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Abstract

In a possible world framework, an agent can be said to know a proposition

just in case the proposition is true at all worlds that are epistemically possible

for the agent. Roughly, a world is epistemically possible for an agent just in

case the world is not ruled out by anything the agent knows. If a proposition

is true at some epistemically possible world for an agent, the proposition is

epistemically possible for the agent. If a proposition is true at all epistemically

possible worlds for an agent, the proposition is epistemically necessary for the

agent, and as such, the agent knows the proposition.

This framework presupposes an underlying space of worlds that we can

call epistemic space. Traditionally, worlds in epistemic space are identified

with possible worlds, where possible worlds are the kinds of entities that at

least verify all logical truths. If so, given that epistemic space consists solely

of possible worlds, it follows that any world that may remain epistemically

possible for an agent verifies all logical truths. As a result, all logical truths

are epistemically necessary for any agent, and the corresponding framework

only allows us to model logically omniscient agents. This is a well-known

consequence of the standard possible world framework, and it is generally

taken to imply that the framework cannot be used to model non-ideal agents

that fall short of logical omniscience.

A familiar attempt to model non-ideal agents within a broadly world involv-

ing framework centers around the use of impossible worlds where the truths of

logic can be false. As we shall see, if we admit impossible worlds where “any-

iii



Abstract

thing goes” in epistemic space, it is easy to avoid logical omniscience. If any

logical falsehood is true at some impossible world, then any logical falsehood

may remain epistemically possible for some agent. As a result, we can use

an impossible world involving framework to model extremely non-ideal agents

that do not know any logical truths.

A much harder, and considerably less investigated challenge is to ensure

that the resulting epistemic space can also be used to model moderately ideal

agents that are not logically omniscient but nevertheless logically competent.

Intuitively, while such agents may fail to rule out impossible worlds that verify

complex logical falsehoods, they are nevertheless able to rule out impossible

worlds that verify obvious logical falsehoods. To model such agents, we need a

construction of a non-trivial epistemic space that partly consists of impossible

worlds where not “anything goes”. This involves imposing substantive con-

straints on impossible worlds to eliminate from epistemic space, say, trivially

impossible worlds that verify obvious logical falsehoods.

The central aim of this dissertation is to investigate the nature of such non-

trivially impossible worlds and the corresponding epistemic spaces. To flag my

conclusions, I argue that successful constructions of epistemic spaces that can

safely navigate between the Charybdis of logical omniscience and the Scylla of

“anything goes” are hard, if not impossible to find.
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Chapter 1

Introduction

In a possible world framework, an agent a can be said to know a proposition

p just in case p is true at all worlds that are epistemically possible for a.

Roughly, a world is epistemically possible for a just in case the world is not

ruled out by anything a knows. If p is true at some epistemically possible world

for a, then p is epistemically possible for a. If p is true at all epistemically

possible worlds for a, then p is epistemically necessary for a, and as such, a

knows p.

This framework presupposes an underlying space of worlds that we can

call epistemic space. Traditionally, worlds in epistemic space are identified

with possible worlds, where possible worlds are the kinds of entities that at

least verify all logical truths. If so, given that epistemic space consists solely

of possible worlds, it follows that any world that may remain epistemically

possible for an agent verifies all logical truths. As a result, all logical truths

are epistemically necessary for any agent, and the corresponding framework

only allows us to model logically omniscient agents. This is a well-known

consequence of the standard possible world framework, and it is generally

taken to imply that the framework cannot be used to model non-ideal agents

that fall short of logical omniscience.

A familiar attempt to model non-ideal agents within a broadly world involv-

ing framework centers around the use of impossible worlds where the truths of
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logic can be false. As we shall see, if we admit impossible worlds where “any-

thing goes” in epistemic space, it is easy to avoid logical omniscience. If any

logical falsehood is true at some impossible world, then any logical falsehood

may remain epistemically possible for some agent. As a result, we can use

an impossible world involving framework to model extremely non-ideal agents

that do not know any logical truths.

A much harder, and considerably less investigated challenge is to ensure

that the resulting epistemic space can also be used to model moderately ideal

agents that are not logically omniscient but nevertheless logically competent.

Intuitively, while such agents may fail to rule out impossible worlds that verify

complex logical falsehoods, they are nevertheless able to rule out impossible

worlds that verify obvious logical falsehoods. To model such agents, we need a

construction of a non-trivial epistemic space that partly consists of impossible

worlds where not “anything goes”. This involves imposing substantive con-

straints on impossible worlds to eliminate from epistemic space, say, trivially

impossible worlds that verify obvious logical falsehoods.

The central aim of this dissertation is to investigate the nature of such non-

trivially impossible worlds and the corresponding epistemic spaces. To flag my

conclusions, I argue that successful constructions of epistemic spaces that can

safely navigate between the Charybdis of logical omniscience and the Scylla of

“anything goes” are hard, if not impossible to find.1

In this chapter, I fill in the gaps that this very rough characterization of

the project leaves open and introduce the general framework that I will work

within.

1The locution of an “anything goes” world and the Charybdis and Scylla formulations
are taken from Chalmers (forthcoming).
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The Intuitive Picture

1.1 The Intuitive Picture2

Among the many ways things might be, I know how some of them are.

I know that my bike is red and that the sun shines in Canberra. But I do

not know whether there is extraterrestrial life. For all I know, there might be

life in outer space, and there might not. Nor do I know whether Goldbach’s

Conjecture is true. For all I know, the conjecture might be true, and it might

be false.

Among the many ways things might be, I know a priori how some of them

are. I know a priori that my bike is not red and blue all over, and I know a

priori that the sun does not both shine and not shine in Canberra. But I do

not know a priori whether water is H2O. For all I know a priori, water might be

H2O, and it might not. Nor do I know a priori whether Fermat’s Last Theorem

is true. For all I know a priori, the conjecture might be true, and it might be

false.

When p might be the case for all an agent knows, we can say that p is

epistemically possible for the agent. So it is epistemically possible for me that

there is extraterrestrial life and that Goldbach’s Conjecture is false. Though I

have excellent empirical reasons to believe that water is H2O and that Fermat’s

Last Theorem is true, I still cannot justify these beliefs using solely a priori

reasoning. Intuitively, if I were to suspend all my empirical beliefs and consider

whether water is H2O or whether Fermat’s Last Theorem is true, I would

not reach a verdict. In this more demanding sense of epistemic possibility, it

remains epistemically possible for me that water is not H2O and that Fermat’s

Last Theorem is false. Another way to see this is to consider a high stakes

bet. Suppose you ask me to bet my laptop with all its contents on the truth

of Fermat’s Last Theorem for a penny in return. I would decline. When the

2The intuitive picture of epistemic possibility presented in this section is heavily influ-
enced by Chalmers (forthcoming): pp. 1-2.
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The Intuitive Picture

stakes are high, it is epistemically possible for me that Fermat’s Last Theorem

is false and that water is not H2O. In contrast, offer me any bet that pays a

penny if it is true that my bike is not red and blue over all, and I would accept.

Even when the stakes are high, it remains epistemically impossible for me that

my bike is red and blue all over.

When p is epistemically possible for an agent, we can say that there is an

epistemically possible scenario for the agent where p is true.3 Intuitively, we

can think of a scenario as a maximally specific way things might be. Corre-

sponding to the epistemic possibility that there is extraterrestrial life, there

will be various scenarios in which green men dance on Mars and in which

crabs crawl on Jupiter. And corresponding to the epistemic possibility that

Fermat’s Last Theorem is false, there will be various scenarios in which there

are integers a, b, c and n greater than 2 that satisfy the equation an + bn = cn.

We can think of the space of all such scenarios as epistemic space. Relative

to each agent at a particular time, a class of scenarios in epistemic space

are singled out as epistemically possible for the agent. For instance, I know

that the sun shines in Canberra, but you do not. Whereas the sun shines in

Canberra in all scenarios that remain epistemically possible for me, the rain is

pouring down in Canberra in some of the scenarios that remain epistemically

possible for you. I then tell you that the sun shines in Canberra. You come to

know the proposition and rule out all scenarios where it rains in Canberra as

epistemically impossible. More generally, for a given proposition p, we can say

that there are scenarios in epistemic space where p is true, and scenarios in

epistemic space where p is false.4 When an agent comes to know p, all scenarios

3The terms ‘scenario’ and ‘epistemic space’ below are borrowed from Chalmers (forth-
coming). For similar terminology, see also Hintikka (2003).

4A word of warning: The use of propositions in the introductory material might offend
people with firm opinions on the nature of propositions. In chapter 2, I will set aside
propositions altogether and associate epistemic possibility with sentences. But it is easier
to motivate the general picture in terms of propositions as a “placeholder” notion.
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Knowledge, Epistemic Possibility and Scenarios

in epistemic space where p is false are ruled out as epistemically impossible for

the agent. But of course these scenarios may well remain epistemically possible

for agents that do not know p.

A picture similar to the one I have sketched here can be found in many

branches of epistemology. It captures the relationship between gaining infor-

mation and excluding possibilities that constitutes the backbone of standard

possible world models of belief and knowledge.5 I have illustrated how this

basic framework works for knowledge and epistemic possibility, but it applies

straightforwardly to belief and doxastic possibility as well. When p might be

the case for all an agent believes, we can say that p is doxastically possible for

the agent. When an agent comes to believe that p, all scenarios in epistemic or

doxastic space where p is false are ruled out as doxastically impossible for the

agent. Arguably, since belief is a more fundamental notion than knowledge,

doxastic possibility is a more fundamental notion than epistemic possibility.

Yet, since epistemic possibility is the more familiar player in the literature,

and since the main insights of this project apply equally well to doxastic and

epistemic possibility, I will continue to phrase things in terms of epistemic

possibility.

Though the basic ideas behind the intuitive picture are familiar, the details

remain difficult. Particularly acute is the question of what scenarios are. To

make the basic task of this project clear, I will first analyze this central notion

in more detail.

1.2 Knowledge, Epistemic Possibility and Scenarios

Epistemic possibility is related to what different agents know and do not

know. In particular, the current notion of epistemic possibility applies to agents

5Refer, amongst many others, to Barwise (1997), Dretske (1981), Hintikka (1962), Jack-
son (1998), Lewis (1986), and Stalnaker (1984).
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Knowledge, Epistemic Possibility and Scenarios

that may fail to know that water is H2O and that Fermat’s Last Theorem is

true. To make the relationship between knowledge and epistemic possibility

more precise, let us adopt the following analyses:6

(EP?) A proposition p is epistemically possible for an agent a when

a cannot easily come to know ¬p from what a already knows.

(EN?) A proposition p is epistemically necessary for an agent a when

a can easily come to know p from what a already knows.

Though I will be more explicit about the details in chapter 2, I will assume that

(EP?) and (EN?) serve as plausible analyses of the (philosophically) ordinary

notions of epistemic possibility and necessity. Intuitively, even if a chemically

ignorant agent knows that water is water, there is no easy way for her to come

to know that water is H2O from that piece of knowledge. And intuitively, even

if a competent mathematician knows the basic principles and axioms of num-

ber theory, there is no easy way for her to come to know that Fermat’s Last

Theorem is true from these pieces of knowledge. For now, we can think of the

relevant kind of reasoning that figures in (EP?) and (EN?) as armchair reason-

ing. Roughly, if an agent can easily come to know p by reasoning from what she

already knows, then that chain of reasoning may involve empirical information

that the agent already has, but not any further empirical information.

To make the relationship between epistemic possibility and scenarios more

precise, let us first follow Chalmers and distinguish between strict and deep

epistemic possibility and necessity:

[T]he notion of strict epistemic possibility—ways things might be, for all we

know—is undergirded by a notion of deep epistemic possibility—ways things

might be, prior to what anyone knows. Unlike strict epistemic possibility, deep

6See DeRose (1991), Huemer (2007), Stanley (2005), and Teller (1972) for similar anal-
yses. The star ? in (EP?) and (EN?) indicate that these analyses are in need of slight
adjustments. The adjustments will be made in chapter 2.
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Knowledge, Epistemic Possibility and Scenarios

epistemic possibility does not depend on a particular state of knowledge, and is

not obviously relative to a subject. Whereas it is strictly epistemically possible

(for a subject) that p when there is some epistemically possible scenario (for

that subject) in which p, it is deeply epistemically possible that p when there

is some deeply epistemically possible scenario in which p.7

As I will think of the distinction, strict epistemic possibility and necessity

correspond to the notions of epistemic possibility and necessity that figure in

(EP?) and (EN?). Though it is strictly epistemically impossible for me that

it is raining in Canberra, it nevertheless remains deeply epistemically possible

that it is raining in Canberra. When a given agent comes to know p, this piece

of knowledge divides the class of deeply epistemically possible scenarios into

those scenarios where p is true and into those scenarios where p is false. If an

agent knew nothing, all deeply epistemically possible scenarios would also be

strictly epistemically possible for this agent.

We can also put this by saying that whereas the class of deeply epistemically

possible scenarios constitute epistemic space W , the class of scenarios in W

that remain strictly epistemically possible for a given agent a (at a given time)

constitute strict epistemic space Wa. The relationship between strict and deep

epistemic possibility can then be captured by saying that for any agent a,

Wa ⊆ W . So if w is in Wa, then w is in W , though the converse need not

be the case. In this sense, deep epistemic possibility is a necessary, yet not

sufficient condition for strict epistemic possibility. Intuitively, the notion of

deep epistemic possibility delineates the borders of epistemic space, and within

it, strict epistemic possibility for a delineates the borders of what a knows.

Henceforth, all unqualified talk of epistemic possibility refers to strict epistemic

possibility.

7Chalmers (forthcoming): p. 4.
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Knowledge, Epistemic Possibility and Scenarios

Given this, we can then state the basic relationship between epistemic

possibility, necessity and scenarios as follows:

(Epi-Pos?) A proposition p is epistemically possible for an agent a

just in case there is a scenario w in W such that w is

epistemically possible for a and such that p is true at w.

(Epi-Nec?) A proposition p is epistemically necessary for an agent

a just in case for each scenario w in W such that w is

epistemically possible for a, p is true at w.

These analyses are motivated by Hintikka (1962), and together with (EP?)

and (EN?) they capture the central idea behind world involving analyses of

epistemic notions such as belief and knowledge. If an agent knows p, then p is

true at all scenarios w in W that are epistemically possible for this agent.

We now have the basic ingredients to shed more light on the question of

what scenarios are. I am interested in agents that may know that water is

water, but not that water is H2O, and in agents that may know that 2+2 = 4,

but not that Fermat’s Last Theorem is true. We want scenarios in W such that

(Epi-Pos?) and (Epi-Nec?) are plausible principles for these kinds of agents.

This means admitting scenarios in W where water is not H2O and where

Fermat’s Last Theorem is false. If we need these kinds of scenarios in W , it is

easy to see what scenarios cannot look like.

First, assume we think of scenarios as metaphysically possible worlds, and

assume that we identify the class of scenarios W in (Epi-Nec?) with the class

of metaphysically possible worlds. Then (Epi-Nec?) reads as:

(Epi-Nec?
M) A proposition p is epistemically necessary for an agent a

just in case for each metaphysically possible world w in

W such that w is epistemically possible for a, p is true

at w.

8



Knowledge, Epistemic Possibility and Scenarios

Let p be the proposition that water is H2O. On a standard conception of

metaphysically possible worlds, p is true at all metaphysically possible worlds.

Accordingly, no matter which class of metaphysically possible worlds remain

epistemically possible for any given agent, p will be true at each such world. By

(Epi-Nec?
M), p is then epistemically necessary for any agent. But since there are

agents that do not know that water is H2O, p cannot be epistemically necessary

for all agents. So (Epi-Nec?
M) is false, and scenarios cannot be metaphysically

possible worlds.8

Second, assume we aim to think of scenarios as epistemically possible

worlds. Though there are several ways to make the loose and intuitive notion

of an epistemically possible world precise, I will use elements from Chalmers

(forthcoming) to motivate broadly ersatz constructions of these entities as,

roughly, maximal a priori consistent sets of sentences or propositions.9

For Chalmers,

8 Strictly, this conclusion is too hasty. Based on his causal-pragmatic account of in-
tentionality, Stalnaker (1984) argues that agents are in fact omniscient with respect to all
(metaphysically) necessary truths. To accommodate our intuitions to the contrary, Stalnaker
advances his metalinguistic or diagonalization strategy. Roughly, if an agent seemingly fails
to know that water is H2O, what she really fails to know is the contingent proposition that
the string ‘Water is H2O’ expresses the necessary proposition. Since there are plenty of
metaphysically possible worlds in which the string ‘Water is H2O’ means that cockatoos
eat magpies, the rough idea behind Stalnaker’s view is to locate apparent ignorance of a
necessary proposition in ignorance of an associated metalinguistic contingent proposition.

There is no shortage of critiques of Stalnaker’s combined fragmentation and metalinguis-
tic strategy; see for instance Field (2001): chapter 3, Lycan (1990), and Robbins (2004).
And although an adequate discussion of views like Stalnaker’s is beyond the scope of this
project, I will briefly add the following worry. On Stalnaker’s view, there is no in principle
difference between a possible world w that falsifies the proposition p that [‘Two plus two
equals four’ expresses the necessary proposition], and a world w1 that falsifies the propo-
sition p1 that [‘There are no integers a; b; c; n > 2 such that an + bn = cn’ expresses
the necessary proposition]. But if we look for an explanation of the striking fact that not
even the greatest mathematicians until recently could rule out w1, while they could easily
rule out w—alongside most other moderately ideal agents—we should expect an in principle
difference between worlds like w and worlds like w1. Since such an in principle difference is
missing in Stalnaker’s account, it ends up bearing resemblance to the “anything-goes” con-
struction of Extreme Epistemic Space that I will investigate in chapter 2. And for reasons
that will become clear, such a construction is unsuited for many purposes—and notably for
modeling moderately ideal agents.

9See Chalmers (forthcoming) for all the details. For other conceptions of epistemically
possible worlds, see Soames (2005).
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Knowledge, Epistemic Possibility and Scenarios

[. . . ] s is deeply epistemically necessary when s is a priori : that is, when s

expresses actual or potential a priori knowledge. More precisely, s is a priori

when it expresses a thought that can be justified independently of experience,

yielding a priori knowledge.10

A proposition p is then deeply epistemically possible when ¬p is not deeply

epistemically necessary. For Chalmers,

[t]his idealized notion of apriority abstracts away from contingent cognitive

limitations. If there is any possible mental life that starts from a thought and

leads to an a priori justified acceptance of that thought, the thought is a priori.

[. . . ] So if a hypothesis can be known to be false only by a great amount

of a priori reasoning, it is nevertheless deeply epistemically impossible. For

example, ‘There are integers a, b, c, n > 2 such that an + bn = cn’ is deeply

epistemically impossible.

[. . . ]

When apriority is understood as above, it is clear that typical tokens of sen-

tences such as ‘Hesperus is Phosphorus’ are not a priori. The thoughts ex-

pressed by these tokens are such that there is no possible mental life that

starts from that thought and leads to an a priori justified acceptance of that

thought.11

Given this notion of deep epistemic possibility, Chalmers goes on to con-

struct scenarios as equivalence classes of epistemically complete sentences in

an ideal language L+.12 A sentence S in L+ is epistemically complete when S

is deeply epistemically possible, and there is no other sentence T in L+ such

10Chalmers (forthcoming): p. 7. To avoid making any presuppositions about the nature
of propositions, Chalmers only works with sentences and thoughts. For now, however, I
will simply assume that his notion of deep epistemic possibility applies to the “placeholder”
notion of propositions at work here. In chapter 2, I return to these issues.

11Chalmers (forthcoming): pp. 8-9.
12In chapter 2, I return and discuss “scenario-making” languages in more details, but for

now I refer the reader to Chalmers (forthcoming): pp. 17-22. Chalmers also argues that
centered possible worlds, when properly understood, can do the relevant work that he wants
scenarios to do. Here I will only focus on the linguistic construction he offers.
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Knowledge, Epistemic Possibility and Scenarios

that (S ∧ T ) and (S ∧ ¬T ) are both deeply epistemically possible. Two epis-

temically complete sentences S and T are equivalent just in case S implies T

and T implies S, where S implies T when (S∧¬T ) is deeply epistemically im-

possible; that is, when (S → T ) is deeply epistemically necessary. A scenario

w then corresponds to an epistemically complete sentence in the sentence’s

equivalence class.

We can think of Chalmers’ construction of scenarios as formalizing the

intuitive notion of an epistemically possible world. And we can think of the

basic material in Chalmers’ construction as explicating the core idea behind

linguistic constructions of epistemically possible worlds as maximal, a priori

consistent sets of sentences in a scenario-making language. A priori consistent

in the sense that no conjunction of sentences in the set is deeply epistemically

impossible. And maximal in the sense that the conjunction of sentences in the

set with any sentence outside the set is deeply epistemically impossible. More

generally, we can use these rough details to characterize the structural features

of what I will call Ideal Epistemic Space.

Let us say that p is ideally deeply epistemically necessary when p is a priori,

where the notion of apriority is understood in the idealized sense above. With

a view to Chalmers’ construction of scenarios, let us then assume that we have

a construction of a space of scenarios that is grounded in this notion of ideal

deep epistemic necessity. Then for any ideally deeply epistemically necessary

p, p is true at each scenario w in this space. Call these scenarios ideal scenarios,

and call the space of ideal scenarios Ideal Epistemic Space.

Given this, suppose we think of epistemically possible worlds as ideal sce-

narios, and suppose we identify the class of scenarios W in (Epi-Nec?) with

the class of ideal scenarios. Then (Epi-Nec?) reads as:

(Epi-Nec?
I) A proposition p is epistemically necessary for an agent a

11
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just in case for each ideal scenario w in W such that w

is epistemically possible for a, p is true at w.

Let p be the proposition that water is H2O. Since p is not ideally deeply

epistemically necessary, there are ideal scenarios in W where p is false. So p

need not be true at each ideal scenario that remains epistemically possible for

an agent. By (Epi-Nec?
I ), then p need not be epistemically necessary for any

agent, and hence agents may fail to know that water is H2O. The problem with

(Epi-Nec?
M) has been solved. So in contrast to constructions of W based on

metaphysically possible worlds, constructions of W based on ideal scenarios

or epistemically possible worlds allow us to model agents that do not know a

posteriori necessities such as ‘Water is H2O’ and ‘Hesperus is Phosphorus’.

But now let p be the proposition that Fermat’s Last Theorem is true. Since

p is ideally deeply epistemically necessary, p is true at all ideal scenarios in

W . Accordingly, no matter which class of ideal scenarios remain epistemically

possible for any given agent, p will be true at each such scenario. By (Epi-

Nec?
I ), then p is epistemically necessary for any agent. But since there are

agents that do not know that Fermat’s Last Theorem is true, p cannot be

epistemically necessary for all agents. So (Epi-Nec?
I ) is false, and scenarios

cannot be ideal scenarios.

As a result of defining deep epistemic possibility in terms of the idealized

notion of apriority, as Chalmers notes, Ideal Epistemic Space “is best suited

for modeling the knowledge and belief of idealized reasoners that may be em-

pirically ignorant, but that can engage in arbitrary a priori reasoning.”13 Since

I am interested in non-ideal agents that may not only be empirically ignorant,

but also only have limited cognitive capacities available for reasoning, complex

a priori falsehoods can remain epistemically possible for such agents. Accord-

ingly, to make (Epi-Pos?) and (Epi-Nec?) plausible principles for the broad

13Chalmers (forthcoming): p. 8.
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class of agents that are not ideal, we need go to beyond Ideal Epistemic Space.

Though I have focused on complex mathematical truths in the discussion of

ideal scenarios, similar problems obviously arise for complex logical falsehoods.

Not only are there many complex mathematical truths but also many complex

logical truths that non-ideal agents can fail to know. By the line of reasoning

above, this immediately implies that scenarios cannot be identified with log-

ically possible worlds, maximally consistent sets of sentences or propositions,

or their close relatives.14 Rather, to make (Epi-Pos?) and (Epi-Nec?) plausible

principles for agents that are not mathematically nor logically omniscient, we

need scenarios in W at which mathematical and logical truths can be false.

Using Hintikka’s intuitive gloss “[t]his means admitting ‘impossible possible

worlds’, that is, worlds which look possible and hence must be admissible as

epistemic alternatives but which none the less are not logically possible.”15

Call scenarios at which a priori necessary truths can be false non-ideal sce-

narios, and call epistemic spaces that contain non-ideal scenarios non-ideal

epistemic spaces.16

In light of this, the basic project of the dissertation is to construct and

understand non-ideal scenarios so that (Epi-Pos?) and (Epi-Nec?) are plausible

principles for the broad class of agents that are not ideal.

1.3 Non-Ideal Epistemic Space

In investigating subsequent constructions of non-ideal epistemic spaces, I

will follow Chalmers’ general approach along two lines.

First, I will base various constructions of non-ideal epistemic space on var-

14Unless, of course, we define consistency with respect to a logic that has no theorems,
but I set aside such cases.

15Hintikka (1975): p. 477.
16Since I will not discuss issues that might arise with respect to contingent a priori truths,

I will usually just say ‘a priori truths’ intending this to mean ‘a priori necessary truths’ such
as those of mathematics and logic.
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ious non-ideal notions of deep epistemic possibility. Since we need to ensure

that not all a priori truths are epistemically necessary for non-ideal agents, we

need a non-ideal notion of deep epistemic possibility, according to which not

all a priori truths are deeply epistemically necessary. In chapter 2, I investigate

a notion according to which any sentence, and in particular any a priori false

sentence can be deeply epistemically possible. In chapter 3, I then investigate

a notion according to which some, but not all a priori false sentences can be

deeply epistemically possible.

Second, I will construct scenarios. Since non-ideal scenarios are akin to

impossible worlds, a linguistic or ersatz construction of these entities is the

most natural approach. We already have a rather good grip on what it means

to identify possible worlds with maximal, consistent sets of propositions or

interpreted sentences in some world-making language. In this camp, we find

Adams’ complete consistent sets of propositions, Carnap’s state descriptions,

Chalmers’ equivalence classes of epistemically complete sentences, and Hin-

tikka’s and Jeffrey’s complete consistent novels.17 Insofar as we can give an

explicit construction of scenarios as maximal sets of sentences, some of which

may fail to be consistent in some relevant sense of consistency, then non-ideal

scenarios seem to deserve the label world-like entities. As Nolan notices:

For most abstractionists [or ersatzers about possible worlds], in fact, it would

seem that accepting impossible worlds, and even impossibilia, would be only

accepting ontology of a sort which they are already committed to. In some

cases, they would not even need to accept anything new: someone who took

possible worlds to be sets of propositions, or sets of sentences-like representa-

tions, is probably already committed to sets of sentences which are not [. . . ]

consistent[.] These other sets may well represent perfectly adequately ways the

world could not turn out.18

17See Adams (1974), Carnap (1947), Chalmers (forthcoming), Hintikka (1962), Hintikka
(1969), and Jeffrey (1983).

18Nolan (1997): p. 542. Of course, if ones aims to understand impossible worlds from
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For purposes of this project, non-ideal scenarios will earn their keep by the

explanatory roles that they can play. And as we shall see now, they can

potentially play many useful roles.

1.4 Hyperintensional Phenomena

If we can set up a non-ideal epistemic space successfully, we can use sce-

narios in this space to avoid many of the familiar hyperintensional problems

that emerge in standard possible world frameworks. In illustrating these hy-

perintensional problems, I will take the standard possible world framework to

be committed to the claim that all logical and mathematical truths are true

at each possible world. With the possible exception of mathematical truths,

this is a fair characterization of what is common among different conceptions

of possible worlds.19

In philosophy of language, it is standard to use intensions, which are func-

tions from possible worlds to extensions, to help us understand the notion of

meaning. But it is also well-known that such possible world intensions do not

seem to capture our linguistic intuitions in many situations. The standard ex-

amples involve Fregean puzzles and attitude ascriptions. To illustrate, consider

any two mathematically equivalent sentences A and B. Since A and B are true

at all possible worlds, A and B are co-intensional. So A and B have the same

meaning or semantic content. If language is compositional, we should be able

to substitute A and B in any sentence that contains either as a constituent

without changing the truth-value of the resulting sentence. But there are many

the perspective of a Lewisian modal realism, things will look much more complicated; see
Yagisawa (1988). For other views on the metaphysical nature of impossible worlds, see
Vander Laan (1997) and Zalta (1997).

19For instance, if one has reason to believe that all mathematical truths are contingent,
one might also have reason to settle for a construction of possible worlds that allows that
mathematical truths can be false at these worlds. Though I could easily rephrase all the
examples below in terms of logical truths, mathematics provides for good and intuitive cases.
So for now I will assume that mathematical truths obtain in all possible worlds.
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mathematically equivalent A and B for which it can be intuitively true to say

things like ‘Julie believes A’ but false to say things like ‘Julie believes B’. If

A is the sentence ‘2 + 2 = 4’ and B is the sentence ‘There are no integers

a, b, c, n > 2 such that an + bn = cn’, we have a case. If so, there seems to be

more to meaning that mere intensional content.

Similar motivation comes from analyses of counterfactual conditionals with

impossible antecedents. Borrowing a case from Nolan, the counterpossible ‘If

Hobbes had squared the circle, sick children in the mountains of South Amer-

ica at the time would not have cared’ seems true, while the counterpossible

‘If Hobbes had squared the circle, then everything would have been the case’

seems false.20 But according to the standard Lewis-Stalnaker semantics for

counterfactuals, counterpossibles are always true. Since the intension of the

antecedent in both counterpossibles is false at all possible worlds, then vac-

uously all the closest worlds in which the antecedent is true are worlds in

which the consequent is true. But intuitively the two counterpossibles differ

in truth-value. If so, there seems to be more to meaning that mere intensional

content.

In philosophy of mind, many people have used possible world intensions

to represent the content of propositional attitudes like belief and knowledge.

With a view to the discussion above, we can represent the content of an agent’s

belief that p by the class of possible worlds where p is true. Yet, since the class

of possible worlds where 2 + 2 = 4 just is the class of possible worlds where

Fermat’s Last Theorem is true, we have to represent an agent that believes

2 + 2 = 4 as thereby also believing that Fermat’s Last Theorem is true. But

intuitively, an agent can believe the former without the latter. If so, there

seems to be more to propositional content than mere intensional content.

20Cf. Nolan (1997): p. 544. The same considerations can be brought to bear on world
involving analyses of indicative conditionals.
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In epistemology, a closely related problem goes under the label the problem

of logical omniscience. The problem arises in many of our best formal theories

of belief, knowledge and information. In a standard Bayesian framework, cre-

dences are normally distributed over a set of possible worlds. If so, then agents

are modeled as assigning credence 1 to all logical and mathematical truths. In

standard doxastic and epistemic logics, belief and knowledge are represented

by modal operators that receive a standard Kripke semantics in terms of quan-

tification over possible worlds. If so, then agents are modeled as knowing and

believing all logical and mathematical truths. But if we want to use Bayesian

epistemology and epistemic logic to illuminate facts about ordinary reasoners,

we cannot distribute credences over nor analyze knowledge merely in terms of

possible worlds.21 A variation of the problem of logical omniscience is known

as “the scandal of deduction”.22 In standard possible world models, the in-

formational content of a proposition p can be represented by the (finite) set

of possible worlds where p is false. However, since logical and mathematical

truths are true at all possible worlds, they strictly have no informational con-

tent. Yet intuitively, we often can and do gain new information from deductive

reasoning, and it is a “scandal” if our formal theories tell us otherwise.23 So if

we want to use our epistemological theories to illuminate the ordinary notions

of belief, knowledge and information, it seems that we need to appeal to more

than classes of possible worlds.

These considerations suggest that philosophy of language, philosophy of

mind and epistemology need a notion of content that is more fine-grained than

21As Hintikka says:

Since the assumption of [. . . ] logical omniscience is obviously mistaken, this
commitment seems to constitute a grave objection to the whole possible-worlds
treatment of propositional attitudes. (Hintikka (1989): p. 63.)

22Cf. Hintikka (1973): p. 222.
23This is known as the Bar-Hillel-Carnap paradox; see Bar-Hillel and Carnap (1953). For

recent discussions, see D’Agostino and Floridi (2009) and Sequoiah-Grayson (2008).
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traditional intensional content. Hyperintensional content is supposed to fill this

role. More specifically, if we have impossible worlds or non-ideal scenarios in

modal space, we can aim to define hyperintensions over these more fine-grained

possibilities. In contrast to the standard intensions above, hyperintensions will

be functions from non-ideal scenarios to a truth-value. Assuming that we have

a well-defined class of non-ideal scenarios and hyperintensions in our toolbox,

we can then run through a few examples to show the potential work that they

might do.

First, we can attempt to understand semantic content in terms of hyper-

intensions. For instance, though the standard intensions of ‘Julie believes

A’ and ‘Julie believes B’ coincide in truth-value for any two mathematically

equivalent sentences A and B, the values of the hyperintensions of these two

sentences need not. Since the mathematical truth B, for instance, can be false

at non-ideal scenarios, the values of the hyperintensions of ‘Julie believes A’

and ‘Julie believes B’ can come apart. Similarly, though the intuitively false

counterpossible ‘If Hobbes had squared the circle, then everything would have

been the case’ is vacuously true when modal space is exhausted by possible

worlds, it may well be false when the hyperintension of the antecedent can be

true at non-ideal scenarios. In this sense, hyperintensions can potentially play

the role of a fine-grained notion of semantic content in philosophy of language.

Second, we can attempt to use hyperintensions to represent the contents of

thoughts and beliefs. For instance, the hyperintensions of the thoughts that

2 + 2 = 4 and that Fermat’s Last Theorem is true need not coincide in truth-

value when evaluated at non-ideal scenarios. So we can represent an agent

as believing that 2 + 2 = 4 without thereby also representing the agent as

believing that Fermat’s Last Theorem is true. In this sense, hyperintensions

can potentially play the role of a fine-grained notion of mental content in

philosophy of mind.
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Third, we can attempt to use the class of non-ideal scenarios as the under-

lying space of possibilities that figures in various world models in epistemology.

For instance, we might aim to analyze the knowledge operator K in epistemic

logic in terms of quantification over non-ideal scenarios. Roughly, even if K(A)

is true at some scenario w, then some B that is logically equivalent to A might

be false at some non-ideal scenario w′ that is epistemically accessible from w.

If so, then K(B) need not be true at w, in which case knowledge need not be

closed under logical equivalence.24 Or we can attempt to distribute credences

over non-ideal scenarios. Roughly, we could then allow that Cr(A) < 1, where

Cr is a credence function and A is a logical truth. If so, then agents need not

be modeled as assigning credence 1 to all logical truths. In this sense, non-

ideal scenarios can potentially play a role in isolating a fine-grained space of

possibilities that we can use to model agents that are not logically omniscient.

Given these examples, I trust that the explanatory roles that non-ideal

scenarios can potentially play are many and useful. It should be noted that

the impossible world approach to hyperintensionality is not the only one. We

can isolate two broad alternatives. First, we have approaches that appeal to

a notion of structured content, which either determines or supplements the

intensional notion of content. For instance, we can appeal to a notion of

Russellian content that allows us to say that sentences and thoughts about

mathematical and logical truths can have different content. Such Russellian

content can then either determine intensional content, or it can be combined

with intensional content to form a complex content of some sort.25 Second, we

24For detailed discussion of semantics for epistemic logic that involve impossible worlds,
see Fagin et al. (1995): pp. 357-362 and Wansing (1990).

25See, for instance, Soames (1987). On a Perry-style view on beliefs, the relation between
belief and content or (Russellian) proposition is roughly mediated by something akin to
modes of presentations or guises that are tied to psychological features of the believer; see
for instance Crimmins and Perry (1989). If such guises are individuated in a sufficiently
fine-grained manner, it seems in principle possible to use them to handle most, if not all
hyperintensional problems. If so, we might include a Perry-style view on the metaphysics of
beliefs as a third distinct approach to hyperintensionality.
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have approaches that aim to reconcile the standard possible world framework

with hyperintensional phenomena. Famously, Stalnaker has argued that many

hyperintensional phenomena, when properly understood, can be captured us-

ing just intensional content. On Stalnaker’s view, propositional content is

exhausted by possible world content, and apparent hyperintensional problem

cases are explained away using a combined fragmentation and metalinguistic

strategy.26

I will not attempt to evaluate and compare these alternatives to the im-

possible world route that I will investigate in this project. But if we bracket

a Stalnakerian reconciliation approach, as I will, let me briefly mention two

general motivations for going the impossible world route. First, if we can

construct a non-ideal epistemic space that enjoys nice formal and intuitive

properties, we might use scenarios in this space to motivate a notion of propo-

sitional content, which although unstructured is as fine-grained as structured

propositional content. Derivatively, we can use this notion to make progress

on the hyperintensional problems above. Second, if we can construct a non-

ideal epistemic space that enjoys nice formal and intuitive properties, we might

have a general purpose space of scenarios that can potentially feed in to var-

ious world involving models in epistemology. Closest to home, we might be

able to use such a space to capture the intuitive picture of epistemic possi-

bility outlined above. But more generally, if non-ideal epistemic space has

an interesting formal structure, as the traditional Boolean structure that un-

derlies standard possible world frameworks, we might attempt to investigate

non-classical probabilistic and logical models that are based on this non-ideal

epistemic space.

26See in particular Stalnaker (1984); see also footnote 8, page 9.
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1.5 Non-Trivial Epistemic Spaces

As we shall see in chapter 2, it is rather simple to construct a non-ideal

epistemic space in which we can avoid all hyperintensional problems. Scenarios

in this space, which I will call Extreme Epistemic Space, are akin to Priest’s

open worlds in which arbitrary logical contradictions and inconsistencies can be

true.27 For reasons that I will only briefly indicate at this point, I will mainly be

interested in constructions of non-trivial epistemic spaces. Very roughly, a non-

trivial epistemic space is a space of scenarios where not “anything goes”. Less

roughly, scenarios in a non-trivial epistemic space will obey certain substantive

constraints. The constraints that I want scenarios in non-trivial epistemic

space to obey will in general be motivated by two desiderata.

Ideally, the first desideratum goes, we should be able to use scenarios in

non-ideal epistemic space to give a world involving analysis of a non-trivial

notion of hyperintensional content. Call this the content desideratum. Ideally,

the second desideratum goes, we should be able to use scenarios in non-ideal

epistemic space to give a world involving analysis of a non-trivial notion of

epistemic possibility that captures which propositions should and should not

remain epistemically possible for non-ideal agents. Call this the rationality

desideratum. Here I will motivate each desideratum and indicate how they

provide prima facie motivation for investigating constructions of non-trivial

epistemic spaces. In chapters 2 and 3 I elaborate further on the details.

I will think of the notion of non-triviality that figures in both desiderata

as tied to a notion of non-ideal reasoning of a particular kind. To illustrate, I

borrow an example from Cherniak.28 Intuitively, if I know the proposition p

that there are 2 apples in that basket and 3 apples in this basket, I can easily

come to know the proposition q that there are 5 apples. On the other hand,

27See Priest (2005).
28Cf. Cherniak (1986): p. 29. See also Barwise (1997) for similar examples.
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if I know the proposition p1 that there are 298 apples in each of 783 baskets,

I cannot easily come to know the proposition q1 that there are 233,334 apples.

In the first case, if I know p, then there is a chain of arithmetical reasoning that

I could easily, obviously, or instantly perform to infer q. Intuitively, if I were

to reflect on p, I could immediately come to accept q. Not so for the complex

chain of arithmetical reasoning that is involved in the second case. If I know

p1, there is no chain of arithmetical reasoning that I could easily, obviously,

or instantly perform to infer q1. Intuitively, if I were to reflect merely on p1, I

could not immediately come to accept q1.

