Dynamic Semantics (5) Quantification Maria Bittner, Rutgers http://www.users.cloud9.net/~mbittner NASSLLI 2016 Rutgers, New Brunswick NJ ### Quantifiers in discourse #### Observation: In discourse, quantified noun phrases function both as **antecedents** and **anaphors**. - e.g. - (1) i. Al invited some X^{1} friends. - ii. \mathbf{Most}_{X1}^{X2} people came, and they \mathbf{all}_{X2} had a good time. - iii. One_{X1}^{X3} girl had a prior engagement. ### DPIL: Quantification as structured reference - □ Dynamic Plural Logic (DPIL, van den Berg 1993, 1994) - plural info-state (set of assignments) represents both drefs and relations - update relates plural info-states (i.e. input info-state to a set of outputs) - minimal info-state (no drefs) is the singleton of the dummy assignment, g_{\star} , which assigns the dummy individual, \star , to all variables (1) i. Al^{x1} invited **some**^{x2, x3} friends. $$(\varepsilon_{x1} \wedge x_1 = al) \wedge \mathbf{M}_{x2}(\varepsilon_{x2} \wedge \Delta_{x2}(F^2x_2x_1)) \wedge \mathbf{M}_{x3}(\varepsilon_{x3} \wedge \Delta_{x3}(x_3 = x_2 \wedge P^2x_1x_3)) \wedge \mathbf{2}^+x_3$$ $$x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad \dots$$ $$a \quad f_1 \quad f_1 \quad \bigstar \quad \bigstar$$ $$a \quad f_2 \quad f_2 \quad \bigstar \quad \bigstar$$ $$a \quad f_3 \quad f_3 \quad \bigstar \quad \bigstar$$ $$a \quad f_4 \quad f_4 \quad \bigstar \quad \bigstar$$ $$a \quad f_5 \quad \bigstar \quad \bigstar \quad \Leftrightarrow$$ $$and invited 4 of them $(f_1, \dots, f_4)$$$ ### DPIL: Quantified antecedents & anaphors (1) ii_a . **Most**_{x3}^{x4} people came and ... $$(\Delta_{x3}(P^{1}x_{3}) \wedge 2^{+}x_{3}) \wedge M_{x4}(\varepsilon_{x4} \wedge \Delta_{x4}(x_{4} = x_{3} \wedge C^{1}x_{4})) \wedge most(x_{3}, x_{4}) \wedge ...$$ $X_{1} \quad X_{2} \quad X_{3} \quad X_{4} \quad X_{5} \quad ...$ $A \quad f_{1} \quad f_{1} \quad f_{1} \quad \star$ $A \quad f_{2} \quad f_{2} \quad f_{2} \quad \star$ $A \quad f_{3} \quad f_{3} \quad f_{3} \quad \star$ $A \quad f_{4} \quad f_{4} \quad \star \quad \star$ $A \quad f_{5} \quad \star \quad \star \quad \star$ ii_b . they_{x4} all_{x4}^{x5} had a good time. ## $UC_{\delta II}$: Quantification as structured reference - \square UC₀ with ranked sets of individuals (UC_{δ ||}, Bittner 2014) - plural info-state (set of dref hierarchies) represents both drefs and relations - *local* anaphors refer to ranked *individuals* (e.g. $\top \delta$) or *ranked sets* (e.g. $\top \delta t$) *global* anaphors refer to ranked *global values* (e.g. $\top \delta | |)$ - update function an input plural info-state to the output info - minimal info-state (no drefs) is the singleton of the empty hierarchy (as in UC₀) # $\mathsf{UC}_{\delta||}$: Cardinality predicate of *global value* #### UC v. DPIL: maximization and distributivity built into UC update function (no need for distributive or maximizing operators, such as van den Berg's Δ_u , \mathbf{M}_u , or for dummies) ``` (1') i. Al^{x} [invited] some friends_{\tau}^{x}. \top [x \mid x =_i al]; [x \mid friend\langle x, \top \delta \rangle]; [invite\langle \top \delta, \bot \delta \rangle]; [2^+ \{\bot \delta \parallel \}] √C3 C_3 C_1 \mathsf{C}_2 \langle\langle a \rangle, \langle \rangle \rangle \quad \langle\langle a \rangle, \langle f_1 \rangle \rangle \quad \langle\langle a \rangle, \langle f_1 \rangle \rangle \langle\langle a\rangle, \langle f_2\rangle\rangle \langle\langle a\rangle, \langle f_2\rangle\rangle output c₃ \langle\langle a \rangle, \langle f_3 \rangle\rangle \langle\langle a \rangle, \langle f_3 \rangle\rangle for same model. \langle\langle a\rangle, \langle f_4\rangle\rangle \langle\langle a\rangle, \langle f_4\rangle\rangle i.e. Al's friends: f₁, ..., f₅ \langle\langle a\rangle, \langle f_5\rangle\rangle invited friends: f₁, ..., f₄ ``` # $UC_{\delta ||}$: Quantified subject as topic-comment ``` (1') ii_a. Most x, X people ... C_{\Delta} C_5 \langle\langle F_{1-4}, f_1, a \rangle, \langle f_1 \rangle\rangle \langle\langle f_1, a \rangle, \langle f_1 \rangle\rangle \langle\langle f_2, a \rangle, \langle f_2 \rangle\rangle \langle\langle F_{1-4}, f_2, a \rangle, \langle f_2 \rangle\rangle \langle\langle F_{1-4}, f_3, a \rangle, \langle f_3 \rangle\rangle \langle\langle f_3, a \rangle, \langle f_3 \rangle\rangle \langle\langle f_{4}, a \rangle, \langle f_{4} \rangle\rangle \langle\langle F_{1-4}, f_4, a \rangle, \langle f_4 \rangle\rangle [came ([come\langle \top \delta \rangle]; [most\{\top\delta t, \top\delta ||\}]) √c₆ output c₆, if out of C_6 \langle\langle F_{1-4}, f_1, a \rangle, \langle f_1 \rangle\rangle 4 invitess, F_{1-4} = \{f_1, ..., f_4\} \langle\langle F_{1-4}, f_2, a \rangle, \langle f_2 \rangle\rangle 3 came, F_{1-3} = \{f_1, ..., f_3\} \langle\langle F_{1-4}, f_3, a \rangle, \langle f_3 \rangle\rangle ``` # $UC_{\delta||}$: Distributive subject as topic-comment ``` (1') ii_b. and they_T \mathbf{all}_{\mathsf{T}}^{X} [2^+\{\top\delta|\}]; (\top[X]X =_I \top\delta|] √C₆ C₇ \langle\langle F_{1-3}, F_{1-4}, f_1, a \rangle, \langle f_1 \rangle\rangle \langle\langle F_{1-3}, F_{1-4}, f_2, a \rangle, \langle f_2 \rangle\rangle \langle\langle F_{1-3}, F_{1-4}, f_3, a \rangle, \langle f_3 \rangle\rangle [had a good time ([hv.gt\langle \top \delta \rangle]; \qquad [\top \delta t =_I \top \delta ||])) C_8 (= C_7) \checkmark C_8 \langle\langle F_{1-3}, F_{1-4}, f_1, a \rangle, \langle f_1 \rangle\rangle \langle\langle F_{1-3}, F_{1-4}, f_2, a \rangle, \langle f_2 \rangle\rangle \langle\langle F_{1-3}, F_{1-4}, f_3, a \rangle, \langle f_3 \rangle\rangle ``` **output c₈**, if each invited friend who came, $F_{1-3} = \{f_1, ..., f_3\}$ had a good time # $\mathsf{UC}_{\delta ||}$: Partitive subject as topic-comment ``` (1') iii. One_{\pm '\delta t}^{x, X} girl \top [x | girl\langle x \rangle, x \in_{i} \top' \delta t] \top; (\top [X|X =_{I} \top \delta |]) \top; \langle\langle f_3, F_{1-3}, F_{1-4}, f_1, a \rangle, \langle f_1 \rangle\rangle \langle\langle F_{3-4}, f_3, F_{1-3}, F_{1-4}, f_1, a \rangle, \langle f_1 \rangle\rangle \langle\langle f_3, F_{1-3}, F_{1-4}, f_1, a \rangle, \langle f_2 \rangle\rangle \langle \langle F_{3-4}, f_3, F_{1-3}, F_{1-4}, f_1, a \rangle, \langle f_2 \rangle \rangle \langle\langle f_3, F_{1-3}, F_{1-4}, f_2, a \rangle, \langle f_3 \rangle\rangle \langle\langle F_{3-4}, f_3, F_{1-3}, F_{1-4}, f_2, a \rangle, \langle f_3 \rangle\rangle \langle\langle F_{3-4}, f_4, F_{1-3}, F_{1-4}, f_2, a \rangle, \langle f_1 \rangle\rangle \langle\langle f_4, F_{1-3}, F_{1-4}, f_2, a \rangle, \langle f_1 \rangle\rangle \langle\langle f_4, F_{1-3}, F_{1-4}, f_3, a \rangle, \langle f_2 \rangle\rangle \langle\langle F_{3-4}, f_4, F_{1-3}, F_{1-4}, f_3, a \rangle, \langle f_2 \rangle\rangle \langle\langle f_4, F_{1-3}, F_{1-4}, f_3, a \rangle, \langle f_3 \rangle\rangle \langle\langle F_{3-4}, f_4, F_{1-3}, F_{1-4}, f_3, a \rangle, \langle f_3 \rangle\rangle [had a prior engagement ([hv.prior.engagement\langle \top \delta \rangle]; [one\{\top \delta t, \top \delta ||\}]) √C₁₁ output C₁₁, C_{11} \langle\langle F_{3-4}, f_4, F_{1-3}, F_{1-4}, f_1, a \rangle, \langle f_1 \rangle\rangle if F₁₋₄ (invited friends) includes 2 girls: f₃ & f₄ \langle\langle F_{3-4}, f_4, F_{1-3}, F_{1-4}, f_2, a \rangle, \langle f_2 \rangle\rangle \langle\langle F_{3-4}, f_4, F_{1-3}, F_{1-4}, f_3, a \rangle, \langle f_3 \rangle\rangle ``` ### Global conclusion (whole course) - Dynamic semantics, which explicitly represents context change, is motivated by evidence from a wide variety of phenomena in diverse languages. - ☐ The **phenomena** at issue include: *nominal reference, indexicality, temporal reference, plurality and quantification, presupposition, vagueness, ...* (long list, keeps growing) - ☐ To represent such phenomena, we need a **logical representation** system that can represent: - current discourse referents (drefs) - current rank of each dref - ranked drefs in center v. background of attention - semantic type of each dref: e.g. - o individual, event, state, time, world, ... - o set of individuals, set of events, set of states, set of times, set of worlds, ... - current relations between drefs ### References (1) - Berg, M. van den. 1993. Full Dynamic Plural Logic. *Proceedings of the 4th Symposium on Logic and Language.* - Berg, M. van den, 1994. A direct definition of generalized dynamic quantifiers. *Proceedings of the 9th Amsterdam Colloquium.* - Bittner, M. 2014. Temporality: Universals and Variation. Wiley-Blackwell.