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This paper presents an axiomatic formalisation of a theory of top-level relations between three categories of entities: individuals, universals,
and collections. We deal with a variety of relations between entities in these categories, including the sub-universal relation among
universals and the parthood relation among individuals, as well as cross-categorial relations such as instantiation and membership. We
show that an adequate understanding of the formal properties of such relations – in particular their behavior with respect to time – is
critical for geographic information processing.

The axiomatic theory is developed using Isabelle, a computational system for implementing logical formalisms. All proofs are computer-
verified and the computational representation of the theory is available online.
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1 Introduction

Geographic information-processing today faces two major problems: barriers to information integration
caused by incompatible terminology systems, and a lack of interoperability among the available software
systems (Bishr 1998, Visser et al. 2001, Fonseca et al. 2002a, Winter 2001, Fonseca et al. 2002b, Kuhn
2003, Duckham and Worboys 2005, Mancarella et al. 2004). The needed standardization on both levels is
still far from being achieved (Winter and Nittel 2003, Agarwal 2005, Abdelmoty et al. 2005).

Different and often incompatible terminologies are used by different disciplinary and professional groups
for expressing spatial information and for structuring spatial data . It is often the case that the same
term has different meanings in different terminologies or that distinct terms in different terminologies have
the same or overlapping meanings (Bishr 1998, Visser et al. 2001, Mancarella et al. 2004, Duckham and
Worboys 2005). Ontologies are controlled, structured terminologies for which a semantics is provided in
a well defined and unambiguous manner (Gruber 1993, Guarino 1998). Ontologies can thus be used, to
overcome at least some of the problems caused by these various forms of semantic heterogeneity.

In this paper we focus on how to employ logic-based top-level ontologies for this purpose. Top-level
ontologies specify the meanings of terms denoting the basic kinds of entity (such as ‘endurant’, ‘individual’,
‘universal’) as well as the basic kinds of relation such as ‘identical-to’, ‘part-of’, ‘connected-to’, ‘extension-
of’, ‘member-of’, ‘instance-of’, ‘sub-universal-of’ etc. These are very general terms, which are needed in
almost every domain. They are used to structure information and to define domain-specific terminology
in domains as disparate as medicine, biology, and politics as well as in geo-spatial disciplines such as
hydrology and environmental science (Smith 2003).

A logic-based ontology is a formalized theory (Copi 1979) consisting of axioms, definitions, and theorems.
The terms of the terminology whose semantics is to be specified appear as names, predicate and relation
symbols in the formal language of the logical theory. Logical axioms and definitions are then added to
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express relationships between the entities and relations denoted by those symbols. Theorems are logical
consequences of the axioms and definitions and make explicit additional logical properties of relations and
interrelations between relations. Explicit knowledge about logical properties and interrelations between re-
lations is fundamental to the implementation of automated reasoning. For example, it is well-known that
most automated reasoning about binary topological relations (relations denoted by top-level terms such
as ‘connected to’, ‘overlap’, ‘externally connected to’, ‘disconnected’, etc.) (Randell et al. 1992, Egenhofer
and Franzosa 1991) is based on composition tables (Egenhofer 1991, Cohn and Hazarika 2001). Compo-
sition tables, however are just compact representations of the axioms, definitions, and theorems of some
underlying logical theory.

This paper is structured as follows. We start by giving an informal but systematic account of basic
categories of enduring entities such as mountains, planets, organisms, ecoregions, socio-economic units,
and the basic kinds of top-level relations between them (parthood relations, sub-universal relations, etc.).
We discuss the relevance of these categories of entities and relations to geographic information science
and geographic information processing and we show how a more exact understanding helps to overcome
problems in information processing which arise where different groups need to exchange and integrate
information that is expressed in semantically heterogeneous ways. We also emphasize the specific temporal
properties of the entities in the mentioned categories and the time-dependent character of certain types
the top-level relations.

We then develop a formal ontology that specifies the meanings of the top-level terms using an axiomatic
theory which is a modified and extended version of the theory presented in (Bittner et al. 2004b). We then
discuss the computational representation of the presented theory. We conclude with a discussion of the
related literature and some ongoing research.

2 Top-level categories of entities and relations

In this paper we focus on independent endurants, entities which survive self-identically through time while
undergoing changes of various sorts.1 Following Bittner et al. (2004b) we distinguish three basic categories
of entities in our treatment of independent endurants: (i) individual endurants (Napoleon, Napoleon’s
heart, New York City, New York State, the Planet Earth); (ii) endurant universals (kinds, types or classes)
(human being, heart, human settlement, socio-economic unit); and (iii) collections of individual endurants
(the collection of counties in New York State, the collection of cells currently in your body, the collection
of all human beings existing at a given time).

Note that individuals, universals, and collections have, according to the theory here advanced, different
temporal properties. Individuals can gain and lose parts. For example, organisms gain and lose cells, a
city gains and loses parts every time a building is built or demolished, the continent of North America
gains and loses parts due to erosion processes, volcanic eruptions, etc. Universals gain and lose instances.
For example, the universal human being gains or loses instances every time a person is born or dies. The
universal socio-economic unit may gain or lose instances due to administrative reforms. Collections, on
the other hand, are like sets in the mathematical sense in that they are identified through their members.
Thus collections in our sense of this term cannot have different members at different times. For example,
the collection of cells constituting your body at 1 pm on April 6 in 1999 is fixed. It cannot gain or lose
members. As soon as a cell in this collection ceases to exist and/or a new cell is created in your body, your
body is constituted by a different collection of cells.

In general many of the properties and relations treated in the remainder of this paper are time-dependent.
Consider, for example, parthood and location relations. The Czech Republic was not part of the European
Union in 2001 but it is part of the European Union in 2004. Similarly, the Auenwald in Leipzig was located
in a singly connected spatial region 100 years ago. Today it consists of multiple disconnected patches of
forest. This means that in an ontology of endurant entities it is insufficient to say of endurants x and y
that a certain top-level relation holds between them, because the relations which hold will be different at

1For discussions of perdurants (processes) and dependent endurants (qualities, roles, etc.) see Simons (1987), Sider (2001), Grenon
and Smith (2004), Bittner et al. (2004a), Galton and Worboys (2005), Grenon and Smith (2004), Smith and Grenon (2004).
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different points in time (Simons 1987, Lowe 2002). To take this time-dependent character of relations into
account we include time instants as a fourth category in our ontology and add a temporal parameter to
time-dependent relations (Thomson 1983, Simons 1987). For example, to take the time-dependent character
of the parthood and location relations into account, we say that x is a part of y at time t1 but x is no
longer part of y at time t2, or that x is located in y at t1 but is no longer located in y at t2.

Endurant individuals are tied to universals through the instantiation relation. For example, New York
State is an instance of the universal socio-economic unit ; the City of Buffalo is an instance of the universal
city ; I am an instance of the universal human being. The instantiation relation for endurant entities is
time-dependent. For example, it is the case that I am an instance of the universal adult now, but it was
not the case that I was an instance of this universal in 1966. Similarly, the City of Buffalo is an instance
of city today but was not an instance of city in 1802, when it instantiated the universal village.

Certain collections are tied to universals through the relation extension-of. This relation too is time-
dependent. The extension of a universal at a given time is the collection of individuals which instantiate
the universal at that time. Not every universal has an extension at every time, as is shown by the case of
extinct species. Moreover, not every collection is the extension of a universal. For example, the collection
of the cells in your body now is not the extension of any universal now. Rather it is a proper sub-collection
of the extension of the universal cell. Similarly, we hold that the collection of human beings in the City of
Buffalo now is a proper sub-collection of the extension of the universal human being now. But there is no
universal human-being-in-Buffalo. We will discuss this in more detail in Section 5.

Some collections consist of disjoint parts of some other individual, which jointly sum up to this individual
at a given time. We call such collections partitions of the individual in question. For example the collection
which includes as its members the US states and the District of Columbia in 2006 partitions the USA
in 2006. The collection of counties of New York State in 2006 partitions New York State in 2006. The
mentioned partitions consist of fiat parts (Smith and Varzi 2000), as also does the collection of US postal
districts, or the collection formed by the northern and southern hemispheres of the Earth.

Individual  individual-
part-of

Universal

instance-of       

Collection

partition-of,    
sums-up-to          

 extension-of

(a) Time-dependent relations (have an
additional temporal parameter).

Collection  sub-collection-of

Universal
sub-

 universal-
of

  universal-
part-ofIndividual

 member-of

(b) Time-independent relations

Figure 1. Top-level relations between the three basic categories of individuals, universals, and collections. Relations are represented by
labeled arrows.

Given the three top-level categories of individuals, universals, and collections, we can distinguish the
top-level relations according to the kinds of entities they relate as depicted in Figure 1. In Figure 1(a)
time-dependent and in Figure 1(b) time-independent top-level relations are depicted. We will develop the
formal theory in a modular fashion along the lines depicted in Figure 2. An arrow in the figure indicates
that every axiom of the sub-theory developed in the section designated by the starting node is also an
axiom of the sub-theory developed in the section designated by the end node.

In the reminder of this section we discuss two examples which demonstrate that the consistent usage of
the terms depicted in Figure 1 helps to structure and exchange information and to improve the precision
of definitions used in scientific discourse. The examples will provide further motivation for the formal
ontology to be presented in the second part of this paper.
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Temporal non-extensional
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Figure 2. The hierarchical structure of the top-level ontology. An arrow from T1 to T2 means that every axiom of sub-theory T1 is also
an axiom of sub-theory T2.

2.1 Land use classification (Example 1)

As our first case study, we consider the following problem, which is an example of the sort of problem that
arises within the planning process in Germany, where spatial data provided by the German government
is classified according to the ATKIS-OK-250 terminology system. The problem is that this data needs to
be integrated with other data, provided by the European Community, that is classified according to the
CORINE land cover terminology system (Visser et al. 2001). To integrate these different data sets, we
need to establish semantic relations between the terms in the ATKIS and CORINE systems.

