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The method of thought experiments pops up in Counterfactuals, section
3.2. Lewis considers the idea that the assertable counterfactuals are those
whose consequent follows from the supposition of the antecedent, together
with further unstated premises thought to be cotenable with it:

Imagine that you somehow came to know the antecedent for cer-
tain and reorganized your system of beliefs under the impact of
this new knowledge: the beliefs you would retain are the ones you
regard as cotenable with the antecedent. The problem of coten-
ability then reduces, as Mackie observes, to the familiar problem
of induction: how should one’s system of beliefs change under the
impact of an exogenous piece of new knowledge?

But the method of thought experiments is wrong. [...] There is
no reason at all why my most probable antecedent-worlds should
be the same as the antecedent-worlds closest to my most probable
worlds. The method of thought experiments gives me the charac-
ter of the former worlds, but the assertability of counterfactuals
depends on the character of the latter worlds.

Perhaps I have considered the wrong thought experiment; the
right one is to add your antecedent to your system of beliefs
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not as if it were an item of new knowledge, but simply as a
counterfactual supposition. That is the right thing to do, I agree,
but it is unhelpful to say so. For what is the thought experiment
of adding φ to your beliefs as a counterfactual supposition? I
suppose it is nothing else than the exercise of deciding which
counterfactuals with the antecedent φ you believe. (Lewis, 1973,
70-2)

Indeed, Lewis starts by considering the wrong kind of thought experiment
for the assessment of counterfactuals: the right one involves taking the an-
tecedent φ as a counterfactual supposition. But, contrary to what he claims,
this is not quite the same as the exercise of deciding which counterfactuals
with antecedent φ one believes or accepts. Such an exercise is given by coun-
terfactual supposition, plus one further ingredient which, once added, will
shed light on the acceptability of counterfactuals.1

A simple counterfactual ‘φ > ψ’ (‘If it were/had been the case that φ,
then it would be/have been the case that ψ’) has no counterfactuals nested
in φ or in ψ. We are after their assessment and acceptability conditions.2

What is acceptability? One may take it just as believability (Douven, 2016,
ch. 4). However, we will consider situations where these may come apart.
For we’ll make comparisons with the acceptability of indicatives (‘φ → ψ’,
‘If it is the case that φ, then it is the case that ψ’). And if, as Adams (1975),
Edgington (1995), Bennett (2003) think, these do not express propositions
and lack truth values, then one should not speak of believability for them:
to believe something is to believe it is true.

Why acceptability rather than assertability? We take acceptance as a
mental state, assertion as a linguistic act expressing acceptance or belief, and
we focus on the mental state: we are after a cognitive phenomenon, not the
pragmatics of its communication. We accept in the privacy of our head. So
acceptability is not subject to social norms the way assertability is: one may
find something quite acceptable or believable, but inappropriate to assert
in a conversational context because it would be weird, an insensitive thing
to say, or so. We will also refer, to draw parallels with counterfactuals, to

1So we borrow the expression ‘method of thought experiments’ from Lewis, to use his
label for candidate procedures for the assessment of counterfactuals. But of course there
are broad connections betweens counterfactuals and thought experiments in science and
philosophy, explored e.g. in Williamson (2007); Shaffer (2017). We’ll get back to this.

2We are actually after something more restricted: our primary way of assessing – via
counterfactual supposition. We sometimes accept a counterfactual just by taking on board
someone’s testimony. But we take this to be a secondary way, parasitic on the primary:
Williamson (2020), ch. 2, has a similar distinction, and dependence, between primary (via
a suppositional procedure) and secondary (via testimony) ways of assessing indicatives.
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some experiments concerning indicatives which have been carefully designed
in terms of acceptability, not assertability.

Why only simple counterfactuals? One reason is practical: below, we
come up with a probabilistic logic to reason about the (un)acceptability of
counterfactuals. Doing that for simple counterfactuals was complex enough:
we resort to a probabilistic belief update different from Bayesians’ favourite
i.e. conditionalization, and we endow our models with an algebraic struc-
ture. This is new logical territory: while the interactions of conditionals
with probabilities have been formally investigated at least since the ground-
breaking work of Adams (1966, 1975, 1998), most accounts only make use of
conditional probabilities. They also do not embed an algebraic component.
So we made our life easier by not working with nested counterfactuals.

Another reason is methodological: one defeasible test for an account of the
acceptability conditions of counterfactuals is, we submit, how well it matches
various intuitive acceptability judgments. But with nested counterfactuals
such judgments may fail to provide clear verdicts. This is not unexpected:
to the extent that we assess counterfactuals suppositionally, nested counter-
factuals may have us engage in suppositions within suppositions; these may
induce more cognitive strain and divergent verdicts than plain suppositions.
But with simple counterfactuals, at least for certain relevant cases we will
discuss, intuitions speak with a uniform voice, thus being harder to explain
away via some error theory – or so we argue below.

We do not stick with simple counterfactuals because we believe they are
not freely embeddable, as some think, as a consequence of Lewis’ and others’
celebrated triviality results concerning their probabilities Lewis (1976); Hájek
(1989). Analogous triviality results for counterfactuals have been produced
Leitgeb (2012); Williams (2012). But our account will be triviality-proof.

1 Suppositions

Suppositional accounts of indicatives are popular in philosophy Edgington
(1995) and psychology Evans and Over (2004); Oaksford and Chater (2010).
They are inspired by Ramsey’s footnote:

If two people are arguing ‘If p will q’ and are both in doubt as to
p, they are adding p hypothetically to their stock of knowledge
and arguing on that basis about q; so that in a sense ‘If p, q’ and
‘If p, ¬q’ are contradictories. We can say that they are fixing
their degrees of belief in q given p. (Ramsey, 1990, 155n)
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(What we now call) the Ramsey Test links our assessment of conditionals to
the update of our prior beliefs in the light of new information – except that
instead of actually getting the news online, we just imagine getting them, in
‘offline mode’ Williamson (2016). Suppositional thinking, then, must work
as a kind of simulated belief revision governed, just as its real counterpart,
by a maxim of minimal alteration: we change our beliefs as little as possible,
compatibly with the need to accommodate the supposition.

Matching the distinction between the two kinds of conditionals, it is com-
mon in the literature Joyce (1999); Leitgeb (2012, 2017) to distinguish be-
tween indicative supposition (imagining how things are like if φ is the case)
and subjunctive or counterfactual supposition (imagining what things would
be or have been like if φ was or had been the case). Lewis’ discussion of the
method of thought experiments in Counterfactuals is aimed as showing that
a key difference between the two lies in which beliefs are cotenable in the two
modes. The first method gives the wrong kind of thought experiment for the
assessment of counterfactuals precisely because it delivers the wrong verdict
on cotenability. Section 3.2 repeats the example famously given at the start
of the book:

1. If Oswald did not kill Kennedy, someone else did.

2. If Oswald had not killed Kennedy, someone else would have.

We can assess both by supposing the antecedent and wondering about
the consequent. But we accept (1) and reject (2) because, when we suppose
indicatively that Oswald has not killed Kennedy we retain as cotenable our
belief that Kennedy was actually killed – and so it must have been someone
else, so (1) must be ok. When we suppose the same thing counterfactually,
we relinquish that belief and find it plausible that nobody else kills Kennedy
in the counterfactual scenario – so (2) must not be ok.

Suppositional accounts take indicative supposition as governed by condi-
tionalization Adams (1975); Edgington (1995); Bennett (2003); Evans and
Over (2004). But if indicative and counterfactual supposition differ, what is
the latter governed by? Lewis gave the answer three years after the publi-
cation of Counterfactuals, in the very same paper in which he came up with
the triviality results for the probabilities of indicatives: it is governed by a
procedure from which conditionalization differs just as looking at ‘the most
probable antecedent-worlds’ differs from looking at ‘the antecedent-worlds
closest to the most probable worlds’.
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2 Imaging

Take a finite set of worldsW on which a total closeness ordering is defined, as
per the conditional logics of Stalnaker (1968) and Lewis (1973). When Lewis
(1976) introduced the procedure at issue, imaging, he followed Stalnaker in
assuming that for each w and φ there is a single closest φ-world, wφ. A
selection function f : W × P(W ) 7→ W outputs, for each w ∈ W and
|φ| ⊆ W (|φ| being the truth set of φ), the relevant wφ. Given a probability
distribution π over W , the image πφ of π under φ is defined: for all w1 ∈ W ,
πφ(w1) :=

∑
w:wφ=w1

π(w). The probability of each w is transferred to its
closest φ-world wφ. Because wφ may be the closest world to more than one
world, one adds up the probabilities of all of those worlds. Each φ-world
keeps the probability it had before, and may gain probabilities transferred
from non-φ-worlds. Probabilities are only moved around but not created or
destroyed, so πφ is a probability distribution when π is. We then define, as
usual, the probability of a sentence ψ as the sum of the probabilities of the
worlds where ψ is true, so πφ(ψ) :=

∑
w1∈|ψ| π

φ(w1).
Both imaging and conditionalization comply with the idea of minimal

change governing suppositions – but they are minimal in different ways:

Imaging π on φ gives a minimal revision in this sense: unlike
all other revisions of π to make φ certain, it involves no gratu-
itous movement of probability from worlds to dissimilar worlds.
Conditionalizing π on φ gives a minimal revision in this different
sense: unlike all other revisions of π to make φ certain, it does not
distort the profile or probability ratios, equalities, and inequali-
ties among sentences that imply φ. (Lewis, 1976, 311, notation
adjusted)

The simple Lewisian example illustrating how imaging πφ(ψ) differs from
conditionalization π(ψ|φ) goes thus: say we have three equiprobable worlds
w,w1, w2 so the probability of each one is 1/3. w1 and w2 make φ true while
w does not. w1 is closer to w than w2. When we revise by conditionalizing
on φ, we kick out w and renormalize, distributing the probabilities uniformly
so π(w1|φ) = π(w2|φ) = 1/2. Instead, imaging makes use of closeness: all of
w’s probability is transferred to w1, thus π

φ(w1) = 2/3 while πφ(w2) = 1/3.
Here is how the two differ in cotenability: Gärdenfors (1982) proved

that conditionalization, unlike imaging, has a property, conservativity, which,
phrased in terms of supposition, goes thus: when one supposes indicatively
that φ and one is certain of χ for a cotenable χ, i.e., π(χ) = 1, then also
π(χ|φ) = 1. So when one wonders what is the case if Oswald did not kill
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Kennedy and one is certain that Kennedy has been killed, one will retain
that certainty under the supposition – thus, indicative-Oswald (1) sounds
ok. Imaging is not conservative: χ may become uncertain when one sup-
poses that φ counterfactually. So when one wonders what would have been
the case if Oswald had not killed Kennedy, one may relinquish one’s certainty
that Kennedy was killed – thus, counterfactual-Oswald (2) does not sound
ok.

