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1 PREFACE

1 Preface

One cannot see it all from one point of view.

The investigations, which led to the librationist set theories, began in the spring of 1993.It was a struggle to build upon imprecise thoughts to express beliefs precise enoughto be useful. But the author pressed on, as the investigations were very addictive, andbegan giving talks already in 1996, and publishing unfinished ideas already in 1997, with(Bjørdal 1998). Motivation to persist with the work was always found, so the hard workcontinued over all those years, in between other rather taxing tasks.
The problems with the paradoxes in set theory are of great importance not only whenone attempts to find useful and philosophically reasonable foundational theories for theformal sciences, but also when one seeks to account for a variety of important problemsin metaphysics, epistemology and other areas of philosophy.
Paradoxes, and related Cantorian foundational points of view, are especially importantin metaphysics. As (Grim 1991) stressed, and elaborated upon, standard thinking hasthe awkward consequence that the world is not complete. As we shall see, librationismchallenges that dogma, as it has the consequence that there are only denumerably manyobjects in the world; importantly, the validity of Cantor’s arguments for uncountability isnot challenged.
We can see the more comprehensive relevance of the paradoxes rather directly from thefact that modal logics are very important philosophical tools for reasoning about ethics,knowledge, and other central philosophical concepts. But threats of paradox underminethe use of reasonable modal logics, with more than just a minimum of linguistic resourcesand plausible closure principles, in order to reason about ethics and central philosophicalconcepts. This is on account of such limitative results as were discovered by (Montague1963), and investigated further by others, like (Friedman and Sheard 1987), and (Cantini1996). A takeaway is for example that if a modal logic is expressive enough to licensethe inference from Smith ought to sell his house to there is something Smith ought to do,then Russell like paradoxes arise.
So paradoxes are pervasive in philosophy. The standard way to evade Montague likelimits is to put restrictions upon the linguistic resources. Librationist resolutions recom-mend themselves, as such restrictions are not called for.
The focus in this essay will be upon the paradoxes in the context of mathematics, andthus in theories of sets, and related theories, as category theory. A central result isthat the librationist set theoric extension £HR(D) of £ accounts for Neumann-Bernays-
Gödel set theory with the Axiom of Choice and Tarski’s Axiom. Moreover, £ succeedswith defining an impredicative manifestation set W, die Welt, so that £H(W) accountsfor Quine’s New Foundations. Nevertheless, the points of view developed support theview that the truth-paradoxes and the set-paradoxes have common origins, so that thelibrationist resolutions of the set theoretic paradoxes are at the same time resolutions
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1 PREFACE

of the truth theoretic paradoxes. Both the librationist resolutions of the set theoreticparadoxes and the truth theoretic paradoxes have non-trivial philosophical implications:librationist set theories have the consequence that there are no absolutely uncountablesets, and librationist truth theories allow the use of syntactical modalities in ways whichcircumvent (Montague 1963).
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3 INTRODUCTION

3 Introduction

Nur wenn man nicht auf den Nutzen nach aussen sieht, sondern in der Mathematik selbst
auf das Verhältnis der unbenutzten Teile, bemerkt man das andere und eigentliche
Gesicht dieser Wissenschaft. Es ist nicht zweckbedacht, sondern unökonomisch und
leidenschaftlich. [. . . ] Die Mathematik ist Tapferkeitsluxus der reinen Ratio, einer der
wenigen die es heute gibt.

Robert Musil, in Der mathematische Mensch,Mitteilungen der Deutschen Mathematiker-Vereinigung, Noº20, page 50, 1912.
It is presupposed that 𝐴 ∧ ¬𝐴 is a contradiction, and that a theory is inconsistent justif it has contradictory theses. As per §15, £ is consistent and not contradictory. So thelibrationist points of view are not dialetheic, for dialetheism is canonically characterized,in (Priest, Berto, and Weber 2022), as a view which takes some contradictions to be true.Moreover, £ is not a paraconsistent point of view, as the latter are not conservative in thesense of Definition 15.3.13. Librationism, per Definition 15.3.15, may instead be takento offer an extraclassical and extracoherent point of view. To distinguish further, takelibrationism to offer a bialethic point of view, and not a dialetheic one.
It will be showns in 28 that Librationism meets a challenge which it is difficult to see canbe met if one presupposes that contradictions, as 𝑝∧¬𝑝, are true, viz. to offer an accountof what a true sentence 𝑝 says, in a paradoxical situation, which its true negation ¬𝑝 doesnot say in that situation.
A remark on designator is appropriate. One might hold that a theory is not a set theoryif it presupposes more linguistic resources than the language of set theory, understoodas first order logic plus the symbol ∈. This tenet is not followed here, and it is insteadpresupposed that set theoretic reality should be investigated with such rescources whichbest reveal it. As will beceome clear, we make use of set abstracts, and these are not elim-inable, due to the fact that £ is a highly non-extensional theory. The symbol ∈, however,
is eliminable, by means of apposition.
As £ with additional assumptions interprets classical set theory, with global choice, itseems misleading to hold that £ is not itself a set theory.
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4 LIBRATIONISM AND ITS FORMAL LANGUAGE

4 Librationism and its formal language

Die ganzen Zahlen hat der liebe Gottgemacht,allesandere istMenschenwerk.
Leopold Kronecker

4.1 Nomenclature
(Bjørdal 2012, p. 323) states "Librationism takes its name from the word “libration”, which
the reader is asked to look up if unfamiliar." Lunar librations were an inspiration.
After the publication of (Bjørdal 2012), £ was used for the librationist foundational sys-tem. It will be indicated, as in §§25–27, when additional assumptions are made.
The pound sign £ is most prevalently used for the currency of Great Britain. It derivesfrom Latin libra pondo. Pondo is an adverb which means by weight. Libra was used forthe Roman pound - which was about 327 g, but also for scales and balances. Such scaleswere an attribute to the Greek Goddess for Divine Justice, Themis, and for her daughterDike, who was the Goddess for Human justice. The roles of the attributes were thoughtto be the weighing of the consequences of acts to find balance, and, therefore, justice.The Goddess corresponding to Themis and Dike in the Roman religion was the blinded
Justitia, who also had a scale as attribute.
In the context of librationism, £ may be taken to symbolize the weighing and gauging ofbalances between sentences, and perhaps most interestingly, from the librationst pointsof view, in the case of sentences which are incompatible or complementary, in the senseof Definitions 15.4.1 and 15.4.3.
4.2 Numeralism - the chiffer standpoint
The chiffers are the numbers-of-the-meta-language. The ordinal chiffers are defined à lavon Neumann by means of the meta mathematical variety theory, which one may take tobe the set-theory-of-the-meta-language. One must carefully distinguish ordinal chiffersfrom corresponding ordinal numbers of the set theories expressed, and accounted for,by the object language. The ciphers are numerals-of-the-meta-language, denoting finiteorder chiffers. In the case of finite chiffers we underline the denoting cipher to contrastwith numerals of the set theories accounted for in the object language. So 0 e.g. denotesthe ordinal chiffer Zero. The natural chiffers are the finite ordinal chiffers, and the varietyof counting chiffers is the variety of the natural chiffers minus 0. The integer chiffers arethe natural chiffers extended with their negative counterparts.
The chiffer standpoint presupposed here is stronger than the point of view presupposedby (Gödel 1931), which was that formulas, and expressions akin, may be correlated viaa coding with numerals denoting natural numbers. For the symbols and expressions of £are taken to be counting chiffers, and their syntactical manipulations are accounted forby the variety theory presupposed.
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4.3 The inclusion of abstracts 4 LIBRATIONISM AND ITS FORMAL LANGUAGE

4.3 The inclusion of abstracts
The inclusion of abstracts is a trait shared with (Gandy, 1959), and with contributions tothe literature on non-classical set theories, including some which were at the time called
property theories1, as e.g. (Gilmore, 1974), and theories discussed by (Cantini, 1996),and others, where abstracts were used because the principle of extensionality fails.
4.4 “=” and “∈” are not primitive in £
The formal language of £ is Polish, and without symbols for identity or membership.
A Polish ↓-connective is used, as per Definition 4.5.4.3. The membership relation can bedefined by means of apposition of terms, because there as a consequence of the Polishpolicy are no parentheses in the formal language of £.
§11 shows that the identity of 𝑎 and 𝑏 can be delineated adequately by the statementthat 𝑏 is an element of all sets that have 𝑎 as an element, as in Definition 11.1.2.
4.5 Metalinguistic conventions
4.5.1. Definition Symbols of the meta language:

(1) Σ is the existential quantifier.
(2) Π is the universal quantifier.
(3) ∼ is negation.
(4) & is conjunction.
(5) r is disjunction.
(6) ⇒ is for implication.
(7) ⇔ is for bi-implication.
(8) [𝑥 : . . . ] is the set notation for use in the metalanguage.
(9) Y is the metalanguage symbol for membership.

1It seems that the term "property theory", despite seemingly having an origin with Kurt Gödel, becameunfortunate. The opening sentence of Roger Myhill’s article Paradoxes, in Synthese 60 (1984), 129-143,is: “Gödel said to me more than once "There never were any set-theoretic paradoxes, but the property-theoretic paradoxes are still unresolved"; and he may well have said the same thing in print.”Remarks as this may have had such influence that some authors later used the term "property-theory",for non-extensional set theories, which attempt to give more type-free accounts that approximate naiveabstraction in dealing with the paradoxes.Nevertheless, there are now so many non-extensional set theories in the literature, beyond attempts todeal with the paradoxes, that it seems unreasonable to consider them property theoretic, as opposed to
set theoretic.Was Gödel aware of the contribution in (Scott 1961), or did he study (Friedman 1973). (Shapiro 1985)is another witness to modern research into set theories without extensionality.
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4.5 Metalinguistic conventions 4 LIBRATIONISM AND ITS FORMAL LANGUAGE

4.5.2. Definition (Other metamathematical symbols)
(1) === is the metamathematical identification and definition symbol.
(2) 𝛼, 𝛽, 𝛾, 𝛿, . . . are for ordinal numbers of the metalanguage.
(3) ≺, ⪯, ⪰, and ≻ are the orderings on the ordinal numbers of the meta language.
(4) ` is for the least operator of the metalanguage.

4.5.3. Definition (The finite order chiffers, and their integers)
(1) Ω === 0, 1, 2 . . . is the term for the finite order chiffers, i.e. the natural chiffers.
(2) Ω+ === 1, 2, 3... is the term for the positive integers, i.e. the counting chiffers.
(3) Ω− === −1,−2,−3 . . . is the term for the negative integers.
(4) Ω± === 0, 1,−1, 2,−2 . . . is the term for the integer chiffers.
(5) Ω− === 0,−1,−2 . . . is the term for tha nonpositive integers.

4.5.4. Definition (The symbols, their ciphers and chiffers)
(1) •
(2) v̈
(3) ↓
(4) ∀
(5) 𝝇

(6) c̈
(7) #

are the symbols, which stand for the chiffers denoted by the bijective base-2 ciphers1, 21, 221, 2221, 22221, 222221 and 2222221, respectively.
4.5.5. Definition (Bijective base-2 cipher strings)

(1) Let 𝑛0, 𝑛1, 𝑛2, 𝑛3, . . . be base-2 cipher strings.
(2) ℓ(𝑛0) === ⌊𝑙𝑜𝑔2(𝑛0 + 1)⌋ invokes the floor function ⌊ ⌋, and defines the length of thebijective base-2 cipher needed to express chiffer 𝑛0.
(3) Concatenation ⌢ is the function given by 𝑛0

⌢ 𝑛1 === 𝑛0 · 2ℓ(𝑛1) + 𝑛1.
(4) We know that ⌢, so defined, is associative.
(5) 𝑛0

⌢ 𝑛1 is taken to be the denotatum of the apposition 𝑛0 𝑛1.
(6) Just the ciphers 1 and 2 are the cipher strings of length 1.

9



4.5 Metalinguistic conventions 4 LIBRATIONISM AND ITS FORMAL LANGUAGE

(7) If 𝜎0 is a cipher string of length 𝑛 and cipher string 𝜎1 has length 1, then cipherstring 𝜎0 𝜎1 = 𝜎0
⌢ 𝜎1 has length 𝑛 + 1.

4.5.6. Exercise: 𝜎 is a bijective base 2 cipher string just if it is a bijective base-2 cipher.
4.5.7. Definition (Expressionforms)

(1) An expression E is in symbolic form just if it is a string of symbols from Definition4.5.4.1–7, formed according to the formation rules in §§4.5.9-4.5.11.
(2) ExpressionE is in cipher form just if it is a bijective base-2 cipher, which correspondswith the symbolic form of E via coding of symbols into ciphers as in Definition 4.5.4.
(3) Expression E is in a presentable form just if Definitions as 4.5.12, 4.5.18 and 4.5.20are abided by to such an extent that the expression is more understandable.

So the notion of presentable form is not precise.
Notice that presentable forms may lose information, as it may be translated backagain to various cipherforms, or symbolic forms; but we will assume that suchtranslation problems do not arise.

4.5.8. Definition (The underlines)To remind that expressions in the last analysis arechiffers, denoted by ciphers, we in the remainder of this section underline, andwrite variable, term, formula, sentence, constant, and so on. To ease the reading,the underlines will not be used as from the next section.
4.5.9. Definition (Variables)

(1) v̈ is a variable.
(2) A variable succeeded by • is a variable.
(3) 𝑣0 is variable v̈, and 𝑣𝑛+1 is variable v̈𝑛 ⌢ •.
(4) Nothing else is a variable.
(5) Variables are terms.

4.5.10. Definition (Primitive constants)
(1) ¥𝑐 is a primitive constant.
(2) A primitive constant succeeded by • is a primitive constant.
(3) 𝑐0 is constant c̈, and 𝑐𝑛+1 is constant c̈𝑛 ⌢ •.
(4) Nothing else is a primitive constant.
(5) Primitive constants are terms without free variables, and so, per 4.5.15, constants.

4.5.11. Definition 𝑎𝑖 for arbitrary terms and A𝑖 for arbitrary formulas:
(1) If 𝑎0 and 𝑎1 are terms, 𝑎1𝑎0 is a formula.

10



4.5 Metalinguistic conventions 4 LIBRATIONISM AND ITS FORMAL LANGUAGE

(2) If A0 and A1 are formulas, ↓A0A1 is a formula.
(3) If A0 is a formula and 𝑣0 is a variable, ∀𝑣0A0 is a formula.
(4) If A0 is a formula and 𝑣0 is a variable, 𝝇𝑣0A0 is a term.
(5) Nothing else is a term or a formula.
(6) Just terms and formulas are expressions.

4.5.12. Definition Suppressing subscripts: When possible, 𝑎, 𝑏, 𝑐, . . . are written for 𝑎0, 𝑎1, 𝑎2, . . .,while 𝑣, 𝑤, 𝑥, . . . are for 𝑣0, 𝑣1, 𝑣2, . . . , and 𝑚, 𝑛, 𝑜, . . . for 𝑛0, 𝑛1, 𝑛2, . . . , along with A,B,C . . .instead of A with subscripts. Other letters, or letter-like symbols, may be used for specialterms, or formulas.
4.5.13. Definition Binders, binds, ties and scopes:

(1) In ∀𝑣A, ∀ is the binder. 𝑣 is the bind of A and the tie of ∀. A is the scope of ∀.
(2) In 𝝇𝑣A, 𝝇 is the binder. 𝑣 is the bind of A and the tie of 𝝇. A is the scope of 𝝇.

4.5.14. Definition Free and bound variables:
(1) A variable occurrence in a formula, or term, is bound, just if it is a bind, or it is inthe scope of a binder with another occurrence as tie.
(2) Variable occurrences in a formula, or term, are free if not bound.
(3) A variable is free in a formula, or term, just if an occurrence is.
(4) A variable is bound in a formula, or term, just if an occurrence is.

4.5.15. Definition Sentences and constants:
(1) A term without free variables is a constant.
(2) A formula without free variables is a sentence.

4.5.16. Definition Substitution: If E is an expression, 𝑎 is a term and 𝑣 is a variable, E𝑎
𝑣is the expression obtained by substituting all free occurrences of 𝑣 in E with term 𝑎.

4.5.17. Definition Substitutability: Term 𝑎 is substitutable for variable 𝑣 in A just if, A isatomic, or A is ↑ 𝐵𝐶 and 𝑎 is substituable for 𝑣 in both 𝐵 and 𝐶, or 𝐴 is ∀𝑤𝐵 and 𝑣 is notfree in 𝐵, or, 𝑤 does not occur in 𝑎 and 𝑎 is substitutable for 𝑣 in 𝐵.
4.5.18. Definition Postfixed variable vector notation:

E(𝑣, 𝑤, 𝑥) signifies that variables 𝑣, 𝑤 and 𝑥 are free in E.

4.5.19. Presentation resolve: A(𝑣, 𝑤, 𝑎) may be written for A(𝑣, 𝑤, 𝑥)𝑎𝑥 .
4.5.20. Definition Prefixed variable vector notation: Occasionally∀®𝔳A is used for a sentencewhich either is A, or for some 𝑛 > 0 and variables v0 . . . v𝑛−1, ∀®𝑣A is ∀v0 . . .∀v𝑛−1A.
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4.5 Metalinguistic conventions 4 LIBRATIONISM AND ITS FORMAL LANGUAGE

4.5.21. Definition Parentheses, and defined operators for the object language:
(1) Delimiters for punctuation: (, ), [, ], . . .
(2) ¬A ===↓ AA

(3) (A ∧ B) ===↓ ¬A¬B

(4) (A ∨ B) === ¬ ↓ AB

(5) (A→ B) === (¬A ∨ B)

(6) (A↔ B) === (A→ B) ∧ (B→ A)

(7) ∃𝑣A === ¬∀𝑣¬A

(8) 𝑎 ∈ 𝑏 === 𝑏𝑎

(9) {𝑣 |A} === 𝝇𝑣A

4.5.22. Definition Notation for binders restricted to set 𝑏:
(1) 𝐴𝑏 and 𝑎𝑏 signifiy that all variables bound in 𝐴 and 𝑎 are restricted to 𝑏.
(2) 𝑣𝑏 is 𝑣.
(3) (𝑐 ∈ 𝑑)𝑏 is 𝑐𝑏 ∈ 𝑑𝑏.
(4) ¬𝐴𝑏 is ¬(𝐴𝑏), (𝐴 ∧ 𝐵)𝑏 is (𝐴𝑏 ∧ 𝐵𝑏), and so on for other connectives.
(5) {𝑣 |𝐴}𝑏 === {𝑣 |𝑣 ∈ 𝑏 ∧ 𝐴𝑏}.

(6) (∀𝑣)𝐴𝑏 === (∀𝑣) (𝑣 ∈ 𝑏 → 𝐴𝑏).

(7) (∀®𝑣)𝐴𝑏 === is the sentence given by the least 𝑛 ≥ 0 such that(
𝑛 > 0 & (∀𝑣0 . . .∀𝑣𝑛−1) (𝑣0 ∈ 𝑏 ∧ . . . ∧ 𝑣𝑛−1 ∈ 𝑏 → 𝐴𝑏)

)
r

(
𝑛 = 0 & 𝐴𝑏

)
.
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5 SEMANTICS

5 Semantics

Development of mathematics resembles a fast revolution of awheel: sprinkles of water are flying in all directions. Fashion –it is the stream that leaves the main trajectory in the tangentialdirection. The streams of epigone works draw most attention,and they constitute the main mass, but inevitably disappearafter a while because they parted with the wheel. To remainon the wheel, it is necessary to apply the effort in the directionperpendicular to the main stream.
Vladimir Igorevich Arnold

The underlying theory of the meta language is variety theory Σ3KPΩ, which is Kripke-Platek variety theory, with Σ3-collection, and the variety Ω of natural chiffers. Care shouldbe taken to not confuse the varieties of the meta language used to introduce £ with thesets £ postulates the existence of.

5.1 On expression names, and their extension
5.1.1. Definition Expression names:

(1) If E is an expression, then E is its name.
(2) The semantic values of expression names is accounted for in §22.

5.2 Fairs
5.2.1. Definition: ⊩ is a function from initial sets Ξ,Ξ′,Ξ′′, . . . of formulas, and ordinals,to sets of formulas. For any ordinal 𝛼, and formula A, we write (Ξ, 𝛼) ⊩ A for AY ⊩ (Ξ, 𝛼).

5.2.2. Definition Fairs: (Ξ, 𝛼) is fair, or a fair, just if for all formulas A and B:
(1) (Ξ, 𝛼) ⊩↓ AB just if neither (Ξ, 𝛼) ⊩ A nor (Ξ, 𝛼) ⊩ B.

(2) (Ξ, 𝛼) ⊩ ∀𝑣A(𝑣) just if (Ξ, 𝛼) ⊩ A𝑏
𝑣 for all 𝑏 substitutable for 𝑣 in A .

(3) 𝛼 = 0⇒ ⊩ (Ξ, 𝛼) = Ξ, so (Ξ, 0) ⊩ A⇔ AYΞ, and (Ξ, 0) ⊩ ¬A⇔ A�YΞ.
(4) 𝛼 ≻ 0⇒ ((Ξ, 𝛼) ⊩ T A ⇔ Σ𝛾(𝛾 ≺ 𝛼 & Π𝛿(𝛾 ⪯ 𝛿 ≺ 𝛼⇒ (Ξ, 𝛿) ⊩ A))).

(5) If (Ξ, 𝛼) ⊩ T 𝑥 then ΣA(Formula(A) & 𝑥 = A ).

(6) ΠΞ[(Ξ, 𝛼) ⊩ T A ∨ T ¬A ] r
(
ΠΞ[(Ξ, 𝛼) ⊩ ¬T ¬A ] ⇔ ΠΞ[(Ξ, 𝛼) ⊩ ¬T A ]

)
.

5.2.3. Remark: Diagonalization in £ does not come about as diagonalization in Peano
arithmetic, nor as in the modal provability logic GL with precisely □(□𝑝 → 𝑝) → □𝑝) ascharacteristic axiom. For such reasons a symbolization E distinct from ⌜E⌝ is used for
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5.3 Closure 5 SEMANTICS

the name of expression E. The diagonalization construction in £ allows quantifying intonamed contexts, so that ∀𝑥∃𝑦T 𝑥 = 𝑦 is a well formed sentence.
5.2.4. Presentation resolve:

When the context allows, we write T A as an abbreviation for T A .

5.2.5. Remark: If formula A has one variable free, there may be different fairs Ξ and
Ξ ′ such that (Ξ, 0) ⊩ A and (Ξ ′, 0) ⊩ ¬A. So quantifying over fairs, as in §5.4, is likequantifying over interpretations to define tautologicality of formulas in logics.
5.2.6. Theorem (Omega standard)

(Ξ, 𝛼) ⊩ ∃𝑣A⇔ (Ξ, 𝛼) ⊩ A𝑏
𝑣 for some 𝑏 substitutable for 𝑣 in A.

Proof:
(Ξ, 𝛼) ⊩ ∃𝑣A

⇕
(Ξ, 𝛼) ⊩ ¬∀𝑣¬A

5.2.2.1 ⇕
(Ξ, 𝛼) ⊮ ∀𝑣¬A

5.2.2.2 ⇕
for a 𝑏 substitutable for 𝑣 in A, (Ξ, 𝛼) ⊮ ¬A𝑏

𝑣

5.2.2.1 ⇕
for a 𝑏 substitutable for 𝑣 in A, (Ξ, 𝛼) ⊩ A𝑏

𝑣

□

5.3 Closure

5.3.1. Definition Cover, stabilization and closure:
(1) IN(𝛼,A,Ξ) just if Π𝛽(𝛼 ⪯ 𝛽⇒ (Ξ, 𝛽) ⊩ T A).

(2) OUT(𝛼,A,Ξ) just if Π𝛽(𝛼 ⪯ 𝛽⇒ (Ξ, 𝛽)�⊩ T A).

(3) IN(A,Ξ) just if Σ𝛼IN(𝛼,A,Ξ).

(4) OUT(A,Ξ) just if Σ𝛼OUT(𝛼,A,Ξ).

(5) STAB(A,Ξ) just if IN(A,Ξ) r OUT(A,Ξ).

(6) UNSTAB(A,Ξ) just if ∼STAB(A,Ξ).

(7) 𝛼 covers Ξ just if : IN(A,Ξ) ⇒ IN(𝛼,A,Ξ).

