Aspect as eventuality centering: English & Polish

MARIA BITTNER

Abstract

Bittner (2012, Ch. 4) proposes the following centering universals about *grammatical tense* (TNS), *grammatical aspect* (ASP), *grammatical mood* (MOOD), and *grammatical person* (PRN), jointly referred to as *TAMP*.

Figure 1 Centering TAMP-universals

- (T) TNS fills, or pushes down, the verb's time argument with a dref anchored to a top-ranked time and/or event (⊤τ, ⊥τ, ⊤ε, ⊥ε).
- (A) Asp fills, or pushes down, the verb's eventuality argument with a dref anchored to a top-ranked state and/or event (Τσ. ⊥σ. Τε. ⊥ε).
- (*M*) Mood fills, or pushes down, the verb's world argument with a dref anchored to a top-ranked world and/or event $(\top \omega, \perp \omega, \top \varepsilon, \perp \varepsilon)$.
- (P) PRN fills the verb's subject or object argument with a dref anchored to a top-ranked individual and/or event (⊤δ, ⊥δ, ⊤ε, ⊥ε).

For any *TAMP*-category *X*, a language is classified as *X*-prominent iff it has argument-filling *X*-markers or *X*-features. These always form a grammatical paradigm, because λ -bound arguments must be saturated and can only be saturated once. In Ch. 2–3, evidence was presented that Mandarin, Kalaallisut, and Polish are all *P*-prominent (subject and/or object arguments are filled by PRN features in Mandarin, $_{\tau}(\cdot)$, $_{\tau}(\cdot)$, $_{\tau}(\cdot)$, $_{\tau}(\cdot)$, PRN inflections in Kalaallisut and Polish, $_{\tau}(\cdot)$, $_{\tau}(\cdot)$, whereas English is not. Moreover, Polish and English are $_{\tau}(\cdot)$ -PST $_{\tau}(\cdot)$, whereas Mandarin and Kalaallisut are not. Chapter 4 extends the story to grammatical aspect. Today, we present evidence that Polish is $_{\tau}(\cdot)$ -prominent (eventuality arg's filled by ASP features $_{\tau}(\cdot)$, whereas English is not. Next time, we argue that Mandarin too is $_{\tau}(\cdot)$ -prominent (arg-filling ASP-features $_{\tau}(\cdot)$, $_{\tau}(\cdot)$).

Outline

- 1. Background: Algebra of things and eventualities
- 2. TNS-based temporality in English
- 3. Centering *TAMP*-universals
- 4. Aspectual pairing in Polish
- 5. TA-based temporality in Polish
- 6. Conclusions and conjectures

1 BACKGROUND: ALGEBRA OF THINGS & EVENTUALITIES

```
Figure 2. Bach 1986 event algebra: \langle \mathcal{D}_{\varepsilon+} \cup \mathcal{D}_{\varepsilon-}, \sqsubseteq, \triangledown, \blacktriangle, \ldots \rangle
                   OPERATION OUTPUT
INPUT
                                                                                            GRAPHIC
event e
                                                                                            •••
                     \nabla e = f
event e
                                         ground e = process f
                                         packaged e = atomic event e'
event e
                     \bullet e = e'
                                                                                                                   s \sqsubseteq \triangledown e
(1) a. Al is^s working<sup>e</sup>.
          b. Al put some^{y} apple^{x} in the salad.
                                                                                                                   v \sqsubseteq \nabla x
(2) a. Al did a bit<sup>e'</sup> of \{work^e \mid *leaving^e\}.
          b. Al ate a portion<sup>x'</sup> of \{nuts^x | *a nut^x\}
                                                                                                                   x' = Ax
Figure 3. Moens & Steedman 1988 aspectual algebra: \langle \mathcal{D}_{\varepsilon} \cup \mathcal{D}_{\pi} \cup \mathcal{D}_{\sigma}, {}^{\triangleright}, {}^{\blacktriangleleft}, \ldots \rangle
                   OPERATION OUTPUT
                                                                                            GRAPHIC
INPUT
point e
                   \triangleright e = s
                                         consequent state s
point e
                    {}^{\blacktriangleleft}e = f
point e
                                         preparatory process f
(3) i. Al went (PST^{t_1}go^{e_1}) into a florist shop.
                                                                                                     Narration (i-ii)
         ii. He bought (PST_{e1}^{2})^{1/2} buy<sup>e2</sup>) a bunch of roses.
                                                                                                     \vartheta e_2 \subseteq t_2 \subseteq \vartheta^{\triangleright} e_1
(4) i. Al went (PST^{t1} go^{e1}) into a florist shop.
                                                                                                   Explanation (i-ii)
          ii. He promised (PST_{e_1}^{2} \text{ promise}^{e_2}) Beth to buy some roses. \vartheta e_2 \subseteq t_2 \subseteq \vartheta^{\P} e_1
Figure 4. Bittner 2012 aspectual algebra: \langle \mathcal{D}_{\varepsilon} \cup \mathcal{D}_{\sigma}, \sqsubseteq, {}^{\triangleright}, {}^{\blacktriangleleft}, {}^{\triangleright}, {}^{\blacktriangle}, {}^{\blacktriangle}, ... \rangle
[Terminology: point = 1-atom event, process = 2^+-atom event (causal chain)]
                   OPERATION OUTPUT
INPUT
                                                                                            GRAPHIC
point e
                                         consequent state s
point e
point e
                    {}^{\blacktriangleleft}e = e'
                                         preparatory process e'
                   \nabla e' = s'
process e'
                                         state-equivalent s'
process e'
                   \bullet e' = e''
                                         point-equivalent e"
state s'
                   S' = e'''
                                         start-point e'''
                    A_{S'} = e
                                         culmination-point e
state s'
(5) i. Al played chess (PST play.chess<sup>e1</sup>) yesterday.
          ii. He won (PST win_{e1}^{e2}).
        Al began to sing (PST begin^{e2} INF sing^{e1}).
```