If this intuitive picture is correct, and I will assume that it is, then a

notion of hyperintensional content or epistemic possibility can be said to be

non-trivial if it reflects these basic non-trivial inferential relations among var-

ious thoughts and beliefs. For agents that have different cognitive capacities

available for easy, obvious, or instant reasoning, different inferential relations

among thoughts and beliefs will count as trivial. For an ideal agent that can

engage in arbitrary a priori reasoning, the inference from the thought that p1

to the thought that q1 will be trivial. And maybe there are certain agents, the

extremely non-ideal ones, for whom the inference from the thought that p to

the thought that q will be non-trivial. For the broad class of moderately ideal

agents, at least certain basic inferential relations among thoughts will count as

trivial—for instance the inference that leads from the thought that there are

2 apples in that basket and 3 apples in this basket to the thought that there

are 5 apples.

1.5.1 Content Desideratum

For the content desideratum, we want to use scenarios in non-ideal epis-

temic space to give a world involving account of a non-trivial notion of hyperin-

tensional content. In a world involving analysis of thought and belief content,
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we aim to represent content in terms of classes of possibilities. To represent the

content of non-ideal epistemic states, we can aim to use non-ideal scenarios. In

particular, we can aim to represent the contents of non-ideal epistemic states

by non-ideal epistemic intensions, which will be functions from ideal and non-

ideal scenarios to truth-values.29 The non-ideal epistemic intension of a belief

with a certain content p will map a non-ideal scenario to the truth-value of p

in that scenario. With a view to the intuitive picture from above, the content

of a belief will correspond to the way it divides non-ideal epistemic space.

Suppose then that we have a well-defined space of non-ideal scenarios, and

suppose we want to use non-ideal epistemic intensions to represent the contents

of the epistemic states of moderately ideal agents. Since the contents of such

epistemic states can stand in non-trivial inferential relations to each other, we

ideally want to reflect these relations in the non-ideal epistemic intensions that

we use to model these contents. To use the example from above, this would

mean that the non-ideal epistemic intension of the thought that q should be

true at a scenario w just in case the non-ideal epistemic intension of the thought

that p is true at w. But if so, then this suggests that we need a construction

of non-ideal scenarios that obey certain constraints and where not “anything

goes”. If everything went, there might well be non-ideal scenarios where p is

true and q is false, in which case we cannot use these scenarios to define the

kinds of non-trivial, yet non-ideal epistemic intensions that are appropriate for

modeling the contents of the epistemic states of moderately ideal agents.

In this sense, if we can give a successful construction of non-trivial epis-

temic space, we might use it to develop an interesting world involving analysis

of a non-trivial notion of hyperintensional content. Derivatively, we could use

such an analysis to do substantial work in philosophy of language, mind and

epistemology.

29The term ‘non-ideal epistemic intension’ is taken from Chalmers (forthcoming).
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In particular, following Chalmers, there is hope that non-ideal epistemic

intensions may behave as a sort of Fregean content.30 The Fregean content

of a thought or an expression is its sense, where sense is an aspect of content

that is tied to cognitive significance. Roughly, two thoughts or sentences A

and B have the same sense just in case A↔ B is cognitively insignificant. We

can then first attempt to analyze sense in terms of non-ideal epistemic inten-

sions. Second, we can attempt to say that a thought is cognitively insignificant

when a moderately ideal agent can come to known or accept the thought by

easy, obvious or instant a priori reasoning—or, by invoking the analysis of

epistemic possibility above, whenever the thought is epistemically necessary

for any moderately ideal agent, independently of what empirical information

she might happen to have. This naturally motivates an analysis, according to

which A and B have the same non-ideal epistemic intension just in case A↔ B

is epistemically necessary for any moderately ideal agent. Insofar as the non-

ideal epistemic intensions of logical and mathematical truths can come apart,

we could then vindicate the Fregean idea that logically and mathematically

equivalent thoughts and expressions can have different senses.

This provides motivation for the content desideratum, and derivatively

prima facie motivation for investigating non-trivial epistemic spaces.

1.5.2 Rationality Desideratum

For the rationality desideratum, we want to use scenarios in non-ideal

epistemic space to give a world involving analysis of a non-trivial notion of

epistemic possibility that captures which propositions should and should not

30See Chalmers’ work on the Golden Triangle, which promises to restore the Kantian link
between reason and modality, the Fregean link between reason and meaning or content, and
the Carnapian link between meaning and modality; cf. Chalmers (2004). See Chalmers
(2002a) for details on the relation between epistemic intensions and Fregean content, and
see also Chalmers (2002b) for some of the many puzzles that epistemic intensions could
potentially resolve.

24



Non-Trivial Epistemic Spaces

remain epistemically possible for agents that are not extremely non-ideal. The

basic observation is this: Just because we give up the requirement that all

agents are ideally rational, we still “ascribe knowledge, belief, the ability to

form judgements and so on only to agents, i.e., systems which we take to be

(or which can be interpreted as) rational to some degree.”31 At least for a

project in epistemology, this claim seems platitudinous.

In line with Jago, I have a resource-bounded conception of rationality in

mind:

A coherent, deductively closed set of beliefs is an ideal of rational enquiry, for

example, yet an agent can be deemed rational if it has the ability to reason

in accordance with certain logical rules and it deploys those abilities as well

as the cognitive resources to hand allow. Failures of closure within an agent’s

belief set may be due to a failure of rationality but they may also be due to

a lack of cognitive resources. One can, therefore, hold that the philosophically

interesting notion of epistemic space is a rational space, incorporating the

normative element of our epistemic concepts, without thereby holding it to be

an ideal epistemic space in Chalmers’ [Ideal Epistemic Space] sense.

Our concept of epistemic possibility (and hence of an epistemic scenario) is a

normative concept which, at the same time, should allow that valid inferences

can be informative.32

The guiding idea behind this conception of rationality is simple: If we bracket

aspects of non-ideal reasoning that pertain to mistakes, forgetfulness and lack

of attention, non-ideal reasoning is not fundamentally different from ideal rea-

soning. It is just limited. If we say that these limitations are determined by

the cognitive resources that agents have available for reasoning, we can natu-

rally invoke the following minimal requirement of rationality: If an agent can

31Jago (2009a): p. 332.
32Jago (2009a): p. 333. Recently, resource-bounded reasoning and rationality have been

investigated intensively in artificial intelligence and formal epistemology; see Jago (2006) for
a broad overview and further references.
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come to believe p by easy, obvious or instant reasoning from what she already

believes, then the agent rationally should believe p. A minimally rational or

moderately ideal agent is then an agent that never violates this requirement.33

The (EP?) and (EN?) analyses, which arguably capture the core of standard

conceptions of epistemic possibility and necessity, nicely reflect the idea behind

resource-bounded rational reasoning. With a view to (EN?), if an agent can

easily come to know p from what she already knows, then p is epistemically

necessary for this agent.34 Whether or not ordinary reasoners actually engage

in the relevant kind of easy reasoning that leads to p, or whether their thoughts

are distracted, confused or not focused on p, the dispositional capacity to

engage in this reasoning remains. In this sense, (EP?) and (EN?) capture which

propositions should remain epistemically possible and necessary for ordinary,

reflective reasoners. That is, they capture which propositions are epistemically

possible and necessary for minimally rational agents that always engage in the

relevant kind of reasoning that ordinary, reflective reasoners can easily, and

often do engage in. This gives the (EP?) and (EN?) analyses a normative twist

that reflects the normative component of our concept of epistemic possibility.

Notice, however, that this normative component need not prevent us from

saying that there are extremely non-ideal agents for whom just about any

proposition is epistemically possible. We will just have to stipulate that such

agents have no, or only few cognitive capacities available for easy reasoning. In

33Along the lines of Cherniak’s “no rationality, no agent” dictum, one might hold that a
notion of minimal rationality plays a constitutive role for what it means to be a person with
beliefs and desires; cf. Cherniak (1986). Arguably, the current minimal notion of rationality
can play such a constitutive role. Intuitively, since the notion can be motivated by reference
to those inferences that cognitive systems like ours are always disposed to make, it is hard
to imagine how our thoughts and beliefs could violate this minimal requirement wildly. For
recent discussions of the constitutive role of rules of rationality, see Boghossian (2003), Glüer
and Wikforss (2009), and Wedgwood (1999).

34Huemer (2007) complains that analyses along the lines of (EP?) and (EN?) are in-
sufficiently informative to be satisfying. In chapter 3, I will provide a precise test case
interpretation of ‘easy reasoning’, which at least provides us with sufficient information for
cases of easy, a priori logical reasoning.
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that case, (EP?) allows that any proposition can be epistemically possible for

such agents. Of course, this will have the consequence that agents that purport

to believe p but not q, even though q follows from p by easy reasoning will be

described as having no cognitive resources available for easy reasoning. Had we

aimed for a model of human psychology, this would be implausible. Normal

people often forget a relevant piece of information, make a mistake or get

distracted in a given chain of reasoning. But for purposes of this project, I will

abstract away from these aspects of non-ideal reasoning and focus exclusively

on the aspects that pertain to limited cognitive resources. Obviously, this is an

idealization. I will be able to model agents with limited cognitives resources,

but not agents that make mistakes in their reasoning.

Given this, suppose we have a well-defined space of non-ideal scenarios, and

suppose we want to use these scenarios to give a world involving analysis of

a non-trivial notion of epistemic possibility that applies to minimally rational

agents. Return to the example from above, and suppose a minimally rational

agent a knows the proposition p that there are 2 apples in that basket and 3

apples in this basket. Then p is epistemically necessary for a. Since a can easily

infer the proposition q that there are 5 apples from the proposition p, a should

rationally accept q when she accepts p. We capture this normative element

by saying that if p is epistemically necessary for a, then so is q. On the other

hand, suppose a knows the proposition p1 that there are 298 apples in each

of 783 baskets. Then p1 is epistemically necessary for a. But we can imagine

that a cannot easily infer the proposition q1 that there are 233,334 apples

from the proposition p1. Then a is rationally excused, on the current minimal

conception of rationality, for not accepting q1. We capture this normative

element by saying that even though p1 is epistemically necessary for a, q1 may

remain epistemically possible for a. To give a world involving analysis of this

non-trivial notion of epistemic possibility, we then need to ensure that if p and
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p1 are true at each scenario that remains epistemically possible for a, then q is

also true at each such scenario, while q1 is false at some such scenario. But if

so, this suggests that we need a construction of non-ideal scenarios that obey

certain constraints and where not “anything goes”. If everything went, we

could not be assured that q is true at each epistemically possible scenario for

a whenever p is true at each such scenario.

In this sense, if we can give a successful construction of non-trivial epis-

temic space, we might use it to develop an interesting world involving analysis

of a non-trivial notion of epistemic possibility that applies to minimally ra-

tional agents. By having a space of scenarios that appropriately reflect what

should remain epistemically possible for ordinary reasoners, the hope is that

this space can potentially play a fundamental role in characterizing the modal

borders within which we can model ordinary, yet non-trivial reasoning, inquiry

and deliberation. Moreover, we could also use such a world involving analysis

to shed light on the recent flow of papers that deal with various aspects of the

non-trivial notion of epistemic possibility. For instance, we might use scenarios

in non-trivial epistemic space to participate in the debates over “the” correct

semantic analysis of expressions that involve epistemic modals such as ‘might’

and ‘must’.35 We might propose variations of the standard world involving

contextualist or relativist treatments of epistemic modals, which can handle

utterances of “It might be that not-s”, where s is a mathematical truth. But

in general, I trust that there is an independent interest in understanding epis-

temic possibility and necessity in their own right. Following Huemer, though

epistemic possibility has not nearly received as much attention as metaphysical

and logical possibility in the philosophical literature, it is arguably “the kind

of possibility most often invoked in ordinary life.”36

35See, for instance, Egan et al. (2005) and Egan (2007).
36Huemer (2007): p. 119.
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Given this, I hope there is motivation for the content and rationality

desiderata, and derivatively prima facie motivation for investigating construc-

tions of non-trivial epistemic spaces. After having investigated Extreme Epis-

temic Space in chapter 2, I will argue that we have more than prima facie

motivation for investigating non-trivial epistemic spaces. More specifically, I

will motivate the following two claims. First, if we want to make non-trivial

inferences from what obtains and does not obtain throughout a class of sce-

narios to the contents of the epistemic states of moderately ideal agents, then

we need non-ideal scenarios to obey substantive constraints. Second, if we

want to make non-trivial inferences from what obtains and does not obtain

throughout a class of scenarios to what is epistemically possible and neces-

sary for minimally rational agents, then we need non-ideal scenarios to obey

substantive constraints. In both cases, this involves investigating non-trivial

epistemic spaces.

Although both the content and rationality desiderata rely on a notion of

non-trivial reasoning that tracks what can be established by easy or obvious

reasoning, it is worth stressing that the content desideratum does not say any-

thing about what agents should rationally believe. Rather, it says something

about the contents of thoughts and beliefs that stand in non-trivial inferential

relations to each other. The claim that the contents of thoughts and beliefs

are determined partly by what can be established by easy or obvious reasoning

is not in itself a normative claim. And one may well accept this claim while

maintaining that there is more to minimal rationality than what can be es-

tablished by easy or obvious reasoning. As such, a notion of hyperintensional

content need not come with a built-in normative component of some sort.

Yet, as we shall see in later chapters, since both the content and rationality

desiderata rely on a notion of easy or obvious reasoning, the two desiderata go

together. This is already reflected in the examples above. As illustrated, to
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satisfy both the content and rationality desiderata, non-ideal scenarios need

to verify the proposition q that there are 5 apples whenever they verify the

proposition p that there are 2 apples in that basket and 3 apples in this basket.

As such, if we can formulate a constraint on non-ideal scenarios that ensures

that q is true at a scenario w whenever p is true at w, we can satisfy both

the content and rationality desiderata. And if we cannot formulate such a

constraint, we will fail to satisfy both desiderata. In this sense, the content

and rationality desiderata go together. This also means that whenever the

contents of p and q are the same—i.e. whenever p and q are true at the same

scenarios—then any agent that believes p thereby also believes q and thus

counts as a minimally rational agent in the relevant sense.

But although the content and rationality desiderata go together, it is clear

that they are distinct desiderata. To illustrate this with an example, consider

again the proposition p1 that there are 298 apples in each of 783 baskets and

the proposition q1 that there are 233,334 apples. Although q1 does not follow

from p1 by easy or obvious reasoning, suppose we say that q1 nonetheless

follows from p1 by feasible reasoning. Suppose also that we have a good grip

on the notion of feasible reasoning, and that we require that an agent should

rationally believe a proposition p if the agent can come to believe p by feasible

reasoning. We could then define a minimally rational agent as an agent that

never violates this requirement, and let the rationality desideratum apply to

such agents. To satisfy the rationality desideratum, we would then need a

constraint on non-ideal scenarios that says that q1 is true at a scenario w

whenever p1 is true at w. Yet, we might well maintain that the contents of p1

and q1 are different, in which case we would need non-ideal scenarios at which

p1 is true but q1 false to satisfy the content desideratum. In such cases, the

content and rationality desiderata come apart. So although the two desiderata

go together throughout subsequent constructions of non-ideal epistemic space,
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they are distinct desiderata—just as the notions of content and rationality are

distinct notions.

In investigating the prospects of constructing non-ideal epistemic spaces

that can help us satisfy the content and rationality desiderata, the task of

making (Epi-Pos?) and (Epi-Nec?) plausible for the broad class of non-ideal

agents constitutes an important first step. If we cannot ensure that complex

a priori falsehoods may remain epistemically possible for non-ideal agents, we

cannot use the corresponding space to define non-ideal epistemic intensions

that can play a role in analyzing non-trivial hyperintensional content. And

neither can we use the corresponding space to give a world involving analysis of

a non-trivial notion of epistemic possibility that applies to minimally rational

agents. But if we can ensure that (Epi-Pos?) and (Epi-Nec?) are plausible

principles for non-ideal agents, we can then evaluate whether the construction

is suitable for satisfying the content and rationality desiderata.

1.6 Overview

The current project is essentially exploratory. Its main aim is to explore

various constructions of non-ideal epistemic space and the pros and cons that

they have—in particular, to explore and evaluate constructions of non-trivial

epistemic spaces that impose substantive constraints on non-ideal scenarios or

impossible worlds in a broad sense.

To anticipate my conclusions in a rough and simplified form: If the crite-

rion of success is measured in terms of the content and rationality desiderata,

then successful constructions of non-trivial epistemic spaces are hard, if not

impossible to find. As we shall see, the general problem is that constructions

of non-trivial epistemic spaces either pull too much towards spaces like Ideal

Epistemic Space or too much towards spaces like Extreme Epistemic Space. If
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we want to avoid logical omniscience, the structure of a space like Ideal Epis-

temic Space is of little use. If we want to satisfy the content and rationality

desiderata, the nearly trivial structure of a space like Extreme Epistemic Space

is of little use.

More generally, if we want a construction of a non-ideal epistemic space

that can safely navigate between the Charybdis of logical omniscience and the

Scylla of “anything goes”, our options are severely limited.37 If you think, as

I did, that there should be a wide spectrum of intermediate epistemic spaces

to investigate, you will be surprised to find that there is not.

Before digging into the details, here is a brief chapter outline:

In chapter 2, I provide a construction of Extreme Epistemic Space. Ef-

fectively, Extreme Epistemic Space constitutes the diametric opposite of Ideal

Epistemic Space, and it ensures that the (Epi-Pos?) and (Epi-Nec?) principles

are plausible even for extremely non-ideal agents. Though we can potentially

avoid all hyperintensional problems in Extreme Epistemic Space, I argue that

we have good reason to investigate constructions that impose substantive con-

straints on non-ideal scenarios. This will lead us to constructions of non-trivial

epistemic spaces.

In chapter 3, I lay out the general background structure for constructions of

non-trivial epistemic spaces. By giving a test case interpretation of the notion

of non-ideal deep epistemic possibility in terms of a notion of provability in

n steps, I will set up the structure for stratified constructions of epistemic

spaces. Roughly, the idea is to have a sequence of notions of non-ideal deep

epistemic possibility that is associated with a corresponding sequence of non-

37Cf. Chalmers (forthcoming): p. 49:

Perhaps the biggest open problem in the study of non-ideal epistemic space is
that of finding a construction of non-ideal scenarios that avoids the Scylla of
“anything goes” and the Charybdis of logical omniscience.
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ideal epistemic spaces, the different end points of which are spaces much like

Extreme Epistemic Space and spaces much like Ideal Epistemic Space. The

hope is that we can find a particular space in this sequence that can help us

satisfy the content and rationality desiderata.

In chapter 4, I investigate three intended constructions of non-trivial epis-

temic space. Though the first model, the Single Disprovability Model, can sat-

isfy the core formal idea behind constructions of non-trivial epistemic spaces, I

will argue that scenarios in the model remain too unconstrained to make seri-

ous progress on the content and rationality desiderata. I then investigate two

alternative constructions—the Joint Disprovability Model and Jago’s model

in Logical Information and Epistemic Space—that attempt to impose further

constraints on non-ideal scenarios.38 Both models will have the undesired con-

sequence that agents characterized by these models turn out to be logically

omniscient, and that hardly any non-ideal scenarios survive in the correspond-

ing epistemic spaces.

In chapter 5, I isolate the root of the problem that constructions of non-

trivial epistemic spaces have. Roughly, I will show that attempts to eliminate

extremely unconstrained non-ideal scenarios from non-ideal epistemic space

have the undesired result that all non-ideal scenarios are eliminated from the

corresponding space. Alternatively, as soon as we attempt to avoid the Scylla

of “anything goes”, we run into the Charybdis of logical omniscience. To avoid

logical omniscience, this will leave us with two kinds of alternatives that I call

Intermediate Models and Partial Models. I argue that both sets of alternatives

fail to make progress on the content and rationality desiderata.

In chapter 6, I conclude and return to some of the issues discussed in this

chapter.

38Jago (2009a).
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Chapter 2

Extreme Epistemic Space

If we want to avoid logical omniscience, we need non-ideal scenarios in

epistemic space. In this chapter, I investigate a maximally liberal model of

non-ideal epistemic space that I call Extreme Epistemic Space. In contrast to

Ideal Epistemic Space, we will be able to use scenarios in Extreme Epistemic

Space to capture facts about epistemic possibility for all kinds of non-ideal

agents.

First, however, I want to introduce a number of key elements that will play

a central role for the basic framework and analyses of this project. Second, I

lay down the properties that Extreme Epistemic Space needs to have to ensure

that we can model extremely non-ideal agents. Third, I evaluate Extreme

Epistemic Space. For the purpose of modeling the broad class of agents that

are not extremely non-ideal, I argue that we have good reason to investigate

models that have a less trivial structure than Extreme Epistemic Space. (In

the appendix in section 2.6, I discuss a specification of a “scenario-making”

language that allows us to give up two substantial assumptions that I introduce

in this chapter and invoke for the general project.)

By the end of this chapter, we will be ready to investigate non-trivial epis-

temic spaces whose main job is to capture facts about epistemic possibility for

moderately ideal agents. Such spaces, as we shall see, will have to navigate

between Ideal Epistemic Space and Extreme Epistemic Space.
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2.1 Acceptance and Rejection

What are the objects of epistemic possibility? For the motivational part,

I have worked with propositions as a placeholder notion for the objects of

epistemic possibility. But for much of the constructive work that I want to do

in this project, it is useful to have some more definite entities to work with.

The question is then which entities we should invoke.

One of the declared potential applications of non-ideal epistemic space is

to motivate a notion of propositional content that although unstructured is as

fine-grained as structured propositional content—and in particular, to make

sense of a notion of Fregean propositions. So I cannot easily assume Fregean

propositions from the outset. And at the same time it hardly makes sense

to presuppose any of the other standard notions of propositions, even if they

or their sufficiently enriched cousins could capture the kinds of cases that I

discussed in the introduction. We could in principle think of propositions as

primitive abstract entities that at least initially can capture arbitrarily fine-

grained cognitive and epistemological differences in reasoning. But again, it is

useful to adopt some more definite entities for many of my purposes.

More generally, there is also independent reason to circumvent the notion

of propositions. The debates between Russellian and Fregean views, and be-

tween structured and unstructured views of propositions are complicated and

multi-dimensional. So to avoid entangling the intuitive picture and the un-

derlying world involving analysis of epistemic possibility with these debates,

there is reason to bypass propositions altogether. For the main objectives of

this project, the details of the extensive literature on propositions are mainly

a distraction.

So instead I will let the objects of epistemic possibility be sentences and

analyze what it means for a sentence to be epistemically possible and necessary
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in terms of the notions of acceptance and rejection. In the following sections,

I will characterize these notions more precisely.

I make the following assumptions about acceptance and rejection. First,

acceptance and rejection are to be understood as exclusive, though not ex-

haustive notions. Following Priest,

acceptance and rejection do appear to be incompatible. One can certainly

believe something and believe its negation. One might even argue that one

can believe something and not believe it, though this is much more dubious.

But it seems difficult to argue that one might both believe something and

refuse to believe it. Characteristically, the behaviour patterns that go with

doing X and refusing to do X cannot be displayed simultaneously.1

So while no agent can simultaneously accept and reject a sentence, the agent

may well neither accept nor reject it. Second, acceptance and rejection are to

be understood as dispositional notions: Roughly, as dispositions to occurrently

accept and to occurrently reject. Though I will say more below about what

it might mean to accept a sentence—more precisely in section 2.1.2—we can

for now think of acceptance in terms of dispositions to assert or to assent to

a sentence. Third, acceptance and rejection are to be understood as notions

of sincere acceptance and rejection. Roughly, this means that agents that

accept and reject various sentences are attentive, mentally well-functioning,

and not under the influence of various drugs. Finally, I take it that acceptance

and rejection of sentences can display a dynamic structure that reveals certain

inferential patterns and regularities. For instance, if I accept ‘If it rains in

Canberra, the streets are wet in Canberra’, I also typically accept ‘The streets

are wet in Canberra’ should I come to accept ‘It rains in Canberra’.

1Priest (2006b): pp. 98-99; refer also to Priest (1999): pp. 113-115 and Priest (2006a):
pp. 109-110. Restall (2005a) refers to states in which a sentence is both accepted and
rejected as ‘self-defeating’ states; see also Beall and Restall (2000), Humberstone (2000),
Rumfitt (2000), and Smiley (1996).
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For the initial construction of Extreme Epistemic Space, which is specifi-

cally targeted at extremely non-ideal agents, I will take both (occurrent) ac-

ceptance and (occurrent) rejection as primitive notions. This is motivated by

the intuition that extremely non-ideal agents are the kinds of agents that may

simultaneously accept sentence A and accept sentence ¬A. When I shift the

focus to moderately ideal agents in chapter 3 and onwards, I will define ‘re-

jection of A’ as ‘acceptance of ¬A’ and only take the notion of acceptance as

primitive.2 This is motivated by the intuition that moderately ideal agents are

the kinds of agents that never accept contradictions—pace dialetheism where

it might be rational to believe certain contradictions.

2.1.1 Acceptance and Sentences

What is the language(s) in which agents accept and reject sentences? For

the constructions that I will investigate in this project, the existence of multiple

agent languages and of context-dependence causes problems. As mentioned in

the introduction, I will focus on linguistic or ersatz constructions of scenarios

as sets of sentences in some “scenario-making language”. To analyze epistemic

possibility and necessity, we will want to evaluate sentences for truth and falsity

at scenarios constructed in this scenario-making language.

To illustrate the problems that arise from multiple agent languages and

context-dependence, assume that we identify the objects of acceptance and

rejection with (declarative) sentence types of multiple natural languages. To

a first approximation, we can then say that an agent a accepts (rejects) a

sentence type A just in case a is disposed to occurrently accept (reject) a

token of A. If A is a type of a language that a does not understand, we can

say that a neither accepts nor rejects A.

2If one has a better grip on the notion of rejection, one can of course also take rejection
as primitive and let acceptance be the defined notion.
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Given this, the key question is now which language the scenario-making

language should be. For my purposes, there seems to be two options. On the

first option, we construct scenarios in a single language L+—L+ might be a

natural language like English, but it need not. In order to evaluate sentence

types of another given language Li at scenarios constructed in L+, we invoke

translation relations between sentence types in L+ and sentence types in Li.

Roughly, the job of the translation relation is to make sure that sentence types

of arbitrary languages are suitable for being evaluated at scenarios constructed

as sets of sentence types in a single language L+ that may be different from all

these other languages. However, since an appeal to a translation relation raises

a number of further difficult issues, I will postpone discussion of translation-

involving constructions of scenarios to the appendix of this chapter.

On the second option, we dispense with a translation relation and aim to

construct scenarios by using a combination of all natural languages simulta-

neously. To briefly illustrate and discuss this second option, assume that we

let the scenario-making language correspond to the class LU of (possible) sen-

tence types of all natural languages. Scenarios will then correspond to sets of

sentence types of all natural languages. To evaluate sentence types of a given

natural language Li at scenarios constructed in LU , a sentence type A of Li

will be true at a scenario if that scenario contains relevant sentence types of

Li that stand in the appropriate “true at” relation to A—for instance, the

scenario might already contain the relevant sentence type A of Li. Since we

are not appealing to a translation relation for the evaluation of sentence types

at scenarios, any sentences in languages other than Li will be irrelevant for the

evaluation of A at scenarios constructed in LU .

The scenarios constructed in LU will be of little use for many applications

of non-ideal epistemic space. In particular, they will be of little use for defining

non-ideal epistemic intensions that we can use to model contents. For if agents
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a and b accept and reject types of different languages, there will always be

arbitrarily many distinctions among scenarios constructed in LU that a but

not b can make, and that b but not a can make. Derivatively, the classes of

scenarios that remain epistemically possible for agents that accept and reject

types of different languages will always be different. And correspondingly,

the non-ideal epistemic intensions that we can define over these scenarios will

always be different for agents that speak different languages. Yet to model

the contents of the epistemic states of arbitrary agents, this general language-

relativity of non-ideal epistemic intensions is unwanted.

Even if we restrict the construction of scenarios to a single natural language,

problems of context-dependence still arise. Suppose we construct scenarios

from sentence types in a context-dependent language like English. Consider

then the context-dependent type ‘This is blue’. Clearly, many agents are si-

multaneously disposed to occurrently accept—think assert or assent to—some

tokens of ‘This is blue’ and to occurrently reject some tokens of ‘This is blue’.

But on the definition above, such agents are then said both to accept and reject

the type ‘This is blue’, which is impossible in the current framework. Since

this pattern generalizes to many context-dependent types, context-dependent

phenomena in natural languages then pose a problem for analyses that identify

the objects of acceptance and rejection with types of natural languages.

We might attempt to avoid the problems concerning context-dependence

by identifying the objects of acceptance and rejection with sentence tokens of a

natural language, and by constructing scenarios as sets of these tokens. But as

the construction of scenarios in LU , the corresponding construction of scenarios

as sets of sentence tokens remains of little value for many applications of non-

ideal epistemic space. In particular, since sentence tokens are tied to specific

agents, the resulting epistemic space will be completely agent-relative. But for

the purposes of capturing facts about epistemic possibility for classes of non-
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ideal agents, and for specifying non-ideal epistemic intensions that allow us to

model general features of non-ideal content and reasoning, this agent-relativity

is unwanted.

One might attempt to handle both the multiple-language problem and the

context-dependence problem by again appealing to a translation relation. For

instance, we might construct scenarios in a single context-independent lan-

guage L+—since context-dependent phenomena are abundant in natural lan-

guages like English, L+ cannot be a natural language. In order to evaluate

sentence tokens of arbitrary natural languages for truth and falsity at scenarios

constructed in L+, we invoke translation relations between sentence types in

L+ and sentence tokens. But again, since the appeal to a translation relation

generates a number of further complications, I will postpone discussion of this

kind of construction to the appendix of this chapter.

To handle the multiple-language problem and the context-dependence prob-

lem in a more straightforward manner, I will make two strong assumptions—in

the appendix in section 2.6 below, I then discuss a way in which we can give

up these assumptions. First, I will assume that we want to model only agents

that accept and reject sentences in a single language L. Call this the language

assumption. Second, I will assume that there is no context-dependence in L,

or better, that agents are never disposed to simultaneously accept or reject

tokens of the same type in L. Call this the context assumption. Clearly, the

language and context assumptions are very strong. The main motivation for

these assumptions lies in the problems above, and as I will notice below, they

are not unreasonable for my main purposes in this project.

Given the language and context assumptions, the question is then which

kind of language L is. Though L cannot be a natural language like English

because of context-dependent phenomena, we can let L be a regimented ver-

sion of English—sufficiently enriched with mathematical, logical and scientific
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expressions—that I will call English?.3 The rough idea behind English? is

this: Whereas speakers of English are often disposed both to assert and to

deny tokens of a given sentence type to convey different pieces of information,

speakers of English? can always use tokens of orthographically distinct types

to convey similar pieces of information. For instance, speakers of English are

often disposed both to assert and to deny tokens of ‘The banks are beautiful’

to express their beliefs in the beauty of river banks and their disbeliefs in the

beauty of financial institutes. But speakers of English? can always use tokens

of orthographically distinct types such as ‘The banks1 are beautiful’ and ‘The

banks2 are beautiful’ to express distinct beliefs.

To make this rough idea behind English? more precise, we can invoke

Chalmers’ distinction between epistemically variant and epistemically invari-

ant expressions.4 To illustrate the idea behind the distinction, consider the

name ‘Neptune’. Suppose Leverrier uses ‘Neptune’ as a name for whatever

planet perturbs the orbit of Uranus. For Leverrier, the inference from ‘Nep-

tune is beautiful’ to ‘The planet perturbing the orbit of Uranus is beautiful’

can then be justified a priori. But for later speakers like me that have picked

up the name ‘Neptune’ through some empirical channel, this inference can-

not be justified a priori. When a term like ‘Neptune’ supports differences in

apriority in this way, the term is epistemically variant. Likewise, a term such

as ‘tall’ is epistemically variant because of the different standards of tallness

that speakers may associate with the term. On one occasion, a speaker may

use ‘tall’ to pick out all people above 2 meters, but yet on another occasion

to pick out all people above 1.8 meters. Correspondingly, the inference from

3A similar observation is made by Jeffrey (1983). Much like I do, Jeffrey stipulates that
the relevant agent language—in which he also aims to construct his ersatz worlds or complete
consistent novels—must be “idealized in the sense that the (declarative) sentences of that
language have fixed [. . . ] truth-values, independent of the contexts of their utterance.”
(Jeffrey (1983): p. 208.)

4Cf. Chalmers (2003): p. 50, and Chalmers (forthcoming): p. 9.
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‘If someone is tall, then she is happy’ to ‘If someone is above 2 meters, then

she is happy’ may be a priori justifiable on some occasions of use, but not on

others.

More generally, when an expression such as ‘Neptune’ and ‘tall’ “supports

potential differences in apriority among fully competent users in this way”, we

can say that the expression is epistemically variant; if not, the expression is

epistemically invariant.5 Given this, we can now aim to specify English? as a

regimented version of English in which all (epistemically) variant expressions

in English are replaced by invariant expressions. To obtain such a class of

invariant expressions, we can regiment English (at least) in the following ways.

First, ambiguous terms such as ‘bank’ are replaced in English? by distinct

terms ‘bank1’ and ‘bank2’ reflecting the disambiguations of ‘bank’. Second,

context-dependent terms such as ‘tall’ and ‘bald’ are replaced in English? by

arbitrarily many terms ‘talln’ and ‘baldn’ reflecting all the different standards

for tallness and baldness. Third, demonstrative terms such as ‘that’ are re-

placed in English? by arbitrarily many terms ‘thatn’, each of which reflects,

roughly, what an agent using the relevant demonstrative intends to refer to

on a given occasion of use. Proper names such as ‘Neptune’ are replaced in

English? by arbitrarily many names ‘Neptunen’, each of which reflects, roughly,

the mode of presentation that an agent associates with the relevant name on

a given occasion of use.6

If we keep applying this process of regimentation, we will plausibly be left

with a version of English in which all epistemically variant types of English are

replaced by corresponding epistemically invariant types. This is the language

English?. Plausibly, certain indexical terms like ‘I’ and various mathematical

and logical terms such as ‘two’ are epistemically invariant—at least when used

5Chalmers (forthcoming): p. 9.
6For details on the epistemic variance of demonstratives and names, see Chalmers (2002a):

pp. 173-174.
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by fully competent speakers of English. If so, then such terms can survive

in English?. Accordingly, since all sentence types in English? are composed

of epistemically invariant expressions, all sentence types in English? are epis-

temically invariant. Intuitively, no two sentence types in English? will support

differences in apriority among fully competent speakers of English?.

Clearly, English? is not the kind of language that beings like us could

easily speak. Though we can easily imagine speaking a version of English that

contains two words ‘bank1’ and ‘bank2’ instead of the single ambiguous ’bank’,

it is much harder to imagine speaking a version of English that contains a

potential infinite class of invariant expressions that have replaced all variant

expressions in English that involve names and demonstratives.7 So although

the idealizations involved in the specification of English? are obvious, I trust

that we have a good grasp of the nature of a language like English?.

Generally, however, it is worth making the following observation: The cur-

rent idealizations do not entail a relevant idealization of the cognitive capacities

of agents. Of course, given the complexity of English?, we might be idealizing

an agent’s capacities for learning and understanding a language. But the fact

that agents are speakers of English? can never in itself imply that agents are

mathematically or logically omniscient. For instance, though an agent accepts

the sentences A and (A → B) in English?, we are of course not forced to say

that the agent also accepts B because the agent is a speaker of English?. So for

the kinds of non-ideal agents that I am interested in, the idealizations do not

seem unreasonable. That is, the main focus is on resource-bounded agents that

can engage in limited, but non-trivial (logical) reasoning, and for the purposes

of analyzing epistemic possibility and necessity in light of these aspects of non-

7Given that we assume a finite number of finite agents, each of which in principle accepts
and rejects at most a countable number of distinct sentence types, we can say that English?

will at most contain a countable number of invariant expression types, and also that all
sentence types in English? will be of finite length.
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ideal reasoning, the idealizations above do not seem unreasonable. And more

generally, for investigating the prospects of constructing non-ideal epistemic

spaces that can satisfy the content and rationality desiderata—and hence play

the role of non-trivial epistemic space—the idealizations above do not affect

the main conclusion that I want to establish.

So given all this, we can identify the agent language L with English?. So

henceforth—except for section 2.6 below—we should understand all unqualified

talk of sentences to refer to sentence types in L. Since all epistemic variance

is eliminated from L, we can then plausibly say that fully competent speakers

of L are never disposed to simultaneously accept and reject tokens of the

same type in L. So given the language and context assumptions, L is hence

a suitable language for this project that allows us to identify the “scenario-

making” language with the language L in future constructions of scenarios and

non-ideal epistemic spaces.

2.1.2 Acceptance and Thoughts

To a first approximation, we can now say that an agent a accepts (rejects)

a sentence type A in L just in case a is disposed to occurrently accept (reject)

a token of A. What does it mean to occurrently accept and to occurrently

reject a token of a sentence type in L? As mentioned, I will take ‘occurrent

acceptance’ and ‘occurrent rejection’—and in a sense then also ‘acceptance’

and ‘rejection’—as primitive notions. The motivation is here that multiple

interpretations of these notions are compatible with the basic framework, and

as such, that multiple refinements of the general definition are possible.8

For many of my purposes, however, a useful heuristics for understanding

acceptance centers around a Chalmersian conception of thoughts :

A thought is understood here as a token mental state, and in particular as a

8For a survey of some of the many interpretations of ‘acceptance’, see Pascal (1998).
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sort of occurrent propositional attitude: roughly, an entertaining of a content.

The idea is that this is the sort of propositional attitude that is generally ex-

pressed by utterances of assertive sentences. Such utterances typically express

occurrent beliefs, but they do not always express occurrent beliefs, as subjects

do not always believe what they say. Even in these cases, however, the sub-

ject entertains the relevant content: a thought is an entertaining of this sort.

Like beliefs, thoughts are assessable for truth. Thoughts can come to be ac-

cepted, yielding beliefs, and thoughts can come to be justified, often yielding

knowledge. When an utterance expresses a thought, the truth-values of the

utterance and the thought always coincide.9

Intuitively, typically we know what we are thinking, and typically we are in

a position to find a sentence that we can use to express the contents of our

thoughts. Though we need not invoke any strong ‘internal’ relation between

thought and utterance content, it is useful to invoke a general relation of

expression, according to which every sincere assertive utterance expresses a

thought.

Given the notion of thoughts, we can now define ‘occurrent acceptance’ in

terms of accepting the content of a corresponding thought, where we can take

what it means to accept the content of a thought as an intuitive primitive—

roughly, an endorsement of a content as true, where the kind of endorsement

is the one that is characteristic of belief. We can then say that an agent a

occurrently accepts (rejects) a token of a type A in L just in case a accepts

(rejects) the content of a thought that a expresses by (sincerely) uttering A.

We can then refine the definition above and say that an agent a accepts a

sentence type A in L just in case a accepts the content of a thought that a is

disposed to express by uttering A.

We can now also introduce a notion of justified acceptance that mirrors

knowledge: An agent a justifiably accepts a type A in L just in case a is

9Chalmers (2004): p. 96.
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justified in accepting the content of a thought that she is disposed to express

by uttering A, where justified acceptance of a thought often yields knowledge.

As such, we can say that mere acceptance of a thought yields belief, and hence

that mere acceptance of a type in L mirrors belief.10

Further, we can also invoke an intuitive notion of thought or belief content

that directly tracks the fine-grained cognitive and epistemological differences

that the current notions of epistemic possibility and necessity require. For

instance, we can say that most agents accept ‘Water is water’ and ‘2 + 2 = 4’

because the thoughts typically expressed by tokens of these sentence types

can be justified through a cognitively trivial chain of a priori reasoning.11 In

contrast, there is no chain of a priori reasoning that begins with the thought

typically expressed by a token of ‘Water is H2O’ and leads to an acceptance of

that thought. Intuitively, mere reflection on the thought expressed by a token

of ‘Water is H2O’ will not reveal the truth of that very thought. Further,

though the thought typically expressed by a token of ‘There are no integers

a, b, c, n > 2 such that an + bn = cn’ can be justified a priori, it need not be the

case that non-ideal agents can emulate this highly non-trivial and cognitively

demanding chain of a priori reasoning. Intuitively, mere non-ideal reflection on

the thought expressed by a token of ‘There are no integers a, b, c, n > 2 such

that an + bn = cn’ will not reveal the truth of that very thought.