14



5.3 Closure 5 SEMANTICS

(8) 𝛼 stabilizes Ξ just if 𝛼 covers Ξ, and (Ξ, 𝛼) ⊩ T A⇒ IN(A,Ξ).

(9) The closure ordinal Ϙ is the least stabilizing ordinal.
5.3.2. Theorem (Herzberger 1980)

There is a closure ordinal.
Proof: Assume first that IN(A,Ξ), to presuppose
5.3.3. Definition: h(A) = `𝛼(IN(𝛼,A,Ξ)).

1. We first show that there is a covering ordinal:
We have

ΠA(IN(A,Ξ) ⇒ Σ𝛽(𝛽 = h(A))). (5.3.4)
So

ΠAΣ𝛽(IN(A,Ξ) ⇒ 𝛽 = h(A)). (5.3.5)
Π2–collection and quantifier rules give us

ΠBΣYΠA(AYB⇒ Σ𝛽(𝛽YY&(𝛽 = h(A)))). (5.3.6)
Instantiate with B = [A: IN(A,Ξ)] to obtain

ΣYΠA(IN(A,Ξ) ⇒ Σ𝛽(𝛽YY&(𝛽 = h(A)). (5.3.7)
Let Z be a witness for (5.3.7), and define the least covering ordinal by meansof Π2–separation,

𝜘 = [a : aYZ & Ordinal(a) & ΣA(IN(A,Ξ) & a = h(A))] . (5.3.8)
Π2-collection was invoked in the step from (5.3.5) to (5.3.6), and as Π𝑛-collectionimplies Σ𝑛+1 collection for Kripke–Platek theories, this justifies the choice of an un-derlying variety theory at least as strong as Σ3KPΩ for the meta language.2

2(Welch 2011) shows that KP + Σ3-Determinacy is sufficient for the semantics for a commensuratesystem AQI (Arithmetical Quasi Induction) introduced in (Burgess 1986), and (Hachtman 2019) showsthis equivalent to KP +Π1
2-Monotone Induction. So a Σ3-admissible ordinal is not necessary, but it may beneeded for the proof we use, which connects the coding of the formal language with the natural chiffersof the meta theory. Welch has pointed out in private communication that a Σ2-admissible ordinal, withoutfurther assumptions, can be proven to be insufficient.
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5.4 The range of librationist satisfaction 5 SEMANTICS

2. We next prove that there is a stabilizing ordinal:
Let [ 𝑓 (𝑛) : 𝑛YΩ], by an adaptation of Cantor’s pairing function, be an enumerationof all elements of UNSTAB(Ξ), where each element recurs infinitely often, so that if
B= 𝑓 (𝑚) and 𝑚 ≺ 𝑛YΩ, then there is a natural number 𝑜, 𝑛 ≺ 𝑜YΩ, such that 𝑓 (𝑜) = B.Let 𝑔(0) = 𝜘 and 𝑔(𝑛 + 1) = the least a > 𝑔(𝑛) such that

(Ξ, a) ⊩ 𝑓 (𝑛) ⇔ (Ξ, 𝑔(𝑛))�⊩ 𝑓 (𝑛)

Let ß = [𝛾 : Σ𝑚Σa(𝑚YΩ & a = 𝑔(𝑚) & 𝛾Ya)]. It is obvious that ß is a limit ordinalwhich covers Ξ. It is also clear that if 𝑚 ≺ 𝑛YΩ then 𝑔(𝑚) ≺ 𝑔(𝑛). Since ß covers Ξ,it suffices to show that (Ξ, ß) ⊩ T B entails that B is in STAB(Ξ), to establish that ßstabilizes Ξ.
Suppose (Ξ, ß) ⊩ T B. It follows that
a) ΣaΠb (a ⪯ b ≺ ß⇒ (Ξ, b) ⊩ B)

Since 𝑔 is increasing with ß as its range, we will for some natural number 𝑚YΩ havethat a ⪯ 𝑔(𝑚) ≺ ß, so that
b) Πb (𝑔(𝑚) ⪯ b ≺ ß⇒ (Ξ, b) ⊩ B)

Suppose B ∉ STAB(Ξ). By our enumeration of unstable elements where each termrecurs infinitely often, we have that B = 𝑓 (𝑛) for some natural number 𝑛, 𝑚 ≺ 𝑛 ∈ Ω.It follows that 𝑔(𝑚) ≺ 𝑔(𝑛) ≺ ß. From a) and b) we can infer that (Ξ, 𝑔(𝑛)) ⊩ B, sincewe supposed that (Ξ, ß) ⊩ T B. From the construction of function 𝑔, (Ξ, 𝑔(𝑛+1))�⊩¬B,contradicting b). It follows that (Ξ, ß) ⊩ T B only if B ∈ STAB(Ξ), so ß stabilizes Ξ.
3. The proof finishes with an appeal to Definition 5.3.1.9. □

5.4 The range of librationist satisfaction
5.4.1. Definition Satisfaction and satiation:

(1) Fair Ξ maximally satisfies A just if (Ξ, Ϙ) ⊩ T A.
(2) Fair Ξ optimally satisfies A just if (Ξ, Ϙ) ⊩ A.
(3) Fair Ξ plainly satisfies A just if (Ξ, Ϙ) ⊩ ¬T ¬A.
(4) Fair Ξ minorly satisfies A just if (Ξ, Ϙ) ⊩ ¬T ¬A ∧ ¬T A.

5.4.2. Definition:
(1) A is maximally satisfied just if for all fairs Ξ, (Ξ, Ϙ) ⊩ T A.

(2) A is optimally satisfied just if for all fairs Ξ, (Ξ, Ϙ) ⊩ A.
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5.5 Relations between maxims, optima, plains and minors 5 SEMANTICS

(3) A is plainly satisfied just if for all fairs Ξ, (Ξ, Ϙ) ⊩ ¬T ¬A.
(4) A is minorly satisfied just if for all fairs Ξ, (Ξ, Ϙ) ⊩ ¬T ¬A ∧ ¬T A.

5.4.3. Definition Notation:
(1) |=M A A is a maxim, as it is maximally satisfied.
(2) |=O A A is an optimum, as it is optimally satisfied.
(3) |= A A is a plain, as it is plainly satisfied.
(4) |=𝑚 A A is a minor, as it is minorly satisfied.

5.5 Relations between maxims, optima, plains and minors

5.5.1. Definition of tautologies, antologies, determinates, standards:
(1) A is a tautology just if |= A.

(2) A is an antology just if |=M¬A.

(3) A is a determinate just if (|= A & �|=¬A) r (�|= A & |=¬A).
(4) A is an indeterminate just if �|= A & �|= ¬A.
(5) A is a standard, or a standard, just if |=M (T A ∨ T ¬A ).

5.5.2. Exercise Show that (Ξ, 𝛼) ⊩ {𝑥 |𝑥 ∈ 𝑥} ∈ {𝑥 |𝑥 ∈ 𝑥} ↔ T {𝑥 |𝑥 ∈ 𝑥} ∈ {𝑥 |𝑥 ∈ 𝑥}.
5.5.3. Exercise Notice that {𝑥 |𝑥 ∈ 𝑥} ∈ {𝑥 |𝑥 ∈ 𝑥} is maximally satisfied byΞ, or {𝑥 |𝑥 ∈ 𝑥} ∉ {𝑥 |𝑥 ∈ 𝑥}is maximally satisfied by Ξ, and that {𝑥 |𝑥 ∈ 𝑥} ∈ {𝑥 |𝑥 ∈ 𝑥} consequently is indefinite, inthe sense of Definition 5.6.1.3.
5.5.4. Postulate

(1) |=O A⇒ |= A

(2) |=M A⇒ |=O A

(3) |=𝑚 A⇔ |= A & |= ¬A

(4) |=M A⇔ |= A & �|= ¬A

Proof:(1): Use 7.1.6.
(2): |=M A ⇒ |=O T A , given Definitions 5.4.2 and 5.4.3. So if |=M A, |=O T A holds. Also,
|=
O T A → A, which is 7.1.6. Thus, |=M A only if |=O A.
(3): By Definitions 5.4.2.3 and 5.4.2.4.
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5.6 Orthodoxy, definiteness and paradoxicality 5 SEMANTICS

(4): Leftwards - |= A &�|=A ⇒ |=O (T A ∨ T ¬A) on account of Postulate 6.3.1. So for allfairs Ξ, (Ξ, Ϙ) ⊩ (T A ∨ T ¬A). As |= A, so that for all fairs Ξ, (Ξ, Ϙ) ⊩ ¬T ¬A, for all fairs
Ξ, (Ξ, Ϙ) ⊩ T A. So |=M A.
Rightwards - Given |=M A, for all fairs Ξ, (Ξ, Ϙ) ⊩ T A, so that by Definition 5.2.2.4, for all
Ξ, Σ𝛾(𝛾 ≺ 𝛼 & Π𝛿(𝛾 ⪯ 𝛿 ≺ 𝛼⇒ (Ξ, 𝛿) ⊩ A)). Consequently,

ΠΞ
[
Π𝛾(𝛾 ≺ 𝛼 & Σ𝛿(𝛾 ⪯ 𝛿 ≺ 𝛼⇒ (Ξ, 𝛿) ⊩ A))

]
,

so for all Ξ, (Ξ, Ϙ) ⊩ ¬T ¬A, and so |= A. Moreover, |=M A & |= ¬A clearly entails absurdity,so |=M A⇒ �|=¬A. In sum, |=M A⇒ |= A &�|=¬A. Finish by joining the directions. □

5.5.5. Theorem: There are just minor and maximal tautologies. Optimal tautologies areeither minor or maximal, and minor tautologies are not maximal tautologies.
Proof: This follows from Theorems 5.5.4.3 and 5.5.4.4. □

5.6 Orthodoxy, definiteness and paradoxicality
5.6.1. Definition:
(1) A is orthodox just if |=O ∀®𝑣(T A ∨ T ¬A).

(2) Set 𝑎 is orthodox just if 𝑥 ∈ 𝑎 is orthodox.
(3) A is definite just if |= A or |= ¬A.
(4) A is apocryphal just if orthodox and indefinite.
(5) Set 𝑎 is apocryphal just if 𝑏 ∈ 𝑎 is apocryphal for some set 𝑏.

5.6.2. Remark: Some definite sentences are determinate, and some are indeterminate.
5.6.3. Remark: Set 𝑠 === {𝑣 |𝑣 ∈ 𝑣} is apocryphal. For sentence 𝑠 ∈ 𝑠 is apocryphal, bycause of its orthodoxy and the fact that it is indefinite because |̸= 𝑠 ∈ 𝑠 and |̸= 𝑠 ∉ 𝑠.
5.6.4. Definition: Formula A is paradoxical just if not orthodox. Given Definition 5.6.1.1,this is the case just if |̸=O ∀®𝑣(T A(®𝑣) ∨T ¬A(®𝑣)); so there is, given Definition 5.4.2.2, a fair Ξsuch that (Ξ, Ϙ) ⊩ ∃®𝑣(¬T A(®𝑣) ∧¬T ¬A(®𝑣)). By adapting Theorem 14.1.1, we find a vector
®𝑎 for instantiation so that (Ξ, Ϙ) ⊩ (¬T A( ®𝑎) ∧ ¬T ¬A( ®𝑎))

5.6.5. Definition: Sentence A is paradoxical just if not orthodox, just if |̸=O (T A ∨ T ¬A);so there is, given Definition 5.4.2.2, a fair Ξ such that (Ξ, Ϙ) ⊩ (¬T A ∧ ¬T ¬A).

5.6.6. Definition: Set 𝑎 is paradoxical just if not orthodox just if |̸=O ∀𝑥(T 𝑥 ∈ 𝑎 ∨ T 𝑥 ∉ 𝑎);so, given Definition 5.4.2.2, there is a fair Ξ such that (Ξ, Ϙ) ⊩ ∃𝑥(¬T 𝑥 ∈ 𝑎 ∧ ¬T 𝑥 ∉ 𝑎).Consequently, given Theorem 14.1.1, for some term 𝑏, (Ξ, Ϙ) ⊩ (¬T 𝑏 ∈ 𝑎 ∧ ¬T 𝑏 ∉ 𝑎).
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5.6.7. Fact: The proof of Theorem 6.3.2 shows that |=O (T A∨T ¬A) ⇒ |=M (T A∨T ¬A), soDefinition 5.6.1.1 entails that A is orthodox just if |=M (T A ∨ T ¬A). But the latter shouldnot be used for defining orthodoxy, as the induced revision of Definition 5.6.4 would notgive the intended extension for the term ‘paradoxical’.
5.7 The non-triviality assumptions
5.7.1. Definition: A logical theory is trivial if all of its sentences are derivable.
The assumption that there are fair functions for variants of £ amounts to assuming thatthe system under consideration is not trivial, and, consequently, consistent. It was shownin §is a fair function for £ simpliciter just if Σ3KP𝜔 is consistent.
There are fair functions for XXX if NBG+ Global Choice is consistent, and for £ undermuch weaker assumptions.
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6 MAXIMS

6 Maxims

{(𝑥, 𝑦) |𝑦 ≥ 𝑓 (𝑥)}

6.1 Axioms & warrants, theorems & proofs.
6.1.1. Definition:
(1) A warrant of an axiom is a semantic demonstration of it from Definition 5.2.2.
(2) A proof of a theorem is a demonstration of it from axioms and other theorems.

6.2 The relations between the varieties of theses
§5.4 gave the semantic distinctions between maximally, optimally, plainly and minorlytrue. The corresponding syntactic notions are maxim, optimum, plain and menor. Here“plain” is used as a noun, and occasionally as an adjective. The word “menor” is a variantof “minor”, according to the Oxford English Dictionary, and the term “minor” is here usedas an adjective, while “menor” is used as a noun.
6.2.1. Postulate of the soundness: £ is sound for all theses of the treatise, as that ischecked individually. So

⊢M A⇒ |=M A; ⊢O A⇒ |=O A; ⊢ A⇒ |= A and ⊢𝑚 A⇒ |=𝑚 A.

6.2.2. Axiom Relations between maxims, optima, plains and menors:
(1) ⊢M A⇒ ⊢O A

(2) ⊢O A⇒ ⊢ A

(3) ⊢𝑚 A⇔ ⊢ A & ⊢ ¬A

(4) ⊢M A⇔ ⊢ A & �⊢ ¬A

6.3 Arbitration
6.3.1. Postulate (Optimal arbitration)

|=
O (T A ∨ T ¬A ) r (|= A⇔ |= ¬A).

W.6.3.1: Definition 5.2.2.6 states that
ΠΞ[(Ξ, 𝛼) ⊩ T A ∨ T ¬A ] r

(
ΠΞ[(Ξ, 𝛼) ⊩ ¬T ¬A ] ⇔ ΠΞ[(Ξ, 𝛼) ⊩ ¬T A ]

)
.

The right disjunct of Definition 5.2.2.6 amounts to |= A⇔ |= ¬A, given Definitions 5.4.2.3and 5.4.3.3, and |=O (T A ∨ T ¬A ) is entailed by the left disjunct of Definition 5.2.2.6via Definitions 5.4.2.2 and 5.4.3.2.
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6.3.2. Theorem (Maximal arbitration)
|=
M (T A ∨ T ¬A ) r (|= A⇔ |= ¬A).

Proof: Confer Fact 5.6.7. It suffices to prove |=O (T A ∨ T ¬A) ⇒ |=M (T A ∨ T ¬A). Makeuse of a disjunctive syllogism to obtain |=O (T T A ∨ T T ¬A ) with Postulate 7.1.1 from
|=
O (T A ∨ T ¬A ), and use theorem ⊢O T T B → T (T B ∨ C) and disjunctivesyllogism with |=O (T T A ∨ T T ¬A ) to obtain |=O T T A ∨ T ¬A . Use Definitions5.4.2.1, 5.4.2.2, 5.4.3.1 and 5.4.3.2 and the results noted to conclude |=M T A ∨ T ¬Afrom |=O T T A ∨ T ¬A . □

6.4 Logic maxims
6.4.1. Postulate Classical logic maxims:

(1) ⊢M 𝐴→ (𝐵→ 𝐴)

(2) ⊢M (𝐴→ (𝐵→ 𝐶)) → ((𝐴→ 𝐵) → (𝐴→ 𝐶))

(3) ⊢M (¬𝐵→ ¬𝐴) → (𝐴→ 𝐵)

(4) ⊢M ∀𝑥(𝐴→ 𝐵) → (∀𝑥𝐴→ ∀𝑥𝐵)

(5) ⊢M 𝐴→ ∀𝑣𝐴, provided 𝑣 is not free in 𝐴

(6) ⊢M ∀𝑣𝐴→ 𝐴𝑏
𝑣 , provided 𝑏 is substitutable for 𝑣 in 𝐴

(7) If ⊢M Γ belongs to (6.4.1.1−6.4.1.6), then so does ⊢M ∀𝑣Γ.
6.4.2. Remark: The role of a maximal inference mode, which allows the deduction from
⊢M (A→ B) and ⊢M A to ⊢M B, is played by mode 9.2.5.
6.4.3. Remark: An induction, upon 6.4.1.7 and 9.2.5, proves generalization is a derivedinference mode. Compare the proof of Theorem 45.4 of (Hunter 1971, pp. 174–175).
6.5 Maxims on truth
6.5.1. Definition Russell’s paradoxical set:

r === {𝑥 |𝑥 ∉ 𝑥}

6.5.2. Postulate Truth maxims:
(1) ⊢M T (𝐴→ 𝐵) → (T 𝐴→ T 𝐵)

(2) ⊢M T 𝐴→ ¬T ¬𝐴

(3) ⊢M (T r ∈ r ∨ T r ∉ r) → (T 𝐴 ∨ T ¬𝐴)

(4) ⊢M T 𝐴 ∨ T ¬𝐴 ∨ (T ¬T ¬𝐵→ T 𝐵)
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(5) ⊢M T 𝐴 ∨ T ¬𝐴 ∨ (T 𝐵→ T T 𝐵)

(6) ⊢M T (T 𝐴→ 𝐴) → (T 𝐴 ∨ T ¬𝐴)

(7) ⊢M T (T 𝐴→ T T 𝐴) → (T 𝐴 ∨ T ¬𝐴)

(8) ⊢M ∃𝑣T A→ T ∃𝑣A.

(9) ⊢M T ∀𝑣A→ ∀𝑣T A

(10) ⊢M ∀𝑢(𝑎 ∈ 𝑢 → 𝑏 ∈ 𝑢) → (𝐴𝑎
𝑣 → 𝐴𝑏

𝑣 ), for 𝑎 and 𝑏 both substitutable for 𝑣 in 𝐴.

(11) ⊢M 𝔒({𝑥 |A}) → (∀𝑥T A→ T ∀𝑥A)
6.6 Warrants of truth maxims
Warrant 6.5.2.1: Suppose (Ξ, 𝛾) ⊩ T (A → B) and (Ξ, 𝛾) ⊩ T A. It follows that for someordinal 𝛿 and any ordinal 𝜖 such that 𝛿 ⪯ 𝜖 ≺ 𝛾, (Ξ, 𝜖) ⊩ (A → B) and (Ξ, 𝜖) ⊩ A. So,on account of Definition 5.2.2.1, (Ξ, 𝜖) ⊩ B, and, consequently, (Ξ, 𝛾) ⊩ T B. So for anyordinal 𝛾, (Ξ, 𝛾) ⊩ T (A → B) → (T A → T B). (Ξ, Ϙ) ⊩ T (T (A → B) → (T A → T B)) is aconsequence of this, so |=M T (A→ B) → (T A→ T B).

Warrant 6.5.2.2: Assume (Ξ, 𝛾)�⊩(T A→ ¬T ¬A). It follows that (Ξ, 𝛾) ⊩ (T A ∧ T ¬A). Asa consequence, (Ξ, 𝛾) ⊩ T A and (Ξ, 𝛾) ⊩ T ¬A. It follows that for some ordinal 𝛿 and anyordinal 𝜖 such that 𝛿 ⪯ 𝜖 ≺ 𝛾, (Ξ, 𝜖) ⊩ A and (Ξ, 𝜖) ⊩ ¬A. But that is impossible.
Warrant 6.5.2.3: The postulate’s maxim somewhat extends (Bjørdal 2012). Let an ordi-nal 𝛿 be monogamous just if a successor ordinal, so (Ξ, 𝛿) ⊩ T B just if (Ξ, 𝛿) ⊩ ¬T ¬B, forany sentence B. |=M (T r ∈ r ∨ T r ∉ r) → (T 𝐴 ∨ T ¬𝐴) holds simply because monogamousordinals are monogamous ordinals.
Warrant 6.5.2.4: Let an ordinal 𝛾 be reflected, just if (Ξ, 𝛾) ⊩ T 𝐵, provided (Ξ, 𝛾) ⊩
T ¬T ¬B. Any limit ordinal _ is reflected, for if B holds at all ordinals as from some ordinal
` below _ according to Ξ, then also ¬T ¬B holds at all ordinals as from ` below _ accord-ing to Ξ. So limit ordinals are reflected, and successor ordinals are monogamous, in thesense of Postulate 6.5.2.3. The content of 6.5.2.4 is thus that all ordinals are reflected ormonogamous, as for a monogamous successor ordinal 𝛿, ((Ξ, 𝛿) ⊩ (T A∨T ¬A), and if 𝛿 isa reflected limit ordinal, (Ξ, 𝛿) ⊩ (T ¬T ¬B→ T B). In either case, 6.5.2.4 is warranted.
Warrant 6.5.2.5: Let an ordinal 𝛾 be transitive just if for any A,

∃\ (\ ≺ 𝛾 & Πb (\ ⪯ b ⇒ (Ξ, b) ⊩ A)) ⇒ ∃\ (\ ≺ 𝛾 & Πb (\ ⪯ b ⇒ (Ξ, b) ⊩ T A)).

Precisely limit ordinals are transitive ordinals.
The content of Postulate 6.5.2.5 is that ordinals are transitive, or monogamous, in thesense of Warrant 6.5.2.3. But that is true, as all ordinals larger than 0 are successorordinals or limit ordinals. So 6.5.2.5 has been warranted.
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Warrant 6.5.2.6: At successor ordinals this holds, because there the consequent is true.Let _ be a limit ordinal, and 𝜌 such that
Πb (𝜌 ⪯ b ≺ _) ⇒ (Ξ, b) ⊩ T A→ A,

so that (Ξ, _) ⊩ T (T A → A). Suppose there is some ordinal 𝜎 ≺ _ and 𝜌 ⪯ 𝜎 such that
(Ξ, 𝜎) ⊩ A. If so, (Ξ, _) ⊩ T A. If there is no ordinal 𝜎 ≺ _ and 𝜌 ≺ 𝜎 such that (Ξ, 𝜎) ⊩ A,then (Ξ, _) ⊩ T ¬A. So 6.5.2.6 has been warranted.
Warrant 6.5.2.7: Postulate 6.5.2.7 holds at all successor ordinals, as the consequent al-ways holds there. (Ξ, _) ⊩ T (T A→ T T 𝐴) ⇒ Σ𝛿Π𝜖 (𝛿 ⪯ 𝜖 ≺ _ ⇒ (Ξ, 𝜖) ⊩ T A→ T T 𝐴) if
_ is a limit ordinal. But all ordinals 𝜖 in the interval from and including 𝛿 and less than _will have a successor 𝜖+1 which is also in the interval, so also (Ξ, 𝜖+1) ⊩ T A→ T T 𝐴. Butthe latter statement has the consequence that (Ξ, 𝜖) ⊩ A→ T 𝐴. So we have establishedthat for any limit _, (Ξ, _) ⊩ T (T A→ T T 𝐴) → T (A→ T 𝐴). Given postulate 6.5.2.2 andcontraposition, we obtain that (Ξ, _) ⊩ T (T A → T T 𝐴) → T (T ¬A → ¬A). At this pointis only takes postulate 6.5.2.6 to finish the warrant.
Warrant 6.5.2.8: Suppose (Ξ, 𝛾) ⊩ ∃𝑣T A. On account of Definition 5.2.2.2, (Ξ, 𝛾) ⊩ T A𝑏

𝑣for a 𝑏 substitutable for 𝑣 in A. So, on account of Definition 5.2.2.4 it follows that for anordinal 𝛿 and any ordinal 𝜖 such that 𝛿 ⪯ 𝜖 ≺ 𝛾, (Ξ, 𝜖) ⊩ A𝑏
𝑣 for a 𝑏 substitutable for 𝑣 in

A. So on account of Definition 5.2.2.2, again, for an ordinal 𝛿 and any ordinal 𝜖 such that
𝛿 ⪯ 𝜖 ≺ 𝛾, (Ξ, 𝜖) ⊩ ∃𝑣A. So on account of Definition 5.2.2.4, (Ξ, 𝛾) ⊩ T ∃𝑣A.