In this context we need to distinguish (i) domain specific technical terms informally defined according
to the respective standards and (ii) terms used in the definitions of the standards and in the data sets
whose meaning needs to be defined in a domain-independent top-level ontology. In our examples we use
the typewriter font for domain-specific technical terms from the ATKIS terminology and the Sans Serif
font for domain-specific technical terms from the CORINE terminology. We use small capital letters
to signify the terms whose semantics is defined in our top-level ontology. We underline terms, including
relation terms, whose semantics is specified through a mapping to a term in our top-level ontology.

Assume a data set from the year 2000 with an entry expressed according to the ATKIS standard as the
statement:

(A) Stadtwald-1 is a forest.

Assume that we have a second data set from 2000 derived from a satellite image classified according to
the CORINE classification system. This dataset has an entry that, according to the CORINE standard,
can be expressed as the statement:

(B) Stadtwald-2 is classified as a mixed forest.

Assume further that, according to the land cover classification of the CORINE standard, the relation
between mixed forest and forest can be expressed as the statement:

(C) mixed forest is subsumed by forest.

Now suppose that we need to verify that the entity named ‘Stadtwald-1’ is classified correctly according
to ATKIS by comparing the classification of what is putatively the same entity in the CORINE dataset.
(A), (B), and (C) will imply that Stadtwald-1 is classified in the same way (and thus probably correctly)
according to both ATKIS and CORINE under the following assumptions:
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(a0) ‘Stadtwald-1’ and ‘Stadtwald-2’ name two (possibly one) entities that overlap, i.e., share a
common individual part.

(a1) The terms forest and forest refer to the same universal: forest.
(a2) The term mixed forest refers to the universal mixed forest.
(a3) The phrase is a in (A) and the phrase is classified as in (B) both mean instance-of – a relation

that holds between an individual and a universal (as in: I am an instance-of the universal
human being).

(a4) The phrase is subsumed by in (C) refers to the relation subuniversal-of.
(a5) The relations instance-of and subuniversal-of have the following logical interrelationship

that can be exploited for reasoning purposes: If c is a subuniversal-of d and x is an instance-
of c then x is an instance-of d.

(a6) If two instances of the universal forest overlap (i.e., share a common part) then they are
identical.

The reasoning goes as follows:

Stadtwald-1 is an instance-of forest (A, a1, a3). Stadtwald-2 is an instance-of mixed for-
est (B, a1, a3). Since mixed forest is a subuniversal-of forest (C, a4) it follows that every
instance-of mixed forest is an instance-of forest (a5). Thus, in particular, Stadtwald-2 is an
instance-of forest. Since Stadtwald-1 and Stadtwald-2 overlap (a0) and are both instances
of forest, it follows that Stadtwald-1 and Stadtwald-2 are identical (a6) and are classified in the
same way, as forest, according to both ATKIS and CORINE. (For a formal proof see Figure 6
on page 24 of this paper.)

(1)

Notice that we can justify that (a0) is a reasonable assumption by pointing to the overlap of the geo-
referenced locations of the individuals Stadtwald-1 and Stadtwald-2 on standard maps. This is a common
GIS practice. (a1–a2) are assumptions that need to be justified at the domain level based on formal
definitions of the universals forest and mixed forest. (a3–a6) are assumptions that need to be justified by
the axioms, definitions, and theorems of the underlying top-level ontology.

This example and in particular the assumptions (a0–a6) which we needed in order to derive the desired
conclusions, show that it is important to have formal means:

(i) to decide whether two individuals or two universals are identical independently of their name;
(ii) to exactly specify the semantics of top-level terms used to refer to the relations that hold between

and among individuals and universals. This includes the specification of logical properties and
interrelationships that can be exploited for reasoning purposes.

In this paper we focus on (ii) by providing a collection of top-level terms with a well defined semantics.
Those terms can then be used to specify the meaning of terms like those used in (A–C) and link them as
demonstrated in (a3–a5). We will partly address (i) by giving general identity conditions for individuals,
universals, and collections in our axiomatic theory. Usually, (i) will be addressed in domain ontologies which
provide necessary and sufficient conditions for identifying and distinguishing domain specific universals of
a given domain and the individuals that instantiate those universals.

Notice that our technique is quite different from other approaches which ignore the distinctions between
top-level and domain-specific terms and which are based on direct mappings between domain-specific
terminologies using semantic similarity measures, e.g., (Fonseca et al. 2000, 2002b,a, Kuhn 2003, Rodŕıguez
and Egenhofer 2003, 2004, Yetongnon et al. 2006). We do not reject such approaches; we are however
confident that the quality of their achieved results will be enhanced through greater rigor of the sort
presented here.

2.2 Universal vs. instance level relations (Example 2)

In this example we assume that domain-specific terms such as ‘(land-)property’, ‘east’, ‘river’, ‘road’, ‘ford’,
‘Althener ford’, ‘Parthe River’ etc. have a well defined semantics specified in some domain ontology such
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as the Spatial Data Standard (SDTS) (SDTS 1997). Thus here we focus on those underlined terms in the
sentences (D-H) which will acquire their meanings through mappings to terms in our top-level ontology.

In the Spatial Data Standard (SDTS 1997) we find sentences such as

(G) A ford is a shallow part of a river which can be easily crossed.
(H) [Headwater is] the upper part of a river system ...

A data set is a representation of facts about geographic phenomena that also can be expressed by means
of sentences like:

(D) The eastern part of the Stadtwald is separated from its western part by a road.
(E) The northern part of the property is cultivated while the southern part is kept uncultivated.
(F) The Althener ford is part of the Parthe River.

(G) informally describes the meaning of the term ‘ford’ as it is used in (F). (H) informally describes the
meaning of the term ‘headwater’. While (G) expresses a general relationship between fords and rivers, (F)
expresses a fact about the relation between a particular ford and a particular river.

In (D-F) ‘part of’ refers to the parthood relation that holds between individual entities (parts of the
Stadtwald, parts of this piece of land, parts of that river). We will refer to this relation as individual-
part-of (Smith and Rosse 2004, Donnelly and Bittner 2005, Smith et al. 2005, Donnelly et al. 2006). The
intended interpretation of ‘part of’ in (G) and (H) is a relation that holds between universals. The STDS
does not talk about parthood relations between a specific river and a specific ford. Similarly, statement
(H) is not about the parthood relation between a particular headwater and a particular river system.

The intended interpretation of ‘part of’ in (H) is a relation RH that holds between universals such as
headwater and river system if and only if at every time t (i) every instance of the first universal (i.e.,
headwater) is an individual part of some instance of the second universal (i.e., river system) and (ii) every
instance of the second universal (i.e., river system) has an instance of the first universal (i.e., headwater)
as an individual part.

By contrast, the intended interpretation of ‘part of’ in (G) is a relation RG that holds between the
universals ford and river if and only if every instance of the universal ford is an individual part of some
instance of the universal river. It is important to note that the intended meaning of ‘part of’ in (G) allows
for the fact that there are rivers that do not have fords. Consequently it does not hold that every instance
of the second argument (i.e., river) has an instance of the first argument (i.e., ford) as its individual part.
Hence the relations RH and RG are truly distinct: condition (ii) of the definition of RH is not satisfied for
the relation used in (G). The relations RH and RG are structurally similar but distinct, i.e. the former is a
sub-relation of the latter.

Another example of a sentence in which the intended interpretation of ‘part of’ is RG is:

(I) A waterfall is part of a watercourse.

Every waterfall is an individual part of some watercourse, but not every watercourse has a waterfall as an
individual part.

Now consider the sentence:

(J) A wall is part of a building.

The intended interpretation of ‘part of’ in (J) is a relation RJ that holds between two universals (e.g.,
wall and building) if and only if at every time t every instance of the second universal (e.g., building)
has an instance of the first universal (e.g., wall) as an individual part. Neither RH nor RG are meant by
‘part of’ as used in (J), since not every instance of the first universal (wall) is an individual part of some
instance of the second universal (building). For example, the Great Wall of China is a wall which is not
an individual part of any building. Consequently we have RJ(wall, building) but not RH(wall, building) and
not RG(wall, building).

Another example of a sentence in which the intended interpretation of ‘part of’ is the relation RJ is
sentence (K):
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(K) A tree is part of a forest.

Every instance of forest has some instance of tree as individual part but not every instance of tree is
individual part of some instance of forest.

The relations RH , RG, and RJ belong to the group of universal-level parthood relations referred to by
universal-part-of (Figure 1(b)).

3 Temporal mereology of individuals

In the second part of this paper we give an axiomatic characterisation of the relations depicted in Figure
1. We present the theory in a sorted first-order predicate logic with identity. We use the letters t, t1, t2, . . .
as variables ranging over instants of time; w, x, x1, y, z, . . . as variables ranging over independent endurant
individuals; c, d, e, g as variables ranging over universals; and p, q, r, p1, . . . as variables ranging over collec-
tions. The logical connectors ¬,=, ∧ , ∨ , → , ↔ have their usual meanings (not, identical-to, and, or,
if . . . then, and if and only if (iff), respectively). We use the symbol ≡ for definitions. We write (x) to
symbolise universal quantification (for all x . . . ) and (∃x) to symbolise existential quantification (there
is at least one x . . . ). (See (Copi 1979) for an introduction.) All quantification is restricted to a single
sort. Restrictions on quantification will be understood by conventions on variable usage. Leading universal
quantifiers are omitted. Labels for axioms begin with ‘A’, labels for theorems begin with ‘T ’, and labels
for definitions begin with ‘D’.

We here develop a temporal version of mereology (Simons 1987) based on the ternary primitive ≤,
an abbreviation for individual-part-of. On the intended interpretation x ≤t y means: the individual
endurant x is part of the individual endurant y at time-instant t. For example the Czech Republic is part
of the European Union in 2007, but was not a part of the European Union in 2001. Similarly we can
express the statement that this blood cell was part of my body yesterday, but is not a part of my body
now. At all times at which I exist, I am a part (but not a proper part) of myself.

We now add two relation symbols, < and O, whose intended interpretations are (instance-level) proper
parthood and overlap among endurant individuals respectively. We then specify the meaning of the symbols
< and O relative to ≤ by means of the definitions D< and DO.

D< x <t y ≡ x ≤t y ∧ ¬y ≤t x DO O xyt ≡ (∃z)(z ≤t x ∧ z ≤t y)

The individual x is a proper part of the individual y at time instant t if and only if x is a part of y at
t and y is not a part of x at t (D<). The individual x overlaps the individual y at time t if and only if
there exists an individual z such that z is a part of x at t, and z is a part of y at t (DO). At this time
Montana is a proper part of (and overlaps) the United States. Yellowstone National Park (YNP) overlaps
Wyoming, Montana, and Idaho.