Finally, we can use the notion of thoughts to relate familiar logical infer-

ences between sentences to corresponding inferences in thought. Following

Chalmers, we can plausibly hold that

[. . . ] the thoughts of a given thinker can stand in [. . . ] relations of negation,

conjunction, and disjunction to each other: so one thought can be formed

10As mentioned in the introduction, since the relevant insights of this project apply both
to notions of doxastic and epistemic possibility, I will largely ignore the distinction between
acceptance and justified acceptance in the following.

11For purposes of illustration here and elsewhere, I always assume that the relevant English
sentence types are also sentence types in L.
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by another by an operation of negation, or from another two thoughts by

operations of conjunction or disjunction.12

Derivatively, this can provide us with an explanation of why many agents that

accept types A and B also typically accept the conjunction (A ∧B).

So I trust that the notion of thoughts provides a useful way of understand-

ing the notions of acceptance and rejection, and we can take this heuristic

characterization to be operative in the background. But alternative charac-

terizations are available. For instance, we might characterize acceptance in

broadly behavioristic terms and say that an agent a occurrently accepts a sen-

tence type A in L just in case a assents to or asserts A (whether in private or

in public). Or alternatively, we can say that an agent a occurrently accepts

a sentence type A in L just in case a answers ‘yes’ to the question “Is it true

that A?”.13 Derivatively, we could use these definitions to refine the general

definition of acceptance and rejection above. In this sense, the basic framework

is not committed to any particular interpretation of these primitive notions.

2.1.3 Acceptance and Epistemic Possibility

Given a characterization of the notions of acceptance and rejection of sen-

tence types in L, we can now restate the (EP?) and (EN?) analyses as follows,

where unqualified talk of sentences, as mentioned, should always be understood

as involving talk about sentence types in L:

(EP) A sentence A is epistemically possible for an agent a iff a

cannot easily come to reject A by a priori reasoning from what

a already accepts and rejects.

(EN) A sentence A is epistemically necessary for an agent a iff a

can easily come to accept A by a priori reasoning from what

12Chalmers (forthcoming): p. 9.
13For further details and discussion, see for instance Horwich (1998) and Speaks (2006).
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a already accepts and rejects.

Since I initially take both (occurrent) acceptance and (occurrent) rejection

as primitive, I hence initially take both epistemic possibility and necessity as

primitive. Though no sentence A can be epistemically possible and epistemi-

cally impossible for any agent, both A and ¬A can be epistemically necessary

for extremely non-ideal agents.

When I shift the focus to moderately ideal agents, we can define epistemic

possibility in terms of acceptance: A is epistemically possible for an agent a if

and only if a cannot easily come to accept ¬A by a priori reasoning from what

a already accepts. Derivatively, we can recover the standard interdefinability of

modal notions and define epistemic possibility in terms of epistemic necessity:

A is epistemically possible for a if and only if ¬A is not epistemically necessary

for a. The extra structure that emerges from defining epistemic possibility in

terms of epistemic necessity will be useful for later constructions of non-ideal

epistemic space. But we should notice that all subsequent models of epistemic

space will enable us to model agents for whom arbitrary explicit contradictions

of the form (A∧¬A) are epistemically necessary. In this sense, we will always

be able to accommodate extremely non-ideal agents that accept contradictions.

In what follows, I will focus on a priori reasoning rather than armchair

reasoning. Most people, I take it, allow that a piece of armchair reasoning

can be justified by exploiting existing empirical information. For instance, a

piece of armchair reasoning that leads from A to B may be justified by certain

general inductive principles such as ‘the future resembles the past’. Plausi-

bly, the justification for such general inductive principles ultimately relies on

some empirical information about the world—intuitively, an ideal agent with

unbounded cognitive capacities for a priori reasoning could entertain the pos-

sibility that she lives in a world where the future does not resemble the past.
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If so, then the justification for the inference from A to B itself relies on empir-

ical information. Since my primary aim is to establish facts about epistemic

possibility that apply to all agents, irrespective of what empirical information

they have, if any at all, the current conception of a priori reasoning should be

understood to exclude any such reliance on empirical information. We can put

this by saying that the standard of justification associated with the kind of a

priori reasoning that figures in (EP) and (EN) reflects the “conclusive standard

associated with proof and analysis.”14 On this conception, if a sentence can be

accepted by purely a priori reasoning, then the possibility that the sentence is

false can be ruled out conclusively.

I understand the kind of easy a priori reasoning that figures in (EP) and

(EN) to be the kind of reasoning that unfolds in relevantly short cognitive

episodes for an agent. Roughly, we can think of these short cognitive episodes

for an agent as falling within the specious present for the agent in question.

Or roughly, if an a priori inference from A to B is easy for an agent a, then

the cognitive episode that involves B and that succeeds in time the cognitive

episode that involves A will be considered or experienced as the same cognitive

episode by a. As such, the notion of easy reasoning is dynamic. But the

dynamics should be understood at a very coarse level of grain that abstracts

away from whatever happens in the dynamics in the short cognitive episodes

for an agent. So whenever I say that an agent can easily, immediately or

instantly come to accept or reject a sentence by a priori reasoning, I have this

kind of coarse grained dynamic a priori reasoning in mind.

2.2 Extreme Epistemic Space

The stage is now set to investigate the first construction of non-ideal epis-

temic space. To avoid logical omniscience, we know that we need non-ideal

14Chalmers (2004): p. 99.
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scenarios in epistemic space. The question is then how non-ideal such scenar-

ios should be. If there are agents for whom “[n]o inferences, however obvious

and useful, need be made from the beliefs”, and for whom the “the belief set

can include any and all inconsistencies”, we indeed need extremely non-ideal

scenarios in epistemic space.15 Since such extremely non-ideal agents need

not have any cognitive capacities available for instant a priori reasoning, every

sentence, and in particular every sentence in the a priori domain may remain

epistemically possible for such cognitively impaired creatures. If so, then for

any sentence A, we need scenarios where A is false to ensure that (Epi-Pos)

and (Epi-Nec) are plausible principles even for extremely non-ideal agents:

(Epi-Pos) A is epistemically possible for an agent a iff there is a

scenario w in W such that w is epistemically possible for

a and such that A is true at w.

(Epi-Nec) A is epistemically necessary for an agent a iff for each

scenario w in W such that w is epistemically possible for

a, A is true at w.

To ground a space of scenarios that can play this role, we hence need a maxi-

mally liberal notion of deep epistemic possibility, according to which any sen-

tence is deeply epistemically possible.

This maximally liberal notion of deep epistemic possibility naturally leads

to a construction of Extreme Epistemic Space. Scenarios in Extreme Epistemic

Space are akin to Priest’s open worlds.16 Just like open worlds, there will for

any sentence A be a scenario w in Extreme Epistemic Space such that A

is true at w. And just like open worlds, there will for any set of sentences

{A1, A2, . . .} be a scenario w in Extreme Epistemic Space such that the truths

15Cherniak (1986): p. 6.
16Cf. Priest (2005).
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at w are exactly A1, A2, . . .. Strictly, we do not need the kinds of scenarios

that will be permitted in Extreme Epistemic Space to model the maximally

liberal notion of deep epistemic possibility. In chapters 4 and 5, I investigate

alternative constructions of non-ideal epistemic space that can also do the job,

but Extreme Epistemic Space constitutes a natural point of departure.

For the construction of Extreme Epistemic Space, I first identify a scenario

w with an arbitrary set of sentence types in the agent language L—that is,

given the assumptions above, with arbitrary sets of possible sentence types in

English?. Second, I define what it means for a sentence A to be true or false

at a scenario as follows:

(Truth) A sentence A is true at scenario w iff A ∈ w.

(Falsity) A sentence A is false at scenario w iff A /∈ w.

If A is true at w, I will also say that w verifies A. If A is false at w, I will also

say that w falsifies A. Third, I define two scenarios w and w′ to be equivalent

if and only if for all A, A ∈ w if and only if A ∈ w′.

Given these simple definitions, we can immediately establish that scenarios

obey the following two principles:17

(Basic Maximality) For all sentences A and scenarios w, either A

is true at w or A is false at w.

(Parsimony) If scenarios w and w′ are equivalent, then w =

w′.

Because A ∈ w or A /∈ w, for each sentence A and scenario w, (Basic Maxi-

mality) follows trivially from (Truth) and (Falsity). By individuating scenar-

ios extensionally in terms of the sentences that they contain, (Parsimony) also

17The (Parsimony) principle is taken from Chalmers (forthcoming).
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follows immediately. Let WE be the class of scenarios that satisfy these basic

principles.

Intuitively, (Basic Maximality) ensures that scenarios can deliver an answer

to each question that could in principle be asked about a particular way the

world might be. Following Jeffrey, the question “Is A true in the maximally

specific hypothesis that scenario w describes?” will be answered yes if A ∈ w,

and no if A /∈ w.18 So whereas ideal scenarios are maximally specific, a priori

consistent sets of sentences, non-ideal scenarios are maximally specific sets of

sentences some of which may fail to be a priori consistent. In chapters 4 and 5,

I will investigate models of non-ideal epistemic space in which sentences may

be indeterminate in truth-value at scenarios. But to keep things as familiar

and as simple as possible from the outset, (Basic Maximality) is desirable.

It is worth stressing that (Basic Maximality) in conjunction with (Truth)

and (Falsity) just is an instance of the trivial principle that for all sentences

A and sets Γ, either A ∈ Γ or A /∈ Γ. (Basic Maximality) contrasts with

a more standard, linguistic ersatz formulation of ‘maximality’, according to

which either A is true at w or ¬A is true at w, for all sentences A and scenarios

w. In chapter 4, I will adopt such a formulation of ‘maximality’ myself. Yet,

since we want to use Extreme Epistemic Space to model agents for whom,

say, both A and ¬A are epistemically impossible, (Basic Maximality) is an

appropriate principle for this initial construction.

(Parsimony) says that if two scenarios are equivalent descriptions of a max-

imally specific way things might be, then one of them is redundant for the pur-

pose of giving a world involving analysis of epistemic possibility. Intuitively,

if two scenarios w and w′ verify exactly the same sentences, then w and w′

are epistemically indistinguishable, and as such, only one of them is needed in

epistemic space.

18Cf. Jeffrey (1983): pp. 208-209.
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Given this simple construction of Extreme Epistemic Space, we can now

define what it means for a scenario w to be epistemically possible for an agent:

(Epi-Pos-w) A scenario w is epistemically possible for an agent a

iff for all sentences A:

(i) If A is epistemically necessary for a, then A ∈ w.

(ii) If A is epistemically impossible for a, then A /∈ w.

We can then identify W with WE and use (Epi-Pos-w) to prove the essential

(Epi-Pos) and (Epi-Nec) principles:

(Epi-Pos) A is epistemically possible for an agent a iff there is a

scenario w in W such that w is epistemically possible for

a and such that A is true at w.

(Epi-Nec) A is epistemically necessary for an agent a iff for each

scenario w in W such that w is epistemically possible for

a, A is true at w.

The proof of (Epi-Pos) and (Epi-Nec) is easy:

For (Epi-Pos) left to right, assume A is epistemically possible for

a. Then A is not epistemically impossible for a. By (Epi-Pos-w),

clause (ii), then it is not the case that A /∈ w for each epistemically

possible scenario for a. So there is a scenario w such that w is

epistemically possible for a and such that A ∈ w. For (Epi-Pos)

right to left, assumeA is true at some epistemically possible scenario

w for a. Assume, for reductio, that A is epistemically impossible for

a. By (Epi-Pos-w), clause (ii), then A /∈ w for each epistemically

possible scenario w for a. By assumption, however, there is an

epistemically possible scenario w for a such that A ∈ w. Hence A
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is not epistemically impossible for a. So A is epistemically possible

for a. So (Epi-Pos) holds.

For (Epi-Nec) left to right, assume A is epistemically necessary for

a. By (Epi-Pos-w), clause (i), then A ∈ w for each epistemically

possible scenario for a. For (Epi-Nec) right to left, assume A is

true at each epistemically possible scenario w for a. Assume, for

reductio, that A is not epistemically necessary for a. By (Epi-Pos-

w), clause (i), then A /∈ w for some epistemically possible scenario

for a. By assumption, however, all epistemically possible scenarios

w for a are such that A ∈ w. So A is epistemically necessary for a.

So (Epi-Nec) holds.

It is worth noting that this proof of (Epi-Pos) and (Epi-Nec) will hold

for all subsequent models of non-ideal epistemic space. In some of the later

models, however, we can simplify the proof of (Epi-Pos). As mentioned above,

when I shift the focus to moderately ideal agents, we can define rejection in

terms of acceptance, and derivatively define epistemic possibility in terms of

epistemic necessity. With an appropriate constraint on scenarios that says that

A is true at w if and only if ¬A is false at w, we can straightforwardly prove

(Epi-Pos) and (Epi-Nec) using just clause (i) in (Epi-Pos-w).19 But for the

current picture, we need both clauses in (Epi-Pos-w).

2.3 The Liberty of Extreme Epistemic Space

Given the construction of Extreme Epistemic Space, we can unproblemati-

cally ensure that (Epi-Pos) and (Epi-Nec) are plausible principles for non-ideal

agents. For instance, let s be Fermat’s Last Theorem. Since there are plenty

of scenarios w ∈ WE such that s /∈ w, s will be false at any w that does not

19For details, see footnote 6, page 106. For the Partial Models that I investigate in chapter
5, section 5.3, the proof of (Epi-Pos) and (Epi-Nec) will proceed as above.
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contain s. If so, then s does not have to be true at each scenario that remains

epistemically possible for any given agent. By (Epi-Nec), then s does not have

to be epistemically necessary for any agent. So in contrast to Ideal Epistemic

Space, we can now model agents that fail to accept mathematical truths such

as Fermat’s Last Theorem.

More generally, we can pick any sentence A and find a scenario w ∈ WE

that falsifies A. In particular, for any logical truth A, there is a w ∈ WE such

that A /∈ w. So we can easily model agents for whom no logical truths, however

obvious, are epistemically necessary. Since extremely non-ideal agents may fail

to accept even the most obvious logical truths, we can hence unproblematically

model these kinds of agents in Extreme Epistemic Space. Further, assume

(A∧B) is epistemically necessary for some extremely non-ideal agent a. Then

(A ∧ B) is true at all w that are epistemically possible for a. Yet, since there

are plenty of scenarios w ∈ WE such that (A ∧B) ∈ w but A /∈ w and B /∈ w,

A and B need not be epistemically necessary for a even when (A∧B) is. Hence

a need not accept A and B even when a accepts (A ∧ B). So we can easily

model agents that fail to accept even the most simple a priori consequences of

what they accept.

Accordingly, Extreme Epistemic Space can do the intended work: It gives

us a space of scenarios that we can use to capture facts about epistemic pos-

sibility for extremely non-ideal agents. In fact, there is reason to believe that

we can use Extreme Epistemic Space to avoid all hyperintensional problems.

To illustrate, let the extreme epistemic intension of a sentence be a function

from scenarios in WE to a truth-value. For any two sentences A and B, there

is a scenario w ∈ WE such that w verifies A and falsifies B. Derivatively, for

any two sentences A and B, the values of the extreme epistemic intensions of

A and B can come apart in Extreme Epistemic Space.

To avoid hyperintensional problems in the philosophy of language, we can
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attempt to understand semantic content in terms of extreme epistemic in-

tensions. Since the extreme epistemic intensions of any two sentences need

never coincide in truth-value, Frege type puzzles and belief ascriptions need

no longer cause problems. For instance, consider any two mathematically or

logically equivalent A and B. For some w ∈ WE, we have A ∈ w but B /∈ w.

So the extreme epistemic intension of ‘Julie believes A’ can be true while the

extreme epistemic intension of ‘Julie believes B’ can be false. Derivatively,

we can capture the linguistic intuition that it can be true to say that ‘Julie

believes A’ but at the same time false to say that ‘Julie believes B’ for many

mathematically and logically equivalent A and B. For counterpossibles, we

can pick any (intensionally) impossible antecedent A and rest assured that the

extreme epistemic intension of A is true at some w ∈ WE. If we can define

a relevant closeness or similarity measure on scenarios in WE, we can then

ensure that counterpossibles can differ in truth-value.20

To avoid hyperintensional problems in the philosophy of mind, we can

attempt to represent the contents of thoughts and beliefs by extreme epistemic

intensions. For instance, since the class of scenarios inWE that verify ‘2+2 = 4’

need not coincide with the class of scenarios that verify ‘44 + 88 = 132’, the

hyperintensions of the thoughts that 2 + 2 = 4 and that 44 + 88 = 132 need

not coincide either. Derivatively, we can represent agents as believing that

2 + 2 = 4 without thereby also representing these agents as believing that

44 + 88 = 132. Since Extreme Epistemic Space allows us to draw maximally

fine-grained distinctions among epistemic possibilities in this way, extreme

epistemic intensions can allow us to model a maximally fine-grained notion of

mental content.

To avoid hyperintensional problems in epistemology, we can attempt to use

WE as the underlying space of possibilities that figures in various world models

20See Nolan (1997) for details.
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in epistemology. For instance, we can attempt to define the standard knowledge

operatorK from epistemic logic in terms of quantification over scenarios inWE.

Consider then any logical truth A. Since A is false at some w′ ∈ WE, K(A)

can be false at any w from which w′ is epistemically accessible. So agents need

not be modeled as knowing all logical truths. Further, even if K(A) is true

at some w ∈ WE, then some B that is logically equivalent to A might well

be false at some epistemically accessible scenario from w. Derivatively, K(B)

need not be true at w. So agents need not be modeled as knowing everything

logically equivalent to what they already know.21 Accordingly, if WE is used

as the underlying space of possibilities, worries about logical omniscience need

no longer arise.

Obviously, these remarks are not meant to imply that the mere existence

of a space of possibilities like Extreme Epistemic Space can give us satisfactory

theories in the relevant areas of philosophy of language, mind, and epistemol-

ogy. Rather, the observation is simply that we can avoid all hyperintensional

problems in Extreme Epistemic Space. This feature, I take it, is the main

benefit of Extreme Epistemic Space. Yet, as I will argue now, there are good

reasons to look beyond Extreme Epistemic Space.

2.4 Limitations of Extreme Epistemic Space

We have seen that the maximal liberty of Extreme Epistemic Space is useful

for modeling the epistemic states of extremely non-ideal agents. Insofar as

extremely non-ideal agents have no cognitive capacities available for instant a

priori reasoning, and insofar as any set of sentences can represent the epistemic

states of such agents, Extreme Epistemic Space can do its job. And if our

primary aim is to ensure that we can draw maximally fine-grained distinctions

21For discussions of such impossible world involving models for epistemic logic, see Fagin
et al. (1995): pp. 357-362 and Wansing (1990).

57



Limitations of Extreme Epistemic Space

among possibilities, Extreme Epistemic Space can do this job too. For any A

and B, if a distinction between A-possibilities and B-possibilities is required

for a particular theoretical purpose, Extreme Epistemic Space will deliver such

a distinction.

Extreme Epistemic Space can do these jobs because of its “explosive any-

thing goes” nature: For “the most absurd situations conceivable”, there is a

corresponding scenario in WE.22 Everything goes in Extreme Epistemic Space

because there are no non-trivial structural and formal constraints on scenarios

in WE. Pick ten arbitrary sentences A1, A2, . . . , A10, collect them in a set Γ,

and you have a scenario w ∈ WE that corresponds to Γ. So arbitrary blatant

inconsistencies like ‘0 = 1’, ‘My bike is red and blue all over’, and ‘It rains

and it does not rain’ are among the sentences verified by a particular w ∈ WE.

And arbitrary joint inconsistencies like {‘It is summer’, ‘It is not summer’ }

and {‘It is summer and it is sunny’, ‘It is not summer’, ‘It is not sunny’} are

among the sentences verified by a particular w ∈ WE.

The extreme epistemic intensions that we can define in Extreme Epistemic

Space can trivially deliver different truth-values for any pair of sentences A and

B since they have no more structure than A and B themselves. For instance,

suppose (A∧B) ∈ w, for some w ∈ WE. Then the extreme epistemic intension

of (A ∧ B) is true at w. Suppose also that ¬A ∈ w and ¬B ∈ w. Then

the extreme epistemic intensions of ¬A and ¬B are also true at w. In this

sense, the behavior of the extreme epistemic intension of (A∧B) is completely

detached from the behavior of the extreme epistemic intensions of A and B.

Though this trivial structure is useful for modeling extremely non-ideal agents

and for drawing arbitrarily fine-grained distinctions among possibilities, it is

also clear that this structure is of less use for modeling the broad class of agents

that are not extremely non-ideal. To see this, we can consider the content and

22Nolan (1997): p. 544.

58



Limitations of Extreme Epistemic Space

rationality desiderata.

For the content desideratum, we want to use scenarios in non-ideal epis-

temic space to give a world involving account of a non-trivial notion of hyperin-

tensional content. In particular, we want to use non-ideal epistemic intensions

to represent the contents of the epistemic states of moderately ideal agents.

Since the contents of such epistemic states can stand in non-trivial inferen-

tial relations to each other, we want to reflect these relations in the non-ideal

epistemic intensions. Consider an inference from (A ∧ B) to A. If anything, I

take it, the chain of reasoning that proceeds from (A∧B) to A is as easy and

computationally feasible as it gets. To reflect such basic inferential relations

among thoughts and sentences in the corresponding non-ideal epistemic inten-

sions, we need to ensure that the non-ideal epistemic intension of A is true at

scenario w whenever the non-ideal epistemic intension of (A∧B) is true at w.

Extreme Epistemic Space cannot do this job: Though the extreme epistemic

intension of (A ∧ B) is true at some w ∈ WE, there is no guarantee that the

extreme epistemic intension of A is also true at w. For all the construction

of Extreme Epistemic Space says, it may well be that the extreme epistemic

intension of A is false at w while the extreme epistemic intension of (A∧B) is

true at w. So extreme epistemic intensions cannot play the role that we need

non-ideal epistemic intensions to play to satisfy the content desideratum. We

can call this the content problem.

For the rationality desideratum, we want to use scenarios in non-ideal epis-

temic space to give a world involving analysis of a non-trivial notion of epis-

temic possibility that captures which sentences should remain epistemically

possible for minimally rational agents. Consider a minimally rational agent a

that accepts (A∧B). Since a can easily infer A from (A∧B), a should ratio-

nally accept A when she accepts (A ∧B). We want to capture this normative

element in the (EN) analysis of epistemic necessity by saying that if (A ∧ B)
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is epistemically necessary for a, then so is A. To analyze such situations in

terms of scenarios, we need to ensure that if (A∧B) is true at all epistemically

possible scenarios for a, then A is also true at all such scenarios. Extreme

Epistemic Space cannot do this job: Though (A ∧ B) is true at each w ∈ WE

that remains epistemically possible for a, there is no guarantee that A is true

at w. For all the construction of Extreme Epistemic Space says, it may well

be that (A ∧ B) and ¬A are true at each w that remains epistemically possi-

ble for a. So scenarios in Extreme Epistemic Space cannot play the role that

scenarios need to play to satisfy the rationality desideratum. We can call this

the rationality problem.

Accordingly, if we want to make non-trivial inferences from what obtains

and does not obtain throughout a class of scenarios to the contents of the epis-

temic states of moderately ideal agents, scenarios need to obey certain substan-

tive constraints that scenarios in Extreme Epistemic Space do not obey. And if

we want to make non-trivial inferences from what obtains and does not obtain

throughout a class of scenarios to what is epistemically possible for minimally

rational agents, scenarios need to obey certain substantive constraints that

scenarios in Extreme Epistemic Space do not obey. As exemplified, if (A∧B)

is true throughout a class of scenarios that remain epistemically possible for

a moderately ideal agent, A and B should also be true at these scenarios to

reflect the relevant cognitive and epistemological aspects of the agent’s a priori

reasoning.

Now we might be told that there are relevant subspaces in Extreme Epis-

temic Space that have all the structure that I am requesting.23 For instance,

one might observe that there are classes of scenarios in Extreme Epistemic

Space that verify A and B whenever they verify (A ∧ B). To make progress

on the content and rationality problems, we can simply focus on this class of

23Thanks to Jonathan Schaffer for discussion here.
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scenarios to gain the required structure. I agree. But we can still demand

information about the structural properties of the relevant subspace. Obvi-

ously, it is not useful to be told merely that there is a class of scenarios in

Extreme Epistemic Space that can do the relevant work that we want models

of non-ideal epistemic space to do. Rather, we want a method or a procedure

for isolating the relevant class of scenarios.

But if one prefers, one can think of subsequent models of non-trivial epis-

temic space as attempts to formally delineate subspaces in Extreme Epistemic

Space that can help us shed light on the content and rationality desiderata.

In fact, since nearly all subsequent models of non-ideal epistemic space will

inherit the basic properties of Extreme Epistemic Space, there is a relevant

sense in which we can think of non-trivial epistemic spaces as subspaces of

Extreme Epistemic Space. Yet the conclusion remains that the structural fea-

tures of Extreme Epistemic Space are inadequate for solving the content and

rationality problems. Extreme Epistemic Space enables us to model extremely

non-ideal agents, but it does not allow us to make sense of the broad class of

agents that are not extremely non-ideal.

Though I have used the content and rationality desiderata to illustrate

the limitations of Extreme Epistemic Space, we can point to a more general

limitation: If we want to use epistemic space to establish familiar modal claims

along the lines of “If such-and-such obtains at w, then such-and-such obtains

at w”, then this space needs to have more structure than Extreme Epistemic

Space. For any A, we are trivially guaranteed that there is a scenario w

in Extreme Epistemic Space that verifies A. But for any B that stands in

some desired relation to A—whether this be a logical, a priori, or conceptual

relation—there is nothing in the construction that can guarantee that B will be

true at w whenever A is true at w. For any A and B, that is, the construction

always allows that A can be true at w while B is false at w. So unless Extreme
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Epistemic Space is restricted in some non-arbitrary way, any claim of the form

“If such-and-such obtains at w, then such-and-such obtains at w” is prone

to counterexamples. In this sense, Extreme Epistemic Space is useful when

complete lack of structure is required to model a given phenomenon, but of

little use when minimal structure is required. Again, maybe subspaces of

Extreme Epistemic Space will contain the relevant structure, but Extreme

Epistemic Space itself does not.

Given this, I trust that there is good reason to investigate constructions of

non-trivial epistemic spaces that impose substantive constraints on non-ideal

scenarios. Extreme Epistemic Space has its roles to play, but if we want a less

trivial model of non-ideal epistemic space that can help us satisfy the content

and rationality desiderata, we need to go beyond Extreme Epistemic Space—or

at least appropriately far inside Extreme Epistemic Space.

2.5 Summary

We have seen that Extreme Epistemic Space is a suitable epistemic space

for drawing maximally fine-grained distinctions among epistemic possibilities,

and derivatively for modeling extremely non-ideal agents. But just as Ideal

Epistemic Space is unsuited for modeling non-ideal agents, so Extreme Epis-

temic Space is unsuited for modeling the broad class of agents that are not

extremely non-ideal. In particular, we need models of non-ideal epistemic

space that impose substantive constraints on scenarios to make progress on

the content and rationality problems.

In turn we need a notion of deep epistemic possibility that is less trivial

than the maximally liberal notion that grounds Extreme Epistemic Space, but

less restrictive than the notion that grounds Ideal Epistemic Space. With

such a notion of deep epistemic possibility, we can then aim to set up a space
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of scenarios with a less trivial structure than Extreme Epistemic Space and

hopefully make progress on the content and rationality problems.

Accordingly, the main task in the remaining chapters is to investigate con-

structions of non-ideal epistemic spaces that can avoid the Charybdis of logi-

cal omniscience in Ideal Epistemic Space and the Scylla of “anything goes” in

Extreme Epistemic Space. In the next chapter, I will lay out the general back-

ground structure for models of non-trivial or non-extreme epistemic spaces that

can navigate between Ideal Epistemic Space and Extreme Epistemic Space.

2.6 Appendix: A Construction Without the Language and Context

Assumptions

For constructions of epistemic spaces in this project, I invoke the language

and context assumptions and take the objects of acceptance and rejection to

be sentence types in L—that is, sentence types in English?. As a result of this,

we can identify scenarios with sets of sentence types in L, and by the simple

(Truth) and (Falsity) definitions say that a type A is true (false) at scenario

w just in case A ∈ w (A /∈ w).

When we give up the language and context assumptions, we take the pri-

mary objects of acceptance and rejection to be (possible) sentence tokens of

arbitrary (existing) natural languages.24 In contrast to sentence types in nat-

ural languages, we can take sentence tokens to have all their broadly context-

dependent features fixed on a given occasion of utterance. So here we can say

that an agent a accepts (rejects) a sentence token A just in case a is disposed

to occurrently accept (reject) A—as above, there are various options for refin-

24Though I will here focus on a construction of scenarios that allows us to give up both
the language and context assumptions, many of the details apply straightforwardly to a
construction of scenarios that only gives up the language assumption. That is, much of
the material in this appendix applies to a model—cf. section 2.1.1 above—that constructs
scenarios in a single language L+ and that invokes a translation relation between sentence
types in L+ and sentence types in another given language Li in order to evaluate sentence
types in Li at scenarios constructed in L+.
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ing this definition. So for the purposes of the current construction we should

understand quantification over sentences in the relevant (EP) and (Epi-Pos)

type principles to involve quantification over (possible) sentence tokens.

We now need a construction of scenarios in a language L+ that allows us

to evaluate arbitrary sentence tokens at scenarios. By the reasoning in section

2.1.1 above, there are good reasons not to identify scenarios with either classes

of sentence types of natural languages or with classes of possible sentence

tokens. Rather, we need a construction of scenarios as sets of sentence types in

a language L+ that allows us to evaluate arbitrary sentence tokens of natural

languages at these scenarios.

To develop such a construction, we can stipulate a translation relation that

relates sentence tokens to sentence types in L+.25 Generally, the translation

relation must have two properties. First, it relates all sentence tokens to cor-

responding sentence types in L+. So the translation relation will work across

different natural languages. Second, it is sufficiently fine-grained. Intuitively,

this means that the translation relation is sensitive to the fine-grained cognitive

and epistemological differences that the current notions of epistemic possibility

and necessity require. So, for instance, the translation relation must be suffi-

ciently fine-grained to relate tokens of a mathematical truth such as ‘1+1 = 2’

and tokens of a distinct mathematical truth such as ‘2 + 2 = 4’ to different

sentence types in L+.

So we postulate a language L+ for which it holds that every possible sen-

tence token is translatable into some sentence type in L+. To ensure that

sentence types in L+ inherit the epistemic properties of the sentence tokens

that they translate, we can say that an agent a accepts (rejects) a sentence

type A+ in L+ just in case a accepts (rejects) a sentence token that is trans-

25When a sentence type in L+ is a translation of a token A, I will also say that A+

translates A.
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lated by A+ and does not reject (accept) any token that is translated by A+.

It then follows that no agent can simultaneously accept and reject a sentence

type A+ in L+. We can then say that type A+ in L+ is epistemically nec-

essary (impossible) for a just in case a accepts (rejects) A+. It then follows

that no sentence type A+ in L+ is both epistemically necessary and epistemi-

cally impossible for any agent. So these definitions ensure that if A+ in L+ is

epistemically necessary (impossible) for a, then no tokens that A+ translates

are epistemically impossible (necessary) for a and at least one token that A+

translates is epistemically necessary (impossible) for a.

In contrast to the definitions of acceptance and epistemic possibility in

section 2.1 above, the current definition of what it means to accept a sentence

type in L+ associates only epistemic possibility with types in L+ indirectly. On

the current construction, the primary objects of acceptance and rejection—and

hence of epistemic possibility and necessity—are sentence tokens of arbitrary

natural languages. Further, since multiple tokens can be translated into the

same type in L+, the definition above allows that a single type in L+ can

be epistemically necessary for agents that accept and reject tokens of types

of different languages. So although tokens are tied to specific agents, the

epistemic space that results from constructing scenarios in L+ need not longer

be completely agent-relative.

Given the notion of thoughts from section 2.1.2 above, we might also try

to refine the definition of what it means to accept a sentence type in L+ as

follows: An agent a accepts (rejects) a type A+ in L+ just in case a accepts

(rejects) the content of a thought expressed by a token that is translated by A+

and does not reject (accept) the content of any thought expressed by a token

that is translated by A+. Insofar as sentence types in L+ should be specified

uniquely by the contents of the associated thoughts of the tokens that they

translate, we might also simply say that an agent a accepts (rejects) a type A+
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in L+ just in case a accepts (rejects) the content of a thought expressed by a

token that is translated by A+. Since no agent can simultaneously accept and

reject the content of a thought, it can then never happen that an agent accepts

the content of a thought expressed by a token that is translated by A+ and also

rejects the content of a thought expressed by a token that is translated by A+.

We can then also abbreviate ‘accept the content of a thought expressed by a

token that is translated by A+’ as ‘accept the content of a thought expressed

by A+’. Of course, agents do not express thoughts by uttering sentences in

L+, but we can still hold that they can accept a thought the content c of which

a speaker of L+ would express by uttering A+. As such, we can say that an

agent a accepts (rejects) a type A+ in L+ just in case a accepts (rejects) the

content of a thought expressed by A+—that is, just in case a accepts (rejects)

a thought the content c of which a speaker of L+ would express by uttering A.

These refinements clearly rely on some notion of ‘sameness of content of the

thoughts expressed by different tokens’. From what I said in section 2.1 above,

I think we have an intuitive grip on what this notion amounts to—below I

discuss related matters concerning the translation relation. But if we do not

want to rely too much on such a notion, we can still use thought content to

characterize intuitively what it means to accept a sentence token and stick to

the general definition above: An agent a accepts (rejects) a type A+ in L+

just in case a accepts (rejects) a token that is translated by A+ and does not

reject (accept) any token that is translated by A+. Then we could still give

thought content a role to play in a characterization of what it means to accept

a sentence type in L+.

Given this, we can now identify the scenario-making language with the class

of sentence types in L+ and construct scenarios as arbitrary sets of sentence

types in L+. Since the language L+ is now distinct from the languages in which

agents accept and reject sentence tokens, we have to define what it means for
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a sentence token to be true at a scenario constructed in L+. The following

definition will do the work:

(Truth+) A token A is true at scenario w iff the type A+ ∈ w,

where A+ in L+ translates A.

(Falsity+) A token A is false at scenario w iff the type A+ /∈ w,

where A+ in L+ translates A.

Since each token has a translation in L+, we can immediately derive (Basic

Maximality). And with tiny alterations, we can prove (Epi-Pos) and (Epi-Nec)

as we did above.26

Since the translation relation is stipulated to relate all sentence tokens to

corresponding sentence types in L+, scenarios constructed in L+ ensure that

we can model agents that accept and reject sentence tokens of all natural

languages. Since the translation relation is also stipulated to be sufficiently

fine-grained, and since types in L+ inherit the epistemic properties of the

tokens that they translate, scenarios constructed in L+ also ensure that (Epi-

Pos) and (Epi-Nec) remain plausible principles for non-ideal agents. So in its

abstract form, the current construction allows us to give up the language and

context assumptions.

The current construction leaves open the nature of the translation relation,

and as such it leaves open the nature of the language L+. We could of course

take the translation relation as primitive, and let the structural features of the

construction do the work for the analyses of epistemic possibility. But clearly,

this would not be very informative for understanding the nature of non-ideal

epistemic space and the corresponding analyses of epistemic possibility. So

26The minor alterations to the proof of (Epi-Pos) and (Epi-Nec) merely consist in replacing
all occurrences of ‘A ∈ w’ and ‘A /∈ w’, where A is a token, with ‘A is true at w’ and ‘A
is false at w’. This is enough to incorporate the (Truth+) and (Falsity+) definitions in the
background. And as in Extreme Epistemic Space, we can also easily invoke the definition of
what it means for two scenarios to be equivalent and derive (Parsimony).
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below I discuss an interpretation of the translation relation, and some of the

problems that arise when we attempt to explicate such an interpretation.

2.6.1 An Interpretation of the Translation Relation

If we want to give an interpretation of the translation relation, we must

specify it in a way that ensures that (Epi-Pos) and (Epi-Nec) remain plausible

principles for non-ideal agents. Unsurprisingly, this requires a very fine-grained

specification of the translation relation:

First, the translation relation must be sufficiently fine-grained to differen-

tiate between tokens of arbitrary logical and mathematical truths (falsehoods)

such as ‘1 + 1 = 2’ and ‘2 + 2 = 4’. For instance, a token A1 of ‘2 + 2 = 4’ may

remain epistemically possible (impossible) for an extremely non-ideal agent a,

even though a token A2 of ‘1 + 1 = 2’ is epistemically necessary for a. To

ensure that (Epi-Pos) and (Epi-Nec) are plausible principles for such an agent,

we then need scenarios in epistemic space that falsify A1 but verify A2. By

(Truth+), if A1 and A2 were translated by the same type A+ in L+, then A1

would be true at w whenever A2 is true at w. By (Epi-Nec), then A1 would

be epistemically necessary for a whenever A2 is epistemically necessary for

a. So to model an agent for whom A2 is epistemically necessary while A1 is

epistemically possible (impossible), A1 and A2 must be translated by different

types A+
1 and A+

2 in L+. So more generally, we can say that tokens of ortho-

graphically distinct logical or mathematical truths (falsehoods) within a given

natural language typically are translated by different types in L+, whereas to-

kens of orthographically identical logical or mathematical truths (falsehoods)

typically are translated by a single type in L+.

Second, the translation relation must be sufficiently fine-grained to differ-

entiate between tokens of trivial truths such as ‘Water is water’ and ‘Hesperus

is Hesperus’ and tokens of a posteriori necessities such as ‘Water is H2O’ and
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‘Hesperus is Phosphorus’. For instance, a token A1 of ‘Hesperus is Phospho-

rus’ may remain epistemically possible for an astronomically ignorant agent a,

even though a token A2 of ‘Hesperus is Hesperus’ is epistemically necessary

for a. So A1 and A2 must be translated by different types A+
1 and A+

2 in L+.

If they were not, A1 would be epistemically necessary for a whenever A2 is

epistemically necessary for a.

Since the current analyses of epistemic possibility apply to these kinds of

cases, the following seems clear: The translation relation between sentence

tokens and sentence types in L+ must preserves the fine-grained structure of

something akin to Fregean senses. In fact, Fregean senses distinguish them-

selves by having the required level of grain to capture the fine-grained cognitive

and epistemological differences that are reflected in the cases above. Roughly,

we can think of the Fregean “sense of an expression as mirroring the expres-

sion’s role in reason and cognition”, and we can say that two sentence tokens

have the same sense when they play or almost play the same role in reason

and cognition.27

In some cases, however, there is reason to require that the translation

relation is more coarse-grained than Fregean senses:

Recall that Frege held that the sense of a sentence has an absolute truth-value.

This entails that if two utterances of a sentence express the same sense, they

must have the same truth-value. But it is clear that certain indexical sentences,

such as ‘It is now Saturday’ can be uttered truly at one time and falsely at

another time. So on Frege’s picture, these two sentences must have different

senses.28

27Chalmers (2002a): p. 139. In the following, I assume an antecedent, rough grasp
of Fregean senses, and trust that the specific cases I discuss below accord well with the
(philosophically) ordinary notion of Fregean senses. Also, to be sure, we cannot individuate
tokens merely by the orthography of the sentence types that they are tokens of. Since we
now aim to deal with various issues concerning context-dependence, tokens of a context-
dependent type are often translated by several distinct sentence types in L+. As such, the
translation requires more than mere orthographic individuation of sentence tokens.