Warrant 6.5.2.9: Let ordinal 𝛾 be such that (Ξ, 𝛾) ⊩ T ∀𝑣A. There is, consequently, anordinal 𝛿 such that for any ordinal 𝜖 fulfilling 𝛿 ⪯ 𝜖 ≺ 𝛾, (Ξ, 𝜖) ⊩ ∀𝑣A. So either 𝛾 = 𝛿 + 1 =

𝜖 + 1 or 𝛾 is a limit ordinal such that (Ξ, 𝜖) ⊩ ∀𝑣A for all ordinals 𝜖 such that 𝛿 ⪯ 𝜖 ≺ 𝛾.In either case, (Ξ, 𝜖) ⊩ ∀𝑣A holds at any 𝜖 smaller than 𝛾 and at least as large as 𝛿. Itfollows from Definition 5.2.2.2, that (Ξ, 𝜖) ⊩ A𝑏
𝑣 , at any 𝜖 smaller than 𝛾 and at least aslarge as 𝛿, for all 𝑏 substitutable for 𝑣 in A. So (Ξ, 𝛾) ⊩ T A𝑏

𝑣 , for all 𝑏 substitutable for 𝑣in A. So from Definition 5.2.2.2, again, (Ξ, 𝛾) ⊩ ∀𝑣T A. So (Ξ, 𝛽) ⊩ T ∀𝑣A → ∀𝑣T A holdsat any ordinal 𝛽. So (Ξ, Ϙ) ⊩ T (T ∀𝑣A→ ∀𝑣T A), and consequently |=M T ∀𝑣A→ ∀𝑣T A.
Warrant 6.5.2.10: The warrant is in the proof of Theorem 11.2.1.5.
Warrant 6.5.2.11: – Notice that 6.5.2.11 is the Barcan postulate for orthodox formulas.
Assume

|̸=
M

𝔒({𝑥 |A}) → (∀𝑥T A→ T ∀𝑥A).

It follows, by Definitions 5.2.2 and 5.4.3, that for some fair function Ξ′:
(Ξ′, Ϙ) ⊩ ¬T (𝔒({𝑥 |A}) → (∀𝑥T A→ T ∀𝑥A)). (6.6.1)
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Definition 5.2.2.4 has the consequence:
Π𝛾(𝛾 ≺ Ϙ ⇒ Σ𝛿

(
𝛾 ⪯ 𝛿 ≺ Ϙ & (6.6.2)

(Ξ′, 𝛿) ⊩ 𝔒({𝑥 |A}) ∧ ∀𝑥T A ∧ ¬T ∀𝑥A
)
)

Case 1/2 - 𝛿 is a limit: Suppose
(Ξ′, 𝛿) ⊩ 𝔒({𝑥 |A}) ∧ ∀𝑥T A ∧ ¬T ∀𝑥A. (6.6.3)

Then, for all constants 𝑐, and all ordinals 𝜓 larger than a b smaller than 𝛿,
(Ξ′, 𝜓) ⊩ 𝔒({𝑥 |A}) ∧ A𝑐

𝑥 ,

so as well
(Ξ′, 𝜓) ⊩ 𝔒({𝑥 |A}) ∧ ∀𝑥A.

Also, however,
(Ξ′, 𝛿) ⊩ ¬T ∀𝑥A,

so that for some 𝜓 ⪯ 𝜙 ⪯ 𝛿,
(Ξ′, 𝜙) ⊩ ¬A𝑐

𝑥 .

So
(Ξ′, 𝛿) ⊩ 𝔒({𝑥 |A}) ∧ ∀𝑥T 𝐴 ∧ ¬T ∀𝑥A

cannot hold at a limit ordinal 𝛿.
Case 2/2 - 𝛿 = 𝛾 + 1 is a successor. Suppose

(Ξ′, 𝛿) ⊩ 𝔒({𝑥 |A}) ∧ ∀𝑥T 𝐴 ∧ ¬T ∀𝑥A.

Then
(Ξ′, 𝛾) ⊩ ∃𝑥¬A,

so that there, by Theorem 5.2.6, is a constant 𝑐 for which
(Ξ′, 𝛾) ⊩ ¬A𝑐

𝑥 .

However, as
(Ξ′, 𝛿) ⊩ ∀𝑥T 𝐴,

also
(Ξ′, 𝛾) ⊩ A𝑐

𝑥 .
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So
(Ξ′, 𝛿) ⊩ 𝔒({𝑥 |A}) ∧ ∀𝑥T 𝐴 ∧ ¬T ∀𝑥A

cannot hold at a successor ordinal 𝛿.
Cases 1/2 and 2/2 entail that for any ordinal 𝛽, (Ξ, 𝛽) ⊩ 𝔒({𝑥 |A}) → (∀𝑥T A → T ∀𝑥A).So (Ξ, Ϙ) ⊩ T (𝔒({𝑥 |A}) → (∀𝑥T A → T ∀𝑥A)), and so |=M 𝔒({𝑥 |A}) → (∀𝑥T A → T ∀𝑥A).That warrants Postulate 6.5.2.11’s posit of ⊢M 𝔒({𝑥 |A}) → (∀𝑥T A→ T ∀𝑥A).

6.6.4. Remark: The semantic justification for some of the maxims of Postulates 6.5.2.1– 6.5.2.11 can be lifted from (Bjørdal 2012)(340–341).
6.6.5. Remark: Postulates 6.5.2.6 and 6.5.2.7 originate with (Turner 1990).
6.6.6. Remark: The maxims of Postulates 6.5.2.7 and 6.5.2.8 were not included in (Bjørdal2012), as the author thought they were both derivable. The warrant of Postulate 6.5.2.8shows that this was correct for its maxim schema, but the warrant of Postulate 6.5.2.7suggests that Postulate 6.5.2.3 is needed for its semantical justification.
6.6.7. Remark: Although the converses of Postulates 6.5.2.5 and 6.5.2.6 hold at limitordinals, they are not maxims, for we may at a sucessor 𝜎 have that

(Ξ, 𝜎) ⊩ (T ¬𝐴 ∨ T 𝐴) ∧ ¬T (T 𝐴→ 𝐴),

and it happen for {𝑥 |𝑥 ∉ 𝑥} ∈ {𝑥 |𝑥 ∉ 𝑥} at 𝜎 or 𝜎+1. This contrasts with Remark 69.3.1.(ii)in (Cantini 1996)(396).
6.6.8. Exercise: Let A be deferent just if for all fairs Ξ, (Ξ, Ϙ) ⊩ T A r (Ξ, Ϙ) ⊩ T ¬A.Show that just deferent formulas are orthodox.
6.6.9. Exercise: Prove that |=O ∀®𝑣(T A ∨ T ¬A) ⇒ |=M ∀®𝑣(T A ∨ T ¬A).
Remark on Exercise 6.6.9: Defining a formula A as orthodox just if |=M ∀®𝑣(T A ∨ T ¬A),instead of using Definition 5.6.1.1, is not advisable. For defining a formula as paradoxicaljust if not orthodox, as in Definition 5.6.4, would then induce an unacceptable extensionfor the term “paradoxical”.
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7 Optima

Pax optima rerum, quas homini novisse datum est: pax
una triumphis innumeris potior: pax, custodire salutem et
cives aequare potens.

Silius Italicus
We have, as in Theorem 2 of (Bjørdal 2012, p. 342):
7.1. Postulate:

(1) |=O T 𝐴↔ T T 𝐴

(2) |=O T ¬T ¬𝐴↔ T 𝐴

(3) |=O T (T 𝐴→ T 𝐵) → T (𝐴→ 𝐵)

(4) |=O T (𝐴→ T 𝐴) ↔ T (T 𝐴→ 𝐴)

(5) |=O ∀𝑥T 𝐴(𝑥) → T ∀𝑥𝐴(𝑥)

(6) |=O T 𝐴 → 𝐴

It is left as an exercise to warrant the optimal tautologies.

27



7 OPTIMA

28



8 PLAINS

8 Plains

Pure mathematics is, in its way, the poetry of logical ideas.

Albert Einstein
8.1. Postulate Plains:

(1) ⊢ T 𝐴 → 𝐴.

(2) ⊢ 𝐴→ T 𝐴.

(3) ⊢ T ∃𝑣𝐴→ ∃𝑣T 𝐴.

(4) ⊢ ∀𝑣T 𝐴→ T ∀𝑣𝐴.

(5) r ∈ r.

(6) r ∉ r.

8.2. Remark: Instances of the plains in Postulates 8.1.1 and 8.1.2 may be maxims orminors. There are minor instances of Postulates 8.1.1 and 8.1.2 on account of Russell’sparadoxical set, here denoted as in 8.1.5 and 8.1.6 by the r of Definition 6.5.1 on page22. In the case of the attestor schema of Postulate 8.1.3, the failure of some maximalversions follow from Corollary 14.1.5. The failure of the maximality for all instances ofPostulate 8.1.4 is shown in §14.3.
8.3. Exercise: As regards Postulates 8.1.5 and 8.1.6, prove that £ has ⊢ r ∈ r and ⊢ r ∉ r.
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9 INFERENCE MODES

9 Inference modes

Recall that the valid inference from A to T A is the number theoretic
and meta theoretic principle that for all fairs Ξ, if A is in the variety
of formula numbers ⊢ (Ξ, Ϙ), then also T A is in ⊢ (Ξ, Ϙ).

9.1 The simple inference modes
Only ¬, T and one occurence of a formula variable are allowed in the formulas in theantecedent and the consequent of the simple inference modes. Moreover, T may onlyoccur once in the antecedent, and in the consequent.
9.1.1. Postulate simple thetical inference modes:

1 ⊢ 𝐴⇒ ⊢ T 𝐴

2 ⊢ 𝐴⇒ ⊢ ¬T ¬𝐴

3 ⊢ ¬𝐴⇒ ⊢ T ¬𝐴

4 ⊢ ¬𝐴⇒ ⊢ ¬T 𝐴

5 ⊢ T 𝐴⇒ ⊢ 𝐴

6 ⊢ T 𝐴⇒ ⊢ ¬T ¬𝐴

7 ⊢ T ¬𝐴⇒ ⊢ ¬𝐴

8 ⊢ T ¬𝐴⇒ ⊢ ¬T 𝐴

9 ⊢ ¬T 𝐴⇒ ⊢ ¬𝐴

10 ⊢ ¬T 𝐴⇒ ⊢ T ¬𝐴

11 ⊢ ¬T ¬𝐴⇒ ⊢ 𝐴

12 ⊢ ¬T ¬𝐴⇒ ⊢ T 𝐴

The corresponding valid, simple maximal inference modes of Postulate 9.1.2 can be jus-tified by the valid simple thetical inference modes in Postulate 9.1.1 on account of thesyntactical correlate of Theorem 5.5.4.4, which says that ⊢M 𝐴 just if ⊢ 𝐴 & �⊢¬𝐴. Theinference mode of Postulate 9.1.2.1 is for example a consequence of the conjunctionof the modes provided by Postulates 9.1.1.1 and 9.1.1.9. The other dependencies arestraightforward to establish.
9.1.2. Postulate simple maximal inference modes:

1 ⊢M 𝐴⇒ ⊢M T 𝐴

2 ⊢M 𝐴⇒ ⊢M ¬T ¬𝐴
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3 ⊢M ¬𝐴⇒ ⊢M T ¬𝐴

4 ⊢M ¬𝐴⇒ ⊢M ¬T 𝐴

5 ⊢M T 𝐴⇒ ⊢M 𝐴

6 ⊢M T 𝐴⇒ ⊢M ¬T ¬𝐴
7 ⊢M T ¬𝐴⇒ ⊢M ¬𝐴
8 ⊢M T ¬𝐴⇒ ⊢M ¬T 𝐴

9 ⊢M ¬T 𝐴⇒ ⊢M ¬𝐴
10 ⊢M ¬T 𝐴⇒ ⊢M T ¬𝐴

11 ⊢M ¬T ¬𝐴⇒ ⊢M 𝐴

12 ⊢M ¬T ¬𝐴⇒ ⊢M T 𝐴

9.2 Involved inference modes
9.2.1. Postulate Quantificational thetical modes:

1 ⊢ ∀𝑣T 𝐴⇒ ⊢ T ∀𝑣𝐴

2 ⊢ ¬T ∀𝑣𝐴⇒ ⊢ ¬∀𝑣T 𝐴

3 ⊢ T ∃𝑣𝐴⇒ ⊢ ∃𝑣T 𝐴

9.2.2. Postulate The Barcan mode: Postulates 9.2.1.1 and 9.2.1.2 justify
⊢M ∀𝑣T 𝐴⇒ ⊢M T ∀𝑣𝐴.

9.2.3. Remark: Quantificational thetical mode 9.2.1.3 does not enter such a combinationas do 9.2.1.1 and 9.2.1.2, for
⊢ ¬∃𝑣T A⇒ ⊢ ¬T ∃𝑣A

is not a valid mode schema; so neither is ⊢M T ∃𝑣A ⇒ ⊢M ∃𝑣T A. This is clarified in thelimitative results of Theorem 14.1.3, its Corollary 14.1.5, and Theorem 14.1.5 in §14.1.
9.2.4. Postulate Thetical distributive modes:

1 ⊢M (𝐴→ 𝐵) ⇒ (⊢ 𝐴⇒ ⊢ 𝐵).

2 ⊢M (𝐴→ 𝐵) ⇒ (⊢ ¬𝐵⇒ ⊢ ¬𝐴).

3 ⊢ (𝐴→ 𝐵) ⇒ (⊢M 𝐴⇒ ⊢ 𝐵).

9.2.5. Postulate The maxim mode:
⊢M (𝐴→ 𝐵) ⇒ (⊢M 𝐴⇒ ⊢M 𝐵).
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9.2.6. Remark:
Postulate 9.2.5 is entailed by Postulates 9.2.4.1 and 9.2.4.2.

9.2.7. Postulate Complex modes:
1 ⊢M T 𝐴⇒ ⊢M T (T 𝐴↔ 𝐴) ∧ T (T ¬𝐴↔ ¬𝐴) (The Tarski mode)
2 ⊢M T 𝐴→ 𝐴⇒ ⊢M T 𝐴 ∨ T ¬𝐴

3 ⊢M T ¬T ¬𝐴⇒ ⊢M T 𝐴

4 ⊢M T (T 𝐴→ T 𝐵) ⇒ ⊢M T (𝐴→ 𝐵)

5 ⊢ 𝐴 & ⊢ 𝐵⇒ ⊢ ¬T ¬𝐴 ∧ ¬T ¬𝐵

6 ⊢M 𝔒(𝐴(𝑥)) ⇒ (⊢M ∃𝑥𝐴⇒ ⊢M 𝐴𝑎
𝑥 for some 𝑎 substitutable for 𝑥 in 𝐴).

7 ⊢M 𝐴𝑎
𝑣 for any constant 𝑎 ⇒ ⊢M ∀𝑣𝐴

Warrant 9.2.7.1: Clearly ⊢M T 𝐴 ⇒ ⊢M T (𝐴 ∧ T 𝐴) ∧ T (𝐴 ∧ ¬T ¬𝐴). It is librationisticallyderivable that ⊢M T ((𝐴 ∧ T 𝐴) → T (𝐴↔ T 𝐴)) and ⊢M T ((𝐴 ∧ ¬𝑇¬𝐴) → T (¬𝐴↔ T ¬𝐴)),so Postulate 9.2.5 suffices to finish.
Proof: (9.2.7.4) Suppose (Ξ, Ϙ) ⊩ T (T 𝐴 → T 𝐵). (i) Let 𝜌 be be a ordinal as from which
T 𝐴→ T 𝐵 holds, so that

Πb (𝜌 ⪯ b ≺ Ϙ⇒ (Ξ, b) ⊩ (T 𝐴→ T 𝐵).

Thus (Ξ, 𝜌 + 1) ⊩ (T 𝐴→ T 𝐵), and therefore (Ξ, 𝜌) ⊩ (𝐴→ 𝐵). Consequently, succeedingsuccessors will have T 𝐴 → T 𝐵 and 𝐴 → 𝐵. (ii) Let limit ordinal _ ≺ Ϙ, above 𝜌, have
T 𝐴 → T 𝐵, and 𝐴 → 𝐵 below, as from 𝜌. As _ ≺ Ϙ, from the assumption on 𝜌, (Ξ, _) ⊩
(T 𝐴→ T 𝐵). As (Ξ, _ + 1) ⊩ (T 𝐴→ T 𝐵), also (Ξ, _) ⊩ (𝐴→ 𝐵). (iii) By a repetition of (i)and (ii) it follows that 𝐴→ 𝐵 holds as from 𝜌 below Ϙ, so that (Ξ, Ϙ) ⊩ T (𝐴→ 𝐵). □

Proof: (9.2.7.6) This is established on page 47, in the proof of Theorem 14.2.1. □
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10 ALETHIC COMPREHENSION

10 Alethic comprehension

If one, per impossibile, could have used naive comprehension for
truth, and for abstraction, the alethic comprehension principle
would have been true. Fortunately, one cannot justify the opposite
entailment from alethic comprehension to naive comprehension.

10.1. Postulate Alethic comprehension without parameters:
⊢M ∀𝑥(𝑥 ∈ {𝑦 |A} ↔ T A 𝑥

𝑦),where 𝑥 is substitutable for 𝑦 in A.

10.2. Theorem Alethic comprehension with parameters from ®𝑣:
⊢M ∀®𝑣∀𝑥(𝑥 ∈ {𝑦 |A} ↔ T A 𝑥

𝑦),where 𝑥 is substitutable for 𝑦 in A.

Proof: Appeal to 9.2.7.7 and Postulate 10.1. □
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11 THE THEORY OF IDENTITY

11 The theory of identity

To be is that there is
something in all your
essences.

A streamlining of sections 4 and 5 of (Bjørdal 2012, pp. 342–345) is obtained from theinference modes 9.2.7.1 – 9.2.7.4, and as a result £ does not, as e.g. the comparablesystems studied by (Cantini 1996), need additional axiomatic principles for having wellbehaved notions of identity in this section, or natural number in §13.
11.1 Co-essentiality
We define the identity relation by means of a notion of co-essentiality, which is similarto the relation named membership congruency by Abraham A. Fraenkel and YehoshuaBar-Hillel, and discussed in (A. A. Fraenkel and Bar-Hillel 1973, p. 27), though not usedin the previous edition (A. A. Fraenkel and Bar-Hillel 1958).
11.1.1. Definition: Sets 𝑎 and 𝑏 are co-essential just if ∀𝑢(𝑎 ∈ 𝑢 → 𝑏 ∈ 𝑢).

Regarding the term "co-essentiality", see (Forster 2019), which relates that (Hailperin1944) "gave the first of a number of finite axiomatisations of NF now known. Manyof them exploit the function 𝑥 ↦→ {𝑦 |𝑦 ∈ 𝑥} which is injective and total and is an ∈-isomorphism. This function was known to Whitehead, who suggested to Quine that
{𝑦 |𝑥 ∈ 𝑦} should be called the “essence” of x (a terminology clearly suggested by a viewof sets as properties-in-extension)."
11.1.2. Definition Identity via co-essentiality:

𝑎 = 𝑏 === ∀𝑢(𝑎 ∈ 𝑢 → 𝑏 ∈ 𝑢)

The definiens in Definition 11.1.2 is a conditional, and not a biconditional. Theorem11.2.1.4 justifies the other direction by instantiating with {𝑥 |∀𝑢(𝑥 ∈ 𝑢 → 𝑎 ∈ 𝑢}.
The justification for the analogous definition ∗13 · 01 in Principia Mathematica, will notjustify Definition 11.1.2. For the symmetry of Definition 11.1.2, is in £shown by the proofof 11.2.1.4 below, and without an appeal to predicativity, as in the proof of ∗13 · 01 byWhitehead and Russell.
11.1.3. Lemma: ⊢M T (∀𝑢(𝑎 ∈ 𝑢 → 𝑏 ∈ 𝑢) → T ∀𝑢(𝑎 ∈ 𝑢 → 𝑏 ∈ 𝑢)).

Proof: Suppose ⊢M ∀𝑢(𝑎 ∈ 𝑢 → 𝑏 ∈ 𝑢). By instantiation we have:
⊢M ∀𝑢(𝑎 ∈ 𝑢 → 𝑏 ∈ 𝑢) →

(𝑎 ∈ {𝑣 |∀𝑢(𝑎 ∈ 𝑢 → 𝑣 ∈ 𝑢)} → 𝑏 ∈ {𝑣 |∀𝑢(𝑎 ∈ 𝑢 → 𝑣 ∈ 𝑢)}).
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But ⊢M 𝑎 ∈ {𝑣 |∀𝑢(𝑎 ∈ 𝑢 → 𝑣 ∈ 𝑢)}, so that
⊢M ∀𝑢(𝑎 ∈ 𝑢 → 𝑏 ∈ 𝑢) → 𝑏 ∈ {𝑣 |∀𝑢(𝑎 ∈ 𝑢 → 𝑣 ∈ 𝑢)}.

Finish with Alethic Comprehension and Postulate 9.1.2.1. □

11.1.4. Lemma: ⊢M T (𝑎 = 𝑏 → T 𝑎 = 𝑏)

Proof: Use Definition 11.1.2 and Lemma 11.1.3. □

11.1.5. Lemma: T (T 𝑎 ≠ 𝑏 → 𝑎 ≠ 𝑏)

Proof: Use Lemma 11.1.4, Postulates 6.5.2.2, 9.1.2.1 and logic. □

11.1.6. Lemma:
⊢M T (T ¬∀𝑢(𝑎 ∈ 𝑢 → 𝑏 ∈ 𝑢) → ¬∀𝑢(𝑎 ∈ 𝑢 → 𝑏 ∈ 𝑢))

Proof: Use Lemma 11.1.5 and Definition 11.1.2. □

11.1.7. Lemma:
⊢M T ((T ∀𝑢(𝑎 ∈ 𝑢 → 𝑏 ∈ 𝑢)) → ∀𝑢(𝑎 ∈ 𝑢 → 𝑏 ∈ 𝑢))

Proof: Combine Lemma 11.1.6 with 7.1.4 to obtain
⊢M T (¬∀𝑢(𝑎 ∈ 𝑢 → 𝑏 ∈ 𝑢) → T ¬∀𝑢(𝑎 ∈ 𝑢 → 𝑏 ∈ 𝑢)).

An instance of Theorem 6.5.2.2 is
⊢M T (T ¬∀𝑢(𝑎 ∈ 𝑢 → 𝑏 ∈ 𝑢) → ¬T ∀𝑢(𝑎 ∈ 𝑢 → 𝑏 ∈ 𝑢)).

A hypothetical syllogism and contraposition now suffices to finish the proof. □

11.2 The adequacy of identity as co-essentiality
11.2.1. Theorem (Orthodoxy, equivalence and fungibility)
(1) ⊢M T 𝑎 = 𝑏 ∨ T 𝑎 ≠ 𝑏 Orthodoxy
(2) ⊢M 𝑎 = 𝑎 Reflexivity
(3) ⊢M 𝑎 = 𝑏 ∧ 𝑏 = 𝑐 → 𝑎 = 𝑐 Transitivity
(4) ⊢M 𝑎 = 𝑏 → 𝑏 = 𝑎 Symmetry
(5) ⊢M 𝑎 = 𝑏 → (𝐴𝑎

𝑣 → 𝐴𝑏
𝑣 ), with 𝑎 and 𝑏 substitutable for 𝑣 in 𝐴. Fungibility

Proof:
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1. Use Lemma 11.1.5 and Postulate 6.5.2.6.
2. Trivial
3. Trivial, given Definition 11.1.2
4. Clearly,

⊢M ∀𝑣(𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣) → (𝑎 ∈ {𝑤 |∀𝑣(𝑤 ∈ 𝑣 → 𝑎 ∈ 𝑣)} → (𝑏 ∈ {𝑤 |∀𝑣(𝑤 ∈ 𝑣 → 𝑎 ∈ 𝑣)}.