2 TNS-BASED TEMPORALITY IN ENGLISH

ABBREVIATIONS: *c*-= culminating/culmination, prog = progress, con = consequent

(7)	aspectual type & anaphoric TNS _e [M&S]	asp-type	<u>a</u> <u>v^a rel.</u>	<u>TNSe</u> rel.
	When Al came $(PST_t come^e)$ to Paris he			
	a. wrote (PST _e ^{t'} write ^{e'}) a book.	c-process		$t' \sqsubseteq \vartheta^{\triangleright} e$
	b. $finished(PST_e^{t'}finish^{e'})$ writing ^{e"} his bk.	c-point e	$\theta e' \sqsubseteq t'$	$t' \sqsubseteq \vartheta^{\triangleright} e$
	c. $had(PST_e^{t'}have^s)$ a book in press.	state s	$\theta_S = t'$	$\vartheta e \sqsubseteq t'$
	d. was $(PST_e^{t'}be^s)$ writing $^{e'}$ a book.	prog-stat	e s $\theta s = t'$	$\vartheta e \sqsubseteq t'$
	e. $was(PST_e^{t'}be^s) dying^{e'}$.	prog-stat	e $s \theta s = t'$	$\vartheta e \sqsubseteq t'$
	f. was going $(PST_e^{t'} be.going^s)$ to $wrt^{e'}$ a bk.	. pre-state	$s ext{ } ext{$\vartheta $s = t'$}$	$\vartheta e \sqsubseteq t'$
	g. $had(PST_e^{t'}have^s)$ just written ^{e'} a book.	con-state	$s \vartheta s = t'$	$\vartheta e \sqsubseteq t'$
(8)	asp-type, ASP & anaphoric TNS _e [Smith]	asp-type	a ASP v ^a	$\underline{TNS_e}$
	When Al came ($PST_t come^e$) to Paris he			
	a. wrote $(PST_e^{t'} \emptyset \text{ write}^{e'})$ a book.	c-process	$se' \theta e' \sqsubseteq t'$	$t' = \vartheta^{\triangleright} e$
	b. $finished (PST_e^{t'} \emptyset finish^{e'}) writing^{e''} his bk$. c-point e	$\theta' \subseteq t'$	$t' = \vartheta^{\triangleright} e$
	c. $had(PST_e^{t'}\emptyset have^s)$ a book in press.	state s	$\vartheta s \bigcirc t'$	$t' = \vartheta e$
	d. $was (PST_e^{t'}PRG) writing^{e'} a book.$	c-process	$se' \theta e' \circ t'$	$t' = \vartheta e$
	e. was $(PST_e^{t'}PRG)$ dying e' .	c-point e	$t' < \vartheta e'$	$t' = \vartheta e$
	f. was going to $(PST_e^{t'}PRE)$ write e' a bk.	c-process	$se' t' < \vartheta e'$	$t' = \vartheta e$
	g. $had(PST_e^{t'}PRF)$ just written ^{e'} a book.	c-process	$se' \vartheta e' \leq t'$	$t' = \vartheta e$
(9)	asp-type & anaphoric TNS _e (& ASP _e) [Bitt]	asp-typ a	$(ASP_e^s) v^a$	\underline{TNS}_e
	When Al came ($PST_t come^e$) to Paris he			
	a. wrote $(PST_e^{t'} write^{e'})$ a book.	c-proc. e'	$\vartheta e' \sqsubseteq t'$	$t' \sqsubseteq \vartheta^{\triangleright} e$
	b. $finished (PST_e^{t'} finish^{e'}) writing^{e''} his bk$.	$e' = {}^{\blacktriangle \nabla} e''$	$\vartheta e' \sqsubseteq t'$	$t' \sqsubseteq \vartheta^{\triangleright} e$
	b'. began $(PST_e^{t'} \operatorname{begin}^{e'})$ to write ^{e"} a book.	$e' = {}^{\blacktriangleright \triangledown} e''$	$\vartheta e' \sqsubseteq t'$	$t' \sqsubseteq \vartheta^{\triangleright} e$
	c. $had(PST_e^{t'}have^s)$ a book in press.	state s	$t' \sqsubseteq \vartheta s$	$t' \sqsubseteq \vartheta e$
	c'. was $(PST_e^{t'} be^s)$ busy.	state s	$t' \sqsubseteq \vartheta s$	$t' \sqsubseteq \vartheta^{\triangleright} e$
	d. was $(PST_e^{t'}PRG_e^s)$ writing e' a book.	$s \sqsubseteq {}^{\triangledown}e'$	$\vartheta e \sqsubseteq t' \sqsubseteq \vartheta s$	$t' \sqsubseteq \vartheta e$
	d'. ?was $(PST_e^{t'}PRG_e^{s})$ visitin $g^{e'}$ Louvre.	$s \sqsubseteq {}^{\triangledown}e'$	$\vartheta e \sqsubseteq t' \sqsubseteq \vartheta s$	
	e. was $(PST_e^{t'}PRG_e^{s})$ dying e' .	$s \sqsubseteq {}^{\triangledown \blacktriangleleft} e'$	$\vartheta e \sqsubseteq t' \sqsubseteq \vartheta s$	$t' \sqsubseteq \vartheta e$
	f. was going to $(PST_e^{t'}PRE_e^s)$ write e' a bk.	$\Delta s = \Delta e'$	$\vartheta e \sqsubseteq t' \sqsubseteq \vartheta s$	
	g. $had(PST_e^{t'}PRF_e^s)$ just written ^{e'} a book.	$s = {}^{\triangleright}e'$	$\vartheta e \sqsubseteq t' \sqsubseteq \vartheta s$	$t' \sqsubseteq \vartheta e$

