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Abstract
Based on Kolchinsky and Wolpert’s work on the semantics of autonomous agents, 
I propose an application of Mathematical Logic and Probability to model cognitive 
processes. In this work, I will follow Bateson’s insights on the hierarchy of learning 
in complex organisms and formalize his idea of applying Russell’s Type Theory. 
Following Weaver’s three levels for the communication problem, I link the Kolchin-
sky–Wolpert model to Bateson’s insights, and I reach a semantic and conceptual 
hierarchy in living systems as an explicative model of some adaptive constraints. 
Due to the generality of Kolchinsky and Wolpert’s hypotheses, I highlight some fun-
damental gaps between the results in current Artificial Intelligence and the semantic 
structures in human beings. In light of the consequences of my model, I conclude 
the paper by proposing a general definition of knowledge in probabilistic terms, 
overturning de Finetti’s Subjectivist Definition of Probability.

Keywords Type theory · Communication theory · Semantic efficiency · Cognitive 
processes · Cybernetics

Introduction

One of the historical problems of philosophy concerns the emergence of knowledge, 
meaning to find out whether the link between sensible experience and abstraction 
exists and where it lies. Current and fruitful neurological approaches frequently fall 
victim to a materialistic reductionism that neglects the complexity of cognitive phe-
nomena (for instance, see Velazquez, 2020). On the other hand, every metaphysical 
one needs to postulate some external cause solely justifiable by faith (for instance, 
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see Achella, 2022). Within a semiotic interpretation of life (see Barbieri, 2008), I 
propose an understanding of the problem by lying within the coordinates of Dar-
win’s teaching. That is, within a dialectic of nature that seeks the causes of phenom-
ena in the relationships among phenomena themselves (for instance, see Bishop, 
2022). I choose to base the argument on what I believe to be the most recent and 
complete version of such an understanding of nature, namely on those interpreta-
tions of Physics according to which the fundamental process shaping reality is noth-
ing but a continuous and plural exchange of information between physical systems; 
in particular, I embrace the interpretation provided by Rovelli (1995, 2015) through 
his Relational Quantum Mechanics (RQM). For the soundness of such a starting 
hypothesis, it is good to clarify a notion of information broad enough to model all 
kinds of interactions between any physical systems. Shannon’s classical ‘measure 
of information’ (1948) provides a solution for this purpose, according to which any 
information exchange – i.e., any communication defined by its constraints – is more 
informative as the greater the number of possible messages it could convey. Thus, 
Shannon describes the amount of information of a random source X with probability 
distribution p as the entropy in Statistical Mechanics:

In this framework, the question arises of when and how one can define some infor-
mation exchanges as cognitive processes.

According to common sense, a cognitive process is any conscious and uncon-
scious processes by which knowledge is accumulated, such as perceiving, recogniz-
ing, conceiving, and reasoning (for instance, see https:// www. brita nnica. com/ topic/ 
cogni tion- thoug ht- proce ss). Before giving a formal definition of ‘knowledge,’ I can 
start by stating a general point. Any knowing subject is a physical system in the first 
place, and according to RQM, the exchange of information between systems and 
their environment is an inevitable constant process. Thus, any notion of knowledge 
requires some distinction to be definable in the totality of exchanged information to 
identify the only information that should be ‘treated as knowledge,’ regardless of the 
sense of such an expression. More specifically, for any notion of knowing not to be 
empty, the information conveying knowledge must possess meaning in some sense, 
which is to say, it is necessary to achieve some definition of semantics. A property 
of information should exist relative to each knowing subject, by which it can distin-
guish ‘meaningful’ from ‘not-meaningful’ exchanges. From a gnoseological point 
of view, such a characteristic should be endogenous to the system and independent 
of its history to avert studying the results of some systems’ behavior a posteriori. 
Identifying intrinsic, non-etiological semantics is crucial in investigating the founda-
tions of cognitive processes without arguing in favor or against some interpretation 
of them.

In the following, I will treat knowing subjects as biological systems; however, 
some results of the reasoning could provide a framework for better understanding 
some gaps between Artificial Intelligence and humans (see the end of “A Hierar-
chy of Semantic Efficiency”). One can thus frame the work I present in the context 

(1)H(X) = −
∑

x

p(x) log p(x) .

https://www.britannica.com/topic/cognition-thought-process
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of Cybernetics, the discipline inaugurated by Norbert Wiener in the 1940s, which 
aims to mathematically study the “essential unity of the set of problems centering 
about communication, control, and statistical mechanics, whether in the machine or 
in living tissue.” (Wiener, 1965, 11) The reader may find a biosemiotic framing of 
Cybernetics in Brier (1999, 2013), and a proposal for a synthesis of Biosemiotics 
and Cybernetics in Sharov (2010). The key feature of such a framework concerns 
the attention given to the self-regulating mechanisms of systems, called feedback 
loops; mechanisms whereby if

we desire a motion to follow a given pattern the difference between this pat-
tern and the actually performed motion is used as a new input to cause the part 
regulated to move in such a way as to bring its motion closer to that given by 
the pattern. (Wiener, 1965, 6)

As physical systems, organisms possess some peculiar characteristics that one 
should consider in the following reflections. By introduction, I give an excerpt from 
the pages in which Erwin Shrödinger paves the way for the Thermodynamic Theory 
of Living Systems. The Austrian physicist asks himself:

What is the characteristic feature of life? When is a piece of matter said to 
be alive? When it goes on doing ‘something’, moving, exchanging material 
with its environment, and so forth, and that for a much longer period than we 
would expect an inanimate piece of matter to ‘keep going’ under similar cir-
cumstances. When a system that is not alive is isolated or placed in a uniform 
environment, all motion usually comes to a standstill very soon as a result of 
various kinds of friction. [...] The physicist calls this the state of thermody-
namical equilibrium, or of ‘maximum entropy’. [...] It is by avoiding the rapid 
decay into the inert state of ’equilibrium’ that an organism appears so enig-
matic [...]. How does the living organism avoid decay? The obvious answer 
is: By eating, drinking, breathing and (in the case of plants) assimilating. The 
technical term is metabolism. The Greek word [...] means change or exchange. 
Exchange of what? (Schrödinger, 1944, 69-70)

Due to the Second Law of Thermodynamics, like any other physical system not in 
equilibrium,

a living organism continually increases its entropy - or, as you may say, produces 
positive entropy - and thus tends to approach the dangerous state of maximum 
entropy, which is death. It can only keep aloof from it, i.e. alive, by continu-
ally drawing from its environment negative entropy [...] What an organism feeds 
upon is negative entropy. Or, to put it less paradoxically, the essential thing in 
metabolism is that the organism succeeds in freeing itself from all the entropy it 
cannot help producing while alive. (Schrödinger, 1944, 71)

I recall that, in Statistical Mechanics, the Second Law of Thermodynamics is a 
theorem stating that in an isolated system, entropy is a non-decreasing function 
of time and that it follows from the ergodic hypothesis that we cannot a priori 
exclude any possible state from the probable states in which the system may be. 
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Although there is no agreement on whether or not Schrödinger’s approach is 
comprehensive in defining life, it undoubtedly represents a necessary framework. 
So an organism is some open thermodynamic system – i.e., one that exchanges 
energy and matter with the environment – that possesses mechanisms keeping it 
away from thermodynamic equilibrium, that is, inner devices for constantly low-
ering its entropy. By the Second Law of Thermodynamics, processes triggered by 
these mechanisms always involve a thermodynamic cost to the system.

This article is organized as follows. “Problems Concerning Viability” explains 
the starting semantic model, according to Kolchinsky and Wolpert, and identi-
fies the relationships between semantic and syntactic aspects of information 
exchanges between organisms and the environment. “Semantic Efficiency and 
Learning” is devoted to linking the semantic problem to that of learning and 
arguing the need for a hierarchical model of types in the formulation of the con-
cept of learning in complex organisms, following Bateson’s insight. In “A Hier-
archy of Semantic Efficiency”, I propose a hierarchical model to represent con-
cept production in a complex organism and show how such a model contradicts 
current research in Artificial Intelligence. In the fifth and final section, I suggest 
a probabilistic model for knowledge and argue in favor of the latter by explain-
ing the connection with the semantic hierarchy model constructed in the previ-
ous section. In the Appendices, I offer a schematic description of the two major 
mathematical theories employed throughout the paper; in A, respectively, I dis-
cuss Kolchinsky and Wolpert’s model, and in B, Russell’s Type Theory in the 
Wiener-Kuratowski proposal.