Thought experiments and counterfactuals are involved in the assessment
and revision of scientific theories. For interesting works on the subject, one
can look at Shaffer (2001, 2012), which connect the idealisation of scien-
tific theories to counterfactuals dealt with in Lewisian-Stanakerian fashion:
Shaffer proposes that counterfactuals capture the simplyfing assumptions
occurring in standard scientific theory-building. Now theory revision can
be broadly understood as minimal revision of a theory given new evidence
or information. And Shaffer (2001) rightly remarks that, if we regiment
theories via counterfactuals, Bayesian probabilistic revision via conditional-
ization may have troubles in accounting for the prior probabilities of theories
in counterfactual form. We remark that imaging captures exactly a form of
minimal revision which could be applied to theories, alternative to standard
Bayesian conditionalization, and proven free from the conservativity feature
of the latter, thanks to the Gärdenfors result.

3 Adams’ Thesis, Lewis’ Thesis, Stalnaker’s

Hypothesis, Lewis’ Proof

A popular conjecture, subscribed to by McGee (1989), Jackson (1987), and
others, has it that the (degree of) acceptability of indicatives equals the
subjective probability of the consequent conditional on the antecedent. One
may think that the (degree of) acceptability of counterfactuals equals the
subjective probability of the consequent under the image of the antecedent:

(AT) Acc(φ→ ψ) = π(ψ|φ)

(LT) Acc(φ > ψ) = πφ(ψ)

(LT) is Lewis’ Thesis (as one may call it, given Counterfactuals 3.2):
deciding which counterfactuals with antecedent φ one accepts is nothing
else than assessing the status of the consequent under the counterfactual
supposition of φ – once the latter is understood as imaging on φ. (AT) is
Adams’ Thesis, named after Adams (1966, 1975). This is sometimes, but
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should not be, confused with Stalnaker’s Hypothesis, named after Stalnaker
(1975):

(SH) π(φ→ ψ) = π(ψ|φ)

Two differences between (AT) and (SH): (1) (AT) applies only to simple
indicatives (no indicatives embedded in the antecedent or consequent); (2)
(AT) is phrased in terms of acceptability, not probability. Both seem to
be required: (SH) (in spite of robust empirical evidence confirming it: see
Evans et al. (2003); Evans and Over (2004); Douven and Verbrugge (2010)) is
widely considered false precisely because of the Lewis (1976) triviality results.
On the other hand, non-propositionalists like Adams, Edgington (1995), and
Bennett (2003) have claimed that (AT) can hold insofar as indicatives do
not express propositions (thus, they cannot be freely embedded: hence the
restriction to simple conditionals) and lack truth values. Because of this,
they cannot have probabilities of truth properly so called, as per (SH); but
they can have acceptability conditions, as per (AT).

But Lewis (1976) proved that when φ > ψ is the Stalnaker conditional,
true iff the closest antecedent-world makes the consequent true, then the
following does hold in general for all probability distributions π, with no
triviality ensuing – let us call it Lewis’ Proof:

(LP) π(φ > ψ) = πφ(ψ)

A Stalnaker counterfactual φ > ψ is true at w iff ψ is true at wφ. So
its truth set is {w : wφ ⊩ ψ} (‘⊩’ is makes true). Now the probability of
this set is π({w : wφ ⊩ ψ}) =

∑
w:wφ⊩ψ

π(w). But this is the probability

of ψ under the image of φ,
∑

w1∈|ψ|
∑

w:wφ=w1
π(w). If we assume that the

degree of acceptability of a counterfactual equals its subjective probability, we
get (LT): we assess a counterfactual by checking how the consequent fares
once we have shifted the due probabilistic mass to the closest antecedent-
world. Then the situation with counterfactuals (insofar as the Stalnaker
conditional is taken as a good enough approximation to the natural language
counterfactual – we’ll get back to this) is somewhat streamlined. Lewis’
positive result (LP) reassures us that, unlike what happens with indicatives,
we need not divorce acceptability from probability of truth.

(LT) may then be taken as describing in full generality our primary way
of assessing a (simple) counterfactual suppositionally: we accept φ > ψ to
a degree equal to the probability we assign to the consequent ψ under the
image of the antecedent φ. In terms of supposition: we accept it to the extent
that we judge the consequent likely in a counterfactually imagined situation
in which the antecedent is true.
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4 Relevance

But (LT) is not quite right. We often find a counterfactual unacceptable
although we judge the probability of the consequent high under the counter-
factual supposition of the antecedent. That is because the consequent was
already deemed very likely outside of the supposition, and the antecedent we
image our probabilities on is irrelevant to that:

3. If this Banbury house were in Oxford, then Melbourne would be in
Australia.

4. If Caesar had had firearms in 58 BC, then Saturn would have been a
planet.

5. If we offered Midori a pay rise, then there would be some heads in the
first 100 tosses of this fair coin.

Can one cordon off the anomalies by claiming that these happen just with
propositions one is already fully certain of, as may be the case with the con-
sequent of (3) or (4)? One would have to explain why: the Gärdenfors result
tells us that certainties are not guaranteed to be preserved under imaging.
Anyway, (5) is different: knowing the coin is fair, we think it quite likely that
it will land heads sometimes if tossed 100 times, but we are not certain.

What will end up being acceptable at the end of the exercise is a conces-
sive: ‘Even if this Banbury house were in Oxford, Melbourne would still be
in Australia’; ‘There would be some heads in the first 100 tosses of this fair
coin, whether or not we offered Midori a pay rise’. Unlike ordinary counter-
factuals, concessives can take ‘even’ or ‘whether or not’ in the antecedent;
they cannot take ‘then’ in the consequent, as it is there precisely to exclude
the irrelevance of the antecedent for the consequent (Iatridou (1993) makes
the point for indicatives). Perhaps concessives and ordinary counterfactuals
differ in truth conditions, perhaps not. But we’re only after acceptability;
and it seems clear that ‘If it were the case that φ, then it would be the case
that ψ’ is normally acceptable precisely when ‘Even if it was the case that
φ, it would still be the case that ψ’ and ‘Whether or not φ, it would be the
case that ψ’ are not. Compare:

6. If this Banbury house were in Oxford, then it would be very expensive.

7. If Caesar had had firearms in 58 BC, then he would have used them
against the Gauls.
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8. If there were some heads in the first 10 tosses of this (fair) coin, then
there would be some heads in its first 100 tosses.

We accept these because, besides finding the consequent likely on the counter-
factual supposition of the antecedent, we find the latter relevant, or on-topic,
or pertinent, with respect to the former. The relevance effect is detectable
even in cases where the antecedent is necessarily false, and known to be:

9. If there was a largest prime, then some number would be both prime
and composite.

10. If there was a largest prime, then bachelors would be married.

We can accept (9) while in the business of proving the infinity of primes. We
already regard the antecedent as impossible: we are just carrying out a proof
by reductio of what we already know to be a necessary truth (perhaps because
we trust the textbook, or the teacher, telling us this much). (10) would not
fare so well in the context. The difference between (9) and (10) gives evidence
that the acceptability conditions for counterfactuals are hyperintensional: we
can have different attitudes towards counterfactuals whose antecedent and
consequent are, respectively, co-intensional – and known to be such.

To counter the conjecture that (LT) describes what we primarily do when
we assess a counterfactual, we need the counterexamples to be pervasive.
People do all sorts of things: isolated exceptions will not count against a
descriptive conjecture. So, how widespread are relevance-based counterex-
amples? We are not aware of experiments carried out to test (LT). But we
are, of experiments carried out to test its counterpart for indicatives, (AT).
Douven and Verbrugge (2010) gave to a group of subjects contexts (short
stories) Ci, 1 ≤ i ≤ 30, and asked them to rate the acceptability of indica-
tives φi → ψi in Ci. They gave to another group the same contexts Ci and
asked them to judge the probability of ψi in Ci on the supposition that φi.
It turned out that people’s patterns (of degrees) of acceptance for indicatives
do not even approximate the corresponding conditional probabilities: the
acceptability ratings are often significantly lower than the conditional prob-
abilities. This ‘manifestly refute[s] Adams’ Thesis, both in its strict form AT
and in its approximate form’ (Douven, 2016, 99). Douven’s own favourite
inferentialist approach to indicatives (a label for a family of accounts, includ-
ing Skovgaard-Olsen et al. (2016), Krzyżanowska (2015), Krzyżanowska et al.
(2017), Rott (2022)) explains this in terms of the lack of a relevant connec-
tion between antecedent and consequent in conditionals with corresponding
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high conditional probability.3

We do not know how straightforwardly such negative empirical results
concerning (AT) may carry over to (LT). But they point at an obvious per-
vasive feature of suppositional thinking in general, whether of the indicative
or of the counterfactual kind: such thinking has a focus. We usually engage
in suppositional thinking with an issue to address: supposing φ, would it
be that ψ? Lots of things can then turn out to be irrelevant to the issue,
even when they are otherwise perfectly cotenable. Lewis (1973) claimed that
necessary or logical truths should be cotenable with any supposition. But
when we counterfactually suppose that the house is moved to Oxford in the
business of estimating its value increase, we do not imagine that 2+2 = 4, or
that either Melbourne is in Australia or not, just because these are necessary
truths. We will not imagine that Melbourne is in Australia at all, though
that is a true belief we hold, and perfectly compatible with the supposi-
tion. Just as rational thinkers with finite resources should not ‘clutter their
minds’ with pointless albeit valid inferences (as argued by Harman (1986);
Cherniak (1986), and others), so they should not clutter it with pointless
albeit cotenable propositions.

