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THE METHOD OF THOUGHT EXPERIMENTS:
PROBABILITY AND COUNTERFACTUALS *

The method of thought experiments pops up in Counterfactuals, section
3.2. Lewis considers the idea that the assertable counterfactuals are
those whose consequent follows from the supposition of the antecedent,
together with further unstated premises thought to be cotenable with
it:

Imagine that you somehow came to know the antecedent for certain and
reorganized your system of beliefs under the impact of this new knowledge:
the beliefs you would retain are the ones you regard as cotenable with the
antecedent. The problem of cotenability then reduces, as Mackie observes,
to the familiar problem of induction: how should one’s system of beliefs
change under the impact of an exogenous piece of new knowledge?
But the method of thought experiments is wrong. [...] There is no reason
at all why my most probable antecedent-worlds should be the same as
the antecedent-worlds closest to my most probable worlds. The method
of thought experiments gives me the character of the former worlds, but
the assertability of counterfactuals depends on the character of the latter
worlds.
Perhaps I have considered the wrong thought experiment; the right one
is to add your antecedent to your system of beliefs not as if it were an
item of new knowledge, but simply as a counterfactual supposition. That is
the right thing to do, I agree, but it is unhelpful to say so. For what is
the thought experiment of adding φ to your beliefs as a counterfactual
supposition? I suppose it is nothing else than the exercise of deciding
which counterfactuals with the antecedent φ you believe. (Lewis 1973,
70–2)

Indeed, Lewis starts by considering the wrong kind of thought ex-
periment for the assessment of counterfactuals: the right one involves
taking the antecedent φ as a counterfactual supposition. But, contrary
to what he claims, this is not quite the same as the exercise of decid-
ing which counterfactuals with antecedent φ one believes or accepts.
Such an exercise is given by counterfactual supposition, plus one fur-
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ther ingredient which, once added, will shed light on the acceptability
of counterfactuals.1

A simple counterfactual ‘φ > ψ’ (‘If it were/had been the case that
φ, then it would be/have been the case that ψ’) has no counterfactuals
nested in φ or in ψ. We are after their assessment and acceptability
conditions.2 What is acceptability? One may take it just as believability
(Douven 2016, ch. 4). However, we will consider situations where these
may come apart. For we’ll make comparisons with the acceptability of
indicatives (‘φ→ ψ’, ‘If it is the case that φ, then it is the case that ψ’).
And if, as Adams (1975), Edgington (1995), Bennett (2003) think, these
do not express propositions and lack truth values, then one should not
speak of believability for them: to believe something is to believe it is
true.

Why acceptability rather than assertability? We take acceptance as
a mental state, assertion as a linguistic act expressing acceptance or
belief, and we focus on the mental state: we are after a cognitive phe-
nomenon, not the pragmatics of its communication. We accept in the
privacy of our head. So acceptability is not subject to social norms the
way assertability is: one may find something quite acceptable or believ-
able, but inappropriate to assert in a conversational context because
it would be weird, an insensitive thing to say, or so. We will also refer,
to draw parallels with counterfactuals, to some experiments concerning
indicatives which have been carefully designed in terms of acceptability,
not assertability.

Why only simple counterfactuals? One reason is practical: below, we
come up with a probabilistic logic to reason about the (un)acceptability
of counterfactuals. Doing that for simple counterfactuals was com-
plex enough: we resort to a probabilistic belief update different from
Bayesians’ favourite i.e. conditionalization, and we endow our mod-
els with an algebraic structure. This is new logical territory: while the
interactions of conditionals with probabilities have been formally inves-
tigated at least since the groundbreaking work of Adams (1966, 1975,
1998), most accounts only make use of conditional probabilities. They

1. So we borrow the expression ‘method of thought experiments’ from Lewis, to use his
label for candidate procedures for the assessment of counterfactuals. But of course there
are broad connections betweens counterfactuals and thought experiments in science and
philosophy, explored e.g. in (Williamson 2007; Shaffer 2017). We’ll get back to this.

2. We are actually after something more restricted: our primary way of assessing –
via counterfactual supposition. We sometimes accept a counterfactual just by taking on
board someone’s testimony. But we take this to be a secondary way, parasitic on the
primary: Williamson (2020), ch. 2, has a similar distinction, and dependence, between
primary (via a suppositional procedure) and secondary (via testimony) ways of assessing
indicatives.
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also do not embed an algebraic component. So we made our life easier
by not working with nested counterfactuals.

Another reason is methodological: one defeasible test for an account
of the acceptability conditions of counterfactuals is, we submit, how well
it matches various intuitive acceptability judgments. But with nested
counterfactuals such judgments may fail to provide clear verdicts. This
is not unexpected: to the extent that we assess counterfactuals suppo-
sitionally, nested counterfactuals may have us engage in suppositions
within suppositions; these may induce more cognitive strain and diver-
gent verdicts than plain suppositions. But with simple counterfactuals,
at least for certain relevant cases we will discuss, intuitions speak with a
uniform voice, thus being harder to explain away via some error theory
– or so we argue below.

We do not stick with simple counterfactuals because we believe they
are not freely embeddable, as some think, as a consequence of Lewis’
and others’ celebrated triviality results concerning their probabilities
(Lewis 1976; Hájek 1989). Analogous triviality results for counterfactu-
als have been produced (Leitgeb 2012; Williams 2012). But our account
will be triviality-proof.

i. suppositions

Suppositional accounts of indicatives are popular in philosophy (Edg-
ington 1995) and psychology (Evans and Over 2004; Oaksford and
Chater 2010). They are inspired by Ramsey’s footnote:

If two people are arguing ‘If p will q’ and are both in doubt as to p, they are
adding p hypothetically to their stock of knowledge and arguing on that
basis about q; so that in a sense ‘If p, q’ and ‘If p, ¬q’ are contradictories.
We can say that they are fixing their degrees of belief in q given p. (Ramsey
1990, 155n)

(What we now call) the Ramsey Test links our assessment of condition-
als to the update of our prior beliefs in the light of new information –
except that instead of actually getting the news online, we just imag-
ine getting them, in ‘offline mode’ (Williamson 2016). Suppositional
thinking, then, must work as a kind of simulated belief revision gov-
erned, just as its real counterpart, by a maxim of minimal alteration:
we change our beliefs as little as possible, compatibly with the need to
accommodate the supposition.

Matching the distinction between the two kinds of conditionals, it
is common in the literature (Joyce 1999; Leitgeb 2012, 2017) to distin-
guish between indicative supposition (imagining how things are like if
φ is the case) and subjunctive or counterfactual supposition (imagining
what things would be or have been like if φ was or had been the case).
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Lewis’ discussion of the method of thought experiments in Counterfac-
tuals is aimed as showing that a key difference between the two lies in
which beliefs are cotenable in the two modes. The first method gives
the wrong kind of thought experiment for the assessment of counter-
factuals precisely because it delivers the wrong verdict on cotenability.
Section 3.2 repeats the example famously given at the start of the book:

1. If Oswald did not kill Kennedy, someone else did.

2. If Oswald had not killed Kennedy, someone else would have.

We can assess both by supposing the antecedent and wondering
about the consequent. But we accept (1) and reject (2) because, when
we suppose indicatively that Oswald has not killed Kennedy we retain
as cotenable our belief that Kennedy was actually killed – and so it
must have been someone else, so (1) must be ok. When we suppose the
same thing counterfactually, we relinquish that belief and find it plausi-
ble that nobody else kills Kennedy in the counterfactual scenario – so
(2) must not be ok.

Suppositional accounts take indicative supposition as governed by
conditionalization (Adams 1975; Edgington 1995; Bennett 2003; Evans
and Over 2004). But if indicative and counterfactual supposition differ,
what is the latter governed by? Lewis gave the answer three years after
the publication of Counterfactuals, in the very same paper in which he
came up with the triviality results for the probabilities of indicatives: it
is governed by a procedure from which conditionalization differs just as
looking at ‘the most probable antecedent-worlds’ differs from looking
at ‘the antecedent-worlds closest to the most probable worlds’.

ii. imaging

Take a finite set of worlds W on which a total closeness ordering is
defined, as per the conditional logics of Stalnaker (1968) and Lewis
(1973). When Lewis (1976) introduced the procedure at issue, imaging,
he followed Stalnaker in assuming that for each w and φ there is a
single closest φ-world, wφ. A selection function f : W × P(W ) 7→ W
outputs, for each w ∈ W and |φ| ⊆ W (|φ| being the truth set of φ), the
relevant wφ. Given a probability distribution π over W , the image πφ of
π under φ is defined: for all w1 ∈ W , πφ(w1) :=

∑
w:wφ=w1

π(w). The
probability of each w is transferred to its closest φ-world wφ. Because
wφ may be the closest world to more than one world, one adds up the
probabilities of all of those worlds. Each φ-world keeps the probability it
had before, and may gain probabilities transferred from non-φ-worlds.
Probabilities are only moved around but not created or destroyed, so
πφ is a probability distribution when π is. We then define, as usual, the
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probability of a sentence ψ as the sum of the probabilities of the worlds
where ψ is true, so πφ(ψ) :=

∑
w1∈|ψ| π

φ(w1).
Both imaging and conditionalization comply with the idea of minimal

change governing suppositions – but they are minimal in different ways:

Imaging π on φ gives a minimal revision in this sense: unlike all other revi-
sions of π to make φ certain, it involves no gratuitous movement of prob-
ability from worlds to dissimilar worlds. Conditionalizing π on φ gives
a minimal revision in this different sense: unlike all other revisions of π
to make φ certain, it does not distort the profile or probability ratios,
equalities, and inequalities among sentences that imply φ. (311, notation
adjusted)

The simple Lewisian example illustrating how imaging πφ(ψ) differs
from conditionalization π(ψ|φ) goes thus: say we have three equiprob-
able worlds w,w1,w2 so the probability of each one is 1/3. w1 and w2

make φ true while w does not. w1 is closer to w than w2. When we revise
by conditionalizing on φ, we kick out w and renormalize, distributing
the probabilities uniformly so π(w1|φ) = π(w2|φ) = 1/2. Instead, imag-
ing makes use of closeness: all of w’s probability is transferred to w1,
thus πφ(w1) = 2/3 while πφ(w2) = 1/3.

