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1 PREFACE

1 Preface

One cannot see it all from one point of view!

The investigations, which led to the librationist set theories, began in the spring of 1993.
It was a struggle to build upon imprecise thoughts to express beliefs precise enough
to be useful. But the author pressed on, as the investigations were very addictive, and
began giving talks already in 1996, and publishing unfinished ideas already in 1997, with
(Bjgrdal |1998). Motivation to persist with the work was always found, so the hard work
continued over all those years, in between other rather taxing tasks.

The problems with the paradoxes in set theory are of great importance not only when
one attempts to find useful and philosophically reasonable foundational theories for the
formal sciences, but also when one seeks to account for a variety of important problems
in metaphysics, epistemology and other areas of philosophy.

Paradoxes, are important in metaphysics. As stressed in (Grim|1991)), thinking according
to the contemporary book has the awkward consequence that one must think that the
world is not complete. It will be seen that librationism is not according to the current
book, for it has, as shown in §24.6| the result that there are only denumerably many
objects in the world; importantly, the validity of Cantor’s arguments for uncountability
are not challenged.

We can see the more comprehensive relevance of the paradoxes rather directly from the
fact that modal logics are very important philosophical tools for reasoning about ethics,
knowledge, and other central philosophical concepts. But threats of paradox undermine
the use of reasonable modal logics, with more than just a minimum of linguistic resources
and plausible closure principles. This is on account of such limitative results as were
discovered by (Montague |1963), and investigated further by others, like (Friedman and
Sheard [1987), and (Cantini |1996)). A takeaway is for example that if a modal logic is
expressive enough to license the inference from Smith ought to sell his house to there is
something Smith ought to do, then Russell like paradoxes arise.

So paradoxes are pervasive in philosophy. The standard way to evade Montague like
limits is to put restrictions upon the linguistic resources. Librationist resolutions are
preferable, as such restrictions are not needed.

The focus in this essay will be upon the paradoxes in the context of mathematics, and so
foremostly in theories of sets, and related theories, as category theory. A central result is
that the librationist set theoric extension @HR(D) of £ accounts for Neumann-Bernays-
Godel set theory with the Axiom of Choice and Tarski’s Axiom. Moreover, % succeeds
with defining an impredicative manifestation set W, die Welt, so that @H (W) accounts
for Quine’s New Foundations. Nevertheless, the points of view developed support the
view that the truth-paradoxes and the set-paradoxes have common origins, so that the
librationist resolutions of the set theoretic paradoxes are at the same time resolutions
of the truth theoretic paradoxes. Both the librationist resolutions of the set theoretic
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paradoxes and the truth theoretic paradoxes have non-trivial philosophical implications:
librationist set theories have the consequence that there are no absolutely uncountable
sets, and librationist truth theories allow the use of syntactical modalities in ways which
circumvent limitations as those of (Montague|1963), and a truth predicate which is useful
for more precise philosophical discourse.
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3 INTRODUCTION

3 Introduction

Nur wenn man nicht auf den Nutzen nach aussen sieht, sondern in der Mathematik selbst
auf das Verhdltnis der unbenutzten Teile, bemerkt man das andere und eigentliche
Gesicht dieser Wissenschaft. Es ist nicht zweckbedacht, sondern unékonomisch und
leidenschaftlich. [...] Die Mathematik ist Tapferkeitsluxus der reinen Ratio, einer der
wenigen die es heute gibt.

Robert Musil, in Der mathematische Mensch,
Mitteilungen der Deutschen Mathematiker-Vereinigung, No°20, page 50, 1912.

It is presupposed that A A =A is a contradiction, and that a theory is inconsistent just
if it has contradictory theses. As per §15] £ is consistent and not contradictory. So the
librationist points of view are not dialetheic, for dialetheism is canonically characterized,
in (Priest, Berto, and Weber|2022)), as a view which takes some contradictions to be true.
Moreover, £ is not a paraconsistent point of view, as the latter are not conservative in the
sense of Definition Librationism is instead, as per Definition[15.3.15|taken toof-
fer a classic, extraclassical and extracoherent point of view. To complete the distinction,
take librationism to offer a bialethic point of view, and not a dialetheic one.