3 CENTERING TAMP-UNIVERSALS

Figure 1. Centering TAMP-universals [Bittner 2012]

- (*T*) TNS fills, or pushes down, the verb's time argument with a dref anchored to a top-ranked time and/or event $(\top \tau, \perp \tau, \top \varepsilon, \perp \varepsilon)$.
- (A) ASP fills, or pushes down, the verb's eventuality argument with a dref anchored to a top-ranked state and/or event $(\top \sigma, \bot \sigma, \top \varepsilon, \bot \varepsilon)$.
- (M) Mood fills, or pushes down, the verb's world argument with a dref anchored to a top-ranked world and/or event (Tω, Lω, Tε, Lε).
- (P) PRN fills the verb's subject or object argument with a dref anchored to a top-ranked individual and/or event $(\top \delta, \bot \delta, \top \varepsilon, \bot \varepsilon)$.
- For any language L and TAMP-category X, L is X-prominent, iff L has argument-filling X-markers or X-features
- ENGLISH (*T*-prominent)
- a. Verbs have an argument slot for a *reference time*, filled by *TNS*-marker (e.g. inflection -ed 'PST' or - \emptyset 'PRS', auxiliary will 'FUT', particle to $\sim \emptyset$ 'INF')
- b. English TNS-markers are *obligatory* & form a *grammatical paradigm* (i.e. set of forms such that one and only is required by the grammar, on pain of *)
- c. Eventuality of Eng. verb is NOT a λ-bound arg. at any point in the derivation. Instead, [e]...] or [s]...] is introduced by event-verbs (v^e) and state-verbs (v^s), respectively.
- d. English ASP-markers instantiate push-down ASP—i.e. introduce an eventuality of their own (e.g. con-state of PRF_e^s, prog-state of PRG_e^s) on top of evt. a of v^a .
- e. English ASP-markers are gramm. optional & do not form a gramm. paradigm (e.g. PRF and PRG can co-occur: he has been running (PRS PRF PRG rune))
- f. English verbs have λ -bound args. for *subjects* and *objects*, but these are filled *syntactically* (obligatory argument NP's), *not* by PRN-markers or PRN-features

• POLISH (TAP-prominent)

- a. Verbs have λ-bound arguments for an eventuality, reference time, and subject, filled, in order, by ASP-feature (perfective \P or imperfective \I), TNS-marker (PST or PRS inflection, FUT inflection or auxiliary) & PRN-inflection (e.g. -3SF)
- b. Polish ASP-features, TNS-markers, and PRN-inflections are all obligatory & for each category, the members form a grammatical paradigm.

