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Abstract

When a proposition might be the case, for all an agent knows, we can say
that the proposition is epistemically possible for the agent. In the standard
possible worlds framework, we analyze modal claims using quantification over
possible worlds. It is natural to expect that something similar can be done for
modal claims involving epistemic possibility. The main aim of this paper is to
investigate the prospects of constructing a space of worlds—epistemic space—
that allows us to model what is epistemically possible for ordinary, non-ideally
rational agents like you and me. I will argue that the prospects look dim for
successfully constructing such a space. In turn, this will make a case for the
claim that we cannot use the standard possible worlds framework to model
what is epistemically possible for ordinary agents.
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1 Introduction

I wonder about a lot. I wonder whether it rains in Canberra, whether Shakespeare

was really Edward de Vere, and whether Goldbach’s Conjecture is false. As it hap-

pens, I lack the required evidence to determine whether these propositions are true.

So for all I know, they might be true, and they might not.

When p might be true, for all an agent knows, we can say that p is epistemically

possible for the agent. It is, amongst other things, epistemically possible for me

that it rains in Canberra, that Shakespeare was really Edward de Vere, and that

Goldbach’s Conjecture is false. Similarly, when an agent knows p, we can say that

p is epistemically necessary for the agent. It is, amongst other things, epistemically

necessary for me that I am currently in Denmark, that Shakespeare is Shakespeare,

and that 2 + 2 = 4.

We are used to analyzing modal claims using quantification over possibilities of

some sort, and it is natural to hope that something similar can be done for modal

claims involving epistemic possibility. In particular, it is natural to hold that p is

epistemically possible for an agent whenever there is a scenario—or an epistemi-

cally possible world—at which p is true. Corresponding to the epistemic possibility

that Shakespeare really was Edward de Vere are then various scenarios at which

Shakespeare originated in the gametes that Edward de Vere actually did—and var-

ious scenarios at which Shakespeare originated in the gametes that he actually did.

And corresponding to the epistemic possibility that Goldbach’s Conjecture is false

are various scenarios at which there is some even integer greater than or equal to 4

that cannot be expressed as the sum of two primes. Call the space of all scenarios

epistemic space.1

At the core of this familiar way of thinking about possibilities in a world-involving

framework is the inverse relation between gaining information—covering both knowl-

edge and belief—and excluding possibilities:2

(Information Principle) For any gain in information, there is a corre-

sponding elimination of scenarios—and vice versa.

1The intuitive picture of epistemic possibility presented above is influenced by Chalmers 2011;
see also Hintikka 2003.

2Throughout the paper I will talk about knowledge and epistemic possibility rather than belief and
doxastic possibility, but the main results apply mutatis mutandis to belief and doxastic possibility.
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For instance, when I come to know that it rains in Canberra, all scenarios in epistemic

space at which it does not rain in Canberra are eliminated as epistemically impossible

for me. (Information Principle), I take it, is a constitutive feature of the Hintikka-

inspired possible worlds framework for modeling knowledge, information, and belief.

While David Chalmers 2011, Jaakko Hintikka 1962, and David Lewis 1986—

among several others—have advanced world-involving frameworks similar to the one

described above to model what is epistemically possible for idealized reasoners, I want

to argue that the prospects look dim for using the framework to model what is epis-

temically possible for ordinary reasoners like you and me. I will center my discussion

around Mark Jago’s model of epistemic space in his article “Logical Information and

Epistemic Space” (cf. Jago 2009). Although Jago’s model holds promise of giving

us an account of epistemic possibility for ordinary agents, I will argue that it can-

not do the required work. This criticism, in turn, will make a case for the claim

that we must give up (Information Principle) to model epistemic possibility for ordi-

nary agents, and hence that we cannot use the possible worlds framework to model

epistemic possibility for such agents.

Here is the plan. In section 2, I lay out the role of epistemic space. In section 3,

I present Jago’s model of epistemic space. In section 4, I criticize Jago’s model and

use this criticism to support the claim that (Information Principle) must go to model

what is epistemically possible for ordinary agents. In section 5, I conclude.

2 Epistemic Possibilities and Spaces

The general task is to construct an epistemic space that allows us to model claims

of epistemic possibility—like the intuitive ones above—in terms of what is true at

scenarios in this space. It is useful first to follow Chalmers and distinguish between

strict and deep epistemic possibility:

[T]he notion of strict epistemic possibility—ways things might be, for all we know—

is undergirded by a notion of deep epistemic possibility—ways things might be, prior

to what anyone knows. Unlike strict epistemic possibility, deep epistemic possibility

does not depend on a particular state of knowledge, and is not obviously relative to

a subject. Whereas it is strictly epistemically possible (for a subject) that p when

there is some epistemically possible scenario (for that subject) in which p, it is deeply

epistemically possible that p when there is some deeply epistemically possible scenario

in which p. (Chalmers 2011, p. 62.)
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Generally, the notion of deep epistemic possibility delineates the borders of epistemic

space, and within it, strict epistemic possibility for an agent delineates the borders

of what this agent knows. When an agent comes to know p, this piece of knowledge

divides the class of deeply epistemically possible scenarios into those scenarios at

which p is true and those at which p is false. If an agent knew nothing at all, all

deeply epistemically possible scenarios would also be strictly epistemically possible

for this agent.

More precisely, whereas the class of deeply epistemically possible scenarios consti-

tute epistemic space W , the class of scenarios in W that remain strictly epistemically

possible for an agent a (at a given time) constitute strict epistemic space Wa. The

relationship between strict and deep epistemic possibility can then be captured by

saying that for any agent a, Wa ⊆ W . So if w is in Wa, then w is in W , though the

converse need not be the case. In this sense, deep epistemic possibility is a necessary,

yet not a sufficient condition for strict epistemic possibility.

