition too. It is difficult to imagine this recognition can happen with black boxes, whose 

patterns of inference are invisible and inaccessible.  
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For something to count as a genuine epistemic achievement by an agent, there seems 

to be an implicit requirement that the agent has some level of ability to reason about 

their own knowledge and uncertainties. Indeed, having insights of one’s own strengths 

and epistemic shortcomings, allows one to direct own’s inquiry toward the goal of truth 

while restraining from committing to something likely to be false. This insight allows an 

agent to recognize the limits of their current competence; identify gaps, anomalies or 

areas requiring further inquiry; deliberately formulate questions/hypotheses to reduce 

uncertainty; evaluate the strength of evidence for or against hypotheses. Similarly, 

having insights about its competence for AI means having (at least) the ability to 

determine gaps and errors in what it learnt from the training data and assess its 

certainty or uncertainty when producing an output (Soleimany et al 2021).25 That would 

be a step in the direction of allowing an AI agent to purposefully “exercise control” over 

the discovery process, making its discovery a true achievement.  

Now, some machine learning experts may argue that AI systems do have a way to assess 

confidence in their outputs through the use of probability distributions. When an AI 

model is deployed, it typically provides predictions in the form of probability 

distributions over the possible output classes. Machine learning practitioners often 

interpret these probability values as a measure of the model’s confidence in its 

predictions. 

However, there is a growing realization that these probability distributions may not 

accurately represent the model’s true confidence or uncertainty (Moloud et al 2021). 

Consider again a scenario where a model is trained on a limited dataset of only white 

cats, and then encounters examples of black cats during inference. The model may 

 
25 This approach comes from a MIT lecture by scientist Alexander Amini 

https://www.youtube.com/watch?v=toTcf7tZK8c  

https://www.youtube.com/watch?v=toTcf7tZK8c
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confidently predict that a black cat image does not contain a cat, assigning a high 

probability (e.g., 0.8) to the “not cat” output. In this case, not only is the model’s 

prediction incorrect, but its assigned probability distribution is also misleading as it is 

expressing high epistemic confidence in an erroneous output. This highlights a 

fundamental issue: the model lacks the ability to gauge its own limitations and express 

an appropriate model’s uncertainty. 

 

This shows the need for uncertainty estimation in these models. That is, there is a need 

for AI systems to develop robust uncertainty estimation capabilities that go beyond 

simple probability distributions. An ideal system should be able to: assess its own 

knowledge and uncertainty levels during the training phase, identifying areas where it 

has strong or weak knowledge based on the quality and comprehensiveness of the 

training data. What’s more, the model should, during inference, provide not only 

predictions but also well-calibrated epistemic uncertainty estimates that accurately 

reflect the model’s confidence or lack thereof, given the input data and the scope of its 

knowledge.26 In contrast, if the model cannot assess its confidence in the outputs it 

provides, then we can argue that it does not truly have a way to evaluate whether its 

predictions are correct or incorrect.  

 

 
26 One potential solution that has been proposed involves the development of metacognitive 

architectures for AI systems (Bergamaschi et al 2021). In such an architecture, a 

metacognitive module would have access to both the outputs and the uncertainty estimates 

of various sub-components (e.g., black-box models, white-box models, rule-based systems), 

and make decisions about which one to adopt. 
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There is important research being done in this area. Techniques such as ensemble 

methods are designed to compute uncertainty in the model (epistemic uncertainty) by 

looking at the variance across stochastic models with same hyperparameters and 

trained on same data. Using ensemble methods is however extremely difficult and 

requires a lengthy process, making it hard to adopt. This issue concerning ensemble 

techniques limits models’ ability to assess the limitations of their own knowledge: if they 

cannot use it, and do so quickly, it is hard to imagine they can direct their activities 

based on their uncertainty estimation. This raises skepticism about whether current AI 

involved in discoveries systems is in fact in a position to figure out if they possess 

genuine competence and provide reliable confidence assessments for their outputs. 

Unless ensemble techniques are adopted, these systems are currently “blind” with 

respect to their own abilities and the confidence they should have in their outputs. If 

this self-reflection and ability to assess one’s own gaps is a necessary condition or an 

important characteristic of being an agent of discovery, then “discoveries” made by these 

systems may just blind findings, requiring human experts to recognize and validate the 

significance of those results. 

While progress is being made in areas like uncertainty estimation and metacognitive 

architectures (Kadavath et al., 2022; Lin, Hilton and Evans 2022), significant challenges 

remain. Developing AI systems with true expertise and the ability to make genuine 

scientific discoveries requires not only robust competence but also the capabilities to 

assess, reason about, and address gaps in that knowledge. Without these it does not 

seem we have enough to grant AI models the status of scientific discovers.  

 

5. Conclusion 
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AI can help humans make scientific discoveries and is a wonderful tool to conduct 

scientific research. AI is a reliable finder in many cases as it can find new patterns, spot 

new objects and species, analyze trends in novel and exciting ways. The question is, 

however, whether AI can discover anything by itself. Given the challenges and 

limitations we have discussed, and the lack of clear solutions to address them, it is 

reasonable to conclude that, at least for now, AI systems are not truly making scientific 

discoveries because they do not seem to have the necessary competence and the ability 

to estimate their epistemic status when reaching conclusions.  
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