Here is how the two differ in cotenability: Gärdenfors (1982) proved
that conditionalization, unlike imaging, has a property, conservativity,
which, phrased in terms of supposition, goes thus: when one supposes
indicatively that φ and one is certain of χ for a cotenable χ, i.e.,
π(χ) = 1, then also π(χ|φ) = 1. So when one wonders what is the
case if Oswald did not kill Kennedy and one is certain that Kennedy
has been killed, one will retain that certainty under the supposition –
thus, indicative-Oswald (1) sounds ok. Imaging is not conservative: χ
may become uncertain when one supposes that φ counterfactually. So
when one wonders what would have been the case if Oswald had not
killed Kennedy, one may relinquish one’s certainty that Kennedy was
killed – thus, counterfactual-Oswald (2) does not sound ok.

Thought experiments and counterfactuals are involved in the assess-
ment and revision of scientific theories. For interesting works on the
subject, one can look at Shaffer (2001, 2012), which connect the ideal-
isation of scientific theories to counterfactuals dealt with in Lewisian-
Stanakerian fashion: Shaffer proposes that counterfactuals capture the
simplyfing assumptions occurring in standard scientific theory-building.
Now theory revision can be broadly understood as minimal revision of
a theory given new evidence or information. And Shaffer (2001) rightly
remarks that, if we regiment theories via counterfactuals, Bayesian prob-
abilistic revision via conditionalization may have troubles in accounting
for the prior probabilities of theories in counterfactual form. We remark
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that imaging captures exactly a form of minimal revision which could
be applied to theories, alternative to standard Bayesian conditionaliza-
tion, and proven free from the conservativity feature of the latter, thanks
to the Gärdenfors result.

iii. adams’ thesis, lewis’ thesis, stalnaker’s hypothesis, lewis’
proof

A popular conjecture, subscribed to by McGee (1989), Jackson (1987),
and others, has it that the (degree of) acceptability of indicatives equals
the subjective probability of the consequent conditional on the an-
tecedent. One may think that the (degree of) acceptability of coun-
terfactuals equals the subjective probability of the consequent under
the image of the antecedent:

(AT) Acc(φ→ ψ) = π(ψ|φ)

(LT) Acc(φ > ψ) = πφ(ψ)

(LT) is Lewis’ Thesis (as one may call it, given Counterfactuals 3.2):
deciding which counterfactuals with antecedent φ one accepts is noth-
ing else than assessing the status of the consequent under the counter-
factual supposition of φ – once the latter is understood as imaging on
φ. (AT) is Adams’ Thesis, named after Adams (1966, 1975). This is
sometimes, but should not be, confused with Stalnaker’s Hypothesis,
named after Stalnaker (1975):

(SH) π(φ→ ψ) = π(ψ|φ)

Two differences between (AT) and (SH): (1) (AT) applies only to
simple indicatives (no indicatives embedded in the antecedent or con-
sequent); (2) (AT) is phrased in terms of acceptability, not probability.
Both seem to be required: (SH) (in spite of robust empirical evidence
confirming it: see Evans, Handley, and Over (2003), Evans and Over
(2004), and Douven and Verbrugge (2010)) is widely considered false
precisely because of the Lewis (1976) triviality results. On the other
hand, non-propositionalists like Adams, Edgington (1995), and Ben-
nett (2003) have claimed that (AT) can hold insofar as indicatives do
not express propositions (thus, they cannot be freely embedded: hence
the restriction to simple conditionals) and lack truth values. Because of
this, they cannot have probabilities of truth properly so called, as per
(SH); but they can have acceptability conditions, as per (AT).

But Lewis (1976) proved that when φ > ψ is the Stalnaker condi-
tional, true iff the closest antecedent-world makes the consequent true,
then the following does hold in general for all probability distributions
π, with no triviality ensuing – let us call it Lewis’ Proof:
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(LP) π(φ > ψ) = πφ(ψ)

A Stalnaker counterfactual φ > ψ is true at w iff ψ is true at wφ. So
its truth set is {w : wφ ⊩ ψ} (‘⊩’ is makes true). Now the probability of
this set is π({w : wφ ⊩ ψ}) =

∑
w:wφ⊩ψ π(w). But this is the probabil-

ity of ψ under the image of φ,
∑

w1∈|ψ|
∑

w:wφ=w1
π(w). If we assume

that the degree of acceptability of a counterfactual equals its subjective
probability, we get (LT): we assess a counterfactual by checking how
the consequent fares once we have shifted the due probabilistic mass to
the closest antecedent-world. Then the situation with counterfactuals
(insofar as the Stalnaker conditional is taken as a good enough approx-
imation to the natural language counterfactual – we’ll get back to this)
is somewhat streamlined. Lewis’ positive result (LP) reassures us that,
unlike what happens with indicatives, we need not divorce acceptability
from probability of truth.

(LT) may then be taken as describing in full generality our primary
way of assessing a (simple) counterfactual suppositionally: we accept
φ > ψ to a degree equal to the probability we assign to the consequent ψ
under the image of the antecedent φ. In terms of supposition: we accept
it to the extent that we judge the consequent likely in a counterfactually
imagined situation in which the antecedent is true.

iv. relevance

But (LT) is not quite right. We often find a counterfactual unaccept-
able although we judge the probability of the consequent high under
the counterfactual supposition of the antecedent. That is because the
consequent was already deemed very likely outside of the supposition,
and the antecedent we image our probabilities on is irrelevant to that:

3. If this Banbury house were in Oxford, then Melbourne would be
in Australia.

4. If Caesar had had firearms in 58 BC, then Saturn would have
been a planet.

5. If we offered Midori a pay rise, then there would be some heads
in the first 100 tosses of this fair coin.

Can one cordon off the anomalies by claiming that these happen just
with propositions one is already fully certain of, as may be the case
with the consequent of (3) or (4)? One would have to explain why:
the Gärdenfors result tells us that certainties are not guaranteed to be
preserved under imaging. Anyway, (5) is different: knowing the coin is
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fair, we think it quite likely that it will land heads sometimes if tossed
100 times, but we are not certain.

What will end up being acceptable at the end of the exercise is a con-
cessive: ‘Even if this Banbury house were in Oxford, Melbourne would
still be in Australia’; ‘There would be some heads in the first 100 tosses
of this fair coin, whether or not we offered Midori a pay rise’. Unlike
ordinary counterfactuals, concessives can take ‘even’ or ‘whether or
not’ in the antecedent; they cannot take ‘then’ in the consequent, as it
is there precisely to exclude the irrelevance of the antecedent for the
consequent (Iatridou (1993) makes the point for indicatives). Perhaps
concessives and ordinary counterfactuals differ in truth conditions, per-
haps not. But we’re only after acceptability; and it seems clear that ‘If
it were the case that φ, then it would be the case that ψ’ is normally
acceptable precisely when ‘Even if it was the case that φ, it would still
be the case that ψ’ and ‘Whether or not φ, it would be the case that ψ’
are not. Compare:

6. If this Banbury house were in Oxford, then it would be very
expensive.

7. If Caesar had had firearms in 58 BC, then he would have used
them against the Gauls.

8. If there were some heads in the first 10 tosses of this (fair) coin,
then there would be some heads in its first 100 tosses.

We accept these because, besides finding the consequent likely on the
counterfactual supposition of the antecedent, we find the latter relevant,
or on-topic, or pertinent, with respect to the former. The relevance
effect is detectable even in cases where the antecedent is necessarily
false, and known to be:

9. If there was a largest prime, then some number would be both
prime and composite.

10. If there was a largest prime, then bachelors would be married.

We can accept (9) while in the business of proving the infinity of primes.
We already regard the antecedent as impossible: we are just carrying
out a proof by reductio of what we already know to be a necessary truth
(perhaps because we trust the textbook, or the teacher, telling us this
much). (10) would not fare so well in the context. The difference be-
tween (9) and (10) gives evidence that the acceptability conditions for
counterfactuals are hyperintensional: we can have different attitudes
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towards counterfactuals whose antecedent and consequent are, respec-
tively, co-intensional – and known to be such.

To counter the conjecture that (LT) describes what we primarily do
when we assess a counterfactual, we need the counterexamples to
be pervasive. People do all sorts of things: isolated exceptions will
not count against a descriptive conjecture. So, how widespread are
relevance-based counterexamples? We are not aware of experiments
carried out to test (LT). But we are, of experiments carried out to test
its counterpart for indicatives, (AT). Douven and Verbrugge (2010)
gave to a group of subjects contexts (short stories) Ci, 1 ≤ i ≤ 30,
and asked them to rate the acceptability of indicatives φi → ψi in Ci .
They gave to another group the same contexts Ci and asked them to
judge the probability of ψi in Ci on the supposition that φi . It turned
out that people’s patterns (of degrees) of acceptance for indicatives do
not even approximate the corresponding conditional probabilities: the
acceptability ratings are often significantly lower than the conditional
probabilities. This ‘manifestly refute[s] Adams’ Thesis, both in its strict
form AT and in its approximate form’ (Douven 2016, 99). Douven’s
own favourite inferentialist approach to indicatives (a label for a family
of accounts, including Skovgaard-Olsen, Singmann, and Klauer (2016),
Krzyżanowska (2015), Krzyżanowska, Collins, and Hahn (2017), Rott
(2022)) explains this in terms of the lack of a relevant connection be-
tween antecedent and consequent in conditionals with corresponding
high conditional probability.3

We do not know how straightforwardly such negative empirical re-
sults concerning (AT) may carry over to (LT). But they point at an
obvious pervasive feature of suppositional thinking in general, whether

3. Unlike (AT), Stalnaker’s Hypothesis (SH) enjoys big empirical support. But Douven
and Verbrugge were the first, as far as we know, to phrase an experiment specifically
in terms of acceptability. They even considered the idea that their subjects may have
confused acceptability with assertability. So they also came up with control experiments,
where they (1) compared answers to questions phrased in terms of acceptability with
answers phrased directly in terms of reasonableness to believe; and (2) explicitly asked the
participants of the main experiment how they themselves had interpreted acceptability:

The answers do suggest that the notion of acceptability was interpreted in
an epistemic sense rather than in some other sense; things that seem logi-
cal, or self-evident, or that can be taken to be true, are probably things that
are reasonable to believe, though not obviously also things that it would be
appropriate to contribute to a conversation. Indeed, there was no indica-
tion that any of the participants had understood ‘acceptable’ as meaning
something like ‘conforming to broadly social norms governing good con-
versational practice.’ (Douven and Verbrugge 2010, 311)



10 the journal of philosophy

of the indicative or of the counterfactual kind: such thinking has a focus.
We usually engage in suppositional thinking with an issue to address:
supposing φ, would it be that ψ? Lots of things can then turn out to
be irrelevant to the issue, even when they are otherwise perfectly coten-
able. Lewis (1973) claimed that necessary or logical truths should be
cotenable with any supposition. But when we counterfactually suppose
that the house is moved to Oxford in the business of estimating its value
increase, we do not imagine that 2+ 2 = 4, or that either Melbourne is
in Australia or not, just because these are necessary truths. We will not
imagine that Melbourne is in Australia at all, though that is a true belief
we hold, and perfectly compatible with the supposition. Just as rational
thinkers with finite resources should not ‘clutter their minds’ with point-
less albeit valid inferences (as argued by Harman (1986) and Cherniak
(1986), and others), so they should not clutter it with pointless albeit
cotenable propositions.