Since deep epistemic possibility is a necessary condition for strict epistemic pos-

sibility, our central task is hence to establish the following plentitude principle:3

(Plentitude) For all sentences A, A is deeply epistemically possible iff

there is a scenario w in W such that A is true at w.

If (Plentitude) is to do the required work, we must construct an epistemic space that

contains enough scenarios to ensure that all sentences that remain strictly epistemi-

cally possible for ordinary agents are also deeply epistemically possible. For if we can

guarantee the deep epistemic possibility of A, we will have guaranteed the potential

strict epistemic possibility of A for some agent.

2.1 Deep Epistemic Possibility: Negative Characterization

How should we think of deep epistemic possibility? It depends. I am interested in

developing an epistemic space that in part allows us to make sense of claims such as:

3The plentitude principle is taken from Chalmers 2011. For the purposes of this paper, I take
the objects of strict and deep epistemic possibility to be sentences. Since issues about context-
dependence will not play a role in my arguments, I will take these sentences to be declarative
sentence types in a language L that has no context-dependent expressions. L, however, has symbols
that play the same inferential roles as the logical connectives in standard propositional logic. If one
has no quarrels with primitive, arbitrarily fine-grained propositions, one may translate everything I
say about sentences into talk about such propositions.
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(Shakes) It is strictly epistemically possible for agent a that Shakespeare

was really Edward de Vere.

(Math) It is strictly epistemically possible for agent a that Goldbach’s

Conjecture is false.

(Logic) It is strictly epistemically possible for agent a that (some tautol-

ogy) ((A↔ (B ∧ ¬A))→ ¬B) is false.

To develop a model for these kinds of strict epistemic possibility claims, it is easy to

see what deep epistemic possibility cannot be.

On the assumption that Kripke is right about the necessity of origin, deep epis-

temic possibility cannot be metaphysical possibility. For, on this assumption, “Shape-

speare is Edward de Vere” cannot metaphysically possibly be true. But although

metaphysically impossible, “Shakespeare is Edward de Vere” is nevertheless strictly

epistemically possible for some ordinary agent. Since deep epistemic possibility is

a necessary condition for strict epistemic possibility, deep epistemic possibility can-

not be metaphysical possibility.4 Something similar holds for (Math) and (Logic).

Since all a priori falsehoods are metaphysically impossible, we cannot identify deep

epistemic possibility with metaphysical possibility to model (Math) and (Logic).

Deep epistemic possibility cannot be idealized a priori possibility. I have in mind

Chalmers’ conception of idealized apriority:

This idealized notion of apriority abstracts away from contingent cognitive limitations.

If there is any possible mental life that starts from a thought and leads to an a priori

justified acceptance of that thought, the thought is a priori. So if a hypothesis can be

known to be false only by a great amount of a priori reasoning, it is nevertheless deeply

epistemically impossible. [. . . ] As a result, this idealization is best suited for modeling

the knowledge and belief of idealized reasoners that may be empirically ignorant, but

that can engage in arbitrary a priori reasoning. (Chalmers 2011, p. 66.)

On this picture, neither Goldbach’s Conjecture—assuming that it is indeed true—nor

((A↔ (B∧¬A))→ ¬B) can ideally a priori possibly be false. But since the falsity of

these sentences may be strictly epistemically possible for some ordinary agents, deep

epistemic possibility cannot be idealized a priori possibility. Yet, we can use idealized

4Robert Stalnaker 1984, however, has argued that we can understand the belief and knowledge of
ordinary agents by appeal only to metaphysical possibilities. I will not evaluate Stalnaker’s proposal
in this paper, but see Robbins 2004 for discussion.
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a priori possibility to make sense of (Shakes). For on an intuitive view of apriority,

“Shakespeare is Edward de Vere” is not a priori false.

Deep epistemic possibility cannot be logical possibility. For ¬((A↔ (B ∧¬A))→
¬B) cannot logically possibly be true. But since such logical falsities may be strictly

epistemically possible for some ordinary agents, deep epistemic possibility cannot be

logical possibility. Yet, we can use logical possibility to make sense of (Shakes) and

(Math). For at least on a narrow understanding of logical possibility, there is nothing

in logic per se that rules out the falsity of Goldbach’s Conjecture.

Since (Shakes), (Math), and (Logic) describe strict epistemic possibilities for some

ordinary agents, deep epistemic possibility cannot be identified with metaphysical,

idealized a priori, or logical possibility. Rather, the relevant notion of deep epistemic

possibility has to be more permissive than these notions of possibility. In particular,

some deep epistemic possibilities must be logically impossible—and hence metaphys-

ically and idealized a priori impossible.

2.2 Deep Epistemic Possibility: Positive Characterization

To define a useful notion of deep epistemic possibility, let me first be more precise

about the kinds of agents that I am interested in. In a broad sense, I am interested in

what may remain strictly epistemically possible for ordinary agents who are capable

of rational—although not ideally rational—reasoning. Ordinary agents, I take it,

have a basic capacity for non-trivial inferential reasoning. Although they often fail

to tease out all the consequences of what they know, they often tease out at least

the obvious consequences of what they know.5 And although they occasionally fail

to tease out even the obvious consequences of their knowledge, it remains true that

they have the dispositional capacity to do so. For instance, even if I get distracted by

a nearby passing car and do not infer that I will get wet from my knowledge that it

just started to rain and that if it rains then I will get wet, my dispositional capacity

to infer the former piece of information from the latter remains in place.

In a narrower sense, I will be focusing on what may remain strictly epistemically

possible for minimally rational agents who have limited, but non-trivial inferential ca-

pacities for (a priori) propositional logical reasoning. Such agents are rational because

they always tease out the obvious logical consequences of what they know, and they

5For motivation of similar constraints on minimal rationality, see Cherniak 1986, Harman 1999,
and Field 2001.
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are minimally rational because they only have limited or bounded capacities available

for (propositional) logical reasoning. In particular, minimally rational agents always

know that obvious logical truths such as (A → A) are true and that obvious logical

falsities such as (A ∧ ¬A) are false. And they know these facts—like most ordinary

agents do on reflection—because it only requires basic logical acumen to realize that

(A→ A) is tautological and that (A ∧ ¬A) is inconsistent.