Problems Concerning Viability

Since in Shannon’s Communication Theory, one can identify the amount of infor-
mation exchanged by a physical system with its entropy, the thermodynamic equi-
librium state – i.e., of maximum entropy – is thus representable in information-
theoretic terms as the existence of many more ways of being in a dead state than 
otherwise (for instance, see Summers 2023). Therefore, I choose to follow the idea 
of Kolchinsky and Wolpert (2018) of defining the meaningfulness of an exchange of 
information between the system and the environment as the outcome it has in keep-
ing the system ‘alive.’ One can find fruitful developments from their approach in 
the fields of thermodynamic interpretation of life’s evolution (Jeffery et al., 2019), 
robotics and artificial life (Roli–Kauffman, 2020), biosemiotics applied to econom-
ics (Herrmann-Pillath, 2021); a similar proposal grounded on Friston’s Free Energy 
Principle is in Kiverstein et al. (2022).

The two authors introduce a non-negative real-valued function of time describ-
ing the system’s ‘degree of survival’ and study how such environmental information 
contributes to keeping this function around a given value. From Schrödinger’s con-
siderations, it naturally follows that a good choice for such a function is the negative 
of entropy, i.e., the opposite of Shannon’s measure of information.
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If one considers a joint system organism-environment (X,  E), whose evolution is 
associated with some probability distribution, one can define the viability function of 
X at time � as the quantity

where p is the marginal distribution of X, and xt is a particular outcome of random 
variable Xt representing the system X at time t (see Kolchinsky and Wolpert, 2018, 
6). From now on, I identify a physical system with its state space; the continuous 
case follows, as Shannon shows in Part III of his fundamental article (1948).

A further probabilistic reason for such a choice of the V function is provided by Kol-
chinsky and Wolpert themselves: in fact,

entropy provides an upper bound on the amount of probability that can be con-
centrated in any small subset of the state space X [...] this is relevant because 
there is often a naturally defined ‘viability set’ [...], which is the set of states in 
which the system X can continue to perform self-maintenance functions. Typi-
cally, the viability set will be a very small subset of the overall state space [...] If 
the entropy of system X is large and the viability set is small, then the probability 
that the system state is within the viability set must be small [...] Thus, maintain-
ing low entropy is a necessary condition for remaining within the viability set 
(Kolchinsky and Wolpert, 2018, 6).

I schematically discuss in Appendix A the Kolchinsky and Wolpert model for its parts 
needed in the following reasoning. From these, one can define the initial viability 
value of mutual information I(X;E) = H(X) −H(X|E) between X and E as follows:

where XF
�
 is the system X at time t = � if X evolved with distribution independent 

from the distribution of E.

The difference [ ΔV ] can also be negative, which means that the [...] information 
decreases the system’s ability to exist. This occurs if the system behaves ‘patho-
logically’, i.e. it takes the wrong actions given available information (Kolchinsky 
and Wolpert, 2018, 3).

The definition of initial viability value only provides a measure of the ‘significance’ of 
the information for time t = 0 but still does not allow for discerning the meaningful 
information within it. By some interventions summarized in the appendix, it is possible 
to identify an optimal joint distribution popt

X,E
 of the system (X, E) with which to give the 

following two definitions. One can call the amount of semantic information that X 
has about E at time t = 0 the mutual information at time t = 0 between E and X if the 
joint system evolve with distribution popt

X0,E0
 , i.e.

V(X�) ∶=
∑

x�

p(x�) log p(x� ) ,

(2)ΔV(X�) = V(X�) − V(XF
�
) ,

S(X0;E0) ∶= I(X
opt

0
;E0) ;
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and pointwise semantic information of a state x0 of X over one state e0 of E at time 
t = 0 the quantity

By extending the reasoning so far, it is possible to measure the semantic information 
acquired by the system X in the dynamic interaction with the environment at a given 
time interval (see Kolchinsky and Wolpert, 2018, 10-11). The latter situation models 
what we can interpret as a stochastic behavior ‘by trial and error’ of a system in its 
environment. An example is exhibited by

a chemotactic bacterium, which makes ongoing measurements of the direc-
tion of food in its environment, and then uses this information to move 
towards food. (Kolchinsky and Wolpert, 2018, 7)

Given these initial ingredients, it is worth paying attention to the relationships 
within a communication between the pure syntactic correctness of the message 
and its semantic understanding. In defending Shannon’s Theory, Warren Weaver 
– one of its co-authors – preliminarily distinguishes the communications problem 
into three sub-problems:

Level A  How accurately can the symbols of communication be transmitted? (The 
technical problem.)

Level B  How precisely do the transmitted symbols convey the desired meaning? 
(The semantic problem.)

Level C  How effectively does the received meaning affect conduct in the desired 
way? (The effectiveness problem.)

 (Weaver, 1949, 262, italics added)

As well-known, the mathematical Theory of Communications only deals with the 
technical aspects concerning Level A; however, Weaver himself states that not 
only do the limitations found in the solutions to the first problem have effects on 
the solutions to the other two, but that most likely a theory that accounts for the 
technical-syntactic problem is a sufficient theory to address the semantic problem 
and the subsequent one that concerns effectiveness as well (see Weaver, 1949, 
277 et seq).

Kolchinsky–Wolpert model – along with the classical semantic models developed 
by game theory and economic informatics (for instance, see Morgenstern and von 
Neumann, 1944, and Polani et  al., 2001) – argue in favor of Weaver’s conjecture. 
Care must be taken, however, with the term ‘desired’ used by Weaver; in Kolchinsky 
and Wolpert’s framework, it is not permissible to assume the existence of a shared 
meaning between the living system and the environment but only of semantics 

S(x0;e0) ∶= log
p
opt

X0,E0
(x0, e0)

p
opt

X0
(x0)p

opt

E0
(e0)

.
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intrinsic to each organism. So the possibility arises of overlooking what Weaver 
(1949, 279) calls the semantic decoding problem:

the semantic problems [that] are concerned with the identity, or satisfactorily 
close approximation, in the interpretation of meaning by the receiver, as com-
pared with the intended meaning of the sender. (Weaver, 1949, 262)

Those problems are to be understood in this context as problems concerning the 
receiver’s free interpretation according to some of its intrinsic discriminants, free 
except for some phylogenetic constraints. These constraints depend within the model 
on choosing the V viability function that discriminates semantics: Weaver’s seman-
tic problem is thus expressible as follows.

Level B ′ . How precisely do the transmitted symbols convey semantic content?
In more formal terms, the semantic problem is equivalent to measuring the ratio 

of semantic information over total mutual information, which Kolchinsky and Wolp-
ert (2018, 8) call semantic efficiency:

At this point, I can consider the effectiveness problem in light of the proposed solu-
tion to the semantic problem. According to Weaver again,

the effectiveness problems are concerned with the success with which the 
meaning conveyed to the receiver leads to the desired conduct on his part. 
It may seem at first glance undesirably narrow to imply that the purpose of 
all communication is to influence the conduct of the receiver. But with any 
reasonably broad definition of conduct, it is clear that communication either 
affects conduct or is without any discernible and probable effect at all. 
(Weaver, 1949, 263)

Yet, within the present model, the adjective ‘desired’ cannot be loosely associated 
with the ‘conducts’ of the receiver either, since one cannot assume a conscious 
desiring agency by the environment on the living system. Therefore, one should 
intend as desired those behaviors of the system that ensure its viability and must 
reformulate Weaver’s effectiveness problem as follows.

Level C ′ . How effectively does the semantic content affect conduct in a way that 
ensures viability?

This problem is not trivial in our framework since one of the distinctive features 
of semantic information is that it

should be able to be ‘mistaken’, i.e. to ‘misrepresent’ the world. This emerges 
naturally in our framework whenever information has a negative viability value 
(i.e. when the system uses information in a way that actually hurts its ability to 
maintain its own existence). (Kolchinsky and Wolpert, 2018, 12)

Here, I am assuming something that may appear unwarranted: the idea that the 
semantic we are considering is the only one that stimulates the organism’s interac-
tions with the environment. Namely, I am deliberately neglecting situations in which 

(3)� ∶=
S

I
∈ [0, 1] .
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the organism attaches meaning to information in ways not directly related to maxi-
mizing its survival, for instance, when it sacrifices itself to ensure others’ survival. 
Such constraint at this level should be regarded as necessary though non-sufficient 
to represent the knowing subjects and their many possible responses in the face of 
the information they exchange with the environment.

Back for a moment to the Second Law of Thermodynamics: every interaction 
between the system and the environment – i.e., every process of exchanging infor-
mation – is not for free from the thermodynamic point of view, i.e., obtaining infor-
mation about the environment requires some system’s work.

If this work were not spent acquiring the initial mutual information, it could 
have been used at time � to decrease the entropy of the system, and thereby 
increase its viability, by [ I(X0;E0) ] [...] The benefit of the mutual information 
is quantified by the viability value [ ΔV ], which reflects the difference in 
entropy at time t = � when the system is started in its actual initial distribution 
[ pX0,E0

 ] versus the fully scrambled initial distribution [ pF
X0,E0

 ]. (Kolchinsky and 
Wolpert, 2018, 9)

Therefore, it makes sense to define the benefit/cost ratio of the mutual information

which measures a system’s ability to use information about the environment to 
maintain its viability. From the second equation in Eq.  4, in cases where the ini-
tial viability value of the mutual information is positive – that is, if the organism 
behaves in a way that maximizes its viability – one gets that having a low semantic 
efficiency � means to have a low benefit/cost ratio �.