This suggest a fixing for Lewis’ Thesis: we accept a counterfactual
φ > ψ to the extent that (1) πφ(ψ) is high as per (LT), provided that (2)
the antecedent φ is relevant for the issue addressed via ψ. We propose
to capture (2) by using recent ideas on topics or subject matters: items
suitable for the purpose of capturing relevance or topicality in discourse
and thought.4

v. aboutness

Aboutness is ‘the relation that meaningful items bear to whatever it is that
they are on or of or that they address or concern’ (Yablo 2014, p. 1): this is
their subject matter or, as we shall also call it, their topic.5 Work on topics
has been burgeoning among philosophers (Lewis 1988a; Gemes 1994;
Hawke 2016, 2018; Plebani 2020; Plebani and Spolaore 2021), linguists
(Roberts 2011; Moltmann 2018), logicians (Fine 1986; Humberstone
2008; Fine 2017). We use declarative sentences to say true things about
all kinds of conversational topics. One says: ‘Midori is a professor’.
One thereby addresses the topic of Midori’s profession, what Midori does
or, more generally, Midori. What one says is true just in case Midori’s
profession is or includes being a professor. One addresses certain topics
and says that things are such-and-so with respect to them.

4. Compare the story told in (Berto and Özgün 2021), where a probabilistic logic
for the acceptability of indicatives is introduced, mirroring the one presented below for
the acceptability of counterfactuals. In that paper, we use conditional probability functions
(aka Popper functions) whereas in the present one we resort to imaging. And that paper
proposes to fix Adams’ Thesis via a relevance constraint essentially like the one proposed
below to fix Lewis’ Thesis.

5. The quick introduction to aboutness and topics in this section piggy-backs on the
one proposed in (Berto 2022). We used the same story in our aforementioned paper on
indicatives (Berto and Özgün 2021).
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Topics are often linked to questions or issues under discussion (Lewis
1988a; Roberts 2012): ‘Our topic is whether Oxford is too expensive for
its lecturers’ maps to ‘Is Oxford too expensive for its lecturers?’. Thus
Lewis (1988a, 1988b) took topics as partitions of modal space. We talk
about the number of stars: there comes the partition determined by the
question, ‘How many stars are there?’. It puts worlds in the same cell
when they agree on the answer: all zero-star worlds in one cell, all one-
star worlds in another, etc.

However, any old sort of thing can also serve as a conversational
topic: ‘The topic of this module is deep neural networks’; ‘Our topic
today is Rishi, not his wife’; ‘Let us talk about deportations to Rwanda’.
Thus some approaches to subject matters are more object- or state-of-
affairs- oriented (Hawke 2018, provides an excellent overview). Promi-
nent ones take topics as sets or fusions of a sentence’s (exact) truthmak-
ers / falsemakers (Fine 2017; Fine and Jago 2019), understood in their
turn as close to states or situations in the style of Barwise and Perry
(1983).

We do not need to take a stance on the nature of topics. We just
need them to obey three structural constraints, on which there is some
agreement in the literature:

(1) Topics tend to come with hyperintensional accounts of what sen-
tences say, because co-intensional sentences can be about differ-
ent things: only one of ‘2 + 2 = 4’ and ‘Equilateral triangles are
equiangular’ is about equilateral triangles, and made true by
what these are like.

(2) The space of topics has a mereological structure (Yablo 2014;
Fine 2017): topics can have proper parts; distinct topics may
have common parts; etc. Mathematics includes arithmetic. Math-
ematics and philosophy overlap, having (certain parts of) logic as
a common part.

(3) The Boolean operators add no subject matter of their own: they
are ‘topic-transparent’ (Hawke 2018; Fine 2020). The topic of
¬φ is the same as that of φ. (‘Midori is not a professor’ is ex-
actly about what ‘Midori is a professor’ is about: say, Midori’s
profession, or what Midori does, or simply Midori. It is not about
not.) Conjunction and disjunction merge topics: ‘Simon is rich
or beautiful’, ‘Simon is rich and beautiful’ are both about, say,
Simon’s wealth and looks.

In the next section we introduce a formal language including a coun-
terfactual conditional, for which we give acceptability conditions in
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terms of imaging and topics. We then provide a probabilistic logic to
reason about the (un)acceptability of counterfactuals.

vi. on-topic counterfactuals

Let LPL be the language of classical propositional logic on a countable
set of propositional variables Prop = {p, q, . . . } with connectives ¬
and ∧. The well-formed formulas are the elements of Prop, ¬φ, and
(φ ∧ ψ) whenever φ and ψ are formulas. We identify LPL with the set
of its well-formed formulas and employ the usual abbreviations for the
connectives ∨,⊃,≡ as φ ∨ ψ := ¬(¬φ ∧ ¬ψ), φ ⊃ ψ := (¬φ ∨ ψ), and
φ ≡ ψ := (φ ⊃ ψ) ∧ (ψ ⊃ φ). So, ⊃ is the material conditional and
≡ is the material biconditional. As for ⊤ and ⊥, we set ⊤ := p ∨ ¬p
and ⊥ := ¬⊤. We call the elements of LPL Boolean sentences. For any
φ ∈ LPL, Pφ denotes the set of propositional variables occurring in φ.

Let LPL be interpreted in possible worlds semantics the usual way.
Following Stalnaker (1968), we add to our models an absurd world, λ, in
which every proposition is true. Given a tuple M = (W , λ,V ), where
W is a nonempty set of worlds plus λ (i.e., λ ∈ W ), and V : Prop →
P(W ) is a valuation function such that λ ∈ V (p) for all p ∈ Prop and
otherwise standard, |φ|M denotes the truth set of φ in M: the set of
worlds that make φ true. Note that λ ∈ |φ|M for all φ ∈ LPL. When
|φ|M = {λ} we call φ impossible in M, and possible otherwise. We omit
the superscript and write |φ| when the model is contextually clear. ‘|=PL’
stands for classical logical truth/consequence.

The language L of simple counterfactual conditionals extends LPL

by a counterfactual, ‘>’, connecting only the elements of LPL so as to
avoid nesting: the well-formed formulas in L are the elements of LPL,
plus (φ > ψ) whenever φ and ψ are in LPL. Now a few definitions:

Definition 1 (Stalnakerian selection function). Given a tuple M = (W , λ,V )
as described above, a Stalnakearian selection function f : (W ×LPL) → W
assigns a possible world to each pair of a world in W and a sentence in
LPL, and satisfies the following properties:

1. For all φ ∈ LPL and w ∈ W , f (w, φ) ∈ |φ|,
2. For all φ ∈ LPL and w ∈ W , f (w, φ) = λ iff |φ| = {λ},

3. For all φ ∈ LPL and w ∈ W , if w ∈ |φ| then f (w, φ) = w.

4. For all φ,ψ ∈ LPL and w ∈ W , if f (w, φ) ∈ |ψ| and f (w, ψ) ∈ |φ| then
f (w, φ) = f (w, ψ).

We call the tuple (W , f , λ,V ) a Stalnaker model. The above condi-
tions on selection functions are nothing new with respect to Stalnaker
(1968): (1) has it that the φ-selected world is a φ-world. This makes
sense for supposition in particular: when we suppose that φ, we only
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look at a world where φ to begin with (when we suppose that the Ban-
bury house is in Oxford, we look at a world where it is in Oxford). In
(2) we follow Stalnaker in having a λ, the absurd world, where every-
thing is just stipulated to be true. This is the value of f iff at any world
it takes as input that is not true in any possible world, that is, an input
with the impossible truth set {λ}. (3) says that w is the single world
closest to itself whenever it is a φ-world already. (4) is needed to make
sure f selects based on closeness as comparative similarity.

Definition 2 (Topic models with operators). A topic model with operators (in
short, topic model) T is a tuple ⟨T ,⊕, t, k⟩ where

1. T is a non-empty set of possible topics. We use variables a, b, c (a1, a2, . . . )
ranging over possible topics.

2. ⊕ : T × T → T is a binary idempotent, commutative, associative
operation: topic fusion, making of topics part of larger topics. We assume
unrestricted fusion, that is, ⊕ is always defined on T : ∀a, b ∈ T ∃c ∈
T (c = a ⊕ b).

3. t : Prop → T is a topic function assigning a topic to each element in
Prop. t extends to LPL by taking the topic of a sentence φ as the fusion
of the elements in Pφ = {p1, . . . , pk}, i.e., the atoms showing up in it:

t(φ) = ⊕Pφ = t(p1)⊕ · · · ⊕ t(pk).

We abbreviate t(φ) as tφ.

4. k : T → T is a function on T that satisfies for all a, b ∈ T :
(a) a ⊑ k(a) (Inclusion);

(b) k(a) = k(k(a)) (Idempotence);

(c) k(a ⊕ b) = k(a)⊕ k(b) (Additivity).

Out of fusion as per (2), we can define topic parthood, ⊑, what it means
that a topic is included in another, standardly:

∀a, b(a ⊑ b iff a ⊕ b = b).

This makes ⊑ a partial order on T . That the topic of a φ is the fu-
sion of those of its atoms, as per (3), secures topic-transparency for
connectives.