28Chalmers (2002a): p. 154.
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Yet intuitively, though my utterance of ‘It is now Saturday’ is false today but

true if I utter the sentence tomorrow, it is plausible to hold that I in some

sense say the same thing or express the same content on both occasions. On

both occasions, for instance, I might have no clue about what day it is. To

reflect this intuitive notion of same-saying in the translation relation, we can

say that typical tokens of many indexical types such as ‘It is now Saturday’

and ‘I am a philosopher’ are translated by the same type in L+. Since tokens

of these indexical types have different senses, the translation relation is then

more coarse-grained than Fregean senses in these cases.29

In other cases, it is possible to require that the translation relation is more

fine-grained than Fregean senses. To see this, consider a token A1 of ‘Lawyers

are rich’ and a token A2 of ‘Attorneys are rich’. Whereas tokens of such

intuitively synonymous sentence types plausibly have the same Fregean sense—

if anything, A1 and A2 seem to play the same role in reasoning and cognition—

we might have reason to hold that an extremely non-ideal agent can accept A1

but nevertheless reject A2. If so, then the translation relation should relate A1

and A2 to different types in L+, in which case the translation relation should

be more fine-grained than Fregean senses.

Yet, there is also an intuition that an agent that accepts a token of ‘Lawyers

are rich’ but simultaneously rejects a token of ‘Attorneys are rich’ is not really

irrational, but rather linguistically ignorant or confused about the meanings

of ‘lawyer’ or ‘attorney’. Intuitively, if a speaker really understands and uses

‘lawyer’ and ‘attorney’ with full linguistic competence, then she never sincerely

dissents from ‘Attorneys are rich’ when she assents to ‘Lawyers are rich’. Partly

because my main focus is on non-ideally rational agents, but primarily because

29Also, if there are tokens of types that involve demonstrative terms such as ‘that’ and
‘there’ and that intuitively say the same thing or express the same content, even if they
have different truth-values, the translation relation might also be more coarse-grained than
Fregean senses in those cases.
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of the structure of the translation relation, I will accept this intuition without

further ado. This means that I am idealizing away from a certain sort of—

depending on intuitions—cognitive or linguistic deficiency that certain agents

may suffer from. Of course we must be careful with such an idealization in the

current setting. But if we only apply the idealization in cases that involve the

standard kinds of intuitively synonymous types such as ‘lawyer’ and ‘attorney’

and ‘vixen’ and ‘female fox’, we should be on safe ground. So granted this

idealization, I will say that all tokens of sentence types that only differ in

substitution of intuitively synonymous expressions are translated by a single

sentence type in L+. As such, I can hold that the translation relation need

never be more fine-grained than Fregean senses. This has the benefit that the

translation relation will have a more interesting structure.

A final issue concerns tokens of sentence types in different natural languages

that intuitively say or mean the same thing. I want to say that when an English

speaking agent a accepts a token E1 of ‘Two plus two equals four’, and when

a German speaking agent b accepts a token G1 of ‘Zwei plus zwei gleich vier’,

they accept the same thing, namely that 2+2 = 4. Here the motivation is that

we want a construction of scenarios that allows us to define non-ideal epistemic

intensions that are useful for modeling the contents of the epistemic states of

various agents. For that purpose, we want tokens such as E1 and G1 to be

translated into the same type in L+. We can again appeal to something akin

to Fregean senses to ensure this: Typical tokens of types such as ‘Two plus two

equals four’ and ‘Zwei plus zwei gleich vier’ plausibly have the same Fregean

sense. Roughly, when used with full competence, such tokens play the same

or almost the same roles in reasoning and cognition, or they are composed of

terms that play the same or almost the same inferential or conceptual roles

in reasoning and cognition. Given this rough characterization, we can then

say that when tokens A1 and A2 of types in arbitrary natural languages play
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the same role in reasoning and cognition, then A1 and A2 are translated by a

single sentence type in L+. Then E1 and G1 above will be translated by the

same type in L+.

This is a very vague characterization of the translation between tokens of

types in different natural languages and sentence types in L+. But I hope

the intuitive idea is clear enough: Sentence tokens of types that are obviously

synonymous or obviously say the same thing—such as ‘Two plus two equals

four’ and ‘Zwei plus zwei gleich vier’—are translated by the same sentence type

in L+. Alternatively, appealing to an antecedent understanding of Fregean

senses, whenever sentence tokens obviously have the same Fregean sense, then

they are translated by the same sentence type in L+.

So for the interpretation of the translation relation, the comments above

should make it clear that sentence tokens currently must be associated with

entities that are akin to Fregean senses. We can put this by saying that the

translation relation preserves quasi-Fregean sense identity—only quasi -Fregean

because of the indexical cases above. Since a quasi-Fregean individuation of to-

kens can do the jobs above, a translation relation that preserves quasi-Fregean

sense identity will hence ensure that (Epi-Pos) and (Epi-Nec) remain plausible

principles for non-ideal agents.

Before I discuss the issues that arise from the recourse to Fregean senses, I

will first fill in the remaining details that are left open by the abstract specifi-

cation of the construction above. For that purpose, though other options are

available, I will employ the notion of thoughts that I introduced in section 2.1.2

above. Thoughts, on the picture above, correspond to token mental states. By

assuming a general relation of expression, we can say that each assertive sen-

tence token expresses a thought, where it is a constraint on the relation of

expression that the truth-values of the token and the thought always coincide.

We can now stipulate that thoughts are individuated as finely as quasi-
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Fregean senses. We can then say that two thoughts t and t′ are the same

thought when t and t′ have the same quasi-Fregean sense. Since thoughts

correspond to token mental states, this should of course not be understood

as numerical identity, but rather, as above, in terms of the roles that these

thoughts play in reasoning and cognition. Roughly, if t and t′ play the same

role in reasoning and cognition, or if t and t′ are composed of concepts that

play the same inferential or conceptual roles in reasoning, then t and t′ are the

same (kind of) thought.

We can then let thoughts play the role of the quasi-Fregean entities that

we associate with sentence tokens. In particular, we can define two tokens A1

and A2 to be t-equivalent when A1 and A2 express the same thought. Since

each token Ai expresses a thought, each Ai will then fall into an equivalence

class Σti under the t-equivalence relation. Then each token Ai ∈ Σti expresses

the same thought. We can then specify the translation relation as the relation

that maps every token Ai ∈ Σti to a distinct sentence type A+
i in L+.

Finally, we can then specify L+ as the class of sentence types such that each

sentence type A+
i in L+ is a translation of each token Ai ∈ Σti . Intuitively,

we can think of L+ as an ideal language. For in contrast to many types,

and particularly in contrast to many context-dependent types in natural (or

non-ideal) languages, each (orthographically) distinct sentence type in L+ is

associated with exactly one kind of thought.30

The interpretation above ensures that the translation relation can do its

jobs. First, the interpretation ensures that the translation relation works for

arbitrary tokens of types across natural languages. And second, since thoughts

are as fine-grained as quasi-Fregean senses, it ensures that the translation

30If we restrict our attention to finite reasoners, “it is plausible that there are only a
countable number of relevantly distinct cognitive states.” (Chalmers (forthcoming): p. 39.)
Following Chalmers, this is particularly plausible if we assume that any finite reasoner can be
computationally described. If so, then L+ contains a countable number of distinct sentence
types corresponding to a countable number of distinct thoughts.
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relation is sufficiently fine-grained to make (Epi-Pos) and (Epi-Nec) plausible

principles for non-ideal agents. So the current interpretation of the abstract

construction allows us to use scenarios constructed in L+ to model agents that

accept and reject arbitrary tokens of types in arbitrary natural languages.

But the recourse to Fregean senses primes a serious circularity worry in the

current setting. In particular, recall that one of the declared potential appli-

cations of non-ideal epistemic space is to motivate a notion of propositional

content that although unstructured is as fine-grained as Fregean content. But

then, the worries goes, it seems circular to invoke something akin to Fregean

senses for the purpose of constructing non-ideal epistemic space. For the cur-

rent construction of scenarios, a risk of circularity or sense of begging the

conclusion is certainly present, and I only have a couple of sketchy remarks to

offer in return.

First, impossible worlds are standardly characterized or defined in terms of

either sets of sentences or sets of propositions. But it is rarely explained in the

literature what the relevant language is or what the relevant notion of propo-

sitions is.31 For an explicit, broadly ersatz construction of impossible worlds

that can be used to model Fregean content, I find it hard to see how we can

avoid appealing to some notion of content or meaning that plays a role that

at least does not conflict with the role that Fregean content plays. Suppose

we aim to characterize Fregean content by classes of impossible worlds. For

this job, whenever two sentences or thoughts A and B have a different Fregean

content, the corresponding construction of impossible worlds must ensure a

distinction between A-possibilities and B-possibilities. If we want to give an

explicit construction of impossible worlds as sets of propositions or interpreted

sentences, it seems then as if these propositions or sentences must be individ-

31For attempts to develop languages for constructing metaphysically possible worlds, the
situation is better; see, for instance, Bricker (1987), Divers (2002), and Lewis (1986).
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uated as finely as Fregean content (or something close enough). For instance,

if the relevant world-making propositions or sentences were individuated in

terms of Russellian propositions, it is very hard to see how there could ever be

worlds, so construed, that verify ‘Hesperus is Hesperus’ but falsify ‘Hesperus

is Phosphorus’. If this is true, it is plausible that we must assume that the rel-

evant world-making propositions or sentences are individuated or interpreted

in terms of entities that are akin to Fregean senses. If so, the risk of circularity

not only seems to threaten the construction of scenarios above, but plausibly

also many other ersatz constructions of impossible worlds that are engaged in

a broadly “Fregean project” and that are explicit about the interpretation of

the world-making propositions or sentences.

Second, we might think that Fregean senses are metaphysically mysterious

entities, whose job description is nevertheless clear enough. Roughly, as above,

Fregean senses are the kinds of entities that allow us to associate different

contents with tokens of a priori necessities, and that allows us to associate

different contents with tokens of types that only differ in substitution of (many)

co-extensional expressions. Given this, we can say that although a construction

of non-ideal epistemic space that appeals to Fregean senses cannot justify or

ground a Fregean aspect of content, it may nevertheless demonstrate that

Fregean senses can be given a precise representation in a formally coherent

framework. If successful, this would then allow us to say that Fregean senses

need not be more mysterious than other abstract propositional functions.

Third, for the current construction we only need to invoke entities that

are akin to Fregean senses. For instance, suppose we had (have) a complete

metaphysical theory T of the mind—complete in the sense that T would deal

with all relevant aspects of the nature of thought (whatever that exactly is).

Suppose T argues that when a cognitive system of the relevant kind is in

state thus-and-so, then it is in a state that has content c—maybe these states
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correspond to sentence-like representations in a language of thought. As a

consequence of T , suppose it turns out that c plays a role highly reminiscent of

Fregean content. And finally, suppose we have good reasons to accept T and

to accept a general relation of expression such that every (sincere) utterance

expresses a mental state with a content c. Given this, we could then let the

mental states of T play the role of Fregean senses and derivatively, it seems,

engage in a construction of epistemic space similar to the one above without

obvious risk of circularity.32 That is, if we can find independent motivation

for a notion of Fregean content in a metaphysical theory of the mind like

T , we seem justified in appealing to this notion for a construction of non-

ideal epistemic space. Of course, a theory like T would provide immediate

justification for a notion of Fregean content, but it could still be of explanatory

and theoretical value to embed the notion in a formal framework. So if there

were (is) a convincing theory of the mind like T , it seems that a construction of

non-ideal epistemic space similar to the one above could escape the worst risk

of circularity. And at least such a construction would have a well-motivated

explanation of why a feeling of circularity arises in the first place.

Clearly, none of the remarks above are able to remove the risk of circular-

ity. And as far as I can tell, this risk remains the biggest—but probably not

the only—problem for specifying a relevant interpretation of the translation

relation that is compatible with the broadly Fregean project that I am engaged

with.

The worries here motivate a more general line of reasoning. We want to use

epistemic space to ground a notion of content. To build epistemic space, we

need a specification of the translation relation. Insofar as we cannot (innocu-

32Of course, the corresponding construction would not be of much interest unless utterance
content typically correlates with mental content in some interesting sense—or unless we
directly identify the objects of acceptance and rejection with mental states of T rather than
sentences.
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ously) appeal to content for the specification of the translation relation, the

question is then how we can specify an interpretation for it. Although I must

leave a detailed discussion of ways to answer this question for future work, let

me just very briefly indicate one way of answering the question.

Since we cannot (innocuously) appeal to content for the specification of the

translation relation, we might attempt to specify it in broadly behavioristic

terms instead. For instance, we might attempt to bootstrap a specification of

the translation relation by investigating the kinds of answers that (competent)

speakers would give to questions concerning which sentence tokens say or mean

the same thing. It is not entirely implausible to imagine that all (or a weighted

most of) speakers of English would hold, upon being asked, that tokens of the

type At ‘Attorneys are rich’ say or mean the same thing as tokens of the type

Lt ‘Lawyers are rich’. If so, we could say that the translation relation should

relate all tokens of the types At and Lt to the same sentence type A+ in L+.

To ensure that the translation relation could work across different languages,

we can imagine asking bilingual or multilingual agents questions concerning

which tokens of types of different natural languages say or mean the same

thing. It is not entirely implausible to imagine that all bilingual speakers of

English and German would hold, upon being asked, that tokens of the English

type Et ‘Two plus two equals four’ say or mean the same thing as tokens of

the German type Gt ‘Zwei plus zwei gleich vier’. If so, we could say that the

translation relation should relate all tokens of the types Et and Gt to the same

sentence type B+ in L+.

By adopting an approach along the lines above, there seems to be hope that

we can specify some interesting properties of the translation relation without

relying on notions of content or meaning. Yet, several questions and problems

are bound to arise. In particular, it is far from obvious how the approach

will deal with tokens of types that involve epistemically variant terms such
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as ‘that’, ‘bank’, and ‘Peter’. For instance, it is unclear which questions we

should ask agents to determine when they regard different tokens of types such

as ‘Peter is not yellow like that’ as saying or meaning the same thing. We might

attempt to overcome such problems by reformulating tokens of epistemically

variant types in terms of tokens of epistemically invariant types in the vicinity.

But there are plenty of tokens of epistemically variant types for which it is

very unclear how we should do this—particularly unclear for those types that

involve names and demonstratives.

So when we try to specify an interpretation of the translation relation,

very difficult questions and problems quickly arise for translation-based con-

structions of non-ideal epistemic space. For the main purposes of this project,

however, I retain the language and context assumptions. As such, I will in

the remaining parts of the thesis always be quantifying over sentence types

in L—that is, over sentence types in English?—and always retain the simple

construction of scenarios as sets of sentence types in L.
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Chapter 3

Non-Trivial Epistemic Spaces

We know that Ideal Epistemic Space and Extreme Epistemic Space are

unsuited for capturing facts about epistemic possibility for the broad class of

agents that are not extremely non-ideal. In this chapter, I investigate the back-

ground structure for models of non-trivial or non-extreme epistemic spaces that

can navigate between Ideal Epistemic Space and Extreme Epistemic Space.

To this end, I first motivate a notion of deep epistemic possibility that can

be less trivial than the notion that grounds Extreme Epistemic Space, but

less restrictive than the notion that grounds Ideal Epistemic Space. Second, I

provide a test case interpretation of this notion of deep epistemic possibility in

terms of a notion of provability in n steps in some formal system. Third, I use

these conceptual tools to lay down the general world involving structure that

will motivate subsequent constructions of non-trivial epistemic space. Finally,

to avoid confusion, I briefly contrast standard analyses of modal operators with

the intended analysis of the provability-in-n-step operator.

By the end of this chapter, we will know the minimal role that non-trivial

epistemic space should play to constitute an appropriate framework for mod-

eling the broad class of agents that are not extremely non-ideal.
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3.1 Blatant and Subtle Inconsistencies

To capture facts about epistemic possibility for the broad class of agents

that are not extremely non-ideal, we need a construction of a non-trivial epis-

temic space where not “anything goes”. To develop such a space, we need

a notion of deep epistemic possibility that is less trivial than the extremely

liberal notion that grounds Extreme Epistemic Space, but less restrictive than

the ideal notion that grounds Ideal Epistemic Space.

To motivate such a notion of deep epistemic possibility, we can invoke an

intuitive distinction between blatant and subtle inconsistencies. In a letter to

Priest, Lewis provides the following piece of introspective evidence:

I’m increasingly convinced that I can and do reason about impossible situa-

tions. [. . . ] But I don’t really understand how that works. Paraconsistent

logic as developed by you [Priest] and your allies is clear enough, but I find

it a bit off the topic. For it allows (a limited amount of) reasoning about

blatantly impossible situations. Whereas what I find myself doing is reasoning

about subtly impossible situations, and rejecting suppositions that lead fairly

to blatant impossibilities.1

Whereas the sentence ‘2 + 2 = 5’ is blatantly inconsistent or impossible on

most standards, the falsity of Fermat’s Last Theorem is subtly inconsistent or

impossible on most standards. On one very natural understanding of what it

means for a sentence to be blatantly inconsistent, it means to be a sentence

that can easily be rejected by purely a priori reasoning. Intuitively, whereas

the thought expressed by a blatantly inconsistent sentence such as ‘2 + 2 = 5’

can be rejected by a cognitively trivial chain of a priori reasoning, this is not

the case for thoughts expressed by subtly inconsistent sentences such as ‘There

are integers a; b; c;n > 2 such that an + bn = cn’.

1Lewis (2004): p. 176.
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Blatantly inconsistent sentences are the kinds of sentences that any or-

dinary, reflective reasoner can easily come to reject independently of what

empirical information she might happen to have. For instance, if I were to

reflect on sentences such as ‘0 = 1’, ‘My bike is red and blue all over’ and ‘It

rains and it does not rain’, I do not have to consult the world to make sure

that these sentences are always false. Rather, if I were to reflect on these sen-

tences, I would immediately reject them as false by a cognitively trivial chain

of a priori reasoning. Such sentences, we can say, should be and most often

are rejected by all ordinary reasoners upon reflection.

In contrast, subtly inconsistent sentences are the kinds of sentences that

ordinary, reflective reasoners cannot easily come to reject unless they possess

the relevant empirical information. For instance, if I were to suspend all my

empirical beliefs and reflect on sentences such as ‘One day there will be recur-

sive computers that can prove any mathematical statement that is true’ and

‘There are integers a, b, c, n > 2 such that an + bn = cn’, I would not be able

to emulate the highly non-trivial chains of a priori reasoning that demonstrate

the falsity of these sentences. Ordinary reasoners, we can say, are rationally

excused for not rejecting such sentences.

I trust that this picture is intuitive. Insofar as ordinary reasoners are ratio-

nal at all, blatant inconsistencies are very plausibly the kinds of inconsistencies

that we expect them to reject. If a person were to utter ‘0 = 1’, ‘My bike is

red and blue all over’ or ‘It rains and it does not rain’, we would most likely

not even deem the person irrational, but instead conclude that he is insincere,

confused, or means something different than we do by the relevant utterances.

Rather, the cognitive and epistemological aspects of a priori reasoning about

blatant inconsistencies are such that any ordinary reasoner, upon reflection,

can perform the trivial chain of reasoning that reveals the obvious falsity of

these inconsistencies.
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We can put these intuitive remarks in terms of epistemic possibility by

saying that blatantly inconsistent sentences should always remain epistemically

impossible for ordinary, reflective reasoners. More specifically, we can say

that blatantly inconsistent sentences always remain epistemically impossible

for the class of moderately ideal agents that always engage in the kind of a

priori reasoning that ordinary reasoners can easily and often do engage in.

By the (EP) analysis of epistemic possibility, we know that if an agent can

easily come to reject A by a priori reasoning from what she already accepts

and rejects, then A is epistemially impossible for such an agent. Accordingly,

since moderately ideal agents have non-trivial cognitive capacities available

for instant a priori reasoning, blatantly inconsistent sentences always remain

epistemically impossible for these agents, irrespective of what else they might

accept or reject, if anything at all.

Since agents are characterized by the cognitive capacities that they have

available for instant a priori reasoning, we can now generalize this picture and

say that different sentences will count as blatantly inconsistent for different

agents. For extremely non-ideal agents we can say that no, or hardly any a

priori falsehood counts as blatantly inconsistent. Then every a priori falsehood

may remain epistemically possible for such agents. For ideal agents we can say

that every a priori falsehood counts as blatantly inconsistent. Then every a

priori falsehood always remains epistemically impossible for such agents. For

moderately ideal agents we can say that some but not all a priori falsehoods

count as blatantly inconsistent. Then some but not all a priori falsehoods

always remain epistemically impossible for such agents.

Since deep epistemic possibility is a necessary condition for strict epistemic

possibility, we can now use the intuitive picture above to specify a notion of

non-ideal deep epistemic possibility that can operate between extreme and

ideal deep epistemic possibility. Since I already characterize the distinction
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between blatant and subtle inconsistencies in terms of easy or obvious a priori

reasoning, the following generic definition is natural:

(G-DEP) A sentence A is deeply epistemically possible iff A cannot

easily be ruled out a priori.

(G-DEN) A sentence A is deeply epistemically necessary iff A can

easily be established a priori.

By suitable interpretations of the intuitive notion of easiness, we can use (G-

DEP) and (G-DEN) to isolate a spectrum of notions of deep epistemic possi-

bility, which can range from the maximally liberal to the ideal notion of deep

epistemic possibility.

To isolate a maximally liberal notion of deep epistemic possibility, we need

an interpretation of easiness according to which no a priori falsehood can be

easily ruled out a priori. The corresponding notion of deep epistemic possibility

will be relevant for capturing facts about epistemic possibility for extremely

non-ideal agents. To isolate an ideal notion of deep epistemic possibility, we

need an interpretation of easiness according to which all a priori falsehoods

can be easily ruled out a priori. The corresponding notion of deep epistemic

possibility will be relevant for capturing facts about epistemic possibility for

ideal agents. To isolate intermediate notions of deep epistemic possibility,

we need an interpretation of easiness according to which some, but not all a

priori falsehoods can be easily ruled out a priori. The corresponding notions of

deep epistemic possibility will be relevant for capturing facts about epistemic

possibility for the broad class of moderately ideal agents.

To make this picture precise, we need a precise analysis of the notions of

easily rule out a priori and easily establish a priori in (G-DEP) and (G-DEN).

In the next section, I offer a test case interpretation that allows us to make

these notions precise for the narrow class of a priori truths that are also logical
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truths.

Corresponding to the spectrum of notions of deep epistemic possibility,

the general idea is then to set up a corresponding spectrum of deep epistemic

spaces. Roughly, for a maximally liberal notion of deep epistemic possibility,

scenarios like those in Extreme Epistemic Space should survive in the corre-

sponding space. Roughly, for an idealized notion of deep epistemic possibility,

only scenarios like those in Ideal Epistemic Space should survive in the cor-

responding space. Roughly, for notions of deep epistemic possibility between

these two ends of the spectrum, the corresponding spaces should contain sce-

narios that are less permissive than those in Extreme Epistemic Space, but

less restrictive than those in Ideal Epistemic Space.

The hope is then that we can use scenarios in different spheres in the

corresponding stratified epistemic space to ensure that (Epi-Pos) and (Epi-

Nec) are plausible principles for the whole spectrum of agents. Derivatively,

the hope is that we can find a space of scenarios, or a limited spectrum of spaces

of scenarios that can help us make progress on the content and rationality

problems.

3.2 Provability in n Steps in S

(G-DEP) and (G-DEN) allow us to interpret the notions of easily rule out

and easily establish a priori in various ways. For instance, we might say that

a sentence A can easily be ruled out a priori whenever:2

(i) it is obvious a priori that ¬A; or

(ii) ¬A can be known through such-and-such amount of a priori

reasoning; or

(iii) A can easily be disproved by logical reasoning; or

2Cf. Chalmers (forthcoming): p. 48.
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(iv) ¬A is cognitively insignificant.

In what follows, I will offer an interpretation along the lines of (iii). As a

test case, that is, I will focus on an interpretation of easily rule out a priori

as easily disprovable in some formal system S and of easily establish a priori

as easily provable in some formal system S. To be sure, this interpretation

does not correspond perfectly to what human agents can easily rule out and

establish a priori. Yet, provability in a formal system is a well-understood

notion that serves as a good test case for making the intuitive picture above

precise. If we cannot construct a suitable non-trivial epistemic space in terms

of such simple analyses of (G-DEP) and (G-DEN), it is doubtful whether we

can by invoking more complex analyses. So what I say below will generalize to

other interpretations of what it means to easily establish and easily rule out a

sentence a priori.3

In general, I will take proofs to be demonstrations in a formal system S

of the truth of various sentences in languages—including of course English?—

that have symbols ¬ and →, which play the same inferential roles as classical

negation and material implication. We all know the basic role that a proof

in a formal system plays: It gives us a method of reasoning, step by step,

according to rules and axioms, to a given conclusion. For simplicity, I will take

my canonical system S to resemble a proof system for standard propositional

logic. I will mainly think of S as a system that contains just axioms and

modus ponens, but for purposes of illustration, I will allow myself to use other

standard rules of inference such as conjunction-elimination.4 I will also assume

3See chapter 6 for further discussion.
4As we know, we can give a full characterization of propositional logic by a system that

has just modus ponens and the three axiom schemas:

(A1) A→ (B → A).

(A2) (A→ (B → C))→ ((A→ B)→ (A→ C)).

(A3) (¬B → ¬A)→ ((¬B → A)→ B).
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that S is a sound system that never proves false sentences.

Given a suitable choice of axioms and rules, we can then define a few key

notions. A proof in S is a finite sequence of sentences, each of which either

is an axiom of S, or follows from preceding sentences in the sequence via the

inference rules in S. A sentence A is a theorem of S or provable in S if and

only if there is some proof in S whose last line is A; by definition, every axiom

of S is hence also a theorem of S. A disproof of A in S is a proof of ¬A in

S. A derivation of A from a set of sentences Γ in S is a sequence of sentences

such that A is the last sentence in the sequence, and such that each sentence in

the sequence is either an axiom of S, a member of Γ, or follows from preceding

sentences in the sequence via the inference rules in S. In a derivation in S,

sentences that are not theorems may occur. We can also say that every proof

of A in S is a derivation of A in S from the empty set. A sentence A, or a set

of sentences Γ is then disprovable in S whenever there is a derivation of A and

¬A in S from A or Γ.5 Given these latter definitions, we can then allow S to

operate on assumptions whenever necessary.

Bearing in mind that the easily provable and easily disprovable interpreta-

tions are test cases, we can then interpret easily provable in S as provability in

n steps in S, where n ranges over the natural numbers. A proof of A in n steps

in S is a proof of A consisting of at most n lines or proof steps in S. A disproof

of A in n steps in S is a proof of ¬A consisting of at most n steps in S. To

derive A in n steps in S from a set of sentences Γ is to have A occurring as

the last sentence in some derivation from Γ consisting of at most n steps in S.

For further details, see Hunter (1971): pp. 72-74, and Mendelson (1997): p. 35. Also, as
soon as we have ¬ and →, we can express all truth-functions of propositional logic in the
standard way.

5Since we can express any truth-function of propositional logic in the languages under
consideration, we can of course also define or include a symbol ∧ that plays the truth-
functional role of classical conjunction. If we do this, we can say that A or Γ is disprovable
in S whenever there is a derivation of (A ∧ ¬A) in S from A or Γ. To simplify some of the
discussions in chapter 4, however, I will mainly work with the definition in the main text.
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A sentence A, or a set of sentences Γ is disprovable in n steps in S whenever

there is a derivation of A and ¬A from A or Γ consisting of at most n steps in

S.

Given these definitions, a step in S can either consist in an instantiation

of an axiom schema in S or in an application of a rule of inference in S. Let

me briefly illustrate. Let S be an axiomatic proof system characterized by the

following two axiom schemas and modus ponens:6

(A1) A→ (B → A).

(A2) (A→ (B → C))→ ((A→ B)→ (A→ C)).

Since S is an axiomatic proof system, we are not allowed to prove from as-

sumptions. To begin a proof in S, our first step then consists in instantiating

an axiom schema. Only afterwards can we start applying modus ponens. To

prove (A→ A), for instance, we may proceed as follows, where the left column

tracks proof steps:

(1) (A→ ((A→ A)→ A))→ ((A→ (A→ A))→ (A→ A)) (A2)

(2) A→ ((A→ A)→ A) (A1)

(3) A→ (A→ A) (A1)

(4) (A→ (A→ A))→ (A→ A) MP (1,2)

(5) A→ A MP (3,4)

In the first step, we instantiate axiom schema (A2). In the second and third

step, we instantiate (A1). In the fourth and fifth step, we apply modus ponens.

Accordingly, (A → A) is provable in 5 steps in S, and hence (A → A) is a

theorem (schema) of S.7

6For further details and examples, see Bostock (1997): pp. 193-207.
7In the case where S allows for another proof of (A→ A) that takes more than 5 steps,

I will always focus on the 5-step proof. For my purposes, it is always the shortest proof of
a given sentence A in S that matters.
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This is the basic idea behind step-based reasoning in S. For my purposes,

the exact details of the system S will not matter much. As long as there

is a step-based encoding similar to the one above, the details of S can vary.

However, it is worth making a few more precise remarks about the kinds of

systems that I will employ in subsequent chapters.

First, I will restrict my attention to systems that are in some intuitive

sense reasonable. For instance, systems in which it takes a trillion steps to

employ modus ponens will not be considered. I will not attempt a definition,

but simply note that standard proof systems for propositional logic where the

procedure behind a n-step proof is familiar will count as reasonable.

Second, I will allow that a single proof in S can derive both A and ¬A. So

when a derivation of A and a derivation of ¬A contain the same steps, I will

only count these steps once. As such, a single derivation of A and ¬A may

contain less steps than a derivation of A plus a derivation of ¬A.

Third, for systems that allow derivations from assumptions or premises, I

will not count “writing down” premises in a derivation as steps. So to disprove

the inconsistent set {(¬A ∧ ¬B), A,B}, I do not count writing down first

(¬A∧¬B), then A, and finally B as three initial steps in the relevant derivation.

Finally, I will stipulate that nothing can be proved nor disproved in 0 steps

in S. The motivation is here twofold. First, all reasoning takes up cognitive

resources. Since I will think of S as encoding logical reasoning, and think of

steps in S as measuring the cognitive resources that agents have available for

logical reasoning—as I will elaborate on below—all logical reasoning thus takes

up steps in S. As such, nothing should be provable nor disprovable in 0 steps

in S. Second, by holding that nothing can be proved nor disproved in 0 steps

in S, scenarios that contain {A,¬A} can survive in some of the constructions

of non-trivial epistemic space that I will investigate in chapters 4 and 5. This

is desirable if we wish to leave room for agents that may accept both A and
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¬A in models of non-trivial epistemic space. This raises the question of how

many steps it should take to disprove sets such as {. . . , A,¬A, . . .} in S. In

systems that allow derivations from assumptions, I will stipulate that it takes

at least 2 steps to disprove such sets. So in order to disprove an inconsistent

set ∆ ∪ {¬A} by deriving A from ∆ using the rules in S, both A and ¬A

have to be derived from ∆ even when ¬A is already contained in ∆ as a

premise. Accordingly, I will stipulate that all systems that allow derivations

from assumptions have a trivial inference rule that enables us to infer A in

1 step from any set Γ such that A ∈ Γ. Given this rule, the inconsistent set

{(¬A∧¬B), A,B} from above can then be disproved in 2 steps. First we apply

conjunction-elimination on (¬A∧¬B) to get ¬A in 1 step. Second, we use the

trivial rule above and infer A from the set in 1 step. Then A and ¬A can be

derived from {(¬A ∧ ¬B), A,B} in 2 steps.

As briefly touched upon, I will think of the system S as encoding or repre-

senting the propositional fragment of a priori logical reasoning. As a general

encoding of a priori reasoning, we would need a much broader specification of

S. To encode mathematical reasoning, for instance, S would have to contain

at least the axioms of Peano arithmetic—or some rival axiomatization—and

hence also first-order logic. To encode what we might call analytic or concep-

tual reasoning, S might have to contain axiom schemas for meaning-postulates;

for instance, ∀(x)(Bx → ¬Mx), where B and M are predicates for the prop-

erties of being a bachelor and being married. To encode ideal mathematical

and logical reasoning, S will probably need to contain full second-order logic.8

Yet, I can make my main points with a simple system that only encodes the

propositional fragment of a priori logical reasoning.

8In contrast to propositional logic, second-order logic does not yield a complete proof
theory and is strongly undecidable. So in contrast to propositional logic, the relationship
between logical truth and provability is non-obvious in second-order logic; see Boolos (1975)
for further information.
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Since various intuitions concerning inferences that are easy in one system

but hard in another will not affect my main results, I will not try to compare

different encodings of logical reasoning in different systems. For instance, it

seems to be a widespread intuition that axiomatic proof systems are harder

to use than semantic tableaux systems. But since my main results largely

remain unaffected by the choice of proof system—largely in the sense that

certain details will differ slightly depending on the choice of proof system—I

will continue to encode all relevant logical reasoning in a single system S similar

to a standard propositional system. For what it is worth, the details of some

of the results below will be slightly more striking for (humanly) “easy” proof

systems like standard semantic tableaux. Further, I will not try to capture

the intuition that certain inference rules in a system are harder to employ

than others. For instance, it seems to be a widespread intuition that modus

tollens is harder to use than modus ponens. In the following, I will primarily

focus on modus ponens and rules for conjunction-introduction and elimination.

And for what it is worth, these inference rules seem equally easy to employ in

reasoning.

More generally, it is worth stressing that the encoding of logical reasoning

in a simple formal system like S only serves as a test case interpretation of the

notions of easily establish a priori and easily rule out a priori. Intuitions about

what it takes for a piece of a priori reasoning to be ‘easy’ rather than ‘hard’

are likely to differ greatly in many cases, and the interpretation in terms of

provability in n steps in S will definitely not capture all these intuitions. But

to evaluate the general prospects of developing a world involving framework

for modeling non-ideal a priori reasoning and epistemic possibility, the precise

notion of provability in n steps in S can do the job.
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3.3 Epistemic Possibility and Level-n Agents

Given the interpretation of ‘easily establish a priori’ in terms of provability

in n steps in S, let us add the two symbols 2n and 3n to our metalanguage.

Let ‘2nA’ be read as ‘A is provable in n steps in S’, and define ‘3nA’ as ¬2n¬A

and read it as ‘A is not disprovable in n steps in S’.9 We can then state our

precise interpretation of the generic notions of deep epistemic possibility and

necessity as follows:

(DEP) A sentence A is deeplyn epistemically possible iff 3nA.

(DEN) A sentence A is deeplyn epistemically necessary iff 2nA.

That is, A is deeplyn epistemically possible just in case A is not disprovable

within n steps in S, whereas A is deeplyn epistemically necessary just in case

A is provable within n steps in S. Intuitively, the smaller the value for n in

2n is, the easier it is to establish A a priori.

(DEP) and (DEN) can do much of the work that (G-DEP) and (G-DEN)

are intended to do. (DEP) and (DEN) immediately give us a spectrum of n

notions of deep epistemic possibility. First, by stipulating that no sentence

can be disproved in 0 steps in S, we can recover a maximally liberal notion

of deep epistemic possibility by letting the value for n in (DEP) be 0. Since

no sentence is disprovable in 0 steps in S, no a priori false sentence is deeplyn

epistemically impossible when n is 0. Second, by letting the value for n in

(DEP) be arbitrarily large, we can mimic an ideal notion of deep epistemic

possibility.10 Since all logically false sentences can be disproved in some num-

9Strictly, as I will comment upon in a second, 2n and 3n might not count as “real”
modal operators, but it does not harm to think loosely of them as such. Also, since I assume
that all relevant logical reasoning is encoded by a unique system S, I will not bother about
the explicit reference to the system ‘S’ in 2n—as in the notation ‘2Sn ’.

10As mentioned, to do more than merely mimic the ideal notion of deep epistemic possibil-
ity, we need to enrich the system S to capture the mathematical and conceptual fragments
of a priori reasoning. Though ‘All bachelors are unmarried men’ is an a priori truth, it will
not come out as deeplyn epistemically necessary by (DEN), no matter how large n is.
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ber of steps in S, we can ensure that all logically false sentences are deeplyn

epistemically impossible when n can go arbitrarily large. Third, by letting

the value for n in (DEP) be some sufficiently small (or large) number, we can

mimic intermediate notions of deep epistemic possibility. Since some but not

all logically false sentences can be disproved in some sufficiently small number

of steps in S, we can ensure that some but not all logically false sentences are

deeplyn epistemically impossible when n is sufficiently small.

We can think of S as encoding or representing a priori logical reasoning,

and we can think of n as measuring the cognitive capacities that an agent

has available for instant or easy a priori reasoning.11 Intuitively, the larger the

value for n is, the larger are the cognitive capacities that an agent has available

for instant or easy a priori logical reasoning. We can then say that a level-n

agent an is an agent that can instantly or easily perform up to n steps in S.

On this definition, we can then also say that a level-n agent can easily come to

accept by a priori reasoning any sentence that is provable within n steps in S,

and easily come to reject by a priori reasoning any sentence that is disprovable

within n steps in S.12

More generally, the definitions above immediately give us the following

principles:

(3n-Level-n) If A is epistemically possible for a level-n agent an,

then 3nA.

(2n-Level-n) If 2nA, thenA is epistemically necessary for a level-

n agent an.

11The ideas here bear resemblance to ideas that motivate step logics; see for instance
Drapkin and Perlis (1986) and Elgot-Drapkin et al. (1991). Notice also that by instant
or easy reasoning, I mean the kind of reasoning that unfolds in relevantly short cognitive
episodes for an agent; cf. section 2.1.3, chapter 2.

12The ideas here bear resemblance to ideas
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For (3n-Level-n), assume A is epistemically possible for a level-n agent an.

By the (EP) analysis of epistemic possibility, then an cannot easily come to

reject A by a priori reasoning. By definition of a level-n agent, an can easily

come to reject by a priori reasoning any A that is disprovable in n steps in S.

So if A is epistemically possible for an, then A is not disprovable in n steps

in S, and hence 3nA. For (2n-Level-n), assume 2nA. Then A is provable in

n steps in S. By definition of a level-n agent, an can easily come to accept

by a priori reasoning any A that is provable in n steps in S. By the (EN)

analysis of epistemic necessity, A is hence epistemically necessary for an. If we

focus solely on level-n agents that have no empirical information, we can also

establish (3n-Level-n) and (2n-Level-n) as biconditionals in the obvious way.

Accordingly, the current framework is tailor made to capture the idea that

different notions of deep epistemic possibility are relevant for capturing facts

about (strict) epistemic possibility for different agents. For instance, consider

the class of extremely non-ideal agents. Since extremely non-ideal agents have

no cognitive capacities available for instant a priori reasoning, we can charac-

terize these agents as level-0 agents.13 For any A, if A is epistemically possible

for a level-0 agent, then (3n-Level-n) ensures that 30A. By (DEP), then A

is deeply0 epistemically possible. Every A is deeply0 epistemically possible,

and no A is deeply0 epistemically necessary. Since any A, and in particular

any logically false A may remain epistemically possible for extremely non-ideal

agents, deep0 epistemic possibility is then the relevant notion of deep epistemic

possibility for modeling these agents. Similarly, we can characterize ideal and

moderately ideal agents by changing the value for n appropriately and then

repeat this reasoning; I will illustrate further in the next chapter.

13Or if we want to say that extremely non-ideal agents have few cognitive capacities
available for instant a priori reasoning, we can let n be a sufficiently small number.
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So I trust that the (DEP) and (DEN) analyses serve as good and precise test

cases for capturing the intuitive picture behind models of non-trivial epistemic

space. To be sure, (DEP) and (DEN) only allow us to capture facts about

which logically true or false sentences remain and do not remain epistemically

possible for different kinds of agents. But within this narrow a priori domain,

we have a well-defined set of conceptual tools that we can use to investigate

subsequent constructions of non-trivial epistemic space.