We introduce the symbol ‘E’ where the intended interpretation of ‘E xt’ is: x exists at time t. Formally
we define E in terms of ≤: E xt holds if and only if x is a part of itself at t (DE). Clearly, only an entity
that exists at a given time can be a part of itself at that time. We also introduce the symbol ‘∼’ where
‘x ∼t y’ is interpreted as meaning: x and y are mereologically equivalent at t. Intuitively, two entities
are mereologically equivalent at time t if and only if they have exactly the same parts at t. (In a formal
ontology that also includes the notion of location (Casati and Varzi 1995) we could say that mereologically
equivalent entities coincide, i.e., occupy exactly the same space.) For example, at this time the City of
Vienna and the Austrian Federal State Vienna are mereologically equivalent: they have exactly the same
parts and so occupy the same region of space. However, they are clearly distinct in their non-mereological
properties. For example, the City of Vienna, but not the Federal State of Vienna, is governed by a mayor.

Formally we define that x ∼t y holds if and only if x is an individual part of y at t and y is a part of x
at t (D∼).
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DE E xt ≡ x ≤t x D∼ x ∼t y ≡ x ≤t y ∧ y ≤t x

The water mass that constitutes Lake Erie at time t is mereologically equivalent to Lake Erie at time
t. They coincide at t and have exactly the same parts at t. Notice, however, that the water mass that
constitutes Lake Erie at time t and Lake Erie are distinct objects. This can be seen by considering their
mereological structure at different times: In 10 years time Lake Erie will be constituted by a different water
mass. Only few (if any) of the H2O molecules that were parts of the water mass 10 years ago will still be
part of the Lake.

The definitions D<, DO, and DE specify the meanings of the symbols ‘<’, ‘O’, and ‘E’ in terms of ‘≤’.
The meanings of the former depend on the meaning of the latter. The symbol ‘≤’, however, is primitive,
which means that it is not defined in terms of other symbols. Its meaning is specified, rather, by means of
axioms, which explicate properties of the parthood relation.

We add the following axioms including: every individual exists at some time (AM 1); if x is a part of y
at t then x and y exist at t (AM 2); for a fixed t ≤t is transitive (AM 3)1; if x exists at t and x is not part
of y at t then there exists a z such that z is part of x at t and z and y do not overlap at t (AM 4).

AM1 (∃t)E xt
AM2 x ≤t y → E xt ∧ E yt

AM3 x ≤t y ∧ y ≤t z → x ≤t z
AM4 E xt ∧ ¬x ≤t y → (∃z)(z ≤t x ∧ ¬O zyt)

AM 1 amounts to requiring that every object exists at some time (thus we exclude objects that never exist).
It does not imply, however, that every object needs to exist at all times. AM 2 asserts that parthood can
hold at time t only between objects that exist at time t. AM 3 tells us that, for example, if at time t New
York City is part of New York State and New York State is part of the United States, then it follows that
New York City is part of the United States at this same time. AM 4 tells us for example that if Montana
is not part of New York State, then there exists at least one part of Montana that does not overlap New
York State.

Notice that the fact that these examples seem to be so trivial to human beings tells us that axioms
AM 1–AM 4 capture some important aspect of the spatial domain that we humans take for granted. They
are trivially true of the spatial domain, and it is therefore important that they are captured in a formal
ontology that is designed to support automated reasoning in this domain. For computers, all truths however
trivial, need to be made explicit.

From the definitions and axioms the following can be proved as theorems TM 1-72: If x is a proper part
of y at t, then y is not a proper part of x at t (TM 1); at no time is x a proper part of itself (TM 2); if x is
a part of y at t then x overlaps y at t (TM 3); overlap is symmetric, i.e. if x overlaps y at t then y overlaps
x at t (TM 4); if x is part of y at t and x overlaps z at t then y overlaps z at t (TM 5); and if x is a part
of y at t and y and z do not overlap at t then x does not overlap z at t (TM 6).

TM1 x <t y → ¬y <t x
TM2 ¬x <t x
TM3 x ≤t y → O xyt

TM4 O xyt → O yxt
TM5 x ≤t y ∧ O xzt → O yzt
TM6 x ≤t y ∧ ¬O yzt → ¬O xzt

We list these theorems as examples of how to make explicit the consequences of definitions and other
assumptions using the deductive power of formal logic. Again, to a human being these theorems will seem
to trivial. Consider the following examples (where time is assumed fixed): since Yellowstone National Park
(YNP) overlaps Wyoming, Wyoming also overlaps YNP (by TM 4). Wyoming is a part of the USA and

1Notice that parthood in this most general sense is transitive (Simons 1987, Varzi 1996). There are however more specific parthood
relations, for example, part-of-the-same-scale (Bittner and Donnelly 2006) or functional-part-of, that are not transitive (Varzi 2006).

2All theorems are computer verified. For details see Section 7.
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YNP overlaps Wyoming. Therefore Wyoming overlaps the USA (by TM 5). Wyoming is part of the USA
and the USA does not overlap Germany. Therefore Wyoming does not overlap Germany (by TM 6).

The properties of the relations that are made explicit by means of our axioms, definitions, and theorems
can also be used to support automated reasoning about information stored, for example, in Geographic
Information Systems. The prototypical cases include transitivity inference rules of the form

TIR from R(a, b) and R(b, c), derive R(a, c);
TIRt from S(a, b, t) and S(b, c, t), derive S(a, c, t).

Here ‘R(a, b)’, ‘R(b, c)’, ‘S(a, b, t)’, ‘S(b, c, t)’, etc. represent data entries in which the symbol ‘R’ is a
meta-variable which can be replaced by the name of any time-independent transitive relation and ‘S’ is
a meta-variable which can be replaced by the name of any time-dependent transitive relation (including
‘≤’, ‘<’, etc).

It is an important advantage of a logic-based ontology that it makes explicit which relations have the
property of being transitive and thus can be used to support automated reasoning by means of such
transitivity inference rules. Thus AM 3 tells us that a computer program can validly use the transitivity
inference rule to derive ‘New York City is part of the USA’ from ‘New York City is part of New York State’
and ‘New York State is part of the USA’. Consequently, no GIS needs explicitly to store the information
‘New York City is part of the USA’ in addition to ‘New York City is part of New York State’ and ‘New
York State is part of the USA’ since it can be derived automatically.

Notice that many relations are not transitive. Thus while Montana overlaps YNP and YNP overlaps
Wyoming, Montana does not overlap Wyoming. Thus it is important to specify also which relations do
not have the property of transitivity.

Some logical consequences of our axioms and definitions are as follows. From (D∼) it immediately follows
that if x is mereologically equivalent to y then y is mereologically equivalent to x, i.e. ∼ is symmetric
(TM 7). We can also prove that x is mereologically equivalent to itself at all times at which x exists (TM 8)
and that ∼ is transitive for fixed times (TM 9). Thus, at a given time t, ∼ is an equivalence relation on
the sub-domain of endurant individuals that exist at t.

TM7 x ∼t y → y ∼t x
TM8 E xt → x ∼t x
TM9 x ∼t y ∧ y ∼t z → x ∼t z

We can also prove: if x exists at t and everything that overlaps x at t overlaps y at t, then x is a part of
y at t (TM 10); if x and y exist at t, then x and y are mereologically equivalent at t if and only if every z
overlaps x at t if and only if z overlaps y at t (TM 11); if x and y exist at t, then x and y are mereologically
equivalent at t if and only if every z is part of x at t if and only if z is part of y at t (TM 12), i.e. two
individuals are mereologically equivalent at t if and only if they have the same parts at t.

TM10 E xt ∧ (z)(O zxt → O zyt) → x ≤t y
TM11 E xt ∧ E yt → ((z)(O zxt ↔ O zyt) ↔ x ∼t y)
TM12 E xt ∧ E yt → ((z)(P zxt ↔ P zyt) ↔ x ∼t y)

Notice, that it does not follow from our axioms that if two individuals are parts of each other at a given
time then they are identical (≤ is not antisymmetric). Nor does it follow that if two individuals overlap
exactly the same things at a given time then they are identical (thus O is not extensional (Simons 1987)).
Thus we allow for the possibility that two distinct individuals can have exactly the same parts at a given
time. Again, the City of Vienna and the Austrian Federal State of Vienna have exactly the same parts,
even though they are distinct.

We call the theory formed by AM 1–4 non-extensional temporal mereology or ‘TNEMO’ for short.
TNEMO specifies ‘≤’ as meaning individual-part-of and it specifies the defined terms ‘<’, ‘O’, ‘E’, and ‘∼’
as meaning: individual-proper-part-of, overlaps, exists, and mereologically-equivalent respectively. Notice
that further axioms may be needed to better approximate the meaning of ‘≤’. See for example Varzi (1996)
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for additional (atemporal) axioms.
TNEMO is distinct from the extensional temporal mereology presented in (Bittner et al. 2004b). Both

theories share the definitions DE and DO and the standard axioms of transitivity (AM3) and strong
supplementation (AM4). But because TNEMO has no axiom of antisymmetry we are able to introduce
the predicate of mereological equivalence, which enables us to deal with coinciding but distinct individual
endurants (which exist, intuitively, on different geospatial layers). We discuss these issues in more detail
in (Bittner and Donnelly 2007d).

4 Collections

Collections of individual endurants are the second major category of entities in our ontology. Examples of
collections include: the collection of Hispanic people in Buffalo’s West Side as specified in the 2000 census
records; the collection of people with an annual income higher than $30,000 in a given postal district at
a given time, and so on. In particular, we will consider two special sorts of collections: those that form
partitions of individuals at given times and those that are the extensions of universals at given times.

We use the letters p, q, r as variables ranging over collections and we use ‘∈’ to stand for the member-
of relation between individuals and collections. We use the notation ‘{x1, . . . , xn}’ to refer to a finite
collection having exactly x1, . . . , xn as members. Since the disjoint categories of collections and individuals
are represented by disjoint sorts in our theory, it follows that the relation ∈ is irreflexive and asymmetric,
and that there are no collections of collections.

