Dynamic Semantics (5) Quantification

Maria Bittner, Rutgers http://www.users.cloud9.net/~mbittner

NASSLLI 2016

Rutgers, New Brunswick NJ

Quantifiers in discourse

Observation:

In discourse, quantified noun phrases function both as **antecedents** and **anaphors**.

- e.g.
- (1) i. Al invited some X^{1} friends.
 - ii. \mathbf{Most}_{X1}^{X2} people came, and they \mathbf{all}_{X2} had a good time.
 - iii. One_{X1}^{X3} girl had a prior engagement.

DPIL: Quantification as structured reference

- □ Dynamic Plural Logic (DPIL, van den Berg 1993, 1994)
 - plural info-state (set of assignments) represents both drefs and relations
 - update relates plural info-states (i.e. input info-state to a set of outputs)
 - minimal info-state (no drefs) is the singleton of the dummy assignment, g_{\star} , which assigns the dummy individual, \star , to all variables

(1) i. Al^{x1} invited **some**^{x2, x3} friends.

$$(\varepsilon_{x1} \wedge x_1 = al) \wedge \mathbf{M}_{x2}(\varepsilon_{x2} \wedge \Delta_{x2}(F^2x_2x_1)) \wedge \mathbf{M}_{x3}(\varepsilon_{x3} \wedge \Delta_{x3}(x_3 = x_2 \wedge P^2x_1x_3)) \wedge \mathbf{2}^+x_3$$

$$x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad \dots$$

$$a \quad f_1 \quad f_1 \quad \bigstar \quad \bigstar$$

$$a \quad f_2 \quad f_2 \quad \bigstar \quad \bigstar$$

$$a \quad f_3 \quad f_3 \quad \bigstar \quad \bigstar$$

$$a \quad f_4 \quad f_4 \quad \bigstar \quad \bigstar$$

$$a \quad f_5 \quad \bigstar \quad \bigstar \quad \Leftrightarrow$$

$$and invited 4 of them $(f_1, \dots, f_4)$$$

DPIL: Quantified antecedents & anaphors

(1) ii_a . **Most**_{x3}^{x4} people came and ...

$$(\Delta_{x3}(P^{1}x_{3}) \wedge 2^{+}x_{3}) \wedge M_{x4}(\varepsilon_{x4} \wedge \Delta_{x4}(x_{4} = x_{3} \wedge C^{1}x_{4})) \wedge most(x_{3}, x_{4}) \wedge ...$$
 $X_{1} \quad X_{2} \quad X_{3} \quad X_{4} \quad X_{5} \quad ...$
 $A \quad f_{1} \quad f_{1} \quad f_{1} \quad \star$
 $A \quad f_{2} \quad f_{2} \quad f_{2} \quad \star$
 $A \quad f_{3} \quad f_{3} \quad f_{3} \quad \star$
 $A \quad f_{4} \quad f_{4} \quad \star \quad \star$
 $A \quad f_{5} \quad \star \quad \star \quad \star$

 ii_b . they_{x4} all_{x4}^{x5} had a good time.

$UC_{\delta II}$: Quantification as structured reference

- \square UC₀ with ranked sets of individuals (UC_{δ ||}, Bittner 2014)
 - plural info-state (set of dref hierarchies) represents both drefs and relations
 - *local* anaphors refer to ranked *individuals* (e.g. $\top \delta$) or *ranked sets* (e.g. $\top \delta t$) *global* anaphors refer to ranked *global values* (e.g. $\top \delta | |)$
 - update function an input plural info-state to the output info
 - minimal info-state (no drefs) is the singleton of the empty hierarchy (as in UC₀)