I take logical reasoning to be governed by rules.6 In particular, minimally rational

agents engage in logical reasoning by applying various inference rules governing the

propositional connectives such as ¬ and →, and they engage in complex chains of

logical reasoning by applying these rules successively. Let R be a complete set of

inference rules in propositional logic that minimally rational agents can apply. For

reasons that will become clear in sections 4.2 and 4.3, agents must in general be able

to reason logically from the empty set of premises. So effectively, some rules in R will

count as axioms (schemas).7 But given this, my results are compatible with different

choices for the relevant system of inference rules. One might, for instance, adopt one

of the axiomatic proof systems for propositional logic discussed in Mendelson 1997

(pp. 33-49), or a propositional sequent calculus akin to the one discussed in Buss

1998 (pp. 10-18).

To make the idea of limited or bounded logical reasoning precise, I invoke the idea

of step-based logical reasoning.8 Consider, for instance, the inference from (A ∧ B)

to A and the inference from ((A ∧ B) ∧ C) to A. Whereas the former takes 1 step

of logical reasoning using conjunction elimination once, the latter takes 2 steps of

logical reasoning using conjunction elimination twice. Limited or bounded logical

reasoning can then be characterized in terms of n-step logical reasoning, where n is

a finite natural number, and where 1 step of logical reasoning corresponds to one

application of an inference rule in R to a set of sentences. Intuitively, I intend n to be

a measure of the amount of cognitive resources that an agent has available for logical

reasoning—or alternatively, a measure of an agent’s logical competence.

We can then say that minimally rational agents are able to perform up to n steps

6For views that take rational logical reasoning, broadly construed, to be governed by rules or
inferential roles, see Field 1977 and Wedgwood 2007.

7I will not consider systems of inference rules that allow agents to reason logically from assump-
tions. As far as I can tell, though, there is nothing that should prevent my general results from
applying to agents who reason in such systems as well.

8For similar ideas, see Drapkin and Perlis 1986.
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of logical reasoning, where n corresponds to the number of applications of rules in R
required to disprove obvious logical falsities such as (A ∧ ¬A) and to prove obvious

logical truths such as (A → A). This captures the idea that minimally rational

agents always know that obvious logical falsities are false—are able to disprove such

falsities—and that obvious logical truths are true—are able to prove such truths.

While it is unclear which logical truths are obvious, it is clear that all truths that

can be established by 1 step of logical reasoning are obvious. So if a precise value is

wanted for the number of logical steps that a minimally rational agent can perform,

we can take it to be 1. In turn, we can take an obvious logical truth (falsity) to be

any truth (falsity) that can be proved (disproved) in 1 step of logical reasoning.

Given this, we can now spell out deep epistemic necessity and possibility by appeal

to provability in n steps of logical reasoning using the rules in R. To that end, let

a proof of A in n steps of logical reasoning be a derivation of A from a set Γ of

sentences—potentially the empty set—consisting of at most n applications of the

rules in R. Let a disproof of A in n steps of logical reasoning be a derivation of ¬A
from A—or from the set Γ of sentences such that A ∈ Γ—consisting of at most n

applications of the rules in R. Similarly, let a set Γ of sentences be disprovable in n

steps of logical reasoning whenever there is a derivation of A and ¬A from Γ consisting

of at most n applications of the rules in R. For simplicity, I will assume that agents

can rule out sets of sentence that contain {A,¬A} non-inferentially. Finally, let ‘�n’

and ‘♦n’ be metalinguistic operators, where ‘♦n’ is defined as ¬�n¬. Read ‘�nA’ as

‘A is provable in n steps of logical reasoning using the rules in R’, and read ‘♦nA’

as ‘A is not disprovable in n steps of logical reasoning using the rules in R’. We can

then define:

(Deep-Necn) A sentence A is deeplyn epistemically necessary iff �nA.

(Deep-Posn) A sentence A is deeplyn epistemically possible iff ♦nA.

Since n in (Deep-Necn) and (Deep-Posn) can take on a spectrum of values, we

hence get a spectrum of notions of deep epistemic necessity and possibility.9 For any

finite n, there will be certain logical falsities that cannot be disproved within n steps

of logical reasoning, and there will be certain logical truths that cannot be proved

within n steps of logical reasoning. In turn, we can ensure that some deep epistemic

9Cf. Chalmers 2011, pp. 103-104.
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possibilities will be logically impossible: for any finite n, some but not all logical

falsities will be deeplyn epistemically impossible, and some but not all logical truths

will be deeplyn epistemically necessary.

The n-step definition of deep epistemic possibility is tailor-made to the task at

hand: to find a construction of an epistemic space that allows us to model strict

epistemic possibility for minimally rational agents who can perform up to n steps of

logical reasoning, for some sufficiently small n. For if we can establish (Deep-Necn)

and (Deep-Posn), we will have ensured two things. First, we will have ensured that

no obvious logical falsities will remain strictly epistemically possible for minimally

rational agents. For given that obvious logical falsities can be disproved in n steps

of logical reasoning, for some sufficiently small n, they will be deeplyn epistemically

impossible. Intuitively, this would capture the idea that minimally rational agents

always know that obvious logical falsities are false. Second, we will have ensured that

all obvious logical truths will remain strictly epistemically necessary for minimally

rational agents. For given that obvious logical truths can be proved in n steps of

logical reasoning, for some sufficiently small n, they will be deeplyn epistemically

necessary. Intuitively, this would capture the idea that minimally rational agents

always know that obvious logical truths are true.