Collections comprehend in every case two or more individuals (AC1) (Burge 1977). Consequently there
are no empty collections and no singleton collections. (Compare (Bunt 1985).) We require that two collec-
tions are identical if and only if they have the same members (AC2). This makes explicit the extensional
character of collections.1

AC1 (∃x)(∃y)(x ∈ p ∧ y ∈ p ∧ ¬x = y) AC2 p = q ↔ (x)(x ∈ p ↔ x ∈ q)

The collection p is a sub-collection of the collection q (p ⊆ q) if and only if every member of p is also a
member of q (D⊆).

D⊆ p ⊆ q ≡ (x)(x ∈ p → x ∈ q)
TC1 p ⊆ p
TC2 p ⊆ q ∧ q ⊆ p → p = q
TC3 p ⊆ q ∧ q ⊆ r → p ⊆ r

We can prove that ⊆ is reflexive (TC1), antisymmetric (TC2), and transitive (TC3). Thus, ⊆ is a partial
ordering. TC3 tells us that an automated reasoning system may validly apply the transitivity rule (TIR)
to reason about data containing information about sub-collection relations among collections. TM 4 tells
us that an automated reasoner is permitted to infer that if two collections are sub-collections of each other
then they are identical.

4.1 Fully, partly present, and non-present collections

Our treatment of collections makes them in some respects analogous to sets in the mathematical sense
(Copi 1979). Thus collections are atemporal entities, i.e., they do not come into or go out of existence. The
endurant individuals which are the members of collections, on the other hand, do exist at some times and
fail to exist at others. Consider the collection p of cells in my body at some time instant t. We will say that

1Thus in contrast to Bittner et al. (2004b) we require here that collections have at least two members. For a more comprehensive
version of this theory of collections see (Bittner and Donnelly 2006).
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this collection is present now to signify that all of its members exist at this moment. But at some later
time t2, many of the cells that form p will no longer exist and p will then be only partly present. In 500
years no member of p will exist and p will be non-present. Similarly, consider the collection q of states that
are spatially in Europe in 2005. This collection includes France and Lithuania but not Russia and Turkey
since the latter are only partly in Europe. This collection is fully present in 2005, i.e., all its members exist
in 2005. But it was only partly present in 1949 since, for example, Lithuania did not exist as a separate
state at that time (because it was a part of the Soviet Union). 2000 years ago q was non-present, since at
that time none of its members existed.

Following Bittner et al. (2004b) we introduce the symbols ‘FP ’, ‘PtP ’, and ‘NP ’ with the interpretations
‘fully present at t’, ‘partly present at t’, and ‘non-present at t’ for a given collection q. Formally we define
that a collection p is fully present at t if and only if all its members exist at t (DFP); p is partly present
at t iff some of its members exist at t (DPtP); and p is non-present at t if and only if none of its members
exist at t (DNP).

DFP FP pt ≡ (x)(x ∈ p → E xt)
DPtP PtP pt ≡ (∃x)(x ∈ p ∧ E xt) DNP NP pt ≡ ¬PtP pt

Notice that, since every collection has at least two members (AC2), full presence is a special case of partial
presence, i.e., we can prove that if p is fully present at t, then p is also partly present at t (TC4). We can
also prove that if p is a sub-collection of q and q is fully present at t then p is fully present at t (TC5); if p is
a sub-collection of q and q is non-present at t then p is non-present at t (TC6); and if p is a sub-collection
of q and p is partly present at t then q is partly present at t (TC7).

TC4 FP pt → PtP pt
TC5 p ⊆ q ∧ FP qt → FP pt

TC6 p ⊆ q ∧ NP qt → NP pt
TC7 p ⊆ q ∧ PtP pt → PtP qt

Notice that it would also be possible to develop a theory of collections in which collections only exist at
times at which they are fully present. According to such a theory collections would behave temporally like
individuals rather than like sets.

4.2 Discrete collections

The individuals in a given collection may or may not overlap at a given time. For example let p be the
collection which includes my body and my heart as its only members. At this moment t, p is such that my
body and my heart overlap (since at this moment my heart is part of my body). Similarly, the collection
q which has as its members the territory of Canada and the territory of Quebec is such that its members
overlap at this moment in time. Some collections, however, are formed by individuals all of which are
at a given time pairwise disjoint, which means that they have no parts in common at that time. For
example, all individuals in the collection of cells currently in my body are currently pairwise disjoint –
thus the collection as a whole is currently discrete. The collection of planets currently in our solar system
is currently discrete. The collection of the current states of the United States is currently discrete.

We introduce the symbol ‘D’ in our ontology and assert that collection p is discrete at time t if and only
if the members p do not overlap at t (DD):

DD D pt ≡ (x)(y)(x ∈ p ∧ y ∈ p ∧ O xyt → x = y)

We can prove: non-present collections are discrete (TC8); if p is discrete at t then every sub-collection of
p is discrete at t (TC9).
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TC8 NP pt → D pt TC9 D pt ∧ q ⊆ p → D qt

TC9 enables an automated reasoner to infer the discreteness of a sub-collection from the discreteness of
the super-collection. Thus it is sufficient to explicitly represent that the collection of current US federal
states is disjoint; that the collection of New England States is currently discrete can then be derived using
TC9.

Notice that the same collection can be fully present and non-discrete today but fully present and discrete
tomorrow. Today the collection q which has as its members the territory of Canada and the territory of
Quebec is fully present and not-discrete. In the future, Quebec might leave Canada and become a separate
sovereign state. At that time the territories of the Quebec and of Canada will still be members of q but
discrete, i.e., non-overlapping, entities. Similarly, consider the collection p consisting of my body and my
heart. After my death my body and my heart will remain members of p. They may also continue to exist
as discrete entities: my heart in the body of another person and my body in the anatomy department of
some medical school. A collection can also be non-discrete today and discrete tomorrow if members that
overlap today shrink or cease to exist tomorrow.

4.3 Sums and partitions

The members of the collection of the territories of the current federal states of the USA and the District
of Columbia currently sum up to the territory of the USA as a whole in the sense that everything that
currently overlaps the territory of the USA currently overlaps at least one member of this collection and
vice versa. Moreover the collection territories of the current federal states and the District of Columbia
currently partitions the territory of the USA in the sense that its members currently sum up to the territory
of the USA and, in addition, are currently pairwise disjoint.

Formally we define that individual y is a sum of the collection p at time t if and only if (i) p is fully
present at t and (ii) every individual w overlaps y at t if and only if y overlaps some member of p at t.
We will also say that x is a p-sum at t. A collection p is a partition of the individual y at time t if and
only if (i) y is a p-sum at t and (iii) p is discrete at t. We introduce the symbols ‘Sum’ and ‘PT’ into the
language of our ontology and specify their meanings as follows:

DSum Sum pyt ≡ FP pt ∧ (x)(O xyt ↔ (∃z)(z ∈ p ∧ O xzt))
DPT PT pyt ≡ Sum pyt ∧ D pt

An individual can be partitioned by multiple collections. For example, in addition to the collection of
territories of current federal states and the District of Columbia, the territory of the USA is also partitioned
by the current collection of territories of its counties.1 Note that collections are distinct from mereological
sums. Thus (ignoring, for the moment, the District of Columbia) the territory of the USA is identical
with the mereological sum of the territories of the separate states but distinct from the collection of the
territories of the separate states.

It immediately follows from definition DPT that if x is partitioned by q at t then x is a q-sum at t. We
can also prove that if two objects that are both sums of the members of the same collection at t then they
are mereologically equivalent at t (TC10).

TC10 Sum pxt ∧ Sum pyt → x ∼t y

Notice that we cannot prove that two objects that are sums of the members of the same collection at a given
time are identical. Mereological summation is not a function that takes collections to unique individuals.
Consider the City of Vienna, the Austrian Federal State of Vienna, and the collection, PDV, of postal

1We here ignore the fact that in Louisiana counties are called ‘parishes’ and in Alaska ‘boroughs’.
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districts of Vienna at some time t in 2005. Assume that at t the City of Vienna is a sum of PDV and that
the Austrian State of Vienna is a sum of PDV. According to our theory this is consistent with the thesis
that the City of Vienna and the Austrian State of Vienna are two distinct objects (which are also parts of
each other at t).

We can also prove: if y is a sum of p at t, then every part of y at t overlaps at t some member of p, i.e.,
no part of y is discrete from all members of p (TC12); if x is a sum of p at t and y is a sum of q at t and
p is a sub-collection of q, then x is part of y at t (TC14).

TC12 Sum pyt ∧ x ≤t y → (∃z)(z ∈ p ∧ O zxt)
TC14 Sum pxt ∧ Sum qyt ∧ p ⊆ q → x ≤t y

Theorem TC12 tells us that if x is a sum of the collection p at t, then p exhausts x at t in the sense
that there are no parts of x that are not overlapped by some member of p at t. Thus, if x is a partition
of the collection p at t then the members of p are at t jointly exhaustive and pairwise disjoint. Hence the
intuitions stated informally in the first paragraph of this subsection are ‘covered’ by our formal definitions.

Notice, that a given collection p may partition an individual x today and fail to partition the same
individual x tomorrow (x may grow, members of p may shrink or cease to exist, etc). Many partitions,
however are quite stable over time, since they are defined by fiat. Consider, for example, the partition of
the planet Earth into northern and southern hemispheres. By definition, at no time at which the planet
Earth exists can the collection whose members are its northern and southern hemispheres fail to partition
the planet.

We call the theory which includes TNEMO and the axioms AC1+2 non-extensional temporal mereology
with sums (TNEMO-S).

5 Universals, individuals, and collections

In this section we specify the logical properties of the relations that hold between individuals, universals,
and collections. For this purpose we extend TNEMO-S by adding more primitives and corresponding
axioms to our theory. We use variables c, d, e, g to range over universals such as human being, federal state,
mountain, forest, tree, plant, and so forth.