(4) has k as a Kuratowski closure operator on the poset ⟨T ,⊑⟩. It will
come handy when we give acceptability conditions. Inclusion (4a) guar-
antees that the closure k(a) of a given topic a will always be an expan-
sion: it will enlarge the original topic, but never take us far away from
it; k expands a topic a in a minimal way. Idempotence (4b) says that
one cannot repeat the expansion unless the topic changes. Additivity
(4c) guarantees that closure on a whole never outstrips closure on its
parts. Thus in particular closing tφ is the same as closing the topics of
its atoms, then fusing them.
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Definition 3 (Stalnakerian Discrete Probability Space). A Stalnakerian discrete
probability space is a tuple (W , λ, π) such that W is a nonempty and finite
set of possible worlds and λ (i.e., λ ∈ W ), the sample space, and π :
W → [0, 1] is a probability mass function such that either π(λ) = 1 or∑

w∈W\{λ} π(w) = 1.

We call the tuple (W , λ, π) Stalnakerian to emphasise the occurrence
of the absurd world λ. It will be useful in formalising acceptability con-
ditions of counterfactuals with impossible antecedents. Throughout the
paper we employ only Stalnakerian discrete probability spaces, so we’ll
simply call them probability spaces. All our probability mass functions
are to satisfy the conditions given in Definition 3.

Definition 4 (Probabilistic Model). A probabilistic model is a tuple N =
(W , f , λ,V , π) where (W , f , λ,V ) is a Stalnakerian model and π : W →
[0, 1] is a probability mass function as described in Definition 3. Then, for
all φ ∈ LPL, we have π(φ) =

∑
w∈|φ| π(w).

Definition 5 (Imaging). Given a probabilistic model (W , f , λ,V , π) and φ ∈
LPL, the image πφ of π under φ is defined as: for all w′ ∈ W , πφ(w′) :=∑

w:f (w,φ)=w′ π(w).

Easily, πφ is a probability mass function over W when π is (see
Lemma 3.4 for the proof). Given πφ and ψ ∈ LPL, πφ(ψ) =

∑
w∈|ψ| π

φ(w).

Now comes the heart of the story:

Definition 6 (Degrees of (Un)Acceptability). For any probabilistic model N =
(W , f , λ,V , π) and topic model T = ⟨T ,⊕, t, k⟩ defined on LPL, the de-
gree of acceptability AN ,T : L → [0, 1] of an element in L is defined
as:

1. for all φ ∈ LPL, AN ,T (φ) = π(φ); and

2. AN ,T (φ > ψ) =

{
πφ(ψ), if tψ ⊑ k(tφ)

0 otherwise.

For any φ ∈ L, the degree of unacceptability UN ,T (φ) is then given by
UN ,T (φ) = 1 −AN ,T (φ).

(When it is clear which probability and topic model are used, we omit
the subscripts and simply write A and U .)6

6. Easily, given a probabilistic model N = (W , f , λ,V , π) and a topic model T =
⟨T ,⊕, t, k⟩, we have:

1. for all φ ∈ LPL, U(φ) = 1 − π(φ); and

2. U(φ > ψ) =

{
1 − πφ(ψ), if tψ ⊑ k(tφ)
1 otherwise.
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(1) just says that the degree of acceptability of a Boolean sentence φ
is its plain probability. (2) is the core of our proposal. It says that the
degree of acceptability of a simple counterfactual φ > ψ is given by (i)
the probability of its consequent under the counterfactual supposition,
i.e., the image, of the antecedent, so long as (ii) it is an on-topic counter-
factual (with respect to T ): the topic of its consequent, tψ, is included
in the closure of the topic of the antecedent k(tφ). Otherwise, φ > ψ is
plainly unacceptable. Let us unpack.

First, the plain unacceptability of off-topic counterfactuals can be
taken as an idealisation of the proposed formalism: being off-topic may
sometimes actually lower the acceptability of a counterfactual without
necessarily taking it down to 0, especially if one endorses a graded no-
tion of topic relevance. A treatment of the latter is beyond the scope
of this (already long) initial paper. We anticipate that allowing for low-
but-non-zero acceptability of off-topic conditionals should not affect the
acceptability-preserving (in-)validities of the corresponding logic, and the
intuitions they reflect: acceptability should in any case not be preserved
from on-topic conditionals to off-topic ones. So our plain unacceptabil-
ity for the off-topics does not bear on our substantive philosophical
claims and the principles of interest in a logic of on-topic counterfactu-
als. (We thank an anonymous reviewer for pressing us on this issue.)

Second: why did we not require plain inclusion of the topic of ψ in
that of φ, tψ ⊑ tφ? Because we often accept a counterfactual in contexts
where, on an intuitive way of understanding topicality, there is no plain
topic-inclusion between what the consequent and what the antecedent
are about:

11. If we had stopped burning fossil fuels twenty years ago, the polar
ice would not have been melting so quickly.

12. If Brexit was that bad, the Tories would have lost the majority
in parliament by now.

13. If you had pushed that button, the plane would not have stalled.

In cases like (11)-(13), the antecedent φ is relevant for the conse-
quent although it does not, on its own, address an issue with respect to
which the consequent is fully on-topic. Rather, the counterfactual sup-
position of the antecedent is carried out in a context where one is tack-
ling a question or issue, triggering a bunch of background assumptions,
say BAφ, with respect to which the consequent is fully on topic. Surely
these assumptions are connected with the antecedent (that is what the
subscript in ‘BAφ’ is there to remind you of; in particular, plausibly,
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φ ∈ BAφ). E.g., in (11), the issue of polar ice melting can make con-
textually relevant topics connected to fossil fuel burning, such as the
emission of CO2, raising global temperatures, etc. In (12), the issue of
Tory electoral success can make contextually relevant topics connected
to the badness of Brexit, such as electoral reactions to socioeconomic
decline.

Here the Kuratowski operator earns its keep. For suppose (with a
small abuse of notation) k(tφ) = t(BAφ), that is, we think of k exactly
as mapping the topic of the antecedent φ to that of the relevant back-
ground assumptions BAφ contextually determined by φ and the tackled
issue. This makes precise what it means that suppositional thinking has
a focus. When we suppose that φ, wondering about the issue whether
ψ, we can move, in a way dictated by context/tackled issues, beyond
the topic of the suppositional input φ. But our expansion will be regi-
mented : it will expand to distinct, but connected topics. The Kuratowski
is a topological closure operator, giving to connectedness a precise topo-
logical meaning: Inclusion guarantees that tφ ⊑ t(BAφ), i.e., the topic
of the relevant background assumptions BAφ possibly expands, but al-
ways includes that of the antecedent φ. Idempotence has it that t(BAφ)
is complete: contemplating on the background assumptions does not
lead to new topics unless given additional inputs. Additivity ensures
that t(BAφ) is the same as the fusion of the topics determined by its
simpler components.

Third: connectedness is, admittedly, dealt with in a rather abstract
fashion. If one asked, ‘But exactly which are the connected topics?’,
one would not find very informative replies in the formal setting itself.
This is, we submit, unavoidably so. What the relevant background as-
sumptions in BAφ are, is a volatile, fuzzy, focus-dependent matter. In
some cases, the connection between antecedent and consequent will
be so obvious that little or no context or focus is required to acknowl-
edge it. Sometimes, only a lengthy story will tell whether the topicality
constraint is satisfied or not.7

7. A nice example provided by a helpful anonymous referee: ‘If you spent more time
reading Hegel, your cholesterol level would not improve’. Where is the topicality connec-
tion? Well, say the context fixing the relevant BAφ is one where the conversational focus
is on my sedentary attitude as a reader of philosophy, and how it affects my psychophys-
ical health. I claim: ‘If I spent more time reading Hegel, I would feel more peaceful at
the end of the day.’ You retort: ‘If you spent more time reading Hegel, your cholesterol
would not improve’. This seems perfectly on-topic as stressing that what I need is physical
exercise, rather than more Hegel and peace of mind. But of course, one can come up with
several different contexts, where ‘If you spent more time reading Hegel, your cholesterol
would not improve’ just turns out to be an irrelevant conditional – e.g., pick one where
we are addressing the topic of my competence in classical German philosophy, and my
psychophysical health is not at issue at all.
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For a hopefully helpful analogy: any modal account of the truth con-
ditions of counterfactuals, of a broadly Kratzerian (see Kratzer 2012)
or Lewisian-Stalnakerian kind, will involve some apparatus for focusing
on the contextually relevant worlds for the interpretation of the counter-
factual at hand. Take the Lewisian-Stalnakerian story: ‘φ > ψ’ is true
at w iff ψ is true at the φ-world(s) closest to w. Intuitively, the clos-
est worlds are those where the background assumptions in BAφ hold
(Priest 2001, ch. 5). If one asked, ‘But exactly which are the closest
worlds?’, one would not find the Lewis-Stalnaker semantics very infor-
mative. And of course, the question has been asked – starting with
Fine (1973)’s critical notice of Lewis’ Counterfactuals book, which has
generated a large literature on how to specify the relevant similarity
respects (see Bennett (2003) for a masterful reconstruction). Now most
of such literature is about informally glossing on the formal semantics
from the outside. That is because, as Lewis puts it in Counterfactuals:
‘The truth conditions for counterfactuals [...] are a highly volatile mat-
ter, varying with every shift of context and interest’ (Lewis 1973, 92).
The Lewis-Stalnaker semantics presupposes that we have some (vague,
fuzzy, context-dependent) intuitions on what counts as the most simi-
lar situations, and piggy-backs on that, giving us a precise but merely
formal account via a total ordering of worlds by closeness. We claim
that the same holds for the topics of counterfactuals. Our formal set-
ting presupposes that we have some (vague, fuzzy, context-dependent)
intuitions on what counts as topic-connectedness, and piggy-backs on
that, giving us a precise but merely formal account via a topological
closure operation.