In an intuitively understandable way, the amount of information a living system 
exchanges with its environment is directly proportional to its complexity, definable 
as its “number of factors which are interrelated into an organic whole” (Weaver, 
1948, 539). But the same cannot be said of its meaningful part. One can expect 
that the amount of meaningful information will give an efficiency 𝜂 ≪ 1 for large 
amounts of information exchanged. For a complex living system, trial-and-error 
behavior is inefficient at maximizing its viability function. It involves a very high 
exchange of information from which the organism gets a low yield of meaningful-
ness. Insofar as mentioned above, this also means that the semantic information 
embodied in the information exchanged will have little effect on the behaviors that 
ensure the system’s viability.

Semantic Efficiency and Learning

Starting from this point, I shall leave aside quantitative modeling to focus on a 
qualitative study of the adaptive mechanisms of semantic efficiency. To the cur-
rent state of my knowledge, no approach in literature has dealt with the hierar-
chy I will construct in the following with quantitative methods. The reader may 

(4)� ∶=
ΔV

I
= �

ΔV

S
,
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find suggestions to this effect in Rovelli (2018) and Surov (2022). Exploring such 
potential developments remains for future works.

Understanding how the behaviors of an organism are affected by interactions 
with the environment, i.e., studying the Level C ′ problem, falls under the inves-
tigation of those processes referred to in the literature as ‘learning.’ For com-
mon sense, a learning process is any change in a living system’s behavior due to 
an exchange of information with its environment (for instance, see https:// www. 
brita nnica. com/ scien ce/ learn ing). From Eq. 4, one finds that the effectiveness of 
information exchange in preserving the viability of an organism is related to how 
that organism renders more efficient attribution of meaning to the information it 
exchanges with the outside world. Hence, studying an organism’s learning pro-
cesses should be related to studying its strategies for making its exchanges of 
information semantically efficient. Following the thoughts of cyberneticist Greg-
ory Bateson, Evolutionary Biology tells us that

all biological systems (organisms and social or ecological organizations of 
organisms) are capable of adaptive change. [...] Whatever the system, adap-
tive change depends upon feedback loops, be it those provided by natural 
selection or those of individual reinforcement. In all cases, then, there must 
be a process of trial and error and a mechanism of comparison. (Bateson, 
1969, 278)

As argued above, a trial-and-error strategy is all but efficient beyond a certain 
threshold of organism complexity; therefore, according to Bateson, in a complex 
organism,

there is needed not only that first-order change [in its behavior] which suits 
the immediate environmental (or physiological) demand but also second-order 
changes which will reduce the amount of trial and error needed to achieve 
the first-order change. And so on. By superposing and interconnecting many 
feedback loops, we (and all other biological systems) not only solve particular 
problems but also form habits which we apply to the solution of classes of 
problems. (Bateson, 1969, 279)

Bateson’s idea is that it is possible to construct a type hierarchy among the different 
ways of learning to explain the strategies that organisms have adaptively matured to 
optimize their environmental interaction processes. Yet, for modeling of ethologi-
cal problems through Russell’s Type Theory (see Whitehead and Russell, 1963) to 
be permissible, it is a matter of testing “whether the distinction between a class and 
its members is an ordering principle in the behavioral phenomena which we study” 
(Bateson, 1968, 287). Russell says that

the division of objects into types is necessitated by the vicious-circle fallacies 
which otherwise arise. These fallacies show that there must be no totalities 
which, if legitimate, would contain members defined in terms of themselves. 
Hence any expression containing an apparent variable must not be in the range 
of that variable, i.e. must belong to a different type. (Whitehead and Russell, 
1963, 161)

https://www.britannica.com/science/learning
https://www.britannica.com/science/learning
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As Bateson states (see Bateson, 1968 and 1969), ethological evidence shows 
that, in the case of some organisms, one can not use predicative propositions that 
describe behavioral modules to explain the categories one uses to group those 
behavioral modules. Namely, a property can be simultaneously verified by a 
behavior of the organism and contradicted by a class of its behaviors to which 
that behavior belongs.

For example, an organism X that meets an unknown object Y will start explor-
ing it through a trial-and-error method. According to Kolchinsky–Wolpert model, 
one can say that interaction is successful if and only if the viability value ΔV of 
the information X obtains about Y is positive, where ΔV > 0 characterizes what is 
called in ethology a positive reinforcement. It implies that if interaction with Y 
negatively affects V(X) , the organism is supposed to treat the interaction as a fail-
ure. But this description is not adequate in the case of some organisms; for exam-
ple, mammals learn from their mistakes, and therefore, if X were to face an object 
Ỹ  similar to Y in the future, it would know how to keep away from it without hav-
ing to expend the thermodynamic cost of interaction. Yet, X will not refrain from 
behaving again by trial and error when faced with new unknown objects, namely, 
when faced with objects that it will categorize as different from Y.

This means that a failure at the level of the interactions results in success at the 
level of exploration – meaning learning – and that such success does not change 
the general pattern of future behavior. Thus, if we intend to model with a formal 
system the learning modes of X, we must consider that given an interaction (xt, et) 
between X and the environment E, it must be possible to consider some function v 
that when interpreted yields

and such that v
(
(xt, et)

)
 is simultaneously true, false, and undecidable. However, we 

want our system to be consistent, so we need to guard against the possibility that 
such functions might exist. So, we need to hierarchically distinguish propositions 
referring to interactions from propositions referring to learning that results from 
those interactions, precisely what allows us to model the problem via Russell’s Type 
Theory.

In Appendix B, I define a formal system that I call Type Theory (TT), 
grounded on the following two schemes of axioms: 

T1.  is the Principle of Abstraction – stating that for every property, there exists a 
set whose elements are precisely the elements for which such a property holds 
– constrained to apply, for every type, only for sets whose elements are tokens 
of the preceding type;

T2.  is the Extensionality Principle – stating that two sets are identical if and only 
if the same elements fall under their domain – constrained to hold only within 
any given type.

v ∶= ‘to be successful’



1 3

Efficiency in Organism‑Environment Information Exchanges:…

 Any interpretation of TT is called type hierarchy: it is a recursive collection 
T(D0) generated by a non empty set D0 , consisting of:

• the elements of D0 , which are said to be of type 0;
• the elements of Dn+1 ∶= P(Dn) = P

n+1(D0) , which are said to be of type 
n+ 1 , for all n ∈ ℕ;

where P is the power-set operator (see Hatcher, 1982, Section 4.6). It is easy to 
prove (see Hatcher, 1982, 107) that a type hierarchy is uniquely determined by 
the cardinality of D0 , regardless of the nature of its elements, and that all items of 
T(D0) are relations that can be constructed on the elements of D0 . Yet, only those 
relations whose arguments are constrained to take values among the tokens of a 
given type belong to T(D0).

Back to the exploration-in-mammals example, Bateson applies Russell’s the-
ory as follows:

(a) Changes in frequency of items of mammalian behavior can be described and 
predicted in terms of various ‘laws’ of reinforcement.

(b) ‘Exploration’ [...] is a category, or class, of mammalian behavior. [...]
(c) [...] If, as asserted in (b), ‘exploration’ is not an item of mammalian behavior 

but is a category of such items, then no descriptive statement which is true of 
items of behavior can be true of ‘exploration.’ If, however, descriptive statements 
which are true of items of behavior are also true of ‘exploration,’ then ‘explora-
tion’ is an item and not a category of items.

(Bateson, 1968, 286-287)

In general, we can assume that an organism’s behavior is modeled as a trajectory 
� from time t = 0 to some time t = � in the metric space X representing its state 
space:

Here, I am interested in formalizing the common notion of learning, that is, changes 
in X behavior due to interactions with the environment E; a behavior change is thus 
a situation in which

In particular, I first must represent the most elementary changes that occur in X 
behavior after an interaction with E, that is, the immediate reactions of an organism 
when it receives a significant stimulus.

Definition 1 Given an organism X at time t1 , an instant t0 = 0 in its past, and two 
possible behaviours �1, �2 of X such that �1(t0) = �2(t0) , and �1(t1) ≠ �2(t1) , I call 
0-learning, or a simple change in the behavior of X, the distance

� ∶ [0, �] ⟶ X

t ⟼ xt
.

pX�
(x�) ≠ pX� |X0,E0

(x� |x0, e0) .
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In the continuous case, one can consider infinitesimal time intervals and identify a 
neighborhood of x0 with the tangent vector space Tx0X , that is, with the set of ‘direc-
tions’ of trajectories based on x0 . Therefore, for � sufficiently small, one can identify 
behaviors by the directions of their derivative at t = 0 . At this point, a simple change 
has to be defined as an angle � such that

for t = 0 and for any two behaviours �1, �2 of X such that �1(0) = �2(0).