5.1 The sub-universal relation

Universals are here assumed to form hierarchical tree structures ordered by sub-universal relations. Con-
sider the ecoregion classification hierarchy depicted in Figure 3, where nodes represent universals and edges
the subuniversal-of relation (Bailey 1983). The tree structure reflects the fact that the definition of each
universal lower down in the hierarchy is formed by specifying its parent universal together with the relevant
differentia that tell us what marks out instances of the defined universal (or ‘species’) within the wider
parent universal (or ‘genus’), as in: human =df rational animal where ‘rational’ is the differentia (Smith
et al. 2004, Sorokine et al. 2006). Notice that differentia, on this Aristotelean approach to definitions, must
always be pairwise disjoint. In addition , they may be such that the immediate sub-universals of a universal
are jointly exhaustive (with respect to the immediate super-universal). Thus besides rational animals there
are non-rational animals. In the ecoregion classification hierarchy we define Humid Temperate Ecoregion
as a Geographic Ecoregion with humid temperate climate. Here the climate type is the differentia. In Table
1 we give some more example definitions for ecoregion universals with different types of differentia such
as vegetation type and climax vegetation type. The ecoregion classification tree that can be constructed
using these kinds of differentia is partly depicted in Figure 3.

According to the view defended here, this Aristotelian method of classification allows us to build classi-
fication systems which most closely resemble the hierarchical organization of the universals in reality. Of
course there may be different ways of classifying, resulting in different classification trees and corresponding
to different sub-universal relations. ( Bittner (2007b) provides a detailed discussion of various classification
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Ecoregion

Polar HumidTemp Dry HumidTrop

Tundra Subarctic Continental Subtropical Marine Prairie Meditrrian Tropical Temperate Savanna Rainforest

Warm Hot TropSteppe TropDessert TempSteppe TempDessert

Figure 3. Classification of geographic ecoregions with respect to broad climatic similarity, definite vegetational affinities, etc. (Bailey
1983).

Humid Temperate Ecoregion =df Geographic Ecoregion with humid temperate climate.
Prairie Ecoregion =df Humid Temperate Ecoregion with prairie climate.

Prairie Bushland Ecoregion =df Prairie Ecoregion with climax vegetation type Bushland.

Table 1. Definition of ecoregion universals using the Aristotelian method of classification.

schemes in the ecoregion realm.) Notice that the sub-universal relation will generate a lattice – in which
a universal can have more than one immediate super-universal (multiple inheritance) – rather than a tree
if either (i) different classification trees are mixed,1 or (ii) universals are confused with collections and
sub-universal relations are confused with sub-collection relations, or (iii) other mistakes are made as for
example, those discussed in (Sorokine and Bittner 2005).2

In our formal theory we use the symbol ‘v’ for the sub-universal relation. Like the sub-collection relation,
v is atemporal, i.e. it does not have a temporal parameter. We define the relations of proper sub-universal
(@) and taxonomic overlap (Ov) in the obvious way in terms of v. Universal c is a proper sub-universal
of d if and only if c is a sub-universal of d and d is not a sub-universal of c (D@). Universals c and d
taxonomically overlap if and only if either c is a sub-universal of d or d is a sub-universal of c (DOv).
We also introduce a predicate (Root), which picks out the root universal, which subsumes all universals
(Droot).

D@ c @ d ≡ c v d ∧ ¬d v c
DOv Ov cd ≡ (c v d ∨ d v c) Droot Root c ≡ (g)(g v c)

We require that v is reflexive, antisymmetric, and transitive (AU 1-3). In addition we require that: if
c is a proper sub-universal of d then there exists a universal e that is a proper sub-universal of d and
which does not taxonomically overlap c (AU 4); and if c and d share a common sub-universal then c and
d taxonomically overlap (AU 5). We finally add axiom AU 6, which postulates the existence of a root
universal. In the most general case, this will be the universal substance (or independent endurant).

AU1 c v c
AU2 (c v d ∧ d v c) → c = d
AU3 (c v d ∧ d v e) → c v e

AU4 c @ d → (∃e)(e @ d ∧ ¬Ov ec)
AU5 (∃e)(e v c ∧ e v d) → Ov cd
AU6 (∃c)Root c

Axioms AU 1–AU 6 force the sub-universal relation to form a tree structure. AU 5 ensures that a universal

1As an example consider the universals socio-economic unit and human settlement. If we mix the classifications of socio-economic units
and human settlements into a single classification structure, then the resulting structure will not be a tree, since neither socio-economic
unit is a sub-universal of human settlement nor vice versa, though both have the universal city as a (proper) sub-universal.

2Those who insist that the hierarchical structure imposed by the sub-universal relation is indeed a lattice can fall back to the version of
the theory presented in (Bittner et al. 2004b). In that theory lattice structures are permitted as long as what we call the no-partial-overlap
principle (NPO) is not added to the theory.
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does not have two immediate super-universals. Moreover, we can prove that there cannot be a universal
with a single proper sub-universal or, more generally, that if c is a proper sub-universal of d then there
exists a universal e that is a proper sub-universal of d and c and e have no sub-universal in common
(TU 0).1

TU0 c @ d → (∃e)(e @ d ∧ ¬(∃f)(f v e ∧ f v c))

From axioms AU 1–AU 6 we can also prove atemporal versions of TM 1-6 which are omitted here. (In these
theorems the relations part-of and sub-universal-of as well as overlap and taxonomic overlap correspond
in the obvious ways.) We can also prove: there exists at most one root-universal (TU 1); if everything
that taxonomically overlaps c also taxonomically overlaps d then c is a sub-universal of d (TU 2); and two
universals c and d are identical if and only if every universal e overlaps c if and only if it overlaps d (TU 3).

TU1 Root c ∧ Root d → c = d
TU2 (e)(Ov ec → Ov ed) → c v d
TU3 (e)(Ov ec ↔ Ov ed) ↔ c = d

We call the theory formed by the axioms AU 1–6 Extensional Universal Mereology (EUM).

5.2 Instantiation

Universals have various individuals at various times as their instances, i.e., the relation of instantiation
is time-dependent. This relation holds between individuals, universals, and times (in that order). Notice
that this does not conflict with the atemporal character of the sub-universal relation. The universal Polar
ecoregion will remain a sub-universal of Geographic ecoregion even if a time is reached when no polar
ecoregion exists on Earth.

We include the primitive relation Inst in our formal theory and write Inst xct to signify that the individual
x instantiates the universal c at time-instant t. For example: New York City is an instance of the universal
city now; the tundra ecoregion of Alaska is an instance of the universal Tundra ecoregion (Figure 3) now.

The relation Inst is irreflexive and asymmetric at every time. Since in our ontology universals and
individuals are represented through variables of disjoint sorts we do not need to add explicit irreflexivity
and asymmetry axioms for Inst. Axioms (AI 1–2) mirror the relationship between instantiation and the
sub-universal relation. AI 1 tells us that if c is a sub-universal of d, then the instances of c at any given
time are also instances of d at that time. For example, the universal federal state is a sub-universal of the
universal socio-economic unit. Therefore every instance of federal state (e.g., New York State) is also an
instance of socio-economic unit.

AI 2 tells us that if two universals share an instance x at some time t, then the universals taxonomically
overlap. For example, in 2005 the tundra ecoregion of Alaska is an instance of both the universal Tundra
ecoregion and of the universal Geographic ecoregion, both of which taxinomically overlap, since Tundra
ecoregion is a sub-universal of Geographic ecoregion.

AI1 c v d → (Inst xct → Inst xdt) AI2 (Inst xct ∧ Inst xdt) → Ov cd

The axioms AI 3-5 mirror the interaction between instantiation and existence of individuals in time. AI 3
tells us that if x is an instance of a universal at t then x exists at t. For example, Napoleon Bonaparte is
not an instance of the universal human being in 2005 since he does not exist in 2005. However he was an
instance of human being in 1815. AI 4 states that every universal is instantiated at some time. Thus we

1TU0 seems to be violated in classification systems in which universals with a single sub-universal are postulated. Sorokine and
Bittner (2005) investigated this phenomenon in the context of ecoregion classifications and showed that in classification systems that
violate TU0 either the sub-universal relation is confused with the instantiation relation, or universals that do not have instances in a
given spatial location are neglected.
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do not allow for universals such as ‘unicorn’ which do not have instances at any time. AI 5 states that at
every time at which an individual exists it is an instance of some universal.1

AI3 Inst xct → E xt
AI4 (∃t)(∃x)(Inst xct)
AI5 E xt → (∃c)Inst xct

5.3 Extensions

Every universal that has an instance at time t also has an extension at t. The extension of universal c at
t is an individual object if and only if c has a single instance at t. The extension of c at t is a collection if
and only if c has at least two instances at t. At the formal level we correspondingly introduce the symbols
ExtC and ExtI . ExtC pct holds if and only if for all x, x is a member of p if and only if x instantiates c at
t (DExtC

). ExtI xct holds if and only if x is an instance of c at t and all instances of c at t are identical to
x (DExtC

).

DExtC
ExtC pct ≡ (x)(x ∈ p ↔ Inst xct)

DExtI
ExtI xct ≡ Inst xct ∧ (y)(Inst yct → x = y)

We then require that if universal c has an instance x at t, then either x is the extension of c at t or there
is a collection p that is the extension of c at t (AE1).

AE1 Inst xct → (ExtI xct ∨ (∃p)(ExtC pct))

We can prove that: if collection p is the extension of a universal at time t, then p is fully present at t
(TC15); if individual x is an extension of universal c at t and individual y is an extension of c at t then x
and y are identical (TC16), and that if collection p an extension of universal c at t and collection q is an
extension of universal c at t, then p and q are identical (TC17).

TC15 ExtC pct → FP pt
TC16 ExtI xct ∧ ExtI yct → x = y
TC17 ExtC pct ∧ ExtC qct → p = q

Thus at all times at which the universal c has an extension it has a unique extension. This extension may
be either a single object or a collection. Hence, we are allowed to refer to the extension of a universal c at
all times at which c has an instance.

For universals with two or more instances at a given time there is clearly a correspondence between the
sub-universal structure of universals and the sub-collection structure of their extensions. We can indeed
prove that if c is a sub-universal of d and p is the extension of c at t and q is the extension of d at t then
p is a sub-collection of q (TC19).

TC19 c v d ∧ ExtC pct ∧ ExtC qdt → p ⊆ q

Notice however that there may be points in time where distinct universals have identical extensions. For
example, if at some point in time all mammals except whales are extinct, then the extensions of the
universals mammal and whale at that time are identical even though the corresponding universals are
distinct.