Fourth: topics make acceptability hyperintensional. To see that, look
back at (9) and (10) above. In both cases, we assign probability zero
to the antecedent and to the consequent. But there is a world where
they are all true, namely λ. That is where we look when we suppose
counterfactually that there is a largest prime. The expansion of the
discrete probability space so that it includes λ (Definition 3), and of the
definition of imaging so that it comes out well-defined for impossible
counterfactual antecedents, have it that the probability of all no-largest-
prime worlds, which is all possible worlds in W , is shifted to λ in our
counterfactual supposition. The probability of both consequents under
the image of such an antecedent is 1. But, topicality tells them apart:
by our acceptability conditions, (9) is fully acceptable while (10) is not,
insofar as we assign to the consequent of the former, not of the latter,
a topic which is included in the closure of the antecedent’s topic.

vii. the logic of on-topic counterfactuals

We take the closure principles of our logic as premise-conclusion rules
of the form ‘Γ ⊢ ∆’ where Γ,∆ ⊆ L with Γ = ∅ for zero-premise rules.
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Following Adams (1998), we define validity probabilistically in terms
of degrees of unacceptability:

Definition 7 (Validity). A principle of the form Γ ⊢ ∆ is valid if and only
if for any probabilistic model N = (W , f , λ,V , π) and topic model T =
⟨T ,⊕, t, k⟩, ∑

φ∈Γ

U(φ) ≥ U(ψ),

for all ψ ∈ ∆. When Γ = ∅, we say ⊢ ∆ is valid if and only if U(ψ) = 0
for all ψ ∈ ∆. Γ ⊢ ∆ is invalid otherwise. 8

Our notion of validity depends on both probability and topicality.
Besides investigating valid closure principles, we thus want to check that
the invalid ones fail for the right reason. So we also consider probabilistic
(in)validity and topical (in)validity as distinct sources of invalidity.

We say that Γ ⊢ ∆ is probabilistically valid (p-valid) iff for any proba-
bilistic model (W , f , λ,V , π) and singleton topic model T (i.e., when T
is a singleton),

∑
φ∈Γ

U(φ) ≥ U(ψ), for all ψ ∈ ∆. When Γ = ∅, we say

⊢ ∆ is p-valid if and only if U(ψ) = 0 for all ψ ∈ ∆; Γ ⊢ ∆ is p-invalid
otherwise: p-validity ignores topicality by focusing on trivial singletons,
and just checks how a putative closure principle fares probabilistically.

We say Γ ⊢ ∆ is topically valid (t-valid) iff for any topic model T =
⟨T ,⊕, t, k⟩, if every conditional in Γ is an on-topic conditional wrt T
then every conditional in ∆ is also an on-topic conditional wrt T ; Γ ⊢ ∆
is t-invalid otherwise: t-validity ignores probabilities and just checks
how a putative closure principle fares topically.

We now focus on the principles in Table 1. We label them sticking to
popular names or acronyms from the literature on conditional logics.

Lemma 1. If Γ ⊢ ∆ is valid then it is p-valid but not necessarily t-valid. If
Γ ⊢ ∆ is both p- and t-valid, then it is valid.

Proof. See Appendix a.9

8. We formulate the relevant closure principles as premise-conclusion rules, plainly fol-
lowing (Douven 2016, Chapter 5). In this logical framework, a premise-conclusion rule is
interpreted as: ‘Whenever all elements of Γ are acceptable, every element of ∆ is also ac-
ceptable’. Our notion of validity is probabilistic, preserving degrees of (un)acceptability
(as opposed to preserving truth, as validity in standard non-probabilistic logic does);
and our language is restricted to simple counterfactuals. So we cannot restate our conse-
quence relation between Γ and ∆ by simply replacing (a finite) ∆ with the conjunction
of its elements. And our way of formulating the principles of interest is more economical:
instead of stating a closure principle for every conclusion we can derive from a set Γ of
premises, we package all its conclusions of interest in a set ∆ of conclusions. See, e.g., (p.
128-130), for further elaboration on how the principles in Table 1 should be interpreted.

9. Aside from details of wording, the t-(in)validity proofs in the appendix are essen-
tially the same as the ones supplied in our paper (Berto and Özgün 2021) on indicatives.
Moreover, when one leaves nested conditionals aside, as we do in both papers, the logics
are perfectly aligned.
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(REF) ⊢ φ > φ
(ANT) φ > ψ ⊢ φ > (φ ∧ ψ)
(CM) φ > (ψ ∧ χ) ⊢ φ > ψ,φ > χ
(CC) φ > ψ,φ > χ ⊢ φ > (ψ ∧ χ)
(CSO) φ > ψ,ψ > φ,φ > χ ⊢ ψ > χ
(CT) φ > ψ, (φ ∧ ψ) > χ ⊢ φ > χ
(CMon) φ > ψ,φ > χ ⊢ (φ ∧ ψ) > χ
(OR) φ > ψ, χ > ψ ⊢ (φ ∨ χ) > ψ
(M. Ponens) φ,φ > ψ ⊢ ψ
(Trans) φ > ψ,ψ > χ ⊢ φ > χ
(SA) φ > ψ ⊢ (φ ∧ χ) > ψ
(MOD) ¬φ > φ ⊢ ψ > φ
(RCE) If φ ⊢PL ψ, then ⊢ φ > ψ
(RCEA) If ⊢PL φ ≡ ψ, then φ > χ ⊣⊢ ψ > χ
(RCEC) If ⊢PL φ ≡ ψ, then χ > φ ⊣⊢ χ > ψ
(RCK) If ⊢PL (φ1 ∧ · · · ∧ φn) ⊃ ψ, then χ > φ1, . . . , χ > φn ⊢

χ > ψ
(RCM) ⊢PL φ ⊃ ψ, then χ > φ ⊢ χ > ψ
(And-to-If) φ ∧ ψ ⊢ φ > ψ
(Or-to-If) φ ∨ ψ ⊢ ¬φ > ψ
(Contr.) φ > ¬ψ ⊢ ψ > ¬φ
(SDA) (φ ∨ ψ) > χ ⊢ φ > χ,ψ > χ

Table 1. Closure principles of interest

Theorem 2.

1. REF, ANT, CM, CC, CSO, CT, CMon, OR, and Modus Ponens are
both p- and t-valid. Therefore, they all are valid.

2. MOD, RCE, RCEA, RCEC, RCK, RCM, and And-to-If are p-valid but
t-invalid.

3. Trans and SA are p-invalid but t-valid.

4. Or-to-if, Contraposition, and SDA are both p-invalid and t-invalid.

5. MOD, RCE, RCEA, RCEC, RCK, RCM, And-to-If, Trans, SA, Or-to-If,
Contraposition, and SDA are invalid.

Proof. Supplied in Appendix b.

We comment on some validities and invalidities. Looking at the for-
mer, in group 1: REF (Reflexivity), ANT, CM, and Modus Ponens
appear obviously desirable. Segerberg (1989) claimed that CC (Con-
junction in the Consequent) should hold in any reasonable conditional
logic.10

10. One may take issue, due to Lottery Paradox cases (Kyburg 1961) if one has a qual-
itative idea of acceptability, whereby something becomes (plainly) acceptable by passing
an intermediate probabilistic threshold θ. Ours, however, is a quantitative setting with
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valid p-valid t-valid
REF ✓ ✓ ✓
ANT ✓ ✓ ✓
CM ✓ ✓ ✓
CC ✓ ✓ ✓
CSO ✓ ✓ ✓
CT ✓ ✓ ✓
CMon ✓ ✓ ✓
OR ✓ ✓ ✓
Modus Ponens ✓ ✓ ✓
MOD X ✓ X
RCE X ✓ X
RCEA X ✓ X
RCEC X ✓ X
RCK X ✓ X
RCM X ✓ X
And-to-If X ✓ X
Trans X X ✓
SA X X ✓
Or-to-If X X X
Contraposition X X X
SDA X X X

Table 2. Validities (✓) and invalidities (X ): summary of the results in Theorem 2.

CT (Cautious Transitivity), CMon (Cautious Monotonicity) and OR
hold in most conditional logics and theories of non-monotonic entail-
ment (Nute 1984). In particular, CT and CMon feature in Chellas
(1975)’s basic conditional logic and are put by Gabbay (1985) among
the minimal requirements for a logic of non-monotonic entailment.
They hold in the system C of Kraus, Lehmann, and Magidor (1990);
their popular nonmonotonic logic P has them, too.

The invalidities in group 2 are all probabilistically kosher; their fail-
ure is due to topicality. E.g., look at MOD: we can accept that a nec-
essary truth is counterfactually implied by its own negation (we could
even define necessity thus, following (Lewis 1973, 22): □φ := ¬φ > φ);
but we do not accept the counterfactual implication from whatnot to
such a truth (‘If the moon was made of green cheese, then there would
be no largest prime’).

Look at RCE: that φ logically entails ψ is insufficient for the accept-
ability of the corresponding counterfactual: ‘This Banbury house is in
Oxford’ classically entails ‘Either Melbourne is in Australia, or not’,

degrees of acceptability. One can rephrase it qualitatively, if one likes: take φ > ψ as
acceptable when (i) πφ(ψ) ≥ θ and (ii) tψ ⊑ k(tφ); re-define validity accordingly, as
threshold-preservation: CC becomes invalid for threshold values θ ∈ ( 1

2 , 1).
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but we do not accept the patently off-topic ‘If this Banbury house were
in Oxford, then either Melbourne would be in Australia or not’. Simi-
larly for RCEA and RCEC: that φ and ψ are logical equivalents (i.e.,
such that their material equivalence is a theorem) does not guarantee
that replacing either with the other as a counterfactual antecedent or
consequent preserves acceptability.

We left CSO behind when talking of validities. Now it is time to
mention it: for it limits the hyperintensional anarchy of acceptability in
our topic-sensitive setting. Replacement of logical equivalents can fail
to preserve acceptability due to topicality constraints. However, CSO
tells us that replacement of counterfactual equivalents works just fine.

Groups 3 and 4 include inferences generally agreed to be invalid for
any ceteris paribus conditional, whether in the indicative or in the coun-
terfactual mood: Trans(itivity), SA (Strengthening the Antecedent), Or-
to-If, Contraposition, SDA (Simplification of Disjunctive Antecedents),
all fail both in the Adams (1998) probabilistic logic for indicatives, and
in the standard possible worlds semantics for counterfactuals by Stal-
naker (1968) and Lewis (1973).

