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Abstract. This paper provides an axiomatic formalization of a theory of foundational
relations between three categories of entities: individuals, universals, and collections.
We deal with a variety of relations between entities in these categories, including the
is-a relation among universals and the part-of relation among individuals as well as
cross-category relations such as instance-of, member-of, and partition-of. We show
that an adequate understanding of the formal properties of such relations – in partic-
ular their behavior with respect to time – is critical for formal ontology. We provide
examples to support this thesis from the domain of biomedicine.

1 Introduction

Biomedical ontologies such as the Gene Ontology [13] must be correlated with terminology
systems developed for clinical medicine such as GALEN [9], the Foundational Model of
Anatomy (FMA) [10], and other terminologies collected in the Unified Medical Language
System (UMLS) [2].

A critical requirement for such correlations is the alignment of the fundamental ontolog-
ical relations these different systems use [7]. These include above all the relations of: (1)
subsumption or taxonomic inclusion (human being is-a mammal), (2) instantiation (I am an
instance of human being), (3) the individual part-of relation (my heart is part of me), (4)
the membership relation (this tooth is a member of the collection of teeth in my dental ar-
cade), (5) partonomic inclusion between universals (every instance of the universal human
nervous system is an individual part of some instance of the universal human being), (6) the
partition-of (or subdivision-of) relation (the collection of my cells forms a partition of me).

While these relations are ubiquitous in bioinformatics ontologies and terminologies, they
are unfortunately not always clearly distinguished. Moreover, as is pointed out in [11], the
relations of class subsumption and partonomic inclusion are often treated in ways which are
inconsistent or otherwise problematic. Several authors have discussed part-of and is-a rela-
tions in the context of biomedical ontologies, e.g., [5, 9, 4]. However, a unifying framework
incorporating all the relations mentioned above has not yet been supplied. In this paper, we
provide an axiomatic theory that is designed to fill this gap.

2 Methodology and basic categories

We here focus on independent endurants, entities such as molecules, cells, and organisms,
which survive self-identically through time while undergoing changes of various sorts. De-
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pendent endurants (qualities, functions, powers, attributes) and perdurants (events, actions,
processes) are treated for example in [6].

We first distinguish three disjoint sorts of entities which are assumed in our treatment of
endurants: (i) individual endurants (you, me, your heart, my left hand); (ii) endurant univer-
sals (human being, heart, oxygen); and (iii) collections of individual endurants (the collection
of grocery items in my shopping bag, the collection of cells in your body, the collection of all
human beings existing at a given time).

Note that individuals, universals, and collections have different temporal properties. Indi-
viduals can gain and lose parts. (For example, organisms gain and lose cells.) Universals gain
and lose instances. (For example, the universal human being gains or loses instances every
time a person is born or dies.) Collections, on the other hand, are identified through their
members and thus cannot have different members at different times.

While individuals are tied to universals through the instantiation relation, certain collec-
tions are tied to universals through the extension-of relation. The extension of a universal at a
given time is the collection of individuals which instantiate the universal at that time. Not ev-
ery universal has an extension at every time – think of extinct species. Not every collection is
the extension of a universal: think of the collection of the cells in your body or the collection
of human beings in Saarbruecken.

Besides the extensions of universals, other important collections are those that consist of
disjoint parts of an individual y which jointly sum up to y. We call such collections partitions
of y. Partitions are critical for the representation of anatomical knowledge [7]. An example
is a partition of a human body into its constituent cells. Many partitions consist of fiat parts
[12] like the head, neck, torso, and limbs of a human body or the right and left hemispheres
of a brain.

Given the three categories – individuals, universals, and collections – we can distinguish
the following relations according to the kinds of entities they relate:

first term second term relation symbol
Individual Individual individual-part-of ≤
Individual Universal instance-of Inst
Individual Collection member-of ∈
Universal Universal taxonomic inclusion (is-a) v
Universal Universal partonomic inclusion of universals C
Collection Universal extension-of Ext
Collection Collection partonomic inclusion of collections �
Collection Individual partition-of Pt

In the remainder of this paper, we give an axiomatic characterization of these relations and of
the interrelationships between them.