3.4 A Spectrum of Epistemic Spaces

Corresponding to the sequence of provability-in-n-step operators 20,21,

. . . , we now need a sequence of deep epistemic spacesW0,W1, . . . that can count

as models for the various 2n operators. In particular, we need a construction

of Wn such that we can establish the following Carnap-style analyses of 3n

and 2n:

(C-3n) 3nA iff A is true at some scenario w in Wn.

(C-2n) 2nA iff A is true at all scenarios w in Wn.

If we can find a construction of Wn that allows us to prove (C-3n) and

(C-2n), we can derivatively go on to ensure that (Epi-Pos) and (Epi-Nec) are

plausible principles for the whole spectrum of level-n agents. Since (3n-Level-

n) and (2n-Level-n) guarantee a tight connection between deep and strict

epistemic possibility, (C-3n) and (C-2n) will immediately ensure that we can

use each Wn to capture facts about epistemic possibility for each class of level-n

agents; I will go through the details in the next chapter.

Ideally, we want Wn to contain only possible and non-trivially impossible

scenarios. Intuitively, we can think of trivially impossible scenarios or blatantly

inconsistent scenarios as the kinds of scenarios that any moderately ideal agent

can immediately rule out a priori. Non-trivially impossible scenarios or subtly
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inconsistent scenarios are then the kinds of scenarios that moderately ideal

agents cannot rule out in this way. Later, I will define the notion of non-

trivially impossible scenarios precisely. But for now we can take the role of

non-trivially impossible scenarios to be a placeholder role for a particular class

of scenarios in non-trivial epistemic space that we can use to satisfy the content

and rationality desiderata. This makes the desideratum that Wn contains

only possible and non-trivially impossible scenarios rather loose. Yet, when

I evaluate future constructions of non-trivial epistemic space, I hope it will

become clear what non-trivially impossible scenarios cannot look like to play

their roles. At least then we can say which scenarios should not survive in Wn

if we want to make progress on the content and rationality problems.

To investigate constructions of non-trivial epistemic space, our task is then

twofold. First, we need to ensure that we can use the construction to prove

(C-3n) and (C-2n). Second, we need to ensure that Wn contains only possible

and non-trivially impossible scenarios. If both tasks are met, we can say that

the resulting construction can successfully play the role of non-trivial epistemic

space.

Before digging into the details of various constructions of non-trivial epis-

temic space, let me offer a few more comments on the (C-3n) and (C-2n)

analyses and the use of the 3n and 2n operators.

3.5 3n and 2n

Though I take (C-3n) and (C-2n) to mirror the core world involving anal-

yses of modal operators in terms of quantification over worlds, a few clarifi-

cations are in order to avoid misunderstandings. 3n and 2n are introduced

in the metalanguage. This is the reason why I refer to (C-3n) and (C-2n) as

‘Carnap-style analyses’. For Carnap, the notion of L-truth, which serves as an
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explication of the notion of logical or analytic truth, is not a term in his object

language of state descriptions, but rather in his metalanguage. A sentence A

(in the object language) is L-true if and only if A is a member of every state

description.14 I think of the (C-3n) and (C-2n) analyses in a similar way.

Though it might seem as if we are only a short step from a Kripke model

for a modal language, I should stress that I am not trying to provide a Kripke

model for 3n and 2n. To have a proper Kripke model for 3n and 2n, we

would need to represent 3n and 2n in a modal object language to know what

it means for a scenario to satisfy ‘3nA’ and ‘2nA’. Carnap, in analyzing a

modal language, includes the symbol ‘N(A)’ in the language with the intended

reading ‘It is logically necessary that A’.15 Carnap takes N to be a primitive

symbol in the object language that can only be defined in terms of the notion

of L-truth in the metalanguage. That is, ‘N(A)’ is true if and only if ‘A’ is

L-true.16 Then a sentence ‘N(A)’ is true at a state description S if and only

if ‘A’ is true at all state descriptions S ′.

Suppose we tried in a similar way to represent 2n as a primitive symbol

‘�nA’ in the agent (or object) language, where ‘�nA’ is defined as ¬�n¬A.

We would then have:

(C-�n) �nA is true at a scenario w iff A is true at some scenario w′

in Wn.

(C-�n) �nA is true at a scenario w iff A is true at all scenarios w′ in

Wn.

(C-�n) and (C-�n) would make �n and �n satisfy the modal axioms (S4) and

14A state description is a class of sentences in the object language that contains for every
atomic sentence A (in the object language) either A or ¬A, but not both; cf. Carnap (1947):
pp. 8-11.

15See chapter 5 in Carnap (1947) for all the details.
16Carnap (1947): p. 174, convention 39-1.
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(S5).17 For Carnap’s notion of logical necessity, this is not a problem. But

insofar as we can make sense of iterated principles for 3n and 2n without

specifying what it means for S to represent facts about n-provability, it seems

clear that neither (S4) nor (S5) should hold. Intuitively, the fact that A is

provable in n steps in S does not entail that this fact too is provable in n

steps in S. For (S5), the fact that A is not disprovable in n steps in S does

not entail that this is provably so in n steps in S. Further, since we think of

S as encoding bounded a priori logical reasoning, we should also intuitively

expect iteration to fail for 3n and 2n because a priori reasoning about a priori

reasoning itself takes up cognitive resources. If so, then ‘�n’ in (C-�n) does

not translate as provability in n steps in S in our metalanguage.

One might try to block these iterations by amending (C-�n) and (C-�n)

with an accessibility relation R. To invalidate both (S4) and (S5) for �n and

�n, one might stipulate that R is to be a non-transitive relation on scenarios

in Wn. But then we face another problem. If not all w ∈ Wn are accessible

from each other, then ‘�nA’ might be true at some w even though A is not

provable in n steps. This can happen if all scenarios w′ that verify ¬A are

inaccessible from w. If A is a contingent sentence, then again ‘�n’ would fail

to translate as provability in n steps in S in our metalanguage. There might

be ways to define and motivate an accessibility relation on scenarios in Wn

that can avoid these problems, but the properties of the relation would have

to be highly non-standard from the outset.

Instead, one might attempt to go the way of provability logic and introduce

2n in a modal object language, which has a model theory that can ensure that

‘2nA’ only holds when A is provable in n steps in S. On such an approach, 2n

17This is easily seen. For (S5), let ‘w � A’ abbreviate ‘A is true at w’, and assume
w � �nA. By (C-�n), there is then a w′ in Wn such that w′ � A. Since all scenarios in Wn

are accessible from each other, no matter which w′ in Wn we pick, it follows from (C-�n)
that w′ � �nA. So for all w′ in Wn, w′ � �nA. Then, by (C-�n), w � �n�nA. So (S5) is
valid: �nA→ �n�nA. A similar line of reasoning applies to (S4): �nA→ �n�nA.
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would represent the formalized provability-in-n-step predicate of S, and pre-

sumably correspond to a rather complex arithmetical formula. An interesting

open question is then which modal logic should govern 2n, and how exactly S

can represent 2n.18 If we can make sense of the modal logic for 2n, we could

then attempt to specify a Kripke model for the logic. Just as there is a Kripke

model for the standard modal logic GL of arithmetical provability, so there is

probably some kind of Kripke model for the modal logic of 2n.19 The final

open question is then whether the indices in such a Kripke model would enable

us to shed light on broad issues concerning hyperintensionality in philosophy

of language and mind.

Both proof-theoretical and model-theoretical properties of 3n and 2n are

interesting in their own right, and much more could be said. But for purposes

of the current project, the basic formulations (C-3n) and (C-2n) will do.

I will continue to refer to 3n and 2n as ‘operators’, even if “real” modal

operators need a proper model theory. Since the 3n and 2n notation primarily

plays an expository role, this should be a safe path to follow in investigating

constructions of non-trivial epistemic space.

3.6 Summary

To find a successful construction of non-trivial epistemic space, our task for

the remaining chapters is clear. We need to find a construction of a stratified

18Though there are tricky question concerning how S can represent 2n, we will probably
get the Löb axiom immediately: 2n(2nA → A) → 2nA. If so, then either the rule of
necessitation or the (T) axiom would have to go on pain of Gödel’s theorems. If we give up
the rule of necessitation, the resulting modal logic will be non-normal. If we give up (T), we
cannot ensure that 2nA only holds for true A. So we are most likely left with a non-normal
modal logic for the formalized provability-in-n-step-in-S predicate.

19See Boolos (1979) and (1993) for detailed constructions of Kripke models for arithmeti-
cal provability. It is a noticeable feature of the standard Kripke models for arithmetical
provability that the intuitive meanings of the indices and the transitive and conversely well-
founded accessibility relation are left unexplained. Though this sits rather uneasily with the
constructive approach to epistemic space that I pursue in this project, maybe one would
have to leave the indices and the accessibility relation in a Kripke model for 2n unexplained
as well.
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epistemic space that will satisfy (C-3n) and (C-2n), and that derivatively will

ensure that Wn contains only possible and non-trivially impossible scenarios.

If we can find such a construction, we will have a non-trivial, yet non-ideal

epistemic space whose main job is to capture facts about epistemic possibility

for the broad class of moderately ideal agents. If successful, we would be a

step closer to finding a construction of a non-ideal epistemic space that can

avoid the Scylla of “anything goes” and the Charybdis of logical omniscience.

In the following, I will argue that successful constructions of non-trivial

epistemic spaces are hard, if not impossible to find. In particular, whereas it is

rather simple to construct Wn in a way that allows us to prove (C-3n) and (C-

2n), we will see that the task of ensuring that Wn contains only possible and

non-trivially impossible scenarios remains formidable. The problems with the

models that I will investigate in the next chapter motivate a vicious dilemma,

which threatens to undermine the intuitive picture behind non-trivial epistemic

space that I have set up in this chapter. In chapter 5, I will prove that the

dilemma holds and discuss the options that remain open for constructions of

non-trivial epistemic space in light of this dilemma.

99



Chapter 4

Constructions of Non-Trivial Epistemic Space

In this chapter, I investigate three intended constructions of non-trivial

epistemic space. Though we can use the first model, the Single Disprovability

Model, to ensure the Carnap-style analyses of 3n and 2n, I argue that the

resulting scenarios remain extremely unconstrained and cannot play the role

that we want non-trivially impossible scenarios to play. Though we can use

the second model, the Joint Disprovability Model, to eliminate the trivially

impossible scenarios that survive in the Single Disprovability Model, I argue

that all impossible scenarios are eliminated from the resulting epistemic space.

Derivatively, we cannot use the construction to model the broad class of mod-

erately ideal agents. As a version of the Joint Disprovability Model, I finally

investigate Jago’s recent construction of a non-ideal epistemic space in Logical

Information and Epistemic Space, and argue that agents characterized by this

model turn out to be logically omniscient.1

By the end of this chapter, we will have seen how models of non-ideal

epistemic space threaten to yield either too many trivially impossible scenarios,

where almost any set of blatantly inconsistent sentences can be true, or too

few impossible scenarios, where any logical falsehood can be true.

1Jago (2009a).
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4.1 The Single Disprovability Model

To develop a sequence of epistemic spaces that can count as models for the

sequence of 2n operators, the main strategy behind the Single Disprovability

Model is to define each epistemic space directly in terms of the notion of

provability in n steps in system S. For a given scenario w to be a member of

a given epistemic space Wn, the idea is, w cannot verify any sentence that is

disprovable within n steps in S. Intuitively, the more steps in S that it takes to

disprove any sentence that is true at the scenario, the more subtly inconsistent

the scenario will be.

To construct the Single Disprovability Model, I will use the basic material

from the construction of Extreme Epistemic Space. First, a scenario w is

identified with an arbitrary set of sentences in L—that is, with an arbitrary

set of possible sentence types in English?. Second, a sentence A is true at a

scenario w if and only if A ∈ w, and A is false at w if and only if A /∈ w.

Third, two scenarios w and w′ are equivalent if and only if for all A, A ∈ w if

and only if A ∈ w′. Additionally, I require that scenarios are minimally closed

in the following sense:

(Min-Clo) A scenario w is minimally closed iff for all sentences A,

A ∈ w iff ¬A /∈ w.

Given this, we can now establish that scenarios obey the following principle

of maximality:

(Maximality) For all sentences A and scenarios w, either A is true

at w or ¬A is true at w.

Since A ∈ w if and only if ¬A /∈ w, for each sentence A and scenario w, (Max-

imality) follows immediately from (Min-Clo), (Truth) and (Falsity). When a

scenario w—or a set of sentences more generally—obeys (Maximality), I will
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also say that w is maximal.2 As in Extreme Epistemic Space, (Parsimony) also

follows immediately. Let WS be the class of scenarios that satisfy these basic

principles.

We need (Min-Clo) for the spherical construction of the Single Disprovabil-

ity Model, and we need (Maximality) to establish the Carnap-style analysis

(C-3n). Since (Min-Clo) effectively equates ‘falsity of A at w’ with ‘truth of

¬A at w’ in the classical sense, (Maximality) captures the idea behind (Basic

Maximality) that says that for all A and w, either A is true at w or A is false

at w. (Min-Clo) also entails that scenarios in WS are minimally consistent in

the sense that {A,¬A} 6⊆ w for any w. As such, we know that all scenarios in

WS verify either A or ¬A but never both.

This of course means that we cannot use scenarios in the Single Disprov-

ability Model to model agents for whom both A and ¬A are epistemically

necessary or impossible. But since I am now mainly interested in moderately

ideal agents, this is desirable: Moderately ideal agents never accept nor reject

both A and ¬A.3 We should notice though that (Min-Clo) does not entail that

all scenarios falsify (A∧¬A). It merely entails that if w verifies (A∧¬A), then

w also falsifies ¬(A ∧ ¬A). In this sense, (Min-Clo) does not prevent us from

modeling extremely non-ideal agents for whom arbitrary explicit contradictions

of the form (A ∧ ¬A) may be epistemically possible or necessary.

We can now construct the sequence of epistemic spaces
(
W0,W1, . . .

)
that

we need to prove (C-3n) and (C-2n). To this end, let PRn be the set of

sentences that are provable in up to n steps in S. We can then define the

sequence of epistemic spaces as follows:

W0 = {w ∈ WS|PR0 ⊂ w}.
2So when a set of sentences Γ is maximal, this means effectively that for all sentences A,

either A ∈ Γ or ¬A ∈ Γ.
3Cf. section 2.1.3, chapter 2.
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W1 = {w ∈ WS|PR1 ⊂ w}.

W2 = {w ∈ WS|PR2 ⊂ w}.

...

Wn = {w ∈ WS|PRn ⊂ w}.

...

W∞ = {w ∈ WS|PR∞ ⊂ w}.

We can stipulate that no sentence A can be proved in 0 steps in S. Then PR0 is

empty, and hence any scenario w in WS is a member of W0. So WS is identical

to the class of scenarios W0. As we increase the value for n, increasingly more

non-ideal scenarios will be excluded from Wn according to the recipe: For any

A ∈ PRn, for n > 0, and any w ∈ W0, if ¬A ∈ w, then w /∈ Wn.4 Wn then

corresponds to the class of scenarios in W0 whose only constraint is that they

verify all sentences that are provable within n steps in S. W∞ corresponds to

the class of scenarios in W0 that verify all provable sentences in S.5

The various spheres of scenarios that we can isolate in the Single Disprov-

ability Model are hence related by the subclass relation:

W0 ⊇ W1 ⊇ W2 . . . ⊇ Wn . . . ⊇ W∞.

Intuitively, as we move inwards through this stratified epistemic space, scenar-

ios will verify more and more provable sentences, or equivalently, falsify more

and more disprovable sentences.

4To illustrate, let A be in PRn, for n > 0, and assume ¬A ∈ w. Assume (per impossibile)
that w ∈Wn. By construction, w then contains all A ∈ PRn. So A ∈ w. But by assumption,
¬A ∈ w, and hence A /∈ w by (Min-Clo). So w /∈Wn.

5Notice that the use of the symbol ‘∞’ should not be taken to imply that we can con-
struct proofs in S that involve infinitely many steps. Since S mirrors a standard system
for propositional logic, all proofs in S are of finite length. Rather, I use the symbol ‘∞’ to
indicate that we can construct proofs in S that involve arbitrarily large finite numbers of
steps. Since each logically true sentence can be proved in some number of steps in S, PR∞
then corresponds to the class of sentences that are provable in S.
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Given this construction of the Single Disprovability Model, we can now

establish (C-3n) and (C-2n):

(C-3n) 3nA iff A is true at some scenario w in Wn.

(C-2n) 2nA iff A is true at all scenarios w in Wn.

The proof of (C-3n) and (C-2n) is easy:

For (C-3n) left to right, assume 3nA. Since 3nA is defined as

¬2n¬A, then ¬A is not provable in n steps in S. So ¬A /∈ PRn.

By construction of Wn, there is then a w ∈ Wn such that ¬A /∈ w.

By (Maximality), there is hence a w ∈ Wn such that A ∈ w. For (C-

3n) right to left, assume A ∈ w for some scenario w ∈ Wn. Then it

is not the case that for all w ∈ Wn, A /∈ w. By (Maximality), then

it is not the case that for all w ∈ Wn,¬A ∈ w. By construction of

Wn, then ¬A /∈ PRn. Then ¬A is not provable in n steps in S. So

¬2n¬A, and hence by definition 3nA. So (C-3n) holds.

For (C-2n) left to right, assume 2nA. Then A is provable in n

steps in S. So A ∈ PRn. By construction of Wn, then A ∈ w for all

w ∈ Wn. For (C-2n) right to left, assume A ∈ w for all w ∈ Wn.

For reductio, assume A /∈ PRn. Then, by construction of Wn, there

is a w ∈ Wn such that A /∈ w. By assumption, this cannot happen,

so A ∈ PRn. Then A is provable in n steps in S, and hence 2nA.

So (C-2n) holds.

Given (C-3n) and (C-2n), we can now use each deep epistemic space Wn

in W0 to make (Epi-Pos) and (Epi-Nec) plausible principles for the whole

spectrum of agents:
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(Epi-Pos) A is epistemically possible for an agent a iff there is a

scenario w in W such that w is epistemically possible for

a and such that A is true at w.

(Epi-Nec) A is epistemically necessary for an agent a iff for each

scenario w in W such that w is epistemically possible for

a, A is true at w.

On the current picture, agents are characterized by the cognitive capacities

that they have available for instant or easy a priori reasoning. As a test case, I

focus on the logical fragment of a priori reasoning and characterize each agent

as belonging to a class of level-n agents. A level-n agent is an agent that can

instantly perform up to n steps in S. So to make (Epi-Pos) and (Epi-Nec)

plausible for the whole spectrum of agents, we need to make (Epi-Pos) and

(Epi-Nec) plausible for each class of level-n agents.

This requires that the relevant class W of deeply epistemically possible

scenarios in (Epi-Pos) and (Epi-Nec) satisfy the following:

(D1?) If A is epistemically possible for any level-n agent, then there

is some scenario in W that verifies A.

(D2?) If A is true at each scenario in W , then A is also epistemically

necessary for each level-n agent.

If W satisfies (D1?), we are guaranteed that W contains enough scenarios to

model what is epistemically possible for a given level-n agent. If W satisfies

(D2?), we are guaranteed that only sentences that are already epistemically

necessary for each level-n agent are true throughout the class of scenarios in

W . For (D2?), that is, we are assured that the relevant class of scenarios in

W only verify sentences that any level-n agent could easily come to accept by

purely a priori reasoning.

By the definition of a level-n agent, we have from the previous chapter:
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(3n-Level-n) If A is epistemically possible for a level-n agent an,

then 3nA.

(2n-Level-n) If 2nA, thenA is epistemically necessary for a level-

n agent an.

In conjunction with (C-3n) and (C-2n), we can immediately use (3n-Level-n)

and (2n-Level-n) to secure that Wn satisfies (D1?) and (D2?) as:

(D1) If A is epistemically possible for any level-n agent, then there

is some scenario in Wn that verifies A.

(D2) If A is true at each scenario in Wn, then A is also epistemically

necessary for each level-n agent.

As a special case, we have (D1) and (D2) as biconditionals for the class of

level-n agents that have no empirical information. For these agents, we can

say that deep and strict epistemic possibility and necessity coincide.

So to make (Epi-Pos) and (Epi-Nec) plausible for each class of level-n

agents, we know that W = Wn. To capture this explicitly, we can stratify

the (Epi-Pos) and (Epi-Nec) principles in the obvious way as follows:

(Epi-Posn) A is epistemically possible for a level-n agent an iff there

is a scenario w inWn such that w is epistemically possible

for an and such that A is true at w.

(Epi-Necn) A is epistemically necessary for a level-n agent an iff for

each scenario w in Wn such that w is epistemically pos-

sible for an, A is true at w.6

6 Though the proof of (Epi-Pos) and (Epi-Nec) from chapter 2 still applies to (Epi-Posn)
and (Epi-Necn), I will quickly prove (Epi-Posn) to show how the proof of (Epi-Pos) can
be simplified in models of epistemic space that satisfy (Maximality); the proof of (Epi-Nec)
cannot be simplified. Since we can define epistemic possibility in terms of epistemic necessity,
we can simplify the definition of (Epi-Pos-w) as such: A scenario w in Wn is epistemically
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I will briefly illustrate how this picture works.

First, for extremely non-ideal agents, any logically false sentence may be

epistemically possible. Since such agents have no cognitive capacities available

for instant a priori logical reasoning, they are characterized as level-0 agents.

By construction, any logically false A is true at some scenario w in W0. So

to make (Epi-Pos) and (Epi-Nec) plausible principles for extremely non-ideal

agents, we use (Epi-Pos0) and (Epi-Nec0) and identify W with W0.

Second, for moderately ideal agents, some but not all logically false sen-

tences may be epistemically possible. Since such agents have some cognitive

capacities available for instant a priori logical reasoning, they are characterized

as level-m agents, for some sufficiently small (or large) m. By construction,

some but not all logically false A are true at scenarios in Wm. So to make

(Epi-Pos) and (Epi-Nec) plausible principles for moderately ideal agents, we

use (Epi-Posm) and (Epi-Necm) and identify W with Wm.

Third, for ideal agents, no logically false sentence may be epistemically

possible. Since such agents have unbounded cognitive capacities available for

instant a priori logical reasoning, they are characterized as level-∞ agents.

By construction, all logically false A are false at each scenario in W∞. So

to make (Epi-Pos) and (Epi-Nec) plausible principles for ideal agents, we use

(Epi-Pos∞) and (Epi-Nec∞) and identify W with W∞.

possible for a level-n agent an if and only if for all A, if A is epistemically necessary for an,
then A ∈ w. The proof of (Epi-Posn) is then:

For (Epi-Posn) left to right, assume A is epistemically possible for an. Then
¬A is not epistemically necessary for an. By (Epi-Pos-w), then it is not the
case that ¬A ∈ w for all w ∈Wn that are epistemically possible for an. There
is then a w ∈ Wn such that ¬A /∈ w and such that w is epistemically possible
for an. By (Maximality), there is hence a w ∈ Wn such that A ∈ w and such
that w is epistemically possible for an. For (Epi-Posn) right to left, assume
A ∈ w for some w ∈Wn that is epistemically possible for an. Then it is not the
case that A /∈ w, and hence by (Maximality) not the case that ¬A ∈ w for all
w ∈Wn that are epistemically possible for an. Suppose, for reductio, that ¬A
is epistemically necessary for an. By (Epi-Pos-w), then ¬A ∈ w for all w that
are epistemically possible for an. Contradiction. So ¬A is not epistemically
necessary for an. So A is epistemically possible for an. So (Epi-Posn) holds.

107



The Single Disprovability Model

Accordingly, since (C-3n) and (C-2n) hold in the Single Disprovability

Model, we can use the model to ensure that (Epi-Pos) and (Epi-Nec) are plau-

sible principles for the whole spectrum of agents. So the Single Disprovability

Model meets the first challenge that a successful construction of non-trivial

epistemic space needs to meet. For the second challenge, we can then ask

whether Wn, for some n, contains only possible and non-trivially impossible

scenarios. I will now argue that the Single Disprovability Model fails to meet

this second challenge, and hence that the model fails to play the role of non-

trivial epistemic space.

4.1.1 Problems in the Single Disprovability Model

Consider a scenario w ∈ Wn. By construction, w verifies all sentences that

are provable within n steps in S. Since w is also minimally closed, w can

then never verify ¬A (A) when A (¬A) is provable in n steps in S. But aside

from this, there is nothing in the Single Disprovability Model that prevents

scenarios in Wn from being arbitrarily jointly inconsistent. In particular, for

any contingent sentences A and B and any epistemic space Wn, Wn can contain

scenarios like w and w′:

w = PRn ∪ {(A ∧B),¬A,¬B, . . .}.

w′ = PRn ∪ {(A→ B), A,¬B, . . .}.

For arbitrarily large n, there are scenarios like w in Wn that verify ‘It rains

and the streets are wet’, but also ‘It does not rain’ and ‘The streets are not

wet’. And for arbitrarily large n, there are scenarios like w′ in Wn that verify

‘If it rains, the streets are wet’, but also ‘It Rains’ and ‘The streets are not

wet’.7

7For purposes of illustration, I assume here—as elsewhere—that ‘It Rains’ and ‘The
streets are wet’ are sentence types in L or English?.
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Since we only evaluate whether single sentences are provable or not, the

presence of such scenarios in Wn is unavoidable. Intuitively, S scans each

A ∈ w to determine whether A is provable or disprovable in some number of

steps. Yet, since S is a sound system, there are many contingent sentences

in any w that S neither proves nor disproves, and this no matter how jointly

inconsistent these sentences in w might otherwise be. As a result, scenarios

in the Single Disprovability Model inherit much of the trivial structure that

scenarios in Extreme Epistemic Space have: Except for containing each sen-

tence that is provable within n steps in S, scenarios in Wn can be arbitrarily

jointly inconsistent. With respect to the class of contingent sentences, the

Single Disprovability Model effectively has no further structure than Extreme

Epistemic Space. This is not enough to secure that Wn contains only possible

and non-trivially impossible scenarios. To see this, we consider the content

and rationality desiderata.

For the content desideratum, we want to use scenarios in Wn to give a

world involving account of a non-trivial notion of hyperintensional content.

In particular, we want to use non-ideal epistemic intensions to represent the

contents of the epistemic states of agents that are not extremely non-ideal.

To investigate whether the kinds of non-ideal epistemic intensions that we can

define in the Single Disprovability Model can play this role, let the epistemic

n-intension of a sentence be a function from scenarios in Wn to a truth-value.

By the construction of Wn, we can immediately ensure that the epistemic n-

intension of any n-provable A is necessary. So in contrast to Extreme Epistemic

Space, we can isolate certain non-trivial epistemic intensions in the Single

Disprovability Model.

But when we look beyond the class of n-provable sentences, the epistemic

n-intensions remain completely unconstrained. Consider the simple inference

from (A ∧ B) to A, where A and B are contingent sentences. To reflect such
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basic inferential relations among sentences and thoughts in the corresponding

non-ideal epistemic intensions, we cannot use the Single Disprovability Model:

Though the n-intension of (A ∧ B) is true at a scenario w ∈ Wn, there is no

guarantee that the n-intension of A is also true at w. For all the construction

says, it may well be that the n-intension of A is false at w while the n-intension

of (A ∧ B) is true at w. But to reflect the inference from (A ∧ B) to A, the

n-intension of A should be true whenever the n-intension of (A ∧B) is true.

Or consider the basic inferential relations between (A↔ B) and A and B,

where A and B are contingent sentences. Assume (A↔ B) is provable within

n steps in S. Then (A ↔ B) is true at each w ∈ Wn. Yet, since A and B

are contingent, there are plenty of scenarios in Wn at which the truth-values

of A and B can come arbitrarily apart. Derivatively, though the n-intension

of (A ↔ B) is true at all w ∈ Wn, the values of the n-intensions of A and B

can come arbitrarily apart at scenarios in Wn. But to reflect the inferential

relations between such sentences, the n-intensions of A and B should take the

same value when the n-intension of (A↔ B) is necessary.

So to represent such cognitively trivial or computationally feasible infer-

ences between thoughts and sentences, we cannot use epistemic n-intensions.

So epistemic n-intensions cannot play the role that we want non-ideal epistemic

intensions to play to satisfy the content desideratum. To make progress on the

content problem, scenarios need to obey further constraints than scenarios in

the Single Disprovability Model.

For the rationality desideratum, we want to use scenarios in Wn to give

a world involving analysis of a non-trivial notion of epistemic possibility that

captures which sentences should remain epistemically possible for minimally

rational agents. In contrast to Extreme Epistemic Space, we might be able

to use scenarios in the Single Disprovability Model to capture some aspects

of a notion of minimal rationality. To illustrate, let X be the set of sentences
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that can be disproved within, say, 15 steps in S. Suppose we have intuitive

reason to hold that each sentence A in X counts as obviously false and that

each moderately ideal agent rationally should reject each A ∈ X . To give a

world involving analysis of a notion of epistemic possibility that captures this

aspect, we can then use W15. Since each A ∈ X is false at each w ∈ W15, we

then know that each A ∈ X remains epistemically impossible for any agent

modeled by the space W15. Derivatively, we can say that any A that is false at

each w ∈ W15 should remain epistemically impossible for any moderately ideal

agent, whereas any A that is true at some w ∈ W15 may remain epistemically

possible for such agents.

But again, when we look beyond the class of n-provable sentences, the

Single Disprovability Model is of little use. In particular, if we want to capture

facts about which sentences a minimally rational agent should accept, given

that she accepts thus and so, the Single Disprovability Model lacks the required

structure. For instance, since a moderately ideal agent can easily infer A from

(A∧B), for some contingent A and B, we want to say that she rationally should

accept A when she accepts (A ∧ B). We capture this normative component

in the (EN) analysis by saying that if (A ∧B) is epistemically necessary for a

moderately ideal agent, then A is also epistemically necessary for this agent.

To analyze such situations, we need to ensure that if (A ∧ B) is true at each

w ∈ Wn, for some n, then A is also true at w. The Single Disprovability

Model cannot do this job: For any epistemic space Wn, though (A∧B) is true

at each w ∈ Wn that remains epistemically possible for a given moderately

ideal agent, there is no guarantee that A is also true at w. In fact, for all the

construction says, it may well be that each epistemically possible scenario for

the agent verifies (A ∧ B) and ¬A. So we cannot use scenarios in the Single

Disprovability Model to satisfy the rationality desideratum. To make progress

on the rationality problem, scenarios need to obey further constraints than
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scenarios in the Single Disprovability Model.

Accordingly, we cannot use the Single Disprovability Model to satisfy the

content and rationality desiderata. Since Wn, for any n, fails to contain only

possible and non-trivially impossible scenarios, the Single Disprovability Model

thus fails to successfully play the role of non-trivial epistemic space.

In response, one might firstly point out that scenarios in the Single Dis-

provability Model in a certain sense have the capacity to represent the falsity

of jointly inconsistent sets of sentences.8 For instance, though scenarios that

contain {(A∧B),¬A,¬B} are never eliminated from Wn, scenarios in Wn will

still contain the sentence C = ¬((A ∧ B) ∧ (¬A ∧ ¬B)), for sufficiently large

n. Since C is provable in some number n of steps in S, scenarios in Wn will at

worst have as subsets sets of the form:

∆ = {¬((A ∧B) ∧ (¬A ∧ ¬B)), (A ∧B),¬A,¬B}.

One can then attempt to let C represent in w the falsity of {(A∧B),¬A,¬B}.

From this, one might try to extract the following two claims. First, since the

epistemic n-intension of C is true at all w ∈ Wn, this represents the non-trivial

inferential relations between (A∧B) and A and B. Second, since C is true at all

w ∈ Wn, this represents the idea that A and B should always be epistemically

necessary for a moderately ideal agent when (A∧B) is. Understood in this way,

one might claim, there is a relevant sense in which the Single Disprovability

Model can avoid the problems above.9

Whether or not we can make sense of this notion of representing the falsity

of a jointly inconsistent set of sentences, we still cannot use the construction

8Thanks to Joe Salerno for discussion here.
9It is worth pointing out here that we should not amend the Single Disprovability Model

with a clause that allows us to eliminate from Wn scenarios that contain sets of sentences
whose conjunction is disprovable in n steps in S. That would involve imposing a joint con-
sistency constraint on scenarios, and the corresponding construction will face the problems
of the Joint Disprovability Model that I will investigate shortly. For further details, see
footnote 15, page 122.
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of Wn to satisfy the content and rationality desiderata. We want to associate

non-ideal epistemic intensions with arbitrary sentences, and not only with

the class of n-provable sentences. Since scenarios in Wn can contain sets like

∆, it follows that the epistemic n-intensions are too ill-behaved to represent

the contents of the epistemic states of moderately ideal agents. Similarly,

we want to use the construction of Wn to infer facts about which sentences

should remain epistemically possible for moderately ideal agents, given that

they may accept thus and so. Since scenarios in Wn can contain sets like ∆, we

cannot use the construction to infer that if (A∧B) is true at all epistemically

possible scenarios for a moderately ideal agent, then A is also true at all these

scenarios. The fact that C is true at all epistemically possible scenarios for the

agent does nothing to establish the required relations between (A ∧B) and A

in these scenarios.

In response to the content and rationality problems, one might secondly

point out that we can overcome these problems by “closing” scenarios under

various inference rules. For instance, to overcome the content problem, we

know that the n-intension of A must be true at a scenario w ∈ Wn, for some

n, whenever the n-intension of (A ∧ B) is true at w. In turn this means that

A must be true at a w ∈ Wn whenever (A ∧ B) is true at w. To ensure

that we capture such basic inferential relations among contingent sentences in

the Single Disprovability Model, we might try to close scenarios in Wn under

conjunction-elimination: For all sentences A and B and scenarios w ∈ Wn, if

(A∧B) is true at w, then A and B are also true at w. By closing scenarios under

conjunction-elimination, it then follows immediately that the n-intension of A

is true at a w ∈ Wn whenever the n-intension of (A ∧ B) is true at w. In a

similar fashion, we can close scenarios in Wn under biconditional-elimination

to capture the basic inferential relations among A, B, and (A ↔ B). So

given the way the content and rationality problems are stated above, we can
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overcome these problems by closing scenarios under conjunction-elimination

and biconditional-elimination.

There are two problems with this strategy. First, it seems to be the

wrong conceptual strategy for developing models of resource-bounded agents

that can only engage in limited logical reasoning. By closing scenarios under

conjunction-elimination, for instance, it follows that an agent that accepts a

conjunction, however long and complicated, thereby also automatically accepts

each of its conjuncts.10 As a result, all logical reasoning with conjunction-

elimination is cognitively cost-free, and this holds no matter how complex the

relevant chain of logical reasoning may otherwise be. But logical reasoning is

not cost-free for resource-bounded agents. So to model these agents, we should

not close scenarios under inference rules such as conjunction-elimination—or

at least we should only close scenarios in a restricted or limited way that par-

allels the limited computational capacities that moderately ideal agents have

available for logical reasoning.

Second, it is obvious that we can restate the content and rationality prob-

lems in terms of the other standard inference rules. For instance, to satisfy

the content desideratum, we need to ensure that the n-intension of B is true

at a scenario w ∈ Wn whenever A and (A→ B) are true at w. Otherwise, we

cannot represent the basic inferential relations among A, (A → B) and B in

the corresponding n-intensions. For scenarios in Wn to do this job, B must be

true at a w ∈ Wn whenever A and (A→ B) are true at w. But when A and B

are contingent sentences, we cannot use scenarios in the Single Disprovability

Model to establish such relations. An adherent of the model might reply to

this problem by closing scenarios under modus ponens: For all sentences A and

10To see this, suppose an agent a accepts some complex conjunction B = (A1∧A2 . . .∧An).
Then B is epistemically necessary for a and hence true at all epistemically possible scenarios
for a. If scenarios are closed under conjunction-elimination, then each conjunct Ai is also
true at all epistemically possible scenarios for a. Then each Ai is epistemically necessary for
a, and hence a accepts each Ai. So if a accepts B, a accepts each of its conjuncts Ai.
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B and scenarios w ∈ Wn, if A and (A→ B) are true at w, then B is also true

at w. But now we can restate the content and rationality problems in terms

of inference rules that involve ∨, and the adherent of the Single Disprovability

Model can reply correspondingly by closing scenarios under the inference rules

involving ∨. Clearly, this dialectics can keep going until all scenarios in Wn

are closed under the standard inference rules.

But if all scenarios in Wn are closed under the standard inference rules,

scenarios in Wn are closed under entailment simpliciter. But it then follows

by familiar reasoning that all inconsistent, non-ideal scenarios in Wn are triv-

ially impossible in the sense that they verify all sentences.11 But to serve as

a construction of a non-trivial epistemic space, only non-trivially impossible

scenarios should survive in Wn. If so, scenarios that verify all sentences should

be excluded from Wn because of their “explosive”, “anything goes” nature.

Yet, if we eliminate such “anything goes” scenarios from Wn, we thereby end

up eliminating all inconsistent scenarios from Wn. As a result, only consistent,

ideal scenarios survive in Wn, in which case Wn is only suitable for modeling

ideal, logically omniscient agents. So to build models of non-trivial epistemic

space that can overcome the content and rationality problems, we should not

close scenarios under the standard inference rules.

In a certain sense, however, one might view most of the models of non-

ideal epistemic space that I investigate in both this and the next chapter as

attempting to close scenarios restrictedly or limitedly under the standard in-

ference rules. The Joint Disprovability Model of the next section, for instance,

requires that scenarios in non-trivial epistemic space cannot be jointly dis-

proved by applying the standard inference rules a limited number n of times

on sentences already verified by these scenarios. Roughly, the idea is that

11In fact, this problem arises as soon as scenarios contain all instantiations of the axiom
schemas and are closed under modus ponens; see also footnote 15 on page 122.
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whenever a scenario w verifies the premises of a given inference rule, then as

long as w verifies all sentences that can be inferred from these premises by ap-

plying the rule n many times, w will survive in non-trivial epistemic space. In

this sense, scenarios can be closed restrictedly or limitedly under the standard

inference rules. So although we cannot solve the content and rationality prob-

lems by closing scenarios unrestrictedly under various inference rules, we might

well attempt to do so by only closing them restrictedly or limitedly under such

rules.

As Extreme Epistemic Space, we have seen that the Single Disprovability

Model has its roles to play. It allows us to prove (C-3n) and (C-2n) and

vindicate the (Epi-Pos) and (Epi-Nec) principles for the whole spectrum of

level-n agents. But because arbitrarily jointly inconsistent scenarios need never

be eliminated from Wn, the Single Disprovability Model fails to play the role

of non-trivial epistemic space. In the next chapter, I will investigate versions

of the Single Disprovability Model that aim to impose further constraints on

scenarios in Wn. For now, however, I will investigate the most natural approach

to tackle the limitations of the Single Disprovability Model.

4.2 The Joint Disprovability Model

The main limitations of the Single Disprovability Model arise because sce-

narios in any Wn can contain jointly inconsistent sets of sentences such as

{(A ∧ B),¬A,¬B}. To overcome these limitations, the natural suggestion is

to aim to eliminate scenarios that contain such sets from non-ideal epistemic

space. To this end, I investigate the Joint Disprovability Model that only dif-

fers from the Single Disprovability Model in taking the basic notion to be that

of jointly disproving a set of sentences.

I define the core notion of joint disprovability as follows:
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(Joint Disprovability) A set of sentences Γ is jointly disprovable

within n steps in S iff a contradiction can be derived from Γ within

n steps in S.

Two comments on this definition. First, I allow for simplicity that S can

make derivations from assumptions or premises, and as such, that we can

eliminate sets of sentences by deriving a contradiction from such sets. In the

Single Disprovability Model, by contrast, we can only eliminate those sets of

sentences that contain a sentence the negation of which can be derived in S

from no assumptions. Yet, we could say that a set of sentences Γ is jointly

disprovable in n steps in S if and only if there is a conjunction of sentences in Γ

the negation of which can be derived within n steps in S from no assumptions.