To vindicate a principle like (Plentitude) in the current setting, we need a spectrum

of epistemic spaces W1,W2, . . . ,Wn that can count as models for the spectrum of

notions of deep epistemic possibility ♦1,♦2, . . . ,♦n. In particular, we must look to

establish:

(Plentituden) For all sentences A, ♦nA iff A is true at some scenario w

in Wn.

(N-Plentituden) For all sentences A, �nA iff A is true at all scenarios w

in Wn.

Jago’s model of epistemic space—to which I turn now—holds promise of providing a

space of scenarios that can make (Plentituden) and (N-Plentitiden) true.

3 Jago’s Epistemic Space

Jago’s model J of epistemic space is a tuple:
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〈
WC ,WO, ν,�

〉
WC is the class of logically closed scenarios “at which the truths are both deductively

closed and consistent” in the sense of classical logic. (Jago 2009, p. 334.) We can think

of WC as the class of logically possible scenarios. WO is the class of open scenarios at

which the truths “are inconsistent (and hence not closed).” (Jago 2009, p. 334.) Open

scenarios were introduced by Graham Priest 2005 as a species of logically impossible

worlds.10 For any logically true sentence A, there are open scenarios at which A

is false. Indeed, for any set of sentences, however logically inconsistent, there are

open scenarios at which the truths include every member of this set. For my initial

purposes, I assume—seemingly in line with Jago—that all open scenarios in WO

are logically inconsistent. Since any inconsistent set of sentences that is closed under

(classical) logical deduction is extensionally equivalent to the set of all sentences, what

is true according to scenarios in WO should not be closed under logical deduction. For

we need to be able to distinguish between what is true at different open scenarios.11

ν is “a propositional valuation function, assigning a truth-value to each sentence at

each [scenario].” (Jago 2009, p. 335.) Finally, � is a total order on WC ∪WO.

According to Jago, w � w′ holds whenever the following holds: “if we expect

agents to reject (some truth according to) w′ a priori, then we also expect agents to

reject (some truth according to) w a priori.” (Jago 2009, p. 334.) While the maximal

elements with respect to � are the logically possible scenarios in WC , the minimal

elements with respect to � are those scenarios in WO at which “some obvious a priori

impossibility is true, where that impossibility is as basic as an a priori impossibility

can be.” (Jago 2009, p. 334.) Let X denote a set of such obvious a priori impossibil-

ities, and let |w| denote the set of truths according to a scenario w. When A ∈ |w|,
A is true at w, and I will also say that w verifies A. When ¬A ∈ |w|, A is false at

10For more on the nature of impossible worlds, see Bjerring forthcoming, Nolan 1997, and Priest
2005.

11Notice that if each w in WO is maximal—in the sense of (Maximality) in section 4—then w
is logically inconsistent if w is not (if the truths at w are not) deductively closed. But if some
scenarios in WO are not maximal—in the sense of either section 4.2 or section 4.3—it is possible to
hold that all scenarios in WO fail to be deductively closed but that only some such scenarios are
logically inconsistent. Since it is not quite clear from Jago’s presentation whether all scenarios in
epistemic space are maximal or not, it is not quite clear whether all scenarios in WO are logically
inconsistent or merely not deductively closed. Yet, since my central arguments will have bite against
either conception of what open scenarios in WO are, the finer details need not worry us here.
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w, and I will also say that w falsifies A.12 We then have: if X ∩ |w| 6= ∅, w � w′,

for any scenario w′. That is, if we expect an agent to reject anything at all a priori,

we expect her to reject all scenarios that verify some obvious a priori impossibility.

I will assume that explicit contradictions of the form {A,¬A} are in X . Given my

focus on logical reasoning, we can then think of the minimal elements with respect to

� as those logically inconsistent scenarios at which an explicit contradiction is true.

To determine when � holds in general, Jago invokes the idea of n-step reasoning.

Model theoretically, he interprets the set of inference rules R as a binary relation

[[R]] between scenarios.13 In general, (w,w′) ∈ [[R]] if and only if there is an instance

of a rule in R

A1, A2, . . . , Ak

B

such that {A1, A2, . . . Ak} ⊆ |w|, B /∈ |w|, and |w′| = |w| ∪ {B}. That is, when

(w,w′) ∈ [[R]], there is an instance of a rule schema in R that takes us from w to w′,

where w′ verifies everything w does plus the conclusion B obtained by applying the

rule once.

Jago then specifies a function f from open scenarios in WO to N = {0, 1, 2, 3, . . .},
where f(w) gives the smallest (finite) number n of inference steps required to derive

a basic a priori impossibility from |w|. For any two open scenarios w and w′ such

that f(w) = m and f(w′) = n, for m < n, we have that w � w′. In words, if we

expect an agent to rule out w′ in n steps of logical reasoning, then we also expect the

agent to rule out any scenario w from whose truths a basic a priori impossibility can

be proved in less than n steps of logically reasoning.

This summarizes Jago’s model. If Jago’s model works, we can use it to construct

a sequence of epistemic spaces as follows:

W0 = {w ∈ WC ∪WO| not: f(w) = 0}
12Although Jago does not specify what it means for a sentence to be false at a scenario w, it is

natural to spell out falsity of A at w in terms of truth of ¬A at w. If all scenarios are maximal—in
the sense of (Maximality) in section 4—notice that A is false at w when A /∈ |w|.

13Concerning the rules in R, Jago says that they correspond to basic inferences that we expect
rational agents to perform “in accordance with the meanings of ‘and’, ‘or’, ‘for all’ and so on.” (Jago
2009, p. 335.) For my purposes, as mentioned, I focus solely on rules that govern the propositional
connectives.
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W1 = {w ∈ WC ∪WO| not: f(w) ≤ 1}

W2 = {w ∈ WC ∪WO| not: f(w) ≤ 2}
...