Definition 2 I call learning hierarchy the type hierarchy T(�) based on the set � of 
simple changes in the behavior of an organism X.

I then follow Bateson (1968) to make some points about what this hierarchy 
makes us understand about the phenomena it models. 

Type 0  It contains simple changes in behavior, i.e., immediate responses to envi-
ronmental stimuli: its elements model the event that an organism being 
stimulated reacts with some behavior, regardless of the different trajecto-
ries its future history will follow.

Type 1  It includes the relationships between simple changes in behavior, i.e., all 
classes that group reactions to stimuli. These model an organism’s ability 
to change its response to certain stimuli it classifies as interchangeable, 
i.e., equal. An organism that carries out type 1 learning will give at time 
t = 𝜏 > 0 an answer different from the one it gave at time t = 0 to an iden-
tical stimulus. The mammal X we met before shows evidence of 1-learning 
when avoiding interaction with Ỹ .

Type 2  It contains the classes of type 1 elements; for instance, its elements model 
a change in the organism’s response to a class of stimuli or a shift in the 
classification of stimuli itself. An organism experiences several contexts 
and classifies them as similar; if, when confronted with a subsequent con-
text of the same kind, its response is more efficient, then the organism 
is showing an instance of 2-learning. The same can be said of an organ-
ism that begins to implement different behavioral modules for contexts to 
which it previously responded in the same way. The mutual impermeabil-
ity of types also enables us to model the phenomenon whereby a single 
negative reinforcement ( ΔV < 0 ) in an interaction with the environment 
does not easily undermine type 2 classes, i.e., such occurrences are treated 
by the organism as ‘exceptions that prove the rule.’ Such a model prop-
erty accounts for what has been said about exploration in mammals, which 

� ∶= dist
(
�1(t1), �2(t1)

)
.

cos� =
⟨�̇�1��̇�2⟩
‖�̇�1‖‖�̇�2‖

,
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persist in a stochastic strategy (type 2) even after suffering a failure (type 
0). From a cognitivist point of view, we could say that the ‘ego’ in humans 
is the aggregate of specific outcomes of 2-learning, meaning that person-
ality consists of certain learned patterns of how to relate to the outside 
world.

Type 3  Thus, type 3 learning “is likely to be difficult and rare even in human 
beings” (Bateson, 1968, 307). Items of this type are classes of 2-learnings 
– for example, they model a change in shifts within the classifications of 
stimuli. Roughly speaking, we can call ‘habits’ the elements of type 1 and 
‘habit formations’ the elements of type 2. Thus, type 3 learning should be 
about a change in how one forms its habits. Any individual ontogeny is an 
instance of type 3 in the learning hierarchy; if humans were to learn how 
to juggle among classes of type 2 consciously, they would experience a 
kind of irrelevance of their ‘ego.’

Type 4  4-learning “probably does not occur in any adult living organism on this 
earth” (Bateson, 1968, 298). But since human ontogeny is an example of 
3-learning, the phylogenetic process that led to the homo sapiens species, 
combined with a specific individual’s ontogeny, is an element of type 4. 
One could ascribe unconditional reflexes to level 4 of the individual learn-
ing hierarchy since they are the outcome of the organism’s specific phy-
logeny. It is crucial to highlight that the learning hierarchy is not a chron-
ological order in the organism’s history, so it does not suggest that the 
individual gradually refines an initial trial-and-error strategy. The division 
into types has only explanatory value for the evolutionary emergence of 
abstract thinking. Bateson proposes the example of respiration, which can 
clarify the allocation between unconditional reflex and conscious act: “For 
human beings it is rather constantly true that air is present around the nose; 
the reflexes which control respiration can therefore be hard-programmed 
in the medulla. For the porpoise, the proposition ‘air around the blowhole’ 
is only intermittently true, and therefore respiration must be controlled in 
a more flexible manner from some higher center.” (1968, 279) Concepts 
such as ‘unconditional reflexes’ or ‘instinct,’ rather than having explana-
tory value, seem to represent black boxes. Instead, including the outcome 
of the organism’s specific phylogeny within its characteristic probability 
distribution provides possibilities for deeper analysis.

 It is crucial that at type 1, we made use of the idea that two stimuli at two different 
instants of time can be considered equal, i.e., given a trajectory in the product space 
X × E relative to the organism and the environment, for some � ≠ 0 there must hold

Yet Biology is not an experimental science for the very reason that it does not gen-
erally admit repeatability. That is, because of the complexity of the phenomena of 

(x0, e0) = (x� , e�) .
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interaction between organisms and the environment, one cannot find two identical 
stimuli in the history of an organism. Therefore, one could model the organism’s 
strategy as the experimental scientist’s when confronted with some experiments, 
ultimately different, of which the scientist chooses to neglect some aspects instead 
of others. In this way, the study of the class of phenomena is reduced to the study 
of its quotient modulo some equivalence relation, which cannot eventually be the 
identity.

For such a reason, Bateson introduces the concept of ‘context’ and refers to the 
phenomenon I just described as the hypothesis of its repeatability. For a framing 
within the biosemiotic field of the concept of ‘context,’ the reader may refer to Ong-
stad (2022) and Gabora and Kitto (2013).

Without the assumption of repeatable context [...], it would follow that all 
‘learning’ would be of one type: namely, all would be zero learning. [...] What 
previously we called ‘learning’ we would now describe as ‘discrimination’ 
between the events of Time 1 and the events of Time 1 plus Time 2. It would 
then follow logically that all questions of the type, “Is this behavior ‘learned’ 
or ‘innate’?” should be answered in favor of genetics. We would argue that 
without the assumption of repeatable context, our thesis falls to the ground, 
together with the whole general concept of ‘learning.’ (Bateson, 1968, 293)

Yet, a notion of learning is necessary since much of one cannot explain behavioral 
phenomena in deterministic terms based on genetics. This leads one to broad sup-
port for the validity of the T(�) model.

A Hierarchy of Semantic Efficiency

I now consider the set of possible meaningful interactions between a system X and 
its environment E at any time t

I again refer to the ergodic hypothesis mentioned in the Introduction. Namely, I 
assume that from the observer’s point of view, all the possible organism’s behaviors 
are equiprobable. The observer here possesses no knowledge about the organism. 
For Eq.  4, increasing the viability effectiveness in information exchanges implies 
increasing semantic efficiency, so every type of learning – i.e., every level in a 
hierarchy of increasing effectiveness – is connected with a level in a hierarchy of 
increasing semantic efficiency. Semantic efficiency � is the ratio of semantic infor-
mation overall mutual information; therefore – being the latter constrained by organ-
ism complexity – Eq. 3 states that the only way an organism can improve its seman-
tic efficiency is by growing the semantic information extracted for the same amount 
of mutual information.

The theory thus points out that each type of learning must correspond to a 
specific semantics, i.e., a concrete way in which the organism ascribes meaning to 
its interactions with the environment, and that these semantics are hierarchically 

B = { (xt, et) |S(xt;et) ≠ 0 } .



1 3

Efficiency in Organism‑Environment Information Exchanges:…

arranged among themselves through abstraction relationships, with a semantics 
corresponding to simple changes in behavior at the base.

Definition 3 Suppose one considers the type hierarchy T(B) , based on the set B of 
possible meaningful interactions between a complex organism X and its environ-
ment E at some time t. In that case, one can call semantic hierarchy the type hier-
archy T(SB) based on the set SB ∶= {S(b) | b ∈ B } of pointwise semantic informa-
tions of X over E.

Type 0  For any interaction b = (xt, et) between the organism X and the environ-
ment E, the 0-meaning of b is pointwise ascribed to it by Kolchinsky–
Wolpert semantics considering t = 0 : 

 i.e., it is the attribution of meaning to that information about the environment that 
ensures the maintenance of the value of the viability function.

Type 1  These are the attributions of meaning the organism implements by link-
ing the quantities of 0-meaning contained in interactions with the outside 
world. As is well known, the partitions of any set Z – i.e., the elements of 
P

2(Z) – are in a one-to-one correspondence with the equivalence relations 
on it. So, for each equivalence relation � on the set B , the 1-meaning of 
the class of an interaction b is the set of 0-meanings of the interactions 
contained in { bi | �(bi, b), i ∈ I } , namely 

 One may quantify the 1-meaning of a class [b]� by the cardinality of I, i.e., by 
the number of interactions – after b – the organism will avoid experiencing, albeit 
behaving in a viability-consistent way.