But
⊢M 𝑎 ∈ {𝑤 |∀𝑣(𝑤 ∈ 𝑣 → 𝑎 ∈ 𝑣)},

so that by alethic comprehension,
⊢M ∀𝑣(𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣) → T ∀𝑣(𝑏 ∈ 𝑣 → 𝑎 ∈ 𝑣). (11.2.2)

An instance of Lemma 11.1.4 states:
⊢M ∀𝑣(𝑏 ∈ 𝑣 → 𝑎 ∈ 𝑣) → T ∀𝑣(𝑏 ∈ 𝑣 → 𝑎 ∈ 𝑣). (11.2.3)

By invoking 7.1.4 on equation 11.2.3 we obtain
⊢M T ∀𝑣(𝑏 ∈ 𝑣 → 𝑎 ∈ 𝑣) → ∀𝑣(𝑏 ∈ 𝑣 → 𝑎 ∈ 𝑣). (11.2.4)

Finish with a hypothetical syllogism with equations 11.2.2 and 11.2.4, and lastlyan appeal to co-essentiality Definition 11.1.2.
5. The promissory note issued in sentence Warrant 6.3.W10 of Postulate 6.5.2.10 onpage 24 of §6 is satisfied, and the mentioned Postulate is warranted.

Suppose, for 𝑎 and 𝑏 substitutable for 𝑣 in 𝐴, and fair function Ξ,
(Ξ, Ϙ)�⊩ T (∀𝑢(𝑎 ∈ 𝑢 → 𝑏 ∈ 𝑢) → (𝐴𝑎

𝑣 → 𝐴𝑏
𝑣 )).

On account of the validity of the mode of 9.2.7.3 we get
(Ξ, Ϙ)�⊩ T ¬T (∀𝑢(𝑎 ∈ 𝑢 → 𝑏 ∈ 𝑢) ∧ 𝐴𝑎

𝑣 ∧ ¬𝐴𝑏
𝑣 ).

It follows from Definition 5.2.2.1 that
(Ξ, Ϙ) ⊩ ¬T ¬T (∀𝑢(𝑎 ∈ 𝑢 → 𝑏 ∈ 𝑢) ∧ 𝐴𝑎

𝑣 ∧ ¬𝐴𝑏
𝑣 ).

On account of Postulate 6.5.2.1,
(Ξ, Ϙ) ⊩ ¬T ¬(T ∀𝑢(𝑎 ∈ 𝑢 → 𝑏 ∈ 𝑢) ∧ T 𝐴𝑎

𝑣 ∧ T ¬𝐴𝑏
𝑣 ).
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On account of the tautologicality of Lemma 11.1.7, we get
(Ξ, Ϙ) ⊩ ¬T ¬(∀𝑢(𝑎 ∈ 𝑢 → 𝑏 ∈ 𝑢) ∧ T 𝐴𝑎

𝑣 ∧ ¬T 𝐴𝑏
𝑣 ).

From alethic comprehension and existential generalization we obtain
(Ξ, Ϙ) ⊩ ¬T ¬(∀𝑢(𝑎 ∈ 𝑢 → 𝑏 ∈ 𝑢) ∧ ∃𝑢(𝑎 ∈ 𝑢 ∧ 𝑏 ∉ 𝑢)),

which is absurd. So Postulate 6.5.2.10 is tautological, and we are done. □
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12 Alphabetologicality

That the universe was formed by a fortuitous concourse
of atoms, I will no more believe than that the accidental
jumbling of the alphabet would fall into a most ingenious
treatise of philosophy.

Jonathan Swift
Postulates 12.1 and 12.2 express, given Definition 12.3, that identity is an equivalencerelation which is neutral with respect to alphabetological variants.
12.1. Postulate The Lindenbaum-Tarski closure for identity: If classical logic proves that
∀𝑥(𝐴(𝑥) ↔ 𝐵(𝑥)), then

⊢M {𝑥 |𝐴(𝑥)} = {𝑥 |𝐵(𝑥)}.
12.2. Postulate Alphabetical indifference:

{𝑥 |𝐴(𝑥)} = {𝑥 |𝐵(𝑥)} → {𝑥 |𝐴(𝑥)} = {𝑦 |𝐵(𝑥)𝑦𝑥 },

where 𝑦 is substitutable for 𝑥 in 𝐵.
12.3. Definition Alphabetologicality: Two sets are alphabetological variants of eachother just if they are identical on account of Postulates 12.1 and 12.2.
Postulates 12.1 and 12.2 compensate somewhat for the loss of extensionality in £, asper §21, and secure such theorems as:

⊢M {𝑥 |𝐴(𝑥)} = {𝑦 |𝐴(𝑦) ∧ ∃𝑧(𝐵(𝑧) ∨ ¬𝐵(𝑧))}.
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13 Arithmetic

The numbers may be said to rule the whole world of quantity,
and the four rules of arithmetic may be regarded as the complete
equipment of the mathematician.

James C. Maxwell
13.1. Definition

(1) ∅ = {𝑥 |𝑥 ≠ 𝑥}

(2) 𝑎′ = {𝑥 |𝑥 = 𝑎 ∨ 𝑥 ∈ 𝑎}

(3) 𝜔 = {𝑥 |∀𝑦(∅ ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑦 → 𝑧′ ∈ 𝑦) → 𝑥 ∈ 𝑦)}

13.2. Theorem

(1) ⊢M ∅ ∈ 𝜔
(2) ⊢M ∀𝑥(𝑥 ∈ 𝜔→ 𝑥′ ∈ 𝜔)

(3) 𝜔 is orthodox
(4) ⊢M ∀𝑦(∅ ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑦 → 𝑧′ ∈ 𝑦) → ∀𝑥(𝑥 ∈ 𝜔→ 𝑥 ∈ 𝑦))

(5) ⊢M A(∅) ∧ ∀𝑥(A(𝑥) → A(𝑥′)) → ∀𝑦(𝑦 ∈ 𝜔→ A(𝑦))

Proof:

1. Combine alethic comprehension and the fact that
⊢M T ∀𝑦(∅ ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑦 → 𝑧′ ∈ 𝑦) → ∅ ∈ 𝑦)

2. This follows from alethic comprehension and
⊢M ∀𝑥(T (∀𝑦(∅ ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑦 → 𝑧′ ∈ 𝑦) → 𝑥 ∈ 𝑦)) →

T (∀𝑦(∅ ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑦 → 𝑧′ ∈ 𝑦) → 𝑥′ ∈ 𝑦))).

3. From logic:
⊢M∅ ∈ 𝜔 ∧ ∀𝑥(𝑥 ∈ 𝜔→ 𝑥′ ∈ 𝜔) →
(∀𝑦(∅ ∈ 𝑦 ∧ ∀𝑥(𝑥 ∈ 𝑦 → 𝑥′ ∈ 𝑦) → 𝑎 ∈ 𝑦) → 𝑎 ∈ 𝜔).

By combining 1 and 2 we have
⊢M ∀𝑦(∅ ∈ 𝑦 ∧ ∀𝑥(𝑥 ∈ 𝑦 → 𝑥′ ∈ 𝑦) → 𝑎 ∈ 𝑦) → 𝑎 ∈ 𝜔).

Postulates 6.5.2.1 and 9.1.2.1, and alethic comprehension, give us
⊢M 𝑎 ∈ 𝜔→ T 𝑎 ∈ 𝜔.
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9.2.5 along with Postulates 6.5.2.1, 6.5.2.2 and 6.5.2.6 give us
⊢M T 𝑎 ∈ 𝜔 ∨ T 𝑎 ∉ 𝜔

As 𝑎 was arbitrary, ⊢M ∀𝑥(T 𝑥 ∈ 𝜔 ∨ T 𝑥 ∉ 𝜔), and the proof is finished.
4. Immediate, given 3, as it is equivalent with

⊢M ∀𝑥(𝑥 ∈ 𝜔→ ∀𝑦(∅ ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑦 → 𝑧′ ∈ 𝑦) → 𝑥 ∈ 𝑦)).

5. For the following, compare (Cantini 1996, p. 356).
13.3. Definition: Let, for arbritrary sentence A(𝑥),

A′(𝑥) === A(∅) ∧ ∀𝑥(A(𝑥) → A(𝑥′)) → A(𝑥)).

By logic,
⊢M A′(∅) & ⊢M ∀𝑥(A′(𝑥) → A′(𝑥′)).

The inference mode of Postulate 9.1.2.1 and Postulate 6.5.2.10 entail
⊢M T A′(∅) & ⊢M ∀𝑥T (A′(𝑥) → A′(𝑥′)).

By quantifier distribution and Postulate 6.5.2.1 we get
⊢M T A′(∅) & ⊢M ∀𝑥(T A′(𝑥) → T A′(𝑥′)).

Alethic comprehension gives us
⊢M ∅ ∈ {𝑦 |A′(𝑦)} & ⊢M ∀𝑥(𝑥 ∈ {𝑦 |A′(𝑦)} → 𝑥′ ∈ {𝑦 |A′(𝑦)}).

Adjunction gives us
⊢M ∅ ∈ {𝑦 |A′(𝑦)} ∧ ∀𝑥(𝑥 ∈ {𝑦 |A′(𝑦)} → 𝑥′ ∈ {𝑦 |A′(𝑦)}).

4 and the inference of mode 9.2.5 give us
⊢M ∀𝑥(𝑥 ∈ 𝜔→ 𝑥 ∈ {𝑦 |A′(𝑦)}).

From 3 and 9.2.7.1 we have
⊢M ∀𝑥(T 𝑥 ∈ 𝜔→ 𝑥 ∈ 𝜔),

so that
⊢M ∀𝑥(T 𝑥 ∈ 𝜔→ 𝑥 ∈ {𝑦 |A′(𝑦)}).

Alethic comprehension gives us
⊢M ∀𝑥(T 𝑥 ∈ 𝜔→ T A′(𝑥)),

which, combined with 9.2.7.4 establishes
⊢M ∀𝑥(𝑥 ∈ 𝜔→ A′(𝑥))
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Finish with an appeal to Definition 13.3, and rearrangement. □
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14 SHORTCOMINGS AND REDRESSES

14 Shortcomings and redresses

If all problems seem resolved, look in another direction!

§6 is supplemented with negative results, which to a large degree depend upon §11.
14.1 Shortcoming related to existential instantiation
Despite the important Theorem 5.2.6, which justifies
14.1.1. Theorem

(Ξ, 𝛼) ⊩ ∃𝑥(¬T A ∧ ¬T ¬A) for some term 𝑎
==============⇒ (Ξ, 𝛼) ⊩ (¬T A𝑎

𝑥 ∧ ¬T ¬A𝑎
𝑥 ),

and consequently
14.1.2. Theorem Optimal existential instantiation:

If ⊢O ∃𝑥𝐴, then ⊢O 𝐴𝑎
𝑥 for some term 𝑎

There is, nevertheless, as pointed to in Remark 9.2.3, the following limitative result:
14.1.3. Theorem (Maximal lack of existential instantiation)

It may happen that ⊢M ∃𝑥𝐴, and for no term 𝑎, ⊢M 𝐴𝑎
𝑥 .

Proof: As the proof of Theorem 14.1.5. □

14.1.4. Corollary: Maximal existential instantiation, in the form
⊢M ∃𝑥𝐴⇒ Σ𝑎

(
⊢M 𝐴𝑎

𝑥

)
, is not valid.

14.1.5. Theorem: The inference mode ⊢M T ∃𝑥𝐴⇒ ⊢M ∃𝑥T 𝐴 is not valid.
Proof: Let A be (𝑥 = ∅ ↔ r ∈ r). Obviously, |=M T ∃𝑥A holds. Suppose that |=M ∃𝑥T A. Ifso (Ξ, Ϙ) ⊩ T ∃𝑥T A, and there is an ordinal 𝛾 such that (Ξ, 𝛽) ⊩ ∃𝑥T 𝐴 holds whenever
𝛾 ≺ 𝛽 ≺ Ϙ. Let limit ordinal _ satisfy 𝛾 ≺ _ ≺ Ϙ, so that (Ξ, _) ⊩ ∃𝑥T 𝐴. On account of5.2.2.1 and 5.2.2.2, there is a term 𝑎 and an ordinal 𝛿 such that 𝑎 = ∅ ↔ r ∈ r holds at allordinals \ which satisfy 𝛿 ≺ \ ≺ _. But this is impossible, as 𝑟 ∈ 𝑟 holds at some of thoseordinals, and r ∉ r holds at others, whereas identity is orthodox. □

As stated in Remark 8.2, Theorem 14.1.5 entails that the attestor schema of Postulate8.1.3 does not hold as a maxim, for, as its proof just showed, some instances of theschema T ∃𝑣𝐴→ ∃𝑣T 𝐴 are minor, i.e. paradoxical, truths.
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14.2 An orthodox redress
14.2.1. TheoremThe validity of 9.2.7.6 is shown, as announced on page 33:

⊢M 𝔒(𝐴(𝑥)) ⇒ (⊢M ∃𝑥𝐴⇒ ⊢M 𝐴𝑎
𝑥 , for some 𝑎 substitutable for 𝑥 in A).

Proof: Assume that 𝐴(𝑥) is orthodox, i.e. ⊢M T 𝐴(𝑥) ∨ T ¬𝐴(𝑥). (14.2.2)
By soundness,

⊢M ∃𝑥𝐴⇒ |=M ∃𝑥𝐴, so for all fair functions Ξ, (Ξ, Ϙ) ⊩ T ∃𝑥𝐴. (14.2.3)
As Ϙ is a stabilising ordinal, (Ξ, Ϙ) ⊩ ∃𝑥𝐴. (14.2.4)

Given Definition 5.2.2 and Theorem 5.2.6, for a 𝑎, (Ξ, Ϙ) ⊩ 𝐴𝑎
𝑥 . (14.2.5)

As 𝐴(𝑥) is orthodox, (Ξ, Ϙ) ⊩ T 𝐴𝑎
𝑥 . (14.2.6)

So |=M 𝐴𝑎
𝑥 . (14.2.7)

So 9.2.7.6 is valid. (14.2.8)
□

14.3 The Barcan failure
As mentioned in Remark 8.2, it will be shown that the Barcan schema, in Postulate 8.1.4,does not hold as a maxim, but only as a thesis.
The precursor to this negative result, in a truth theoretic context, is McGee’s paradox, in(McGee 1985), which we adapt to our context. Compare (Cantini 1996, pp. 380–382)and (Bjørdal 2012, p. 537).
First we decide upon some notions:
14.3.1. Definition: For 𝑟 in 14.3.1.5, recall Definition 6.5.1:

(1) 𝑎′ === {𝑥 |𝑥 ∈ 𝑎 ∨ 𝑥 = 𝑎}.
(2) {𝑎, 𝑏} === {𝑥 |𝑥 ∈ 𝑎 ∨ 𝑥 ∈ 𝑏}.
(3) {𝑎} === {𝑎, 𝑎}.
(4) 𝑎𝜔 === {𝑢 |∀𝑥(⟨∅, 𝑎⟩ ∈ 𝑥 ∧ ∀𝑦, 𝑧(⟨𝑦, 𝑧⟩ ∈ 𝑥 → ⟨𝑦′, {𝑣 |𝑣 ∈ 𝑧}⟩) → 𝑢 ∈ 𝑥)}.
(5) t === {𝑥 |𝑥 = 𝑟 ∧ 𝑥 ∉ 𝑥 ∧ ¬T 𝑥 ∈ 𝑥}.
(6) Use 0, 1, 2, . . . for the members of 𝜔.
(7) Let t0 === t and t

𝑛+1 === {𝑣 |𝑣 ∈ t𝑛}.
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(8) B(t𝑖) === ∃𝑤(⟨𝑤, t𝑖⟩ ∈ t𝜔) → 𝑟 ∉ t𝑖
(9) B(𝑥) === ∃𝑤(⟨𝑤, 𝑥⟩ ∈ t𝜔) → 𝑟 ∉ 𝑥

14.3.2. Lemma: For any 𝑎, 𝑎𝜔 is orthodox.
Proof: Adapt the proof of Theorem 13.2.3. □

14.3.3. Lemma:
(Ξ, _) ⊩ 𝑟 = 𝑟 ∧ r ∉ r ∧ ¬T r ∈ r just if _ is a limit.

Proof: For any successor ordinal 𝜒 + 1, (Ξ, 𝜒 + 1) ⊩ ¬T r ∈ r↔ r ∈ r. Precisely at any limitordinal _, (Ξ, _) ⊩ r ∉ r ∧ ¬T r ∈ r. □

14.3.4. TheoremLet 𝛼 ≺ Ϙ be a limit ordinal, and 𝛽 be 𝛼 + 𝜔 :

1. (Ξ, 𝛽) ⊩ ∀𝑥T B(𝑥)

2. (Ξ, 𝛽) ⊩ ¬T ∀𝑥B(𝑥).

Proof: 1. If (Ξ, 𝛽) ⊩ ¬∃𝑤(⟨𝑤, 𝑥⟩ ∈ t𝜔), it follows that (Ξ, 𝛽) ⊩ T B(𝑥) on account ofLemma 14.3.2. If, on the other hand, (Ξ, 𝛽) ⊩ ∃𝑤(⟨𝑤, t𝑖⟩ ∈ t𝜔) we have that (Ξ, 𝛽) ⊩
T B(t𝑖), as there is a 𝛾 ⪰ 𝛼 + 𝑖 such that

∀𝛿(𝛼 ≺ 𝛾 ⪯ 𝛿 ≺ 𝛽⇒ (Ξ, 𝛿) ⊩ B(t𝑖)).

So for any term 𝑦, (Ξ, 𝛽) ⊩ T B(𝑦), and so Ξ(𝛽) ⊢ ∀𝑥T B(𝑥).
2. Otherwise, (Ξ, 𝛽) ⊩ T ∀𝑥B(𝑥), and we would have (Ξ, 𝛿) ⊩ ∀𝑥B(𝑥) as from someordinal 𝛿 below 𝛽 and above 𝛼. Let 𝛿 === 𝛼 + (𝑛 + 1), for finite ordinal 𝑛 ⪰ 0, be suchan ordinal. A (Ξ, 𝛿) ⊩ B(tn), by instantiation, this entails that (Ξ, 𝛼 + (𝑛 + 1)) ⊩ B(𝑡𝑛).As |= ∃𝑤(⟨𝑤, t𝑛⟩ ∈ t𝜔), it follows that (Ξ, 𝛼 + (𝑛 + 1)) ⊩ 𝑟 ∉ t𝑛. As a consequence,
(Ξ, 𝛼 + 1) ⊩ 𝑟 ∉ t0. But the latter entails (Ξ, 𝛼) ⊩ (𝑟 ≠ 𝑟 ∨ r ∈ r ∨ T r ∈ r) whichcontradicts Lemma 14.3.3, as 𝛼 is presupposed to be a limit ordinal. □

14.3.5. Theorem
|̸=
M ∀𝑥T B(𝑥) → T ∀𝑥B(𝑥).

Proof: Theorem 14.3.4 with Definition 5.2.2 entail that for some 𝛽,
(Ξ, 𝛽) ⊮ ∀𝑥T B(𝑥) → T ∀𝑥B(𝑥).

It follows that
(Ξ, Ϙ) ⊮ T (∀𝑥T B(𝑥) → T ∀𝑥B(𝑥)),

and an appeal to Definition 5.4.3.1 finishes the proof. □
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14.3.6. Theorem:
̸⊢M ∀𝑥T B(𝑥) → T ∀𝑥B(𝑥)

Proof: Appeal to soundness, i.e. in the case
⊢M ∀𝑥T B(𝑥) → T ∀𝑥B(𝑥) ⇒ |=M ∀𝑥T B(𝑥) → T ∀𝑥B(𝑥),

and Theorem 14.3.5. □

14.3.7. Theorem: For some formula A,
⊢ ∀𝑥T A→ T ∀𝑥A & ⊢ ∀𝑥T A ∧ ¬T ∀𝑥A

Proof: Let B(𝑥) in Theorem 14.3.6 be A, and combine with Postulate 8.1.4. □

14.4 £ is omega-consistent
Recall that Theorem 5.2.6 states that £ is omega-consistent.
(McGee 1985) famously isolated a rudimentary theory of truth which is consistent but
𝜔-inconsistent. (Friedman and Sheard 1987) proposed a more substantial a theory oftruth, which inherits the 𝜔-inconsistency property. (Halbach 1994) studied the Friedmanand Sheard logic, and found that its proof-theoretic strength is the same as the theoryof ramified analysis for all finite levels.
Given Theorem 14.3.7, an essential ingredient in the proof of McGee’s negative resultfails in £, viz. the statement that

∀𝑥(𝑥 ∈ 𝜔→ T A(𝑥) ) → T ∀𝑥(𝑥 ∈ 𝜔→ A(𝑥) ) (14.4.1)
in (McGee 1985, p. 399). Notice that ⊢M ∀𝑥(𝑥 ∈ 𝜔→ T A(𝑥) ) ↔ ∀𝑥T 𝑥 ∈ 𝜔→ A(𝑥) , so14.4.1 follows from the Barcan-formula whose thesishood is denied by Theorem 14.3.7.Moreover, exceptions to 14.4.1 in £ follow from Theorem 5.2.6 and Mcgee’s argument.
14.5 More orthodox redresses
Theorem 14.2.1 (Orthodox existential instantiation)

⊢M 𝔒(𝐴(𝑥)) ⇒ (⊢M ∃𝑥𝐴⇒ ⊢M 𝐴𝑎
𝑥 for some 𝑎 substitutable for 𝑥 in A).

Proof: As on page 47. □

14.5.1. Theorem Orthodox attestor: If 𝐴(𝑥) is orthodox, then
⊢M T ∃𝑥𝐴(𝑥) ⇒ ⊢M ∃𝑥T 𝐴(𝑥).

Proof: Appeal to Theorem 14.2.1, and existential generalization. □
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14.5.2. Theorem The Barcan formula holds for orthodox formulas:
⊢M 𝔒(𝐵(𝑥)) ⇒ ⊢M (∀𝑥T B(𝑥) → T ∀𝑥B(𝑥)).

Proof: As on page 33. □
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15 CLASSICALITIES AND DEVIATIONS

15 Classicalities and deviations

On a signalé beaucoup d’antinomies, et le désaccord a subsisté, personne n’a été convaincu; d’une
contradiction, on peut toujours se tirer par un coup de pouce! Je veux dire par un distinguo.

Henri Poincaré
The Grundlagenkrise which struck the mathematical and philosophical communities as aconsequence of the paradoxes, showed one could not presuppose all pretheorethicallyplausible comprehension principles in set theory or semantics.
In the following some facts which relate to desiderata fulfilled by £ will be expressed.The reader may compare with the desiderata of (Leitgeb 2007) and (Sheard 2003), orothers, concerning theories on paradoxe. Some of the facts on desiderata follow from§14.4, §15.2 and §15.3.
15.1 Facts on desiderata met by £
15.1.1. Fact: There are no type restricions imposed, and there is no language hierarchy.
15.1.2. Fact: Truth is compositional over ⊢M , and over similar set theoretic contexts. Butit is not compositional over ⊢, as there are cases such that ⊢ A and ⊢ B but not ⊢ A ∧ B.