And-to-If, the inference from a conjunction to the corresponding
counterfactual, deserves more attention. It is often called ‘Centering’
for in the Lewis semantics it is valid when one assumes that the world
of evaluation is always the single world most similar to itself (in the
‘spheres’ setting of Lewis (1973): it is the unique world at the centre of
the nested spheres of worlds arranged around it). Discussing And-to-
If on pp. 26-29 of Counterfactuals, Lewis finds Weak Centering, i.e., the
assumption that nothing is more similar to a world w than w itself, ‘per-
fectly safe’ (as it is required to validate Modus Ponens), but Centering
‘not quite such a safe assumption’ (29). His argument for And-to-If from
the previous page is to the effect that it is necessarily truth-preserving,
while he grants the oddness of asserting a counterfactual just because
antecedent and consequent are both true:

[The argument] is evidence for my truth conditions. What can be said
against them? So far as I know, only this: it would seem very odd to pick
two completely unrelated truths φ and ψ and, on the strength of their
truth, to deny the counterfactual φ > ¬ψ; and even odder, to assert the
counterfactual φ > ψ. What would we make of someone who saw it fit
to deny that if the sky were blue then grass would not be green, or to
assert that if the sky were blue then grass would be green? It would be
doubly odd. First, because he is using the counterfactual construction
with an antecedent he takes to be true, though this construction is cus-
tomarily reserved for antecedents taken to be false; second, because his
assertions could serve no likely conversational purpose that would not be
better served by separate assertions of φ and ψ. But oddity is not falsity;
not everything true is a good thing to say. (28; notation adjusted)
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Insofar as acceptability is concerned, And-to-If should go: it may be
truth-preserving, but it is not acceptability-preserving due to consider-
ations of relevance. So it fails in the right way in our logic: it is proba-
bilistically kosher; but while for a conjunction φ∧ψ to be found accept-
able nothing more may generally be required than believing the truth
of both conjuncts, these may be completely unrelated claims; and this
makes the corresponding counterfactual off-topic, albeit p-valid.

Off-topic counterfactuals with true antecedent and consequent are
triply odd. Besides the twofold pragmatic oddness remarked by Lewis,
there is additional oddness, independent from communication, contem-
plated in the privacy of our heads. Not only do we not want to assert ‘If
the sky were blue, then grass would be green’: we find it unacceptable,
for we judge the colour of the sky irrelevant for that of grass. Seeing
relevant counterfactual connections where there are none would be su-
perstition.

viii. further work

Expanding the logic to nested counterfactuals would be interesting but
intuitions of acceptability might be all over the place. Some experimen-
tal work would then be dearly needed. Next, the original Lewisian def-
inition of imaging relied on Stalnaker’s Assumption: for each w and φ
there is a unique closest antecedent-world wφ. This has been famously
criticized by Lewis (1973) and others. (It has been defended: see e.g.
Williams (2010).) After taking what we have called Lewis’ Proof (LP),
π(φ > ψ) = πφ(ψ), as a good candidate for giving the probabilities
of counterfactuals, Schulz (2017) claims that ‘the only problem with
imaging is that it presupposes uniqueness’ (81). One can try and gen-
eralize Stalnakerian imaging to a setting with set-selection functions
outputting, for each world and available antecedent, a set of maximally
close antecedent-worlds which may feature more than one world. Then
one variously distributes probabilities among the worlds in such a set
(Gärdenfors 1982; Joyce 1999; Leitgeb 2017).

But while (LP) protects our setting with Stalnakerian imaging from
triviality, the situation when one generalizes is more cumbersome.
Chapter 8 of Schulz (2017) has an elaborate discussion, where he tries
to show how to protect a generalized set-up he has proposed in previ-
ous chapters from the triviality results of Williams (2012) and Leitgeb
(2012). What would settle the issue is a mathematical result that, for all
we know, is still wanting.
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appendix a. proof of lemma 1

For the first part, easily: validity implies p-validity by definition; the
latter is a special case of the former obtained by restricting validity to
the class of singleton topic models. Consider a sample valid but t-invalid
inference: p∧¬p ⊢ p > q. To show its validity, let N = (W , f , λ,V , π) be
a probabilistic model and T = ⟨T ,⊕, t, k⟩ a topic model. By Definition
6, we have A(p ∧ ¬p) = π(p ∧ ¬p) = 0, thus, U(p ∧ ¬p) = 1. As
U(p > q) ∈ [0, 1] by the definition of U , we obtain that U(p ∧ ¬p) ≥
U(p > q). To show its t-invalidity, take the topic model ⟨{a, b},⊕, k, t⟩
such that ⊕ is idempotent and a ⊕ b = a, thus, b ⊏ a. Moreover, k is a
constant function and tp = b and tq = a. Therefore, b = tp = k(tp) but
a = tq ̸⊑ k(tp) = b (see Figure 1).

b = tp = k(b)

a = tq = k(a)

Figure 1. Topic model ⟨{a, b},⊕, t, k⟩

For the second part, suppose that Γ ⊢ ∆ is both p- and t-valid. Let
N = (W , f , λ,V , π) be a probabilistic model and T = ⟨T ,⊕, t, k⟩ a
topic model. Since Γ ⊢ ∆ is t-valid, we have two cases:

Case 1: Every conditional in Γ ∪∆ is an on-topic conditional wrt T .
Then validity and p-validity coincide, thus Γ ⊢ ∆ is valid.

Case 2: There is a conditional in Γ that is not an on-topic conditional
wrt T .
Wlog, suppose that φ ∈ Γ is not an on-topic conditional wrt T . Thus,
U(φ) = 1 (by Definition 6.2). Recall that U(χ) ∈ [0, 1] for all χ ∈ L.
Therefore, we conclude that

∑
φ∈Γ

U(φ) ≥ U(χ) for all χ ∈ ∆.

appendix b. proof of theorem 2

The following lemmas will be useful in proving Theorem 2.

Lemma 3. Given a probabilistic model (W , f , λ,V , π) and φ,ψ ∈ LPL,

1. if π(λ) = 1, then π(φ) = 1 and πφ(λ) = 1, therefore, πφ(ψ) = 1;

2. πφ(ψ) = 1 if |φ| = {λ};

3. πφ(φ) = 1;

4. πφ is a probability mass function as described in Definition 3.

Proof.
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1. Assume that π(λ) = 1. Then, since λ ∈ |φ| for all φ ∈ LPL, we have
π(φ) =

∑
w∈|φ| π(w) = 1. For the second part: by Definition 5, we have

πφ(λ) =
∑

w:f (w,φ)=λ π(w). By the fact that λ ∈ |φ| and Definition 1.3,
we know that f (λ, φ) = λ. Therefore, since π(λ) = 1, we obtain that
πφ(λ) =

∑
w:f (w,φ)=λ π(w) = 1. As λ ∈ |ψ|, we also have πφ(ψ) =∑

w∈|ψ| π
φ(w) = 1.

2. Let φ ∈ LPL such that |φ| = {λ}. Then, by Definition 1.2, we know that
f (w, φ) = λ for all w ∈ W . Therefore, πφ(λ) =

∑
w:f (w,φ)=λ π(w) =∑

w∈W π(w) = 1 (since π is a probability mass function). Since λ ∈ |ψ|
for all ψ ∈ LPL, we obtain that πφ(ψ) =

∑
w∈|ψ| π

φ(w) = 1.

3. πφ(φ) =
∑

w′∈|φ| π
φ(w′) =

∑
w′∈|φ|(

∑
w:f (w,φ)=w′ π(w)) =

∑
w∈W π(w) =

1 (the last step follows from Definition 1.1).

4. We only need to show that either πφ(λ) = 1 or
∑

w∈W\{λ} π
φ(w) = 1.

Suppose that πφ(λ) ̸= 1. By item 1, we obtain that π(λ) ̸= 1. Therefore,
by the conditions of probabilistic mass functions given in Definition
3, that

∑
w∈W\{λ} π(w) = 1. Then the result follows from the follow-

ing equation:
∑

w∈W\{λ} π
φ(w) =

∑
w∈W\{λ}(

∑
w′:f (w′,φ)=w π(w

′)) =∑
w∈W\{λ} π(w).

Lemma 4. Given a Stalnaker model (W , f , λ,V ), φ,ψ ∈ LPL and w ∈ W ,

1. if f (w, φ) ∈ |ψ| , then f (w, φ ∧ ψ) = f (w, φ),

2. f (w, φ ∨ ψ) = f (w, φ) or f (w, φ ∨ ψ) = f (w, ψ).

Proof.

1. Suppose that f (w, φ) ∈ |ψ|. Then, by Definition 1.1, we have f (w, φ) ∈
|φ ∧ ψ|. Since f (w, φ ∧ ψ) ∈ |φ| as well, by Definition 1.4, we obtain
that f (w, φ ∧ ψ) = f (w, φ) .

2. By Definition 1.1, we have that (1) f (w, φ∨ψ) ∈ |φ∨ψ|, (2) f (w, φ) ∈
|φ ∨ ψ|, and (3) f (w, ψ) ∈ |φ ∨ ψ|. (1) implies that f (w, φ ∨ ψ) ∈ |φ|
or f (w, φ ∨ ψ) ∈ |ψ|.
If f (w, φ∨ψ) ∈ |φ|, by (2) and Definition 1.4, we obtain f (w, φ∨ψ) =
f (w, φ).
If f (w, φ∨ψ) ∈ |ψ|, by (3) and Definition 1.4, we obtain f (w, φ∨ψ) =
f (w, ψ).
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B.1. Proof of Theorem 2.1. Let N = (W , f , λ,V , π) be a probabilistic
model and T = ⟨T ,⊕, t, k⟩ a topic model. By Lemma 1, we only need
to show that REF, ANT, CM, CC, CSO, CT, CMon, OR, and Modus
Ponens are both p- and t-valid.

The proofs of t-validity follow straightforwardly from Definition 2, so
we skip the details (see also Berto and Özgün (2021, Appendix) for
similar proofs).

For p-validity, assume T is a singleton. Every conditional is on-topic
with respect to a topic model T = ⟨T ,⊕, t, k⟩ with a singleton T .
Moreover, we present the proofs only for π’s such that π(λ) = 0 be-
cause the degrees of unacceptability of the conclusions in ∆ equal to 0
with respect to a π such that π(λ) = 1 (see Lemma 3.1). Finally, given
a premise-conclusion rule Γ ⊢ ∆, we only consider the cases where the
antecedents of the conditionals in ∆ are possible with respect to the
given Stalnaker model (W , f , λ,V ) since otherwise the degrees of un-
acceptability of the conclusions again equal to 0 (see Lemma 3.2). Due
to the structure of the rules in Theorem 2.1, we cannot have that the
antecedents of all the premises are impossible but the antecedent of the
conclusion is possible.