3 Universals and individuals

We present the theory in a sorted first-order predicate logic with identity. All quantification is
restricted to a single sort. Restrictions on quantification will be understood by conventions on
variable usage. We use the letters t, t1, t2 as variables ranging over instants of time; w, x, y, z
as variables ranging over individuals; c, d, e, g as variables ranging over universals; and p, q,
r as variables ranging over collections. Leading universal quantifiers are omitted. Labels for
axioms begin with ‘A’, labels for theorems begin with ‘T’, and labels for definitions begin
with ‘D’.



3.1 Temporal mereology of individuals

We here develop a temporal version of mereology based on the ternary primitive ≤, where
x ≤t y is interpreted as: individual x is part of individual y at time-instant t. For example this
blood cell was part of my body yesterday, but it is not a part of my body now. We will refer to
≤ as the individual parthood relation in order to distinguish it from the partonomic relations
that we will introduce later for collections and universals. We define the relations of proper
parthood and overlap among individuals in the usual way:

D< x <t y ≡ x ≤t y ∧ ¬(x = y) DOt Ot xy ≡ (∃z)(z ≤t x ∧ z ≤t y)

We use ≤ to distinguish the time-instants at which individuals exist. We will say that x exists
at time t (symbolically E xt) if and only if x is a part of itself at t. We then add an axiom
ensuring that for every individual there is some time at which it exists.

DE E xt ≡ x ≤t x AM1 (∃t)E xt

We add the following axioms. At each time instant, the individual parthood relation is anti-
symmetric and transitive (AM2–3). If x is a part of y at t then both x and y exist at t (AM4).
We can then prove that x is a part of itself whenever x is either itself a part or has a part
(TM1).

AM2 x ≤t y ∧ y ≤t x → x = y
AM3 x ≤t y ∧ y ≤t z → x ≤t z

AM4 x ≤t y → E xt ∧ E yt
TM1 (∃y)(x ≤t y ∨ y ≤t x) → x ≤t x

Finally we require that if everything that overlaps x at t also overlaps y at t then x is a
part of y at t (AM5).

AM5 (z)(Ot zx → Ot zy) → x ≤t y,

Using AM5, we can prove that two individuals x and y are identical if and only if they overlap
the same individuals at any instant t:

TM2 x = y ↔ (z)(Ot zx ↔ Ot zy)

We can also derive the so-called weak supplementation principle (WSP). This tells us that if
x is a proper part of y at t then there exists an individual z such that z is a proper part of y at
t and x and z do not overlap at t:

TM3 x <t y → (∃z)(z <t y ∧ ¬Ot zx)

Consequently there cannot be an individual with a single proper part.
We now define the sum of φ-ers at t, i.e., the sum of all individuals satisfying the formula

φ at t, as the individual z such that w overlaps z at t if and only if there exists a φ-er x which
overlaps w at t. We write zσtφ in order to signify that z is the sum of all φ-ers at t.

(Dσt) zσtφ ≡ (w)(Ot wz ↔ (∃x)(φ x ∧ Ot xw))

Using AM2 and AM4 we can prove that sums are unique (TM4).

TM4 (z1σtφ ∧ z2σtφ → z1 = z2)



We call the theory formed by AM1–5 temporal extensional mereology TEM.
As pointed out for example in [1], the individual parthood relations employed in biomed-

ical ontologies often satisfy not only axioms the AM1–5 of TEM but also the no-partial-
overlap principle (NPO):

NPO Ot xy → x ≤t y ∨ y <t x

NPO tells us that if two individuals overlap, then one is a part of the other. But NPO is too
strong for many purposes. We normally assume that individuals such as the front half and the
right half of my desk or my pelvis and my vertebral column can properly overlap. Though we
are interested in the consequences of NPO, we want to keep our theory as general as possible
and therefore we do not add NPO as an axiom to our theory. Rather, we will explicitly mark
those consequences that follow from adding NPO to TEM. A model of TEM that does satisfy
NPO has the structure of a tree.