It will be showns in §[28| that Librationism meets a challenge which it is difficult to see
can be met if one presupposes that contradictions, as p A —p, are true, viz. to offer an
account of what a true sentence p says, in a paradoxical situation, which its true negation
—-p does not say in that situation.

A remark on designator is called for. One might hold that a theory is not a set theory if it
does not presuppose exactly the same linguistic resources as the language of set theory
according to the current book, so that LSAT is understood to be the language of first order
logic plus the symbol €. This tenet is not abided by here, and it is instead presupposed
that set theoretic reality should be investigated with such rescources which best reveal
it. As will become clear, set abstracts are used, and these are not eliminable, due to the
fact that £ is a highly non-extensional theory. The symbol €, however, is eliminable, by
means of apposition.

As £, pronounced as “libra”, with additional assumptions, amounting to a definition of
librationist system %, pronounced as “pounds”, interprets classical set theory NBG and
extensions, given yet other assumptions, it would seem disingenious indeed, to hold that
£ and % are not themselves set theories.
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4 LIBRATIONISM AND ITS FORMAL LANGUAGE

4 Librationism and its formal language

Die ganzen Zahlen hat der liebe Gott
gemacht, allesandere ist Menschenwerk.

Leopold Kronecker

4.1 Nomenclature

(Bjegrdal 2012, p. 323) states "Librationism takes its name from the word “libration”, which
the reader is asked to look up if unfamiliar.”" Lunar librations were an inspiration.

After the publication of (Bjgrdal|2012), £ was used to denote the librationist foundational
system. It will be indicated, asin §§25 when additional assumptions are made, which
result in the use of @ for an extension of £.

The pound sign £ is most prevalently used for the currency of Great Britain. It derives
from Latin libra pondo. Pondo is an adverb which means by weight. Libra was used for
the Roman pound - which was about 327 g, but also for scales and balances. Such scales
were an attribute to the Greek Goddess for Divine Justice, Themis, and for her daughter
Dike, who was the Goddess for Human justice. The roles of the attributes were thought
to be the weighing of the consequences of acts to find balance, and, therefore, justice.
The Goddess corresponding to Themis and Dike in the Roman religion, according to the
interpretatio Romana was the blinded Justitia, also referred to as Lady Justice, as well
had a scale as attribute.

In the context of librationism, £ may be taken to symbolize the weighing and gauging of
balances between sentences, and perhaps most interestingly, from the librationst points
of view, in the case of sentences which are incompatible or complementary, in the sense
of Definitions[15.4.1land[15.4.3l

4.2 Numeralism - the chiffer standpoint

The chiffers are the numbers-of-the-meta-language. The ordinal chiffers are defined a la
von Neumann by means of the meta mathematical variety theory, which one may take to
be the set-theory-of-the-meta-language. One must carefully distinguish ordinal chiffers
from corresponding ordinal numbers of the set theories expressed, and accounted for,
by the object language. The ciphers are numerals-of-the-meta-language, denoting finite
order chiffers. In the case of finite chiffers we underline the denoting cipher to contrast
with numerals of the set theories accounted for in the object language. So 0 e.g. denotes
the ordinal chiffer Zero. The natural chiffers are the finite ordinal chiffers, and the variety
of counting chiffers is the variety of the natural chiffers minus 0. The integer chiffers are
the natural chiffers extended with the negative counterparts of the counting chiffers.

The chiffer standpoint presupposed here is stronger than the point of view presupposed
by (Godel 1931)), which was that formulas, and expressions akin, may be correlated via
a coding with numerals denoting natural numbers. For the symbols and expressions of £
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are taken to be counting chiffers, and their syntactical manipulations are accounted for
by the variety theory presupposed.

4.3 The inclusion of abstracts

The inclusion of abstracts is a trait shared with (Gandy|1959), and with contributions to
the literature on non-classical set theories, including some which were at the time called
property theoriedt], as e.g. (Gilmore, 1974), and theories discussed by (Cantini, 1996),
and others, where abstracts were used because the principle of extensionality fails.