Type 2  These are the meanings the organism makes by grouping instances of type 
1; that is, they are meanings assigned to equivalence relations on B . The 
2-meaning of an equivalence relation � on B is 

 One can say that an equivalence relation � has the more 2-meaning, the greater the 
cardinality of the partition it induces on B.
 The hierarchy is, of course, not limited to type 2; indeed, one might expect the 
meanings of mathematical entities to stand at levels much higher than 2, but it 
is at this level that a gap arises between viability-consistent meanings and types 
of meanings that may ‘forget the initial goal’ of preserving V values. At level 
2, the notation also loses reference to the level 0 interaction that generated the 

S
0(b) ∶= S(xt;et) ;

S
1([b]�) ∶= {S0(bi) | �(bi, b) }.

S
2(�) ∶= {S1([b]�) | b ∈ B }.
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2-meaning, and it is possible to interpret the gap that arises at this level as the 
emergence of what we can call ‘abstract meanings.’

If the transition from type 0 to type 1 implies an increase in meaning on a like 
for thermodynamic cost, in the next step, one should note the following contra-
diction, which one should expect at each rank in the hierarchy.

Contradiction 1 For n > 1 , the amount of n-meaning of an equivalence relation con-
flicts with the amount of (n − 1)-meaning of its classes since the cardinality of the 
induced partition is inversely proportional to the cardinality of the classes.

At this point, it is worth formalizing the concept of ‘concept.’ The following 
definition is an explication of the common understanding of the term.

Definition 4 I call conceptual hierarchy the type hierarchy T(B) , and concept the 
interpretation in T(B) of any constant of any type n > 0 of TT; an n-concept is a 
concept of type n.

The generality of the hypotheses allows me to propose the conjecture that any 
concept built by a person will be subject to the constraints of the model; in par-
ticular, any n-concept will be the result of n abstractions – in the sense of TT 
– from the set B of interactions with 0-semantic content – i.e., meaningful in the 
sense of Kolchinsky and Wolpert. It means that for each person and each concept 
C thought by that person, there always exists a tree graph rooted in some past 
interaction with the environment, having C as a leaf. Asserting the existence of 
such a root does not, of course, mean giving a method for finding it; this is usu-
ally one of the tasks set by psychological disciplines.

I stress that T(B) and T(SB) are no more than explicative models for the adap-
tive genesis of concepts and by no means provide a theory of semantics in lin-
guistic communication. We are obviously to expect that communication between 
human beings violates the constraints of TT, e.g., that receiving sentences of a 
natural language could relate concepts of a person’s T(B) in ways forbidden by the 
rules of TT (see Appendix B). The model developed so far does not allow us to 
describe two human beings’ shared semantics, and thus, we cannot strictly speak 
about linguistic contexts.

Nonetheless, T(SB) enables us to intuitively account for situations in which a 
word is ‘of little significance,’ i.e. when it does not express “a difference which 
makes a difference[, that] is an idea” (Bateson, 1969, 279). Contradiction 1 mod-
els the case in which a person understands a linguistic expression as the correla-
tion of a concept encompassing many instances with concepts of an inferior type; 
in such cases, the former tends to be not very expressive. Moreover, even met-
aphors and rhetorical figures are violations of Russell’s vicious circle principle 
(see Appendix B); one understands them as finitary relations over distant types of 
T(B) which do not belong to T(B) . Yet, if T(SB) cannot represent the sense of the 
sentence
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nonetheless, it allows us to say that the sense of ‘it’s raining a lot’ can always be 
traced back to the viability-consistent meaning of past environmental interactions in 
the history of any human involved in the communication of P. I use ‘sense’ to refer 
to the semantic content conveyed by language and ‘meaning’ to speak about the ele-
ments of T(SB) . I implicitly assume a gap between them, according to Wittgenstein 
(1963), that one can mathematically justify following Harris (1991).

According to Weaver (see “Problems Concerning Viability”), any possible inter-
action b is meaningful if and only if it has an effect, i.e., if it generates a simple 
change � in the organism’s behavior. Thus, I can state that B and � have the same 
cardinality – whether continuous or countable as appropriate – that is, there is a 
bijection between the set of possible meaningful interactions and the set of 0-learn-
ings. Therefore, for what I stated before, we have that

i.e., the argument so far concerns two different instances of the same hierarchy. In 
particular, at level 1, we have a one-to-one correspondence on the set of interpreted 
1-constants:

thus, the necessity of the hypothesis of repeatability of contexts mentioned above 
implies that building a 1-concept requires the organism to overlook certain features 
of the generating interaction. Higher levels cannot overcome such omissions; each 
level yields new ones. Bueno (2022) has recently argued in favor of the context 
dependence of mathematical theorems, which are linguistic representations of high-
level concepts in the individual hierarchy. However, we must point out a contradic-
tion between the two hierarchies.

Contradiction 2 If the learning hierarchy T(�) is kept below type 5 in nature, build-
ing concepts in humans has no constraint on the degree of levels of abstraction; 
indeed, mathematics and philosophy are fields of thought in which one tends to 
ascend the types of T(B) by a great deal.

From the semantic model outlined so far, it is possible to draw some reflections 
on current Artificial Intelligence (AI) developments. Indeed, the foundation of con-
ceptual and semantic type hierarchies is provided by the work of Kolchinsky and 
Wolpert, who model the situation of a general autonomous agent, i.e.,

a far-from-equilibrium system which actively maintains its own existence 
within some environment [...]. A prototypical example of an autonomous agent 
is an organism, but in principle, the notion can also be applied to robots [...] 
and other non-living systems. (Kolchinsky and Wolpert, 2018, 2)

While current research has lost the focus it had in the middle of the last century, 
namely, to understand the functioning of processes carried out by a human mind 

P ∶= ‘it’s raining cats and dogs,’

T(�) ≡ T(B) ,

habit ⟷ 1-concept;
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to reproduce them artificially, current technologies still have as their stated pur-
pose the aim of replacing human activity with that of machines. Hence, we are 
facing a sharp discord between ambition and practice in AI research, which the 
model developed so far can help clarify.

In general, current research in AI aims to construct trainable architectures for 
recognizing the affiliation of specific objects to given concepts. The definition of 
such a recognition ability is the cornerstone around which the various algorithmic 
proposals have evolved over the past twenty years. According to the seminal work 
of Bengio (2009), the current success of the Deep Learning (DL) method lies in 
the following considerations, which at first glance appear to closely resemble the 
discourse presented in the previous section of this work.

Lower level abstractions are more directly tied to particular percepts, 
whereas higher level ones are what we call “more abstract” because their 
connection to actual percepts is more remote [...] The focus of deep archi-
tecture learning is to automatically discover such abstractions, from the 
lowest level features to the highest level concepts. Ideally, we would like 
learning algorithms that enable this discovery with as little human effort as 
possible, i.e., without having to manually define all necessary abstractions 
or having to provide a huge set of relevant hand-labeled examples. (Bengio, 
2009, 5)

In particular, “depth of architecture refers to the number of levels of composition 
of non-linear operations in the function learned” (Bengio, 2009, 6), where one 
must recognize that “the mammal brain is organized in a deep architecture [...] 
with a given input percept represented at multiple levels of abstraction” (Ibid). 
Philosophical advocacy is provided, for instance, by Niiniluoto (2022). Yet, I 
believe that the notion of ‘abstraction’ used in the definition of the DL method 
cannot properly model mammal thought’s capacity for abstraction, better rep-
resented by TT. If one attempts to recursively represent a hierarchy T(B) , one 
should not compose functions but ascend in dimension. Let’s consider, for exam-
ple, the function

which Bengio provides on page 14; if we represent it as a graph of compositions 
between the functions from the set {∗,+, sin} , we find that f(x) requires an architec-
ture of depth 4 to be learned. However, from the perspective of TT, if x, a, b are ele-
ments of B then f(x) is an element of P(B) just like sin(a ∗ x + b) and a ∗ x . In other 
words, no matter how many non-linear functions we compose, we cannot go beyond 
level 1 of the hierarchy T(B).

What we need to represent, instead, is a logical leap between types. Let’s con-
sider x ∈ B ; an element g1

x
∈ P(B) is a set of elements from B that are in some 

relation to x. Any element of P2(B) is an equivalence relation on B , which is not 
dependent on x but on an element of P(B) , such as g1

x
 . Thus, a computable hierar-

chical representation should be in the form

f (x) = x ∗ sin(a ∗ x + b)
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where the notation indicates that the nth recursive function directly depends on the 
previous one, being a class represented by the latter.

From the viewpoint of TT, the layers of DL are relationships among elements 
of B , meaning they are all 1-concepts. The semiotic analysis recently conducted by 
Muşat and Andonie (2020) on Convolutional Neural Networks may help to under-
stand how the aggregation of signs into supersigns – through what they call type I 
superization – stops at the first level of the conceptual hierarchy. The data sets with 
which an intelligent agent (IA) is fed represent sets of meaningful interactions or 
subsets of B . A model such as T(B) should thus be explicative for why AI today 
requires ever larger data sets, incomparably bigger than those needed by any mam-
mal, to construct concepts and make decisions sufficiently coherent to ensure sur-
vival. Remaining at level 1 of the conceptual hierarchy, we can say that the cur-
rent AI is not a good model of human intelligence but rather an attempt to build 
an artificial intelligence that mimics the responses, for example, that an ant’s mind 
might give to certain human stimuli. The massive extension of data sets is a highly 
thermodynamically inefficient response to complexity (see “Problems Concerning 
Viability”).