This suggest a fixing for Lewis’ Thesis: we accept a counterfactual φ >
ψ to the extent that (1) πφ(ψ) is high as per (LT), provided that (2) the
antecedent φ is relevant for the issue addressed via ψ. We propose to capture
(2) by using recent ideas on topics or subject matters : items suitable for the
purpose of capturing relevance or topicality in discourse and thought.4

3Unlike (AT), Stalnaker’s Hypothesis (SH) enjoys big empirical support. But Douven
and Verbrugge were the first, as far as we know, to phrase an experiment specifically
in terms of acceptability. They even considered the idea that their subjects may have
confused acceptability with assertability. So they also came up with control experiments,
where they (1) compared answers to questions phrased in terms of acceptability with
answers phrased directly in terms of reasonableness to believe; and (2) explicitly asked the
participants of the main experiment how they themselves had interpreted acceptability:

The answers do suggest that the notion of acceptability was interpreted in
an epistemic sense rather than in some other sense; things that seem logical,
or self-evident, or that can be taken to be true, are probably things that
are reasonable to believe, though not obviously also things that it would be
appropriate to contribute to a conversation. Indeed, there was no indication
that any of the participants had understood ‘acceptable’ as meaning some-
thing like ‘conforming to broadly social norms governing good conversational
practice.’ (Douven and Verbrugge, 2010, 311)

4Compare the story told in Berto and Özgün (2021), where a probabilistic logic for
the acceptability of indicatives is introduced, mirroring the one presented below for the
acceptability of counterfactuals. In that paper, we use conditional probability functions
(aka Popper functions) whereas in the present one we resort to imaging. And that paper
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5 Aboutness

Aboutness is ‘the relation that meaningful items bear to whatever it is that
they are on or of or that they address or concern’ (Yablo, 2014, p. 1):
this is their subject matter or, as we shall also call it, their topic.5 Work
on topics has been burgeoning among philosophers Lewis (1988a); Gemes
(1994); Hawke (2016, 2018); Plebani (2020); Plebani and Spolaore (2021),
linguists Roberts (2011); Moltmann (2018), logicians Fine (1986); Humber-
stone (2008); Fine (2017). We use declarative sentences to say true things
about all kinds of conversational topics. One says: ‘Midori is a professor’.
One thereby addresses the topic of Midori’s profession, what Midori does or,
more generally, Midori. What one says is true just in case Midori’s profession
is or includes being a professor. One addresses certain topics and says that
things are such-and-so with respect to them.

Topics are often linked to questions or issues under discussion Lewis
(1988a); Roberts (2012): ‘Our topic is whether Oxford is too expensive for
its lecturers’ maps to ‘Is Oxford too expensive for its lecturers?’. Thus Lewis
(1988a,b) took topics as partitions of modal space. We talk about the number
of stars : there comes the partition determined by the question, ‘How many
stars are there?’. It puts worlds in the same cell when they agree on the
answer: all zero-star worlds in one cell, all one-star worlds in another, etc.

However, any old sort of thing can also serve as a conversational topic:
‘The topic of this module is deep neural networks’; ‘Our topic today is Rishi,
not his wife’; ‘Let us talk about deportations to Rwanda’. Thus some ap-
proaches to subject matters are more object- or state-of-affairs- oriented
(Hawke, 2018, provides an excellent overview). Prominent ones take top-
ics as sets or fusions of a sentence’s (exact) truthmakers / falsemakers Fine
(2017); Fine and Jago (2019), understood in their turn as close to states or
situations in the style of Barwise and Perry (1983).

We do not need to take a stance on the nature of topics. We just need
them to obey three structural constraints, on which there is some agreement
in the literature:

(1) Topics tend to come with hyperintensional accounts of what sentences
say, because co-intensional sentences can be about different things: only
one of ‘2 + 2 = 4’ and ‘Equilateral triangles are equiangular’ is about
equilateral triangles, and made true by what these are like.

proposes to fix Adams’ Thesis via a relevance constraint essentially like the one proposed
below to fix Lewis’ Thesis.

5The quick introduction to aboutness and topics in this section piggy-backs on the
one proposed in Berto (2022). We used the same story in our aforementioned paper on
indicatives Berto and Özgün (2021).
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(2) The space of topics has a mereological structure Yablo (2014); Fine
(2017): topics can have proper parts; distinct topics may have com-
mon parts; etc. Mathematics includes arithmetic. Mathematics and
philosophy overlap, having (certain parts of) logic as a common part.

(3) The Boolean operators add no subject matter of their own: they are
‘topic-transparent’ Hawke (2018); Fine (2020). The topic of ¬φ is the
same as that of φ. (‘Midori is not a professor’ is exactly about what
‘Midori is a professor’ is about: say, Midori’s profession, or what Mi-
dori does, or simply Midori. It is not about not.) Conjunction and
disjunction merge topics: ‘Simon is rich or beautiful’, ‘Simon is rich
and beautiful’ are both about, say, Simon’s wealth and looks.

In the next section we introduce a formal language including a counter-
factual conditional, for which we give acceptability conditions in terms of
imaging and topics. We then provide a probabilistic logic to reason about
the (un)acceptability of counterfactuals.

6 On-Topic Counterfactuals

Let LPL be the language of classical propositional logic on a countable set
of propositional variables Prop = {p, q, . . . } with connectives ¬ and ∧. The
well-formed formulas are the elements of Prop, ¬φ, and (φ ∧ ψ) whenever
φ and ψ are formulas. We identify LPL with the set of its well-formed
formulas and employ the usual abbreviations for the connectives ∨,⊃,≡ as
φ∨ψ := ¬(¬φ∧¬ψ), φ ⊃ ψ := (¬φ∨ψ), and φ ≡ ψ := (φ ⊃ ψ)∧ (ψ ⊃ φ).
So, ⊃ is the material conditional and ≡ is the material biconditional. As for
⊤ and ⊥, we set ⊤ := p ∨ ¬p and ⊥ := ¬⊤. We call the elements of LPL
Boolean sentences. For any φ ∈ LPL, Pφ denotes the set of propositional
variables occurring in φ.

Let LPL be interpreted in possible worlds semantics the usual way. Fol-
lowing Stalnaker (1968), we add to our models an absurd world, λ, in which
every proposition is true. Given a tuple M = (W,λ, V ), where W is a
nonempty set of worlds plus λ (i.e., λ ∈ W ), and V : Prop → P(W ) is a
valuation function such that λ ∈ V (p) for all p ∈ Prop and otherwise stan-
dard, |φ|M denotes the truth set of φ in M: the set of worlds that make
φ true. Note that λ ∈ |φ|M for all φ ∈ LPL. When |φ|M = {λ} we call φ
impossible in M, and possible otherwise. We omit the superscript and write
|φ| when the model is contextually clear. ‘|=PL’ stands for classical logical
truth/consequence.
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The language L of simple counterfactual conditionals extends LPL by
a counterfactual, ‘>’, connecting only the elements of LPL so as to avoid
nesting: the well-formed formulas in L are the elements of LPL, plus (φ > ψ)
whenever φ and ψ are in LPL. Now a few definitions:

Definition 1 (Stalnakerian selection function). Given a tuple M = (W,λ, V )
as described above, a Stalnakearian selection function f : (W × LPL) → W
assigns a possible world to each pair of a world in W and a sentence in LPL,
and satisfies the following properties:

1. For all φ ∈ LPL and w ∈ W , f(w,φ) ∈ |φ|,

2. For all φ ∈ LPL and w ∈ W , f(w,φ) = λ iff |φ| = {λ},

3. For all φ ∈ LPL and w ∈ W , if w ∈ |φ| then f(w,φ) = w.

4. For all φ, ψ ∈ LPL and w ∈ W , if f(w,φ) ∈ |ψ| and f(w,ψ) ∈ |φ| then
f(w,φ) = f(w,ψ).

We call the tuple (W, f, λ, V ) a Stalnaker model. The above conditions on
selection functions are nothing new with respect to Stalnaker (1968): (1) has
it that the φ-selected world is a φ-world. This makes sense for supposition
in particular: when we suppose that φ, we only look at a world where φ to
begin with (when we suppose that the Banbury house is in Oxford, we look
at a world where it is in Oxford). In (2) we follow Stalnaker in having a λ,
the absurd world, where everything is just stipulated to be true. This is the
value of f iff at any world it takes as input that is not true in any possible
world, that is, an input with the impossible truth set {λ}. (3) says that w
is the single world closest to itself whenever it is a φ-world already. (4) is
needed to make sure f selects based on closeness as comparative similarity.

Definition 2 (Topic models with operators). A topic model with operators
(in short, topic model) T is a tuple ⟨T,⊕, t, k⟩ where

1. T is a non-empty set of possible topics. We use variables a, b, c (a1, a2, . . . )
ranging over possible topics.

2. ⊕ : T × T → T is a binary idempotent, commutative, associative oper-
ation: topic fusion, making of topics part of larger topics. We assume
unrestricted fusion, that is, ⊕ is always defined on T : ∀a, b ∈ T ∃c ∈
T (c = a⊕ b).
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3. t : Prop → T is a topic function assigning a topic to each element in
Prop. t extends to LPL by taking the topic of a sentence φ as the fusion
of the elements in Pφ = {p1, . . . , pk}, i.e., the atoms showing up in it:

t(φ) = ⊕Pφ = t(p1)⊕ · · · ⊕ t(pk).

We abbreviate t(φ) as tφ.

4. k : T → T is a function on T that satisfies for all a, b ∈ T :

(a) a ⊑ k(a) (Inclusion);

(b) k(a) = k(k(a)) (Idempotence);

(c) k(a⊕ b) = k(a)⊕ k(b) (Additivity).

Out of fusion as per (2), we can define topic parthood, ⊑, what it means
that a topic is included in another, standardly:

∀a, b(a ⊑ b iff a⊕ b = b).

This makes ⊑ a partial order on T . That the topic of a φ is the fusion of
those of its atoms, as per (3), secures topic-transparency for connectives.