3.2 The is-a relation

Recall that the variables c, d, e, g range over universals (human being, cell, organ, and so
forth), which are here assumed to form hierarchies ordered by the is-asub-universal relation.
This relation holds between two universals when the first is subsumed by the second. For
example, the universal human being is a sub-universal of (is subsumed by) the universal
mammal. We use the symbol ‘v’ for this relation. Like the identity relation and unlike the
individual part-of relation, ≤, the sub-universal relation, v, is atemporal.

We define the relations proper sub-universal (@) and taxonomic overlap (Ov) (sharing
a common sub-universal) in terms of v. Consider, for example, the universals protein and
hormone. Neither is a sub-universal of the other, but both have insulin as a (proper) sub-
universal and therefore stand in the taxonomic overlap relation. We also introduce a predicate
for the root universal (Root), a universal which subsumes all universals (Droot).

D@ c @ d ≡ c v d ∧ ¬(c = d)
DOv Ov cd ≡ (∃e)(e v c ∧ e v d)

Droot Root c ≡ (g)(g v c)

The is-a relation v is governed by the axioms (AU1–4), which are the atemporal analogues
of the axioms AM2–5 of TEM and also by AU5, which postulates the existence of a root-
universal. In the most general case, this will be the universal substance (or independent en-
durant). Theorem TU1 tells us that the root universal is unique.

AU1 c v c
AU2 (c v d ∧ d v c) → c = d
AU3 (c v d ∧ d v e) → c v e

AU4 (e)(Ov ec → Ov ed) → c v d
AU5 (∃c)Root c
TU1 Root c ∧ Root d → c = d

We call the theory formed by the axioms AU1–5 extensional universal mereology, EUM.
As is seen in the the protein–hormone example above, universals can properly overlap

(i.e., stand in the taxonomic overlap relation without either being a sub-universal of the other).
However, as has been pointed out by authors such as [4] and [8] it is often desirable to isolate
sub-ontologies which are limited to universals that form tree structures with respect to the
subsumption relation. For example, [8] proposes to have two separate sub-ontologies: one of
body-substance universals (such as protein) distinguished according to structure and a second
of body-substance universals (such as hormone) distinguished according to function. Taken



separately, each sub-ontology has a tree structure. The phenomenon of multiple inheritance
arises only when they are combined.

These isolated tree-structured sub-ontologies satisfy in addition to AU1–5 the following
no-partial-overlap principle:

NPOU Ov cd → (c v d ∨ d @ c)

Notice, again, that we do not add NPOU as an axiom to our theory. It can be regarded rather
merely as a design principle ensuring that certain sub-ontologies are easy for human beings
to maintain. We will later discuss some consequences of adding NPOU to EUM which reveal
certain other benefits of tree-structured sub-ontologies for universals.

3.3 Instantiation

The relation of instantiation is time-dependent and it holds between individuals and universals
(in that order). We write Inst xct to signify that the individual x instantiates the universal c
at time-instant t. Since universals and individuals are disjoint sorts, instantiation is irreflexive
and asymmetric.

Axioms (AI1–2) establish the relationship between instantiation and the is-a relation.
AI1 tells us that if c is a sub-universal of d then the instances of c at any given time are also
instances of d at that time. AI2 says that if two universals share an instance x at some time t
then the universals taxonomically overlap. AI3 tells us that if x is an instance of a universal
at t then x exists at t.