15.1.3. Fact: Truth is a set, and so truth is as well a predicate. So it is a consequencefrom the alethic comprehension principle of §10 that truth-paradoxes and set-paradoxesare treated in the same way in £.
15.1.4. Fact: On account of results in §15.3, £ is classic in the sense that ⊢M A only ifclassical logic does not prove ¬A, and if classical logic proves A then ⊢M A. Moreover, ⊢ Bif B is a thesis of classical logic, and if ⊢ B then classical logic does not prove ¬B.
15.1.5. Fact: £ is unswerving so that if A is a paradoxical sentence, then ⊢ A or ⊢ ¬A.
15.1.6. Fact: The outer veridical logic of £ is the set of theses which encapsulate truthstatements. ⊢M T A ∨ ¬T A is for example an instance of The Law of Excluded Middleof classical logic in the outer veridical logic of £. The inner veridical logic of £ is the setof theses which are encapsulated by a truth predicate. ⊢M T A ∨ ¬A is for example aninstance of The Law of Excluded Middle of classical logic in the inner verdidical logic of£. It is a consequence of Fact 15.1.4 that the inner and outer veridical logics of £ areclassical, as they should be.
15.1.7. Fact: The truth of the truth conditionals in §15.2 has the consequence that the
outer veridical and inner veridical logics of T , see Fact 15.1.6, coincide in £, in the senseof Definitions 15.2.1.7 and 15.2.1.10.
15.1.8. Fact: As related in §9, £ has novel inferential modes. The conjunction of thesemay seem to be an amputation of the classical inferential principle modus ponens. Butthey are in reality an extension of the classical inference rule modus ponens, as the maxim
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mode 9.2.5 serves all the purposes as modus ponens serves in classical logics, and allclassical logical theses are maxims of £The inference modes £ has beyond the maximmode helps engender novel theses.
15.1.9. Fact: A naive desideratum is that £ should obtain all truth-biconditionals, as inDefinitions 15.2.1.1 and 15.2.1.7, with their weak counterparts, by means of the inferencemodes which £ endorses, as per §9. £ compensates for the fact that the statements ofDefinitions 15.2.1.1, 15.2.1.2, 15.2.1.3 and 15.2.1.4 are not true with the truth of thestatements of Definitions 15.2.1.5 and 15.2.1.6, and with the fact that the inferentialmodes exhibited in Definitions 15.2.1.7 and 15.2.1.10 can be used. A consequence ofthis is that revenge paradoxicalities are not a threat. For more on this, see §18.
15.1.10. Fact: By §14.4, £ is omega-consistent, so it allows for standard interpretations.
15.2 The truth–conditionals
15.2.1. Definition:

1 Hale material truth adequacy: ⊢M T 𝐴 ↔ 𝐴

2 Hale material truthwards adequacy: ⊢M T 𝐴 ← 𝐴

3 Hale material truthly adequacy: ⊢M T 𝐴 → 𝐴

4 Weak material truth adequacy: ⊢ T 𝐴 ↔ 𝐴

5 Weak material truthwards adequacy: ⊢ T 𝐴 ← 𝐴

6 Weak material truthly adequacy: ⊢ T 𝐴 → 𝐴

7 Hale formal truth adequacy: ⊢M T 𝐴 ⇔ ⊢M𝐴
8 Hale formal truthwards adequacy: ⊢M T 𝐴 ⇐ ⊢M𝐴
9 Hale formal truthly adequacy: ⊢M T 𝐴 ⇒ ⊢M𝐴

10 Weak formal truth adequacy: ⊢ T 𝐴 ⇔ ⊢ 𝐴

11 Weak formal truthwards adequacy: ⊢ T 𝐴 ⇐ ⊢ 𝐴

12 Weak formal truthly adequacy: ⊢ T 𝐴 ⇒ ⊢ 𝐴

15.2.2. Exercise £ obeys the formal and as well the weak material truthwards and truthlyadequacies of Definition 15.2.1. The other adequacies fail on acount of paradoxicalities.

15.3 £ is classic and paraclassical, but it is not paraconsistent
Let T be a theory.
15.3.1. Definition: T is adjunctive just if ⊢ 𝐴 & ⊢ 𝐵⇒ ⊢ 𝐴 ∧ 𝐵.

15.3.2. Definition: T is dejunctive just if ⊢ 𝐴 ∧ 𝐵⇒ ⊢ 𝐴 & ⊢ 𝐵.
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15.3.3. Definition: T is cosistent just if for no 𝑝, 𝑇 ⊢ 𝑝 and 𝑇 ⊢ ¬𝑝.
15.3.4. Definition: T is consistent just if for no 𝑝, 𝑇 ⊬ 𝑝 ∧ ¬𝑝
15.3.5. Definition: T is contrasistent just if it is not cosistent.
15.3.6. Definition: T is contradictory just if it is inconsistent.
15.3.7. Definition: Let 𝜏 be classical logic.
15.3.8. Definition A is an antithesis of T just if ¬A is a thesis of T.
15.3.9. Definition S is a sedation of T iff no thesis of S is an antithesis of T.
15.3.10. Definition X is an extension of T just if all theses of T are theses of X.
15.3.11. Definition: Let 𝜏 be classical logic.
15.3.12. Fact. 3

That X is a proper extension of T holds just if
X is an extension of T and T is not an extension of X .

15.3.13. Definition Progressive, moderate and classic theories:
1 T is progressive just if it is a proper extension of 𝜏.
2 T is moderate just if it is a sedation of 𝜏.
3 T is classic just if it is progressive and moderate.

15.3.14. Definition T is coherent just if it is classic.
15.3.15. Definition T is extraclassical just if it is classic and contrasistent.
15.3.16. Definition T is extracoherent just if it is coherent and contrasistent.
15.3.17. Lemma £ is an extension of 𝜏.
Proof: Appeal to §6.4. □

15.3.18. Lemma 𝜏 is not an extension of £.
Proof: Given the solution to Exercise 8.3, £ has the paradoxical theses r ∈ r and r ∉ r. But
r ∈ r and r ∉ r are not theses of classical logic. □

15.3.19. Lemma £ is progressive.
Proof: £ is a proper extension of 𝜏 given Fact 15.3.12, Lemma 15.3.12 and Lemma 15.3.18.An appeal to Definition 15.3.13.1 suffices to finish the proof. □

15.3.20. Lemma £ is moderate.
3For the following definition, and the notions involved here, compare with (Bjørdal 2015, p. 511).
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Proof: If 𝜏 proves ¬A, ⊢M¬A as £ is progressive. Axiom 6.2.2.4, justified by Postulate6.2.2.4, entails that if 𝜏 proves ¬A, ⊢ ¬A & ⊬ A. So a fortiori, if 𝜏 proves ¬A, ⊬ A. Bycontraposition, if ⊢ A then 𝜏 does not prove ¬A. A is arbitrary, so no thesis of £ is anantithesis of classical logic 𝜏. Consequently, £ is a sedation of 𝜏. An appeal to Definition15.3.13.2 finishes the proof. □

15.3.21. Theorem £ is classic.
Proof: From Definition 15.3.13.3, as £ is progressive and moderate given Lemma 15.3.19and Lemma 15.3.18. □

15.3.22. Exercise T is contrasistent just if for some 𝑝, T ⊢ 𝑝 and T ⊢ ¬𝑝.
15.3.23. Exercise If T is contrasistent and adjunctive then T is contradictory.
15.3.24. Exercise If T is contradictory and dejunctive then T is contrasistent.
15.3.25. Exercise If T is dejunctive and adjunctive, T is contradictory iff contrasistent.
15.3.26. Exercise If T is dejunctive and adjunctive, T is cosistent just if consistent.
15.3.27. Exercise Adjunction is not a valid inference mode in £.
15.3.28. Exercise £ is extraclassic and extracoherent, and so contrasistent.
15.3.29. Exercise Paraconsistent theories are not classic.
15.3.30. Theorem £ is not paraconsistent.
Proof: Given Theorem 15.3.21 and Exercise 15.3.29, paraconsistent theories are notclassic. But £ is classic by Theorem 15.3.21. □

15.3.31. Remark The pairs consistency & cosistency and contrasistency & contradictionconflate in classical contexts, for classical systems are adjunctive and dejunctive.
15.3.32. Remark With proper comprehension, most paraconsistent theories are not evenmoderate, as then some contradiction is a thesis.
15.3.33. Remark. The well-known non-adjunctive paraconsistent logic of (Jaskowski1999) and (Jaskowski 1948), is moderate even with liberal comprehension principles.But is it not conservative, and so not classic.
15.4 Incompatability and complementarity
15.4.1. Definition (Incompatability) The theses A and B of a consistent theory T are
incompatible just if T proves A, B, and ¬(A ∧ B).
15.4.2. Theorem (£ has incompatible theses) By the result of Exercise 8.3, £ proves
R ∈ R and R ∉ R. But £ is conservative, given §15.3. So the theses R ∈ R and R ∉ R of £are incompatible, for given its conservativeness, £ proves ¬(R ∈ R ∧ R ∉ R).
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15.4.3. Definition (Complementarity) A and ¬A in a theory T are complementary just ifthey are incompatible theses of T.
15.4.4. Corollary £ has complementary theses
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16 The Liar is Russell’s condition on his set

Thus mathematics may be defined as the subject in
which we never know what we are talking about, nor
whether what we are saying is true.

Bertrand Russell
Frank Ramsey argued, in (Ramsey 1925, p. 20), that there is an essential differencebetween syntactical paradoxes which “involve only logical or mathematical terms suchas class and number”, and semantic paradoxes, which “. . . are not purely logical, andcannot be stated in logical terms alone; for they all contain some reference to thought,language, or symbolism”.
Ramsey considered Russell’s paradox a canonical representative of syntactic paradoxes,and the Liar he considered an archetypical semantic paradox.
In (A. A. Fraenkel and Bar-Hillel 1958, p. 5), the authors adjudged:

“Since (Ramsey 1925) it has become customary to distinguish between log-ical and semantic (sometimes also called syntactic or epistemological) anti-nomies.”
It is here nevertheless argued that one should take paradoxes, as the Liar-paradox, to beso inextricably intertwined with set theoretical paradoxes, that one should not considerthem to be different in kinds.
Others reached the same conclusion, but on the basis of considerations different fromthe ones adduced further below:
(Scott 1974)(1967) argued that the Zermelo axioms were justified by type theoretic rea-soning:

“The truth is that there is only one way of avoiding the paradoxes: namely,the use of some form of the theory of types. That was at the basis of bothRussell’s and Zermelo’s intuitions. Indeed the best way to regard Zermelo’stheory is as a simplification and extension of Russell’s. (We mean Russell’s
simple theory of types, of course.) The simplification was to make the types
cumulative.” (Scott 1974)(208)

Alonzo Church, in (Church 1976), virtually equated Russell’s theory of types and AlfredTarski’s resolution of the Liar paradox, as he stated:
“In the light of this it seems justified to say that Russell’s resolution of thesemantical antinomies is not a different one than Tarski’s but is a special caseof it.”(Church 1976)(756)

The interest of Scott’s and Tarski’s points of view, for our purposes here, is that they,jointly, take Tarski’s resolution of the alleged semantic paradoxes to be the same as Rus-
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sell’s, and Zermelo’s, resolution of the, allegedly syntactical, set theoretic paradoxes.
In £ there are bridge principles, as for example per Theorem 16.1 and Definition 16.4, be-tween given, supposedly syntactical paradoxes, and supposedly semantical paradoxes.
16.1. Theorem: There is a liar sentence L given by ⊢M L↔ ¬T L .

Proof: By alethic comprehension,
⊢M r ∈ r↔ T r ∉ r) . (16.2)

By negating both sides of the biconditional in 16.2, we get
⊢M ¬T r ∉ r) ↔ r ∉ r. (16.3)

16.4. Definition:
L === r ∉ r,

Substituting with L of Definition 16.4 in equation 16.3 gives the more canonical form forthe Liar sentence:
⊢M L↔ ¬T L . (16.5)

□

16.5 is resolved as Russell’s paradox.
16.6. Proposition: Liar sentences, and variants, with provenances from classical Greekphilosophy, should be taken as given by maxims of Theorems as 16.1.
16.7. Theorem: ⊢ L, ⊢ ¬L, ⊢ T L , ⊢ T ¬L , ⊢ ¬T ¬L and ⊢ ¬T L .
Proof: We know that ⊢ r ∈ r and ⊢ r ∉ r, so from Definition 16.4, ⊢ L and ⊢ ¬L. Finish with9.2.4.1 and 9.2.4.2. □

16.8. Observation: Each element in variety [L, T L , ¬T ¬L ] is incompatible with anymember of [¬L, T ¬L , ¬T L ] in £, and vice versa. Moreover, each element in variety[L, T L , ¬T ¬L ] is complementary to precisely one member of [¬L, T ¬L , ¬T L ]in £, and vice versa.
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17 Librationist incompleteness phenomena

Kurt Gödel, when colleague John Bachall presented himself as a physicist at a
Princeton faculty dinner: "I don’t believe in natural science."

(Regis 1988, p. 58)
It is of interest to note that the usual proofs of Gödel’s incompleteness theorem typicallypresuppose the theory is cosistent, so may consistent contrasistent theories in somesense possibly finesse the limitation? Let us explore this cursorily in the context of £.
Observe first that T maximally obeys the Hilbert-Bernays-Löb derivability conditions inthe sense that for all A and B,

1. ⊢M A⇒ ⊢M T A .

2. ⊢M T A → T T A .

3. ⊢M T A→ B → (T A → T B ).

Take ⊢M T A to express not only that A is a true maxim, but as well that A is provableas a maxim. Take therefore a thesis as ⊢M ∃𝑥¬T 𝑥 to expresses that £ is not trivial, and
⊢M ¬∃𝑥T T 𝑥 ∧ ¬T 𝑥 to express that £ does not prove a contradiction, or inconsistency.
Let us at this point restate 16.5: ⊢M L↔ ¬T L .

If one supposes ⊢M L it follows that ⊢M T L from 1, and ⊢M ¬T L from 16.5. If onesupposes ⊢M ¬L it follows that ⊢M T ¬L from 1, and ⊢M T L from 16.5, so that one withPostulate 6.5.2.2 has ⊢M T ¬L and ⊢M ¬T ¬L . As £ is maximally adjunctive so that
[⊢M A & ⊢M B] ⇒ ⊢M A∧B, in either case ⊢M T ¬L ∧¬T ¬L . So neither ⊢M ¬L nor ⊢M L,but rather ⊢ ¬L and ⊢ L. So the sentence ¬L which is maximally incomplete, in the sensethat neither ¬L nor L is a maxim, is nevertheless a minor thesis.
It was pointed out, by means of Exercises 5.5.2 and 5.5.3, and Definition 5.6.1.3, thatneither ⊢ 𝑠 ∈ 𝑠 nor ⊢ 𝑠 ∉ 𝑠, if 𝑠 = {𝑥 |𝑥 ∈ 𝑥}. But this is not a genuine incompleteness, asneither |= 𝑠 ∈ 𝑠 nor |= 𝑠 ∉ 𝑠.
The author does not know that there is a sentence A such that ̸⊢M A and such that weshould want that ⊢M A, nor that there is a sentence B such that ⊬ B and such that weshould want that ⊢ B. Certainly, if 𝐶 is the statement that there is a certain inaccessiblecardinal larger or equal to the first hypothetized 1-inaccesible cardinal, it will be the case,with the assumptions made, that even ̸⊢M CV, where V is as in §25, and the notation CV

as in Definition 4.5.22. It is not obvious to the author, however, at this point, that weshould want ⊢M CV. But for the record, if 𝐷 is the statement that there is a 0-inaccesiblecardinal, and that there for any 0-inaccesible is a larger 0-inaccesible, then ⊢M DV.
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18 The reflective theory of comprehension

Two paradoxes are better than one;
they may even suggest a solution.

Edward Teller
One may as a first approximation take the reflective theory of comprehension, i.e. of truthand abstraction, which is supported by the librationist set theory, with its alethic compre-hension principle, to be expressed above all by the inference modes of §9, and especiallythe simple inference modes, for truth, and for set abstracts via alethic comprehension.
18.1 Responsible naiveté without revenge
The revenge problem is avoided as £ is unswerving, and has complementary theses"
Consider the Liar sentence L of Equation 16.5. If ⊢ L, it follows that ⊢ ¬T L via theequation. However, it as well follows that ⊢ T L from ⊢ L and inference mode 9.1.1.1.So ⊢ T L and ⊢ L state things as they are. Moreover, given ⊢ ¬T L , it follows that ⊢ ¬Lvia inference mode 9.1.1.9. So ⊢ ¬L and ⊢ ¬T L state things as they are.
It is not a desirable option to prefer ⊬ L and ⊬ ¬L, for |= L and |= ¬L, and one shouldattempt to have ⊢ B whenever |= B. Moreover, it has, as discussed in Fact 15.1.5, beenpresupposed as desideratum that £ be unswerving, and decide paradoxical sentences.
18.2 Argumenta ad paradoxo
That an assumption in £ has the consequence that ⊢ A and ⊢ ¬A does not suffice as aproof by contradiction against the assumption. Instead, if the considerations leading to
⊢ A and ⊢ ¬A cannot be extended to arrive at ⊢ A∧¬A, they just constitute an argumentum
ad paradoxo to show that ⊢ A and ⊢ ¬A are complementary theses of £.

61



18.2 Argumenta ad paradoxo 18 THE REFLECTIVE THEORY OF COMPREHENSION

62



19 MANIFESTATIONS

19 Manifestations

There are very few theorems in advanced analysis which have been demonstrated in a logically
tenable manner. Everywhere one finds this miserable way of concluding from the special to the
general and it is extremely peculiar that such a procedure led to so few of the so-called paradoxes.

Niels Henrik Abel
We explain the manifestation set construction in §19.1, and will as from §25 see thatit facilitates £’s ability to be extended with strong set theoretic principles. In §19.2 weshow how we may obtain Quine atoms via orthodox manifestation sets. The foci in thesucceeding sections will be upon negative results: In §19.3 we account for the auto-
combative paradox. Next, in §20, we elucidate the virtually universal paradoxicality ofpower sets. Finally the failure of extensionality in £ is discussed in §21, where it is shownthat all orthodox sets are distinct from, as well as co-extensional with infinitely many co-extensional and pairwise distinct orthodox sets.
19.1 The manifestation sets
For the following construction, cfr. (Bjørdal 2012)(345–46), (Cantini 1996)(76), (Visser1989)(695–96) and earlier literature referred to there. One may, plausibly, find thatRoger’s theorem and Kleene’s second recursion theorem are related, but the proof thatthere are manifestation sets does not rely upon any presuppositions of computability.
19.1.1. Definition Kuratowskian ordered pairs:

⟨𝑎, 𝑏⟩ === {{𝑎}, {𝑎, 𝑏}}

19.1.2. Definition The manifestation set A of formula A(𝑣0, 𝑣1):
(1) 𝑣[𝑏 === ∃𝑣2(𝑣2 = ⟨𝑣, 𝑏⟩ ∧ 𝑣2 ∈ 𝑏)

(2) 𝔞 === {𝑣2 |∃𝑣0, 𝑣1(⟨𝑣0, 𝑣1⟩ = 𝑣2 ∧ A(𝑣0, 𝑣1){𝑣 |𝑣[𝑣1}
𝑣1 }

(3) A === {𝑣 |𝑣[𝔞}

19.1.3. Theorem Manifest comprehension, for the manifestation set in Definition 19.1.2.3:
⊢M ∀𝑣(𝑣 ∈ A↔ T T A(𝑣,A))

⊢M ∀𝑣(𝑣 ∈ A↔ T T A(𝑣,A))

Proof: From Definition 19.1.2.3 and alethic comprehension,
⊢M 𝑐 ∈ A↔ T 𝑐[𝔞.
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As a consequence of Definition 19.1.2.1 we have
⊢M T 𝑐[𝔞 ↔ T ∃𝑣2(𝑣2 = ⟨𝑐, 𝔞⟩ ∧ 𝑣2 ∈ 𝔞)

From the two previous steps, Definition 19.1.2.2, alethic comprehension and 9.2.5 wehave
⊢M 𝑐 ∈ A↔ T ∃𝑣2(𝑣2 = ⟨𝑐, 𝔞⟩ ∧ 𝔗∃𝑣0, 𝑣1(⟨𝑣0, 𝑣1⟩ = 𝑣2 ∧ A(𝑣0, 𝑣1){𝑣 |𝑣[𝑣1}

𝑣1 ))

It follows, by means of the theory of identity, that
⊢M 𝑐 ∈ A↔ T T A(𝑐, 𝑣1)A𝑣1

,

so that, on account of Definition 19.1.2.3 and Definition 4.5.18,
⊢M 𝑐 ∈ A↔ T T A(𝑐,A).

Finish with universal generalization. □

19.1.4. Corollary Orthodox manifestation:
If A(𝑣0, 𝑣1) is orthodox, ⊢M ∀𝑣 (𝑣 ∈ A↔ A(𝑣,A)

)
.

19.1.5. Theorem(Comprehension for manifestation set with parameters)
Some manifestation sets have parameters, so if orthodox A has the free variables in ®𝑣:

⊢M ∀𝑣∀®𝔳(𝑣 ∈ A↔ A(®𝔳, 𝑣,A)).

Proof: Adjust Definition 19.1.2. For the notation, recall Definition 4.5.20. □

19.2 Quine atoms
The most elementary Quine atom is the manifestation set = of formula 𝑣0 = 𝑣1. By meansof manifest comprehension,

⊢M ∀𝑣(𝑣 ∈ =↔ T T 𝑣 = = ). (19.2.1)
As identity is an orthodox relation,

⊢M ∀𝑣(𝑣 ∈ =↔ 𝑣 = = ). (19.2.2)
As identity is an equivalence relation,
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⊢M = = =. (19.2.3)
So from equations 19.2.2 and 19.2.3,

⊢M = ∈ = (19.2.4)
19.2.5. Exercise: Prove that there are infinitely many distinct Quine atoms.
19.3 The autocombatant
In contrast to orthodox manifestation sets, many are paradoxical. This is for example thecase with the following quite heretical manifestations set ∉, which generates an infinityof incompatible and complementary theses.
19.3.1. Theorem (The autocombative truths) ∉ is the manifestation set of formula 𝑣0 ∉ 𝑣1,so that:

|= ∀𝑣(𝑣 ∈∉ ) & |= ∀𝑣(𝑣 ∉∉ ).

Proof: On account of Theorem 19.1.3:
⊢M ∀𝑣(𝑣 ∈∉↔ T T 𝑣 ∉∉),

so that by soundness
|=
M ∀𝑣(𝑣 ∈∉↔ T T 𝑣 ∉∉).

If _ is any limit below the closure ordinal Ϙ, we will, for any term 𝑎, and any fair function
Ξ, have that (Ξ, _) ⊩ 𝑎 ∉∉; otherwise a contradiction would follow as 𝑎 ∉∉ would hold atsucceeding successor ordinals 𝜎, 𝜎 + 1 and 𝜎 + 2 below _. Consequently, we for such alimit _ as well have that (Ξ, _ + 2) ⊩ 𝑎 ∈∉. From 5.2.2.2 we have that (Ξ, _) ⊩ ∀𝑣(𝑣 ∉∉) and
(Ξ, _ + 2) ⊩ ∀𝑣(𝑣 ∈∉)). As a result, (Ξ, Ϙ) ⊩ ¬T ¬∀𝑣(𝑣 ∈∉)) and (Ξ, Ϙ) ⊩ ¬T ¬∀𝑣(𝑣 ∉∉)). Theproof finishes by invoking Definitions 5.4.2.3 and 5.4.3.3. □
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20 POWERSETS ARE PARADOXICAL LEST AS P ({𝑉 |𝑉 = 𝑉})

20 Powersets are paradoxical lest as P ({𝑣 |𝑣 = 𝑣})

Das Wesen der Mathematik liegt in ihrer Freiheit.
Georg Cantor

Use standard notation, so that ⊢M 𝑎 ⊂ 𝑏 ↔ ∀𝑥(𝑥 ∈ 𝑎 → 𝑥 ∈ 𝑏), and posit
20.1. Definition The power set of 𝑎:

P (𝑎) === {𝑣 |𝑣 ⊂ 𝑎}.

It turns out that a power set is paradoxical unless it is the power set of a maximally filledset 𝑏 for which ⊢M ∀𝑥(𝑥 ∈ 𝑏).
20.2. Definition The universal set:

U === {𝑣 |𝑣 = 𝑣}

20.3. Theorem 𝑎 is paradoxical if ̸⊢M ∀𝑥(𝑥 ∈ 𝑎 ↔ 𝑥 ∈ U) :
Proof: We use a case distincion to provide a distinct proof for the case where ⊢𝑚 ∃𝑣(𝑣 ∉ 𝑎).
(1) If ⊢M ∃𝑣(𝑣 ∉ 𝑎), use the autocombatant ∉, of Theorem 19.3.1, for which

⊢ ∀𝑣(𝑣 ∈∉) & ⊢ ∀𝑣(𝑣 ∉∉).