$\mathsf{UC}_{\delta||}$: Cardinality predicate of *global value*

UC v. DPIL:

maximization and distributivity built into UC update function (no need for distributive or maximizing operators, such as van den Berg's Δ_u , \mathbf{M}_u , or for dummies)

```
(1') i. Al^{x}
                                                                                                [invited ] some friends_{\tau}^{x}.
                 \top [x \mid x =_i al]; [x \mid friend\langle x, \top \delta \rangle]; [invite\langle \top \delta, \bot \delta \rangle]; [2^+ \{\bot \delta \parallel \}]
                                                                                                                                            √C3
                                                                   C_3
                 C_1
                         \mathsf{C}_2
                  \langle\langle a \rangle, \langle \rangle \rangle \quad \langle\langle a \rangle, \langle f_1 \rangle \rangle \quad \langle\langle a \rangle, \langle f_1 \rangle \rangle
                                                  \langle\langle a\rangle, \langle f_2\rangle\rangle \langle\langle a\rangle, \langle f_2\rangle\rangle
                                                                                                                                                                       output c<sub>3</sub>
                                                   \langle\langle a \rangle, \langle f_3 \rangle\rangle \langle\langle a \rangle, \langle f_3 \rangle\rangle
                                                                                                                                                                       for same model.
                                                   \langle\langle a\rangle, \langle f_4\rangle\rangle \langle\langle a\rangle, \langle f_4\rangle\rangle
                                                                                                                                                                       i.e. Al's friends: f<sub>1</sub>, ..., f<sub>5</sub>
                                                   \langle\langle a\rangle, \langle f_5\rangle\rangle
                                                                                                                                                                        invited friends: f<sub>1</sub>, ..., f<sub>4</sub>
```

$UC_{\delta ||}$: Quantified subject as topic-comment

```
(1') ii_a. Most x, X people ...
                    C_{\Delta}
                                                                                        C_5
                                                                                       \langle\langle F_{1-4}, f_1, a \rangle, \langle f_1 \rangle\rangle
                    \langle\langle f_1, a \rangle, \langle f_1 \rangle\rangle
                    \langle\langle f_2, a \rangle, \langle f_2 \rangle\rangle
                                                                                       \langle\langle F_{1-4}, f_2, a \rangle, \langle f_2 \rangle\rangle
                                                                                       \langle\langle F_{1-4}, f_3, a \rangle, \langle f_3 \rangle\rangle
                    \langle\langle f_3, a \rangle, \langle f_3 \rangle\rangle
                    \langle\langle f_{4}, a \rangle, \langle f_{4} \rangle\rangle
                                                                                       \langle\langle F_{1-4}, f_4, a \rangle, \langle f_4 \rangle\rangle
                    [came
                    ([come\langle \top \delta \rangle];
                                                                                [most\{\top\delta t, \top\delta ||\}])
                                                                                √c<sub>6</sub>
                                                                                                                                                        output c<sub>6</sub>, if out of
                    C_6
                    \langle\langle F_{1-4}, f_1, a \rangle, \langle f_1 \rangle\rangle
                                                                                                                                                        4 invitess, F_{1-4} = \{f_1, ..., f_4\}
                    \langle\langle F_{1-4}, f_2, a \rangle, \langle f_2 \rangle\rangle
                                                                                                                                                        3 came, F_{1-3} = \{f_1, ..., f_3\}
                     \langle\langle F_{1-4}, f_3, a \rangle, \langle f_3 \rangle\rangle
```

$UC_{\delta||}$: Distributive subject as topic-comment

```
(1') ii<sub>b</sub>. and they<sub>T</sub> \mathbf{all}_{\mathsf{T}}^{X}
                     [2^+\{\top\delta|\}]; (\top[X]X =_I \top\delta|]
                     √C<sub>6</sub> C<sub>7</sub>
                                              \langle\langle F_{1-3}, F_{1-4}, f_1, a \rangle, \langle f_1 \rangle\rangle
                                               \langle\langle F_{1-3}, F_{1-4}, f_2, a \rangle, \langle f_2 \rangle\rangle
                                               \langle\langle F_{1-3}, F_{1-4}, f_3, a \rangle, \langle f_3 \rangle\rangle
                     [had a good time
                    ([hv.gt\langle \top \delta \rangle]; \qquad [\top \delta t =_I \top \delta ||]))
                    C_8 (= C_7) \checkmark C_8
                     \langle\langle F_{1-3}, F_{1-4}, f_1, a \rangle, \langle f_1 \rangle\rangle
                     \langle\langle F_{1-3}, F_{1-4}, f_2, a \rangle, \langle f_2 \rangle\rangle
                     \langle\langle F_{1-3}, F_{1-4}, f_3, a \rangle, \langle f_3 \rangle\rangle
```

output c₈, if each invited friend who came, $F_{1-3} = \{f_1, ..., f_3\}$ had a good time