AI1 c v d → (Inst xct → Inst xdt)
AI2 (Inst xct ∧ Inst xdt) → Ov cd

AI3 Inst xct → E xt

We then add axioms stating that every universal is instantiated at some time (AI4); and that
at every time at which an individual exists it is an instance of some universal (AI5):

AI4 (∃t)(∃x)(Inst xct) AI5 E xt → (∃c)Inst xct

Finally we add an axiom stating that if two universals have the same instances at every time
then they are identical (AI6):

AI6 (t)(x)(Inst xct ↔ Inst xdt) → c = d

In the presence of NPOU , i.e., in sub-ontologies in which universals form a tree, we can
prove that if two universals share an instance x at some time t then one is a sub-universal of
the other:

TI1 NPOU ` (Inst xct ∧ Inst xdt) → (c v d ∨ d @ c)

Thus, there cannot be universals like upper human limb and left human limb in such a tree
structure, since neither universal is a sub-universal of the other, though both have my left arm
as an instance. We can however have the universals upper human limb, left upper human limb,
and right upper human limb in a tree-structured sub-ontology (and these are in fact included
in the FMA).

Notice that AI2 is consistent with the existence of individuals that instantiate disjoint
universals at different times, as in the case of child and adult, or larva and butterfly. Standard
biomedical ontologies, including the Gene Ontology (GO), because they have no facility for



reasoning about time, fail to do justice to the existence of universals connected to each other
by the fact that the instances of one develop from instances of the other.

In our framework, we can very easily define an EvolvesFrom relation among universals.
Given a linear ordering � on time instants (where t1 � t2 means: t1 is earlier than t2) we
can define:

DEvolvesFrom EvolvesFrom dc ≡ (t1)(x)(Inst xdt1 → (∃t2)(t2 � t1 ∧ Inst xct2))

This tells us that universal d evolves from universal c if and only if every instance of d was
at some earlier time an instance of c. For example, Adult evolves from child and Butterfly
evolves from larva.

We can also define the more general relation GenFrom between universals where GenFrom dc
holds if and only if whenever x is an instance of d, x either currently is or was earlier a part
of some instance of c:

DGenFrom GenFrom dc ≡ (t1)(x)(Inst xdt1 →
(∃t2)(∃y)((t2 � t1 ∨ t2 = t1) ∧ Inst yct2 ∧ x ≤t2 y))

For example, apple is generated from apple tree, ovum is generated from female organism,
sperm is generated from male organism, and human skull is generated from human being.

4 Collections

We are interested not only in individuals and universals but also in collections of individuals,
for instance in collections of infected cells or in collections of infected persons. In particular,
we need to consider two special sorts of collections: those that form partitions of individuals
and those that are the extensions of universals at given times.

We use ∈ to stand for the member-of relation between individuals and collections, and p,
q, r for variables ranging over collections. Sometimes it is useful to refer to a finite collection
p by listing its members, x1, . . . , xn, thus: {x1, . . . , xn}. Since collections and individuals are
disjoint sorts, ∈ is irreflexive and asymmetric.

Two collections are identical if and only if they have the same members (AC1). This
makes explicit the extensional character of collections. We also require that all collections
are non-empty (AC2):

AC1 p = q ↔ (x)(x ∈ p ↔ x ∈ q) AC2 (∃x)(x ∈ p)

We do, however, allow singleton collections which have only one member. For example, we
assume that there can be a collection p whose only member is the individual Fred. Notice
that, in this case, p is not identical to Fred – Fred, unlike p, is a human being with parts like
a head, arms, fingers, cells, etc. that can change over time. We say that the collection p is a
sub-collection of the collection q, p ⊆ q, if and only if every member of p is also a member
of q:

D⊆ p ⊆ q ≡ (x)(x ∈ p → x ∈ q)

We can then prove that ⊆ is reflexive, antisymmetric, and transitive. Thus, ⊆ is a partial
ordering.

We finally add an axiom schema which states that if some member of p satisfies the
formula φ, then there is a sub-collection q of p whose members are those members of p that
satisfy φ (AC3):

AC3 (∃x)(x ∈ p ∧ φ x) → (∃q)(x)(x ∈ q ↔ (x ∈ p ∧ φ x))



We define relations that allow us to distinguish between the times when all, some, or none
of the members of a collection exist. We say that a collection p is fully present at t iff all its
members exist at t (DFP). p is partly present at t iff some of its members exist at t (DPtP).
Finally, p is non-present at t iff none of its members exist at t (DNP).