1Note that we here do not add an axiom requiring that two universals that have the same instances at all times are identical. Thus
in contrast to (Bittner et al. 2004b) we leave open the possibility that two distinct universals may have exactly the same instances at
all times. In a modal framework one usually demands that two universals are identical if and only if they have the same instances at all
times and in all possible worlds (Oliver 1996).
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We call the theory that extends EUM by the axioms AI 1–6 and AE1 Extensional Universal Mereology
with Instantiation and Extensions (EUMIE).

5.4 Discrete universals

Many universals are such that distinct instances do not overlap. We call such universals discrete. Examples
of discrete universals include federal state, human being, tree, forest, city, car. No distinct instances of
federal state overlap. No distinct instances of forest overlap. Universals which have distinct instances that
do overlap include socio-economic unit, ecoregion, human body part. For example, the State of New York
and Niagara County – both instances of socio-economical unit – overlap. Similarly, the my left hand and
my left arm – both instances of human body part – overlap.

Formally we define that the universal c is discrete if and only if all of its extensions are discrete (DDU).

DDU DU c ≡ (t)(p)(ExtC pct → D pt)

We can prove that at no time do distinct instances of a discrete universal overlap (TC20).

TC20 DU c ∧ (∃t)(Inst xct ∧ Inst yct ∧ O xyt) → x = y

Consider the individuals referred to by the names ‘Stadtwald-1’ and ‘Stadtwald-2’ in Example 1 (Sec. 2.1)
above. If both individuals overlap at some time (e.g., share at least one tree in 2000), then according to
TC20, both individuals are identical, since both are instances of the discrete universal forest.

6 Universal parthood

We saw above in Example 2 (Sec. 2.2) that there, are besides the parthood relation between individuals,
also parthood relations on the level of universals (waterfall part of river, wall part of house, and so on). In
this section we combine the theories of non-extensional temporal mereology with sums, TNEMO-S, and
the extensional universal mereology with instantiation and extensions, EUMIE, and introduce universal
parthood relations. We call the resulting theory Non-Extensional Temporal Mereology with Sums, and
Universals, TNEMO-S-U. We will then finally be able to formally characterize the relations RG, RJ and
RH employed in Example 2.

6.1 Kinds of universal parthood relations

In the formal theory we introduce the predicates UP1, UP2 and UP12 for the universal parthood relations.
These predicates acquire their meaning through definitions that are based exclusively on the primitives ≤
and Inst (Donnelly and Bittner 2005, Donnelly et al. 2006, Smith et al. 2005):

DUP1 UP1 cd ≡ (t)(x)(Inst xct → (∃y)(Inst ydt ∧ x ≤t y))
for every time t: every instance of c at t is an individual part at t of some instance of d at t

DUP2 UP2 cd ≡ (t)(y)(Inst yct → (∃x)(Inst xct ∧ x ≤t y))
for every time t: every instance of d at t has some instance of c at t as an individual part at t

For example we have UP1(waterfall, river), i.e., for all times t any instance of waterfall at t is an individual
part at t of some instance of river at t. Similarly, UP2(wall, house), and so on.

We now can use the universal parthood predicates UP1 and UP2 and the discrete-universal predicate
DU as a basis to define a set of further predicates as conjunctions of the base predicates. From all the
available possibilities we will discuss the following:
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DUP12 UP12 cd ≡ UP1 cd ∧ UP2 cd
DDUP1 DUP1 cd ≡ UP1 cd ∧ DU c ∧ DU d

DDUP2 DUP2 cd ≡ UP2 cd ∧ DU c ∧ DU d
DDUP12 DUP12 cd ≡ DUP1 cd ∧ DUP2 cd

The predicate UP12 is defined as the conjunction of UP1 and UP2 For example we have
(UP12(capital, state)), i.e., for all times t every instance of state at t is an individual part at t of some
instance of state at t and for all t every instance of state at t has some instance of capital at t as an
individual part at t.

The relations picked out by DUP1, DUP2, and DUP12 are restrictions of the relations picked out by UP1,
UP2, and UP12 to discrete universals. On the intended interpretation DUP1, DUP2, and DUP12 pick out
respectively the relations RG, RJ and RH in Example 2 (Sec. 2.2). More examples and counter-examples
of universal parthood relations between discrete universals are listed in Table 2.

relation example counter-example
DUP1 (ford,river), (waterfall,watercourse) (wall,building)
DUP2 (wing,airplane), (wall,building) (ford, river)
DUP12 (human head,human body), (capital,state) (wall,building)

(state,federal state), (federal state, federation)
Table 2. Universal parthood relations.

6.2 Composition and transitivity reasoning

Transitivity reasoning.. We can prove a number of theorems that tell us how to validly combine partial
information about universal parthood relations. We start with theorems involving the same universal
parthood relation, proving that UP1, UP2, and UP12, as well as DUP1, DUP2, and DUP12 are all transitive.
That is, if c is a universal part of d (in the sense of UPi) and d is a universal part of e (in the sense of
UPi), then c is a universal part of e (in the sense of UPi) where the index i takes the values ‘1’, ‘2’, and
‘12’ respectively (TPI 1-3). Similarly for DUP1, DUP2, and DUP12 (TPI 3-6).

TUP1− 3 UPi cd ∧ UPi de → UPi ce for i ∈ {1, 2, 12}
TUP3− 6 DUPi cd ∧ DUPi de → DUPi ce for i ∈ {1, 2, 12}

Consider the universals county, federal state, and federation. It is easy to verify that we have:

DUP12(county, federal state) and DUP12(federal state, federation)

and, by transitivity, DUP12(county, federation). Thus, theorem TUP6 tells us that the facts DUP12(county,
federal state) and DUP12(federal state, federation) can be combined to infer DUP12(county, federation)
by means of reasoning that exploits the validity of theorem TPI 6 as discussed above together with the
transitivity inference rule (TIR on page 9). Obviously, this kind of reasoning is important in integrating
geographical databases at different scales, since it allows us to make explicit information that is implicit
in the statements DUP12(county, federal state) and DUP12(federal state, federation).

Relation composition.. We now consider theorems about the combination of statements involving distinct
universal parthood relations. Transitivity reasoning, i.e., reasoning that exploits the validity of theorems
TUP1-6 and thus employs the transitivity property of a single relation, cannot be used to derive conclusions
from premises which include facts about distinct relations. Thus we cannot derive valid conclusions from
the premises

UP1 cd and UP12 de or UP1 cd and DUP1 de

by means of transitivity reasoning, since UP1, DUP1, and UP12 are distinct relations. In such cases a more
general form of reasoning based on the composition of relations is required. Relation composition has the
form:
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RC From R(c, d) and S(d, e), derive T (c, e)

‘R’, ‘S’, and ‘T ’ are symbols referring to possibly distinct binary relations. One can see that the transitivity
inference rule (TIR on page 9 of this paper) is a special kind of relation composition rule, where ‘R’, ‘S’,
and ‘T ’ refer to the same relation. Reasoning by relation composition is widely used in spatial reasoning
about topological relations between individual spatial objects and regions (Egenhofer 1991, Egenhofer and
Sharma 1993, Cohn et al. 1997). The importance of the composition of universal parthood relations for
(bio and geo-) ontologies has been pointed out in Schulz et al. (2000), Spackman (2001), Schulz and Hahn
(2004), Donnelly and Bittner (2005).

In the formal theory it immediately follows from the definitions of the various universal parthood pred-
icates that the stronger UP12 predicate implies the weaker predicates UP1 and UP2 (TUP7). Similarly,
a restricted universal parthood relation like DUPi implies the non-restricted universal parthood relation
UPi (TUP8-10).

TUP7 UP12 cd → UP1 cd ∧ UP2 pqt
TUP8-10 DUPi cd → UPi cd for i ∈ {1, 2, 12}

Table 3 summarizes the various ways of validly combining partial information about universal parthood
relations based on Theorems TUP1-TUP10. Assume that UP1 cd and UP12 de hold, we can then derive
UP1 de from UP12 de using theorem TUP14. We then can apply theorem TUP5 to derive UP1 ce (the
entry in the table) from UP1 cd and UP1 de. Similarly, assume that UP1 cd and DUP1 de hold, we can
derive UP1 de from DUP1 de using theorem TUP15. We then can apply theorem TUP5 to derive UP1 ce
(the entry in the table) from UP1 cd and UP1 de. Table 3 shows that we cannot validly combine partial
information about universal parthood relations between arbitrary relations. For example we cannot prove
any theorem that supports valid inferences from UP1 cd and UP2 de.

UP1 de UP2 de UP12 de DUP1 de DUP2 de DUP12 de
UP1 cd UP1 ce − UP1 ce UP1 ce − UP1 ce
UP2 cd − UP2 ce UP2 ce − UP2 ce UP2 ce
UP12 cd UP1 ce UP2 ce UP12 ce UP1 ce UP2 ce UP12 ce
DUP1 cd UP1 ce − UP1 ce DUP1 ce − DUP1 ce
DUP2 cd − UP2 ce UP2 ce − DUP2 ce DUP2 ce
DUP12 cd UP1 ce UP2 ce UP12 ce DUP1 ce DUP2 ce DUP12 ce

Table 3. Composition of universal parthood relations.

6.3 Universal parthood and sub-universalhood

Finally we can prove a number of theorems about the interrelationships between universal parthood and
the sub-universal relation. These theorems are useful since they allow us to combine partial information
concerning facts about universal parthood and sub-universal relations. Given a particular classification hi-
erarchy it is important to know whether information about universal parthood relations can be propagated
up or down the classification hierarchy. For example, we might know that universal c is a universal part
of universal d (in the sense of UP1, UP2, etc.) and that e is a sub-universal of c. The question may then
arise – for example when applying definitions and axioms from a data-standard like ATKIS to a particular
data set – as to whether we are permitted to derive that e is a universal part of d.