For the general results to come, these differences are not important, but the

results will be much easier to establish with (Joint Disprovability).12 Second,

for simplicity, I will think of contradictions as pairs {A,¬A}. Yet we could

easily introduce or define ∧ and say that Γ is jointly disprovable within n steps

in S whenever (A ∧ ¬A) can be derived from Γ within n steps in S. If we do

this, we have to add one extra step to the results below.

We can now use (Joint Disprovability) to define a notion of joint consistency

that applies to sets of sentences:

(n-Consistency) A set of sentences Γ is n-consistent with respect

to S iff Γ cannot be jointly disproved within n steps in S; otherwise

Γ is n-inconsistent with respect to S.

By taking scenarios to be minimally closed sets of sentences, we can then use

(n-Consistency) to define the following spheres of scenarios, where VJ is the

class of scenarios in the Joint Disprovability Model:

12For further details, see footnote 15, page 122.
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The set V0 of 0-consistent scenarios: the scenarios in VJ that

cannot be jointly disproved in 0 steps in S.

The set V1 of 1-consistent scenarios: the scenarios in VJ that

cannot be jointly disproved within 1 step in S.

The set V2 of 2-consistent scenarios: the scenarios in VJ that

cannot be jointly disproved within 2 steps in S.

...

The set Vn of n-consistent scenarios: the scenarios in VJ that

cannot be jointly disproved within n steps in S.

...

The set V∞ of∞-consistent scenarios: the scenarios in VJ that

cannot be jointly disproved within any number of steps in S.

I stipulate that no set of sentences can be jointly disproved in 0 steps in S,

in which case VJ is identical to the class of scenarios V0. Vn corresponds to the

class of scenarios in V0 whose only constraint is that no contradiction can be

derived from any scenario in the class within n steps in S. When we increase

the value for n, increasingly more non-ideal scenarios will be excluded from

Vn. V∞ corresponds to the class of scenarios from which no contradiction can

be derived in any number of steps in S.

As with scenarios in the Single Disprovability Model, scenarios in the Joint

Disprovability Model are related by the subclass relation:

V0 ⊇ V1 ⊇ V2 . . . ⊇ Vn . . . ⊇ V∞.

Intuitively, the idea is, as we move inwards through this epistemic space, it

takes increasingly more computational effort to spot the contradictions that

are verified by various n-inconsistent scenarios.
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Though the Single Disprovability Model and the Joint Disprovability Model

only differ in whether we take the core notion to be that of disproving a sin-

gle sentence or jointly disproving a set of sentences, they give very differ-

ent results and have very different problems. On the good side, the Joint

Disprovability Model allows us to eliminate the trivially impossible scenarios

that survive in the Single Disprovability Model. Take a scenario w such that

{(A ∧B),¬A,¬B} ⊆ w, where A and B are contingent sentences. No matter

how large n goes, scenarios like w can survive in Wn in the Single Disprov-

ability Model. But in the Joint Disprovability Model, w is quickly eliminated

from Vn. Specifically, we can jointly disprove w in 2 steps in S. First we apply

conjunction-elimination on (A ∧ B) to get A from w in 1 step. Second, we

infer ¬A from w in 1 step by use of the trivial inference rule that enables us

to infer A in 1 step from any set Γ such that A ∈ Γ.13 So A and ¬A can be

derived from w in 2 steps, and hence w is jointly disprovable in 2 steps. By

(n-Consistency), w is then 2-inconsistent and fails to be in any Vn, for n > 1.

So the Joint Disprovability Model constitutes an improvement in this respect.

However, as we shall see now, this improvement is negligible compared to the

problems that arise in the Joint Disprovability Model.

4.2.1 Problems in the Joint Disprovability Model

We want to use the sequence of epistemic spaces that we can isolate in

the Joint Disprovability Model to establish the Carnap-style analyses (C-3n)

and (C-2n). But we cannot use the sequence of epistemic spaces
(
V0, V1, . . .

)
to establish these analyses. Let �n be the kind of operator that receives the

Carnap-style analysis in the Joint Disprovability Model:

(C-�n) �nA iff for all scenarios w ∈ Vn, A ∈ w.

13For further clarification and motivation of why proof steps are counted in this way in
systems that allow derivations from assumptions, see chapter 3, section 3.2, page 88.
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Irrespective of what �n means, it cannot mean ‘provability in n steps in S’.

To see why, I will prove:

(Omni) For all sentences B and n > 1, if B is provable in S, then

�nB.

Since it is not true that all logically true sentences can be proved in 2 steps in

S, (Omni) will entail that �n cannot mean ‘provability in n steps in S’. And

as a result of (Omni), the Joint Disprovability Model will fail as a model of

non-trivial epistemic space.

To prove (Omni), I first prove (Disp2):

(Disp2) For all sentences B, if B is provable in S, then any max-

imal set of sentences Γ such that ¬B ∈ Γ is jointly dis-

provable in 2 steps in S.

For the purpose of establishing (Disp2), and hence (Omni), I restrict S to

axiomatic systems in which every line of a proof is derived from premises, or

in which every line is derived from the empty set if there are no premises.

Although results similar to (Omni) can be established for other kinds of proof

systems—as (G-Incon) in chapter 5 also shows—I can make my general point

by focusing on axiomatic systems.

I prove (Disp2) by induction on the shortest number of steps required to

disprove Γ:

Base case: Assume B is provable in 1 step in S and that ¬B ∈ Γ—

since no sentence is provable in 0 steps in S, (Disp2) is vacuously

true for n = 0, so the interesting base case is for n = 1. We want

to show that Γ is jointly disprovable in 2 steps in S. Since ¬B ∈ Γ,

¬B can be derived from Γ in 1 step.14 Since B is provable in 1 step,

14That is, ¬B can be derived from Γ in 1 step in S by the trivial inference rule that
enables us to infer A in 1 step from any set Γ such that A ∈ Γ.
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B can be derived from any set in 1 step. So B can be derived from

Γ in 1 step. So ¬B and B can be derived from Γ in 2 steps, and

hence Γ is jointly disprovable in 2 steps in S. So (Disp2) holds for

the base case.

Inductive step: Assume for the induction hypothesis that (Disp2)

holds for all sentences B that are provable in n steps in S. We want

to show that (Disp2) holds when B is provable in n+ 1 steps in S.

If n = 0, we repeat the argument from the base case. For n > 1,

suppose B is provable in n + 1 steps in S and that ¬B ∈ Γ. Then

B will have to be derived from certain assumptions A1, A2, . . . , Ak

such that each Ai is provable in at most n steps and such that B

can be derived from A1, A2, . . . , Ak in 1 step. To show that Γ is

jointly disprovable in 2 steps in S, there are two cases:

Case 1: For some Ai, Ai /∈ Γ. Hence ¬Ai ∈ Γ by (Maximal-

ity). By the induction hypothesis, for any Ai that

is provable within in n steps in S and any set Γ, if

¬Ai ∈ Γ, then Γ is jointly disprovable in 2 steps in

S.

Case 2: For all Ai, Ai ∈ Γ. We now repeat the argument

from the base case. Since B can be derived from

A1, A2, . . . , Ak in 1 step, and since each Ai ∈ Γ, then

B can be derived from Γ in 1 step. Since ¬B ∈ Γ,

¬B can be derived from Γ in 1 step. So B and ¬B

can be derived from Γ in 2 steps, and hence Γ is

jointly disprovable in 2 steps in S.

So (Disp2) holds for the inductive step, and I conclude that (Disp2)

holds in general.
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Because all scenarios in VJ are maximal, we then immediately get (Con2) by

(Disp2):

(Con2) For all sentences B, if B is provable in S, then B is true

at each w ∈ V2.

If B is provable in S, we have by (Disp2) and (n-Consistency) that any scenario

w such that ¬B ∈ w is 2-inconsistent. So for all w ∈ V2, ¬B /∈ w. By

(Maximality), then B ∈ w for all w ∈ V2. So (Con2) holds.

As a corollary to (Con2), we then get (Omni):

(Omni) For all sentences B and n > 1, if B is provable in S, then

�nB.

By (Con2), for any provable B in S, B ∈ w for all w ∈ V2. By (C-�n), right

to left, then �2B. Accordingly, for all B and n > 1, if B is provable in S, then

�nB. So (Omni) holds.15

Given results like (Disp2) and (Omni), it is clear that the Joint Disprovabil-

ity Model cannot play the role of non-trivial epistemic space. (Disp2) entails

that all non-ideal scenarios are jointly disprovable in 2 steps in S. Effectively,

this means that (Disp2) collapses the intended stratified structure in the Joint

Disprovability Model. Since all provable sentences are true at each scenario

w ∈ V2, V2 ends up playing the role of V∞ and all spaces in between are lost.

15If we decide on a broadly conjunctive definition of the notion of joint disprovability,
it is worth pointing out an alternative proof of a result similar to (Omni). First, define
(Joint Disprovability?) as: A set Γ is jointly disprovable within n steps in S iff there is
a conjunction of sentences in Γ the negation of which can be derived within n steps in S
from no assumptions. Second, assume all axiom schemas in S can be instantiated in 1 step
in S; the exact number matters little as long as it is sufficiently small, and in particular
smaller than m below. Consider then ¬(A ∧ ((A → B) ∧ ¬B)). For reasonable systems,
¬(A∧ ((A→ B)∧¬B)) is provable in some small m. By (Joint Disprovability?), then any w
that contains {A, (A→ B),¬B} is jointly disprovable within m steps. So for all w ∈ Vn, for
n ≥ m, if {A, (A → B)} ⊂ w, then B ∈ w. If all axiom schemas are instantiated in 1 step,
and if modus ponens is a rule of inference in S, then each w ∈ Vm will contain all provable
sentences. By (C-�n), we then have �nB for all provable B, for n ≥ m. Though m will not
equal 2 in many systems, m will still be small. So we will have a result similar to (Omni):
For all B and for n ≥ m, if B is provable in S, then �nB.
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Apart from scenarios in the trivial epistemic spaces V0 and V1, where any prov-

able sentence can be false, the stratified picture that motivates constructions

of non-trivial epistemic space is lost in the Joint Disprovability Model.

(Omni) entails that any agent that can perform just 2 steps in S is logically

omniscient. Given the role that we want operators like �n to play in an analysis

of deepn epistemic necessity, and given the definition of level-n agents, we can

substitute 2n with �n in (2n-Level-n) to get:

(�n-Level-n) If �nA, then A is epistemically necessary for a

level-n agent an.

By (Omni), then any logical truth is epistemically necessary for any level-2

agent. Plausibly, any moderately ideal agent can instantly perform at least 2

steps in S. So (Omni) wrongly implies that all moderately ideal agents are

characterized as logically omniscient. As a result, we cannot use the Joint

Disprovability Model to capture facts about epistemic possibility for the class

of moderately ideal agents that are logically competent, but not logically om-

niscient.

In the Joint Disprovability Model, we attempt to use the notion of joint

disprovability to eliminate the trivially impossible scenarios that survive in

the Single Disprovability Model. While the spaces V0 and V1 cannot help us

achieve this goal, we have seen that the remaining epistemic space contains no

impossible scenarios at all. So we cannot use the Joint Disprovability Model to

make (Epi-Pos) and (Epi-Nec) plausible principles for the class of moderately

ideal agents that have non-trivial but bounded cognitive capacities available for

instant a priori reasoning. In contrast to the Single Disprovability Model, which

pulls too much towards Extreme Epistemic Space, the Joint Disprovability

Model pulls too much towards Ideal Epistemic Space.
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4.3 Jago’s Model of Epistemic Space

Models of non-ideal epistemic space that are similar in spirit to the Joint

Disprovability Model are vulnerable to the same criticism. Recently, Jago has

proposed a model of non-ideal epistemic space that bears much resemblance

to the Joint Disprovability Model. According to Jago,

[a] non-ideal epistemic space is one in which not all scenarios are maximally

specific coherent ways the world might be. Some of these scenarios are not

only metaphysically impossible but also impossible by the standards of classical

logic: what is true according to such scenarios may be contradictory and need

not be closed under classical consequence.16

Much like I do, Jago thinks of ideal epistemic space in broadly Chalmersian

terms as the class of maximally specific a priori coherent ways the world might

be. And much like I do, Jago thinks of extreme epistemic space in broadly

Priestian terms as the class of open worlds.17

For much the same reasons that I gave in the criticism of Extreme Epis-

temic Space, Jago wants to avoid the trivial structure that emerges if non-ideal

epistemic space can contain any old open world. He suggests that a non-trivial

notion of epistemic possibility is tied to “what is expected of a sincere, rational

(although not ideal) agent.”18 In particular, we expect such agents to reject

basic a priori impossibilities or basic a priori falsehoods. Jago does not define

the class of basic a priori impossibilities, but takes them “to be those that

any competent language user would recognize as false, non-inferentially, on a

priori grounds.”19 These basic a priori impossibilities include sentences such

16Jago (2009a): pp. 331-332.
17Open worlds, we remember, are akin to the kinds of “anything goes” scenarios that we

find in Extreme Epistemic Space.
18Jago (2009a): p. 333.
19Jago (2009a): p. 334. Though Jago restricts his attention to agents that can non-

inferentially reject such basic impossibilities, his model can easily be generalized to accom-
modate agents for whom this is not so.
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as ‘There are round squares’, ‘0 = 1’, ‘It rains and it does not rain’, and ‘My

bike is blue and red all over’.

Following a suggestion from Chalmers, Jago then takes a sentence A to be

deeply epistemically possible when it is not obvious a priori that ¬A. To con-

struct a non-ideal epistemic space that goes with this notion of deep epistemic

possibility, Jago then attempts to

[. . . ] take all of Chalmers’ a priori coherent worlds, plus some but not all

open worlds, to underlie the epistemic scenarios. More precisely, I will take a

centred open world to be an epistemic scenario iff no agent would fall below

our epistemic expectations by believing anything that is true according to that

world.20

An open world that fails to be an epistemic scenario corresponds roughly to

what I call a trivially or blatantly inconsistent scenario. An open world that

meets the standards for being an epistemic scenario corresponds roughly to

what I call a non-trivially or subtly inconsistent scenario. For the fragment of

a priori truths that are also truths of propositional logic, an a priori coherent

world corresponds to what I call an ideal scenario.

Given this, Jago then aims to make the notion of epistemic expectations

precise by placing a total order � on open and closed worlds: w � w′ holds

whenever our expectations are such that if we expect an agent to reject w′ a

priori, then we also expect the agent to reject w a priori.21

The maximal elements with respect to � are the worlds which are coherent

(in Chalmers’ sense): for any such world w and all worlds w′, w′ � w. The

minimal elements with respect to � are those according to which some obvious

a priori impossibility is true, where that impossibility is as basic as an a priori

impossibility can be.22

20Jago (2009a): p. 333.
21To ‘reject a world a priori’ means ‘to reject some truth according to the world a priori’;

cf. Jago (2009a): p. 334.
22Jago (2009a): p. 334.
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Intuitively, if we expect an agent to reject any coherent or closed world a priori,

then we expect the agent to reject all worlds a priori, which is absurd for any

world involving analysis of epistemic possibility. In contrast, let X be the set

of basic a priori impossibilities, and let |w| be the set of truths according to w.

Then if X ∩ |w| 6= ∅, w � w′, for any world w′. That is, the minimal elements

with respect to � are all those worlds that verify a basic a priori impossibility

and that we expect all minimally rational agents to reject a priori, if anything

at all.

Now that we have the maximal and minimal elements with respect to �,

we need to decide when it holds in general. Jago’s idea is as follows:

In addition to expecting agents to treat each member of X as describing an

epistemic impossibility, we also expect rational agents to perform basic infer-

ences, in accordance with the meanings of ‘and’, ‘or’, ‘for all’ and so on. [. . . ]

Let R be a set of basic inference rules, such that we can expect any rational

agent to have the ability to apply any of those rules (if its cognitive resources

allow).23

Model theoretically, Jago interprets R as a binary relation [[R]] between

worlds. In general, (w,w′) ∈ [[R]] if and only if there is an instance of a rule

schema {A1, A2, . . . Ak} ` B in R such that {A1, A2, . . . Ak} ⊆ |w|, B /∈ |w|,

and |w′| = |w| ∪ {B}. That is, if w verifies each premise Ai for a given rule

in R, then one application of that rule takes us to another w′ that verifies

everything w does plus the conclusion B, which can be obtained by applying

the rule to the premises.

Let ‘Γ `R A’ abbreviate ‘A is derivable from Γ using just the rules in

R’. Consider then two sets of sentences Γ and ∆, and suppose Γ `R A and

∆ `R B, where {A,B} ⊆ X . Furthermore, suppose that

[. . . ] the minimum number of inference steps required to obtain A from Γ is

less than the minimum number of steps required to obtain B from ∆. Then

23Jago (2009a): pp. 334-335.
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there is an intuitive sense in which Γ is more obviously incoherent tha[n] ∆ for,

although both are incoherent, the incoherence of ∆ is harder to spot (using R)

than the incoherence of Γ.24

Then, if we expect an agent to reject ∆ as a description of an epistemic scenario,

then we expect the agent to reject Γ too. We can then say that for two open

worlds w and w′ such that |w| = Γ and |w′| = ∆, w � w′. It is in such cases

that w � w′ holds in general. Intuitively, if we expect an agent to reject w′

a priori, then we also expect the agent to reject a priori any w that is more

obviously incoherent than w′.

Jago’s model J of epistemic space is then a tuple:

〈
WC ,WO, ν,�

〉
WC and WO are classes of closed and open worlds, ν is a propositional valua-

tion function assigning a truth-value to each sentence at each world, and � is

a total order on WC ∪WO.

To get the intended non-ideal epistemic space, Jago constrains � by X and

R. Let [[X ]] be the class of open worlds such that X ∩ |w| 6= ∅. Jago then

defines a function f from scenarios in WO to N such that f(w) = n if and only

if:

(J1) there is a sequence w0w1, . . . wn of worlds in WC ∪WO such

that (wi, wi+1) ∈ [[R]] for each i < n, w0 = w,wn ∈ [[X ]]; and

(J2) there is no sequence w0w1, . . . wm with the properties from (J1)

such that m < n.

(J1) gives the number n of inference steps required to derive a basic a priori

impossibility from w using just the rules in R. (J2) says that n is the smallest

24Jago (2009a): p. 335; I have changed ‘φ’ and ‘ψ’ to ‘A’ and ‘B’ throughout the quote.
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number for which we can derive such a basic a priori impossibility from w. In-

tuitively, the cognitive resources required to reject w a priori is then a function

of the number of inference steps that it takes to derive a basic impossibility

from w.

At this point, we can easily use J to construct a stratified non-ideal epis-

temic space.25 In particular, we can use the details of the model to define a

notion of joint disprovability as follows:

(J-Joint Disprovability) A set of sentences Γ is jointly disprov-

able within n steps iff f(Γ) = n.

That is, Γ is jointly disprovable within n steps just in case n is the smallest

number of inference steps that are required to derive a basic a priori impossi-

bility from Γ using the rules in R. If we assume that no Γ is jointly disprovable

in 0 steps, we can then use (J-Joint Disprovability) to construct a spherical

epistemic space similar to the one in the Joint Disprovability Model.

4.3.1 Problems in Jago’s Model of Epistemic Space

As seen, Jago’s model is very similar to the Joint Disprovability Model. If

so, it should inherit the problems of the Joint Disprovability Model. Since it is

not entirely clear from Jago’s presentation whether worlds in J are maximal

or not, we can proceed in different ways.

We can specify a condition (C1), according to which worlds in J are max-

imal in the sense that for any sentence A, either A is true at w or ¬A is true

at w. If J satisfies (C1), then J is faulty for roughly the same reasons as the

Joint Disprovability Model.

25Jago himself does not consider such a stratified construction. Instead, he investigates
various borderline cases concerning which open worlds should not count as epistemic sce-
narios in addition to those in [[X ]]. By having a stratified construction of epistemic space,
there is no principle reason for aiming to settle such questions.
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We can specify a condition (C2), according to which worlds in J can fail

to be maximal but some non-maximal worlds can be ruled out using rules in

R. If J satisfies (C2), then J is faulty for roughly the same reasons as the

Joint Disprovability Model.

We can specify a condition (C3), according to which worlds in J can fail

to be maximal but no non-maximal world can be ruled out using rules in R. If

J satisfies (C3), then though J is not faulty for the same reasons as the Joint

Disprovability Model, Jago’s general picture strongly indicates that J should

not satisfy (C3). I will initially motivate this latter claim.

First, if J satisfies (C3), then it becomes very hard to see how the order

� on worlds in WC ∪WO is supposed to work. For instance, let w? be a non-

maximal world according to which only A and B are true, for compatible A

and B, but according to which all other sentences are indeterminate. For any

world w that we expect an ideal agent to reject a priori, we can ask whether

w? � w. If w? 6� w, this must mean that there is no way to reject w? a priori

using R—otherwise, an ideal agent would have rejected w? because it fails to

verify arbitrarily many logical and mathematical truths. But then not all the

maximal elements of � are Chalmers’ ideal scenarios that verify every a priori

true sentence. So we have good reason to rule out non-maximal worlds like w?

using R. If so, there is good reason to hold that J should not satisfy (C3).

Second, if J satisfies (C3), then worlds like w? intuitively fail to capture

“genuine epistemic possibilities for rational, yet non-ideal, agents.”26 Plausibly,

our epistemic expectations are such that we expect minimally rational agents

not only to reject obvious a priori falsehoods but also to accept obvious a

priori truths. To capture this central aspect of our epistemic expectations, we

have reason to say that worlds like w?, at which obvious a priori truths such

as (A → A) and ¬(A ∧ ¬A) can be indeterminate should be rejected a priori

26Jago (2009a): p. 340.
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using R. If so, there is good reason to hold that J should not satisfy (C3).

In fact, there is reason to hold that worlds in Jago’s model are maximal

and hence that J should neither satisfy (C3) nor (C2). First, Jago defines ν

in J to be “a propositional valuation function, assigning a truth-value to each

sentence at each world.”27 Since any normal propositional valuation function

is two-valued, Jago presumably intends ν to be as well. If ν could have taken

a third truth-value like indeterminate, one presumes that Jago would have

specified the details. If so, there is good reason to hold that J should neither

satisfy (C3) nor (C2).

Second, Jago says that we “expect rational agents to perform basic infer-

ences, in accordance with the meanings of ‘and’, ‘or’, ‘for all’ and so on.”28

This strongly suggests that Jago conceives of rules in R as basic inference

rules of classical logic, and hence that worlds can only be rejected a priori

using classical rules. If so, there is good reason to hold that scenarios in J are

maximal. For instance, if |w?| is a world at which A and B are true, and if

w? is maximal such that ‘(A ∧ B) /∈ |w?|’ means that ¬(A ∧ B) is true at w?,

then w? can be ruled out using just classical rules in R. Since we can derive

(A∧B) from |w?| by an application of conjunction-introduction, both (A∧B)

and ¬(A∧B) turn out to be true at w? when w? is maximal. But if w? is not

maximal and if ‘(A ∧ B) /∈ |w?|’ does not mean that ¬(A ∧ B) is true at w?,

then classical rules will not allow us to rule out w?. Accordingly, since there

is good reason to hold that w? should be a priori rejected using R and that

R consists of classical rules, there is hence good reason to hold that worlds in

J are maximal. So there is good reason to hold that J should neither satisfy

(C3) nor (C2).

I trust that the arguments above give us reason to say that J should not

27Jago (2009a): p. 335; see also Jago (2009a): footnote 13, p. 332.
28Jago (2009a): p. 335.
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satisfy (C3). If any old non-maximal world like |w?| = {A,B} can count as

an epistemic scenario, there are simply too many aspects of Jago’s general

picture that we cannot capture. And in any case, if J satisfies (C3), we

cannot use J to play the role of non-trivial epistemic space. For instance, if

non-maximal worlds like w? are never ruled out as epistemic scenarios, then we

cannot use the resulting epistemic space to ensure that obvious logical truths

always remain epistemically necessary for moderately ideal agents.29 So I will

set aside the possibility that J satisfies (C3). Though there is also reason

to hold that Jago’s model should not satisfy (C2) either, I will in due course

assume that it does and show that J then inherits the problems of the Joint

Disprovability Model. First, however, I will assume that J satisfies (C1) and

show that J then inherits the problems of the Joint Disprovability Model. In

the end, I will then have shown that J cannot play the role of non-trivial

epistemic space.

So I first assume that J satisfies (C1) and hence that all worlds in WC∪WO

are maximal. Then ¬A is true at w whenever A /∈ |w|. By construction, we

know that a world w fails to be a priori coherent when a sentence A in X can

be derived from |w| using R. For current purposes, I will focus on the class

of logically incoherent worlds from which a contradiction {A,¬A} ∈ X can be

derived (simpliciter) using the rules in R.30

Given this, I will now show that a contradiction can be derived from any

logically incoherent world in just 1 step using the rules in R. To this end,

I prove (J-Disp), where ‘|w| `R B’ abbreviates ‘B can be derived from the

truths according to w using the rules in R’:

(J-Disp) For all sentences B and all worlds w, if B /∈ |w| and

|w| `R B, then f(w) = 1.

29See also section 5.3, chapter 5.
30Strictly, this means that I allow pairs of sentences {A,¬A} to be in X . If we are troubled

with this, we can add an extra step for conjunction-introduction below.
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The proof of (J-Disp) is analogous to the proof of (Disp2). First, I assume

that nothing can be derived from |w| in 0 steps. Second, given Jago’s semantic

encoding of R as a binary relation between worlds, I will not bother about the

trivial inference rule that enables us to infer A in 1 step from any set Γ such

that A ∈ Γ. If we want to represent this rule explicitly, (J-Disp) will hold for

f(w) = 2 rather than f(w) = 1—as always, the exact value for n matters little

for the general insight. Finally, let ‘|w| `n
R B’ abbreviate ‘B can be derived

from the truths according to w in n steps using the rules in R’, where one

inference step corresponds to one application of a rule in R.

I prove (J-Disp) by induction on the shortest number of steps required to

derive a contradiction from |w|:

Base case: Assume B /∈ |w| and |w| `1
R B. Since |w| `1

R B, there is

then a w′ such that (w,w′) ∈ [[R]], where |w′| = |w|∪B. So B ∈ w′.

But also, since B /∈ |w|, then ¬B ∈ |w| and hence ¬B ∈ |w′|. So

w′ ∈ [[X ]]. So there is a sequence w0w1 such that (w0, w1) ∈ [[R]],

where w0 = w,w1 = w′ and w1 ∈ [[X ]]. So f(w) = 1. So (J-Disp)

holds for the base case.

Inductive step: Assume for the induction hypothesis that (J-Disp)

holds for all sentences B such that |w| `n
R B. We want to show

that (J-Disp) holds when |w| `n+1
R B. If n = 0, we repeat the base

case. So let n > 1, and assume B /∈ |w| and |w| `n+1
R B. Then

B has to be derived from certain assumptions A1, A2, . . . Ak such

that each Ai can be derived from |w| in at most n steps and such

that B can be derived from A1, A2, . . . Ak in 1 step. To show that

f(w) = 1, there are two cases:

Case 1: For some Ai, Ai /∈ |w|. By the induction hypothesis,

if Ai /∈ |w| and |w| `n
R Ai, then f(w) = 1.
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Case 2: For all Ai, Ai ∈ |w|. We now repeat the argument

from the base case. Since B can be derived from

A1, A2, . . . , Ak in 1 step, and since each Ai ∈ |w|,

then |w| `1
R B. Since |w| `1

R B, there is then a w′

such that (w,w′) ∈ [[R]], where |w′| = |w| ∪B. But

also, since B /∈ |w|, then ¬B ∈ |w| and hence ¬B ∈

|w′|. So w′ ∈ [[X ]]. So there is a sequence w0w1

such that (w0, w1) ∈ [[R]], where w0 = w,w1 = w′

and w1 ∈ [[X ]]. So f(w) = 1.

So (J-Disp) holds for the inductive step, and I conclude that (J-

Disp) holds in general.

(J-Disp) states that we can derive a contradiction from any logically inco-

herent world in just 1 step using the rules in R. Following Jago, we assume

that agents have a basic inferential ability to employ the rules in R in a priori

reasoning. (J-Disp) then implies (Omni1):

(Omni1) Any agent that can perform just 1 step using the rules in

R can a priori reject any logically incoherent world in WC ∪WO.

If an agent can reject a world w a priori, we can say that w is epistemically

impossible for this agent. By (Omni1), then all logically incoherent worlds are

epistemically impossible for any agent that can perform just 1 inference step

using the rules in R. So any agent that can perform just 1 inference step is

logically omniscient. Plausibly, any moderately ideal agent is able to perform

at least 1 step using the rules in R. But such agents should obviously not

be characterized as logically omniscient. So if J satisfies (C1), then (Omni1)

entails that J fails as a model for the class of moderately ideal agents that are

logically competent, but not logically omniscient. As in the Joint Disprovabil-

ity Model, agents that can engage in minimal, inferential a priori reasoning
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are wrongly characterized as logically omniscient. So if J satisfies (C1), then

J inherits the problems of the Joint Disprovability Model.

To avoid (J-Disp), worlds in J cannot be maximal. So we assume that J

satisfies (C2) and hence that worlds in J can fail to be maximal and that some

non-maximal worlds can be ruled out using R. First, when worlds can fail to

be maximal, let us say that A is true at w just in case A ∈ |w| and that A is

false at w just in case ¬A ∈ |w|. Then we can say that A is indeterminate at w

just in case A /∈ |w|, where this means that neither A ∈ |w| nor ¬A ∈ |w|. Let

‘1(A)’, ‘0(A)’, and ‘1
2
(A)’ respectively mean that A is true, A is false, and A is

indeterminate, and let ‘1(A) at w’, ‘0(A) at w’, and ‘1
2
(A) at w’ respectively

mean that A is true, false and indeterminate at w.

Second, if worlds can fail to be maximal, we need to specify what it means

to reject a non-maximal world a priori using R. In some way or another, I

take it, we have to utilize an idea along the following lines: if 1
2
(A) at w, but

either 1(A) or 0(A) can be derived from |w| using R, then w can be rejected

a priori. When worlds are maximal, we can use X as above and say that w

can be rejected a priori if a contradiction {1(A), 0(A)} is derivable from |w|

using R. But if worlds can be non-maximal, we need a broader specification.

Given a rule-based model of epistemic space like Jago’s, the most natural

suggestion is to say that indeterminate and true or false sentences can stand in

contradictory relationships; in fact, it is very hard to see which other feature

of a rule-based model can be used to rule out non-maximal worlds. So we

can stipulate that {1(A), 1
2
(A)} and {0(A), 1

2
(A)} in addition to {1(A), 0(A)}

count as contradictions. Call this enriched notion of a contradiction an i-

contradiction.

We can then say that a world w inWC∪WO fails to be logically coherent just

in case an i-contradiction can be derived (simpliciter) from |w| using R. If w is

maximal, w fails to be logically coherent when w is logically incoherent in the
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sense that {1(A), 0(A)} can be derived from |w| using R. If w is non-maximal,

w fails to be logically coherent just in case either {1(A), 1
2
(A)}, {0(A), 1

2
(A)}

or {1(A), 0(A)} can be derived from |w| using the rules in R. This requires

that rules in R allow us to reason about indeterminacies. Except for the

uninteresting constraint (R?) below, I will leave the nature of such non-classical

rules in R an open question and note that they are required if we want to rule

out non-maximal worlds using rules in R.

Along the lines above, we can then say that a world w can be rejected a

priori when an i-contradiction can be derived from |w| usingR. For the class of

minimally rational agents, we can say that if an i-contradiction can be derived

from |w| in a few steps using the rules in R, then w can be rejected a priori by

a minimally rational agent. Intuitively, when a sentence A is indeterminate at

w, but A or ¬A can be easily or obviously derived from |w| using R, then w

can be rejected a priori by a minimally rational agent. For instance, suppose

(A → A) /∈ |w| and ¬(A → A) /∈ |w|. Then w is non-maximal. We can

plausibly expect that (A → A) can be derived from any set in few steps

using the rules in R. If so, then an i-contradiction {1
2
(A→ A), 1(A→ A)} can

plausibly be derived from |w| in few steps using R. In such cases, non-maximal

worlds can be rejected a priori by minimally rational agents.

The rough picture outlined above allows us to say that J satisfies (C2).

But it also immediately allows us to prove a result similar to (J-Disp). Assume

it takes 1 step using the rules in R to infer 1(A) from any |w| such that A ∈ |w|

and 1 step to infer 0(A) from any |w| such that ¬A ∈ |w|. Let then m be the

smallest number such that for any A:

(R?) It takes m steps using a rule in R to derive 1
2
(A) from any |w|

such that A /∈ |w| and ¬A /∈ |w|.

Though matters are less clear when R can contain non-classical rules, we can
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stipulate the value for m in (R?) to be small. In fact, insofar as many-valued

reasoning is not fundamentally different from two-valued reasoning, we can

also safely stipulate that m = 1 in (R?). For now, however, I will leave the

exact value for m imprecise but intuitively take m to be small. This will also

serve to show the general reasoning behind results like (Disp2) and (J-Disp).

Given this, we can now show that an i-contradiction can be derived from

any world that fails to be logically coherent in a few steps using the rules in

R. Omitting unnecessary formalism, I prove (J-Disp?) to this end:

(J-Disp?) For all sentences B and all worlds w, if 0(B) at w or

1
2
(B) at w and |w| `R B, then an i-contradiction can be derived

from |w| in m+ 2 steps using R.31

The proof strategy for (J-Disp?) is exactly the same as the one for (J-Disp).

Since the reasoning behind (J-Disp) is familiar by now, I will simplify and only

show a part of the inductive proof of (J-Disp?):

Base case: Assume 1
2
(A) at w and |w| `1

R B. Then B can be

derived from |w| in 1 step, and hence 1(B) can be derived from |w|

in 2 steps. Since 1
2
(B) at w, then neither B ∈ |w| nor ¬B ∈ |w|.

So we can derive 1
2
(B) from |w| in m steps. So we can derive an

i-contradiction ({1(B), 1
2
(B)}) from |w| in m + 2 steps using R.

Omitting the analogous reasoning for 0(A) at w, (J-Disp?) holds

for the base case.32

Inductive step: Assume for the induction hypothesis that (J-Disp?)

holds for all sentences B such that |w| `n
R B. We want to show

31As (J-Disp?) is stated, I omit reference to the part of Jago’s formalism that concerns
the function f . Also, I will omit reference to the part that concerns the binary relation
[[R]] between worlds in the proof of (J-Disp?) below. But in both cases, nothing is lost with
respect to the underlying meaning of the formalism.

32Given the stipulations above, when 0(A) at w and |w| `1
R B, we can derive an i-

contradiction ({1(B), 0(B)}) from |w| in 3 steps using R. As such, (J-Disp?) will hold for
m+ 2 = 3 for (at least) all maximal worlds.
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that (J-Disp?) holds when |w| `n+1
R B. If n = 0, we repeat the base

case. So let n > 1, and assume 1
2
(B) at w and |w| `n+1

R B. Then B

has to be derived from certain assumptions A1, A2, . . . Ak such that

each Ai can be derived from |w| in at most n steps and such that B

can be derived from A1, A2, . . . Ak in 1 step. There are three cases

to consider:

Case 1: For some Ai, 0(Ai) at w. By the induction hy-

pothesis, if 0(Ai) at w and |w| `n
R Ai, then an i-

contradiction ({1(Ai), 0(Ai)}) can be derived from

|w| in m+ 2 steps using R.

Case 2: For some Ai,
1
2
(Ai) at w. By the induction hy-

pothesis, if 1
2
(Ai) at w and |w| `n

R Ai, then an i-

contradiction ({1(Ai),
1
2
(Ai)}) can be derived from

|w| in m+ 2 steps using R.

Case 3: For all Ai, 1(Ai) at w. We now repeat the argument

from the base case. Since B can be derived from

A1, A2, . . . , Ak in 1 step using R, and since each

Ai ∈ |w|, then |w| `1
R B. Then B can be derived

from |w| in 1 step, and hence 1(B) can be derived

from |w| in 2 steps. Since 1
2
(B) at w, then neither

B ∈ |w| nor ¬B ∈ |w|. So we can derive 1
2
(B) from

|w| in m steps. So we can derive an i-contradiction

({1(B), 1
2
(B)}) from |w| in m+ 2 steps using R.

Omitting the analogous reasoning for 0(A) at w, I conclude that

(J-Disp?) holds for the inductive step and thus in general.

(J-Disp?) states that we can derive an i-contradiction from any world that

fails to be logically coherent in m + 2 steps using R. Since we can take m
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in (J-Disp?) to be small, (J-Disp?) will inherit the force and consequences of

(Disp2) and (J-Disp)—if m = 1 in (R?), (J-Disp?) will hold for all n > 2.

(J-Disp?) implies (Omni2):

(Omni2) Any agent that can perform m + 2 steps using the rules

in R can a priori reject any world in WC ∪ WO that fails to be

logically coherent.

As with (Omni) and (Omni1), (Omni2) entails that any agent that can perform

m + 2 inference steps is logically omniscient. Since we can take m in (R?) to

be small, we can hold that any moderately ideal agent is able to perform at

least m + 2 steps using the rules in R—if m = 1 in (R?), this is particularly

plausible. So we end up with the wrong result that moderately ideal agents

are characterized as logically omniscient. So if J satisfies (C2), then (Omni2)

entails that J fails as a model for the class of moderately ideal agents that are

logically competent, but not logically omniscient. So if J satisfies (C2), then

J inherits the problems of the Joint Disprovability Model.

More generally, the results above suggest that by merely including non-

maximal scenarios in epistemic space, we do not avoid results like (Omni).

Rather, one must also hold that non-maximal scenarios like w? = {A,B} are

not generally ruled out in a step-based fashion using inference rules in a system.

In light of this, we are drawn towards accepting a model of epistemic space

that satisfies condition (C3), according to which no non-maximal scenario can

be ruled out by step-based logical reasoning.33 But as argued above, there

are good reasons to say that models like Jago’s should not satisfy (C3). Very

roughly, just as worlds that qualify as epistemic scenarios should not contain

obvious a priori falsehoods, so worlds that qualify as epistemic scenarios should

not fail to contain obvious a priori truths. So there is good reason to say that

33Or at least we must accept that most non-maximal scenarios are never eliminated from
epistemic space; see section 5.3, chapter 5 for further discussion of these matters.
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models like Jago’s satisfy either (C1) or (C2), in which case we cannot use

such models to capture facts about epistemic possibility for moderately ideal

agents.

Jago attempts to develop a non-ideal epistemic space in which scenarios

are subtly incoherent and so are not trivial or obvious impossibilities. This is

why they correspond to genuine epistemic possibilities for rational, yet non-

ideal, agents.34

But as we have seen, Jago’s model threatens to imply that no logically inco-

herent scenarios remain epistemically possible for agents that can engage in

minimal, rule-based a priori reasoning. As in the Joint Disprovability Model,

logical omniscience sneaks in, and the resulting epistemic space pulls too much

towards Ideal Epistemic Space.

4.4 Summary

Since we can establish (C-3n) and (C-2n) in the Single Disprovability

Model, we can use the model to ensure that (Epi-Pos) and (Epi-Nec) are

plausible principles for the whole spectrum of agents. Yet, in the absence of

any joint consistency constraints on scenarios, the Single Disprovability Model

yields too many trivially impossible scenarios, where almost any set of bla-

tantly inconsistent sentences can be true. As a result, scenarios in the Single

Disprovability Model cannot play the role of non-trivially impossible scenarios.

In the Joint Disprovability Model and in Jago’s model, we can eliminate the

trivially impossible scenarios that survive in the Single Disprovability Model.