4.4 “="and “c” are not primitive in £
The formal language of £ is Polish, and without symbols for identity or membership.

A Polish |-connective is used, as per Definition The membership relation can be
defined by means of apposition of terms, because there as a consequence of the Polish
policy are no parentheses in the formal language of £.

§[11] shows that the identity of « and b can be delineated adequately by the statement
that b is an element of all sets that have a as an element, as in Definition{11.1.2

4.5 Metalinguistic conventions
4.5.1. Derinrrion Symbols of the meta language:
(1) X is the existential quantifier.
(2) ITis the universal quantifier.
(3) ~ is negation.
(4) & is conjunction.
(5) ® is disjunction.
(6) = is for implication.

(7) © is for bi-implication.

1Tt seems that the term "property theory", despite seemingly having an origin with Kurt Gddel, became
unfortunate. The opening sentence of Roger Myhill’s article Paradoxes, in Synthese 60 (1984), 129-143,
is: “Godel said to me more than once "There never were any set-theoretic paradoxes, but the property-
theoretic paradoxes are still unresolved"; and he may well have said the same thing in print.”

Remarks as this may have had such influence that some authors later used the term "property-theory",
for non-extensional set theories, which attempt to give more type-free accounts that approximate naive
abstraction in dealing with the paradoxes.

Nevertheless, there are now so many non-extensional set theories in the literature, beyond attempts to
deal with the paradoxes, that it seems unreasonable to consider them property theoretic, as opposed to
set theoretic.

Was Godel aware of the contribution in (Scott{1961)), or did he study (Friedman|1973]). (Shapiro|1985))
is another witness to modern research into set theories without extensionality.
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(8) [x: ...]isthe set notation for use in the metalanguage.

(9) ¢ is the metalanguage symbol for membership.

4.5.2. DeriNnitioN (Other metamathematical symbols)
(1) — is for metamathematical identification and definition.
(2) a,B,7v,6,...are for ordinal numbers of the metalanguage.
(3) <, <, >, and > are the orderings on the ordinal numbers of the meta language.

(4) uis for the least operator of the metalanguage.

4.5.3. DeriNniTioN (The finite order chiffers, and their integers)
(1) Q=—=0,1,2...is the term for the finite order chiffers, i.e. the natural chiffers.
(2) Q, =1,2,3...istheterm for the positive natural numbers, i.e. the counting chiffers.
(3) Q. — —-1,-2,-3...is the term for the negative natural numbers.
(4) Q* =—0,1,-1,2,-2...is the term for the integer chiffers.

(5) Q" =—=0,-1,-2...is the term for the integers which are not positive.

4.5.4. Derinttion (The symbols, their ciphers and chiffers)
(1)

(2) v

(3) !

(4) v

(5) s

(6) ¢

(7) #

are the symbols, which stand for the chiffers denoted by the bijective base-2 ciphers
1,21, 221, 2221, 22221, 222221 and 2222221, respectively.

4.5.5. DeriNntTiON (Bijective base-2 cipher strings)
(1) Let ng,ny,ny,n3,... be base-2 cipher strings.

(2) t(ng) = |loga(no + 1)] invokes the floor function | |, and defines the length of the
bijective base-2 cipher needed to express chiffer ny.

(3) Concatenation ~ is the function given by ny ~ n; == ng - 2/0") 4+ ;.
(4) We know that ~, so defined, is associative.

(5) no "~ ny is taken to be the denotatum of the apposition ng n;.
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(6) Just the ciphers 1 and 2 are the cipher strings of length 1.

(7) If oy is a cipher string of length n and cipher string o has length 1, then cipher
string oyo =09~ o has length n + 1.

4.5.6. Exercise: o is a bijective base 2 cipher string just if it is a bijective base-2 cipher.
4.5.7. DeriniTiON (Expressionforms)

(1) A string of symbols from Definition|4.5.4.1-7, is an expression in symbolic form, just
if it is formed according to the formation rules in §§4.5.10R4.5.12|

(2) An expression is in cipher form just if a bijective base-2 cipher which corresponds
with the symbolic form via coding of ciphers into symbols, as in Definition

(3) As symbols are identified with ciphers, cipher forms of expressions are canonical.
4.5.8. DeriniTioN (Predicates for terms, formulas, sentences and expressions.)