REF: ⊢ φ > φ
p-valid: By Lemma 3.3, we have πφ(φ) = 1. Moreover, we also have that
tφ ⊑ k(tφ). Therefore, U(φ > φ) = 1 − πφ(φ) = 0.

ANT: φ > ψ ⊢ φ > (φ ∧ ψ)
p-valid: As T is a singleton, we have U(φ > ψ) = 1 − πφ(ψ) and
U(φ > (φ ∧ ψ)) = 1 − πφ(φ ∧ ψ). Observe that πφ(φ ∧ ψ) =
πφ(φ) + πφ(ψ) − πφ(φ ∨ ψ) since π is a probability function. More-
over, by Lemma 3.3 and the fact that π is a probability function, we have
πφ(φ) = 1 and πφ(φ∨ψ) = 1. Therefore, U(φ > ψ) = U(φ > (φ∧ψ)).

CM: φ > (ψ ∧ χ) ⊢ φ > ψ,φ > χ
p-valid: As T is a singleton, we have U(φ > (ψ ∧ χ)) = 1 − πφ(ψ ∧ χ),
U(φ > ψ) = 1 − πφ(ψ), and U(φ > χ) = 1 − πφ(χ). Since
ψ ∧ χ |=PL ψ and ψ ∧ χ |=PL χ, and πφ is a probability function,
we know that πφ(ψ ∧ χ) ≤ πφ(ψ) and πφ(ψ ∧ χ) ≤ πφ(χ). Therefore,
U(φ > (ψ ∧ χ)) ≥ U(φ > ψ) and U(φ > (ψ ∧ χ)) ≥ U(φ > χ).

CC: φ > ψ,φ > χ ⊢ φ > (ψ ∧ χ)
p-valid: As T is a singleton, we have:
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U(φ > ψ) + U(φ > χ) = 1 − πφ(ψ) + 1 − πφ(χ)

≥ 1 − πφ(ψ)− πφ(χ) + πφ(ψ ∨ χ)
(since πφ(ψ ∨ χ) ≤ 1)

= 1 − πφ(ψ ∧ χ)
(since πφ is a probability function)

= U(φ > (ψ ∧ χ))
(by the defn. of U)

CSO: φ > ψ,ψ > φ,φ > χ ⊢ ψ > χ

p-valid: We need to show that:

U(φ > ψ) + U(ψ > φ) + U(φ > χ) ≥ U(ψ > χ)

i.e., that
πφ(ψ) + πψ(φ) + πφ(χ)− πψ(χ) ≤ 2

Recall that:
πφ(ψ) =

∑
w′∈|ψ|(

∑
w:f (w,φ)=w′ π(w))

πψ(φ) =
∑

w′∈|φ|(
∑

w:f (w,ψ)=w′ π(w))

πφ(χ) =
∑

w′∈|χ|(
∑

w:f (w,φ)=w′ π(w))

πψ(χ) =
∑

w′∈|χ|(
∑

w:f (w,ψ)=w′ π(w))

We explain the main idea behind the proof and leave the details to
the reader. For each w ∈ W , π(w) is added to the total sum πφ(ψ) +
πψ(φ) + πφ(χ)− πψ(χ) at most twice. So the whole sum adds up to at
most 2. In particular, for any w such that π(w) > 0, if π(w) is added to
πφ(ψ), πψ(φ) and πφ(χ), it is also added to πψ(χ).

Let w ∈ W such that π(w) > 0 and suppose that π(w) is added to
πφ(ψ), πψ(φ), and πφ(χ). If π(w) is added to both πφ(ψ) and πψ(φ),
we have f (w, φ) ∈ |ψ| and f (w, ψ) ∈ |φ|. This implies, by Definition
1.4, that f (w, φ) = f (w, ψ). Now suppose further that π(w) is added to
πφ(χ) but not to πφ(χ). The former means that f (w, φ) ∈ |χ| and the
latter that f (w, ψ) ̸∈ |χ|, contradicting f (w, φ) = f (w, ψ). Therefore,
for each w ∈ W , π(w) is added to the total sum πφ(ψ) + πψ(φ) +
πφ(χ)− πψ(χ) at most twice. This means that

πφ(ψ) + πψ(φ) + πφ(χ)− πψ(χ) ≤ 2 ·
∑
w∈W

π(w) = 2.

CT: φ > ψ, (φ ∧ ψ) > χ ⊢ φ > χ
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p-valid: The proof is similar to the proof for CSO and uses Lemma 4.1.
We need to show that

U(φ > ψ) + U((φ ∧ ψ) > χ) ≥ U(φ > χ)

i.e., that
πφ(ψ) + πφ∧ψ(χ)− πφ(χ) ≤ 1

Recall that:
πφ(ψ) =

∑
w′∈|ψ|(

∑
w:f (w,φ)=w′ π(w))

πφ∧ψ(χ) =
∑

w′∈|χ|(
∑

w:f (w,φ∧ψ)=w′ π(w))

πφ(χ) =
∑

w′∈|χ|(
∑

w:f (w,φ)=w′ π(w))

For each w ∈ W , π(w) is added to the total sum πφ(ψ) + πφ∧ψ(χ) −
πφ(χ) at most once, therefore, the whole sum adds up to at most 1. In
particular, for any w such that π(w) > 0, if π(w) is added to πφ(ψ) and
πφ∧ψ(χ), it is also added to πφ(χ).

Let w ∈ W such that π(w) > 0 and suppose that π(w) is added to
πφ(ψ) and πφ∧ψ(χ), but not to πφ(χ). This implies that f (w, φ) ∈
|ψ|, f (w, φ ∧ ψ) ∈ |χ| but f (w, φ) ̸∈ |χ|. However, by Lemma 4.1, we
have that f (w, φ) = f (w, φ ∧ ψ), contradicting f (w, φ ∧ ψ) ∈ |χ| but
f (w, φ) ̸∈ |χ|. Therefore, for each w ∈ W , π(w) is added to the total
sum πφ(ψ) + πφ∧ψ(χ)− πφ(χ) at most once. This means that

πφ(ψ) + πφ∧ψ(χ)− πφ(χ) ≤
∑
w∈W

π(w) = 1.

CMon: φ > ψ,φ > χ ⊢ (φ ∧ ψ) > χ
p-valid: The proof is similar to the proof for CT. We now need to show
that

πφ(ψ) + πφ(χ)− πφ∧ψ(χ) ≤ 1

Let w ∈ W such that π(w) > 0 and suppose that π(w) is added to
πφ(ψ) and πφ(χ), but not to πφ∧ψ(χ). This implies that f (w, φ) ∈
|ψ|, f (w, φ) ∈ |χ| but f (w, φ ∧ ψ) ̸∈ |χ|. However, by Lemma 4.1, we
have that f (w, φ) = f (w, φ ∧ ψ), contradicting f (w, φ ∧ ψ) ̸∈ |χ| but
f (w, φ) ∈ |χ|. Therefore, as in the previous case, we obtain that

πφ(ψ) + πφ(χ)− πφ∧ψ(χ) ≤
∑
w∈W

π(w) = 1.

OR: φ > ψ, χ > ψ ⊢ (φ ∨ χ) > ψ
p-valid: The proof is similar to the proof for the above cases and uses
Lemma 4.2. We need to show that

U(φ > ψ) + U(χ > ψ) ≥ U((φ ∨ χ) > ψ)
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i.e., that
πφ(ψ) + πχ(ψ)− πφ∨χ(ψ) ≤ 1.

Let w ∈ W such that π(w) > 0 and suppose that π(w) is added to
πφ(ψ) and πχ(ψ), but not to πφ∨χ(ψ). This implies that f (w, φ) ∈ |ψ|,
f (w, χ) ∈ |ψ| but f (w, φ ∨ χ) ̸∈ |ψ|. However, by Lemma 4.2, we have
that f (w, φ) = f (w, φ ∨ χ) or f (w, χ) = f (w, φ ∨ χ), contradicting
f (w, φ) ∈ |ψ|, f (w, χ) ∈ |ψ| but f (w, φ ∨ χ) ̸∈ |ψ|. Therefore, for each
w ∈ W , π(w) is added to the total sum πφ(ψ) + πχ(ψ) − πφ∨χ(ψ) at
most once. This means that

πφ(ψ) + πχ(ψ)− πφ∨χ(ψ) ≤
∑
w∈W

π(w) = 1.

Modus Ponens: φ,φ > ψ ⊢ ψ
p-valid: We are only interested in simple counterfactuals so φ,ψ in the
formulation of Modus Ponens are Booleans, that is, φ,ψ ∈ LPL. We
need to show that

U(φ) + U(φ > ψ) ≥ U(ψ)

i.e., that
π(φ) + πφ(ψ)− π(ψ) ≤ 1.

Let w ∈ W such that π(w) > 0 and suppose that π(w) is added to
π(φ) and πφ(ψ), but not to π(ψ). This implies that w ∈ |φ|, f (w, φ) ∈
|ψ|, but w ̸∈ |ψ|. However, since w ∈ |φ|, by Definition 1.3, we have
that f (w, φ) = w. This contradicts with f (w, φ) ∈ |ψ| and w ̸∈ |ψ|.
Therefore, for each w ∈ W , π(w) is added to the total sum π(φ) +
πφ(ψ)− π(ψ) at most once. This means that

π(φ) + πφ(ψ)− π(ψ) ≤
∑
w∈W

π(w) = 1.

B.2. Proof of Theorem 2.2. t-invalidity proofs follow exactly as in the
corresponding t-invalidity proofs in (Berto and Özgün 2021). We here
repeat those proofs for the convenience of the reader. For p-validity
proofs, let N = (W , f , λ,V , π) be a probabilistic model and T =
⟨T ,⊕, t, k⟩ a topic model with singleton T .

MOD: ¬φ > φ ⊢ ψ > φ
We want to show that U(¬φ > φ) ≥ U(ψ > φ).