Wn = {w ∈ WC ∪WO| not: f(w) ≤ n}

In words, for any finite n, Wn is the class of logically consistent and inconsistent

scenarios from which a basic impossibility cannot be proved in up to n steps of logical

reasoning. Given that explicit contradictions are in X , there will be no scenarios in

Wn that verify sentences or sets of sentences from which {A,¬A} can be proved within

n steps of logical reasoning using the rules in R. That is, there will be no scenarios

in Wn that verify sentences—or sets of sentences—that can be disproved in up to n

steps of logical reasoning.

If Jago’s model works, we can use the spectrum of epistemic spaces to model

(Plentituden): ♦nA iff A is true at some scenario w in Wn. To give a rough illustration

of how, assume first ♦nA. Then A is not disprovable in n steps. Suppose, for reductio,

that A /∈ |w|, for all scenarios w ∈ Wn. By construction of Wn, we can then infer a

contradiction from any |w| such that A ∈ |w|. But since A is not disprovable in n

steps, there are plenty of scenarios in Wn whose truth-sets include A and from which

a contradiction cannot be derived in n steps. So when ♦nA, A is true at some scenario

in Wn. Assume next that A is true at some w ∈ Wn. By construction of Wn, we

cannot infer a contradiction from what is true according to w in n steps. So w does

not verify any sentences that are disprovable within n steps of logical reasoning. So A

is not disprovable in n steps of logical reasoning. So when A is true at some scenario

in Wn, ♦nA.

Derivatively, if Jago’s model works, we can use it to construct a non-trivial epis-

temic space that contains enough scenarios to capture strict epistemic possibility for

minimally rational agents. So the question remains: does Jago’s model of epistemic

space work? I do not believe that it does, and I shall argue why in the next section.

4 Problems in Jago’s Epistemic Space

Generally, it is not quite clear from Jago’s presentation whether scenarios in his

model are maximal or not:
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(Maximality) For all sentences A and scenarios w ∈ WC ∪WO, either

A ∈ |w| or ¬A ∈ |w|.

When a scenario obeys (Maximality), I will say that the scenario is maximal. If a

scenario is not maximal, I will say that it is non-maximal or partial. When evaluated

at partial scenarios, certain sentences are neither true nor false.

If a contradiction can be proved within n steps of logical reasoning from what

is true according to a scenario, we know that a minimally rational agent can rule

out—or reject a priori—the scenario in question. But if we allow partial scenarios in

epistemic space, there is another type of logically “defective” scenarios that we might

want minimally rational agents to be able to rule out as well. Consider, for instance,

a partial scenario w? at which only (A ∧ B) is true but all other sentences neither

true nor false. Although no contradiction can be proved from |w?| using the rules in

R, there still seems to be a sense in which w? is logically defective. For w? fails to

verify certain sentences that follow from |w?| by basic logical reasoning—notably A

and B that follow from |w?| by two simple steps involving conjunction elimination.

Intuitively, a minimally rational agent can easily realize that the description of the

world that w? offers is logically incomplete: it fails to describe something as true

that can be established is true by basic logical reasoning. Call scenarios such as w?

defective partial scenarios—I will give a precise definition of these scenarios in section

4.2.

To fill in the details of Jago’s model, we need first decide whether all scenarios in

epistemic space are maximal. If we decide to include partial scenarios in epistemic

space, we need then decide whether defective partial scenarios—in addition to sce-

narios from which a contradiction is provable—can be ruled out using rules in R.

Accordingly, there seems to be three ways of thinking about J :

(C1) All scenarios in J are maximal.

(C2) Scenarios in J can fail to be maximal but some defective partial

scenarios can be ruled out using rules in R.

(C3) Scenarios in J can fail to be maximal but no defective partial sce-

narios can be ruled out using rules in R.

Corresponding to each of these possibilities, I will give three arguments. If J satisfies

(C1), the first argument shows that a contradiction can be proved from any logically
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inconsistent scenario in just 1 step of logical reasoning using the rules in R. If J
satisfies (C2), the second argument shows that any scenario that fails to be logically

consistent can be ruled out in just 1 step of logical reasoning using the rules in R.

These two arguments will show that J cannot be used to establish (Plentituden), but

also that J wrongly characterizes minimally rational agents as logically omniscient.

If J satisfies (C3), the third argument shows that J cannot serve as an epistemic

space for minimally rational agents. The third argument, in turn, will make a case

for the claim that we must give up (Information Principle) to model strict epistemic

possibility for minimally rational agents. I go through each argument in turn.

4.1 Argument against (C1)

For the first argument, let us assume that scenarios in J satisfies (C1) and hence

that all scenarios in WC ∪WO are maximal. Then ¬A ∈ |w| whenever A /∈ |w|. We

know that w is logically inconsistent when a contradiction in X can be proved from

|w| using the rules in R.

Given this, I will now prove (Result 1), where ‘|w| `R B’ abbreviates ‘B is provable

from the truths according to w using the rules in R’:

(Result 1) For all sentences B and all scenarios w for which (C1) holds,

if B /∈ |w| and |w| `R B, then f(w) = 1.

(Result 1) states that a contradiction can be proved from any logically inconsistent

scenario in just 1 step using the rules in R.

Let [[X ]] be the class of open scenarios such that X ∩ |w| 6= ∅, and let ‘|w| `nR B’

abbreviate ‘B is provable from the truths according to w in n steps of logical reasoning

using the rules in R’. I prove (Result 1) by induction on the shortest number of steps

required to prove a contradiction from |w|:14

Base case. Assume B /∈ |w| and |w| `1R B. Since |w| `1R B, there is a

w1 such that (w,w1) ∈ [[R]], where |w1| = |w| ∪ B. So B ∈ |w1|. But

also, since B /∈ |w|, ¬B ∈ |w| by (Maximality), and hence ¬B ∈ |w1|.
14For the proof of (Result 1), I take the trivial inference rule that permits inferring A from any

set Γ such that A ∈ Γ as a 0-step inference rule. If there are independent reasons for not allowing
such 0-step inference rules—perhaps because all reasoning, however basic and trivial, requires the
use of some cognitive resources—(Result 1) will hold for f(w) = 2 rather than f(w) = 1.
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So w1 ∈ [[X ]], and B and ¬B can be proved from |w| in 1 step of logical

reasoning. So f(w) = 1 and (Result 1) holds for the base case.