(4) has k as a Kuratowski closure operator on the poset ⟨T ,⊑⟩. It will
come handy when we give acceptability conditions. Inclusion (4a) guarantees
that the closure k(a) of a given topic a will always be an expansion: it will
enlarge the original topic, but never take us far away from it; k expands a
topic a in a minimal way. Idempotence (4b) says that one cannot repeat the
expansion unless the topic changes. Additivity (4c) guarantees that closure
on a whole never outstrips closure on its parts. Thus in particular closing tφ
is the same as closing the topics of its atoms, then fusing them.

Definition 3 (Stalnakerian Discrete Probability Space). A Stalnakerian dis-
crete probability space is a tuple (W,λ, π) such that W is a nonempty and
finite set of possible worlds and λ (i.e., λ ∈ W ), the sample space, and
π : W → [0, 1] is a probability mass function such that either π(λ) = 1 or∑

w∈W\{λ} π(w) = 1.

We call the tuple (W,λ, π) Stalnakerian to emphasise the occurrence of
the absurd world λ. It will be useful in formalising acceptability conditions
of counterfactuals with impossible antecedents. Throughout the paper we
employ only Stalnakerian discrete probability spaces, so we’ll simply call
them probability spaces. All our probability mass functions are to satisfy the
conditions given in Definition 3.
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Definition 4 (Probabilistic Model). A probabilistic model is a tuple N =
(W, f, λ, V, π) where (W, f, λ, V ) is a Stalnakerian model and π : W → [0, 1]
is a probability mass function as described in Definition 3. Then, for all
φ ∈ LPL, we have π(φ) =

∑
w∈|φ| π(w).

Definition 5 (Imaging). Given a probabilistic model (W, f, λ, V, π) and φ ∈
LPL, the image πφ of π under φ is defined as: for all w′ ∈ W , πφ(w′) :=∑

w:f(w,φ)=w′ π(w).

Easily, πφ is a probability mass function over W when π is (see Lemma
3.4 for the proof). Given πφ and ψ ∈ LPL, πφ(ψ) =

∑
w∈|ψ| π

φ(w).

Now comes the heart of the story:

Definition 6 (Degrees of (Un)Acceptability). For any probabilistic model
N = (W, f, λ, V, π) and topic model T = ⟨T,⊕, t, k⟩ defined on LPL, the
degree of acceptability AN ,T : L → [0, 1] of an element in L is defined as:

1. for all φ ∈ LPL, AN ,T (φ) = π(φ); and

2. AN ,T (φ > ψ) =

{
πφ(ψ), if tψ ⊑ k(tφ)

0 otherwise.

For any φ ∈ L, the degree of unacceptability UN ,T (φ) is then given by
UN ,T (φ) = 1−AN ,T (φ).

(When it is clear which probability and topic model are used, we omit the
subscripts and simply write A and U .)6

(1) just says that the degree of acceptability of a Boolean sentence φ is its
plain probability. (2) is the core of our proposal. It says that the degree of
acceptability of a simple counterfactual φ > ψ is given by (i) the probability
of its consequent under the counterfactual supposition, i.e., the image, of the
antecedent, so long as (ii) it is an on-topic counterfactual (with respect to
T ): the topic of its consequent, tψ, is included in the closure of the topic
of the antecedent k(tφ). Otherwise, φ > ψ is plainly unacceptable. Let us
unpack.

6Easily, given a probabilistic model N = (W, f, λ, V, π) and a topic model T =
⟨T,⊕, t, k⟩, we have:

1. for all φ ∈ LPL, U(φ) = 1− π(φ); and

2. U(φ > ψ) =

{
1− πφ(ψ), if tψ ⊑ k(tφ)

1 otherwise.
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First, the plain unacceptability of off-topic counterfactuals can be taken
as an idealisation of the proposed formalism: being off-topic may sometimes
actually lower the acceptability of a counterfactual without necessarily taking
it down to 0, especially if one endorses a graded notion of topic relevance. A
treatment of the latter is beyond the scope of this (already long) initial paper.
We anticipate that allowing for low-but-non-zero acceptability of off-topic
conditionals should not affect the acceptability-preserving (in-)validities of
the corresponding logic, and the intuitions they reflect: acceptability should
in any case not be preserved from on-topic conditionals to off-topic ones. So
our plain unacceptability for the off-topics does not bear on our substan-
tive philosophical claims and the principles of interest in a logic of on-topic
counterfactuals. (We thank an anonymous reviewer for pressing us on this
issue.)

Second: why did we not require plain inclusion of the topic of ψ in that of
φ, tψ ⊑ tφ? Because we often accept a counterfactual in contexts where, on
an intuitive way of understanding topicality, there is no plain topic-inclusion
between what the consequent and what the antecedent are about:

11. If we had stopped burning fossil fuels twenty years ago, the polar ice
would not have been melting so quickly.

12. If Brexit was that bad, the Tories would have lost the majority in
parliament by now.

13. If you had pushed that button, the plane would not have stalled.

In cases like (11)-(13), the antecedent φ is relevant for the consequent
although it does not, on its own, address an issue with respect to which the
consequent is fully on-topic. Rather, the counterfactual supposition of the
antecedent is carried out in a context where one is tackling a question or
issue, triggering a bunch of background assumptions, say BAφ, with respect
to which the consequent is fully on topic. Surely these assumptions are
connected with the antecedent (that is what the subscript in ‘BAφ’ is there
to remind you of; in particular, plausibly, φ ∈ BAφ). E.g., in (11), the issue
of polar ice melting can make contextually relevant topics connected to fossil
fuel burning, such as the emission of CO2, raising global temperatures, etc.
In (12), the issue of Tory electoral success can make contextually relevant
topics connected to the badness of Brexit, such as electoral reactions to
socioeconomic decline.

Here the Kuratowski operator earns its keep. For suppose (with a small
abuse of notation) k(tφ) = t(BAφ), that is, we think of k exactly as mapping
the topic of the antecedent φ to that of the relevant background assumptions
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BAφ contextually determined by φ and the tackled issue. This makes precise
what it means that suppositional thinking has a focus. When we suppose
that φ, wondering about the issue whether ψ, we can move, in a way dictated
by context/tackled issues, beyond the topic of the suppositional input φ. But
our expansion will be regimented : it will expand to distinct, but connected
topics. The Kuratowski is a topological closure operator, giving to connected-
ness a precise topological meaning: Inclusion guarantees that tφ ⊑ t(BAφ),
i.e., the topic of the relevant background assumptions BAφ possibly expands,
but always includes that of the antecedent φ. Idempotence has it that t(BAφ)
is complete: contemplating on the background assumptions does not lead to
new topics unless given additional inputs. Additivity ensures that t(BAφ) is
the same as the fusion of the topics determined by its simpler components.

Third: connectedness is, admittedly, dealt with in a rather abstract fash-
ion. If one asked, ‘But exactly which are the connected topics?’, one would
not find very informative replies in the formal setting itself. This is, we sub-
mit, unavoidably so. What the relevant background assumptions in BAφ
are, is a volatile, fuzzy, focus-dependent matter. In some cases, the connec-
tion between antecedent and consequent will be so obvious that little or no
context or focus is required to acknowledge it. Sometimes, only a lengthy
story will tell whether the topicality constraint is satisfied or not.7

For a hopefully helpful analogy: any modal account of the truth con-
ditions of counterfactuals, of a broadly Kratzerian (see Kratzer, 2012) or
Lewisian-Stalnakerian kind, will involve some apparatus for focusing on the
contextually relevant worlds for the interpretation of the counterfactual at
hand. Take the Lewisian-Stalnakerian story: ‘φ > ψ’ is true at w iff ψ is
true at the φ-world(s) closest to w. Intuitively, the closest worlds are those
where the background assumptions in BAφ hold (Priest, 2001, ch. 5). If one
asked, ‘But exactly which are the closest worlds?’, one would not find the
Lewis-Stalnaker semantics very informative. And of course, the question has
been asked – starting with Fine (1973)’s critical notice of Lewis’ Counter-

7A nice example provided by a helpful anonymous referee: ‘If you spent more time
reading Hegel, your cholesterol level would not improve’. Where is the topicality connec-
tion? Well, say the context fixing the relevant BAφ is one where the conversational focus
is on my sedentary attitude as a reader of philosophy, and how it affects my psychophys-
ical health. I claim: ‘If I spent more time reading Hegel, I would feel more peaceful at
the end of the day.’ You retort: ‘If you spent more time reading Hegel, your cholesterol
would not improve’. This seems perfectly on-topic as stressing that what I need is physical
exercise, rather than more Hegel and peace of mind. But of course, one can come up with
several different contexts, where ‘If you spent more time reading Hegel, your cholesterol
would not improve’ just turns out to be an irrelevant conditional – e.g., pick one where
we are addressing the topic of my competence in classical German philosophy, and my
psychophysical health is not at issue at all.
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factuals book, which has generated a large literature on how to specify the
relevant similarity respects (see Bennett (2003) for a masterful reconstruc-
tion). Now most of such literature is about informally glossing on the formal
semantics from the outside. That is because, as Lewis puts it in Counter-
factuals : ‘The truth conditions for counterfactuals [...] are a highly volatile
matter, varying with every shift of context and interest’ (Lewis, 1973, 92).
The Lewis-Stalnaker semantics presupposes that we have some (vague, fuzzy,
context-dependent) intuitions on what counts as the most similar situations,
and piggy-backs on that, giving us a precise but merely formal account via
a total ordering of worlds by closeness. We claim that the same holds for
the topics of counterfactuals. Our formal setting presupposes that we have
some (vague, fuzzy, context-dependent) intuitions on what counts as topic-
connectedness, and piggy-backs on that, giving us a precise but merely formal
account via a topological closure operation.

Fourth: topics make acceptability hyperintensional. To see that, look
back at (9) and (10) above. In both cases, we assign probability zero to the
antecedent and to the consequent. But there is a world where they are all
true, namely λ. That is where we look when we suppose counterfactually
that there is a largest prime. The expansion of the discrete probability space
so that it includes λ (Definition 3), and of the definition of imaging so that it
comes out well-defined for impossible counterfactual antecedents, have it that
the probability of all no-largest-prime worlds, which is all possible worlds in
W , is shifted to λ in our counterfactual supposition. The probability of both
consequents under the image of such an antecedent is 1. But, topicality tells
them apart: by our acceptability conditions, (9) is fully acceptable while (10)
is not, insofar as we assign to the consequent of the former, not of the latter,
a topic which is included in the closure of the antecedent’s topic.