4 ASPECTUAL PAIRING IN POLISH

Figure 5 Push-down ASP test for Polish ASP-features v-DUR (jqc) v-PRF (wszy)

- (10) a. Zasnq-ł-em {oglqda-jqc | obejrza-wszy} dziennik.
 fall.asleep\P-PST.1SM {watch\P-DUR | watch\P-PRF} news.ACC
 I fell asleep {watching | having seen} the news.
 - b. Zasypia-I-em {oglqda-jqc | obejrza-wszy} dziennik.
 fall.asleep\(I \) watch\(I
- Młynarczyk 2004: Ch. 4 Aspectual pairmates of Polish verb-bases based on *secondary (im)perfectivization* tests

class class ₁	\\\\\(\text{(unmarked)}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	→ → →	\P (unmarked) zaistnieć pojechać utyć	\P^ (do a bit) * *	\P\frac{\P\dagger (semelfct)}{*} *
class ₂	spać 'sleep' stać 'stand' pracować 'work' jeździć 'ride'	→ → →	* * *	pospać postać popracować pojeździć	* *
class ₃	pisać 'write' śpiewać 'sing' oglądać 'watch'		na pisać za śpiewać o bejrze ć	po pisać po śpiewać po oglądać	* *
class ₄	pukać 'knock' krzyczeć 'shout' gwizdać 'whistle'	\rightarrow	za pukać za krzyczeć za gwizdać	po pukać po krzyczeć po gwizdać	puk ną ć krzyk ną ć gwizd ną ć
class ₅	zas ypia ć sta wa ć przyje żdż ać przepis yw ać zakrzyk iw ać	← ← ←	zasnąć 'fall asleep' stanąć 'stand up' przyjechać 'come _{riding} ' przepisać 'copy _{writing} ' zakrzyczeć 'shout dwn'	* * * *	* * * *

• Młynarczyk 2004: Ch. 5 Induced semantic classes \P^{\triangle} (do a bit) \P^1 (semelfet) class \I (unmarked) \P (unmarked) class₁ ongoing completed state or state onset gradual transition → gradual transition class₂ ongoing process compl. proc. completed class₃ ongoing c-process \rightarrow completed c-process non-culminating c-process class₄ ongoing completed completed completed unitizable process → arbitrary non-min. minimal (u-process) *u*-process *u*-process *u*-process ← completed class₅ ongoing culmination culmination

• Bittner 2012: Ch. 4 Induced semantic classes

 $-v\$ I or $v\$ P introduce a *state* or a *point* (atomic event), respectively

5

5 TA-BASED TEMPORALITY IN POLISH

- (11) Gdy Jan przyjecha-ł do Paryża ... when Jan\m come_{riding} *\P-PST.3SM to Paris When Jan came in Paris ...
 - a. {lubi-f | polubi-f} to miasto. {like*\(\pi\-PST.3SM\)\) like*\(\pi\-PST.3SM\)\) this city.ACC he {was fond | became fond} of the city.
 - b. {pracowa-f | popracowa-f} nad ksiqżkq. {work^e|J-PST.3SM | work^e|P-PST.3SM} over book.INS he {was working | did some work} on his book.
 - c. {pisa-ł | napisa-ł | właśnie napisa-ł} książkę. {write**\rho-PST.3SM | write**\rho-PST.3SM | just | write**\rho-PST.3SM} book.ACC he {was writing | wrote | had just written} a book.