Yet, in the presence of joint consistency constraints on scenarios, models like

the Joint Disprovability Model yield too few impossible scenarios, where any

logical falsehood can be true. As a result, we cannot use such models to en-

34Jago (2009a): p. 340.
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sure that (Epi-Pos) and (Epi-Nec) are plausible principles for the broad class

of moderately ideal agents.

I set out to investigate models of non-trivial epistemic space that fall be-

tween Extreme Epistemic Space and Ideal Epistemic Space. But generally, we

have seen that models like the Single Disprovability Model pull too much to-

wards Extreme Epistemic Space, whereas models like the Joint Disprovability

Model pull too much towards Ideal Epistemic Space. A dilemma is emerging

for constructions of non-trivial epistemic space, and I investigate the details in

the next chapter.
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Chapter 5

Dilemma for Models of Non-Trivial Epistemic Space

We have seen that attempts to construct non-trivial epistemic space threaten

to yield either too many trivially impossible scenarios, where almost any set of

blatantly inconsistent sentences can be true, or too few impossible scenarios,

where any logical falsehood can be true. Given that scenarios are maximal,

the following dilemma has been motivated, although not yet established:

(Dilemma) Either scenarios contain joint blatant inconsistencies,

in which case we have trivially impossible scenarios in epistemic

space, or scenarios do not contain joint blatant inconsistencies, in

which case we have logical omniscience.

In this chapter, I will first establish that the dilemma holds. To this end,

I show that each maximal, logically inconsistent set of sentences contains a

(joint) blatant inconsistency, and derivatively that all logically inconsistent

scenarios are trivially impossible. When scenarios are maximal, this makes the

dilemma vicious for the general idea behind constructions of non-trivial epis-

temic space. Scenarios either contain or do not contain a blatant inconsistency.

If scenarios contain a blatant inconsistency, they are trivially impossible and

the resulting space cannot play the role of non-trivial epistemic space. As we

saw, this happens in models like the Single Disprovability Model. If scenarios

do not contain a blatant inconsistency, then scenarios are logically consistent
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and the resulting space can only be used to model logically omniscient agents.

As we saw, this happens in models like the Joint Disprovability Model. In

either case, we are caught on the horns of a vicious dilemma.

For the purpose of this project, we must accept the first horn of the

dilemma. If we want to do better than the Single Disprovabiliy Model, this

leaves us with two options that I will discuss in the second part of this chapter.

First, we allow that some, but not all trivially impossible scenarios may survive

in non-ideal epistemic space. I will call the corresponding models of epistemic

space Intermediate Models. Second, we allow that scenarios in non-ideal epis-

temic space may fail to be maximal. I will call the corresponding models of

epistemic space Partial Models.

To stick as close as possible to the intuitive picture that I used in chapter

3 to motivate models of non-trivial epistemic space, I will take the Single

Disprovability Model as the anchor of discussion. This has two benefits. First,

the Single Disprovability Model can give us the basic Carnap-style analyses

(C-3n) and (C-2n), which are required to ensure that (Epi-Pos) and (Epi-

Nec) are plausible principles for the whole spectrum of agents. Second, to

make progress on the content and rationality problems, we somehow need to

do better than the Single Disprovability Model. To evaluate the prospects of

Intermediate Models and Partial Models, we can then evaluate whether they

manage to do that. I will argue that neither Intermediate Models nor Partial

Models can successfully overcome the problems of the Single Disprovability

Model, and hence that neither models can successfully play the role of non-

trivial epistemic space.

By the end of this chapter, we will hopefully have good reason to say that

successful constructions of non-ideal, yet non-trivial epistemic spaces are hard,

if not impossible to find.
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5.1 All Inconsistent Scenarios Are Trivially Impossible

To establish the dilemma, I will show that (Incon) holds when scenarios

are maximal:1

(Incon) All logically inconsistent scenarios are trivially impossi-

ble.

If we can show (Incon), we will have shown that trivially impossible scenarios

must be admitted in epistemic space if we want to avoid logical omniscience.

To show (Incon), we need a few definitions. In particular, we need a def-

inition of what it means for a scenario to be trivially impossible. Intuitively,

scenarios are trivially impossible when they contain blatant inconsistencies,

where blatant inconsistencies are the kinds of inconsistencies that moderately

ideal agents can easily rule out a priori. To make this intuitive characterization

precise, let us first define every instance of the following kinds of inconsistencies

to be a (joint) blatant inconsistency :2

LNC-inconsistency (law of non-contradiction): {A,¬A}.

MP-inconsistency (modus ponens): {A, (A→ B),¬B}.

NC-inconsistency (negated conditional): {¬A,¬(A → B),¬B},

{¬A,¬(A→ B), B}, {A,¬(A→ B), B}.

I trust that LNC-, MP-, and NC-inconsistencies plausibly deserve the label

blatant inconsistencies. Regardless of what exactly we mean by ‘blatant in-

consistencies’, instances of LNC-, MP-, and NC-inconsistencies are prime can-

didates.

1If a scenario w is maximal, we remember, then either A is true at w or ¬A is true at w
for all sentences A. By the account of truth and falsity, and the identification of scenarios
with sets of sentences, this means in turn that either A ∈ w or ¬A ∈ w.

2Note that this definition is not meant to be an exhaustive definition, but rather a minimal
definition or characterization of what it means to be a joint blatant inconsistency.

143



All Inconsistent Scenarios Are Trivially Impossible

First, on one very natural understanding of what it means to be a blatant

inconsistency, it means to be an inconsistency that any minimally rational

agent can easily rule out a priori. Irrespective of how precisely we repre-

sent the logical reasoning that minimally rational agents can engage in, it

remains intuitively clear that they can perform the easy, obvious and feasi-

ble reasoning that suffices to rule out LNC-, MP-, and NC-inconsistencies.

Maybe this is even more clearly seen if we rephrase the negated conditionals

in NC-inconsistencies in terms of their truth-functionally equivalent conjunc-

tions: {¬A, (A∧¬B),¬B}, {¬A, (A∧¬B), B}, {A, (A∧¬B), B}.3 Formulated

in this way, a simple application of conjunction-elimination will enable a given

agent to infer a contradiction from these sets.

Second, every instance of a LNC-, MP-, and NC-inconsistency can be dis-

proved in few steps in reasonable proof systems for propositional logic. In the

case where S is a standard semantic tableaux system, any branch that con-

tains an instance of a LNC-, MP-, or NC-inconsistency will close in 1 step. In

the case where S is a natural deduction system, we can prove a contradiction

from the conjunctive versions of LNC-, MP-, and NC-inconsistencies within 10

steps.4 Though I will not go through the vast amount of proof systems and

establish how many steps it exactly takes to disprove a LNC-, MP-, or NC-

inconsistency in each such system, it is clear that this number will be small.

Accordingly, since I encode a priori logical reasoning as steps in S, we can then

also ensure that any level-n agent, for small n, can easily come to reject each

instance of a LNC-, MP-, and NC-inconsistency. So we can naturally line up

3Since the set {¬,∧} is adequate for expressing all truth-functions, we should note that
nothing is lost with respect to the general picture if we define blatant inconsistencies in
terms of these conjunctions.

4Of course, the exact number will depend on the exact inference rules of the particular
natural deduction system. But in a slow Lemmon (1998) style natural deduction system,
we can disprove each conjunctive version of a LNC-, MP-, and NC-inconsistency within
10 steps—and much quicker if we have rules that allow us to infer both conjuncts from a
conjunction in one step.
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the definition of blatant inconsistencies with the intuitive picture from chapter

3, in which I motivated the idea that blatant inconsistencies always remain

epistemically impossible for moderately ideal agents.5

We can now define a scenario w to be trivially impossible if and only if

w contains a blatant inconsistency. Since each instance of a LNC-, MP-, or

NC-inconsistency can be easily ruled out a priori, the definition captures the

intuitive idea that trivially impossible scenarios are the kinds of scenarios that

any moderately ideal agent can easily rule out a priori.

Given these definitions and a definition of scenarios as maximal sets of

sentences, we can then show (Incon) by showing (G-Incon):

(G-Incon) All maximal, logically inconsistent sets of sentences con-

tain a LNC-, MP-, or NC-inconsistency.

As always, sets of sentences are formed over a language that has symbols ¬

and → that play the same inferential roles as classical negation and material

implication. The other standard connectives are then treated as shorthand for

their familiar definitions in terms of ¬ and →—similar remarks apply to the

proof of (Sat) below. So logically inconsistent sets such as {B, (A∧¬B)} do not

make (G-Incon) false since they are treated as shorthand for {B,¬(A→ B)}.
5To be sure, the sentences that may be involved in an instance of a LNC-, MP-, or NC-

inconsistency can be of arbitrary finite length. In some sense, this might make us doubt
that instances of LNC-, MP-, and NC-inconsistencies count as blatant across the scale.
However, since it is not very plausible in general to distinguish between subtle and blatant
inconsistencies by looking at the syntactical complexity of a sentence, I think this doubt
is ultimately unfounded. First, measuring the length of a sentence does not provide for
a plausible distinction between subtle and blatant inconsistencies: Compare ‘¬((∀x(Fx →
Gx)∧¬Gx)→ ¬Fx)’ with ‘∃x(¬Fx∧(Fx∧(Fx∧(Fx∧(Fx∧(Fx∧(Fx∧(Fx∧(Fx∧(Fx∧
Fx))))))))))’. Second, counting the number of connectives does not provide for a plausible
distinction: Compare ‘((A∨B)∧¬A)→ ¬B’ with ‘(¬A∧(A∧(A∧(A∧(A∧(A∧(A∧A)))))))’.
Third, counting the number of different kinds of connectives does not provide for a plausible
distinction: Compare ‘¬(¬(A → C) → ¬((¬A → ¬B) → ¬(¬A → ¬C)))’ with ‘((A ∨ B) ∧
¬A) → ¬B’. Alternatively, in terms of length, connectives and quantifiers, the sentence
‘Every even number ≥ 4 can be expressed as the sum of two primes’ is simple. But I take it
that neither it nor its negation is or should intuitively count as blatantly inconsistent. For at
least one useful notion of blatant inconsistencies, it is the basic inferential relations among
sentences and thoughts that matter, and this is the notion that I am trying to capture.
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To prove (G-Incon), I will take a lead from one of the methods used to prove

the completeness of propositional logic. First, let us say that a set of sentences

Γ is consistent if and only if Γ is satisfiable, where Γ is satisfiable if and only

if there is an evaluation that makes each sentence in Γ true. Second, let I

be an interpretation function that assigns either true or false, but not both,

to each atomic sentence in our languages. Then ν is the following (classical)

evaluation function:

(νI) If A is an atomic sentence, then ν(A) = I(A).

(ν¬) ν(¬A) = T iff ν(A) = F .

(ν →) ν(A→ B) = T iff ν(A) = F or ν(B) = T .

This notion of consistency captures the idea that possible scenarios correspond

to maximal sets of sentences that have a model or an interpretation in propo-

sitional logic.6 The semantic clauses for ¬ and → capture the idea that the

languages under consideration have symbols that play the same inferential roles

as classical negation and material implication.

Given this, we can now prove (Sat) and derivatively use (Sat) to prove

(G-Incon):

(Sat) Any set of sentences Γ that satisfies the following two

conditions is satisfiable:

(i) A ∈ Γ iff ¬A /∈ Γ.

(ii) (A→ B) ∈ Γ iff A /∈ Γ or B ∈ Γ.

The proof of (Sat) goes as follows:

Let Γ be any set of sentences that satisfies (i) and (ii). We want to

show that there is an evaluation function ν that makes each A ∈ Γ

6For broadly linguistic constructions of logically possible worlds, this minimal model-
theoretical notion of consistency underlies standard definitions of worlds as maximal sets of
sentences that “can all be true together”. Of course, this is only a minimal specification,
since most ersatz constructions of possible worlds need more than propositional logic and
more than mere logical consistency.
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true. To this end, we stipulate an interpretation I such that for all

atomic A:

I(A) = T iff A ∈ Γ.

I(A) = F iff A /∈ Γ.

This is a possible stipulation, since I cannot assign both T and F

to any atomic A. We then need to show that every sentence in Γ is

true under this interpretation. I do this by induction on the length

of a sentence, where the length of a sentence is given by the number

of symbols it contains:7

Base case: Assume for atomic A that A ∈ Γ. We want to show

that ν(A) = T . We get the result immediately. By definition

of I, A ∈ Γ iff I(A) = T . By (νI), I(A) = T iff ν(A) = T .

So A ∈ Γ iff ν(A) = T . So ν(A) = T .

Inductive step: Assume for the induction hypothesis that ev-

ery sentence in Γ that is shorter than ¬A and (A → B) is

true under the evaluation ν based on I. We want to show

that if ¬A ∈ Γ, then ν(¬A) = T , and if (A → B) ∈ Γ, then

ν(A→ B) = T . There are two cases to consider:

Case 1: Assume ¬A ∈ Γ. By (i), ¬A ∈ Γ iff A /∈ Γ. By

induction hypothesis, A /∈ Γ iff ν(A) = F . By

(ν¬), ν(A) = F iff ν(¬A) = T . So ν(¬A) = T .

Case 2: Assume (A → B) ∈ Γ. By (ii), (A → B) ∈ Γ

iff A /∈ Γ or B ∈ Γ. By induction hypothesis,

A /∈ Γ or B ∈ Γ iff ν(A) = F or ν(B) = T .

7For instance, ¬A is longer than A, and (A→ B) is longer than A and B. Also, brackets
do not count.
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By (ν →), ν(A → B) = T iff ν(A) = F or

ν(B) = T . In either case, ν(A→ B) = T .

This completes the induction and the proof of (Sat).8

(Sat) then allows us to say that every maximal set of sentences that satisfies

(i) and (ii) is consistent, and that every maximal, inconsistent set of sentences

either does not satisfy (i) or does not satisfy (ii).

We can now use (Sat) to prove (G-Incon):

(G-Incon) All maximal, logically inconsistent sets of sentences con-

tain a LNC-, MP-, or NC-inconsistency.

The proof of (G-Incon) goes as follows:

Let ∆ be any maximal, logically inconsistent set of sentences. By

(Sat), then ∆ will fail to satisfy either (i) or (ii) and hence contain

at least one of the following inconsistent triples or pairs of sentences:

Case 1: ∆ may be inconsistent because it fails to satisfy (i)

of (Sat), in which case ∆ contains an inconsistent

pair of the form {A,¬A}. That is, ∆ contains a

LNC-inconsistency.

Case 2: ∆ may be inconsistent because it fails to satisfy

(ii) of (Sat), in which case ∆ contains either an

inconsistent triple of the form {A, (A → B),¬B},

or an inconsistent triple of the form {¬A,¬(A →
8Similar results hold for the other basic connectives of propositional logic. Assume, for

instance, that our languages have a symbol ∧ that plays the role of classical conjunction.
Assume (A ∧ B) ∈ Γ, for some maximal set of sentences Γ that satisfies (i), (ii) and (iii):
(A ∧ B) ∈ Γ iff A ∈ Γ and B ∈ Γ. If (A ∧ B) ∈ Γ, we want to show that ν(A ∧ B) = T ,
where ν(A ∧ B) = T iff ν(A) = T and ν(B) = T . By (iii), if (A ∧ B) ∈ Γ, then A ∈ Γ and
B ∈ Γ. By induction hypothesis, since A and B are shorter than (A ∧ B), ν(A) = T and
ν(B) = T . Hence ν(A ∧B) = T .
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B),¬B}, {¬A,¬(A→ B), B}, or {A,¬(A→ B), B}.

That is, ∆ contains either a MP-inconsistency or a

NC-inconsistency.

Derivatively, all maximal, logically inconsistent set of sentences con-

tain a LNC-, MP-, or NC-inconsistency. So (G-Incon) holds.

Given (G-Incon), (Incon) now follows by the definition of a trivially impos-

sible scenario:

(Incon) All logically inconsistent scenarios are trivially impossi-

ble.

So when scenarios are maximal, we have proved (Incon).

When scenarios are maximal, (Incon) thus establishes (Dilemma) to the

effect that if logical omniscience fails, then epistemic space must contain triv-

ially impossible scenarios. So when scenarios are maximal, we can conclude

that the general idea behind models of non-trivial epistemic space cannot be

made precise: There is no non-ideal epistemic space that contains only possi-

ble and non-trivially impossible scenarios. More generally, when scenarios are

maximal, we must accept the Scylla of trivially impossible “anything goes”

scenarios to avoid the Charybdis of logical omniscience.

For projects similar to mine, we must accept the first horn of the dilemma.

This leaves us with two options for doing better than the Single Disprovability

Model: Intermediate Models and Partial Models. First, I investigate Inter-

mediate Models that eliminate some, but not all trivially impossible scenarios

from non-ideal epistemic space. Second, I investigate Partial Models that allow

that scenarios in non-ideal epistemic space may fail to be maximal. I argue

that neither Intermediate Models nor Partial Models can successfully overcome

the problems of the simple Single Disprovability Model, and hence that neither

models can play the role of non-trivial epistemic space.
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5.2 Intermediate Models

To investigate Intermediate Models, I will use the core features of the Single

Disprovability Model. First, a scenario w is identified with an arbitrary set

of sentences in L—that is, with an arbitrary set of possible sentence types in

English?. Second, a sentence A is true at scenario w if and only if A ∈ w, and

A is false at w if and only if A /∈ w. Third, scenarios are minimally closed

in the sense that for all A, A ∈ w if and only if ¬A /∈ w. So scenarios are

maximal in the sense that for all A and w, either A is true at w or ¬A is true

at w. Fourth, Wn is defined as the class of scenarios that contain all sentences

that are provable within n steps in S. Formally, Wn = {w ∈ W0|PRn ⊂ w},

where PRn is the set of n-provable sentences in S. The resulting epistemic

space then corresponds to the sequence of epistemic spaces
(
W0,W1, . . .

)
.

Intermediate Models aim to improve on the Single Disprovability Model by

invoking an additional constraint that scenarios need to satisfy to be in Wn.

The primary job of this constraint is to eliminate some, but not all trivially

impossible scenarios from Wn. There are two questions to ask. First, how can

we motivate such a constraint? Second, how do we define it?

Though the motivational part is tricky, I take it that there is an intuition

according to which ∆ is more ill-behaved than Γ:

∆ = PRn ∪ {A, (A→ B),¬B,C, (C → D),¬D}.

Γ = PRn ∪ {A, (A→ B), B, C, (C → D),¬D}.

Whereas ∆ contains two blatant inconsistencies, Γ contains only one. As a

rough gloss, if I presented you with ∆ as a hypothesis about a specific way

things might be, it would offer you two ways of reasoning to an absurdity,

whereas Γ only offers one. The inconsistency of ∆, so to speak, manifests itself

more explicitly than the blatant inconsistency of Γ. The reason, one might
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intuit, why some but not all trivially impossible scenarios survive in epistemic

space is simply that some of them contain too many blatant inconsistencies to

be live options for the broad class of agents that are not extremely non-ideal.

Admittedly, this is weak motivation. But if Intermediate Models improve

significantly on the Single Disprovability Model, we can always look for better

motivation. So as a first pass, I will say that Intermediate Models require

not only that scenarios in Wn contain all n-provable sentences, but also that

they cannot contain too many blatant inconsistencies. To improve minimally

on the Single Disprovability Model, Intermediate Models then have to ensure

that scenarios in Wn cannot contain arbitrarily many blatant inconsistencies.

We can now invoke a notion of independent inconsistencies and say that

two inconsistencies are independent just in case they do not have an atomic

sentence in common. For instance, the inconsistency {A, (A → B),¬B} is

independent of the inconsistency {C, (C → D),¬D}, where A through D are

distinct atomic sentences. Since we cannot (interestingly) distinguish between

inconsistent scenarios by counting steps in a proof system, the idea is to distin-

guish between inconsistent scenarios by counting the number of independent

inconsistencies that they contain. On this way of counting, an inconsistent

scenario, all of whose inconsistencies involve atomic A contains only 1 inde-

pendent inconsistency. If we were to remove all sentences that contain A from

the scenario, the corresponding set of sentences would be satisfiable and hence

consistent. An inconsistent scenario, some of whose inconsistencies involve

atomic A but not B, and some of whose inconsistencies involve atomic B

but not A, will contain 2 independent inconsistencies. If we were to remove

all sentences that contain A and B from the scenario, the scenario would be

consistent—and so on and so forth.9

9Another counting strategy begins with the class of maximally consistent sets of sen-
tences. By adding and removing single sentences from a maximally consistent set Γ, we
can intuitively increase and decrease the degree of inconsistency of Γ. For instance, assume
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Given this counting method, we can now investigate the details of a con-

straint that secures that scenarios in Wn do not contain too many independent

inconsistencies. I will investigate two ways of defining this constraint, and cor-

respondingly distinguish between two versions of Intermediate Models. First,

we have Intermediate Models A that aim to ensure that each individual sce-

nario in Wn contains at most finitely many independent inconsistencies. We

can see Intermediate Models A as aiming to exclude from non-ideal epistemic

space each trivially impossible scenario that contains more than a certain fi-

nite number of blatant inconsistencies. Second, we have Intermediate Models

B that aim to ensure that the class of scenarios Wn at most contains finitely

many independent inconsistencies. We can see Intermediate Models B as aim-

ing to exclude from non-ideal epistemic space any trivially impossible scenario

that contains certain kinds of blatant inconsistencies. I investigate each version

of an Intermediate Model in turn.

5.2.1 Intermediate Models A

To develop an Intermediate Model A, we aim to ensure that each individual

scenario in Wn at most contains finitely many independent inconsistencies. We

can define the following constraint on scenarios in Wn:

(Int-A) For any finite n and m greater than 0, if w ∈ Wn, then

w contains at most m independent inconsistencies.

As in the unamended Single Disprovability Model, no scenario is excluded from

W0. When n is arbitrarily large, we can stipulate that each scenario w ∈ W∞

contains 0 independent inconsistencies. Hence scenarios in W∞ are logically

A ∈ Γ. Assume we add ¬A to Γ to make Γ ∪ ¬A inconsistent. Since Γ is maximally con-
sistent, {A, ¬¬A, ¬¬¬¬A, . . .} ⊂ Γ. By adding ¬A to Γ, we then create infinitely many
new inconsistencies, some of which are the pairs {A,¬A}, {¬¬A,¬A}, {¬¬¬¬A,¬A}, . . ..
By removing, say, ¬¬A from Γ ∪ ¬A, we do not restore the consistency of Γ. But if we
remove ¬A, we do. We could then start counting these inconsistency-generating problem
sentences. What I say below will apply to this counting strategy as well.
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consistent. For intermediate Wn, each scenario in Wn can at most contain m

independent inconsistencies.

Though it will not matter for current purposes, it is worth noticing the

following. Suppose we stipulate that the total number l of independent in-

consistencies is finite.10 We could then define a limited stratified structure by

saying that for any finite n and l such that n < l, if w ∈ Wn, then w contains

at most (l − n) independent inconsistencies. For example, if the total number

of independent inconsistencies is 40, then any w ∈ W10 contains at most 30

independent inconsistencies, any w ∈ W11 contains at most 29 independent

inconsistencies, and so on. On this version, scenarios in W0 can contain any

finite number of independent inconsistencies, and we can again stipulate that

scenarios in W∞ contain 0 independent inconsistencies. We can then intu-

itively say that scenarios in Wn contain more and more n-provable sentences

and less and less independent inconsistencies as n increases (to a certain limit).

To ensure the (C-3n) and (C-2n) analyses, it is of course important that n is

smaller than l. That is, since l is finite, we have to stop eliminating scenarios

from Wl−(l−1) by decreasing the number of independent inconsistencies that

scenarios in this space may contain. If we did not, we would eliminate all in-

dependent inconsistencies from each scenario in Wl, and the resulting class of

scenarios would be logically consistent. Derivatively, for any A that is provable

in more than l steps, there would not be enough scenarios in Wl to ensure that

3l¬A and ¬2lA. This would violate the (C-3n) and (C-2n) analyses.

In contrast to the unamended Single Disprovability Model, we now have a

constraint that can prevent inconsistent scenarios in Wn from being arbitrar-

ily jointly inconsistent. Given the construction, each w ∈ Wn can of course

still be arbitrarily jointly inconsistent with respect to some finite number of

10If we stipulate that there are only finitely many independent inconsistencies, then on the
current definition we stipulate that there are only finitely many distinct atomic sentences.
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independent inconsistencies. But at least we can eliminate some of the triv-

ially impossible scenarios that survive in the Single Disprovability Model. The

question is now whether this is enough to make progress on the content and ra-

tionality problems. I think not. To make the discussion maximally vivid, I will

assume that each scenario w ∈ Wn, for n > 0, at most contains 1 independent

inconsistency.

For the content desideratum, we want to use non-ideal epistemic intensions

defined over scenarios in Wn to represent the contents of the epistemic states

of moderately ideal agents. Let the epistemic n-intension of a sentence be

a function from scenarios in Wn to a truth-value. When n > 0, Wn is the

class of scenarios each of which contains all n-provable sentences and at most

1 independent inconsistency. As in the Single Disprovability Model, we are im-

mediately guaranteed that the epistemic n-intension of any n-provable sentence

is necessary. But when we look beyond the class of n-provable sentences, Inter-

mediate Models A inherit the limitations of the Single Disprovability Model.

To see this, let C and D be any two contingent sentences such that C

contains the atomic sentence A and such that D contains the atomic sentence

B. Suppose (C ↔ D) is provable within n steps in S. To capture the basic

inferential relations between (C ↔ D) and C and D, we want the n-intensions

of C and D to coincide in truth-value when the n-intension of (C ↔ D) is

necessary. But we cannot use Intermediate Models A to ensure this: Though

the n-intension of (C ↔ D) is true at all scenarios in Wn, the values of the

n-intensions of C and D can come arbitrarily apart at many scenarios in Wn.

Since all independent inconsistencies remain present throughout the space Wn,

there are plenty of scenarios in Wn all of whose inconsistencies involve A, and

there are plenty of scenarios in Wn all of whose inconsistencies involve B. As a

result, we cannot ensure that the values of the n-intensions of C and D coincide

whenever the n-intension of (C ↔ D) is necessary. Hence Intermediate Models
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A do not allow us to capture basic inferential relations among thoughts and

sentences, and consequently we cannot use these models to make progress on

the content problem. So we cannot use Intermediate Models A to satisfy the

content desideratum.

For the rationality desideratum, we want to use scenarios in Wn to give

a world involving analysis of a non-trivial notion of epistemic possibility that

captures which sentences should remain epistemically possible for minimally

rational agents. We cannot use Intermediate ModelsA to satisfy the rationality

desideratum. To see why, consider any two contingent atomic sentences A and

B.11 Assume that a minimally rational agent a accepts (A ∧ B). Since a can

easily come to infer A from (A ∧B), she rationally should accept A when she

accepts (A ∧ B). We capture this normative component in the (EP) analysis

of epistemic possibility by saying that if (A∧B) is epistemically necessary for

a, then so is A. To analyze this non-trivial notion of epistemic possibility at

the level of scenarios, we then need to ensure that A is true at all epistemically

possible scenarios for a when (A ∧ B) is. Intermediate Models A cannot do

this job: For any Wn, though (A ∧ B) is true at each w ∈ Wn that remains

epistemically possible for a, there is no guarantee that A is also true at each

such w. Since all independent inconsistencies are present throughout Wn, the

construction allows that scenarios w such that {(A∧B),¬A} ⊂ w may remain

epistemically possible for a. Thus we cannot use scenarios in Wn to infer

basic claims about which sentences should remain epistemically possible for

minimally rational agents. So we cannot use Intermediate Models A to satisfy

the rationality desideratum.

So with respect to the content and rationality desiderata, Intermediate

Models A fare no better than the Single Disprovability Model. In fact, there

11For the general points, it does not matter that A and B are atomic sentences, but it
facilitates the discussion.

155



Intermediate Models

might be reason to say that Intermediate Models A fare worse than the Single

Disprovability Model. To motivate this, assume again that each inconsistent

scenario in Wn, for n > 0, can contain at most 1 independent inconsistency.

Consider then any level-n agent an, for n > 0, that accepts A, (A → B) and

¬B, where B is atomic. Then {A, (A → B),¬B} ⊂ w for each w ∈ Wn, for

n > 0, that remains epistemically possible for an. Given this, it now follows

that an is strikingly close to being logically omniscient.

To see why, remember first that (G-Incon) says that all maximal, logi-

cally inconsistent sets of sentences contain a LNC-, MP-, or NC-inconsistency.

We can then consider any MP- or NC-inconsistency that does not involve B

and ask whether there is any epistemically possible scenario for an that con-

tains such an inconsistency.12 Without loss of generality, suppose there is

an epistemically possible scenario for an that verifies the MP-inconsistency

{C, (C → D),¬D}, where C and D do not involve B. There is then a sce-

nario w ∈ Wn such that w is epistemically possible for an and such that

{A, (A → B),¬B,C, (C → D),¬D} ⊂ w. But since w contains two in-

dependent inconsistencies, w cannot be in Wn. So the MP-inconsistency

{C, (C → D),¬D} cannot be contained in any w that is epistemically pos-

sible for an. Thus, more generally, every epistemically possible scenario for an

cannot contain a MP- or NC-inconsistency that does not already involve B.

Since scenarios are maximal, it then follows by (G-Incon) that any scenario

w that remains epistemically possible for an is consistent with respect to any

sentence C and any set of sentences Γ that do not involve B.

Assume next that all axiom schemas are instantiated in 1 step in S. By

construction of Wn, each w ∈ Wn, for n > 0, then contains all instances of the

axiom schemas in S. If we assume further that S has modus ponens as its sole

12Since scenarios in Intermediate Models are minimally closed, they are also minimally
consistent. As such, they never verify any instance of a LNC-inconsistency. So for the
current argument, we do not have to consider LNC-inconsistencies.
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rule of inference, then any provable C follows from the axioms by repeated

applications of modus ponens.13 So, since there are no epistemically possible

scenarios for an that contain a MP- or NC-inconsistency that does not involve

B, we get that all w ∈ Wn that remain epistemically possible for an contain

every logical truth C that does not involve B and whose proof does not depend

on any sentence that involves B—to save breath, any logical truth C that does

not depend on B. Derivatively, we get that any level-n agent that accepts each

member of a blatantly inconsistent set of sentences such as {A, (A→ B),¬B}

will be logically omniscient with respect to any logical truth C that does not

depend on B.

But structurally and intuitively, this should not follow. An agent that

accepts a blatantly inconsistent set of sentences such as {A, (A → B),¬B}

should not thereby be described as logically omniscient with respect to any

logical truth C that does not depend on the atomic B. Of course, if we allow

each scenario in Wn to contain more than 1 independent inconsistency, we

can avoid this particular problem. But as long as scenarios in Wn can con-

tain at most m independent inconsistencies, for some finite m, the structurally

awkward feature of Intermediate Models A remains: Any agent that accepts

m-many different kinds of blatant inconsistencies will be logically omniscient

with respect to any logical truth C that does not depend on any of the atomic

sentences in the m-many independent inconsistencies.14 Intuitively, agents are

not epistemically punished but rather rewarded for accepting blatant inconsis-

tencies.

So it remains clear that we cannot use Intermediate Models A to satisfy the

content and rationality desiderata, and hence that we cannot use Intermediate

13As always, we can easily generalize the reasoning to systems that have more inference
rules. And as always, it does not matter for the general insight that all axiom schemas are
instantiated in exactly 1 step, but it facilitates the discussion.

14Two blatant inconsistencies are of a ‘different kind’ when they do not have an atomic
sentence in common.
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Models A to play the role of non-trivial epistemic space. The question is then

whether Intermediate Models B can do better.

5.2.2 Intermediate Models B

To develop an Intermediate Model B, we aim to associate a maximal num-

ber of independent inconsistencies with spheres of scenarios. More precisely,

we can define the following:

(Level-m Inconsistency) For any finite n and m greater than 0,

Wn has level−m iff the maximal number of independent inconsis-

tencies contained by the class of scenarios in Wn is m.

For instance, if Wn has level-15, then any scenario that contains more than 15

independent inconsistencies is excluded from Wn. And if there are 16 scenarios,

each of which contains a set of inconsistencies that involve a different atomic

sentence, then one of them will not survive in Wn. For Intermediate Models B,

it does not matter whether these m independent inconsistencies are contained

by a particular scenario inWn, by all inconsistent scenarios inWn, or arbitrarily

distributed across inconsistent scenarios in Wn. Rather, it matters that only

independent inconsistencies of particular kinds can survive in the class Wn—

for instance all those inconsistencies that involve either one of the following 15

atomic sentences A1, A2, . . . , A15.

We can define the following constraint on Wn:

(Int-B) For some finite n and m greater than 0, Wn has level-m.

As above, no scenario is excluded from W0, and we can stipulate that W∞ has

level-0, in which case all scenarios in W∞ are logically consistent. As above, we

can easily change the details of (Int-B) to gain more flexibility. For instance,

if we stipulate that there are only finitely many independent inconsistencies,
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we can develop a limited stratified space by saying that for any finite n and l

such that n < l, Wn has level-(l − n).

But Intermediate Models B immediately run into problems. In particular,

the kinds of omniscience worries that could arise in Intermediate Models A

are bound to arise in Intermediate Models B. This is easily seen by the line of

reasoning from above:

Suppose Wn has level-m, for some finite n and m greater than 0. Let

the relevant set of inconsistencies all involve one of the atomic sentences

A1, A2, . . . , Am. Consider then any MP- or NC-inconsistency that does not

involve any of the atomics Ai. Without loss of generality, suppose {B, (B →

C),¬C} ⊂ w, for some w ∈ Wn, where B and C do not involve any Ai. But

when Wn has level-m, and when B and C do not already involve an Ai, this

is not possible. So there is no scenario w ∈ Wn that contains a MP- or NC-

inconsistency that does not involve an Ai. By (G-Incon), any w ∈ Wn is thus

consistent with respect to any sentence B and any set of sentences Γ that do

not involve any Ai. Assume then that all axiom schemas are instantiated in

1 step in S, and that S has modus ponens as its sole rule of inference. By

construction of Wn, each w ∈ Wn, for n > 0, then contains all instances of

the axiom schemas in S. Since any provable B follows from the axioms by re-

peated applications of modus ponens, and since no w ∈ Wn contains a MP- or

NC-inconsistency that does not involve an Ai, we get that all w ∈ Wn contain

every logical truth B that does not depend on any Ai. By the Carnap-style

analysis (C-2n), we have 2nB if and only if B ∈ w for all w ∈ Wn. So we get

(Omni3) immediately:

(Omni3) For all provable B that do not depend on an Ai, 2nB

for n > 0.
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By the line of reasoning employed in the critique of the Joint Disprovability

Model, (Omni3) then entails that any agent that can perform just 1 step in S is

logically omniscient with respect to any logical truth B that does not depend

on an Ai.

Strictly, we do not have full blown logical omniscience, and strictly we

do not get counterexamples to the Carnap-style analyses of 3n and 2n. In

both cases, there are logically true sentences that may be false at scenarios in

Wn, for n > 0. The relevant examples are found by looking at sentences that

involve at least one of the atomics Ai. But clearly (Omni3) is a counterintuitive

consequence, and it fares badly with the intended role that 2n is supposed to

play in an analysis of what it means to easily establish a sentence a priori.

And in particular, since (Omni3) holds, we cannot use Intermediate Models B

to make progress on the content and rationality problems.

For the content desideratum, we want to use epistemic n-intensions de-

fined over scenarios in Wn to model the contents of the epistemic states of

moderately ideal agents. We cannot use Intermediate Models B to satisfy the

content desideratum. To see this, let Wn have level-m, for some finite m, and

let the relevant set of inconsistencies all involve one of the atomic sentences

A1, A2, . . . , Am. First, consider any n-provable (A ↔ B), where contingent A

involves at least one of the atomics Ai. To capture the basic inferential rela-

tions between (A ↔ B) and A and B, we want the n-intensions of A and B

to coincide in truth-value when the n-intension of (A↔ B) is necessary. But

they do not in Intermediate Models B: Though the n-intension of (A↔ B) is

true at all scenarios in Wn, the values of the n-intensions of A and B can come

arbitrarily apart at many scenarios in Wn. So we cannot use the n-intensions

that we can define in Intermediate Models B to reflect the basic inferential

relations that may hold between sentences involving a given Ai.
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Second, consider any sentence B that does not involve any of the atomics

Ai. By (Omni3), if B is provable in S, and if B does not depend on an Ai, then

2nB for n > 0. By (C-2n), then B is true at all w ∈ Wn, and derivatively

the n-intension of B is necessary for any n > 0. But if we assume that all

moderately ideal agents can at least perform 1 step in S, this is clearly the

wrong result: Moderately ideal agents may well fail to accept some arbitrarily

complex logical truth B that does not depend on an Ai. Further, consider any

two contingent sentences B and C that do not involve an Ai, and assume C is

logically equivalent to B. If the n-intension of B is true at some w ∈ Wn, then

the n-intension of C is also true at w. But again, this is the wrong result: If

the logical equivalence of B and C is highly non-trivial and computationally

demanding to establish, then a moderately ideal agent may well fail to accept

C, even though she accepts B. Accordingly, we cannot use the n-intensions

that we can define in Intermediate Models B to represent the contents of the

epistemic states of moderately ideal agents. So we cannot use Intermediate

Models B to satisfy the content desideratum.

For the rationality desideratum, we want to use scenarios in Wn to ana-

lyze a non-trivial notion of epistemic possibility that captures which sentences

should remain epistemically possible for minimally rational agents. We can-

not use Intermediate Models B to satisfy the rationality desideratum. To see

this, let again Wn have level-m, for some finite n and m greater than 0, and

let the relevant set of inconsistencies all involve one of the atomic sentences

A1, A2, . . . , Am. First, consider any sentence A that involves at least one of

the atomics Ai. We want to use scenarios in Wn to say that if (A ∧ B) is

epistemically necessary for a minimally rational agent a, then A should also

be epistemically necessary for a. But we cannot: For any Wn, though (A∧B)

is true at each w ∈ Wn that remains epistemically possible for a, there is no

guarantee that A is also true at w. When A involves at least one of the atom-
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ics Ai, the construction allows that scenarios w such that {(A ∧ B),¬A} ⊂ w

may remain epistemically possible for a. Second, for any sentence B that does

not depend on any Ai, we cannot use scenarios in Wn to infer claims about

which sentences should remain epistemically possible for a. By (Omni3), this

is immediately clear: Any minimally rational agent is wrongly characterized as

logically omniscient with respect to any logical truth B that does not depend

on any Ai. So we cannot use Intermediate Models B to satisfy the rationality

desideratum.

So with respect to the content and rationality desiderata, Intermediate

Models B fare no better than Intermediate Models A. As we have seen, ei-

ther scenarios in Intermediate Models B remain too unconstrained to play the

role of non-trivially impossible scenarios, or logical omniscience sneaks back

in. In fact, there is reason to say that Intermediate Models B fare worse than

Intermediate Models A because of (Omni3). That is, whereas worries about

logical omniscience are bound to arise for a wide class of agents and sentences

in Intermediate Models B, these worries could at least only arise under fairly

specific conditions in Intermediate Models A. But in any case, neither Inter-

mediate Models A nor Intermediate Models B can play the role of non-trivial

epistemic space.

Though I tied the discussion of Intermediate Models to the Single Disprov-

ability Model, the negative points apply more generally. If we want to say that

some, but not all trivially impossible scenarios can survive in epistemic space,

we have two options. First, we can aim to restrict the number of blatant in-

consistencies that each inconsistent scenario in non-ideal epistemic space can

contain. Second, we can aim to secure that some kinds of blatant inconsis-

tencies are never contained by any scenario in non-ideal epistemic space. As

exemplified by Intermediate Models A and B respectively, both options are

of little use for making progress on the content and rationality problems. So
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when scenarios are maximal, I conclude that there is no successful construction

of a non-trivial epistemic space in which some, but not all trivially impossible

scenarios may survive.