7 The Logic of On-Topic Counterfactuals

We take the closure principles of our logic as premise-conclusion rules of the
form ‘Γ ⊢ ∆’ where Γ,∆ ⊆ L with Γ = ∅ for zero-premise rules. Follow-
ing Adams (1998), we define validity probabilistically in terms of degrees of
unacceptability:

Definition 7 (Validity). A principle of the form Γ ⊢ ∆ is valid if and
only if for any probabilistic model N = (W, f, λ, V, π) and topic model T =
⟨T,⊕, t, k⟩, ∑

φ∈Γ

U(φ) ≥ U(ψ),
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for all ψ ∈ ∆. When Γ = ∅, we say ⊢ ∆ is valid if and only if U(ψ) = 0 for
all ψ ∈ ∆. Γ ⊢ ∆ is invalid otherwise. 8

Our notion of validity depends on both probability and topicality. Besides
investigating valid closure principles, we thus want to check that the invalid
ones fail for the right reason. So we also consider probabilistic (in)validity
and topical (in)validity as distinct sources of invalidity.

We say that Γ ⊢ ∆ is probabilistically valid (p-valid) iff for any proba-
bilistic model (W, f, λ, V, π) and singleton topic model T (i.e., when T is a
singleton),

∑
φ∈Γ

U(φ) ≥ U(ψ), for all ψ ∈ ∆. When Γ = ∅, we say ⊢ ∆ is

p-valid if and only if U(ψ) = 0 for all ψ ∈ ∆; Γ ⊢ ∆ is p-invalid otherwise:
p-validity ignores topicality by focusing on trivial singletons, and just checks
how a putative closure principle fares probabilistically.

We say Γ ⊢ ∆ is topically valid (t-valid) iff for any topic model T =
⟨T,⊕, t, k⟩, if every conditional in Γ is an on-topic conditional wrt T then
every conditional in ∆ is also an on-topic conditional wrt T ; Γ ⊢ ∆ is t-invalid
otherwise: t-validity ignores probabilities and just checks how a putative
closure principle fares topically.

We now focus on the principles in Table 1. We label them sticking to
popular names or acronyms from the literature on conditional logics.

Lemma 1. If Γ ⊢ ∆ is valid then it is p-valid but not necessarily t-valid. If
Γ ⊢ ∆ is both p- and t-valid, then it is valid.

Proof. See Appendix A.9

Theorem 2.

8We formulate the relevant closure principles as premise-conclusion rules, plainly fol-
lowing (Douven, 2016, Chapter 5). In this logical framework, a premise-conclusion rule
is interpreted as: ‘Whenever all elements of Γ are acceptable, every element of ∆ is also
acceptable’. Our notion of validity is probabilistic, preserving degrees of (un)acceptability
(as opposed to preserving truth, as validity in standard non-probabilistic logic does); and
our language is restricted to simple counterfactuals. So we cannot restate our consequence
relation between Γ and ∆ by simply replacing (a finite) ∆ with the conjunction of its ele-
ments. And our way of formulating the principles of interest is more economical: instead
of stating a closure principle for every conclusion we can derive from a set Γ of premises,
we package all its conclusions of interest in a set ∆ of conclusions. See, e.g., (Douven,
2016, p. 128-130), for further elaboration on how the principles in Table 1 should be
interpreted.

9Aside from details of wording, the t-(in)validity proofs in the appendix are essentially
the same as the ones supplied in our paper Berto and Özgün (2021) on indicatives. More-
over, when one leaves nested conditionals aside, as we do in both papers, the logics are
perfectly aligned.
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(REF) ⊢ φ > φ
(ANT) φ > ψ ⊢ φ > (φ ∧ ψ)
(CM) φ > (ψ ∧ χ) ⊢ φ > ψ, φ > χ
(CC) φ > ψ, φ > χ ⊢ φ > (ψ ∧ χ)
(CSO) φ > ψ, ψ > φ, φ > χ ⊢ ψ > χ
(CT) φ > ψ, (φ ∧ ψ) > χ ⊢ φ > χ
(CMon) φ > ψ, φ > χ ⊢ (φ ∧ ψ) > χ
(OR) φ > ψ, χ > ψ ⊢ (φ ∨ χ) > ψ
(M. Ponens) φ, φ > ψ ⊢ ψ
(Trans) φ > ψ, ψ > χ ⊢ φ > χ
(SA) φ > ψ ⊢ (φ ∧ χ) > ψ
(MOD) ¬φ > φ ⊢ ψ > φ
(RCE) If φ ⊢PL ψ, then ⊢ φ > ψ
(RCEA) If ⊢PL φ ≡ ψ, then φ > χ ⊣⊢ ψ > χ
(RCEC) If ⊢PL φ ≡ ψ, then χ > φ ⊣⊢ χ > ψ
(RCK) If ⊢PL (φ1 ∧ · · · ∧ φn) ⊃ ψ, then χ > φ1, . . . , χ >

φn ⊢ χ > ψ
(RCM) ⊢PL φ ⊃ ψ, then χ > φ ⊢ χ > ψ
(And-to-If) φ ∧ ψ ⊢ φ > ψ
(Or-to-If) φ ∨ ψ ⊢ ¬φ > ψ
(Contr.) φ > ¬ψ ⊢ ψ > ¬φ
(SDA) (φ ∨ ψ) > χ ⊢ φ > χ, ψ > χ

Table 1: Closure principles of interest

1. REF, ANT, CM, CC, CSO, CT, CMon, OR, and Modus Ponens are
both p- and t-valid. Therefore, they all are valid.

2. MOD, RCE, RCEA, RCEC, RCK, RCM, and And-to-If are p-valid but
t-invalid.

3. Trans and SA are p-invalid but t-valid.

4. Or-to-if, Contraposition, and SDA are both p-invalid and t-invalid.

5. MOD, RCE, RCEA, RCEC, RCK, RCM, And-to-If, Trans, SA, Or-
to-If, Contraposition, and SDA are invalid.

Proof. Supplied in Appendix B.

We comment on some validities and invalidities. Looking at the former,
in group 1: REF (Reflexivity), ANT, CM, and Modus Ponens appear ob-
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valid p-valid t-valid
REF ✓ ✓ ✓
ANT ✓ ✓ ✓
CM ✓ ✓ ✓
CC ✓ ✓ ✓
CSO ✓ ✓ ✓
CT ✓ ✓ ✓
CMon ✓ ✓ ✓
OR ✓ ✓ ✓
Modus Ponens ✓ ✓ ✓
MOD X ✓ X
RCE X ✓ X
RCEA X ✓ X
RCEC X ✓ X
RCK X ✓ X
RCM X ✓ X
And-to-If X ✓ X
Trans X X ✓
SA X X ✓
Or-to-If X X X
Contraposition X X X
SDA X X X

Table 2: Validities (✓) and invalidities (X): summary of the results in The-
orem 2.

viously desirable. Segerberg (1989) claimed that CC (Conjunction in the
Consequent) should hold in any reasonable conditional logic.10

CT (Cautious Transitivity), CMon (Cautious Monotonicity) and OR hold
in most conditional logics and theories of non-monotonic entailment Nute
(1984). In particular, CT and CMon feature in Chellas (1975)’s basic condi-
tional logic and are put by Gabbay (1985) among the minimal requirements
for a logic of non-monotonic entailment. They hold in the system C of Kraus
et al. (1990); their popular nonmonotonic logic P has them, too.

10One may take issue, due to Lottery Paradox cases Kyburg (1961) if one has a qual-
itative idea of acceptability, whereby something becomes (plainly) acceptable by passing
an intermediate probabilistic threshold θ. Ours, however, is a quantitative setting with
degrees of acceptability. One can rephrase it qualitatively, if one likes: take φ > ψ as
acceptable when (i) πφ(ψ) ≥ θ and (ii) tψ ⊑ k(tφ); re-define validity accordingly, as
threshold-preservation: CC becomes invalid for threshold values θ ∈ ( 12 , 1).
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The invalidities in group 2 are all probabilistically kosher; their failure is
due to topicality. E.g., look at MOD: we can accept that a necessary truth is
counterfactually implied by its own negation (we could even define necessity
thus, following (Lewis, 1973, 22): □φ := ¬φ > φ); but we do not accept the
counterfactual implication from whatnot to such a truth (‘If the moon was
made of green cheese, then there would be no largest prime’).

Look at RCE: that φ logically entails ψ is insufficient for the acceptabil-
ity of the corresponding counterfactual: ‘This Banbury house is in Oxford’
classically entails ‘Either Melbourne is in Australia, or not’, but we do not
accept the patently off-topic ‘If this Banbury house were in Oxford, then
either Melbourne would be in Australia or not’. Similarly for RCEA and
RCEC: that φ and ψ are logical equivalents (i.e., such that their material
equivalence is a theorem) does not guarantee that replacing either with the
other as a counterfactual antecedent or consequent preserves acceptability.

We left CSO behind when talking of validities. Now it is time to men-
tion it: for it limits the hyperintensional anarchy of acceptability in our
topic-sensitive setting. Replacement of logical equivalents can fail to pre-
serve acceptability due to topicality constraints. However, CSO tells us that
replacement of counterfactual equivalents works just fine.

Groups 3 and 4 include inferences generally agreed to be invalid for any
ceteris paribus conditional, whether in the indicative or in the counterfactual
mood: Trans(itivity), SA (Strengthening the Antecedent), Or-to-If, Contra-
position, SDA (Simplification of Disjunctive Antecedents), all fail both in the
Adams (1998) probabilistic logic for indicatives, and in the standard possible
worlds semantics for counterfactuals by Stalnaker (1968) and Lewis (1973).