Model for (11) Topic-setting when-clause with \(\lambda\)-comment

----> real time

Dref.		Symbol: Description	Temporal condition	Source
	•	[™] e ₀ : e ₀ -speaker speaks up		e_0
-		t₁: e₀-past	$t_1 <_{\tau} \vartheta e_0$	PST
•		e ₁ : Jan comes to Paris	$\vartheta e_1 \subseteq t_1$, $\vartheta e_0 \subseteq \vartheta^{\triangleright} e_1$	\P
•		Tt'1: topical part of t1	$\mathbf{t'}_1 \subseteq t_1$	when\P
	_	s ₂ :	$\vartheta e_1 \subseteq \boldsymbol{t'}_1 \subseteq \vartheta s_2$	\I
a.		s ₂ : Jan likes Paris		$\mathbf{v}^s \! \backslash \! \mathbf{I}$
b.		s ₂ : Jan is working on a book	$\exists e_2: s_2 \sqsubseteq_{\sigma} {}^{\triangledown}e_2 \&$	$\mathbf{v}^e \hspace{-0.5pt} \setminus \hspace{-0.5pt} \mathbf{I}$
c.		s ₂ : Jan is writing a book	$\exists e_2: s_2 \sqsubseteq_{\sigma} ^{\nabla \blacktriangleleft} e_2 \&$	$\mathbf{v}^{e \raisebox{-1pt}{$\scriptscriptstyle \bullet$}} \hspace{-1pt} \backslash \mathbf{I}$
d.		s_2 : Jan is finishing writing a bk.	$\exists e_2: e_2 = ^\blacktriangle(^{\blacktriangleleft}s_2 \sqcup_{\varepsilon} ^\blacktriangle s_2) \& .$	v*e\1

Model for (11) Topic-setting when-clause with \P-comment

<u>Dref.</u>	Symbol: Description	Temporal condition	<u>Source</u>
•	[⊤] e ₀ : e ₀ -speaker speaks up		e_0
	t ₁ : e ₀ -past	$t_1 <_{\tau} \vartheta e_0$	PST
•	e ₁ : Jan comes to Paris	$\vartheta e_1 \subseteq t_1$, $\vartheta e_0 \subseteq \vartheta^{\triangleright} e_1$	\P
-	Tt'1: topical part of t1	$\mathbf{t'}_1 \subseteq t_1$	when\P
•	e ₂ :	$\vartheta e_2 \subseteq \boldsymbol{t'}_1 \subseteq \vartheta^{\rhd} e_1$	\ P
a.	e ₂ : Jan begins to like Paris	$\exists s_2$: $^{\triangleright}e_2 = s_2 \&$	$V^{S}\backslash I\!\!P$
b.	e ₂ : Jan does sm work on a book	$\exists e'_2: e_2 = ^{\blacktriangle}e'_2 \&$	$v^e \hspace{-0.5pt} \setminus \hspace{-0.5pt} P$
c.	e ₂ : Jan writes a book	$\exists e'_2: e_2 = ^\blacktriangle(^\Pe'_2 \sqcup_{\varepsilon} e'_2) \&$	$v^{e \cdot \setminus P}$
d.	e ₂ : Jan finishes writing a book		$V^{^{\bullet}\ell} \backslash P$
c'. •	e ₁ : Jan comes to Paris	$\vartheta e_1 \subseteq t_1 \text{, } \vartheta e_0 \subseteq \vartheta^{\triangleright} e_{^1}$	\P
•	Tt'1: topical part of t1	$\mathbf{t'}_1 \subseteq t_1$	when\P
•	t₂: just before e₁-time ^T t′₁	$t_2 <_{brief} \mathbf{t'_1} = \vartheta e_1$	just
•	e2: Jan writes a book	$\vartheta e_2 \subseteq t_2$, $\vartheta e_1 \subseteq \vartheta^{\triangleright} e_2$	\ P
		$\exists e'_2: e_2 = \blacktriangle(\Pe'_2 \sqcup_{\varepsilon} e'_2) \&$	v ^{e•} \P

6 CONCLUSIONS AND CONJECTURES

- Based on English (*T*-prominent), Polish (*TAP*-prominent), Mandarin Chinese (*AP*-prominent), and Kalaallisut (*MP*-prominent), Bittner (2012) conjectures that every language has at least one prominent *TAMP*-feature, most languages have more than one, and no *TAMP*-feature is universally prominent.
- In an *X-prominent language*, verbs have a λ -bound argument of type $a \in f(X)$, where $f(T) = \{\tau\}$ (times), $f(A) = \{\varepsilon, \sigma\}$ (events, states), $f(M) = \{\omega\}$ (worlds), and $f(P) = \{\delta\}$ (individuals). This argument is filled by a member of a grammatical paradigm of *X*-features or *X*-markers (i.e. TNS, ASP, MOOD, or PRN) interpreted as discourse reference to a type a-entity with a top-level anchor (i.e. linked to one or more top-ranked antecedents in $\{ \top a, \bot a, \top \varepsilon, \bot \varepsilon \}$).