Inductive step. Assume for the induction hypothesis that (Result 1)

holds for all sentences B such that |w| `nR B. We want to show that

(Result 1) holds when |w| `n+1
R B. So let n > 0, and assume B /∈ |w|

and |w| `n+1
R B. Then B has to be proved from certain assumptions

A1, A2, . . . Ak such that each Ai is provable from |w| in at most n steps

and such that B is provable from A1, A2, . . . Ak in 1 step. To show that

f(w) = 1, there are two cases:

Case 1: For some Ai, Ai /∈ |w|. By the induction hypothesis, if

Ai /∈ |w| and |w| `nR Ai, then f(w) = 1.

Case 2: For all Ai, Ai ∈ |w|. We now repeat the argument from

the base case. Since B can be derived from A1, A2, . . . , Ak in 1 step,

and since each Ai ∈ |w|, |w| `1R B. Then there is a w1 such that

(w,w1) ∈ [[R]], where |w1| = |w| ∪ B. So B ∈ |w1|. But also, since

B /∈ |w|, ¬B ∈ |w| by (Maximality), and hence ¬B ∈ |w1|. So

w1 ∈ [[X ]], and B and ¬B can be proved from |w| in 1 step of logical

reasoning. So f(w) = 1.

So (Result 1) holds for the inductive step, and I conclude that (Result 1)

holds in general.

(Result 1) says that a contradiction can be proved from any logically inconsistent

scenario in just 1 step of logical reasoning using the rules in R. Effectively, (Result

1) shows that the attempt to construct a stratified epistemic space based on Jago’s

model will collapse when J satisfies (C1). Since f(w) = 1, for all logically inconsistent

scenarios in WO, all scenarios that are not in W0 will be logically consistent.

(Result 1) implies that we cannot use J to establish (Plentituden): ♦nA iff A is

true at some scenario w in Wn. For suppose ♦mA, for some A that is disprovable

in n steps, for some n such that n > m > 1. That is, assume that A—although

disprovable in n steps of logical reasoning—is not disprovable in m steps, for some

m greater than 1 but smaller than n. To establish (Plentituden), we need a scenario

w ∈ Wm at which A is true. By (Result 1), however, there are no logically inconsistent
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scenarios in any Wn, for n ≥ 1. So A is not true at any w ∈ Wm. So ♦mA is true but

there is no scenario in Wm at which A is true. Thus (Plentituden) fails.

Furthermore, (Result 1) implies (Omni1):

(Omni1) Any agent who can perform just 1 step of logical reasoning using

the rules in R can a priori reject any logically inconsistent scenario in

WC ∪WO.

Given (Omni1), it follows that any minimally rational agent capable of performing

just 1 step of logical reasoning can rule out any logically inconsistent scenario. As

a result, only logically consistent scenarios remain strictly epistemically possible for

such agents, and derivatively, all logical truths are strictly epistemically necessary for

them. If we follow the Hintikkian tradition and take knowledge to be a kind of (strict)

epistemic necessity, all minimally rational agents are then wrongly characterized as

logically omniscient.

This concludes my first argument. To avoid (Result 1), scenarios in J cannot be

maximal.

4.2 Argument against (C2)

For the second argument, let us assume instead that J satisfies (C2). Then

scenarios in J can fail to be maximal and some defective partial scenarios can be ruled

out using rules in R. When scenarios can fail to be maximal, we need indeterminacies

in our framework. So let us say that:

A is true at w just in case A ∈ |w| (denoted by ‘1(A) at w’).

A is false at w just in case ¬A ∈ |w| (denoted by ‘0(A) at w’).

A is indeterminate at w just in case neither A ∈ |w| nor ¬A ∈ |w| (denoted by

‘1
2
(A) at w’).

If a contradiction can be proved from |w| within n steps of logical reasoning using

the rules in R, then a minimally rational agent can rule out the scenario w—whether

w is maximal or partial. But to rule out defective partial scenarios, as discussed

above, we need a slightly more elaborate account. We can say that a partial scenario

w is defective just in case A is indeterminate at w but either A or ¬A can be proved
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from |w| using the rules in R. In turn, we can say that a minimally rational agent

can rule out a scenario w either when A is indeterminate at w but A or ¬A can be

proved from |w| within n steps of logical reasoning, or when a contradiction can be

proved from |w| within n steps of logical reasoning.

To have a notationally convenient way of representing what it means for a min-

imally rational agent to rule out a scenario, I will use elements from the metalan-

guage. In particular, I will stipulate that {1(A), 1
2
(A)} and {0(A), 1

2
(A)} in addition

to {1(A), 0(A)} count as contradictions. Call this enriched notion of a contradiction

an i-contradiction. We can then say that a partial scenario w is defective when 1
2
(A)

at w but either 1(A) or 0(A) can be proved from |w| using R—that is, when either

the i-contradictions {1
2
(A), 1(A)} or {1

2
(A), 0(A)} can be proved from |w| using R.

Notice that this does not mean that we have special inference rules that operate on

the expressions ‘1(A)’, ‘0(A)’, and ‘1
2
(A)’ in the metalanguage. Inference rules operate

on sentences in the object language, and the current notation is merely introduced

for convenience.