The fundamental gap is that an IA cannot invent the criteria by which to construct 
the classes of P(B) , namely the 2-concepts belonging to P2(B) . As a result, the 
IA will not even know how to proceed with the subsequent steps of a T(B) , where 
I recall that the leap from type 1 to type 2 is where the transition to abstract think-
ing occurs. An IA built upon a deep architecture can recognize whether an object 
x is similar to those other objects x1,… , xn with which it has been trained and had 
categorized in some way X = { xi | i ≤ n } unknown to the human user. However, it 
cannot generate equivalence relations on the set of x using abstraction rule 4 of Defi-
nition 9 in the Appendix B. For instance, a deep architecture that can consistently 
identify a new chair as resembling the chairs seen before – assuming it could hypo-
thetically do so an enumerable number of times – still would not possess the ability 
to employ the concept of ‘chair’ to construct the concept of ‘sitting,’ which involves 
the 2-concept

I have already highlighted how language consistently violates the Principle of 
Vicious Circle. Individual thought also frequently engages in such infractions; e.g., 
we commonly establish relationships between concepts of different types, as in the 
case of the concern that an earthquake (any instance of the ‘earthquake’ concept) 
could destroy my house (this specific house here, not just any house). However, the 
fact that TT represents solely the conceptualization of an ideal individual rather than 
that of real human beings does not mean that one can construct a sound model of 

x ↦ g1
x

= { y ∈ B | g1 (x, y) }
g1
x
↦ g2

g1
x

= { ȳ ∈ P(B) | g2
(
g1
x
, ȳ
)
}

g2
g1
x

↦ g3
g2
g1x

= { 𝜎 ∈ P
2(B) | g3

(
g2
g1
x

, 𝜎
)
}

⋮

‘∀x, x is a chair.’
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thought without taking it into account: violating a regulatory principle is not equiva-
lent to not possessing it at all.

Knowledge and Semantics

Thanks to the models constructed through TT, I can better justify a notion of 
‘knowledge’ in humans as an outcome of learning processes and as mental coordi-
nation of classes of phenomena. However, I want to formalize that there are several 
senses with which the verb ‘knowing’ is used (for instance, see https:// www. dicti 
onary. cambr idge. org/ dicti onary/ engli sh/ knowl edge). We commonly refer to knowl-
edge in terms of abstract thinking as getting a concept of a phenomenon – such as a 
theory, a person, a city, etcetera; otherwise, we use the same word to refer to percep-
tual experiences of physical reality. Far from confusing, one can easily model such a 
semantic dichotomy from the hierarchies I have just constructed.

However, Contradiction 2 claims that if one wants to model concept understand-
ing, one must dispense with the idea that beyond level 4, knowledge can link to 
actual learning processes, that is, to n-type changes in the behavior of the knowing 
subject, for n > 4 . By this, of course, I do not mean that the study of a mathematical 
theory does not affect the student’s behavior, but that at the very best, one can expect 
that the deepening of, say, Topology will change the way the student forms the hab-
its of relating to the world, and not changing how the student intervenes in the mode 
of shaping those habits (see the argument in “Semantic Efficiency and Learning”).

Therefore, one must tie a definition of knowledge to T(B) and not to T(�) . I men-
tioned that only a succession of omissions allows the individual to construct an ele-
ment of T(B) of type higher than 0. From a gnoseological perspective, one must 
interpret such omissions as an ‘absence of certainty’ in the individual’s representa-
tion of phenomena. So cognition can aspire to be sure only if it does not involve 
any concept, i.e., whether it is the perception of a meaningful interaction b ∈ B in 
bi-univocal correspondence with a 0-learning � ∈ �.

Such considerations recall the well-known Laplace’s epistemological approach, 
who, in the introduction to his A philosophical essay on Probabilities, states:

Given for one instant an intelligence which could comprehend all the forces 
by which nature is animated and the respective situation of the beings who 
compose it an intelligence sufficiently vast to submit these data to analysis [...] 
for it, nothing would be uncertain and the future, as the past, would be present 
to its eyes. The human mind offers [...] a feeble idea of this intelligence. [...] 
All these efforts in the search for truth tend to lead it back continually to the 
vast intelligence which we have just mentioned, but from which it will always 
remain infinitely removed. (Laplace, 1814, 4)

The idea one can recover from Laplace’s philosophy is that even for deterministic 
phenomena – those for which trajectories that evolve from states close to the ini-
tial time always stand at a finite distance on the state space – one must necessarily 
express human knowledge of them in probabilistic terms. Of course, the ontology 
of Quantum Mechanics even obliterated the theoretical possibility of the so-called 

https://www.dictionary.cambridge.org/dictionary/english/knowledge
https://www.dictionary.cambridge.org/dictionary/english/knowledge
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‘Laplace’s demon,’ capable of knowing the entire history of the universe from 
knowledge of its conditions at a given time. Nevertheless, as for deterministic phe-
nomena, current science still relies on probability theory in purely epistemic rather 
than ontological terms. Regardless of the deterministic or non-deterministic nature 
of the phenomena under knowledge, I am only interested in underlining the cogni-
tive processes of both classes as having a common probabilistic nature.

The approach with which de Finetti founds Probability Theory easily accounts for 
the necessities of what I am saying here. According to his subjectivist proposal,

notion of probability is relative: the fact that two cases appear equally prob-
able depends on which circumstances are known or unknown to us. (de Finetti, 
1929, 12, translation by the author)

Namely, he identifies probability attributions to phenomena with subjective expecta-
tions of their occurrence. Reversing the terms of this identity, we get that the things 
we know depend on the probability that certain events may occur. In taking this 
approach, it is possible to define knowledge, which, of course, already assumes that 
one knows what probability is and that a theory of it does not rest on subjectivist 
grounds. In what follows, I will implicitly assume Kolmogorov’s formal definition 
as the theoretical foundation of my argument.

It is now worthwhile to give a precise statement of the notion of phenomenon as 
a string of events (Y1 ≐ y1j ),… , (Yn ≐ yn� ) , where (Yi ≐ yij ) indicates that a physical 
system Yi is at some time in its state yij , where i ∈ I and j ∈ J for some index sets 
I, J. Based on the latter, I can give the following definition.

Definition 5 I call knowledge about a physical system the assignment of a probabil-
ity distribution to its evolution, and knowledge of a phenomenon the assignment of a 
probability value to its occurrence.

I stated above that a good definition should depend on the elements of T(B) ; this 
is guaranteed by the Joint Probability Theorem, which I quote from de Finetti’s 
words:

What is the probability of event E after experience led me to know the set of 
circumstances A? If, before I knew the outcome of the complex of circum-
stances A, it was p the probability that event E and circumstances A would 
occur, and q the probability that circumstances A would occur, the probability 
of E conditional on the occurrence of circumstances A is p/q. (de Finetti, 1929, 
35-36, translation by the author)

That is to say: P(E|A) = P(E ∩ A)∕P(A) . In particular, we can interpret the set of 
circumstances A as a subset of elements of T(B) . Indeed, the occurrence of the 
circumstances A implies that a knowing subject X perceives some determinations 
of A and includes these perceptions among the instances of some of its particu-
lar concepts. Thus, such a definition of knowledge is not only bound to a system 
object of knowledge Y but also presupposes that one has fixed a system-subject 
X and its conceptual hierarchy. I emphasize that the definition is not concerned 
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with whether the future behavior of Y will verify X’s expectations; in fact, we also 
wish to expect cases in which X’s knowledge of Y turns out to be ‘fallacious,’ i.e., 
cases in which the actual behavior of Y has received low or null probability from 
X. What matters in this context is to state that X has nonzero knowledge of Y if it 
‘coherently’ expects certain behaviors of Y to occur with different probability val-
ues between them. Following de Finetti, I consider X to be consistent in its evalu-
ations if it behaves according to the formal rules of the calculus of probabilities.