In this case ⊢∉∉ P (𝑎) and ⊢∉∈ P (𝑎), so P (𝑎) is paradoxical.
(2) If ⊢𝑚 ∃𝑣(𝑣 ∉ 𝑎), ⊢ U ∈ P (𝑎) and ⊢ U ∉ P (𝑎), so P (𝑎) is paradoxical. □
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21 Non-extensionality and Ursets

It is impossible to be a mathematician without being a poet in soul.
Sofia Kovalevskaya

The principle of extensionality’s failure in type free theories is well known, and many havecontributed to the deposit of knowledge.
Let us first posit
21.1. Definition The principle of extensionality:

⊢M 𝑎
e
= 𝑏 → 𝑎 = 𝑏.

A particularly easy proof of the failure of the extensionality principle in £ is obtained bymaking use of the fact that for any limit ordinal _,
Ξ(_ + 1) ⊩ {𝑣 |𝑣 = 𝑣} e

= {𝑣 |𝑣 ∉ 𝑣} ∧ {𝑣 |𝑣 = 𝑣} ≠ {𝑣 |𝑣 ∉ 𝑣}.

As a consequence, there are sets 𝑎 and 𝑏 such that |̸= 𝑎
e
= 𝑏 → 𝑎 = 𝑏, and so it follows, afortiori, that |̸=M 𝑎

e
= 𝑏 → 𝑎 = 𝑏, But ⊢M 𝑎

e
= 𝑏 → 𝑎 = 𝑏 ⇒ |=M 𝑎

e
= 𝑏 → 𝑎 = 𝑏 is a soundnessrequirement, so that ̸⊢M 𝑎

e
= 𝑏 → 𝑎 = 𝑏.

(Gilmore 1974) showed that a partial set theory it proves that there is an orthodox set
𝑎 such that 𝑎 e

= ∅ and 𝑎 ≠ ∅. (Bjørdal 2012, p. 345) relates Lev Gordeev’s more conciseproof of the same result as Gilmore’s, in the context of Explicit Mathematics, and someon why it was published in (Beeson 1985), with acknowledgement.
Define Gordeev’s set with the manifestation theorem 19.1.3, so that one may posit
21.2. Definition (Via manifestation)∀𝑥(𝑥 ∈ ¤𝑔 ↔ T T (𝑥 = ∅ ∧ 𝑥 = ¤𝑔).

21.3. Theorem: [Gordeev] ¤𝑔 is (i) orthodox, so ⊢M 𝑥 ∈ ¤𝑔 ↔ (𝑥 = ∅ ∧ 𝑥 = ¤𝑔), (ii) emptyand (iii) distinct from ∅.
Proof: As the proof of Theorem 4 in (Bjørdal 2012, p. 345): (i) ¤𝑔 is orthodox, on accountof the theory of identity. (ii) As ⊢M 𝑥 ∈ ¤𝑔 → (𝑥 = ∅∧𝑥 = ¤𝑔), ⊢M 𝑥 ∈ ¤𝑔 → ¤𝑔 = ∅, so ¤𝑔 is empty.(iii) ¤𝑔 ≠ ∅, for else ¤𝑔 = { ¤𝑔} on account of Theorem 21.3 (i), which contradicts (ii). □

(Cantini 1996)(74), relates a proof, by Pierluigi Minari that we for any orthodox set 𝑎may find a distinct orthodox set 𝑏 such that 𝑎 and 𝑏 are nevertheless co-extensional.
Theorem 5 (ii) in (Bjørdal 2012)(346), whose proof was left as an exercise, states theresult that Minari’s construction can be generalized, as in Theorem 21.4. This resultappears to be the most general non-extensionality result available, and we do not relate
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proofs of other results which are consequences.4 As Theorem 21.4 is proved below, thementioned exercise is solved.
21.4. Theorem: For orthodox set 𝑏, there are infinitely many pairwise distinct orthodoxand co-extensional sets, which are all co-extensional with 𝑏 and distinct from 𝑏.
Proof: Let orthodox 𝜐1 be given, and let 𝜐𝑛+1 be the manifestation set of

( 𝑖=𝑛∧
𝑖=1

𝑣1 ∈ 𝜐𝑖 ∧ 𝜐𝑖 ≠ 𝑣1

)
∨
( 𝑖=𝑛∧
𝑖=1

𝜐𝑖 ∉ 𝜐𝑖 ∧
𝑖=𝑛∨
𝑖=1

𝜐𝑖 = 𝑣1

)
so that, by manifest comprehension and the logic of identity,

∀𝑣(𝑣 ∈ 𝜐𝑛+1 ↔ (
( 𝑖=𝑛∧
𝑖=1

𝑣 ∈ 𝜐𝑖 ∧ 𝜐𝑖 ≠ 𝜐𝑛+1
)
∨
( 𝑖=𝑛∧
𝑖=1

𝜐𝑖 ∉ 𝜐𝑖 ∧
𝑖=𝑛∨
𝑖=1

𝜐𝑖 = 𝜐𝑛+1
)
).

If ∨𝑖=𝑛
𝑖=1 (𝜐𝑖 = 𝜐𝑛+1), it follows that ⊢M 𝜐𝑛+1 ∈ 𝜐𝑛+1 ↔ 𝜐𝑛+1 ∉ 𝜐𝑛+1, which is impossible. So∧𝑖=𝑛

𝑖=1 (𝜐𝑖 ≠ 𝜐𝑛+1). Clearly, ∧𝑖=𝑛
𝑖=1 (𝜐𝑖

e
= 𝜐𝑛+1). The process can be iterated, so we are done. □

4Notice, however, that Theorem 21.4 may straightforwardly be extended to the result that there are 𝜔 ·2pairwise distinct and co-extensional orthodox empty sets, and so on for larger countable ordinals.
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22 Names and sets of Urelemente to transfinite orders

Os números são as regras dos seres, e a
matemática é o regulamento do mundo.

Francisco Gomes Teixeira
22.1. Definition:

(1) Let 𝜐1 = ¤𝑔, as in Definition 21.2.
(2) For any 𝑛 ∈ Ω+, 𝑛 is the 𝜐𝑛 of Theorem 21.4.
(3) 𝜐𝜔 === {𝑥 |∀𝑦(𝜐0 ∈ 𝑦 ∧ ∀𝑧(𝜐𝑧 ∈ 𝑦 → 𝜐𝑧+1 ∈ 𝑦) → 𝑥 ∈ 𝑦)}.

22.2. Theorem: [For manifestation set 𝜐𝜔]
⊢M ∀𝑥(𝑥 ∈ 𝜐𝜔 ↔ (𝑥 = 𝜐𝜔 ∧ ∃𝑦(𝑦 ∈ 𝜐𝜔 ∧ 𝑥 = 𝑦))).

22.3. Remark: 𝜐𝜔 in Theorem 22.2 is orthodox as 𝜐𝜔 in Definition 22.1.3 is orthodox.
22.4. Theorem: (i) 𝜐𝜔 is empty. (ii) ⊢M ∀𝑦(𝑦 ∈ 𝜐𝜔 → 𝜐𝜔 ≠ 𝑦)}.

Proof: (i) If 𝑎 were an element of 𝜐𝜔, ⊢M 𝑎 = 𝜐𝜔 ∧ ∃𝑦(𝑦 ∈ 𝜐𝜔 ∧ 𝑎 = 𝑦). Given Theorem21.4, all members of 𝜐𝜔 are empty sets. Consequently, if 𝑎 were an element of 𝜐𝜔 then
𝜐𝜔 would be an empty set. So 𝜐𝜔 is an empty set. (ii) A rendition of Theorem 22.2 is
⊢M ∀𝑥(𝑥 ∉ 𝜐𝜔 ↔ (𝑥 = 𝜐𝜔 → ∀𝑦(𝑦 ∈ 𝜐𝜔 → 𝑥 ≠ 𝑦))), so, as a consequence,

⊢M 𝜐𝜔 ∉ 𝜐𝜔 → (𝜐𝜔 = 𝜐𝜔 → ∀𝑦(𝑦 ∈ 𝜐𝜔 → 𝜐𝜔 ≠ 𝑦)).

The proof finishes by invoking the maxim mode 9.2.5, as ⊢M 𝜐𝜔 ∉ 𝜐𝜔 on account of (i). □
22.5. Definition:

(1) 𝑐 is an urset just if 𝑐 = 𝑛 , for some 𝑛 ∈ Ω+.
(2) In accordance with Definition 4.5.4, 2222221 , 222221 , 22221 , 2221 , 221 , 21and 1 are the symbolic ursets: # , ¥c , 𝝇 , ∀ , ↓ , ¥v , • .

(3) The symbolic ursets are the atomic names, which denote the primitive symbols.
(4) Recall Definition 4.5.5.2 of ℓ(𝑛0) === ⌊𝑙𝑜𝑔2(𝑛0 + 1)⌋, which uses 𝑙𝑜𝑔2 and the floorfunction ⌊ ⌋, to define the length ℓ(𝑛0) of the bijective base-2 cipher needed toexpress a given chiffer 𝑛0.
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(5) So
ℓ(•) = ℓ(1) = 1
ℓ( ¥𝑣) = ℓ(21) = 2
ℓ(↓) = ℓ(221) = 3
ℓ(∀) = ℓ(2221) = 4
ℓ(𝜍) = ℓ(22221) = 5
ℓ( ¥𝑐) = ℓ(222221) = 6
ℓ(#) = ℓ(2222221) = 7.

(6) Given Definition 4.5.5, the joining of names is defined by positing
𝑛0 Z 𝑛1 === 𝑛0𝑛1 === 𝑛0

⌢ 𝑛1 === 𝑛0 · 2ℓ(𝑛1) + 𝑛1 .

(7) Given Definition 22.5.5, we may use Definition 22.5.6 to construe composite namesgramatically correct by joining names whilst obeying the formation rules of §4.5.
(8) For good∈ {symbol, symbol string, variable, formula, constant, term, sentence},

N is a good name just if N is a good.
22.6. Caveat: In formula ∀𝑣T 𝐴 , is a term operating formula forming operator, sothe evaluation of T 𝐴 𝑏

𝑣 is comparable with □𝐴𝑏
𝑣 , where □ is any formula operating for-mula forming operator. So, for example, T 𝑣 = 𝑣 𝑏

𝑣 is T 𝑏 = 𝑏 . A subtle substitutionfunction, e.g. as with (Smorynski 1977, 837 et passim) in the proof of Gödel’s incom-pleteness theorem, is not needed, for there is no use of quantification into an opaque, orotherwise “intensional”, context.
22.7. Fact (Ursets to any order)
Given Definition 22.1.2, 𝜐𝜔 in Definition 22.1.3 serves as the set of the expression namesdefined in §21. Given Theorems 22.2 and 22.4 (i), 𝜐𝜔 is another empty set distinct fromall members of 𝜐𝜔, and we may define a new omega ordered set of Ursets

𝜐𝜔·2 === {𝑥 |∀𝑦(𝜐𝜔 ∈ 𝑦 ∧ ∀𝑧(𝜐𝑧 ∈ 𝑦 → 𝜐𝑧+1 ∈ 𝑦) → 𝑥 ∈ 𝑦)}.

𝜐𝜔·2, and indeed 𝜐𝛽 for any ordinal 𝛽, may serve as sets of Ursets, or Urelemente, forwhatever purpose one may have in mind, including that of naming extramathematicalindividuals to equip £ with domains useful for applied mathematics and logic.
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23 Heritors and regulars

A man is like a fraction whose numerator is what he is and whose denominator is what
he thinks of himself. The larger the denominator, the smaller the fraction.

Leo Tolstoy
Heritors and regulars are defined, and their behavior regulated so as to support the de-velopment of the interpretation of NBG set theory of §25.
23.1. Definition: The Heritor is H === {𝑥 |𝑥 = {𝑦 |𝑦 ∈ 𝑥}}.

23.2. Definition: 𝑎 is an heritor just if ⊢M 𝑎 ∈ H.

23.3. Definition: H(𝑎) === 𝑎 = {𝑥 |𝑥 ∈ 𝑎}

23.4. Theorem: The Heritor and heritors are orthodox.
Proof: The Heritor is orthodox by identity theory, and heritors by Postulate 6.5.2.6. □

23.5. Definition: 𝑎 is an hyposet of set 𝑏 just if 𝑎 = {𝑥 |𝑥 ∈ 𝑎 ∧ 𝑥 ∈ 𝑏}.
23.6. Axiom:

⊢M H(𝑎) ∧H(𝑏) ∧ 𝑎 ⊂ 𝑏 → 𝑎 = {𝑥 |𝑥 ∈ 𝑎 ∧ 𝑥 ∈ 𝑏}.

23.7. Theorem:
⊢M H(𝑎) ∧H(𝑏) ∧ 𝑎

E
= 𝑏 → 𝑎 = 𝑏.

Proof: An instance of Axiom 23.6 is ⊢M H(𝑏) ∧ H(𝑎) ∧ 𝑏 ⊂ 𝑎 → 𝑏 = {𝑥 |𝑥 ∈ 𝑏 ∧ 𝑥 ∈ 𝑎}.
{𝑥 |𝑥 ∈ 𝑎 ∧ 𝑥 ∈ 𝑏} = {𝑥 |𝑥 ∈ 𝑏 ∧ 𝑥 ∈ 𝑎}, given §12, so just wed with the statement instance
H(𝑎) ∧H(𝑏) ∧ 𝑎 ⊂ 𝑏 → 𝑎 = {𝑥 |𝑥 ∈ 𝑎 ∧ 𝑥 ∈ 𝑏} of Axiom 23.6. □

23.8. Axiom:
⊢M H(𝑎) ∧H(𝑏) ∧ 𝑎 ⊂ 𝑏 ← 𝑎 = {𝑥 |𝑥 ∈ 𝑎 ∧ 𝑥 ∈ 𝑏},

so if 𝑎 is a hyposet of 𝑏, then 𝑎 and 𝑏 are heritors, and 𝑎 is a subheritor of 𝑏.
23.9. Theorem:

⊢M H(𝑎) ∧H(𝑏) → (𝑎 ⊂ 𝑏 ↔ 𝑎 = {𝑥 |𝑥 ∈ 𝑎 ∧ 𝑥 ∈ 𝑏}).

Proof: Invoke Axioms 23.6 and 23.8. □

23.10. Axiom (Heritors are hereditarily heritors)
⊢M H(𝑦) → ∀𝑥(𝑥 ∈ 𝑦 → H(𝑥)).

23.11. Observation: This section’s axioms do not commit to the existence of heritors.
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23.12. Definition (Regular sets)
R(𝑥) === ∃𝑦(𝑦 ∈ 𝑥) → ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∉ 𝑥 ∨ 𝑧 ∉ 𝑦))

23.13. Exercise Regular hereditarily orthodox sets are hereditarily regular.
Our attention below will be upon regular heritors.
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24 Choice, power, potency and countability

The axiom of choice is obviously true, the well-ordering principle
obviously false, and who can tell about Zorn’s lemma?

Jerry Bona
We show that the universe is countable. Theorem 20.3 is one of the important reasonswhy that is so. Theorem 24.4.5 establishes that there is an orthodox bijection from theset of natural numbers 𝜔 to the full universe U. §24.6 spells out in more detail how it isthat Cantor’s arguments, linked to power sets, are circumvented in £.
24.1 The denumerable wellordering
24.1.1. Definition:

Π𝑎Π𝑏

[ (Constant(𝑎) ∧ Constant(𝑏) ∧ (Ξ, 𝛼) ⊩ 𝑎 ⊴ 𝑏
)

⇕(
`𝑥(𝑥[Ω & 𝑥 ⪯ 𝑎 & (Ξ, 𝛼) ⊩ 𝑥 = 𝑎) ⪯ `𝑦(𝑦[Ω & 𝑦 ⪯ 𝑏 & (Ξ, 𝛼) ⊩ 𝑦 = 𝑏)

) ]
24.1.2. Corollary:

(Ξ, 𝛼) ⊩ 𝑎 = 𝑏 ⇔ (Ξ, 𝛼) ⊩ 𝑎 ⊴ 𝑏 & (Ξ, 𝛼) ⊩ 𝑎 ⊵ 𝑏

24.1.3. Definition:
(Ξ, 𝛼) ⊩ 𝑎 ◁ 𝑏 ⇔ (Ξ, 𝛼) ⊩ 𝑎 ⊴ 𝑏 & (Ξ, 𝛼) ⊩ 𝑎 ≠ 𝑏

24.1.4. Axiom The wellordering:
(Ξ, 𝛼) ⊩ ∀𝑥, 𝑦(𝑥 ◁ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑥 ▷ 𝑦)

24.1.5. Axiom The orthodoxy of the wellordering:
◁, and its cognate relations, are orthodox.

24.2 Function application notation
24.2.1. Definition:

𝑓 ‘𝑎 ≎ 𝑏 B ∀𝑥∀𝑦∀𝑧(
(
(𝑥, 𝑦) ∈ 𝑓 ∧ (𝑥, 𝑧) ∈ 𝑓

)
→ 𝑦 = 𝑧) ∧ (𝑎, 𝑏) ∈ 𝑓 .

24.2.2. Definition:
𝑏 ≎ 𝑓 ‘𝑎 B 𝑓 ‘𝑎 ≎ 𝑏
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24.2.3. Definition:
𝑥 ∈ 𝑓 ‘𝑎 B ∃𝑦( 𝑓 ‘𝑎 ≎ 𝑦 ∧ 𝑥 ∈ 𝑦)

24.2.4. Definition:
𝑓 ‘𝑎 ∈ 𝑥 B ∃𝑦( 𝑓 ‘𝑎 ≎ 𝑦 ∧ 𝑦 ∈ 𝑥)

24.2.5. Remark: The notation ≎ is used instead of =, for there are paradoxical functionsas e.g.
𝑔 = {(𝑥, 𝑦) |𝑥 = {∅} ∧ ((𝑟 ∈ 𝑟 → 𝑦 = ∅) ∧ (𝑟 ∉ 𝑟 → 𝑦 = {∅})},

for 𝑟 = {𝑥 |𝑥 ∉ 𝑥}. For 𝑔 we do have that ⊢M ∀𝑥∀𝑦∀𝑧( ((𝑥, 𝑦) ∈ 𝑔 ∧ (𝑥, 𝑧) ∈ 𝑔
)
→ 𝑦 = 𝑧).But, notice that (Ξ, 𝛼) ⊩ ({∅}, {∅}) ∈ 𝑔 just if (Ξ, 𝛼 + 1) ⊩ ({∅},∅) ∈ 𝑔. So we cannnotwrite 𝑔‘{∅} = {∅} in the former case, and 𝑔‘{∅} = ∅ in the latter case. For identity isan orthodox equivalence relations. So we use ≎ to avoid problems with the theory ofidentity in exotic cases.

24.2.6. Remark: There certainly are sets of more orthodox functions so that a function
ℎ is an element in one of them only if |=M ∀𝑥∀𝑦(ℎ‘𝑥 ≎ 𝑦 → 𝑥 = 𝑦).

24.2.7. Remark: The author discussed and introduced the notation ≎ in the article,whose English translation is «“2+2=4” is misleading», in (Bjørdal 2008, pp. 55–66),for such reasons which are adduced here.
24.3 The choice function
On account of ancient Greek διάλεξε, for was selected, we define 𝛿‘𝑤, the atled of 𝑤:
24.3.1. Definition The choice function:

𝛿‘𝑤 ≎ {𝑥 | (𝑥 ∈ 𝑤 ∧ ∀𝑦(𝑦 ∈ 𝑤 → 𝑥 ⊴ 𝑦)}.

24.3.2. Definition Iterated choices from 𝑏:
𝑎 ≎

𝛿𝑚𝑏 ⇔ ((𝑚 = 0 ∧ 𝑎 ≎

𝛿‘𝑏) ∨ ∃𝑛(𝑛 ∈ 𝜔 ∧ 𝑚 = 𝑛 + 1 ∧ 𝑎 ≎

𝛿‘(𝑏 \
𝑖=𝑛⋃
𝑖=0

𝛿𝑖𝑏))).

24.4 The enumerator
Given Axiom 24.1.5, the orthodoxy of 𝜔 and U, and the fact that 𝛿𝑛𝑤 is orthodox if 𝑤 isorthodox, we posit
24.4.1. Definition of the enumerator:

e === {(𝑛, 𝑥) |𝑛 ∈ 𝜔 ∧ 𝑥 ∈ 𝛿𝑛U}

24.4.2. Theorem (e is orthdox)
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Proof: As 𝛿𝑛U, for 𝑛 ∈ 𝜔 is orthodox. □

24.4.3. Theorem (The functionality of e)
⊢M ∀𝑥∀𝑦∀𝑧( ((𝑥, 𝑦) ∈ e ∧ (𝑥, 𝑧) ∈ e) → 𝑦 = 𝑧)

Proof: Obvious, given Definitions 24.3.2 and 24.4.1 and Theorem 24.4.2. □

24.4.4. Theorem
⊢M e‘𝑛 ≎ 𝑥 ↔ (𝑛, 𝑥) ∈ e↔ 𝑛 ∈ 𝜔 ∧ 𝑥 ∈ 𝛿𝑛 (U)

Proof: On account of Definitions 24.2.1 and 24.4.1, and Theorem 24.4.3. □

24.4.5. Theorem
e is a bijection from 𝜔 to U.

Proof: Given §24.1, as the orders of 𝜔 and Ω match, and for any constant 𝑎, 𝑎[Ω, as allsets are finite positive von Neumann ordinals according to the meta language. □

24.5 The enumeration postulates
For any ordinal 𝛼:
24.5.1. Postulate:

Π𝑎Π𝑏

(constant(𝑎) & constant(𝑏) ⇒
(Ξ, 𝛼) ⊩ ∀𝑛(𝑛 ∈ 𝜔→

(
∃=𝑛𝑥(𝑥 ◁ 𝑎) ∧ ∃=𝑛𝑦(𝑦 ◁ 𝑏) → 𝑎 = 𝑏

)
)
)

24.5.2. Postulate:
Π𝑎, 𝑏, 𝑐, ((Ξ, 𝛼) ⊩ ∀𝑛

(
𝑛 ∈ 𝜔→ (

(
⟨𝑎, 𝑏⟩ ∈ e & ∃=𝑛𝑥(𝑥 ◁ 𝑏)

)
↔(

⟨{𝑣 |𝑣 ∈ 𝑎 ∨ 𝑣 = 𝑎}, 𝑐⟩ ∈ e & ∃=(𝑛+1)𝑥(𝑥 ◁ 𝑐)
)
)
)

24.5.3. Postulate:
(Ξ, 𝛼) ⊩ ∀𝑛(𝑛 ∈ 𝜔→ ∃𝑦(⟨𝑛, 𝑦⟩ ∈ e))

24.5.4. Postulate:
(Ξ, 𝛼) ⊩ ∀𝑦∃𝑛(𝑛 ∈ 𝜔 ∧ ⟨𝑛, 𝑦⟩ ∈ e)

24.5.5. Postulate:
(Ξ, 𝛼) ⊩ ∀𝑛∀𝑛′∀𝑦(⟨𝑛, 𝑦⟩ ∈ e ∧ ⟨𝑛′, 𝑦⟩ ∈ e→ 𝑛 = 𝑛′)

24.5.6. Postulate:
(Ξ, 𝛼) ⊩ ∀𝑛∀𝑦∀𝑧(⟨𝑛, 𝑦⟩ ∈ e ∧ ⟨𝑛, 𝑦⟩ ∈ e→ 𝑦 = 𝑧)
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Some consequences of the enumeration postulates:

24.5.7. Theorem:
⊢M ∃=0𝑥(𝑥 ◁ L )

24.5.8. Theorem:
Π𝑎Π𝑏

(constant(𝑎) & constant(𝑏) ⇒
⊢M ∀𝑛(𝑛 ∈ 𝜔→

(
∃=𝑛𝑥(𝑥 ◁ 𝑎) ∧ ∃=𝑛𝑦(𝑦 ◁ 𝑏) → 𝑎 = 𝑏

)
)
)

24.5.9. Theorem:
Π𝑏

[constant(𝑏) ⇒ ⊢M (
⟨∅, 𝑏⟩ ∈ e↔ ∃=0𝑥(𝑥 ◁ 𝑏)

)]
24.5.10. Theorem:

Π𝑎, 𝑏, 𝑐, (⊢M ∀𝑛
(
𝑛 ∈ 𝜔→ (

(
⟨𝑛, 𝑏⟩ ∈ e & ∃=𝑛𝑥(𝑥 ◁ 𝑏)

)
↔(

⟨{𝑣 |𝑣 ∈ 𝑛 ∨ 𝑣 = 𝑛}, 𝑐⟩ ∈ e & ∃=(𝑛+1)𝑥(𝑥 ◁ 𝑐)
)
)
)
)

24.5.11. Theorem:
⊢M ∀𝑦∃𝑛(𝑛 ∈ 𝜔 ∧ ⟨𝑛, 𝑦⟩ ∈ e)

Proof: As all sets are finite von Neumann ordinals of the meta language, and 𝜔 has thesame order as Ω. □

24.6 Absolutely all sets are countable
If some set is uncountable, some set of subsets of 𝜔 is uncountable. We have earlier in-troduced the power set P (a) = {𝑥 |𝑥 ⊂ a}, and will first consider its import on the question.Thereon we consider the potency set of a set a as given by
24.6.1. Definition: P(a) = {𝑥 |𝑥 = {𝑦 |𝑦 ∈ 𝑥 ∧ 𝑦 ∈ a}}.