Case 1: ¬φ is possible
Then, π¬φ(φ) = 0. Since tφ ⊑ k(t¬φ), we have U(¬φ > φ) = 1 −
π¬φ(φ) = 1. Therefore, since U(ψ > φ) ∈ [0, 1], we obtain the result.

Case 2: ¬φ is impossible
Then, π¬φ(φ) = 1 (by Lemma 3.2), thus, U(¬φ > φ) = 0. Since T is
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a singleton model, we have U(ψ > φ) = 1 − πψ(φ). If ψ is impossible,
then πψ(φ) = 1, thus, U(ψ > φ) = 0. If ψ is possible, then πψ(φ) = 1
since ¬φ is impossible. Therefore, U(ψ > φ) = 0.

t-invalidity: Consider the instance ¬p → p ⊢ q → p and the topic model
⟨{a, b},⊕, t, k⟩ such that ⊕ is idempotent and a ⊕ b = a, thus, b ⊏ a.
Moreover, k is a constant function and tq = b and tp = a. Therefore,
a = tp = k(t¬p) but a = tp ̸⊑ k(tq) = b (see Figure 2).

b = tq = k(b)

a = tp = k(a)

Figure 2. Topic model ⟨{a, b},⊕, t, k⟩

RCE: If φ ⊢PL ψ, then ⊢ φ > ψ
p-validity: Follows immediately from Lemma 3.3 and the fact that πφ is
a probability function.

t-invalidity: Consider the counterexample given in Figure 2, where φ :=
q and ψ : p ∨ ¬p.

RCEA: If ⊢PL φ ≡ ψ, then φ > χ ⊣⊢ ψ > χ
p-validity: It is easy to see by Definition 1 that if |φ| = |ψ|, then
f (w, φ) = f (w, ψ) for all w ∈ W . Therefore, whenever |φ| = |ψ|,
we have πφ = πψ. Then the p-validity follows.

t-invalidity: Consider the counterexample given in Figure 2 and take
φ := p ∨ ¬p, ψ := q ∨ ¬q, χ := r ∨ ¬r such that tr = a. Then, |=PL

φ ≡ ψ, (p ∨ ¬p) → (r ∨ ¬r) is an on-topic conditional wrt T but
(q ∨ ¬q) → (r ∨ ¬r) is not.

RCEC: If ⊢PL φ ≡ ψ, then χ > φ ⊣⊢ χ > ψ
p-validity: Follows immediately from Definition 5.

t-invalidity: Consider the counterexample above but take tp = tr = b
and tq = a.

RCK: If ⊢PL (φ1 ∧ · · · ∧ φn) ⊃ ψ, then χ > φ1, . . . , χ > φn ⊢ χ > ψ

p-validity: Suppose that ⊢PL (φ1 ∧ · · · ∧ φn) ⊃ ψ. We want to show that
U(χ > φ1) + . . .U(χ > φn) ≥ U(χ > ψ), i.e., that 1 − πχ(φ1) + · · · +
1−πχ(φn) ≥ 1−πχ(ψ), i.e., that πχ(ψ) ≥ πχ(φ1)+ . . . π

χ(φn)−n+1.
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It is easy to see that

πχ(ψ) ≥ πχ(φ1 ∧ · · · ∧ φn)
(by the assumption and πχ is a prob. func.)

≥ πχ(φ1) + . . . πχ(φn)− n + 1
(πχ is a probability function)

t-invalidity: Same as the proof of RCEC.

RCM: ⊢PL φ ⊃ ψ, then χ > φ ⊢ χ > ψ
p-validity: Follows from the fact that πχ is a probability function.

t-invalidity: Same as the proof of RCEC.

And-to-If: φ ∧ ψ ⊢ φ > ψ
p-validity: We want to show that πφ(ψ) ≥ π(φ ∧ ψ). By Definition 1.3,
for all w ∈ |φ ∧ ψ|, f (w, φ) = w. Therefore, for all w ∈ |φ ∧ ψ|,
πφ(w) ≥ π(w). Thus,

πφ(ψ) =
∑

w′∈|ψ|

πφ(w′) ≥
∑

w′∈|φ∧ψ|

πφ(w′) ≥
∑

w′∈|φ∧ψ|

π(w′) = π(φ∧ψ).

t-invalidity: See the counterexample given in Figure 2 and take φ := q
and ψ := p.

B.3. Proof of Theorem 2.3. The proofs of t-validity are straightforward,
so we skip the details (see also Berto and Özgün (2021, Appendix) for
similar proofs).

Trans: φ > ψ,ψ > χ ⊢ φ > χ

p-invalidity: Consider the probabilistic model N = (W , f , λ,V , π) such
that W = {w1,w2, λ}, V (p) = {w1}, V (q) = {w1,w2}, and V (r) =
{w2}, f satisfies Definition 1 such that f (w2, p) = {w1}, and π(w1) =
π(w2) = 1/2. Then, πp(q) = 1, πq(r) = 1/2, and πp(r) = 0. We then
obtain that U(p > q) + U(q > r) = 0 + 1/2 < U(p > r) = 1.

SA: φ > ψ ⊢ (φ ∧ χ) > ψ

p-invalidity: Consider the probabilistic model N = (W , f , λ,V , π) such
that W = {w1,w2,w3, λ}, V (p) = {w1,w2,w3}, V (q) = {w1,w2}, and
V (r) = {w2,w3}, f satisfies Definition 1 such that f (w1, p ∧ r) = {w3},
and π(w1) = π(w2) = π(w3) = 1/3. Then, πp(q) = 2/3 and πp∧r(q) =
1/3. We then obtain that U(p > q) = 1/3 < U((p ∧ r) > q) = 2/3.
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B.4. Proof of Theorem 2.4.
Or-to-if: φ ∨ ψ ⊢ ¬φ > ψ
p-invalidity: Consider the probabilistic model N = (W , f , λ,V , π) such
that W = {w1,w2,w3,w4, λ}, V (p) = {w1,w2} and V (q) = {w2,w3},
f satisfies Definition 1 such that f (w1,¬p) = f (w2,¬p) = w4, and
π(w1) = π(w2) = 1/3, π(w3) = π(w4) = 1/6. Then, π(p∨q) = 5/6 and
π¬p(q) = 1/6. We then obtain that U(p∨ q) = 1/6 < U(¬p > q) = 5/6.

Contraposition: φ > ¬ψ ⊢ ψ > ¬φ
p-invalidity: Consider the probabilistic model N = (W , f , λ,V , π) such
that W = {w1,w2,w3, λ}, V (p) = {w1,w2} and V (q) = {w2,w3}, f
satisfies Definition 1 such that f (w1, q) = w2 and f (w3, p) = w1, and
π(w1) = π(w2) = π(w3) = 1/3. Then, πp(¬q) = 2/3 and πq(¬p) = 1/3.
We then obtain that U(p > ¬q) = 1/3 < U(q > ¬p) = 2/3.

SDA: (φ ∨ ψ) > χ ⊢ φ > χ,ψ > χ
p-invalidity: Consider the probabilistic model N = (W , f , λ,V , π) such
that W = {w1,w2,w3, λ}, V (p) = {w1}, V (q) = {w2}, and V (r) =
{w2,w3}, f satisfies Definition 1 such that f (w2, p) = f (w3, p) = w1

and f (w3, p ∨ q) = w2, and π(w1) = 1/6, π(w2) = 1/3, π(w3) = 1/2.
Then, πp∨q(r) = 5/6 and πp(r) = 0. We then obtain that U((p ∨ q) >
r) = 1/6 < U(p > r) = 1.

t-invalidity:
t-invalidity proofs follow exactly as in the corresponding t-invalidity
proofs in (Berto and Özgün 2021). We here repeat those proofs for the
convenience of the reader. For Or-to-If and Contraposition, consider the
topic model given in Figure 2. This model t-invalidates Or-to-If since
q ∨ p is not a conditional and ¬q → p is not an on-topic conditional
wrt T : a = tp ̸⊑ k(t¬q) = b. It also t-invalidates Contraposition since
p → ¬q is an on-topic conditional wrt T (since b = t¬q ⊑ k(tp) = a)
but q → ¬p is not (since a = t¬p ̸⊑ k(tq) = b). For SDA, consider
the topic model T ′ = ⟨{a, b, c, d},⊕′, k′, t′⟩ where ⊕′ is as depicted in
Figure 3, k′ is a constant function, and t′p = b, t′q = c, and t′r = a. It
is then easy to see that (p ∨ q) → r is an on-topic conditional wrt T ,
however, neither p → r nor q → r is.

B.5. Proof of Theorem 2.5. The invalidity of Trans, SA, Or-to-If, Contra-
position, and SDA follows from Lemma 1, Theorems 2.3, and 2.4. For
RCE, RCEA, RCEC, RCK, and RCM, take the counter-topic models
given in the proof of Theorem 2.2 together with any arbitrary prob-
ability mass π: they constitute counterexamples for the respective va-
lidity claims, since in each case the degree of unacceptability of the
elements in Γ is 0 and the degree of unacceptability of the elements
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b = t′p c = t′q

a = t′r

Figure 3. Counterexample for the t-invalidity of SDA

in ∆ is 1 (since the conditionals in ∆ are off-topic conditionals with
respect to the corresponding topic models). For And-to-If, consider
the instance q ∧ p ⊢ q → p. This is invalidated by the topic model
given in Figure 2 plus a probability mass π such that π(p ∧ q) ̸= 0
(as in the corresponding case in Berto and Özgün (2021)). Finally,
MOD is invalid only when ¬φ is impossible. Consider the instance
¬(p ∨ ¬p) → (p ∨ ¬p) ⊢ q → (p ∨ ¬p). Observe that, for any
probability mass π, we have (by Lemma 3.2), π¬(p∨¬p)(p ∨ ¬p) = 1.
Consider also the topic model given in Figure 2. Then, we have that
U(¬(p ∨ ¬p) → (p ∨ ¬p)) = 1 − π¬(p∨¬p)(p ∨ ¬p) = 0. However,
since tp∨¬p ̸⊑ k(tq), we have U(q → (p ∨ ¬p)) = 1. Therefore,
U(¬(p ∨ ¬p) → (p ∨ ¬p)) < U(q → (p ∨ ¬p)).
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