DFP FP pt ≡ (x)(x ∈ p → E xt)
DPtP PtP pt ≡ (∃x)(x ∈ p ∧ E xt)

DNP NP pt ≡ ¬PtP pt

Consider the collection p of cells which are in my body at this instant. p as an atemporal
entity cannot cease to exist, but by the time you read this sentence, many of the cells that
form p will no longer exist. Thus, p is now fully present but will be only partly present next
week. In 500 years, p will be non-present.

Notice that, since every collection has at least one member (AC2), full presence is a
special case of partial presence. In other words, if p is fully present at t, then p is also partly
present at t.

4.1 Partitions

The individuals in a given collection may overlap. (Consider for example a collection which
includes my body and my heart.) Some collections, however, are formed by individuals which
are at a given time pair-wise disjoint. For example, all individuals in the collection of cells
currently in my body are currently disjoint. All individuals in the current extension of the
universal planet are currently disjoint. We call a collection p discrete at time t if and only if
p is partly present at t and its members do not overlap at t:

DD D pt ≡ PtP pt ∧ (x)(y)(x ∈ p ∧ y ∈ p ∧ Ot xy → x = y)

Notice, that the same collection can be fully present and non-discrete today but fully present
and discrete tomorrow. Think, for example, of Siamese twins before and after separation.
A collection can also be non-discrete today and discrete tomorrow if members that overlap
today cease to exist tomorrow.

A collection p partitions the individual y at time t (PT pyt) if and only if (i) p is fully
present at t, (ii) the members of p jointly sum up to y at t, and (iii) p is discrete at t:

DPT PT pyt ≡ FP pt ∧ yσt[x ∈ p] ∧ D pt

We can prove that if p partitions y at t and x is a member of p then x is a part of y at t (TPT1).
We can also prove that all fully present singleton collections partition their only member
(TPT2).

TPT1 PT pyt ∧ x ∈ p → x ≤t y TPT2 FP {x}t → PT {x}xt

Examples of partitions are anatomic subdivisions such as: the subdivision of my body into
my head, my neck, my trunk, and my limbs; the subdivision of my brain into its right and left
hemispheres.

A single individual can be partitioned by multiple partitions. The following example
(which we refer to later as (Ex1)) presents the collections p1, . . . , p4, which partition the
individual Fred in different ways at some given time:

p1 = {Fred}
p2 = {Fred’s head, Fred’s neck, Fred’s torso, (the mereolog. sum of) Fred’s limbs}
p3 = {Fred’s head, Fred’s neck, Fred’s torso, Fred’s left leg, Fred’s right leg,

Fred’s left arm, Fred’s right arm}
p4 = {Fred’s head, Fred’s neck, Fred’s torso, Fred’s left leg, Fred’s right leg,

Fred’s left upper arm, Fred’s left lower arm, Fred’s left hand, Fred’s right arm}

(Ex1)



4.2 Collections as Extensions of Universals

We now define the extension relation between universals and collections. The collection p is
the extension of the universal c at time t, Ext pct, if and only if the members of p are those
individuals that instantiate c at t:

DExt Ext pct ≡ (x)(x ∈ p ↔ Inst xct)

We can prove: a universal has at most one extension at a time (TE1); if a universal has an
extension at t, then it has an instance at t (TE2); and if p is the extension of a universal at
time t, then p is fully present at t (TE3).