The potency set construction is very important in §25. Here the preoccupation is withshowing that neither power sets nor potency sets generate uncountable sets.
24.6.1 e restricted to P ({𝑥 |𝑥 ∈ 𝜔})

e restricted to the power set of {𝑥 |𝑥 ∈ 𝜔} is
e|P ({𝑥 |𝑥∈𝜔}) = {(𝑥, 𝑦) | (𝑥, 𝑦) ∈ e ∧ 𝑦 ∈ P ({𝑥 |𝑥 ∈ 𝜔})}, (24.6.2)

which has 𝜔 as domain and P ({𝑥 |𝑥 ∈ 𝜔}) as range. Given Definitions 24.3.2 and 24.4.1,equation 24.6.2 may be equivalently stated as
e|P ({𝑥 |𝑥∈𝜔}) = {(𝑥, 𝑦) |𝑥 ∈ 𝜔 ∧ 𝑦 ∈ 𝛿𝑥U ∧ 𝑦 ∈ P ({𝑥 |𝑥 ∈ 𝜔})}. (24.6.3)
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24.6.4. Theorem

⊢M ∀𝑢∀𝑣∀𝑤((𝑢, 𝑣) ∈ e|P ({𝑥 |𝑥∈𝜔}) ∧ (𝑢, 𝑤) ∈ e|P ({𝑥 |𝑥∈𝜔}) → 𝑣 = 𝑤).

Proof: Obvious, from the built up of e|P ({𝑥 |𝑥∈𝜔}) with orthodox function 𝛿𝑥 . □

To attempt Cantor’s proof by contradiction for uncountability, assume that e|P ({𝑥 |𝑥∈𝜔})surjects from 𝜔 to P ({𝑥 |𝑥 ∈ 𝜔}) and posit
24.6.5. Definition:

S = {𝑥 |𝑥 ∈ 𝜔 ∧ 𝑥 ∉ e|P ({𝑥 |𝑥∈𝜔})‘𝑥}.

24.6.6. Theorem For an 𝑚 ∈ 𝜔,
⊢M (𝑚, S) ∈ e|P ({𝑥 |𝑥∈𝜔}) .

Proof: A consequence of Equation 24.6.3 and alethic comprehension is
⊢M (𝑚, S) ∈ e|P ({𝑥 |𝑥∈𝜔}) ↔ T 𝑚 ∈ 𝜔 ∧ S ∈ 𝛿𝑚U ∧ S ∈ P ({𝑥 |𝑥 ∈ 𝜔}) .

Let 𝑚 ∈ 𝜔 be the natural number such that ⊢M S ∈ 𝛿𝑚U, so ⊢M 𝑚 ∈ 𝜔∧S ∈ 𝛿𝑚U. But besides,
⊢M S ∈ P ({𝑥 |𝑥 ∈ 𝜔}), as ⊢M S ⊂ {𝑥 |𝑥 ∈ 𝜔}. So ⊢M 𝑚 ∈ 𝜔 ∧ S ∈ 𝛿𝑚U ∧ S ∈ P ({𝑥 |𝑥 ∈ 𝜔}). Thus,on account of inference mode 9.1.2.1, ⊢M T 𝑚 ∈ 𝜔 ∧ S ∈ 𝛿𝑚U ∧ S ∈ P ({𝑥 |𝑥 ∈ 𝜔}) . Finishby using the maxim mode 9.2.5. □

24.6.7. Theorem There is an 𝑚 ∈ 𝜔 such that ⊢M e|P ({𝑥 |𝑥∈𝜔})‘𝑚 ≎ S.
Proof: Invoke Theorems 24.6.4 and 24.6.6, and Definition 24.2.1. □

From Definition 24.6.5 and alethic comprehension,
⊢M 𝑚 ∈ S↔ T 𝑚 ∈ 𝜔 ∧ 𝑚 ∉ e|P ({𝑥 |𝑥∈𝜔})‘𝑚 . (24.6.8)

Given Definition 24.2.3, euro and 𝛿𝑥U

⊢M 𝑚 ∈ S↔ T 𝑚 ∈ 𝜔 ∧ ∀𝑦(e|P ({𝑥 |𝑥∈𝜔})‘𝑚 ≎ 𝑦 → 𝑚 ∉ 𝑦) . (24.6.9)
Given Theorem 24.6.7, and the fact that there is only one 𝑚 ∈ 𝜔 such that S ∈ 𝛿𝑚U, forthe appropriate 𝑚, ∀𝑦(e|P ({𝑥 |𝑥∈𝜔})‘𝑚 ≎ 𝑦 ↔ 𝑦 = S). So that

⊢M 𝑚 ∈ S↔ T 𝑚 ∈ 𝜔 ∧ 𝑚 ∉ S) . (24.6.10)
But it was assumed that 𝑚 ∈ 𝜔, which is an orthodox statement, so that
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⊢M 𝑚 ∈ S↔ T 𝑚 ∉ S) . (24.6.11)
As

⊢ T 𝑚 ∉ S) → 𝑚 ∉ S (24.6.12)
and

⊢ 𝑚 ∈ S→ T 𝑚 ∈ S) , (24.6.13)
it follows that

⊢ 𝑚 ∉ S (24.6.14)
and

⊢ T 𝑚 ∉ S → T 𝑚 ∈ S . (24.6.15)
But

⊢M T 𝑚 ∈ S → ¬T 𝑚 ∉ S , (24.6.16)
so that

⊢ T 𝑚 ∉ S → ¬T 𝑚 ∉ S , (24.6.17)
and consequently

⊢ ¬T 𝑚 ∉ S . (24.6.18)
But an instance of the inference mode 9.1.2.11 is

⊢ ¬T 𝑚 ∉ S ⇒ ⊢ 𝑚 ∈ S, (24.6.19)
so that

⊢ 𝑚 ∈ S. (24.6.20)
A joining of equations 24.6.14 and 24.6.20 results in
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⊢ 𝑚 ∈ S & ⊢ 𝑚 ∉ S. (24.6.21)
But this merely amounts to an argumentum ad paradoxo, and it has not been proven that
e|P ({𝑥 |𝑥∈𝜔}) is not a function with domain 𝜔 which is onto its range P ({𝑥 |𝑥 ∈ 𝜔}).
24.6.2 e restricted to P(𝜔)

The potency set of 𝜔 is
P(𝜔) = {𝑥 |𝑥 = {𝑦 |𝑦 ∈ 𝑥 ∧ 𝑦 ∈ 𝜔}}. (24.6.22)

e restricted to the potency set of 𝜔 is
e|P(𝜔) = {(𝑥, 𝑦) | (𝑥, 𝑦) ∈ e ∧ 𝑦 ∈ P(𝜔)}, (24.6.23)

which has 𝜔 as domain and P(𝜔) as its range. Given Definition 24.4.1, equation 24.6.23may be equivalently stated as
e|P(𝜔) = {(𝑥, 𝑦) |𝑥 ∈ 𝜔 ∧ 𝑦 ∈ 𝛿𝑥 (U) ∧ 𝑦 ∈ P(𝜔)}, (24.6.24)

24.6.25. Fact e, P(𝜔) and e|P(𝜔) are orthodox.
Proof: e is orthodox given Theorem 24.4.2, P(𝜔) on account of the theory of identity,and e|P(𝜔) is orthodox because e and P(𝜔) are orthodox. □

24.6.26. Fact
⊢M ∀𝑥∀𝑦∀𝑧((𝑥, 𝑦) ∈ e|P(𝜔) ∧ (𝑥, 𝑧) ∈ e|P(𝜔) → 𝑦 = 𝑧).

Proof: As e is functional. □

24.6.27. Assumption Orthodox function e|P(𝜔) surjects from 𝜔 to P(𝜔):
∀𝑤(𝑤 ∈ P(𝜔) → ∃𝑣(𝑣 ∈ 𝜔 ∧ e|P(𝜔)‘𝑣 ≎ 𝑤)).

24.6.28. Definition:
S = {𝑥 |𝑥 ∈ 𝜔 ∧ 𝑥 ∉ e|P(𝜔)‘𝑥}.

24.6.29. Assumption S = {𝑦 |𝑦 ∈ 𝜔 ∧ 𝑦 ∈ S}: S ∈ P(𝜔).

24.6.30. Assumption S is orthodox.
Proof: From Assumption 24.6.29, Axiom 23.8 and Theorem 23.4. □

24.6.31. Assumption An 𝑚 ∈ 𝜔 is such that e|P(𝜔)‘𝑚 ≎ S.
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Proof: From Assumption 24.6.27. □

24.6.32. Assumption ⊢M ∀𝑥(𝑥 ∈ S↔ 𝑥 ∈ 𝜔 ∧ 𝑥 ∉ e|P(𝜔)‘𝑥).

Proof: Given Definition 24.6.28 and the fact that S is orthodox. □

24.6.33. Assumption ⊢M ∀𝑥(𝑥 ∈ S↔ 𝑥 ∈ 𝜔 ∧ ∀𝑦(e|P(𝜔)‘𝑥 ≎ 𝑦 → 𝑥 ∉ 𝑦).

Proof: On account of Definition 24.2.3 and Assumption 24.6.32. □

24.6.34. Assumption ⊢M (𝑚 ∈ S→ 𝑚 ∉ S).

Proof: It was agreed in Assumption 24.6.31 that for an 𝑚 ∈ 𝜔, e|P(𝜔)‘𝑚 ≎ S. □

24.6.35. Assumption 𝑚 ∉ 𝑆 → ∃𝑦(e|P(𝜔)‘𝑚 ≎ 𝑦 ∧ 𝑚 ∈ 𝑦).
Proof: From Assumption 24.6.33, the agreement of Assumption 24.6.31. □

24.6.36. Theorem For functional 𝑓 :

If ⊢M ∃𝑦( 𝑓 ‘𝑎 ≎ 𝑦 ∧ 𝑎 ∈ 𝑦) and ⊢M 𝑓 ‘𝑎 ≎ 𝑐, then ⊢M 𝑎 ∈ 𝑐.

Proof: Because ⊢M [(𝑎, 𝑦) ∈ 𝑓 ∧ (𝑎, 𝑐) ∈ 𝑓 ] → 𝑦 = 𝑐, as 𝑓 is functional, and because
⊢M ((𝑑, 𝑒) ∈ 𝑓 ↔ 𝑓 ‘𝑑 ≎ 𝑒) if ⊢M ( 𝑓 is functional). □

24.6.37. Assumption ⊢M (𝑚 ∉ S→ 𝑚 ∈ S).

Proof: Appeal to Assumption 24.6.35 and Theorem 24.6.36. □

24.6.38. Assumption ⊢M 𝑚 ∈ S ∧ 𝑚 ∉ S

Proof: From Assumptions 24.6.34 and 24.6.37. □

The contradiction in the maximal context of Assumption 24.6.38 is false, so it follow thata previous assumption is to be discarded. We do that by stating the following
24.6.39. Theorem Assumption 24.6.29 is false, and ⊢M S ≠ {𝑥 |𝑥 ∈ S ∧ 𝑥 ∈ 𝜔}.

Proof: The discussion in §24.6.2. □
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25 £ and the theories of vonsets

If people do not believe that mathematics is simple, it is
only because they do not realize how complicated life is.

John von Neumann
25.1. Definition: Set theory £ is £ plus Axioms 23.6, 23.8, 23.10.
Recall Definitions 23.3 and 23.12.
25.2. Definition: £H&R(D) is £ plus H(D) plus R(D), with D as in Definition 25.4.6.
Let NBGC + TA be Neumann-Bernays-Gödel set theory with Global Choice and Tarski’sAxiom. An interpretation of NBGC + TA is developed in £HR(D) below.
Natural weakenings and extensions of NBGC + TA are as well taken to be theories of
vonsets. Needless to say, but all vonsets are sets, though some sets are not vonsets.
The term “natural” in the previous paragraph is left undefined, as investigations shouldnot be restrained. So we here disregard philosophical quandaries related to the fact thatthe term “vonset” may have different meanings, whatever that is, in natural extensionsof NBG which are not consistent with each other, such as NBG + the Axiom of choice,and NBG + the Axiom of determinacy.
25.1 The potency vonset
We saw in §20 that power sets as classically defined are mathematically useless, as theyare paradoxical lest of a non-paradoxical universal set.
Potency vonsets are potency sets, as all vonsets are sets.
The notion of potency set was introduced in Definition 24.6.1:

P(𝑎) === {𝑥 |𝑥 = {𝑦 |𝑦 ∈ 𝑥 ∧ 𝑦 ∈ 𝑎}}.

25.1.1. Theorem: The potency vonset of a vonset 𝑎 contains precisely 𝑎’s hypovonsets,in the sense of Definition 23.5.
Proof: Use Axioms 23.10 and 25.4.10 and Theorem 23.9.entail that vonsets are heritors,and from Axioms 23.6 and 23.8. □

25.1.2. Theorem:
P(𝑎) is orthodox, and all of its members are hereditarily heritors.

Proof: P(𝑎) is orthodox by the logic of identity. Its members, if any, are heritors onaccount of Axiom 23.8, and are hereditarily heritors given Axiom 23.10. □
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25.1.3. Theorem:
P(𝑎) is empty if 𝑎 is not an heritor.

Proof: Appeal to Axiom 23.8. □

25.1.4. Theorem:
⊢M ∀𝑥(𝑥 ∈ P(𝑎) ↔ H(𝑥) ∧H(𝑎) ∧ 𝑥 ⊂ 𝑎).

Proof: Appeal to Theorem 23.9 and Definition 24.6.1. □

25.2 The Grothendieck vonset of w relative to v
25.2.1. Definition: Let

G(𝑣, 𝑤, 𝑣0, 𝑣1, ) ===∀𝑦
(
𝑤 ∈ 𝑦 ∧ ∀𝑧

[
𝑧 ∈ 𝑦 → (𝑧 ∈ P(𝑣1) ∧ P(𝑧) ∈ P(𝑣1) ∧ P(𝑧) ∈ 𝑦)

]
∧

∀𝑧
(
𝑧 ∈ P(𝑦) ∧ 𝑧 ∉ 𝑦 → ∃ 𝑓 [ 𝑓 ∈ 𝑣 ∧ Bijection( 𝑓 )∧

(∀𝑥0) (𝑥0 ∈ 𝑦 → ∃𝑥1(𝑥1 ∈ 𝑧 ∧ (𝑥0, 𝑥1) ∈ 𝑓 ))

(∀𝑥1) (𝑥1 ∈ 𝑧 → ∃𝑥0(𝑥0 ∈ 𝑦 ∧ (𝑥0, 𝑥1) ∈ 𝑓 ))]
)
→ 𝑣0 ∈ 𝑦

)
Use Theorem 19.1.5 to obtain the manifestation set with parameters G(𝑣, 𝑤),
25.2.2. Theorem The Grothendieck of w relative to v:

⊢M ∀𝑢∀𝑤 (
𝑢 ∈ G(v,w) ↔ T T ∀𝑦

(
𝑤 ∈ 𝑦 ∧ ∀𝑧

[
𝑧 ∈ 𝑦 →

(𝑧 ∈ P(G(v,w)) ∧ P(𝑧) ∈ P(G(v,w)) ∧ P(𝑧) ∈ 𝑦)
]
∧

∀𝑧
(
𝑧 ∈ P(𝑦) ∧ 𝑧 ∉ 𝑦 → ∃ 𝑓 [ 𝑓 ∈ 𝑣 ∧ Bijection( 𝑓 )∧

(∀𝑥0) (𝑥0 ∈ 𝑦 → ∃𝑥1(𝑥1 ∈ 𝑧 ∧ (𝑥0, 𝑥1) ∈ 𝑓 ))

(∀𝑥1) (𝑥1 ∈ 𝑧 → ∃𝑥0(𝑥0 ∈ 𝑦 ∧ (𝑥0, 𝑥1) ∈ 𝑓 ))]
)
→ 𝑢 ∈ 𝑦

) )
25.2.3. Theorem: G(𝑣, 𝑤) is orthodox for orthodox v and w, so that

⊢M ∀𝑢∀𝑤 (
𝑢 ∈ G(v,w) ↔∀𝑦

(
𝑤 ∈ 𝑦 ∧ ∀𝑧

[
𝑧 ∈ 𝑦 →

(𝑧 ∈ P(G(v,w)) ∧ P(𝑧) ∈ P(G(v,w)) ∧ P(𝑧) ∈ 𝑦)
]
∧

∀𝑧
(
𝑧 ∈ P(𝑦) ∧ 𝑧 ∉ 𝑦 → ∃ 𝑓 [ 𝑓 ∈ 𝑣 ∧ Bijection( 𝑓 )∧

(∀𝑥0) (𝑥0 ∈ 𝑦 → ∃𝑥1(𝑥1 ∈ 𝑧 ∧ (𝑥0, 𝑥1) ∈ 𝑓 ))

(∀𝑥1) (𝑥1 ∈ 𝑧 → ∃𝑥0(𝑥0 ∈ 𝑦 ∧ (𝑥0, 𝑥1) ∈ 𝑓 ))]
)
→ 𝑢 ∈ 𝑦

) )
Proof: As in the proof that 𝜔 is orthodox, of Theorem 13.2.3 on page 43, noting that
P(G(v,w)) is an orthodox heritor by cause of Theorem 25.1.2. □

25.2.4. Remark: For appropriate v and w, Theorem 25.2.3 amounts to Tarski’s axiom,which states that all sets are members of a Grothendieck-universe. Tarski-Grothendieckset theory is usually presented as ZFC + Tarski’s axiom.
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25.3 Capture
In this section we presuppose that the sets and conditions invoked are orthodox.
25.3.1. Definition Capture with B from 𝑤:

C(B, 𝑤) === {𝑥 |∃𝑦(𝑦 ∈ 𝑤 ∧ ∀𝑧((𝑥, 𝑦)𝑧𝑦 ∈ B↔ 𝑦 = 𝑧))}

25.3.2. Theorem: Capture is equivalent with replacement.
Proof: i) If a vonset is obtained from capture with B from 𝑤, it can be obtained fromreplacement by using the functional condition ∀𝑧((𝑥, 𝑦)𝑧𝑦 ∈ B ↔ 𝑦 = 𝑧). ii) If a vonset isobtained from replacement by functional B so that ∀𝑥∀𝑦∀𝑧((𝑥, 𝑦) ∈ B∧ (𝑥, 𝑧) ∈ B→ 𝑦 = 𝑧),it can be obtained from capture by using the condition as in Definition 25.3.1. □

25.3.3. Theorem: Capture, as replacement, entails specification.
Proof: Use the functional B′ === {(𝑥, 𝑦) |𝑥 ∈ B ∧ 𝑥 = 𝑦)} as capture vonset relative to avonset 𝑎, and observe that the existence of the vonset {𝑥 |𝑥 ∈ 𝑎 ∧ B(𝑥)} is justified bycapture and extensionality, which holds for V and D below, as per Theorem 25.4.13. □
25.4 V and D
25.4.1. Definition of the drift of 𝑢:
𝔇(𝑢) = {𝑤 |𝑤 ∈ 𝑢 ∨ ∀𝑣

( [
𝑢 ∈ 𝑣 ∧ E = {(𝑥𝑖, 𝑥 𝑗 ) | (𝑥𝑖, 𝑥 𝑗 ) ∈ 𝑢2 ∧ 𝑥𝑖 ∈ 𝑥 𝑗 } ∈ 𝑣 ∧

∀𝑥𝑖 (𝑥𝑖 ∈ 𝑣 → {𝑦 |𝑦 ∈ 𝑢 ∧ 𝑦 ∉ 𝑥𝑖} ∈ 𝑣) ∧ ∀𝑥𝑖∀𝑥 𝑗 (𝑥𝑖 ∈ 𝑣 ∧ 𝑥 𝑗 ∈ 𝑣 → 𝑥𝑖 ∩ 𝑥 𝑗 ∈ 𝑣) ∧
∀𝑥𝑖 (𝑥𝑖 ∈ 𝑣 → dom(𝑥𝑖) = {𝑦 |∃𝑥((𝑦, 𝑥) ∈ 𝑥𝑖)} ∈ 𝑣) ∧
∀𝑥𝑖 (𝑥𝑖 ∈ 𝑣 → {𝑦 |∃𝑥 𝑗 , 𝑥𝑘 (𝑦 = (𝑥 𝑗 , 𝑥𝑘 ) ∧ 𝑥 𝑗 ∈ 𝑥𝑖 ∧ 𝑣𝑘 ∈ 𝑣1)} ∈ 𝑣) ∧
∀𝑥𝑖 (𝑥𝑖 ∈ 𝑣 → {𝑦 |∃𝑥 𝑗∃𝑥𝑘∃𝑥𝑙 (𝑦 = (𝑥 𝑗 , 𝑥𝑘 , 𝑥𝑙) ∧ (𝑥𝑘 , 𝑥𝑙 , 𝑥 𝑗 ) ∈ 𝑥𝑖} ∈ 𝑣) ∧
∀𝑥𝑖 (𝑥𝑖 ∈ 𝑣 → {𝑦 |∃𝑥 𝑗∃𝑥𝑘∃𝑥𝑙 (𝑦 = (𝑥 𝑗 , 𝑥𝑘 , 𝑥𝑙) ∧ (𝑥 𝑗 , 𝑥𝑙 , 𝑥𝑘 ) ∈ 𝑥𝑖} ∈ 𝑣)

]
→ 𝑤 ∈ 𝑣

)
}

25.4.2. Definition of V(𝑣0, 𝑣1):
V(𝑣0, 𝑣1) = ∀𝑣

(
(𝜔 ∈ 𝑣 ∧ ∀𝑤 ∈ 𝑣∀𝑥 ∈ 𝑣 : {𝑤, 𝑥} ∈ 𝑣 ∧ ∀𝑤 ∈ 𝑣 :

⋃
𝑤 ∈ 𝑣 ∧

∀𝑤 ∈ 𝑣 :P(𝑤) = {𝑥 |𝑥 = {𝑦 |𝑦 ∈ 𝑥 ∧ 𝑦 ∈ 𝑤}} ∈ 𝑣 ∧
∀𝑤 ∈ 𝑣 : 𝛿(𝑤) = {𝑥 | (𝑥 ∈ 𝑤 ∧ ∀𝑦(𝑦 ∈ 𝑤 → 𝑥 ⊴ 𝑦)} ∈ 𝑣 ∧
∀𝑤 ∈ 𝑣 : G(𝔇(𝑣1), 𝑤) ∈ 𝑣 ∧
∀𝑤 ∈ 𝑣∀B ∈ 𝔇(𝑣1) :C(B, 𝑤) = {𝑥 |∃𝑦(𝑦 ∈ 𝑤 ∧ ∀𝑧((𝑥, 𝑦)𝑧𝑦 ∈ B↔ 𝑦 = 𝑧))} ∈ 𝑣)
→ 𝑣0 ∈ 𝑣

)
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25.4.3. Definition of V via manifestation from Definition 25.4.2:
⊢M ∀𝑢

[
𝑢 ∈ V↔T T ∀𝑣

[
[𝜔 ∈ 𝑣 ∧ ∀𝑤 ∈ 𝑣∀𝑥 ∈ 𝑣 : {𝑤, 𝑥} ∈ 𝑣 ∧ ∀𝑤 ∈ 𝑣 :