Ve(v), Ct(c), Tm(a),Fa(A), Se(B), En(X) are written to state that v is a variable, c is
a constant, ais a term, A is a formula, B is a sentence and X is an expression.

4.5.9. DeriniTioN (The underlines)

To remind that expressions in the last analysis are chiffers, denoted by ciphers, we
in the remainder of this section underline, and write expression, variable, constant,
term, formula, sentence, and expression. To ease the reading, the underlines will
not be used as from the next section.

4.5.10. DerintTioN (Variables)

(1) Vis avariable.

(2) A variable succeeded by e is a variable.
(3) vgis variable V, and v,4 is variable v,, " e.
(4) Nothing else is a variable.

(5) Variables are terms.

4.5.11. DerintTioN (Primitive constants)

(1) ¢is a primitive constant.

(2) A primitive constant succeeded by e is a primitive constant.

(3) cois constant ¢, and ¢4 is constant ¢, " e.

(4) Nothing else is a primitive constant.

(5) Primitive constants are terms without free variables, and so, per|4.5.16|, constants.

4.5.12. DeriNiTION a; for arbitrary term and A; for arbitrary formula:

(1) If ap and a, are terms, aag is a formula.

10
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(2) If Ag and A, are formulas, | AgA; is a formula.
(3) If Apis a formula and vy is a variable, YvoAy is a formula.
(4) If Ag is a formula and vy is a variable, ¢voAy is a term.

(5) Nothing else is a term or a formula.

(6) Just terms and formulas are expressions.

4.5.13. DeriniTION SUppressing subscripts:

When possible, a, b, . .. is written for ag, ay, ..., whilev,w, ... areforvg,vy,...,and m,n,...
for ng,n1, ..., along with A, B, ... instead of A with subscripts. Other letters, or letter-like
symbols, may be used for special terms, or formulas.

4.5.14. DeriNiTION Binders, binds, ties and scopes:
(1) InVvA,Vis the binder. v is the bind of A and the tie of V. A is the scope of V.
(2) In ¢vA, g is the binder. v is the bind of A and the tie of ¢. A is the scope of ¢.

4.5.15. DerintTiON Free and bound variables:

(1) A variable occurrence in a formula, or term, is bound, just if it is a bind, or itis in
the scope of a binder with another occurrence as tie.

(2) Variable occurrences in a formula, or term, are free if not bound.

(3) A variable is free in a formula, or term, just if an occurrence is.

(4) A variable is bound in a formula, or term, just if an occurrence is.

4.5.16. DerintTION Sentences and constants:

(1) A term without free variables is a constant.

(2) A formula without free variables is a sentence.

4.5.17. DeriniTion Substitution: If En(X), a is a term and v is a variable, X¢ is the
expression obtained by substituting all free occurrences of v in X with term a.

4.5.18. DerintTioN Substitutability: Term a is substitutable for variable v in A justif A is
atomic, or Ais T BC and a is substituable for v in both B and C, or A is YwB and v is not
free in B, or, w does not occur in a and a is substitutable for v in B.

4.5.19. DerintTioN Postfixed variable vector notation:

&(v,w,x) signifies that variables v,w and x are free in €.

4.5.20. PRESENTATION RESOLVE: A(v,w,a) may be written for A(v, w, x)¢.

11
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4.5.21. DeriniTioN Prefixed variable vector notation: Occasionally VoA is used for a sentence
which either is A, or for some n > 0 and variables v ... v,_1, VWA is Vv ... Vv, A.

4.5.22. DeriniTiON Parentheses, and defined operators for the object language:
(1) Delimiters for punctuation: (,), [, 1, ...
(2) A =] AA
(3) (AAB) =| -A-B
(4) (AVB)=— - | AB
(5) (A —>B) = (-AVB)
(6) ( A»B)=—(A—>B)A(B—A)
(7) IvA = —~¥v-A
(8) ae b=—ba
(9) {vIA} =¢vA

4.5.23. DerintTioN Notation for binders restricted to set b:

(1) A% and a” signifiy that all variables bound in A and «a are restricted to b.
(2) v’ isv.