TE1 Ext pct ∧ Ext qct → p = q
TE2 (∃p)Ext pct → (∃x)(Inst xct)

TE3 Ext pct → FP pt

We continue by adding an axiom stating that if the universal c has an instance at t then there
is some collection which is the extension of c at t:

AE1 (∃x)(Inst xct) → (∃p)(Ext pct)

From AI6 it follows that two universals are identical if and only if they have identical exten-
sions at every time:

TE4 c = d ↔ (t)(p)(Ext pct ↔ Ext pdt)

As we already noted, some collections are never the extensions of a universal. For example,
the collection formed by you and me is not the extension of any universal at any time (though
it is currently a proper sub-collection of the extension of the universal human being).

There is clearly a correspondence between the sub-universal structure of universals and
the sub-collection structure of their extensions. We can indeed prove that if c is a sub-universal
of d and c is instantiated at t, then the extension of c at t is a sub-collection of the extension
of d at t:

TE5 (∃x)(Inst xct) → (c v d → (∃p)(∃q)(Ext pct ∧ Ext qdt ∧ p ⊆ q))

Notice however that there may be points in time where distinct universals have identical
extensions. For example, if at some point in time all mammals except whales are extinct, then
the extensions of mammal and whale at that time are identical even though the corresponding
universals are distinct.

As was shown above, the sub-collection relation is a partial ordering. This leaves open the
possibility that there are collections that partially overlap in the sense that they share members
but neither is a sub-collection of the other. For those collections that are extensions of uni-
versals in tree-forming sub-ontologies (i.e., where the no-partial-overlap principle (NPOU )
holds), we can prove that if two such extensions share a member then one is a sub-collection
of the other:

TE6 NPOU ` [(∃x)(x ∈ p ∧ x ∈ q) ∧ (∃c)Ext pct ∧ (∃d)Ext qdt] → (p ⊆ q ∨ q ⊆ p)

We can also prove (even without NOPU ) that at every time t the extension of the root universal
has the extensions of all other universals as sub-collections:

TE7 (Root c ∧ Ext pct ∧ Ext qdt) → q ⊆ p



We now can see that the sub-collection relation, when restricted to extensions of tree-forming
universals, also generates a tree-structure. This is because, on the domain of extensions of
tree-forming universals, the sub-collection relation is at every time a partial ordering (i) for
which the no-partial-overlap principle holds (TE6) and (ii) which has a unique root collection
(TE7). Notice, however, that the two structures are not necessarily identical, since there may
be universals with no extensions at t or distinct universals which share the same extension at
t.

5 Partonomic inclusion

The domain of individuals is governed by temporal mereology, i.e., by the relation ≤. Parto-
nomic inclusion is a relation between collections which is determined by the ≤ relations
among the members of collections. The time-dependent character of the individual part-of
relations implies that partonomic inclusion is time-dependent too. As (Ex2) consider the re-
lation of partonomic inclusion between the collections p∗ and q∗:

p∗ = {my left hand, my left arm, my right foot}
q∗ = {my left arm, my right leg} (Ex2)

Assuming that all my limbs, hands, etc. are parts of my body at t, every member of p∗ is a
part of some member of q∗ at t and every member of q∗ has some member of p∗ as part at t.
We then say that the relation of partonomic inclusion holds between p∗ and q∗ at time t.

To see the time-dependent character of partonomic inclusion, imagine that I have an ac-
cident at time t1 and lose my right foot. At t1, my right foot is no longer part of my right leg.
Therefore, there is a member of p∗ (my right foot) which is not a part of any member of q∗

at t1. Consequently, the relation of partonomic inclusion does not hold between p∗ and q∗ at
time t1.

Formally, we say that the collection p is partonomically included in the collection q at t,
p �t q, if and only if (i) for every member x of p there is a member y of q such that x is part
of y at t, and (ii) for every member y of q there is a member x of p such that x is a part of y
at t (D�t):

D�t p �t q ≡ (x)(x ∈ p → (∃y)(y ∈ q ∧ x ≤t y)) ∧
(y)(y ∈ q → (∃x)(x ∈ p ∧ x ≤t y))

We can then prove that at a fixed time, � is transitive (TPI1). We can also prove that if p is
partonomically included in q at t then both p and q are fully present at t (TPI2) and that a
collection is partonomically included in itself at t if and only if it is fully present at t (TPI3).