In turn, we can say that a minimally rational agent can rule out a scenario w either

when 1
2
(A) at w but 1(A) or 0(A) can be proved from |w| within n steps of logical

reasoning, or when {1(A), 0(A)} can be proved from |w| within n steps of logical

reasoning. In short, a minimally rational agent can rule out a scenario w just in case

an i-contradiction can be proved from |w| within n steps of logical reasoning using

the rules in R. To illustrate, suppose {A, (A → B)} ⊆ |w| but that both B /∈ |w|
and ¬B /∈ |w|. Then w is non-maximal and 1

2
(B) at w. Since B can be proved from

|w| by just 1 application of modus ponens, an i-contradiction {1
2
(B), 1(B)} can be

derived from |w| in just 1 step. Any minimally rational agent who can perform 1 step

of logical reasoning using R will then able to rule out w.

Finally, we can say that a scenario w fails to be logically consistent just in case

an i-contradiction can be proved (simpliciter) from |w| using the rules in R. If w

is maximal, w fails to be logically consistent whenever w is logically inconsistent—

whenever {1(A), 0(A)} can be proved from |w| usingR. If w is non-maximal, w fails to

be logically consistent just in case either {1(A), 1
2
(A)}, {0(A), 1

2
(A)}, or {1(A), 0(A)}

can be proved (simpliciter) from |w| using R.

Given this picture, J can satisfy (C2). But if it does, we can also immediately

prove a result similar to (Result 1). Omitting unnecessary formalism, the result is
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(Result 2):15

(Result 2) For all sentences B and all scenarios w for which (C2) holds,

if 0(B) at w or 1
2
(B) at w and |w| `R B, then an i-contradiction can be

proved from |w| in 1 step using the rules in R.

(Result 2) states that an i-contradiction can be proved from any scenario that fails

to be logically consistent in just 1 step using the rules in R.

Since the proof strategy for (Result 2) is identical to the one for (Result 1), I will

only show a part of the proof of (Result 2)—with a translation of symbolism, (Result

1) can also be seen as a special case of (Result 2) where we ignore the case concerning

indeterminacies. I prove part of (Result 2) by induction on the shortest number of

steps required to prove an i-contradiction from |w|:

Base case. Assume 1
2
(B) at w and |w| `1R B. Then B is provable from

|w| in 1 step. Since neither B ∈ |w| nor ¬B ∈ |w|, 1
2
(B) at w. So an

i-contradiction ({1(B), 1
2
(B)}) can be proved from |w| in 1 step using R.

Omitting the analogous reasoning for 0(B) at w, (Result 2) holds for the

base case.

Inductive step. Assume for the induction hypothesis that (Result 2)

holds for all sentences B such that |w| `nR B. We want to show that

(Result 2) holds when |w| `n+1
R B. So let n > 0, and assume 1

2
(B) at

w and |w| `n+1
R B. Then B has to be proved from certain assumptions

A1, A2, . . . Ak such that each Ai is provable from |w| in at most n steps

and such that B is provable from A1, A2, . . . Ak in 1 step. There are three

cases to consider:

Case 1: For some Ai, 0(Ai) at w. By the induction hypothesis, if

0(Ai) at w and |w| `nR Ai, then an i-contradiction ({1(Ai), 0(Ai)})
can be proved from |w| in 1 step using R.

Case 2: For some Ai,
1
2
(Ai) at w. By the induction hypothesis, if

1
2
(Ai) at w and |w| `nR Ai, then an i-contradiction ({1(Ai),

1
2
(Ai)})

can be proved from |w| in 1 step using R.

15For the proof of (Result 2), I omit reference to the parts of Jago’s formalism that concern the
function f and the relation [[R]] between scenarios. Both simplifications are innocuous.
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Case 3: For all Ai, 1(Ai) at w. We now repeat the argument from

the base case. Since B can be derived from A1, A2, . . . , Ak in 1 step

using R, and since each Ai ∈ |w|, then |w| `1R B. Then B 1(B) is

provable from |w| in 1 step. Since neither B ∈ |w| nor ¬B ∈ |w|,
1
2
(B) at w. So an i-contradiction ({1(B), 1

2
(B)}) can be proved from

|w| in 1 step using R.

Omitting the analogous reasoning for 0(B) at w, I conclude that (Result

2) holds for the inductive step and thus in general.

(Result 2) states that an i-contradiction can be proved from any scenario that

fails to be logically consistent in just 1 step of logical reasoning using R. Effectively,

(Result 2) shows that the attempt to construct a stratified epistemic space based on

Jago’s model will collapse when J satisfies (C2). Since an i-contradiction can proved

from any scenario that fails to be logically consistent in just 1 step, all scenarios that

are not in W0 will be logically consistent.

(Result 2) implies that we cannot use J to establish (Plentituden). For consider

a sentence A that is disprovable in n, but not m steps of logical reasoning, for some

m such that n > m > 1. Then we have ♦mA. To establish (Plentituden), we need

a scenario in Wm at which A is true. By (Result 2), however, there are no scenarios

that fail to be logically consistent in any Wn, for n ≥ 1. Since A can be true only at

a logically inconsistent scenario, A hence cannot be true at any scenario in Wm. So

♦mA is true but there is no scenario in Wm at which A is true. Thus (Plentituden)

fails.

Furthermore, (Result 2) implies (Omni2):

(Omni2) Any agent who can perform just 1 step of logical reasoning using

the rules in R can a priori reject any scenario in WC ∪WO that fails to

be logically consistent.

Insofar as any minimally rational agent is capable of performing just 1 step of logical

reasoning using the rules in R, it follows from (Omni2) that only logically consistent

scenarios remain strictly epistemically possible for such agents. Derivatively, all logi-

cal truths are strictly epistemically necessary for all minimally rational agents, and,

as such, they are wrongly characterized as logically omniscient.

This concludes my second argument. To avoid (Result 2), we cannot hold that

some defective partial scenarios can be ruled out using rules in R.
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4.3 Argument against (C3)

For the third argument, let us assume instead that J satisfies (C3). Then scenarios

in J can fail to be maximal but no defective partial scenarios can be ruled out using

the rules in R—although, of course, partial scenarios from which a contradiction of

the form A and ¬A is provable can still be ruled out. When J satisfies (C3), epistemic

space will contain an abundance of defective partial scenarios like w? at which only

“It rains and it is cold” is true but at which all other sentences are indeterminate.