We first state the theorems formally and then provide english translations and simple examples. The-
orems TUP11-18 are specific versions of the more general theorems discussed in Donnelly et al. (2006).
Theorems TUP11, 12, 15, and 18 support valid reasoning using relation composition (RC).
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TUP11 e v c ∧ UP1 cd → UP1 ed
TUP12 d v e ∧ UP1 cd → UP1 ce
TUP13 e v d ∧ UP2 cd → UP2 ce
TUP14 c v e ∧ UP2 cd → UP2 ed

TUP15 e v c ∧ UP12 cd → UP1 ed
TUP16 c v e ∧ UP12 cd → UP2 ed
TUP17 e v d ∧ UP12 cd → UP2 ce
TUP18 d v e ∧ UP12 cd → UP1 ce

As an illustration consider Theorems (TUP11-13), which can be rendered in English as follows:

(TUP11) If e is a sub-universal of c and c is a universal part of d in the sense of UP1 (every instance
of c is an individual part of some instance of d), then e is a universal part of d in the sense
of UP1 (TIP11).

Thus, from the facts that index finger is a sub-universal of finger and finger is universal part of hand (in
the sense of UP1), we can validly derive that index finger is universal part of hand (in the sense of UP1).

(TUP12) If c is a universal part of d in the sense of UP1 and d is a sub-universal of e then c is a
universal part of e in the sense of UP1.

Thus from the facts that watercourse is a sub-universal of waterbody and waterfall is universal part of
watercurse (in the sense of UP1) we can validly derive that waterfall is universal part of waterbody (in the
sense of UP1).

(TUP13) If c is a universal part of d in the sense of UP2 and e is a sub-universal of d, then c is a
universal part of e in the sense of UP2.

Thus from the facts that wing (airplane wings, bird wings, etc.) is universal part of airplane (in the sense
of UP2) and that passenger airplane is a sub-universal of airplane we can validly derive that wing is
universal part of passenger airplane (in the sense of UP2).

Obviously, theorems similar in structure to theorems (TUP11-18) can be derived for universal parthood
between discrete universals. We here discuss two such theorems:

TDUP19 d v e ∧ DUP1 cd → UP1 ce TDUP20 c ⊆ e ∧ DUP2 cd → UP2 ed

TDUP19 tells us that if d is a sub-universal of e, and if c and d are discrete, and c is universal part of
d in the sense of DUP1 then c is universal part of e in the sense of UP1. Notice that e may or may not
be discrete. (We know from TC9 that every sub-collection of a discrete collection is discrete, but a super-
collection of a discrete collection may or may not be discrete.) For this reason we cannot prove DUP1 ce.
Analogously for TPI 20.

7 Computational realization

The axiomatic theory TNEMO-S-U presented above is part of Basic Formal Ontology (BFO), a top-level
ontology developed by the Ontology Research Group at Buffalo and by the Institute for Formal On-
tology and Medical Information Science in Saarbruecken (http://www.ifomis.uni-saarland.de/bfo).
Significant parts of BFO are implemented in Isabelle a computational system for implementing logical
formalisms (Paulson 1994, Nipkow et al. 2002). Isabelle is public domain software and can be downloaded
for a wide range of operating systems from the Isabelle website (Paulson and Nipkow 2005). A hierarchical
representation of the resulting BFO sub-theory structure is shown in Figure 4.

The computational representation of TNEMO-S-U, including all definitions and axioms and the proofs
of all theorems discussed above, can be accessed at (Bittner 2007a). In the reminder of this section we
briefly discuss this computational representation.

http://www.ifomis.uni-saarland.de/bfo
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Figure 4. The hierarchical sub-theory structure of BFO. (An arrow from T1 to T2 means that every axiom of T1 is also an axiom of T2.)

7.1 Formal specification of TNEMO-S-U

Figure 5 depicts a portion of the computational representation of the BFO sub-theory TNEMO that – as
stated on line one – extends the Isabelle theory FOL (an Isabelle implementation of a sorted first-order
predicate logic with identity). On the following lines the two different sorts (also called types) that are
used in TNEMO are introduced: endurant individuals (Ob) and time instants (Ti). Both are derived from
the Isabelle type ”term”.

In the section consts of the code fragment in Figure 5 the predicate symbols and their signatures are
introduced. The expression

O :: "Ob => Ob => Ti => o"

tells us that ’O’ (for overlap) is a ternary (three-place) predicate symbol in which the first and second
parameter are of sort Ob (endurant individuals) and the third parameter is of sort Ti (time-instants). The
fourth parameter o is the computational representation of the fact that O(x,y,t) is a ternary predicate
that is either true or false.

The axioms P exists1, P exists2, P trans, and P suppl of the section axioms of Figure 5 are, respec-
tively, the axioms AM1-AM4 of TNEMO as discussed in Section 3. Thus

P exists1: "(ALL x. (EX t. E(x,t)))"

is interpreted as: ”the axiom labeled P exists1 states that for all endurants x there is a time t such that
x exists at t”. Notice that the type information is inferred by the system automatically.

In the section defs of Figure 5 some definitions of TNEMO are represented. The definition E def is the
definition for the ‘exists’ predicate and corresponds to definition DE of TNEMO in Section 3. Thus

E def: "E(x,t) == P(x,x,t)"

is interpreted as: ”the definition labeled E def states that endurant x exists at time t if and only if x is
part of itself at t”.

An important feature of Isabelle as a generic system for implementing logical formalisms is that it allows
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theory TNEMO = FOL:

typedecl Ob
typedecl Ti

arities Ob :: "term"
Ti :: "term"

consts
O :: "Ob => Ob => Ti => o"
P :: "Ob => Ob => Ti => o"
PP :: "Ob => Ob => Ti => o"
D :: "Ob => Ob => Ti => o"
E :: "Ob => Ti => o"
Me :: "Ob => Ob => Ti => o"

axioms
P_exists1: "(ALL x. (EX t. E(x,t)))"
P_exists2: "(ALL x y t. (P(x,y,t) -->(E(x,t) & E(y,t))))"
P_trans: "(ALL x y z t. (P(x,y,t) & P(y,z,t) --> P(x,z,t)))"
P_ssuppl: "(ALL x y t. ((E(x,t) & ~P(x,y,t)) --> (EX z. (P(z,x,t) & ~O(z,y,t)))))"

defs
E_def: "E(x,t) == P(x,x,t)"
O_def: "O(x,y,t) == (EX z. (P(z,x,t) & P(z,y,t)))"
PP_def: "PP(x,y,t) == P(x,y,t) & ~P(y,x,t)"
D_def: "D(x,y,t) == ~O(x,y,t)"
Me_def: "Me(x,y,t) == (P(x,y,t) & P(y,x,t))"

theorem Me_refl: "E(x,t) ==> Me(x,x,t)"
apply(unfold Me_def)
apply(unfold E_def)
apply(auto)
done

Figure 5. Declarations, axioms, definitions, and a theorem of the non-extensional mereology TNEMO of (Bittner 2007a).

us to prove theorems semi-automatically. In fact many theorems of BFO can be proved with very little
human assistance. Consider the theorem labeled Me refl in Figure 5, which corresponds to Theorem TM 8
in Section 3. A proof in Isabelle is a sequence of applications of logical rules using the apply command.
Every proof ends with the keyword done. (Nipkow et al. 2002) is a tutorial on how to prove theorems in
Isabelle which requires only limited background in formal logic and can be downloaded from the Isabelle
website. The recipe for the proof of theorem Me refl, for example, is read as follows: (1) replace Me(x,x,t)
by the right hand side of definition Me def; (2) replace E(x,t) by the right hand side of definition E def;
and (3) search for a proof automatically. Theorems can also be proved explicitly by stepwise application
of logical derivation rules, as demonstrated in the proof of theorem O imp O imp P (Theorem TM 10 in
Section 3) in the module TNEMO of (Bittner 2007a). The important point is that if Isabelle ‘compiles’ a
theory file, then this means that all the proofs are machine-verified.

7.2 How to use the implemented theory?

The Isabelle-based computational representation of BFO can be used in at least three ways, which we
discuss in successive order below.

(i) As a reference ontology to integrate domain-specific ontologies and terminologies;
(ii) As the basis of a more detailed theory that includes additional theorems making further consequences

of the current axioms explicit and also verifies additional reasoning rules;
(iii) As a basis of an extended theory that has more primitives and hence more axioms. The resulting theory
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may be a more comprehensive top-level ontology or it may be a more specific domain ontology.

7.2.1 TNEMO-S-U as a reference ontology. In Example 1 (Section 2.1) we demonstrated informally
how a top-level ontology can serve as a reference ontology to integrate two data sets: one structured using
the ATKIS terminology, the other using the CORINE terminology. We now can use the implemented
theory to demonstrate how to link the two terminologies and the corresponding data sets formally and to
verify the informal reasoning provided in Example 1 (labeled (1) on page 5).

Figure 6 shows the theory module BFO Example1 which formalizes the linking of certain ATKIS and
CORINE terms and data items in the corresponding data sets. This theory extends BFO and thus can use
all of BFO’s axioms, definitions, and theorems. One can see that we use the theorems IsA trans rule,
Inst IsA rule, and DUn and O impl Id (corresponding to theorems TC3, TC20, and axiom AI 1 of
TNEMO-S-U). Sentences A, B, and C as well as the assumptions (a0–a4, a6) of Example 1 are represented
as additional axioms. The theorems align ATKIS to BFO, align CORINE to BFO formally link ATKIS and
CORINE terms to top-level relations in BFO. The theorem Stadtwald ATKIS = Stadtwald CORINE for-
mally proves that both data items, Stadtwald ATKIS and Stadtwald CORINE, refer to the same entity,
classified as forest, as described in Example 1.

7.2.2 Refining TNEMO-S-U. In principle the theory TNEMO-S-U (and thus BFO) has an infinite
number of theorems. In this paper we discussed only certain representative theorems that are important
for practical purposes such as transitivity reasoning and reasoning based on relation composition. Other
theorems may be derived using the resources of TNEMO-S-U and its Isabelle representation. For example,
the BFO module PartonomicInclusion contains theorems that formalize reasoning about hierarchical
spatial subdivisions at different levels of granularity (e.g., postal districts, counties, federal states, federa-
tions, etc.).