TPI1 p �t q ∧ q �t r → p �t r
TPI2 p �t q → (FP pt ∧ FP qt) TPI3 p �t p ↔ FP pt

Partonomic inclusion is not antisymmetric – even on the sub-domain of collections that are
fully present at a given time – and therefore it is not a partial ordering relation. However, we
can prove that at a fixed time � is antisymmetric on the sub-domain of discrete collections:

TPI4 D pt ∧ D qt ∧ p �t q ∧ q �t p → p = q

5.1 Partonomic inclusion among partitions

We define the relation of strong partonomic inclusion 4, a stronger version of �, as follows.
Collections p and q stand in relation 4 at t if and only if (i) p and q are discrete at t, (ii) for
any member y of q there is a sub-collection r of p such that r partitions y at t, and (iii) for



any member x of p there is a sub-collection r of p with x ∈ r and an individual y ∈ q such
that r partitions y at t.

D4t p 4t q ≡ D pt ∧ D qt ∧ (y)(y ∈ q → (∃r)(r ⊆ p ∧ Pt ryt)) ∧
(x)(x ∈ p → (∃r)(∃y)(x ∈ r ∧ r ⊆ p ∧ y ∈ q ∧ Pt ryt))

Example (Ex1) gives four different partitions of Fred. It is easy to verify that, for any time t
at which these collections partition Fred, each collection is strongly partonomically included
in those above it: p4 4t p3 4t p2 4t p1. But in Example 2, p∗ 4t q∗ does not hold even for
times t at which both p∗ and q∗ are fully present. This is because: i) whenever my left hand
exists p∗ is not discrete, ii) there is no sub-collection of p∗ that ever partitions my right leg (a
member of q∗), and iii) no sub-collection of p∗ that includes my left hand (a member of p∗)
ever partitions any member of q∗.

We can prove that strong partonomic inclusion implies partonomic inclusion:

TPO4 p 4t q → p �t q

Example 2 shows that the implication in the other direction does not hold.
We can also derive the following theorems: If p is strongly partonomically included in q

at t, then both p and q are fully present at t (TPO5). p is strongly partonomically included in
itself at t if and only if p is discrete and fully present at t (TPO6). If p is strongly partonomi-
cally included in q at t and q is strongly partonomically included in r at t, then p is strongly
partonomically included in r at t (TPO7). If p is strongly partonomically included in q at t
and q is strongly partonomically included in p at t, then p and q are identical (TPO8). If p is
strongly partonomically included in q at t, then p partitions x at t if and only if q partitions x
at t (TPO9).

TPO5 p 4t q → (FP pt ∧ FP qt)
TPO6 p 4t p ↔ D pt ∧ FP pt
TPO7 p 4t q ∧ q 4t r → p 4t r

TPO8 p 4t q ∧ q 4t p → p = q
TPO9 p 4t q → (x)(PT pxt ↔ PT qxt)

5.2 Universal parthood

We now introduce a partonomic inclusion relation for universals in order to do justice to
the way partonomy relations are used, albeit under different names, in ontologies such as
the FMA, GALEN, and GO. For example assertions like: human head part-of human being,
nucleus part-of cell, tooth part-of dental arcade, aortic bitucahein part-of abdominal aorta,
etc., all claim that some sort of partonomic relation holds between universals.

We define a partonomic inclusion relation C between universals, as follows. The universal
c is partonomically included in the universal d if and only if c and d have extensions at the
same times and, at those times, the extension of c is partonomically included in the extension
of d:

DC c C d ≡ (t)[((∃p)Ext pct ↔ (∃q)Ext qdt) ∧ (p)(q)(Ext pct ∧ Ext qdt → p �t q)]

We can prove that C is reflexive and transitive. We can also prove the following equiva-
lence: c is partonomically included in d if and only if (i) any instance x of c at t is a part of
some instance of d at t and (ii) any instance y of d at t has some instance of c as a part at t
(TUP1).