⋃
𝑤 ∈ 𝑣 ∧

∀𝑤 ∈ 𝑣 :P(𝑤) = {𝑥 |𝑥 = {𝑦 |𝑦 ∈ 𝑥 ∧ 𝑦 ∈ 𝑤}} ∈ 𝑣 ∧
∀𝑤 ∈ 𝑣 : 𝛿(𝑤) = {𝑥 | (𝑥 ∈ 𝑤 ∧ ∀𝑦(𝑦 ∈ 𝑤 → 𝑥 ⊴ 𝑦)} ∈ 𝑣 ∧
∀𝑤 ∈ 𝑣 : G(𝔇(V), 𝑤) ∈ 𝑣 ∧
∀𝑤 ∈ 𝑣∀B ∈ 𝔇(V) :C(B, 𝑤) = {𝑥 |∃𝑦(𝑦 ∈ 𝑤 ∧ ∀𝑧((𝑥, 𝑦)𝑧𝑦 ∈ B↔ 𝑦 = 𝑧))} ∈ 𝑣]

→ 𝑢 ∈ 𝑣
] ]

As V is orthodox on account of Theorems 23.4 and 25.4.11,
25.4.4. Theorem:
⊢M ∀𝑢

[
𝑢 ∈ V↔ ∀𝑣

[
[𝜔 ∈ 𝑣 ∧ ∀𝑤 ∈ 𝑣∀𝑥 ∈ 𝑣 : {𝑤, 𝑥} ∈ 𝑣 ∧ ∀𝑤 ∈ 𝑣 :

⋃
𝑤 ∈ 𝑣 ∧

∀𝑤 ∈ 𝑣 :P(𝑤) = {𝑥 |𝑥 = {𝑦 |𝑦 ∈ 𝑥 ∧ 𝑦 ∈ 𝑤}} ∈ 𝑣 ∧
∀𝑤 ∈ 𝑣 : 𝛿(𝑤) = {𝑥 | (𝑥 ∈ 𝑤 ∧ ∀𝑦(𝑦 ∈ 𝑤 → 𝑥 ⊴ 𝑦)} ∈ 𝑣 ∧
∀𝑤 ∈ 𝑣 : G(𝔇(V), 𝑤) ∈ 𝑣 ∧
∀𝑤 ∈ 𝑣∀B ∈ 𝔇(V) :C(B, 𝑤) = {𝑥 |∃𝑦(𝑦 ∈ 𝑤 ∧ ∀𝑧((𝑥, 𝑦)𝑧𝑦 ∈ B↔ 𝑦 = 𝑧))} ∈ 𝑣]

→ 𝑢 ∈ 𝑣
] ]

25.4.5. The drift equation: D=𝔇(V).
25.4.6. Definition of the drift of all classes:

D = {𝑤 |𝑤 ∈ V ∨ ∀𝑣
( [

V ∈ 𝑣 ∧ E = {(𝑥𝑖, 𝑥 𝑗 ) | (𝑥𝑖, 𝑥 𝑗 ) ∈ V2 ∧ 𝑥𝑖 ∈ 𝑥 𝑗 } ∈ 𝑣 ∧
∀𝑥𝑖 (𝑥𝑖 ∈ 𝑣 → {𝑢 |𝑢 ∈ V ∧ 𝑢 ∉ 𝑥𝑖} ∈ 𝑣) ∧ ∀𝑥𝑖∀𝑥 𝑗 (𝑥𝑖 ∈ 𝑣 ∧ 𝑥 𝑗 ∈ 𝑣 → 𝑥𝑖 ∩ 𝑥 𝑗 ∈ 𝑣) ∧
∀𝑥𝑖 (𝑥𝑖 ∈ 𝑣 → dom(𝑥𝑖) = {𝑤 |∃𝑥((𝑤, 𝑥) ∈ 𝑥𝑖)} ∈ 𝑣) ∧
∀𝑥𝑖 (𝑥𝑖 ∈ 𝑣 → {𝑢 |∃𝑥 𝑗 , 𝑥𝑘 (𝑢 = (𝑥 𝑗 , 𝑥𝑘 ) ∧ 𝑥 𝑗 ∈ 𝑥𝑖 ∧ 𝑣𝑘 ∈ V)} ∈ 𝑣) ∧
∀𝑥𝑖 (𝑥𝑖 ∈ 𝑣 → {𝑢 |∃𝑥 𝑗∃𝑥𝑘∃𝑥𝑙 (𝑢 = (𝑥 𝑗 , 𝑥𝑘 , 𝑥𝑙) ∧ (𝑥𝑘 , 𝑥𝑙 , 𝑥 𝑗 ) ∈ 𝑥𝑖} ∈ 𝑣) ∧
∀𝑥𝑖 (𝑥𝑖 ∈ 𝑣 → {𝑢 |∃𝑥 𝑗∃𝑥𝑘∃𝑥𝑙 (𝑢 = (𝑥 𝑗 , 𝑥𝑘 , 𝑥𝑙) ∧ (𝑥 𝑗 , 𝑥𝑙 , 𝑥𝑘 ) ∈ 𝑥𝑖} ∈ 𝑣)

]
→ 𝑤 ∈ 𝑣

)
}

25.4.7. Fact: ⊢M V ⊂ D.

25.4.8. Theorem The definition of V, with recourse to D:
⊢M ∀𝑢

[
𝑢 ∈ V↔ ∀𝑣

[
[𝜔 ∈ 𝑣 ∧ ∀𝑤 ∈ 𝑣∀𝑥 ∈ 𝑣 : {𝑤, 𝑥} ∈ 𝑣 ∧ ∀𝑤 ∈ 𝑣 :

⋃
𝑤 ∈ 𝑣 ∧

∀𝑤 ∈ 𝑣 :P(𝑤) = {𝑥 |𝑥 = {𝑦 |𝑦 ∈ 𝑥 ∧ 𝑦 ∈ 𝑤}} ∈ 𝑣 ∧
∀𝑤 ∈ 𝑣 : 𝛿(𝑤) = {𝑥 | (𝑥 ∈ 𝑤 ∧ ∀𝑦(𝑦 ∈ 𝑤 → 𝑥 ⊴ 𝑦)} ∈ 𝑣 ∧
∀𝑤 ∈ 𝑣 :G(D, 𝑤) ∈ 𝑣 ∧
∀𝑤 ∈ 𝑣∀B ∈ D :C(B, 𝑤) = {𝑥 |∃𝑦(𝑦 ∈ 𝑤 ∧ ∀𝑧((𝑥, 𝑦)𝑧𝑦 ∈ B↔ 𝑦 = 𝑧))} ∈ 𝑣]

→ 𝑢 ∈ 𝑣
] ]
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25.4.9. Definition: V is the class of all vonsets.
25.4.10. Axiom: H(D).

25.4.11. Theorem: H(V).

Proof: On account of Axioms 23.10 and 25.4.10. □

25.4.12. Corollary: V and D are orthodox.
Proof: Use Axiom 25.4.10, Theorem 25.4.11 and Theorem 23.4. □

25.4.13. Theorem: Co-extensional members of V ∪ D are identical.
Proof: Use Axioms 23.10 and 25.4.10, Theorem 25.4.11 and, finally, Theorem 23.7. □
25.4.14. Theorem: V = {𝑥 |𝑥 ∈ V ∧ 𝑥 ∈ D}.

Proof: As H(V) and H(D) on account of Axiom 25.4.10 and Theorem 25.4.11, appealsto Theorems 23.9 and Fact 25.4.7 suffice to finish the proof. □

25.4.15. Axiom The drift is wellfounded:
R(D)

25.4.16. Theorem All classes are wellfounded.
Proof: Invoke the result of Exercise 23.13. □

25.4.17. Theorem All vonsets are wellfounded.
Proof: Given Fact 25.4.7, a vonset in V is as well a class member of D. So the vonset iswellfounded on account of Theorem 25.4.16. □

25.4.18. Theorem D is not a class.
Proof: If D were a class, it would on account of Definition 25.4.6 follow that D∈D, whichcontradicts Axiom 25.4.15. □

25.4.19. Remark: Instead of postulating Axiom 25.4.15, one may obtain a suitable reg-ular class V* of all regular vonsets by taking it to be the class of all elements of a potencyset of an ordinal in V. That invokes the consistency proof of ZFC with regularity given theconsistency of ZFC− = ZFC without regularity, by (Kunen 1980, chapter 3), or a similarrelative consistency proof. Given Kunen’s result, however, and the relative consistencyresults obtained earlier by (Skolem 1923) and (Neumann 1929), we know that we cansafely posit Axiom 25.4.15.
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25.4.20. Theorem: V is not a vonset.
Proof: Appeal to Definition 25.4.9 and Theorem 25.4.15. □

25.5 Primitive theorems for classes
We leave is as an exercise to prove the following from Definition 25.4.6.
25.5.1. Theorem V is a class:

V ∈ D.

25.5.2. Theorem Membership class:
E = {(𝑥, 𝑦) |𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑥 ∈ 𝑦} ∈ D.

25.5.3. Theorem Intersection class:
∀A ∈ D∀B ∈ D∃C ∈ D∀𝑥(𝑥 ∈ C↔ 𝑥 ∈ A ∧ 𝑥 ∈ B).

25.5.4. Theorem Complement class:
∀A ∈ D∃B ∈ D∀𝑥(𝑥 ∈ B↔ 𝑥 ∉ A).

25.5.5. Theorem Domain class:
∀A ∈ D∃B ∈ D∀𝑥(𝑥 ∈ B↔ ∃𝑦((𝑥, 𝑦) ∈ A)).

25.5.6. Theorem Product by V class:
∀A ∈ D∃B ∈ D∀𝑥(𝑥 ∈ B↔ ∃𝑦∃𝑧(𝑥 = (𝑦, 𝑧) ∧ 𝑦 ∈ A ∧ 𝑧 ∈ V)).

25.5.7. Theorem Circular permutation class:
∀A ∈ D∃B ∈ D∀𝑥∀𝑦∀𝑧((𝑥, 𝑦, 𝑧) ∈ B↔ (𝑦, 𝑧, 𝑥) ∈ A).

25.5.8. Theorem Transposition class:
∀A ∈ D∃B ∈ D∀𝑥∀𝑦∀𝑧((𝑥, 𝑦, 𝑧) ∈ B↔ (𝑥, 𝑧, 𝑦) ∈ A).
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25.6 The Tuple-lemmas
25.6.1. Lemma:

∀A ∈ D∃B1 ∈ D∀𝑥∀𝑦∀𝑧((𝑥, 𝑦, 𝑧) ∈ B1 ↔ (𝑥, 𝑦) ∈ A ∧ 𝑧 ∈ V).

25.6.2. Lemma:
∀A ∈ D∃B2 ∈ D∀𝑥∀𝑦∀𝑧((𝑥, 𝑧, 𝑦) ∈ B2 ↔ (𝑥, 𝑦) ∈ A ∧ 𝑧 ∈ V).

25.6.3. Lemma:
∀A ∈ D∃B3 ∈ D∀𝑥∀𝑦∀𝑧((𝑧, 𝑥, 𝑦) ∈ B3 ↔ (𝑥, 𝑦) ∈ A ∧ 𝑧 ∈ V).

25.6.4. Lemma:
∀A ∈ D∃B4 ∈ D∀𝑥∀𝑦((𝑦, 𝑥) ∈ B4 ↔ (𝑥, 𝑦) ∈ A).

Proof: Use Theorem 25.5.6 to get B1, Theorem 25.5.8 on B1 to get B2, Theorem 25.5.7on B1 to get B3, and use Theorem 25.5.7 on B2, plus Theorem 25.5.5, to get B4. □

25.7 The class existence theorem

25.8 The expansion lemma

25.9 Proof that V is orthodox

25.10 Proof that all members of V are orthodox
As H by Axiom ... This is done already.
25.11 Global well ordering
Useful explanation of
Global well ordering given global choice.
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26 Space for librationist category theory?

La filosofia è scritta in questo grandissimo libro, che contin-
uamente ci sta aperto innanzi agli occhi (io dico l’Universo),
ma non si può intendere, se prima non il sapere a intender la
lingua, e conoscer i caratteri ne quali è scritto. Egli è scritto
in lingua matematica, e i caratteri son triangoli, cerchi ed
altre figure geometriche, senza i quali mezzi è impossibile
intenderne umanamente parola; senza questi è un aggirarsi
vanamente per un oscuro labirinto.

Galilei
The author has learned that set theories as NBGC + TA are considered ideal for categorytheory, and wants to investigate whether that can be done in the librationist frameworkset up for mentioned set theories in §25.
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27 The theory of vansets NF in £H(W)

The analogy between the myth of mathematics and the myth of physics is, in some
additional and perhaps fortuitous ways, strikingly close. Consider, for example,
the crisis which was precipitated in the foundations of mathematics, at the turn of
the century, by the discovery of Russell’s paradox and other antinomies of set the-
ory. These contradictions had to be obviated by unintuitive, ad hoc devices; our
mathematical myth-making became deliberate and evident to all. But, what, of
physics? An antinomy arose between the undular and the corpuscular accounts
of light; and if this was not as out-and-out a contradiction as Russell’s paradox,
I suspect that the reason is that physics is not as out-and-out as mathematics.

Willard van Orman Quine, in (Quine 1961, pp. 18–19)
We give an account of Willard van Quine’s set theory New Foundations, of (Quine 1937),via the axiomatization offered by (Hailperin 1944, p. 10), which is adapted here:
𝑃0 : ∃𝛽∀𝑥(𝑥 ∈ 𝛽↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑥 ∉ 𝑦)

𝑃1 : ∀𝑢∀𝑣∃𝛽∀𝑥(𝑥 ∈ 𝛽↔ (𝑥 ∉ 𝑢 ∨ 𝑥 ∉ 𝑣))

𝑃2 : ∀𝛼∃𝛽∀𝑥∀𝑦(({𝑥}, {𝑦}) ∈ 𝛽↔ (𝑥, 𝑦) ∈ 𝛼)

𝑃3 : ∀𝛼∃𝛽∀𝑥∀𝑦∀𝑧((𝑥, 𝑦, 𝑧) ∈ 𝛽↔ (𝑥, 𝑦) ∈ 𝛼)

𝑃4 : ∀𝛼∃𝛽∀𝑥∀𝑦∀𝑧((𝑥, 𝑧, 𝑦) ∈ 𝛽↔ (𝑥, 𝑦) ∈ 𝛼)

𝑃5 : ∀𝛼∃𝛽∀𝑥∀𝑦((𝑦, 𝑥) ∈ 𝛽↔ 𝑥 ∈ 𝛼)

𝑃6 : ∀𝛼∃𝛽(𝑥 ∈ 𝛽↔ ∀𝑢((𝑢, {𝑥}) ∈ 𝛼))

𝑃7 : ∀𝛼∃𝛽∀𝑥∀𝑦((𝑦, 𝑥) ∈ 𝛽↔ (𝑥, 𝑦) ∈ 𝛼)

𝑃8 : ∃𝛽∀𝑥(𝑥 ∈ 𝛽↔ ∃𝑦(𝑥 = {𝑦}))

𝑃9 : ∃𝛽∀𝑥∀𝑦(({𝑥}, 𝑦) ∈ 𝛽↔ 𝑥 ∈ 𝑦)

Notice that 𝑃0 was not included in (Hailperin 1944, p. 10).
U was reserved for the full universal set {𝑥 |𝑥 = 𝑥} of £. In the previous section V wasreserved for the class of all vonsets, as defined via manifestation there.
W, with associated mnemonic device die Welt, is reserved the Quinean vanset of allvansets, as defined via manifestation below in this section.
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27.1. Definition:
W(𝑣0, 𝑣1) === ∀𝑣

( [
{𝑥 |∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑥 ∉ 𝑦)} ∈ 𝑣 ∧

∀𝑤∀𝑥(𝑤 ∈ 𝑣 ∧ 𝑥 ∈ 𝑣 → {𝑦 ∈ 𝑣1 | (𝑦 ∉ 𝑤 ∨ 𝑦 ∉ 𝑥)} ∈ 𝑣) ∧
∀𝑤(𝑤 ∈ 𝑣 → {({𝑥}, {𝑦} ∈ 𝑣1 | (𝑥, 𝑦) ∈ 𝑤} ∈ 𝑣) ∧
∀𝑤(𝑤 ∈ 𝑣 → {(𝑥, 𝑦, 𝑧) ∈ 𝑣1 | (𝑥, 𝑦) ∈ 𝑤} ∈ 𝑣) ∧
∀𝑤(𝑤 ∈ 𝑣 → {(𝑥, 𝑧, 𝑦) ∈ 𝑣1 | (𝑥, 𝑦) ∈ 𝑤} ∈ 𝑣) ∧
∀𝑤(𝑤 ∈ 𝑣 → {(𝑦, 𝑥) ∈ 𝑣1 | (𝑥, 𝑦) ∈ 𝑤} ∈ 𝑣) ∧
∀𝑤(𝑤 ∈ 𝑣 → {𝑥 ∈ 𝑣1 |∀𝑦(𝑦 ∈ 𝑣1 → (𝑦, {𝑥}) ∈ 𝑤)} ∈ 𝑣) ∧
∀𝑤(𝑤 ∈ 𝑣 → {(𝑦, 𝑥) ∈ 𝑣1 |𝑥 ∈ 𝑤} ∈ 𝑣) ∧
∀𝑤(𝑤 ∈ 𝑣 → {𝑥 ∈ 𝑣1 |∃𝑦(𝑦 ∈ 𝑣1 ∧ 𝑥 = {𝑦})} ∈ 𝑣) ∧
∀𝑤(𝑤 ∈ 𝑣 → {({𝑥}, 𝑦) ∈ 𝑣1 |𝑥 ∈ 𝑦} ∈ 𝑣

)
]

→ 𝑣0 ∈ 𝑣
)

Use Definitions 27.1 and 19.1.2 to obtain
27.2. Theorem:

∀𝑢(𝑢 ∈W↔ T T ∀𝑣
( [
{𝑥 |∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑥 ∉ 𝑦)} ∈ 𝑣 ∧

∀𝑤∀𝑥(𝑤 ∈ 𝑣 ∧ 𝑥 ∈ 𝑣 → {𝑦 ∈W| (𝑦 ∉ 𝑤 ∨ 𝑦 ∉ 𝑥)} ∈ 𝑣) ∧
∀𝑤(𝑤 ∈ 𝑣 → {({𝑥}, {𝑦} ∈W| (𝑥, 𝑦) ∈ 𝑤} ∈ 𝑣) ∧
∀𝑤(𝑤 ∈ 𝑣 → {(𝑥, 𝑦, 𝑧) ∈W| (𝑥, 𝑦) ∈ 𝑤} ∈ 𝑣) ∧
∀𝑤(𝑤 ∈ 𝑣 → {(𝑥, 𝑧, 𝑦) ∈W| (𝑥, 𝑦) ∈ 𝑤} ∈ 𝑣) ∧
∀𝑤(𝑤 ∈ 𝑣 → {(𝑦, 𝑥) ∈W| (𝑥, 𝑦) ∈ 𝑤} ∈ 𝑣) ∧
∀𝑤(𝑤 ∈ 𝑣 → {𝑥 ∈W|∀𝑦(𝑦 ∈W→ (𝑦, {𝑥}) ∈ 𝑤)} ∈ 𝑣) ∧
∀𝑤(𝑤 ∈ 𝑣 → {(𝑦, 𝑥) ∈W|𝑥 ∈ 𝑤} ∈ 𝑣) ∧
∀𝑤(𝑤 ∈ 𝑣 → {𝑥 ∈W|∃𝑦(𝑦 ∈W ∧ 𝑥 = {𝑦})} ∈ 𝑣) ∧
∀𝑤(𝑤 ∈ 𝑣 → {({𝑥}, 𝑦) ∈W|𝑥 ∈ 𝑦} ∈ 𝑣)

]
→ 𝑢 ∈ 𝑣

)
)

27.3. Theorem: W is orthodox.
Proof: Adapt the the proof of Theorem 13.2.3. □
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27.4. Theorem:
∀𝑢(𝑢 ∈W↔ ∀𝑣

( [
{𝑥 |∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑥 ∉ 𝑦)} ∈ 𝑣 ∧

∀𝑤∀𝑥(𝑤 ∈ 𝑣 ∧ 𝑥 ∈ 𝑣 → {𝑦 ∈W| (𝑦 ∉ 𝑤 ∨ 𝑦 ∉ 𝑥)} ∈ 𝑣) ∧
∀𝑤(𝑤 ∈ 𝑣 → {({𝑥}, {𝑦} ∈W| (𝑥, 𝑦) ∈ 𝑤} ∈ 𝑣) ∧
∀𝑤(𝑤 ∈ 𝑣 → {(𝑥, 𝑦, 𝑧) ∈W| (𝑥, 𝑦) ∈ 𝑤} ∈ 𝑣) ∧
∀𝑤(𝑤 ∈ 𝑣 → {(𝑥, 𝑧, 𝑦) ∈W| (𝑥, 𝑦) ∈ 𝑤} ∈ 𝑣) ∧
∀𝑤(𝑤 ∈ 𝑣 → {(𝑦, 𝑥) ∈W| (𝑥, 𝑦) ∈ 𝑤} ∈ 𝑣) ∧
∀𝑤(𝑤 ∈ 𝑣 → {𝑥 ∈W|∀𝑦(𝑦 ∈W→ (𝑦, {𝑥}) ∈ 𝑤)} ∈ 𝑣) ∧
∀𝑤(𝑤 ∈ 𝑣 → {(𝑦, 𝑥) ∈W|𝑥 ∈ 𝑤} ∈ 𝑣) ∧
∀𝑤(𝑤 ∈ 𝑣 → {𝑥 ∈W|∃𝑦(𝑦 ∈W ∧ 𝑥 = {𝑦})} ∈ 𝑣) ∧
∀𝑤(𝑤 ∈ 𝑣 → {({𝑥}, 𝑦) ∈W|𝑥 ∈ 𝑦} ∈ 𝑣)

]
→ 𝑢 ∈ 𝑣

)
)

Proof: A consequence of Theorem 27.2 as W is orthodox, given Theorem 27.3. □

27.5. Axiom: H(W)

27.6. Theorem: Co-extensional sets in W are identical.
Proof: Use Axiom 23.10 and Theorem 23.7. □

The proper identity for W is of course given by
27.7. Definition:

𝑎
W
= 𝑏 === ∀𝑣(𝑣 ∈W→ (𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣).

By Axiom 27.5, Theorem 27.6 and Theorem 27.4 combined with the results of (Hailperin1944), it follows that £W accounts for Quine’s set theory NF.
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28 𝐴 is true just if 𝐴 states the truth

La logique est l’hygiène des mathématiques.
André Weil

The following perspective upon the semantics is useful for some purposes.
28.1. Definition: The closure ordinal Ϙ is the truth.
28.2. Definition: The way of sentence A is [𝛿 : 𝛿 ⪯ Ϙ & (Ξ, 𝛿) ⊩ A].
28.3. Definition: A states the supremum of its way.
28.4. Definition: A expresses its way.
28.5. Definition: A is true just if A states the truth.
28.6. Definition: 𝐴 is false just if ¬𝐴 is true.
28.7. Definition: The way of 𝐴 ∧ 𝐵 is the way of 𝐴 ∩ the way of 𝐵.
28.8. Definition: The way of ¬𝐴 is Ϙ minus the way of 𝐴.
Here the sentence A is true should be interpreted as ⊢ T A , and the sentence A states
the truth as equivalent with ⊢ A.
Moreover, “just if” is here to be interpreted via the bidirectional entailment in

⊢ T A ⇔ ⊢ A.

It is a fact that
⊢ ¬T A ⇔ ⊢ ¬A,

so, consequently,
⊢M T A ⇔ ⊢M A.

The connectives are not truth-functional in librationism, but they are way-functional,and can be accounted for by following classical interdefinability connections as in anyBoolean algebra: The way of the negation ¬A of A, is truth minus the way of A, and theway of the conjunction A ∧ B is the intersection of the way of A and the way of B. Theways of sentences built up from other connectives follow from their definitions in terms
¬ and ∧.
According to librationism, a true paradoxical sentence L and its true companion sentence
¬L complement each other. For the way of L, as defined in Definition 28.2, is in such acase a set of ordinals with Ϙ as least upper bound, whereas as well the way of ¬L is a setof ordinals with Ϙ as least upper bound; moreover, the ways of L and ¬L do not overlap.Thus, by the Definition 28.4, L does not express the same as what ¬L expresses, for Land ¬L have different ways.
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