And-to-If, the inference from a conjunction to the corresponding coun-
terfactual, deserves more attention. It is often called ‘Centering’ for in the
Lewis semantics it is valid when one assumes that the world of evaluation
is always the single world most similar to itself (in the ‘spheres’ setting of
Lewis (1973): it is the unique world at the centre of the nested spheres of
worlds arranged around it). Discussing And-to-If on pp. 26-29 of Counter-
factuals, Lewis finds Weak Centering, i.e., the assumption that nothing is
more similar to a world w than w itself, ‘perfectly safe’ (as it is required to
validate Modus Ponens), but Centering ‘not quite such a safe assumption’
(29). His argument for And-to-If from the previous page is to the effect that
it is necessarily truth-preserving, while he grants the oddness of asserting a
counterfactual just because antecedent and consequent are both true:

[The argument] is evidence for my truth conditions. What can
be said against them? So far as I know, only this: it would seem
very odd to pick two completely unrelated truths φ and ψ and, on
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the strength of their truth, to deny the counterfactual φ > ¬ψ;
and even odder, to assert the counterfactual φ > ψ. What would
we make of someone who saw it fit to deny that if the sky were
blue then grass would not be green, or to assert that if the sky
were blue then grass would be green? It would be doubly odd.
First, because he is using the counterfactual construction with
an antecedent he takes to be true, though this construction is
customarily reserved for antecedents taken to be false; second,
because his assertions could serve no likely conversational purpose
that would not be better served by separate assertions of φ and
ψ. But oddity is not falsity; not everything true is a good thing
to say. (Lewis, 1973, 28; notation adjusted)

Insofar as acceptability is concerned, And-to-If should go: it may be truth-
preserving, but it is not acceptability-preserving due to considerations of
relevance. So it fails in the right way in our logic: it is probabilistically
kosher; but while for a conjunction φ ∧ ψ to be found acceptable nothing
more may generally be required than believing the truth of both conjuncts,
these may be completely unrelated claims; and this makes the corresponding
counterfactual off-topic, albeit p-valid.

Off-topic counterfactuals with true antecedent and consequent are triply
odd. Besides the twofold pragmatic oddness remarked by Lewis, there is
additional oddness, independent from communication, contemplated in the
privacy of our heads. Not only do we not want to assert ‘If the sky were
blue, then grass would be green’: we find it unacceptable, for we judge the
colour of the sky irrelevant for that of grass. Seeing relevant counterfactual
connections where there are none would be superstition.

8 Further Work

Expanding the logic to nested counterfactuals would be interesting but in-
tuitions of acceptability might be all over the place. Some experimental
work would then be dearly needed. Next, the original Lewisian definition
of imaging relied on Stalnaker’s Assumption: for each w and φ there is a
unique closest antecedent-world wφ. This has been famously criticized by
Lewis (1973) and others. (It has been defended: see e.g. Williams (2010).)
After taking what we have called Lewis’ Proof (LP), π(φ > ψ) = πφ(ψ), as a
good candidate for giving the probabilities of counterfactuals, Schulz (2017)
claims that ‘the only problem with imaging is that it presupposes unique-
ness’ (81). One can try and generalize Stalnakerian imaging to a setting with
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set-selection functions outputting, for each world and available antecedent, a
set of maximally close antecedent-worlds which may feature more than one
world. Then one variously distributes probabilities among the worlds in such
a set Gärdenfors (1982); Joyce (1999); Leitgeb (2017).

But while (LP) protects our setting with Stalnakerian imaging from triv-
iality, the situation when one generalizes is more cumbersome. Chapter 8
of Schulz (2017) has an elaborate discussion, where he tries to show how to
protect a generalized set-up he has proposed in previous chapters from the
triviality results of Williams (2012) and Leitgeb (2012). What would settle
the issue is a mathematical result that, for all we know, is still wanting.
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A Proof of Lemma 1

For the first part, easily: validity implies p-validity by definition; the latter
is a special case of the former obtained by restricting validity to the class
of singleton topic models. Consider a sample valid but t-invalid inference:
p∧¬p ⊢ p > q. To show its validity, let N = (W, f, λ, V, π) be a probabilistic
model and T = ⟨T,⊕, t, k⟩ a topic model. By Definition 6, we have A(p ∧
¬p) = π(p ∧ ¬p) = 0, thus, U(p ∧ ¬p) = 1. As U(p > q) ∈ [0, 1] by
the definition of U , we obtain that U(p ∧ ¬p) ≥ U(p > q). To show its
t-invalidity, take the topic model ⟨{a, b},⊕, k, t⟩ such that ⊕ is idempotent
and a ⊕ b = a, thus, b ⊏ a. Moreover, k is a constant function and tp = b
and tq = a. Therefore, b = tp = k(tp) but a = tq ̸⊑ k(tp) = b (see Figure 1).

b = tp = k(b)

a = tq = k(a)

Figure 1: Topic model ⟨{a, b},⊕, t, k⟩

For the second part, suppose that Γ ⊢ ∆ is both p- and t-valid. Let N =
(W, f, λ, V, π) be a probabilistic model and T = ⟨T,⊕, t, k⟩ a topic model.
Since Γ ⊢ ∆ is t-valid, we have two cases:

Case 1: Every conditional in Γ ∪∆ is an on-topic conditional wrt T .
Then validity and p-validity coincide, thus Γ ⊢ ∆ is valid.

Case 2: There is a conditional in Γ that is not an on-topic conditional wrt
T .
Wlog, suppose that φ ∈ Γ is not an on-topic conditional wrt T . Thus,
U(φ) = 1 (by Definition 6.2). Recall that U(χ) ∈ [0, 1] for all χ ∈ L.
Therefore, we conclude that

∑
φ∈Γ

U(φ) ≥ U(χ) for all χ ∈ ∆.

B Proof of Theorem 2

The following lemmas will be useful in proving Theorem 2.

Lemma 3. Given a probabilistic model (W, f, λ, V, π) and φ, ψ ∈ LPL,

1. if π(λ) = 1, then π(φ) = 1 and πφ(λ) = 1, therefore, πφ(ψ) = 1;

2. πφ(ψ) = 1 if |φ| = {λ};
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3. πφ(φ) = 1;

4. πφ is a probability mass function as described in Definition 3.

Proof.

1. Assume that π(λ) = 1. Then, since λ ∈ |φ| for all φ ∈ LPL, we
have π(φ) =

∑
w∈|φ| π(w) = 1. For the second part: by Definition

5, we have πφ(λ) =
∑

w:f(w,φ)=λ π(w). By the fact that λ ∈ |φ| and
Definition 1.3, we know that f(λ, φ) = λ. Therefore, since π(λ) = 1,
we obtain that πφ(λ) =

∑
w:f(w,φ)=λ π(w) = 1. As λ ∈ |ψ|, we also have

πφ(ψ) =
∑

w∈|ψ| π
φ(w) = 1.

2. Let φ ∈ LPL such that |φ| = {λ}. Then, by Definition 1.2, we know
that f(w,φ) = λ for all w ∈ W . Therefore, πφ(λ) =

∑
w:f(w,φ)=λ π(w) =∑

w∈W π(w) = 1 (since π is a probability mass function). Since λ ∈ |ψ|
for all ψ ∈ LPL, we obtain that πφ(ψ) =

∑
w∈|ψ| π

φ(w) = 1.

3. πφ(φ) =
∑

w′∈|φ| π
φ(w′) =

∑
w′∈|φ|(

∑
w:f(w,φ)=w′ π(w)) =

∑
w∈W π(w) =

1 (the last step follows from Definition 1.1).

4. We only need to show that either πφ(λ) = 1 or
∑

w∈W\{λ} π
φ(w) = 1.

Suppose that πφ(λ) ̸= 1. By item 1, we obtain that π(λ) ̸= 1. There-
fore, by the conditions of probabilistic mass functions given in Defini-
tion 3, that

∑
w∈W\{λ} π(w) = 1. Then the result follows from the fol-

lowing equation:
∑

w∈W\{λ} π
φ(w) =

∑
w∈W\{λ}(

∑
w′:f(w′,φ)=w π(w

′)) =∑
w∈W\{λ} π(w).

Lemma 4. Given a Stalnaker model (W, f, λ, V ), φ, ψ ∈ LPL and w ∈ W ,

1. if f(w,φ) ∈ |ψ| , then f(w,φ ∧ ψ) = f(w,φ),

2. f(w,φ ∨ ψ) = f(w,φ) or f(w,φ ∨ ψ) = f(w,ψ).

Proof.

1. Suppose that f(w,φ) ∈ |ψ|. Then, by Definition 1.1, we have f(w,φ) ∈
|φ ∧ ψ|. Since f(w,φ ∧ ψ) ∈ |φ| as well, by Definition 1.4, we obtain
that f(w,φ ∧ ψ) = f(w,φ) .
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2. By Definition 1.1, we have that (1) f(w,φ∨ψ) ∈ |φ∨ψ|, (2) f(w,φ) ∈
|φ ∨ ψ|, and (3) f(w,ψ) ∈ |φ ∨ ψ|. (1) implies that f(w,φ ∨ ψ) ∈ |φ|
or f(w,φ ∨ ψ) ∈ |ψ|.
If f(w,φ∨ψ) ∈ |φ|, by (2) and Definition 1.4, we obtain f(w,φ∨ψ) =
f(w,φ).

If f(w,φ∨ψ) ∈ |ψ|, by (3) and Definition 1.4, we obtain f(w,φ∨ψ) =
f(w,ψ).

B.1 Proof of Theorem 2.1

Let N = (W, f, λ, V, π) be a probabilistic model and T = ⟨T,⊕, t, k⟩ a topic
model. By Lemma 1, we only need to show that REF, ANT, CM, CC, CSO,
CT, CMon, OR, and Modus Ponens are both p- and t-valid.

The proofs of t-validity follow straightforwardly from Definition 2, so we skip
the details (see also (Berto and Özgün, 2021, Appendix) for similar proofs).

For p-validity, assume T is a singleton. Every conditional is on-topic with
respect to a topic model T = ⟨T,⊕, t, k⟩ with a singleton T . Moreover, we
present the proofs only for π’s such that π(λ) = 0 because the degrees of
unacceptability of the conclusions in ∆ equal to 0 with respect to a π such
that π(λ) = 1 (see Lemma 3.1). Finally, given a premise-conclusion rule
Γ ⊢ ∆, we only consider the cases where the antecedents of the conditionals
in ∆ are possible with respect to the given Stalnaker model (W, f, λ, V ) since
otherwise the degrees of unacceptability of the conclusions again equal to
0 (see Lemma 3.2). Due to the structure of the rules in Theorem 2.1, we
cannot have that the antecedents of all the premises are impossible but the
antecedent of the conclusion is possible.