The calculus of probability is the logic of the probable. Just as formal logic 
teaches how to deduce the truth or falsity of some consequences from the 
truth or falsity of some premises, the calculus of probability teaches how to 
deduce the greater or lesser likelihood or probability of some consequences 
from the greater or lesser likelihood or probability of certain premises. [...] 
one can show that the well-known theorems of the calculus of probability 
are necessary and sufficient conditions for the opinions of a given individual 
not to be inherently contradictory. (de Finetti, 1930a, 2, translation by the 
author)

When considered backward, de Finetti’s foundational proposal renders a genuine 
model for actual individuals’ decisions:

From this point of view, the calculus of probabilities is truly assimilable 
to experimental science. [...] In the experimental sciences, one replaces 
the world of sensations with a fictitious world in which magnitudes have 
an exactly determinable value; in the calculus of probabilities, I replace 
my vague and elusive state of mind with that of a fictitious individual who 
knew no uncertainty in judging the degrees of its confidence. (de Finetti, 
1929, 41, translation by the author)

A quantitative measure of knowledge should thus vary between a minimum value 
of 0 if X associates to Y uniform probability distribution and a maximum value 
if the distribution is degenerate or Dirac, centered in some element of the space 
of states of Y. Taking back the information-theoretic framework, such a request 
brings up the notion of redundancy, for which I can state the following definition, 
where X plays both roles of member of the observed joint system and observer.

Definition 6 I define the amount of knowledge that a complex organism X has 
about a system Y as the redundancy of information exchanged between X and Y in 
dependence on the probability distribution pY attributed by X to the evolution of Y; 
i.e.

where pX,Y and pX are the joint distribution and the marginal distribution of X 
respectively, and HpZ

 is the entropy of the system Z with distribution pZ (see Eq. 1).

�(pY ) = 1 −
HpX,Y

(X, Y)

HpX
(X) +HpY

(Y)
,
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I verify that the definition is consistent with the above. I first consider the min-
imal knowledge case, that is, the case in which the marginal distribution of Y is 
uniform. In this case, X and Y are completely independent, i.e., the joint distribu-
tion pX,Y is the product of the marginals and thus

Instead, in the case where Y receives from X a probability distribution with sup-
port only around a single event y0 , we obtain that HpY

(Y) = 0 , and the maximum 
redundancy

I emphasize that the amount of knowledge X has about Y reasonably increases when 
the uncertainty in the behavior of X decreases if the behavior of Y is known and 
behaves inversely for freedom of choice in the behavior of X. In the degenerate case, 
only these quantities affect the knowledge that X has about Y.

At this point, I have a definition of the knowledge that X has about Y as the 
attribution of the probability distribution pY to the latter’s behavior. I have 
defined the concepts of X as abstractions belonging to T(BX) , built up from mean-
ingful interactions. The two models – cognitive and semantic – tie in if one con-
siders that from X’s perspective, for every physical system Y, there exists a type 1 
instance of its conceptual hierarchy; namely, Y is identifiable with the abstraction 
that X makes from some meaningful interactions b = (x, y) for some y ∈ Y  . From 
X’s perspective, Y is a class of meaningful interactions; that is, it is a set of possi-
ble meaningful interactions that X considers to have in common the characteristic 
of ‘being interactions with the same system Y.’ Therefore, within the framework 
of my semantic model, I can give the following definition.

Definition 7 Given a physical system Y and a knowing subject X, I call representa-
tion of Y for X the 1-concept 

[
(x, y)

]
�Y

∈ T(BX) , where (x,  y) is any meaningful 
interaction of X with Y, and �Y is the equivalence relation that discriminates interac-
tions with Y within BX.

In this formulation, I have limited myself to drawing general consequences from 
the hierarchy T(B) ; I expect future works to give a better hierarchical construction 
of knowledge, too. However, the above is sufficient for my purposes here, for I can 
model the understanding of an abstract phenomenon as the assignment of a shared 
probability distribution to all instances of the concept that the subject constructs in 
its own T(B) . Indeed, the subjectivist approach in Probability Theory allows me to 
account for the informal assumption of ‘repeatability of contexts’ noted by Bateson 
(see the discussion above), as the notion of ‘repeatable contexts’ can be formalized 
through de Finetti’s notion of exchangeable events.

�(pY ) = 1 −
HpX

(X) +HpY
(Y)

HpX
(X) +HpY

(Y)
= 0 .

�(pY ) = 1 −
HpX|Y

(X|Y)
HpX

(X)
.
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One says events Ei (i = 1, 2,… ; in finite or infinite numbers) to be exchange-
able if [...] the probability in a problem concerning n of them does not vary no 
matter how they are chosen and permuted. (de Finetti, 1969, 56, translation by 
the author)

With such a definition, de Finetti can express an alternative notion to ‘independ-
ent events’ and, through his Representation Theorem (for a mathematical discussion, 
see de Finetti, 1930b), he can build a bridge from the subjectivist approach toward 
the formal results of classical frequentist setup. In my model, this theorem accounts 
for the fact that whatever probability we initially associate with a phenomenon,

after a large number of trials, our state of mind is almost entirely determined 
by frequency. Of the two factors, initial opinion and experience, the second 
influences with increasing weight and generally becomes entirely preponder-
ant with increasing numbers of trials. (de Finetti, 1929, 38, translation by the 
author)

I.e., the more interactions between X and Y, the more knowledge X has of Y and the 
more instances X places below the domain of its representation of Y.

In the framework constructed so far, I can better clarify the common-sense defi-
nition given in the Introduction by the hierarchy of learnings due to environmental 
interactions, i.e., what I model here as a shift in the attribution of probability distri-
bution to systems.

Definition 8 A cognitive process is one in which a knowing subject switches from 
attributing some probability distribution to a system to attributing a second one 
characterized by a higher amount of knowledge. I.e., a process that increases the 
number of instances below the individual’s representation of that system.

Conclusions

Within the Thermodynamics of living systems framework, I followed Kolchinsky and 
Wolpert’s proposal to identify basic semantics shared by all organisms in their neces-
sary information exchanges with the environment. Through a study of the communica-
tion problems posed by Weaver, I came to model the phylogenetic problem of increas-
ing the efficiency of environmental interactions in complex organisms, that is, the 
problem of optimizing the effect that information exchange has on organism behavior.

A change in behavior due to an interaction with the outside world is what we call 
learning, i.e., the historically achieved way in which the phylogeny of complex species 
has addressed Weaver’s effectiveness problem. Following Bateson’s insights, I built a 
hierarchy of modes of learning modeled after Russell’s Type Theory. An explication 
of adaptive history resulted, which allows complex organisms to deal effectively with 
different classes of phenomena by constructing concepts. Thus, I proposed a hierarchy 
of semantic types, which models all possible forms of meaning as classes of mean-
ings. Such a hierarchy has no explicative value for any specific concept, but it provides 
a necessary condition; thus, it highlights some profound theoretical gaps between the 
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current approach followed by AI research and the functioning of the mind in mammals. 
My thesis is that we need a definition of ‘abstraction’ akin to the one proposed by Type 
Theory and that not every tree-like structure is a good representation of cognitive pro-
cesses. Current AIs can learn how to abstract from items to 1-concepts but are not able 
to mime the way knowing subjects decide to miss classes of details, classes of classes 
of details, and so on.

Therefore, a good definition of ‘knowledge’ must account for the increasing loss 
of certainty as the degree of abstraction of its objects increases. Hence, as soon as 
it ceases to be perceptual knowledge and becomes knowledge of concepts, one must 
define knowledge in probabilistic terms following Laplace’s approach. So, I pro-
posed using Probability Theory as a Gnoseological theory, that is, as an abstract 
model of actual human phenomenon. By this model, following de Finetti’s subjec-
tivist approach, one studies the behaviors of an imaginary individual who attempts 
to make consistent predictions about the world of phenomena. Thus, an ideal indi-
vidual assigning probabilities to the systems’ behavior represents the human effort 
of knowing.

To conclude, one must define a cognitive process as the shift from one probabil-
ity attribution to another, which raises the value of some measure of knowledge. I 
proposed a measure to be redundancy in information exchange between the know-
ing subject and object of knowledge. Thus, any cognitive process cannot be objec-
tive but has to be a subjective attribution of probability to classes of phenomena of 
reality, where the subject groups such phenomena by quotienting the set of interac-
tions with the environment modulo equivalence relations bound to various types of 
learning.

Appendix A The Kolchinsky–Wolpert Model

As I stated, the viability function of X at time � is the quantity 
V(X�) =

∑
x�
p(x�) log p(x� ) , where p is the marginal distribution of X, and xt is a 

particular outcome of random variable Xt representing the system X at time t (see 
Kolchinsky and Wolpert, 2018, 6). I recall that if a joint system (X1,X2) has joint 
distribution pX1,X2

 , then the two marginal distributions are pXi
(xi) =

∑
xj

pX1,X2
(x1, x2) , 

for i, j = 1, 2 and i ≠ j.
Kolchinsky and Wolpert call actual distribution the joint distribution pXt ,Et

 of 
trajectories of the joint system (X, E) over time t = 0 to t = � (2018, 7), and inter-
vene in the X part of the joint system with a counterfactual method to measure the 
effects of changes on the rest of the system. Namely, they study modifications on 
the joint distribution function, which shuffle away the mutual information between 
X and E, to identify a threshold below which the viability of the scrambled system 
is lower than that of the actual system. Mutual information I(X;E) between X and E 
admits minimum 0 value if X and E are independent random variables, that is when 
pX,E = pX ⋅ pE . So, one can assume that an intervention such as

F ∶ pX,E ⟼ pX ⋅ pE
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is the intervention on the distribution of (X, E), which maximizes mutual informa-
tion destruction. Therefore, the initial viability value ΔV(X�) of mutual information 
between X and E defined by Eq. 2, is the difference at time � between the viability 
of X if the distribution of (X, E) at time t = 0 is the actual ditribution pX0,E0

 , and the 
viability of X if the distribution of (X, E) at time t = 0 is F(pX0,E0

) = pX0
⋅ pE0

 (Kol-
chinsky and Wolpert, 2018, 7).