(3) (ced)isct edb.

(4) =A? is =(A?), (A A B)? is (A® A B?), and so on for other connectives.

(5) {v|A}Y> = {v|v € b A A®}.

(6) (Vv)Ab = (Vv)(v € b — A?).

(7) (V¥)A® == is the sentence given by the least n > 0 such that

(n>0&(Vvo...an_1)(voEb/\.../\vn_l eb—>Ab))

®

(n=0&a).

12
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5 Semantics

Development of mathematics resembles a fast revolution of a
wheel: sprinkles of water are flying in all directions. Fashion —
itis the stream that leaves the main trajectory in the tangential
direction. The streams of epigone works draw most attention,
and they constitute the main mass, but inevitably disappear
after a while because they parted with the wheel. To remain
on the wheel, it is necessary to apply the effort in the direction
perpendicular to the main stream.

Vladimir Igorevich Arnold

The underlying theory of the meta language is variety theory X;KPQ, which is Kripke-
Platek variety theory, with Z;-collection, and the variety Q of natural chiffers. Care should
be taken to not confuse the varieties of the meta language used to introduce £ with the
sets £ postulates the existence of.

5.1 On expression names, and their extension
5.1.1. DeriniTION EXpression names:
(1) If X'is an expression, then "X is its name.

(2) The semantic values of expression names are accounted for in §22|

5.2 Fairs

5.2.1. DerintTION: I+ is @ function from initials, i.e. initial sets =,=, =", ... of formulas,
and ordinals, to sets of formulas. For any ordinal «, and formula A, we write (E,a) + A
for Ae r (B, a).

5.2.2. DerintTION Fairs: Initial E is fair, or a fair, just if for all formulas A and B:
(1) (E,a) r] AB just if neither (£, @) + A nor (E, @) I B.
(2) (E,a) r VvA(v) justif (Z,a) + AL for all b substitutable for v in A .
B)a=0=r(E,a) = E,s0(E,0) r A o AcE, and (E,0)  ~A © AgE.
4) a>0=2(Ea)rT A" ©Se(A) &Zy(y <a &TIé(y <6 <a = (E,9) F A))).
(5) (E,a) + A = Fa(A).
(6) NE[(E,a) r T'A" VT -A"] ® (IE[(E, ) I =T -A"] © NE[(E,a) =T "'A’]).
5.2.3. Remark: Diagonalization in £ is not as diagonalization in Peano arithmetic, nor

as in the associated modal provability logic GL with precisely o(ap — p) — gOp) as
characteristic axiom. For such reasons a symbolization "A" distinct from "A™ is used
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5.3 Closure 5 SEMANTICS

for the name of formula, or sentence A. The diagonalization construction in £ allows
quantifying into named contexts, so that Vx3y7 ‘x =y is a well formed sentence.

5.2.4. PRESENTATION RESOLVE:

When the context allows, we write 7 A as an abbreviation for 7 "A".

5.2.5. Remark: If formula A has one variable free, there may be different initials E and
2’ such that (E,0) + A and (E’,0) + -A. So quantifying over initials, as in §5.4] is like
quantifying over interpretations to define tautologicality of formulas in logics.

5.2.6. Tueorem (Omega standard)
(Z,a) F IvA o (E,a) r A’ for some b substitutable for v in A.

Proof:
(E,a) F IvA

g
(B, @) F =Yv-A
0
(B, @) ¥ Yv=A
0

for a b substitutable for v in A, (8, a) ¥ -A?

EZ2T¢

for a b substitutable for v in A, (8, @) r A”

5.3 Closure

5.3.1. DeriniTioN Cover, stabilization and closure:
(1) IN(a, A, B) justif IB(a < B = (E,B) F TA).
(2) OUT(a, A,E) justif [IB(a < B = (B, B TA).
(3) IN(A, B) just if ZaIN(a, A, E).

(4) OUT(A, E) just if SaOUT(a, A, E).