Jago, I believe, does not assume that J satisfies (C3). The main reason is that

scenarios like w? fail to capture “genuine epistemic possibilities for rational, yet non-

ideal, agents.” (Jago 2009, p. 340.) For, as motivated above, minimally rational

agents always know that obvious logical falsities such as (A ∧ ¬A) are false and that

obvious logical truths such as (A → A) are true. To capture this central feature

of non-trivial logical reasoning, we can hold that scenarios like w?—at which all

obvious logical falsities and truths are indeterminate—should be rejected a priori by

a minimally rational agent. If so, there is good reason to hold that J should not

satisfy (C3).

To illustrate this complaint in more detail, we can focus on deepn epistemic

necessity—by doing so, we focus on the kinds of sentences that are provable within n

steps of logical reasoning. Obvious logical truths can be proved within relatively few

steps of logical reasoning, and by having an epistemic space that allows us to model

deepn epistemic necessity, we can help ensure that all such truths are also strictly

epistemically necessary for minimally rational agents. For deepn epistemic necessity,

the task is to establish (N-Plentituden): �nA iff A is true at all scenarios w in Wn. If

J satisfies (C3), however, we cannot use J to ensure (N-Plentituden). For let A be an

obvious logical truth that can be proved within, say, 4 steps of logical reasoning, and

assume �4A. Then A should be true at all w ∈ W4. But if very sparsely described

scenarios like w? are not eliminated from epistemic space, A may well fail to be true

at a scenario in Wn, for any n. So �4A is true but there are scenarios in W4 at which

A is not true. Thus (N-Plentituden) is false according to Jago’s model. So if we want

to capture (N-Plentituden), J cannot satisfy (C3).

This concludes my third argument. If J satisfies (C3), then J cannot serve as

an epistemic space for minimally rational agents. To develop such a space, we need

to eliminate scenarios that are too partially specified. Defective scenarios like w?

and countless others would fall into this category. The second argument, however,
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shows that attempts to eliminate some such partial scenarios fail because they end

up eliminating all scenarios that are not logically consistent. So we have an argument

showing that we cannot use J to ensure (Plentituden) and (N-Plentituden)—and

hence an argument showing that we cannot use J to model strict epistemic possibility

for minimally rational agents.

While the first argument shows that we must include partial scenarios in a suitable

epistemic space for minimally rational agents, the third argument shows that we need

to eliminate at least some (defective) partial scenarios from this space. In particular,

we need to eliminate from epistemic space scenarios that fail to verify sentences that

a minimally rational agent can easily establish logically (at a given time). Yet, if we

specify a non-trivial method for eliminating such scenarios from epistemic space, the

second argument shows that we thereby end up eliminating all scenarios that fail to

be logically consistent. In other words, if there is a method for eliminating scenarios

that fail to verify what follows by easy logical reasoning, this method will eliminate

all scenarios whose truths are not closed under logical deduction simpliciter.

More generally, I believe, (Result 1) and (Result 2) show that (Information Prin-

ciple) must go if we want to model strict epistemic possibility for minimally rational

agents in a world-involving framework. For to model what remains strictly epistemi-

cally possible for such agents, we must eliminate from epistemic space scenarios that

fail to contain information that can be inferred by easy logical reasoning. But if we

begin to eliminate such scenarios from epistemic space, (Result 1) and (Result 2)

show that we will end up eliminating all scenarios that fail to be closed under logical

deduction simpliciter—and, in turn, that the resulting epistemic space will be useful

only for modeling epistemic possibility for ideally rational agents. To avoid this re-

sult, we should not account for the gain in information that results from bounded,

non-trivial logical reasoning in terms of elimination of scenarios. If so, (Result 1)

and (Result 2) tell us that (Information Principle) must go in order to model strict

epistemic possibility for minimally rational agents. And insofar as (Information Prin-

ciple) is a constitutive principle of the possible worlds framework for knowledge and

belief, we hence have reason to believe that we cannot use the framework to model

strict epistemic possibility for minimally rational agents.16

16Notice that even if (Information Principle) is not strictly regarded as a constitutive principle
of the possible worlds framework, it is certainly fair to say that it is among the core characteristic
features of the framework. In that case, my results support the claim that we must give up a core
feature of the possible worlds framework to model epistemic possibility for minimally rational agents.
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5 Conclusion

I have argued that we cannot use Jago’s model of epistemic space to model what

is (strictly) epistemically possible for minimally rational agents. If all scenarios in

J are maximal, it follows that minimally rational agents can rule out any logically

inconsistent scenario in just 1 step of logical reasoning. If some scenarios in J are

non-maximal, it follows either that minimally rational agents can rule out any sce-

nario that fails to be logically consistent in just 1 step of logical reasoning, or that

they can never rule out any defective partial scenarios. In the latter case, scenarios

that do not describe a way the world might be, for all a minimally rational agent

knows, must nonetheless survive in the corresponding epistemic space. These nega-

tive results support the claim that the prospects look dim for using the possible worlds

framework to model what is (strictly) epistemically possible for minimally rational

agents. In particular, as motivated, the results support the claim that we must give

up (Information Principle) to develop an epistemic space that can model epistemic

possibility for such agents.

While ordinary agents do indeed wonder about propositions that could not pos-

sibly obtain, they do not—at least not often under careful reflection—wonder about

propositions that obviously could not obtain. For much like minimally rational agents,

ordinary agents are able to tease out a few consequences of what they know, and to

use their basic inferential capacities to establish that certain obvious truths such as

“If it rains, then it rains” must hold true of our world. If the conclusions of this paper

are correct, the prospects look dim for using the standard possible worlds framework

to model what is epistemically possible for such ordinary agents.
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