To discern the meaningful information carrying ΔV(X�) , the two authors intro-
duce the set of deterministic endofunctions on the states of E. The procedure they 
use is said of coarse-graining on the conditional distribution pX0|E0

 ; roughly speak-
ing, it consists of considering all functions of the possible outcomes of E – depend-
ing only on those outcomes and not, for example, on time – that act by exchanging 
or identifying their inputs. Given a deterministic function �∶ E → E , one can define 
the intervened distribution induced by � as the joint distribution

where

As done above, one can rename X�
�  the system X at time t = � if (X, E) evolved with 

initial joint distribution p�
X0,E0

 . I point out that 
(
X0|�(E0)

)
 is independent of E0 , and 

from the point of view of X two states e0 and e′
0
 such that �(e0) = �(e�

0
) are indistin-

guishable. That is, X0 has only information about �(E0) and not about E0.
Therefore one can define the optimal intervention popt

X0,E0
 as the intervened distri-

bution that holds the following conditions: 

1. p
opt

X0,E0
∈

{
p
�

X0,E0

||||
I(X

�

0
;E0) = min

�∈Φ
I(X

�

0
;E0)

}
,

2. V(X
opt
� ) = V(X�),

where Xopt

t  is the system X at time t if (X, E) evolved with initial joint distribution 
p
opt

X0,E0
 (see Kolchinsky and Wolpert, 2018, 8). By such a definition, any further inter-

vention on popt
X0,E0

 would change the output of V , i.e., all the mutual information con-
tained in popt

X0,E0
 causally contributes to X’s viability at time t = �.

Appendix B The Russell’s Type Theory

In this appendix, I will present the fundamental theory with which I formalized Bate-
son’s insights. In particular, I will refer directly to the exposition that philosopher and 
mathematician William Hatcher (1982) gives of such a theory and its history. Contem-
porary Mathematical Logic has somewhat forgotten Russell’s Type Theory in favor 
of the set theory approach inaugurated by Zermelo and Fraenkel. Both theories have 
historically developed to establish consistent logical foundations for the mathematical 

p
�

X0,E0
∶= pX0|�(E0)

⋅ pE0
,

pX0��(E0)

�
x0��(e0)

�
=

∑
e�
0
∶�(e�

0
)=�(e0)

pX0,E0
(x0, e0)

∑
e�
0
∶�(e�

0
)=�(e0)

pE0
(e0)

.
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structure, that is, to correct the approach of Frege’s “Grundgesetze der Arithmetik” 
(1893), which hides the contradiction known as Russell’s antinomy. One can formu-
late the latter as follows: if one considers the set y defined by the property x ∉ x , y 
should be the set of all sets that are not elements of themselves. One may ask if y does 
belong to itself. By the law of excluded middle, either it does or not. If it does, then 
y ∈ { x | x ∉ x } and so y must satisfy the defining property of the set y; i.e., it does not 
belong to itself. On the other hand, if y does not, then y satisfies the defining property 
of y and is thus an element of itself (see Whitehead and Russell, 1963, 60).

One of Frege’s fundamental insights is recognizing that when we create concepts 
– or properties – we might want to express predicates about them. For instance, we 
construct the property of ‘being a chair,’ and we want to say that ‘there is some-
thing that has the property of being a chair,’ meaning ‘there is a chair.’ In such sen-
tences, we are not predicating the property but objectifying it, i.e., nominalizing the 
predicate (see Frege 1892 and 1893). In overcoming Russell’s antinomy, the Type 
Theory approach retains Frege’s aim of formalizing that part of abstract reasoning, 
which Imre Lakatos calls ‘quasi-experience’ (1978). According to the latter, as the 
experimental sciences, Mathematics grows by explicating phenomena of thought 
in a quasi-empirical way. He argues that behind the definition of a mathematical 
concept lies an accidental choice due to unformalized thinking referring to a set of 
non-mathematical objects. On the other hand,

Zermelo’s system is more directly concerned with mathematics and the needs of 
mathematical structures [...]: Mathematics is (we believe) consistent. Thus, if we 
give a precise account of the intuitive use of sets as mathematicians use them, we 
shall have an adequate and correct foundation. [...] we observe that mathemati-
cians do not normally use such sets as ‘the set of all sets’ or the ‘set of all sets not 
elements of themselves’. We might contend that these contradictory notions are 
not really valid mathematical objects at all. (Hatcher, 1982, 135)

I am not concerned with the foundations of mathematics here; therefore, Russell’s 
approach, although more uncomfortable and in some ways a failure concerning 
meta-mathematical purposes, better addresses what I need. As mentioned, the 
idea behind Type Theory is to build an axiomatic theory that prohibits antinomies 
due to self-reference while maintaining Frege’s Law of Courses of Value (Frege, 
1893). One can state the latter as follows: given any property P, there exists a set 
y such that for all x, x is in y if and only if x satisfies the condition P; i.e.,

Therefore, it is to impose the following constraints:

‘Whatever involves all of a collection must not be one of the collection;’ 
or, conversely: ‘If, provided a certain collection had a total, it would have 
members only definable in terms of that total, then the said collection has 
no total.’ We shall call this the ‘vicious-circle principle,’ because it ena-
bles us to avoid the vicious circles involved in the assumption of illegitimate 
totalities. (Whitehead and Russell, 1963, 37)

∃y∀x
(
x ∈ y ⟺ P(x)

)
.
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Hereafter, I refer to the more recent formulation due to Wiener and Kuratowski in 
the version reported by Hatcher (1982), which can be expressed through the notation 
of Set Theory, closer to the contemporary reader’s taste.

Definition 9 I call Type Theory (TT) the formal system in which

• the language is that of set theory plus the sets of symbols {xn
i
|i, n ∈ ℕ} , 

{an
i
|i, n ∈ ℕ} for variables and constants, respectively;

• the well-formed formulas (wffs) and terms are define as follows: 

1. {xn
i
}i∈ℕ , {an

i
}i∈ℕ are terms said to be of type n;

2. ‘xn
i
∈ xn+1

j
 ’ is a wff;

3. if P,P′ are wffs, then ¬P and P ∨ P� are wffs;
4. if P is any wff and x is any variable, then ‘ ∀xP(x) ’ and ‘ ∃xP(x) ’ are wffs;
5. if P(xn

i
) is a wff containing xn

i
 free, then ‘ {xn

i
|P(xn

i
)} ’ is a term of type n + 1.

• the axioms are the following schemes: 

  T1.  ∃xn
i
∀xn−1

j

(
xn−1
j

∈ xn
i
⟺ P(xn−1

j
)
)
,

  where xn
i
 does not occur in the wff P(xn−1

j
) , which contains the variable xn−1

j
 free; 

T2.  ∀xn
i

((
xn
i
∈ xn+1

j
⟺ xn

i
∈ xn+1

�

)
⟹

(
xn+1
i

= xn+1
�

))
;

• the rules of inference are the natural deduction rules (for instance, see Hatcher, 
1982, 43-44), with the constraint that only variables and terms of a given type 
can be substituted.

I emphasize that the theory as defined cannot prove arithmetic because its axioms 
do not allow the existence of ℕ to be established; to do so, an axiom of infinity must 
be added to TT. As mentioned, the present exposition has no foundational purposes, 
and I state a sufficient theory for my argument.

Remark I make some observations on the last definition.

1. The scheme T2 constrains the Extensionality Principle – stating that two sets are 
identical if and only if the same elements fall under their domain – to hold only 
within any given type.

2. The operation described by rule 4 states a principle of abstraction; i.e., it is a 
method for constructing concepts.

3. The wffs formalize the intuitive Frege’s notion of ‘property;’ in particular, the terms 
defined by rule 5, and whose existence is guaranteed by T1, model Frege’s operation 
of ‘objectivization’ of ‘concepts,’ that one needs to ‘speak about concepts.’

With Axiom T1, we thus have a new version of the Law of Courses of Value that 
only holds within any given type.
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Principle (AbstrAction) Given a type, for any property P, there exists a set y of this 
type such that for all x of the preceding type, x is in y if and only if x satisfies P.
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