$\mathsf{UC}_{\delta ||}$: Partitive subject as topic-comment

```
(1') iii. One_{\pm '\delta t}<sup>x, X</sup> girl
                     \top [x | girl\langle x \rangle, x \in_{i} \top' \delta t] \top;
                                                                                     (\top [X|X =_{I} \top \delta |]) \top;
                     \langle\langle f_3, F_{1-3}, F_{1-4}, f_1, a \rangle, \langle f_1 \rangle\rangle
                                                                                                    \langle\langle F_{3-4}, f_3, F_{1-3}, F_{1-4}, f_1, a \rangle, \langle f_1 \rangle\rangle
                     \langle\langle f_3, F_{1-3}, F_{1-4}, f_1, a \rangle, \langle f_2 \rangle\rangle
                                                                                              \langle \langle F_{3-4}, f_3, F_{1-3}, F_{1-4}, f_1, a \rangle, \langle f_2 \rangle \rangle
                     \langle\langle f_3, F_{1-3}, F_{1-4}, f_2, a \rangle, \langle f_3 \rangle\rangle
                                                                                            \langle\langle F_{3-4}, f_3, F_{1-3}, F_{1-4}, f_2, a \rangle, \langle f_3 \rangle\rangle
                                                                                             \langle\langle F_{3-4}, f_4, F_{1-3}, F_{1-4}, f_2, a \rangle, \langle f_1 \rangle\rangle
                     \langle\langle f_4, F_{1-3}, F_{1-4}, f_2, a \rangle, \langle f_1 \rangle\rangle
                     \langle\langle f_4, F_{1-3}, F_{1-4}, f_3, a \rangle, \langle f_2 \rangle\rangle \langle\langle F_{3-4}, f_4, F_{1-3}, F_{1-4}, f_3, a \rangle, \langle f_2 \rangle\rangle
                     \langle\langle f_4, F_{1-3}, F_{1-4}, f_3, a \rangle, \langle f_3 \rangle\rangle
                                                                                               \langle\langle F_{3-4}, f_4, F_{1-3}, F_{1-4}, f_3, a \rangle, \langle f_3 \rangle\rangle
                     [had a prior engagement
                     ([hv.prior.engagement\langle \top \delta \rangle];
                                                                                                            [one\{\top \delta t, \top \delta ||\}])
                                                                                                            √C<sub>11</sub>
                                                                                                                                                                         output C<sub>11</sub>,
                    C_{11}
                     \langle\langle F_{3-4}, f_4, F_{1-3}, F_{1-4}, f_1, a \rangle, \langle f_1 \rangle\rangle
                                                                                                                                                                         if F<sub>1-4</sub> (invited friends)
                                                                                                                                                                         includes 2 girls: f<sub>3</sub> & f<sub>4</sub>
                     \langle\langle F_{3-4}, f_4, F_{1-3}, F_{1-4}, f_2, a \rangle, \langle f_2 \rangle\rangle
                     \langle\langle F_{3-4}, f_4, F_{1-3}, F_{1-4}, f_3, a \rangle, \langle f_3 \rangle\rangle
```

Global conclusion (whole course)

- Dynamic semantics, which explicitly represents context change, is motivated by evidence from a wide variety of phenomena in diverse languages.
- ☐ The **phenomena** at issue include: *nominal reference, indexicality, temporal reference, plurality and quantification, presupposition, vagueness, ...* (long list, keeps growing)
- ☐ To represent such phenomena, we need a **logical representation** system that can represent:
 - current discourse referents (drefs)
 - current rank of each dref
 - ranked drefs in center v. background of attention
 - semantic type of each dref: e.g.
 - o individual, event, state, time, world, ...
 - o set of individuals, set of events, set of states, set of times, set of worlds, ...
 - current relations between drefs

References (1)

- Berg, M. van den. 1993. Full Dynamic Plural Logic. *Proceedings of the 4th Symposium on Logic and Language.*
- Berg, M. van den, 1994. A direct definition of generalized dynamic quantifiers. *Proceedings of the 9th Amsterdam Colloquium.*
- Bittner, M. 2014. Temporality: Universals and Variation. Wiley-Blackwell.