REF: ⊢ φ > φ
p-valid: By Lemma 3.3, we have πφ(φ) = 1. Moreover, we also have that
tφ ⊑ k(tφ). Therefore, U(φ > φ) = 1− πφ(φ) = 0.

ANT: φ > ψ ⊢ φ > (φ ∧ ψ)
p-valid: As T is a singleton, we have U(φ > ψ) = 1 − πφ(ψ) and U(φ >
(φ∧ψ)) = 1−πφ(φ∧ψ). Observe that πφ(φ∧ψ) = πφ(φ)+πφ(ψ)−πφ(φ∨ψ)
since π is a probability function. Moreover, by Lemma 3.3 and the fact that
π is a probability function, we have πφ(φ) = 1 and πφ(φ∨ψ) = 1. Therefore,
U(φ > ψ) = U(φ > (φ ∧ ψ)).
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CM: φ > (ψ ∧ χ) ⊢ φ > ψ, φ > χ
p-valid: As T is a singleton, we have U(φ > (ψ ∧ χ)) = 1 − πφ(ψ ∧ χ),
U(φ > ψ) = 1− πφ(ψ), and U(φ > χ) = 1− πφ(χ). Since ψ ∧ χ |=PL ψ and
ψ ∧ χ |=PL χ, and π

φ is a probability function, we know that πφ(ψ ∧ χ) ≤
πφ(ψ) and πφ(ψ ∧ χ) ≤ πφ(χ). Therefore, U(φ > (ψ ∧ χ)) ≥ U(φ > ψ) and
U(φ > (ψ ∧ χ)) ≥ U(φ > χ).

CC: φ > ψ, φ > χ ⊢ φ > (ψ ∧ χ)
p-valid: As T is a singleton, we have:

U(φ > ψ) + U(φ > χ) = 1− πφ(ψ) + 1− πφ(χ)

≥ 1− πφ(ψ)− πφ(χ) + πφ(ψ ∨ χ)
(since πφ(ψ ∨ χ) ≤ 1)

= 1− πφ(ψ ∧ χ)
(since πφ is a probability function)

= U(φ > (ψ ∧ χ)) (by the defn. of U)

CSO: φ > ψ, ψ > φ, φ > χ ⊢ ψ > χ
p-valid: We need to show that:

U(φ > ψ) + U(ψ > φ) + U(φ > χ) ≥ U(ψ > χ)

i.e., that
πφ(ψ) + πψ(φ) + πφ(χ)− πψ(χ) ≤ 2

Recall that:
πφ(ψ) =

∑
w′∈|ψ|(

∑
w:f(w,φ)=w′ π(w))

πψ(φ) =
∑

w′∈|φ|(
∑

w:f(w,ψ)=w′ π(w))

πφ(χ) =
∑

w′∈|χ|(
∑

w:f(w,φ)=w′ π(w))

πψ(χ) =
∑

w′∈|χ|(
∑

w:f(w,ψ)=w′ π(w))

We explain the main idea behind the proof and leave the details to the reader.
For each w ∈ W , π(w) is added to the total sum πφ(ψ)+πψ(φ)+πφ(χ)−πψ(χ)
at most twice. So the whole sum adds up to at most 2. In particular, for
any w such that π(w) > 0, if π(w) is added to πφ(ψ), πψ(φ) and πφ(χ), it is
also added to πψ(χ).

Let w ∈ W such that π(w) > 0 and suppose that π(w) is added to πφ(ψ),
πψ(φ), and πφ(χ). If π(w) is added to both πφ(ψ) and πψ(φ), we have
f(w,φ) ∈ |ψ| and f(w,ψ) ∈ |φ|. This implies, by Definition 1.4, that
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f(w,φ) = f(w,ψ). Now suppose further that π(w) is added to πφ(χ) but
not to πφ(χ). The former means that f(w,φ) ∈ |χ| and the latter that
f(w,ψ) ̸∈ |χ|, contradicting f(w,φ) = f(w,ψ). Therefore, for each w ∈ W ,
π(w) is added to the total sum πφ(ψ)+πψ(φ)+πφ(χ)−πψ(χ) at most twice.
This means that

πφ(ψ) + πψ(φ) + πφ(χ)− πψ(χ) ≤ 2 ·
∑
w∈W

π(w) = 2.

CT: φ > ψ, (φ ∧ ψ) > χ ⊢ φ > χ
p-valid: The proof is similar to the proof for CSO and uses Lemma 4.1. We
need to show that

U(φ > ψ) + U((φ ∧ ψ) > χ) ≥ U(φ > χ)

i.e., that
πφ(ψ) + πφ∧ψ(χ)− πφ(χ) ≤ 1

Recall that:
πφ(ψ) =

∑
w′∈|ψ|(

∑
w:f(w,φ)=w′ π(w))

πφ∧ψ(χ) =
∑

w′∈|χ|(
∑

w:f(w,φ∧ψ)=w′ π(w))

πφ(χ) =
∑

w′∈|χ|(
∑

w:f(w,φ)=w′ π(w))

For each w ∈ W , π(w) is added to the total sum πφ(ψ) + πφ∧ψ(χ) − πφ(χ)
at most once, therefore, the whole sum adds up to at most 1. In particular,
for any w such that π(w) > 0, if π(w) is added to πφ(ψ) and πφ∧ψ(χ), it is
also added to πφ(χ).

Let w ∈ W such that π(w) > 0 and suppose that π(w) is added to πφ(ψ) and
πφ∧ψ(χ), but not to πφ(χ). This implies that f(w,φ) ∈ |ψ|, f(w,φ∧ψ) ∈ |χ|
but f(w,φ) ̸∈ |χ|. However, by Lemma 4.1, we have that f(w,φ) = f(w,φ∧
ψ), contradicting f(w,φ ∧ ψ) ∈ |χ| but f(w,φ) ̸∈ |χ|. Therefore, for each
w ∈ W , π(w) is added to the total sum πφ(ψ) + πφ∧ψ(χ) − πφ(χ) at most
once. This means that

πφ(ψ) + πφ∧ψ(χ)− πφ(χ) ≤
∑
w∈W

π(w) = 1.

CMon: φ > ψ, φ > χ ⊢ (φ ∧ ψ) > χ
p-valid: The proof is similar to the proof for CT. We now need to show that

πφ(ψ) + πφ(χ)− πφ∧ψ(χ) ≤ 1
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Let w ∈ W such that π(w) > 0 and suppose that π(w) is added to πφ(ψ) and
πφ(χ), but not to πφ∧ψ(χ). This implies that f(w,φ) ∈ |ψ|, f(w,φ) ∈ |χ|
but f(w,φ ∧ ψ) ̸∈ |χ|. However, by Lemma 4.1, we have that f(w,φ) =
f(w,φ∧ψ), contradicting f(w,φ∧ψ) ̸∈ |χ| but f(w,φ) ∈ |χ|. Therefore, as
in the previous case, we obtain that

πφ(ψ) + πφ(χ)− πφ∧ψ(χ) ≤
∑
w∈W

π(w) = 1.

OR: φ > ψ, χ > ψ ⊢ (φ ∨ χ) > ψ
p-valid: The proof is similar to the proof for the above cases and uses Lemma
4.2. We need to show that

U(φ > ψ) + U(χ > ψ) ≥ U((φ ∨ χ) > ψ)

i.e., that
πφ(ψ) + πχ(ψ)− πφ∨χ(ψ) ≤ 1.

Let w ∈ W such that π(w) > 0 and suppose that π(w) is added to πφ(ψ) and
πχ(ψ), but not to πφ∨χ(ψ). This implies that f(w,φ) ∈ |ψ|, f(w, χ) ∈ |ψ| but
f(w,φ∨χ) ̸∈ |ψ|. However, by Lemma 4.2, we have that f(w,φ) = f(w,φ∨χ)
or f(w, χ) = f(w,φ ∨ χ), contradicting f(w,φ) ∈ |ψ|, f(w, χ) ∈ |ψ| but
f(w,φ ∨ χ) ̸∈ |ψ|. Therefore, for each w ∈ W , π(w) is added to the total
sum πφ(ψ) + πχ(ψ)− πφ∨χ(ψ) at most once. This means that

πφ(ψ) + πχ(ψ)− πφ∨χ(ψ) ≤
∑
w∈W

π(w) = 1.

Modus Ponens: φ, φ > ψ ⊢ ψ
p-valid: We are only interested in simple counterfactuals so φ, ψ in the for-
mulation of Modus Ponens are Booleans, that is, φ, ψ ∈ LPL. We need to
show that

U(φ) + U(φ > ψ) ≥ U(ψ)
i.e., that

π(φ) + πφ(ψ)− π(ψ) ≤ 1.

Let w ∈ W such that π(w) > 0 and suppose that π(w) is added to π(φ)
and πφ(ψ), but not to π(ψ). This implies that w ∈ |φ|, f(w,φ) ∈ |ψ|, but
w ̸∈ |ψ|. However, since w ∈ |φ|, by Definition 1.3, we have that f(w,φ) = w.
This contradicts with f(w,φ) ∈ |ψ| and w ̸∈ |ψ|. Therefore, for each w ∈ W ,
π(w) is added to the total sum π(φ) + πφ(ψ) − π(ψ) at most once. This
means that

π(φ) + πφ(ψ)− π(ψ) ≤
∑
w∈W

π(w) = 1.
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B.2 Proof of Theorem 2.2

t-invalidity proofs follow exactly as in the corresponding t-invalidity proofs
in Berto and Özgün (2021). We here repeat those proofs for the convenience
of the reader. For p-validity proofs, let N = (W, f, λ, V, π) be a probabilistic
model and T = ⟨T,⊕, t, k⟩ a topic model with singleton T .

MOD: ¬φ > φ ⊢ ψ > φ
We want to show that U(¬φ > φ) ≥ U(ψ > φ).