5.3 Partial Models

I have investigated the first option that remains open if we accept the first

horn of the dilemma. I now turn to the second option and investigate models

of non-ideal epistemic space in which scenarios fail to obey (Maximality):

(Maximality) For all sentences A and scenarios w, either A is true

at w or ¬A is true at w.

Call models of epistemic space in which scenarios fail to obey (Maximality)

Partial Models, and call scenarios that fail to be maximal partial scenarios.

If we admit partial scenarios in non-ideal epistemic space, we can allow

that sentences may be indeterminate in truth-value at scenarios. For instance,

though A and (A → B) are true at some partial scenario w, both B and

¬B may remain indeterminate at w. And if we admit partial scenarios in

non-ideal epistemic space, results like (Omni) and (Incon) need not create any

immediate problems, since these results rely on scenarios being maximal.15

Of course, (Omni) and (Incon) do not directly threaten Extreme Epistemic

Space and the Single Disprovability Model either. These results only start to

bite when we want to do better than Extreme Epistemic Space and the Single

Disprovability Model, and in particular when we want to make progress on the

content and rationality problems.

Obviously, we do not make progress on the content and rationality prob-

lems merely by including partial scenarios in Extreme Epistemic Space or the

15(Omni) is the result from chapter 4, which says that for all sentences B and n > 1, if B
is provable in S, then �nB, for some operator �n that satisfies the Carnap-style analysis.
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Single Disprovability Model. We need something more from Partial Models.

In the previous chapter, I investigated non-maximal worlds in the broad set-

ting of Jago’s model of non-ideal epistemic space. In this section, I investigate

partial scenarios in the broad setting of the Single Disprovability Model. More

specifically, since there is good motivation for saying that trivially impossible

scenarios remain epistemically impossible for moderately ideal agents, I will

investigate whether we can use Partial Models to eliminate all such trivially

impossible scenarios from epistemic space while steering clear of logical om-

niscience. If successful, we can then investigate whether we can use Partial

Models to satisfy the content and rationality desiderata.

To develop a Partial Model, I first identify a scenario w with an arbitrary

set of sentences in L—that is, with an arbitrary set of possible sentence types

in English?. Second, I define what it means for a sentence A to be true or false

at a scenario as follows:

(Truth) A sentence A is true at scenario w iff A ∈ w.

(Falsity?) A sentence A is false at scenario w iff ¬A ∈ w.

If A is true at w, I will also say that w verifies A. If A is false at w, I will also

say that w falsifies A or verifies ¬A. If A is neither true nor false at w, I will

say that A is indeterminate at w.16

Third, I add:

(Joint Disprovability) A set of sentences Γ can be jointly dis-

proved within n steps in S iff a contradiction can be derived from

Γ within n steps in S.

As in the Joint Disprovability Model, we can then define the following notion

of consistency:

16As in Extreme Epistemic Space, we can also easily invoke the definition of what it means
for two scenarios to be equivalent and derive (Parsimony).
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(n-Consistency) A set of sentences Γ is n-consistent with respect

to S iff Γ cannot be jointly disproved within n steps in S; otherwise

Γ is n-inconsistent with respect to S.

So a scenario w is n-consistent just in case we cannot derive a contradiction

from w within n steps in S.

Fourth, I utilize the idea behind the construction of Wn from the Single

Disprovability Model and define (n-Saturation), where PRn is the set of n-

provable sentences in S:

(n-Saturation) A set of sentences Γ is n-saturated iff PRn ⊆ Γ;

otherwise Γ is n-unsaturated.

So a scenario w is n-saturated just in case w contains all sentences that are

provable within n steps in S. If n = 0, then by stipulation PRn = ∅, in which

case all scenarios are trivially 0-saturated.

Let VP be the class of scenarios that satisfy the principles above. We can

then define the following spheres of scenarios:

V0 = {w ∈ VP | w is 0-consistent and 0-saturated}.

...

Vn = {w ∈ VP | w is n-consistent and n-saturated}.

...

V∞ = {w ∈ VP | w is ∞-consistent and ∞-saturated}.

Since I stipulate that no sentence A is provable in 0 steps in S, VP is identical

to the class of scenarios V0. Vn corresponds to the class of scenarios in V0 that

cannot be jointly disproved within n steps in S and that contain all n-provable

sentences in S. V∞ corresponds to the class of scenarios in V0 that cannot be
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jointly disproved in any number of steps in S and that contain all provable

sentences in S.

By (Incon) and (Joint Disprovability), all maximal, logically inconsistent

scenarios are eliminated from Vn for small n. Hence all trivially impossible

scenarios are quickly eliminated from epistemic space. Yet, since there are

plenty of partial scenarios in Vn, we can avoid logical omniscience. For instance,

take a sentence B that is provable in 100 steps in S. Consider then two

scenarios w1 and w2 in V20, where A, C, and D are neither provable nor

disprovable within 20 steps in S:

w1 = PR20 ∪ {C, (C → D),¬B}.

w2 = PR20 ∪ {C, (C → D),¬A}.

Neither w1 nor w2 is jointly disprovable within 20 steps in S, and both scenarios

contain all 20-provable sentences. But since B is false at w1 and indeterminate

at w2, we can avoid saying that all w ∈ V20 verify B. Derivatively, we can steer

clear of logical omniscience. Of course, since all maximal scenarios that verify

¬B are eliminated from V20 by (Joint Disprovability), all maximal scenarios in

V20 verify B.17 But when partial scenarios are allowed in V20, this creates no

immediate problems.

The (n-Saturation) principle is there to help us capture the basic picture

that guides constructions of non-trivial epistemic space. For that picture, the

Carnap-style analyses (C-3n) and (C-2n) are essential. Though the (C-3n)

analysis is troublesome when partial scenarios are admitted in Vn, we can use

(n-Saturation) to “fill up” scenarios in Vn with enough sentences to establish

(C-2n):

(C-2n) 2nA iff A is true at all scenarios w in Vn.

17As always, I here assume that S is a reasonable system, in which all maximal sets of
sentences that contain a LNC-, MP-, or NC-inconsistency can be ruled out within 20 steps.
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Without (n-Saturation), we would not be able to prove (C-2n) because sce-

narios like w = {A,B}, for compatible sentences A and B, would never be

eliminated from Vn.18 But with (n-Saturation), the proof of (C-2n) proceeds

exactly as the proof of (C-2n) in the Single Disprovability Model.19

Yet, it is also easily seen why we cannot use the construction of Vn to prove

(C-3n):

(C-3n) 3nA iff A is true at some scenario w in Vn.

For (C-3n) left to right, assume 3nA. Since 3nA is defined as ¬2n¬A, then

¬A is not provable in n steps in S. So ¬A /∈ PRn. By construction, there is

hence a w ∈ Vn such that ¬A /∈ w. But since scenarios in Vn can be partial and

A indeterminate at w, we cannot make the inference from ¬A /∈ w to A ∈ w.

Given the definition of ‘3n’ as ¬2n¬, we hence cannot use Vn to establish

(C-3n); similar problems arise for the right to left direction in (C-3n).20

To establish (C-3n) in Partial Models, there seems to be two options.

First, we aim to change the scenario-involving analysis of 3n. Second, we aim

to separate the notion of disprovability from the notion of provability and take

both as primitive notions.

On the first option, consider for instance the following analysis:

18By aiming to eliminate scenarios like w = {A,B} by use of non-classical, many-valued
inference rules, we saw in section 4.3.1, chapter 4, that all scenarios that fail to be logically
consistent are eliminated in few steps. To avoid such results while simultaneously ensuring
(C-2n), we “fill up” scenarios manually instead.

19That is:

For (C-2n) left to right, assume 2nA. Then A is provable in n steps in S. So
A ∈ PRn. By construction of Vn, then A ∈ w for all w ∈ Vn. For (C-2n) right
to left, assume A ∈ w for all w ∈ Vn. For reductio, assume A /∈ PRn. Then, by
construction of Vn, there is a w ∈ Vn such that A /∈ w. By assumption, there
is no such w, so A ∈ PRn. Then A is provable in n steps in S, and so 2nA. So
(C-2n) holds.

20Notice, however, that there are no problems with the proofs (Epi-Pos) and (Epi-Nec).
By taking both (occurrent) acceptance and (occurrent) rejection as primitive notions, we
can prove (Epi-Pos) and (Epi-Nec) in Partial Models exactly as we proved them in Extreme
Epistemic Space.
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(C-3′n) 3nA iff there is a w ∈ Vn such that ¬A /∈ w.

We can then immediately prove (C-3′n):

For (C-3′n) left to right, assume 3nA. Then ¬2n¬A. Then ¬A

is not provable in n steps in S, and hence ¬A /∈ PRn. So by

construction of Vn, there is some w ∈ Vn such that ¬A /∈ w. From

right to left, assume there is a w ∈ Vn such that ¬A /∈ w. Then not

for all w ∈ Vn, ¬A ∈ w. By construction of Vn, then ¬A /∈ PRn.

Then ¬A is not provable in n steps in S. Hence ¬2n¬A, and so

3nA. So (C-3′n) holds.

By employing (C-3′n), we effectively give up the basic Carnap-style analysis

of 3n, which requires that A is true at some w ∈ Vn when 3nA holds. With

(C-3′n), the fact that A is not false at any w ∈ Vn is enough for 3nA to hold.

But a “possibility operator, it could be argued, would not be as flabby as

this.”21 Yet (C-3′n) is an option that adherents of Partial Models may adopt

to ensure a scenario-involving analysis of 3n.

On the second option, we take ‘disprovability in n steps in S’ as primitive.

For the purpose of establishing (C-3n), one needs a distinction between ‘prov-

ability’ and ‘disprovability’ that mirrors the distinction between acceptance

and rejection, where both (occurrent) acceptance and (occurrent) rejection are

taken as primitive.22 In particular, one needs a notion of n-disprovability such

that if A is disprovable in n steps in S, then A /∈ w for any w ∈ Vn. Given

a notion of n-disprovability, one can then introduce a corresponding operator

21Schotch et al. (1978): p. 66, with respect to an analysis of 3 similar to (C-3′n).
22There might be some hints on how to separate ‘provable ¬A’ from ‘disprovable A’ in the

recent literature on “rejective negation”. Roughly, one might aim to ground a distinction
between ‘provable ¬A’ and ‘disprovable A’ by arguing for a relevant distinction between
‘accepting ¬A’ and ‘rejecting A’. For discussions on the relations between the notions of
acceptance, rejection, and classical and non-classical negation, see Humberstone (2000),
Priest (2006a), Priest (2006b), Restall (2005a), Rumfitt (2000), and Simley (1996).
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that means ‘disprovability in n steps in S’ and derivatively define 3n as the

negation of this operator.

Assuming that a plausible distinction between provability and disprovabil-

ity has been drawn, we can then let DRn be the set of sentences that are

disprovable within n steps in S and define:

(n-Irrefutability ) A set of sentences Γ is n-irrefutable iff DRn 6⊆

Γ; otherwise Γ is n-refutable.

We can then complicate the construction of Vn as follows:

V ′n = {w ∈ V ′0 | w is n-consistent, n-saturated, and n-irrefutable}.

Then V ′n is the class of scenarios, which cannot be jointly disproved within

n steps, which contain all n-provable sentences, and which contain no n-

disprovable sentences. We have now built everything into V ′n that we need

to establish (C-3n):23

(C-3n) 3nA iff A is true at some scenario w in V ′n.

The proof of (C-3n) is immediate:

For (C-3n) left to right, assume 3nA. Then A is not disprovable

in n steps in S. So A /∈ DRn. By construction of V ′n, then it is

not the case that A /∈ w for each w ∈ V ′n. So there is a w ∈ V ′n

such that A ∈ w. For (C-3n) right to left, assume A ∈ w for some

w ∈ V ′n. For reductio, assume A ∈ DRn. By construction of V ′n,

then A /∈ w for any w ∈ V ′n. But by assumption, A ∈ w for some

w ∈ V ′n. So A /∈ DRn. Hence A is not disprovable in n steps in S,

and so 3nA. So (C-3n) holds.

23The proof of the corresponding version of (C-2n) is identical to the proof of (C-2n) in
the Single Disprovability Model, so I skip it.
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If ‘disprovable A’ does not mean ‘provable ¬A’, we need, of course, another

explanation of what disprovability amounts to. Such an explanation will be

non-obvious if we hold on to propositional logic and classical negation. But

rather than dwelling on the possible interpretations of ‘disprovability’, I will

leave the V ′n construction as an option that adherents of Partial Models may

adopt to ensure a scenario-involving analysis of 3n.

So in contrast to models of epistemic space in which scenarios are max-

imal, complications immediately arise in Partial Models with respect to the

basic (C-3n) analysis. To ensure (C-3n) or something in the vicinity, we ei-

ther lose the simple Carnap-style analysis of 3n, or we have to re-interpret

the notion of disprovability. Insofar as we can isolate a diamond operator that

can play the same role as 3n and be interpreted in terms of existential quan-

tification over scenarios in Vn, these complications need not carry substantial

costs. But unless Partial Models allow us to make substantial progress on the

content and rationality problems, they are nonetheless costs that models based

on maximal scenarios do not have. If we cannot ensure that A is true at some

w ∈ Vn when 3nA holds, we lose a core feature of the traditional world involv-

ing framework—a feature that we may otherwise retain even when non-ideal

scenarios or impossible worlds are admitted in modal space. And if we can-

not interpret ‘A is disprovable’ as ‘¬A is provable’, we lose a core conceptual

feature of classical logic.

But for the broad picture, I will assume that we have a reasonable way to

establish something akin to (C-3n) and instead evaluate whether we can use

Partial Models to satisfy the content and rationality desiderata.

5.3.1 Problems in Partial Models

To avoid suffering the same fate as the Joint Disprovability Model, it is

essential to Partial Models that scenarios like w = PRn ∪ {A, (A → B)} are
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never eliminated from Vn, where A and B are contingent sentences. I will call

scenarios such as w = PRn ∪ {A, (A → B)}, where B is indeterminate, and

scenarios such as w′ = PRn∪{A, (A∧B)}, where B is indeterminate, defective

scenarios. We have principles in Partial Models that can eliminate from Vn

all scenarios that contain {A, (A→ B),¬B}, and in general all scenarios that

contain a LNC-, MP- or NC-inconsistency. But to avoid the omniscience prob-

lems that we face in the Joint Disprovability Model, defective scenarios must

survive in Partial Models. Effectively, we avoid logical omniscience by replac-

ing trivially impossible scenarios with defective scenarios in Vn. To illustrate,

consider a scenario w ∈ V4, where A through D are contingent sentences:

w = PR4 ∪ {A, (A→ B), (B → C), (C → D),¬D}.

Though w contains all 4-provable sentences, there is no standard way to elim-

inate w in less than 4 steps.24 Had B been false at w, w could be jointly

disproved in 2 steps in S. Had B been true at w, w could be jointly dis-

proved in 3 steps. But since B is indeterminate at w, we can avoid the kind of

reasoning that we used to criticize the Joint Disprovability Model. Roughly,

if we gave each indeterminate sentence in a defective scenario a truth-value,

we would be able to collapse the spherical structure of Partial Models as we

did with the Joint Disprovability Model. As we saw in the previous chapter,

this also tells against allowing S to reason about indeterminacies. If there

are rules in S that enable us to eliminate defective scenarios from Vn, logical

omniscience will sneak right back in.

Rather than discussing the intuitive and dialectical strength of replacing

trivially impossible scenarios with defective scenarios, let us evaluate Partial

Models with respect to the content and rationality problems. Generally speak-

24I count the application of the trivial rule that allows us to infer A in 1 step from any
set Γ such that A ∈ Γ, but if we do not bother about this rule, subtract 1 throughout the
following cases.
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ing, Partial Models approach these problems by replacing cases of explicit

inconsistencies with cases of indeterminacies.

For the content desideratum, we want to use non-ideal epistemic intensions

defined over scenarios in Vn to represent the contents of the epistemic states

of moderately ideal agents. Let the partial n-intension of a sentence be a

function from scenarios in Vn to a truth-value. Because of (n-Saturation),

we are immediately guaranteed that the partial n-intension of any n-provable

sentence is necessary. But as we know, the real battle takes place when we

look beyond the class of n-provable sentences.

So consider the simple inference from (A ∧ B) to A, where A and B are

contingent sentences. To reflect the basic inferential relations among such

sentences and thoughts in the corresponding partial n-intensions, we want the

partial n-intension of A to be true at each scenario w ∈ Vn, for sufficiently large

n, whenever the partial n-intension of (A ∧ B) is true at w. Partial Models

cannot do this job: For any Vn, though (A ∧B) is true at some w ∈ Vn, there

is no guarantee that A is also true at w. Since there are plenty of partial

scenarios in Vn, A might be indeterminate at w though (A ∧ B) is true at w.

To be sure, the partial n-intension of A can never be false when the partial

n-intension of (A ∧ B) is true: Any scenario w that contains {(A ∧ B),¬A}

is quickly eliminated from Vn by (Joint Disprovability). But still, to represent

the cognitively trivial inference from (A ∧ B) to A, we want the non-ideal

intension of A to be true when the non-ideal intension of (A∧B) is true. Since

partial n-intensions cannot do this job, they cannot play the role of non-ideal

epistemic intensions.

Or consider the basic inferential relations between (A↔ B) and A and B,

where A and B are contingent sentences. Assume (A↔ B) is provable within

n steps in S and hence true at each w ∈ Vn. Then the partial n-intension of

(A ↔ B) is necessary. If both A and B have a truth-value at any w ∈ Vn,
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then they must coincide: Any scenario w that contains {(A ↔ B),¬A,B}

is quickly eliminated from Vn by (Joint Disprovability). Yet, since there are

plenty of partial scenarios in Vn, the partial n-intension of B need never be

true when the partial n-intension of A is true and the partial n-intension of

(A ↔ B) is necessary. But if the logical equivalence of A and B can be

established in a sufficiently small number of steps in S, then intuitively any

moderately ideal agent is a priori certain that A and B are logically equivalent.

If this moderately ideal agent also accepts A, she will also accept B because of

the basic and obvious inferential relations that exist between these sentences.

Derivatively, we want the non-ideal intension of B to be true when the non-

ideal intension of A is true and the non-ideal intension of (A↔ B) is necessary.

Since partial n-intensions cannot do this job, they cannot play the role of non-

ideal epistemic intensions.

More generally, when we want to make positive claims about the structural

features of the epistemic states of moderately ideal agents, Partial Models do

not improve on previous models. This is not surprising. Except for contain-

ing all sentences that are provable within n steps in S, partial scenarios can

fail to verify any sentence that is an obvious logical consequence of other sen-

tences that these scenarios verify. But if we want to use scenarios in Partial

Models to give a world involving analysis of a non-trivial notion of hyper-

intensional content, this is not good enough. For that job, we want to use

scenarios in non-ideal epistemic space to capture obvious or easy deductive

inferences in thought. But since defective scenarios like PRn ∪ {A, (A→ B)}

and PRn ∪ {(A ∧ B)} need never be eliminated from any Vn, when A and B

are contingent sentences, scenarios in Vn cannot do this job. As in the Single

Disprovability Model, the kinds of non-ideal epistemic intensions that we can

isolate in Partial Models remain too unconstrained to capture cognitively triv-

ial or computationally feasible inferences among sentences and thoughts. So

173



Partial Models

we cannot use Partial Models to satisfy the content desideratum.

For the rationality desideratum, we want to use scenarios in Vn to analyze a

non-trivial notion of epistemic possibility that captures which sentences should

remain epistemically possible for minimally rational agents. Consider again

two contingent sentences A and B. Suppose a minimally rational agent a

accepts (A∧B). Since a can easily infer A from (A∧B), she rationally should

accept A when she accepts (A∧B). We capture this normative component by

saying that if (A∧B) is epistemically necessary for a, then so is A. By merely

replacing trivially impossible scenarios with defective scenarios, we cannot use

Partial Models to capture such minimal constraints on rational acceptance:

For any Vn, though (A ∧B) is true at each w ∈ Vn that remains epistemically

possible for a, there is no guarantee that A is also true at w. Since there

are plenty of partial scenarios in Vn, A might be indeterminate at w though

(A ∧ B) is true at w. To be sure, if (A ∧ B) is epistemically necessary for a,

then it can never be the case that ¬A is also epistemically necessary for a.

But still, we cannot use scenarios in Vn to infer that A should be epistemically

necessary for a whenever (A∧B) is. As in the Single Disprovability Model, we

hence cannot use scenarios in Partial Models to infer basic claims about which

sentences should remain epistemically possible for minimally rational agents.

So we cannot use Partial Models to satisfy the rationality desideratum.

So although Partial Models allow us to eliminate all trivially impossible

scenarios from Vn, the presence of defective scenarios in Vn still prevent us

from making substantial progress on the content and rationality problems. So

even if we abstract away from problems concerning the (C-3n) analysis, Partial

Models cannot play the role of non-trivial epistemic space.

Given this, we might wonder whether we can improve on Partial Models by

utilizing the ideas from Intermediate Models. I will very briefly argue why we

cannot. Let a partial scenario w be m-indeterminate just in case all indetermi-

174



Partial Models

nacies in w involve at most m many different atomic sentences A1, A2, . . . , Am.

For instance, if partial w is 1-indeterminate, then all indeterminacies in w

might only involve A. When w is m-indeterminate, then for all sentences B

that do not involve any Ai, either B is true at w or B is false at w.

With a view to Intermediate Models A, let us stipulate that each partial

scenario in Vn is at most m-indeterminate, for some finite n and m greater

than 0. For all atomic sentences A, there is then some partial scenario w ∈ Vn

whose indeterminacies involve A. For the content desideratum, we need the

following: If (A ↔ B) ∈ w for all w ∈ Vn, and B ∈ w′ for some w′ ∈ Vn,

then A ∈ w′, where A is atomic.25 But since there are plenty of scenarios

in Vn whose indeterminacies involve A, we are never guaranteed that A ∈ w

just because {(A ↔ B), B} ⊂ w. So scenarios in Vn still lack the required

structure for defining partial n-intensions that can play the role of non-ideal

epistemic intensions. For the rationality desideratum, we need the following:

If (A ∧ B) ∈ w, for some w ∈ Vn, then A ∈ w, where A is atomic. But

again, since there are plenty of partial scenarios in Vn whose indeterminacies

involve A, we are never guaranteed that A ∈ w when (A ∧ B) ∈ w for each w

that remains epistemically possible for a minimally rational agent. So we still

cannot use scenarios in Vn to infer basic claims about which sentences should

remain epistemically necessary for minimally rational agents.

With a view to Intermediate Models B, suppose each sphere Vn is m-

indeterminate, for some finite n and m greater than 0. For each partial scenario

w in Vn, w is then at most indeterminate with respect to sentences that involve

the atomics A1, A2, . . . , Am. When Vn is m-indeterminate, for some sufficiently

small n, then each w ∈ Vn is maximal and consistent with respect to any B

25For the general critique, it does not matter that A is atomic, but it facilities the discus-
sion.
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that does not involve an Ai.
26 If we focus on the content desideratum, this

version of a Partial Model cannot give us what we want. First, for some small

n > 0, the partial n-intension of any provable B that does not depend on an

Ai is necessary. But then any agent that can perform just this small number

of steps in S is logically omniscient with respect to any such B, which is the

wrong result. Second, consider any n-provable (A ↔ B), where A involves

an Ai. If (A ↔ B) ∈ w for all w ∈ Vn, and B ∈ w′ for some w′ ∈ Vn, we

need A ∈ w′. But when Vn is m-indeterminate and A involves an Ai, we are

never guaranteed that A ∈ w just because {(A ↔ B), B} ⊂ w. So we still

cannot use scenarios in Vn to define partial n-intensions that can play the role

of non-ideal epistemic intensions.

If we focus on the rationality desideratum, the current version of a Partial

Model does not give us what we want either. First, consider any B that does

not involve an Ai. For this class of sentences, we cannot use scenarios in Vn

to make claims about which sentences should remain epistemically possible

for minimally rational agents. As above, this is immediately clear since such

agents are wrongly characterized as logically omniscient with respect to all

logical truths that do not depend on an Ai. Second, consider (A ∧ B), where

A and B are contingent, and where A involves an Ai. If (A∧B) ∈ w, we want

A ∈ w, for all w ∈ Vn, where Vn is m-indeterminate. But since there are partial

scenarios in Vn whose indeterminacies involve an Ai, there is no guarantee that

A ∈ w whenever (A ∧ B) ∈ w for each scenario w that remains epistemically

possible for a minimally rational agent. So we still cannot use scenarios in

Vn to infer basic claims about which sentences should remain epistemically

possible and necessary for minimally rational agents.

26The sufficiently small value n is the value for which all instances of a LNC-, MP-, and
NC-inconsistency can be disproved in S.
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Summary

So even in combination with some of the techniques used in Intermediate

Models, we cannot use Partial Models to satisfy the content and rationality

desiderata. To avoid logical omniscience in Partial Models, defective scenarios

must survive in epistemic space. But as we have seen, the presence of such

defective scenarios means that Partial Models cannot play the role of non-

trivial epistemic space. So I conclude that there is no successful construction

of non-trivial epistemic space when scenarios may be partial.

We want a non-trivial epistemic space that can help us capture basic logical

inferences among thoughts and sentences, while simultaneously help us steer

clear of logical omniscience. Like the simple Single Disprovability Model, Par-

tial Models allow us to steer clear of logical omniscience. But like the Single

Disprovability Model, Partial Models do not enable us to capture basic logical

inferences among thoughts and sentences. For a construction of a non-ideal,

yet non-trivial epistemic space, this does not suffice.

5.4 Summary

When scenarios are maximal, I conclude by (Incon) that there is no con-

struction of a non-ideal epistemic space that contains no trivially impossible

scenarios. In light of the dilemma, we must hence admit trivially impossible

scenarios in epistemic space to avoid logical omniscience. For current purposes,

this leaves us with two options: Intermediate Models and Partial Models.

As we saw from the discussion of Intermediate Models, epistemic spaces

that contain some, but not all trivially impossible scenarios cannot play the

role of non-trivial epistemic space. In Intermediate Models A, scenarios remain

too unconstrained to play the role of non-trivially impossible scenarios. In

Intermediate Models B, either scenarios remain too unconstrained to play the

role of non-trivially impossible scenarios, or logical omniscience sneaks back
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Summary

in. So when scenarios are maximal, I have argued that there is no successful

construction of a non-ideal, yet non-trivial epistemic space.

As we saw from the discussion of Partial Models, defective scenarios must

survive in epistemic space to avoid logical omniscience. But if so, partial

scenarios remain too unconstrained to play the role of non-trivially impossible

scenarios. So when scenarios may be partial, I have argued that there is no

successful construction of a non-ideal, yet non-trivial epistemic space.

Since Intermediate Models and Partial Models are the only options left open

by the horns of the dilemma, I have hence given reasons for thinking that there

is no successful construction of a non-trivial epistemic space. And at least I

hope to have shown that successful constructions of non-trivial epistemic spaces

are hard, if not impossible to find.

In the final chapter, I conclude and discuss some of the ramifications of

these results.
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Chapter 6

Conclusion

Throughout the previous chapters, I have argued for the following claims:

(R1) When scenarios are maximal, there is no construction of

an epistemic space W such that:

(i) W contains only possible and non-trivially impossible

scenarios, and such that

(ii) W allows us to model agents that are not logically om-

niscient.

(R2) When scenarios are maximal, there is no construction of

an epistemic space W such that:

(i) W contains some but not all trivially impossible scenar-

ios, and such that

(ii) W allows us to satisfy the content and rationality desider-

ata.

(R3) When scenarios may fail to be maximal, there is no con-

struction of an epistemic space W such that W allows us to

satisfy the content and rationality desiderata.
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(R1) follows from (Incon), and it captures the core of the dilemma from

chapter 5 to the effect that W must contain trivially impossible scenarios if we

want to avoid logical omniscience. As we saw, the dilemma is vicious for the

general picture that motivates models of non-trivial epistemic space. If W con-

tains trivially impossible scenarios, then W cannot play the role of non-trivial

epistemic space—as exemplified by the discussion of the Single Disprovability

Model in chapter 4. If W does not contain any trivially impossible scenarios,

then W only allows us to model logically omniscient agents—as exemplified by

the discussion of the Joint Disprovability Model in chapter 4.

(R2) gains support from the discussion of Intermediate Models A and B in

chapter 5. Whereas scenarios in Intermediate Models A are too unconstrained

to play the role of non-trivially impossible scenarios, scenarios in Intermediate

Models B either are too unconstrained to play the role of non-trivially im-

possible scenarios, or they are suitable only for modeling logically omniscient

agents. In either case, we cannot use the models to satisfy the content and

rationality desiderata.

(R3) gains support from the discussion of Jago’s model in chapter 4 and

from the discussion of Partial Models in chapter 5. If we want to satisfy

the content and rationality desiderata, we first of all need to avoid logical

omniscience. But as we saw, agents characterized by Jago’s model—or its rea-

sonable precisifications—turn out to be logically omniscient. To avoid logical

omniscience in models of epistemic space based on partial scenarios, we know

that defective scenarios can never be eliminated from epistemic space.1 But

if so, scenarios in Partial Models are too unconstrained to play the role of

non-trivially impossible scenarios. So in both cases, we cannot use the models

to satisfy the content and rationality desiderata.

1Defective scenarios, we remember, are scenarios such as w = PRn∪{A, (A→ B), where
B is indeterminate, and scenarios such as w′ = PRn∪{A, (A∧B)}, where B is indeterminate,
and where PRn is the set of n-provable sentences in some system S.
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So if the criterion of success is measured in terms of the content and ratio-

nality desiderata, (R1) through (R3) constitute an argument that there are no

successful constructions of non-trivial epistemic space. In turn, we have an ar-

gument that shows that the general idea behind models of non-trivial epistemic

space from chapter 3 cannot be made precise. Generally, this idea requires that

we can use scenarios in epistemic space to capture what can be easily estab-

lished and easily ruled out a priori. But as we have seen, models of epistemic

space either fail to capture what can be easily established a priori—confer with

the discussions of Extreme Epistemic Space, the Single Disprovability Model,

Intermediate Models, and Partial Models—or they fail to distinguish between

what can and cannot be easily established a priori—confer with the discussions

of the Joint Disprovability Model and Jago’s model.

As a test case, I have interpreted the notion of easily establish a priori

in terms of the notion of provability in n steps. But the results above are

independent of this particular test case interpretation. By (G-Incon) we know

that all maximal, logically inconsistent scenarios contain an instance of a LNC-

, MP-, or NC-inconsistency. And intuitively, it is very plausible to hold that

LNC-, MP-, and NC-inconsistencies are the kinds of inconsistencies that can

be easily ruled out by any minimally logically competent agent. If so, we

reach our general conclusions without mentioning the particular n-provability

interpretation. That is, insofar as moderately ideal agents can easily rule out

all scenarios that verify an instance of a LNC-, MP-, or NC-inconsistency,

they are wrongly characterized as logically omniscient in the corresponding

world involving framework. To avoid logical omniscience, we are then left with

either Intermediate Models or Partial Models and the problems that these

models have. As such, the main results of this project stem from the general

world involving framework rather than from any particular interpretation of

the notions of easily establish and easily rule out a priori.
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The results above hold for the broad class of a priori inferences and truths

that involve logic. By (Incon) we know that all logically inconsistent scenarios

are trivially impossible. Though this result challenges Hintikka’s characteriza-

tion of impossible worlds as “worlds so subtly inconsistent that the inconsis-

tency could not be expected to be known (perceived) by an everyday logician,

however competent”, it does not establish that all kinds of a priori inconsistent

scenarios are trivially impossible in any interesting sense.2 For instance,

[n]onideal epistemic spaces may also be useful in analyzing various specific

domains, such as the moral domain. We may think that the connection between

the nonmoral and the moral is ultimately a priori, or we may think that moral

beliefs are ultimately not truth-evaluable, but as long as the connection and the

non-truth-evaluability is not obvious, there will be an interesting hypothesis

space to investigate.3

If such a priori connections between the non-moral and the moral exist, and if

such connections can be more or less obvious, we might be able to set up an

epistemic space that allows us, say, to distinguish blatantly from subtly morally

impossible scenarios. The current results do not necessarily affect attempts to

set up an appropriate non-trivial epistemic space for such purposes.

Yet for the broad class of a priori inferences and truths that involve logic,

the results (R1) through (R3) support the general conclusion that success-

ful constructions of non-trivial epistemic spaces are hard, if not impossible

to find. Roughly, a non-trivial epistemic space is an epistemic space that

is located somewhere between Ideal Epistemic Space and Extreme Epistemic

Space. But as we have seen, whereas it is rather simple to develop epistemic

2Hintikka (1975): p. 478. In Hintikka’s own game-theoretical approach, the degree to
which contradictions manifest themselves in impossible worlds is measured by the number
of quantifiers that they are nested within. Yet, all valid sentences of propositional logic are
still verified by each of Hintikka’s impossible worlds; see also Rantala (1975) theorem 1, p.
466, on whose urn models Hintikka’s approach relies. So for the class of propositional truths,
Hintikka’s approach is of no help.

3Chalmers (forthcoming): p. 51.
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spaces that can avoid the omniscience worries in Ideal Epistemic Space, it re-

mains a formidable, if not impossible challenge to develop a non-ideal epistemic

space that can also avoid the explosive “anything goes” character of Extreme

Epistemic Space. As exemplified by the content and rationality desiderata, a

non-ideal epistemic space where not “anything goes” should contain scenarios

that allow us to capture basic, but non-trivial inferential and structural re-

lations among sentences and thoughts. But I have argued that no model of

non-ideal epistemic space generally allows us to do this. For instance, none

of the models of non-ideal epistemic space allow us to capture even the basic

inference from (A ∧ B) to A in general. Alternatively, as we have seen, the

constructions of epistemic space that allow us to capture basic, but non-trivial

inferential and structural relations among sentences and thoughts also commit

us to modeling agents that are logically omniscient. Hence I have argued that

we must accept the Scylla of “anything goes” if we want to avoid the Charybdis

of logical omniscience.

If this is correct, there is little hope of developing a satisfying modal space

that we can use to model the broad class of ordinary reasoners that are logically

competent, but not logically omniscient. Plausibly, logical competence involves

the capacity to derive and accept obvious consequences of an already accepted

set of sentences or thoughts. For instance, competent logical reasoners are

intuitively always disposed to derive and accept B when they accept A and

(A→ B), though they are not generally disposed to derive and accept any old

C that can be deduced from what they already accept by repeated applications

of modus ponens. To model such features of bounded but non-trivial logical

reasoning in a broadly world involving framework, we want a modal space W

that allows us to establish claims of the form: For any A and B such that

B is an obvious logical consequence of A, if A obtains at w ∈ W , then B

obtains at w—or alternatively, if A obtains at w, but B fails to obtain at
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w, then w /∈ W . This requires that non-ideal scenarios or impossible worlds

obey substantive constraints. But as we have seen from the discussions of

the content and rationality desiderata, either these constraints are too weak

to capture obvious logical inferences among sentences and thoughts, or if they

are not, they entail that all logical inferences are on a par. Either way, we have

reason to hold that non-ideal, yet logically competent agents are not modeled

well in a broadly impossible world involving framework.

These conclusions do not necessarily affect the many alternatives that exist

to an impossible world involving model of non-ideal belief and knowledge. In

the introduction I mentioned a few of these alternatives, but here I will briefly

consider a broad class of syntactical or sentential models of belief many of

which are explicitly designed to model agents that are not logically omniscient,

but nevertheless logically competent.4 Generally, such models do not analyze

beliefs as truth in all possibilities of some sort, but rather aim to represent

beliefs directly by a set of sentences. Crudely put, BaA holds true just in case

agent a has A in its belief set Sa, where B is the belief operator. So if an

agent a has exactly 10 beliefs, sentential models represent her epistemic state

by a corresponding belief set Sa that contains 10 sentences (in some language)

explicitly representing her 10 beliefs. Depending on the job at hand, different

conditions can be imposed on the sentences in the belief set. For instance, we

can stipulate that Sa never contains contradictory pair of sentences or that

Sa obeys certain closure conditions. To illustrate, I will briefly consider three

versions of a sentential model.5

In Konolige’s deduction model of belief, a set of inference rules is associ-

ated with each agent a and the belief set Sa is closed under these inference

4See, among many others, Cherniak (1986), Eberle (1974), Jago (2009b), Restall (2005b),
and Wassermann (1999).

5For extensive presentation and discussion of various sentential models of beliefs, see in
particular Jago (2006): chapters 4 - 7, but also Fagin et al. (1995): chapter 9.
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rules.6 If an agent only has access to an incomplete set of inference rules, the

agent’s belief set need not be perfectly consistent nor contain all logical truths.

Derivatively, the idea is, we can model non-ideal agents that do not believe

all logical truths nor all logical consequences of what they already believe, but

that nevertheless have the capacities for logical reasoning.

In Duc’s model, a particular interpretation of dynamic logic is used to model

logical reasoning.7 Let R be a set of inference rules, and let [R] and <R> be

the standard dynamic modalities with the intended readings “always after

using rule R” and “sometimes after using rule R”. In this framework, we can

explicitly model non-ideal agents that have the capacities to use inference rules

to generate new beliefs. For example, if Ki is the (agent indexed) knowledge

operator, and if <MPi>means that agent i can use modus ponens to infer B

from A and (A→ B), then

[. . . ] the idea that the agent i accepts modus ponens can be formalized by the

axiom: KiA ∧Ki(A → B) → <MPi>KiB. This axiom says no more than if

agent i knows A and she also knows that A implies B, then after a suitable

inference step she will know B.8

Since there is no requirement in Duc’s model that agents actually perform the

kinds of inferences that they have the capacity to perform, we can avoid log-

ical omniscience but nevertheless model agents that can engage in competent

logical reasoning.

As they stand, Konolige’s and Duc’s models do not capture resource-

bounded reasoning. But Jago presents a sentential model that does.9 In Jago’s

model, we model reasoning in terms of transitions between belief states. When

6See Konolige (1986).
7See Duc (1995) and Duc (1997).
8Duc (1997): p. 638.
9See Jago (2006): chapters 5-7 and Jago (2009b). Notice, however, that it seems possible

to generalize Duc’s model to accommodate bounded reasoning—for instance by including a
dynamic ‘next step’ operator in the formalism.
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an agent a is in belief state Sa and can employ one of its inference rules to

infer a new belief B from Sa, this is modeled by a transition from Sa to a new

belief state S ′a that only differs from Sa in also containing B. Bounded reason-

ing is then modeled in terms of limited transitions between belief states. For

instance, if a can perform n steps using its inference rules, there is a chain of

n many transitions that leads from a’s initial belief state Sa to a’s final belief

state Sn
a . Intuitively, each transition represents a step of reasoning that adds

a newly inferred belief to the previous stock of beliefs, and Sn
a contains every

belief that a within its resource bound can infer from its initial belief state Sa

through a particular chain of reasoning. Since there are no requirements that

agents can perform arbitrarily many steps using their inference rules, we can

hence avoid logical omniscience but nevertheless model logically competent,

resource-bounded agents.

Sentential models like those above can be given a fairly interesting rela-

tional model theory that is familiar from modal logic.10 Here I will not dwell

on the details, but rather stress two crucial aspects in which the models differ

from the possible world models that I have investigated in this project. First,

while possible world models analyze beliefs in terms of quantification over pos-

sibilities, sentential models represent beliefs directly in terms of membership in

corresponding belief sets. Second, while possible world models analyze belief

aggregation in terms of elimination of possibilities, sentential models analyze

belief aggregation in terms of expanding belief sets. Since all my results pre-

suppose these standard features of the general possible world framework, my

results need not affect sentential models. So if one is antecedently sympa-

thetic towards sentential models of belief and knowledge, one might take the

conclusions of this project to indirectly motivate these models.

10For all the details, see Jago (2009b).
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