7.2.3 Building a more comprehensive top-level ontology. This paper focussed on the mereology of
independent endurants and thus it needs extending to yield an account of a top-level ontology: it lacks
top-level relations such as located-in, connected-to, close-to, adjacent-to and top-level categories such as
perdurant (process), quality, etc. (Smith and Grenon 2004, Grenon and Smith 2004). In (Bittner and
Donnelly 2007a) we present our formal theory of qualitative size and distance relations. In (Bittner and
Donnelly 2007b) we discuss how to incorporate the relations located-in, connected-to, and adjacent-to into
BFO. The corresponding computational representations can be found at (Bittner 2007a) as indicated in
Figure 4. It is also obvious that the general framework presented here can be extended by incorporating
computational representations of the ontological theories of perdurants and qualities as presented for
example in (Simons 1987, Sider 2001, Grenon and Smith 2004, Bittner et al. 2004a, Galton and Worboys
2005). An OWL-based implementation of some of those aspects can be found at http://www.ifomis.
uni-saarland.de/bfo.

7.2.4 Building specific domain ontologies. Consider the code in Figure 6. We introduced the primitives
mixed-forest and forest without any definitions or axioms. Those definitions and axioms could be added
to the theory file using the vocabulary of BFO. But they would not be parts of the top-level ontology since
they belong to the specific domain of geography.

The methodology of building domain ontologies by extending the underlying top-level ontology auto-
matically ensures that the shared top-level terms and relations appearing in domain ontologies are used
in a consistent, compatible, and provably correct way. The entire framework can in this way be used to
integrate data from distinct though related domains, for example from geology, environmental planing, oil
chemistry, and the soil sciences. How to use the presented framework to build domain ontologies is demon-
strated in more detail in the context of ecoregion classifications in (Bittner 2007b). Further examples of
such use in a variety of biomedical domains are outlined in (Smith et al. 2007).

http://www.ifomis.uni-saarland.de/bfo
http://www.ifomis.uni-saarland.de/bfo
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theory BFO_Example1 = BFO:

consts
T2000 :: "Ti"
forest :: "Un"
mixed_forest :: "Un"
Stadtwald_ATKIS :: "Ob"
forest_ATKIS :: "Un"
isA_ATKIS :: "Ob => Un => Ti => o"
Stadtwald_CORINE :: "Ob"
is_classified_as_CORINE :: "Ob => Un => Ti => o"
mixed_forest_CORINE :: "Un"
is_subsumed_by_CORINE :: "Un => Un => o"

axioms
SentenceA : "E(Stadtwald_ATKIS,T2000) & isA_ATKIS(Stadtwald_ATKIS,forest_ATKIS,T2000)"
SentenceB : "E(Stadtwald_CORINE,T2000) &

is_classified_as_CORINE(Stadtwald_CORINE,mixed_forest_CORINE,T2000)"
SentenceC : "is_subsumed_by_CORINE(mixed_forest,forest)"

overlap_Stadtwald_ATKIS_CORINE : "O(Stadtwald_ATKIS,Stadtwald_CORINE,T2000)" (* (a0) *)
discrete_Universal_forest : "DUn(forest)" (* (a6) *)

align_is_classified_as_CORINE_to_BFO :
"is_classified_as_CORINE(x,c,t) ==> Inst(x,c,t)" (* (a3) *)

align_isA_ATKIS_to_BFO : "isA_ATKIS(x,c,t) ==> Inst(x,c,t)" (* (a3) *)
align_is_subsumed_by_CORINE_to_BFO : "is_subsumed_by_CORINE(c,d) ==> IsA(c,d)" (* (a4) *)
align_forest_ATKIS : "IsA(forest_ATKIS,forest)" (* (a1) *)
align_mixed_forest_CORINE: "IsA(mixed_forest_CORINE,mixed_forest)" (* (a2) *)

theorem align_ATKIS_to_BFO: "Inst(Stadtwald_ATKIS,forest,T2000)"
apply(insert SentenceA)
apply(insert align_forest_ATKIS)
apply(erule conjE)
apply(drule align_isA_ATKIS_to_BFO)
apply(drule_tac c="forest_ATKIS" and d="forest" in Inst_IsA_rule)
apply(auto)
done

theorem align_CORINE_to_BFO: "Inst(Stadtwald_CORINE,forest,T2000)"
apply(insert SentenceB, insert SentenceC)
apply(insert align_mixed_forest_CORINE)
apply(drule align_is_subsumed_by_CORINE_to_BFO)
apply(auto)
apply(drule align_is_classified_as_CORINE_to_BFO)
apply(drule IsA_trans_rule [of "mixed_forest_CORINE" "mixed_forest" "forest"])
apply(assumption)
apply(drule Inst_IsA_rule [of "mixed_forest_CORINE" "forest"]) (* (a5) *)
apply(auto)
done

theorem "Stadtwald_ATKIS = Stadtwald_CORINE"
apply(insert align_ATKIS_to_BFO)
apply(insert align_CORINE_to_BFO)
apply(insert overlap_Stadtwald_ATKIS_CORINE)
apply(insert discrete_Universal_forest)
apply(insert DUn_and_O_impl_Id [where x="Stadtwald_ATKIS" and

y="Stadtwald_CORINE" and c="forest" and t="T2000"])
apply(auto)
done
end

Figure 6. The reasoning example (1) on page 5 as a formalized Isabelle theory. The labels (a0) – (a6) correspond to the respective
labels on page 5.



A Spatio-Temporal Ontology for Geographic Information Integration 25

7.3 Automated reasoning and rapid prototyping

Isabelle is a development tool optimized towards expressively and not towards efficient reasoning. (Isabelle’s
expressive power goes well beyond the expressive power of First-Order Logic.) Once one has developed
a highly expressive theory, less expressive logics with better computational properties can be used to
implement certain portions of the full theory for specific purposes. See (Bittner and Donnelly 2007c) for
an extended discussion of how to use logics of different expressive power to deal with the trade off between
expressive power and computational complexity. An OWL-based implementation of BFO can be found at
http://www.ifomis.uni-saarland.de/bfo.

Although we use first-order predicate logic as object language for our top-level ontology, we use Isabelle
for its computational realization. Isabelle is based on the functional language ML and has many features
of other functional languages including HASKELL-style axiomatic type classes (Thompson 1999). There
is a ten year history in which software tools such as HASKELL have been used successfully for the
representation of geospatial ontologies and as tools for rapid prototyping of GIS data structures using
algebraic specifications (Frank and Kuhn 1999, Frank 2001, Winter and Nittel 2003). In our use of Isabelle
we go one step further along this road. The choice of the Isabelle tool will allow us to combine the merits of
full first-order predicate logic as the language to express our top-level ontology, with the merits of strongly
typed functional languages as tools for algebraic specifications.

Appendix: Related work

In this paper we presented a logic-based top-level ontology, which can be used as a tool to specify the
semantics of top-level terms used in geographic domain ontologies. We also described the computational
representation of the presented ontology. Our work draws on but goes beyond partial solutions in works
such as (Simons 1987, Casati and Varzi 1999, Varzi 2003, 1996, Neuhaus et al. 2004, Bittner et al. 2004b,
Grenon and Smith 2004, Bittner et al. 2004a, Guarino and Welty 2000b). Our work is complementary
to work on semantic similarity measures such as (Fonseca et al. 2000, 2002b,a, Rodŕıguez and Egenhofer
2003, 2004).

Our focus on independent endurants and the relations between them allowed us: (a) to consider in
greater detail the temporal behavior of the different categories of independent endurants; (b) to focus
on geographically important notions such as partitions, mereological equivalence, and discreteness; (c) to
focus on the introduction of mereological relations between universals which, as pointed out in Example
2 (Sec. 2.2), are important for geographic data standards. Our work benefits from a long tradition in
philosophy which deals with questions of identity and change over time and the semantics of relations such
as part-of, subclass-of, and instance-of (Simons 1987, Casati and Varzi 1999, Thomson 1983), and from
recent work in knowledge representation, for example, by Guarino et al. (Guarino and Welty 2000b,a).
This paper contributes to this literature by developing and implementing an axiomatic theory of time-
dependent spatial relations in a logically rigorous manner in the context of reasoning about geographic
information.

Since we focus only on independent endurants our ontology is incomplete. However we have outlined in
Section 7 how the presented theory can be extended using, for example, the work described in (Hornsby
and Egenhofer 2000) on the explicit description of change with respect to states of individual objects,
and in (Grenon and Smith 2004), which proposes a spatio-temporal ontology incorporating interrelations
between enduring entities and the processes in which they participate.

Our logic-based top-level ontology is a formalized logical theory consisting of axioms, definitions, and
theorems which are expressed in the first-order predicate logic (FOL). In this it goes beyond those termi-
nology systems specified using non-logical ontologies. Examples are ontologies stated in natural language
as in the STDS and in the various ISO standards. Bittner et al. (2005) shows how the latter fail to provide
the required rigor of the specification of the semantics of top-level terms of the sort discussed in this paper.

Alternative FOL-based top-level ontologies include the DOLCE (Gangemi et al. 2003, Masolo et al.
2004) and the SUMO top-level ontologies (Niles and Pease 2001). DOLCE is similar in spirit to BFO and
thus to TNEMO-S-U. DOLCE, too, rests on a non-extensional temporal mereology. SUMO, on the other

http://www.ifomis.uni-saarland.de/bfo
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hand, includes an atemporal extensional mereology, including time only indirectly through a HOLDS-AT
predicate. This means that it cannot deal with more complex notions such as mereological equivalence. Both
DOLCE and SUMO are much broader in scope when compared to our theory, but also much less detailed
in their analysis of those mereological notions. TNEMO-S-U can also be easily extended to comprehend a
variety of spatial relations which are relevant for geographic ontologies, as demonstrated in (Bittner and
Donnelly 2007a,b).

For all the mereological similarities between DOLCE and TNEMO-S-U, both theories are clearly distinct.
Neither DOLCE nor SUMO explicitly includes mereological relations between universals such as universal
parthood. Moreover, DOLCE lacks the existence predicate and the corresponding axioms. It is the existence
predicate, however, that allows us to formalize the important distinction between temporary and permanent
spatial relations. For example, most trees are temporary parts of the forests they constitute, since forests
usually outlive their individual trees. On the other hand the boundary of a forest is a permanent part of
that forest, since both forest and its boundary must exist at the same times. These issues are discussed in
detail in (Bittner and Goldberg 2007) and (Bittner and Donnelly 2007b).
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