Case 1: ¬φ is possible
Then, π¬φ(φ) = 0. Since tφ ⊑ k(t¬φ), we have U(¬φ > φ) = 1−π¬φ(φ) = 1.
Therefore, since U(ψ > φ) ∈ [0, 1], we obtain the result.

Case 2: ¬φ is impossible
Then, π¬φ(φ) = 1 (by Lemma 3.2), thus, U(¬φ > φ) = 0. Since T is a
singleton model, we have U(ψ > φ) = 1 − πψ(φ). If ψ is impossible, then
πψ(φ) = 1, thus, U(ψ > φ) = 0. If ψ is possible, then πψ(φ) = 1 since ¬φ is
impossible. Therefore, U(ψ > φ) = 0.

t-invalidity: Consider the instance ¬p → p ⊢ q → p and the topic model
⟨{a, b},⊕, t, k⟩ such that ⊕ is idempotent and a ⊕ b = a, thus, b ⊏ a.
Moreover, k is a constant function and tq = b and tp = a. Therefore,
a = tp = k(t¬p) but a = tp ̸⊑ k(tq) = b (see Figure 2).

b = tq = k(b)

a = tp = k(a)

Figure 2: Topic model ⟨{a, b},⊕, t, k⟩

RCE: If φ ⊢PL ψ, then ⊢ φ > ψ
p-validity: Follows immediately from Lemma 3.3 and the fact that πφ is a
probability function.

t-invalidity: Consider the counterexample given in Figure 2, where φ := q
and ψ : p ∨ ¬p.

RCEA: If ⊢PL φ ≡ ψ, then φ > χ ⊣⊢ ψ > χ
p-validity: It is easy to see by Definition 1 that if |φ| = |ψ|, then f(w,φ) =
f(w,ψ) for all w ∈ W . Therefore, whenever |φ| = |ψ|, we have πφ = πψ.
Then the p-validity follows.

t-invalidity: Consider the counterexample given in Figure 2 and take φ :=
p ∨ ¬p, ψ := q ∨ ¬q, χ := r ∨ ¬r such that tr = a. Then, |=PL φ ≡ ψ,
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(p∨¬p) → (r∨¬r) is an on-topic conditional wrt T but (q∨¬q) → (r∨¬r)
is not.

RCEC: If ⊢PL φ ≡ ψ, then χ > φ ⊣⊢ χ > ψ
p-validity: Follows immediately from Definition 5.

t-invalidity: Consider the counterexample above but take tp = tr = b and
tq = a.

RCK: If ⊢PL (φ1 ∧ · · · ∧ φn) ⊃ ψ, then χ > φ1, . . . , χ > φn ⊢ χ > ψ
p-validity: Suppose that ⊢PL (φ1 ∧ · · · ∧ φn) ⊃ ψ. We want to show that
U(χ > φ1) + . . .U(χ > φn) ≥ U(χ > ψ), i.e., that 1 − πχ(φ1) + · · · + 1 −
πχ(φn) ≥ 1−πχ(ψ), i.e., that πχ(ψ) ≥ πχ(φ1)+ . . . π

χ(φn)−n+1. It is easy
to see that

πχ(ψ) ≥ πχ(φ1 ∧ · · · ∧ φn) (by the assumption and πχ is a prob. func.)

≥ πχ(φ1) + . . . πχ(φn)− n+ 1 (πχ is a probability function)

t-invalidity: Same as the proof of RCEC.

RCM: ⊢PL φ ⊃ ψ, then χ > φ ⊢ χ > ψ
p-validity: Follows from the fact that πχ is a probability function.

t-invalidity: Same as the proof of RCEC.

And-to-If: φ ∧ ψ ⊢ φ > ψ
p-validity: We want to show that πφ(ψ) ≥ π(φ ∧ ψ). By Definition 1.3, for
all w ∈ |φ ∧ ψ|, f(w,φ) = w. Therefore, for all w ∈ |φ ∧ ψ|, πφ(w) ≥ π(w).
Thus,

πφ(ψ) =
∑
w′∈|ψ|

πφ(w′) ≥
∑

w′∈|φ∧ψ|

πφ(w′) ≥
∑

w′∈|φ∧ψ|

π(w′) = π(φ ∧ ψ).

t-invalidity: See the counterexample given in Figure 2 and take φ := q and
ψ := p.

B.3 Proof of Theorem 2.3

The proofs of t-validity are straightforward, so we skip the details (see also
(Berto and Özgün, 2021, Appendix) for similar proofs).

Trans: φ > ψ, ψ > χ ⊢ φ > χ
p-invalidity: Consider the probabilistic model N = (W, f, λ, V, π) such that
W = {w1, w2, λ}, V (p) = {w1}, V (q) = {w1, w2}, and V (r) = {w2}, f
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satisfies Definition 1 such that f(w2, p) = {w1}, and π(w1) = π(w2) = 1/2.
Then, πp(q) = 1, πq(r) = 1/2, and πp(r) = 0. We then obtain that U(p >
q) + U(q > r) = 0 + 1/2 < U(p > r) = 1.

SA: φ > ψ ⊢ (φ ∧ χ) > ψ
p-invalidity: Consider the probabilistic model N = (W, f, λ, V, π) such that
W = {w1, w2, w3, λ}, V (p) = {w1, w2, w3}, V (q) = {w1, w2}, and V (r) =
{w2, w3}, f satisfies Definition 1 such that f(w1, p∧ r) = {w3}, and π(w1) =
π(w2) = π(w3) = 1/3. Then, πp(q) = 2/3 and πp∧r(q) = 1/3. We then
obtain that U(p > q) = 1/3 < U((p ∧ r) > q) = 2/3.

B.4 Proof of Theorem 2.4

Or-to-if: φ ∨ ψ ⊢ ¬φ > ψ
p-invalidity: Consider the probabilistic model N = (W, f, λ, V, π) such that
W = {w1, w2, w3, w4, λ}, V (p) = {w1, w2} and V (q) = {w2, w3}, f satisfies
Definition 1 such that f(w1,¬p) = f(w2,¬p) = w4, and π(w1) = π(w2) =
1/3, π(w3) = π(w4) = 1/6. Then, π(p∨ q) = 5/6 and π¬p(q) = 1/6. We then
obtain that U(p ∨ q) = 1/6 < U(¬p > q) = 5/6.

Contraposition: φ > ¬ψ ⊢ ψ > ¬φ
p-invalidity: Consider the probabilistic model N = (W, f, λ, V, π) such that
W = {w1, w2, w3, λ}, V (p) = {w1, w2} and V (q) = {w2, w3}, f satisfies
Definition 1 such that f(w1, q) = w2 and f(w3, p) = w1, and π(w1) = π(w2) =
π(w3) = 1/3. Then, πp(¬q) = 2/3 and πq(¬p) = 1/3. We then obtain that
U(p > ¬q) = 1/3 < U(q > ¬p) = 2/3.

SDA: (φ ∨ ψ) > χ ⊢ φ > χ, ψ > χ
p-invalidity: Consider the probabilistic model N = (W, f, λ, V, π) such that
W = {w1, w2, w3, λ}, V (p) = {w1}, V (q) = {w2}, and V (r) = {w2, w3}, f
satisfies Definition 1 such that f(w2, p) = f(w3, p) = w1 and f(w3, p∨q) = w2,
and π(w1) = 1/6, π(w2) = 1/3, π(w3) = 1/2. Then, πp∨q(r) = 5/6 and
πp(r) = 0. We then obtain that U((p ∨ q) > r) = 1/6 < U(p > r) = 1.

t-invalidity:
t-invalidity proofs follow exactly as in the corresponding t-invalidity proofs in
Berto and Özgün (2021). We here repeat those proofs for the convenience of
the reader. For Or-to-If and Contraposition, consider the topic model given
in Figure 2. This model t-invalidates Or-to-If since q ∨ p is not a conditional
and ¬q → p is not an on-topic conditional wrt T : a = tp ̸⊑ k(t¬q) = b. It
also t-invalidates Contraposition since p→ ¬q is an on-topic conditional wrt
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T (since b = t¬q ⊑ k(tp) = a) but q → ¬p is not (since a = t¬p ̸⊑ k(tq) = b).
For SDA, consider the topic model T ′ = ⟨{a, b, c, d},⊕′, k′, t′⟩ where ⊕′ is
as depicted in Figure 3, k′ is a constant function, and t′p = b, t′q = c, and
t′r = a. It is then easy to see that (p ∨ q) → r is an on-topic conditional wrt
T , however, neither p→ r nor q → r is.

b = t′p c = t′q

a = t′r

Figure 3: Counterexample for the t-invalidity of SDA

B.5 Proof of Theorem 2.5

The invalidity of Trans, SA, Or-to-If, Contraposition, and SDA follows from
Lemma 1, Theorems 2.3, and 2.4. For RCE, RCEA, RCEC, RCK, and RCM,
take the counter-topic models given in the proof of Theorem 2.2 together with
any arbitrary probability mass π: they constitute counterexamples for the
respective validity claims, since in each case the degree of unacceptability
of the elements in Γ is 0 and the degree of unacceptability of the elements
in ∆ is 1 (since the conditionals in ∆ are off-topic conditionals with respect
to the corresponding topic models). For And-to-If, consider the instance
q ∧ p ⊢ q → p. This is invalidated by the topic model given in Figure 2
plus a probability mass π such that π(p ∧ q) ̸= 0 (as in the corresponding
case in Berto and Özgün (2021)). Finally, MOD is invalid only when ¬φ
is impossible. Consider the instance ¬(p ∨ ¬p) → (p ∨ ¬p) ⊢ q → (p ∨
¬p). Observe that, for any probability mass π, we have (by Lemma 3.2),
π¬(p∨¬p)(p ∨ ¬p) = 1. Consider also the topic model given in Figure 2.
Then, we have that U(¬(p ∨ ¬p) → (p ∨ ¬p)) = 1 − π¬(p∨¬p)(p ∨ ¬p) = 0.
However, since tp∨¬p ̸⊑ k(tq), we have U(q → (p ∨ ¬p)) = 1. Therefore,
U(¬(p ∨ ¬p) → (p ∨ ¬p)) < U(q → (p ∨ ¬p)).
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