TUP1 c C d ↔ (x)(t)(Inst xct → (∃y)(Inst ydt ∧ x ≤t y) ∧
(y)(t)(Inst ydt → (∃x)(Inst xct ∧ x ≤t y)



Thus, for example, the universal human nervous system is partonomically included in the
universal human being – at any given time, each human nervous system is part of some
human being and every human being has a human nervous system as one of its parts.

However, as defined above, C does not capture many examples of partonomy listed in the
FMA, Galen, GO, and other ontologies. A severed human head is an instance of human head
that is no longer part of a human being. Also, not every tooth is part of a dental arcade and
not every cell has a nucleus as one of its parts. Thus, the following do NOT hold:
human head C human being, tooth C dental arcade, nucleus C cell.

One strategy for extending our analysis to better fit these kinds of cases is to distinguish
different varieties of universal partonomy in terms of the relations already available in our
theory. Similar to [11] we could, for example, introduce the relations C1 and C2 as follows:
c C1 d means ‘at any given time, every instance of universal c is included in some instance of
universal d’ (DC1); and c C2 d means ‘at any given time, every instance of universal d has an
instance of universal c as a part’ (DC2).

DC1 c C1 d ≡ (x)(t)(Inst xct → (∃y)(Inst ydt ∧ x ≤t y)
DC2 c C2 d ≡ (y)(t)(Inst ydt → (∃x)(Inst xct ∧ x ≤t y)

Thus, human head C2 human being, but not human head C1 human being or human head C
human being.

It is easy to see that both C1 and C2 are reflexive and transitive and that the following
equivalence holds.

TUP2 c C d ↔ (c C1 d ∧ c C2 d)

A second strategy, which may be used either alone or in combination with the first strat-
egy, is to introduce a relation that distinguishes normal instances of a given universal. The
idea is that, in addition to Inst, we have also the primitive relation InstN where InstN xct
means: x is a normal instance of universal c at instant t.

The question of exactly how InstN should be axiomatized and interpreted is a difficult
one which goes beyond the scope of this paper. We will say only that we expect that the
interpretation of InstN will depend in part on the research context at hand. When we are
dealing with the anatomy and function of the human digestive system, only human beings
whose digestive track is in proper working order will count as normal instances of human
being. But whether or not these human beings are flat-footed, near-sighted, or missing a finger
is irrelevant in this context. In another context, different criteria may be used to distinguish
normal instances of human being.

Using InstN , we could define the following normalized version of our original universal
partonomy relation. (If desired, normalized versions of C1 and C2 could also be defined.)

DCN
c CN d ≡ (x)(t)(InstN xct → (∃y)(Inst ydt ∧ x ≤t y) ∧

(y)(t)(InstN ydt → (∃x)(Inst xct ∧ x ≤t y)

Thus, although human head C human being, tooth C dental arcade, and nucleus C cell do
not hold, given appropriate interpretations of InstN , the following should hold:
human head CN human being, tooth CN dental arcade, nucleus CN cell.

6 Conclusions

We distinguished three categories of entities: individuals, universals, and collections, and
provided an axiomatic theory that formalizes relations between the entities in these categories
in such a way as to make explicit their different temporal behavior. This work is designed as a



first step towards an ontological framework which can do justice to temporalized versions of
taxonomic and partonomic inclusion, relations widely used in current bio-medical ontologies.

Further work on this topic will include a suitable axiomatization for the normal-instantiation
relation InstN . Another important direction for further work is to define additional relations
among universals in terms of containment, connection, and other spatial relations among in-
dividuals [3]. In ontologies such as the FMA, we find not only assertions that partonomic
relations hold among certain universals, but also assertions such as stomach contained-in
abdominal cavity or stomach continuous-with esophagus. An analysis of such assertions re-
quires counterparts of C, C1, C2, or CN which are defined using individual containment or
connection relations.
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