(5) STAB(A,E) just if IN(A,E) ® OUT(A, E).
(6) UNSTAB(A, E) just if ~STAB(A, E).

(7) a covers Z just if: IN(A,Z) = IN(a, A, E).

14



5.3 Closure 5 SEMANTICS

(8) a stabilizes = just if a covers E, and (E,a)  TA = IN(A, E).

(9) The closure ordinal ? is the least stabilizing ordinal.

5.3.2. Tueorem (Herzberger|1980)

There is a closure ordinal.
Proof: Assume first that IN(A, Z), to presuppose

5.3.3. DEFINITION: h(A) = ua(IN(a, A, E)).

1. We first show that there is a covering ordinal:

We have

MA(IN(A, E) = (8 = h(A))). (5.3.4)
So
MTASA(IN(A,E) = B = h(A)). (5.3.5)
I,—collection and quantifier rules give us
MIBEYIA(AeB = Z8(BeY&(B = h(A)))). (5.3.6)
Instantiate with B = [A: IN(A, )] to obtain
SYIA(IN(A, E) = SA(BeY&(B = h(A)). (5.3.7)

Let Z be a witness for (5.3.7)), and define the least covering ordinal by means
of II,-separation,

% = [v: veZ & Ordinal(v) & SA(IN(A, E) & v = h(A))]. (5.3.8)

IT,-collection was invoked in the step from (5.3.5)) to (5.3.6)), and as II,-collection
implies X,,1 collection for Kripke-Platek theories, this justifies the choice of an un-
derlying variety theory at least as strong as ;KPQ for the meta language}]

2(Welch 2011)) shows that KP + Z3;-Determinacy is sufficient for the semantics for a commensurate
system AQI (Arithmetical Quasi Induction) introduced in (Burgess |1986), and (Hachtman 2019)) shows
this equivalent to KP + HZ‘—Monotone Induction. So a X3-admissible ordinal is not necessary, but it may be
needed for the proof we use, which connects the coding of the formal language with the natural chiffers
of the meta theory. Welch has pointed out in private communication that a X,-admissible ordinal, without
further assumptions, can be proven to be insufficient.
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5.4 The range of librationist satisfaction 5 SEMANTICS

2. We next prove that there is a stabilizing ordinal:

Let [ f(n): neQ], by an adaptation of Cantor’s pairing function, be an enumeration
of all elements of UNSTAB(Z), where each element recurs infinitely often, so that if
B=f(m)and m < neQ, then there is a natural number o, n < 0&eQ, such that (o) = B.
Let g(0) =x and g(n + 1) = the least v > g(n) such that

(E,v) k f(n) & (B, g(n)f(n)

Let B = [y: EmZv(meQ & v = g(m) & yev)]. It is obvious that B is a limit ordinal
which covers E. It is also clear that if m < neQ then g(m) < g(n). Since B covers E,
it suffices to show that (E, B) + 7B entails that B is in STAB(E), to establish that B
stabilizes E.

Suppose (E,B) + 7 B. It follows that
a) VIIE(v €< B= (B, ¢ +B)

Since g is increasing with B as its range, we will for some natural number meQ have
that v < g(m) < B, so that
b)  Ié(g(m) <& <B=(E &k B)

Suppose B ¢ STAB(E). By our enumeration of unstable elements where each term
recurs infinitely often, we have that B = f(n) for some natural numbern, m <n € Q.
It follows that g(m) < g(n) < B. From a) and b) we can infer that (Z, g(n)) + B, since
we supposed that (Z, B) + 7B. From the construction of function g, (&, g(n+1))¥=B,
contradicting b). It follows that (Z, B) + 7B only if B € STAB(E), so B stabilizes E.

3. The proof finishes with an appeal to Definition|5.3.1/9] ]

5.4 The range of librationist satisfaction
5.4.1. DeriniTiON Satisfaction and satiation:
(1) Initial 2 maximally satisfies A justif (E,?) + TA.
(2) Initial E optimally satisfies A just if (£, 9?) ~ A.
(3) Initial E plainly satisfies A just if (£,9) r =7 -A.
(4) Initial 2 minorly satisfies A justif (E,?) r =7 -A A =TA.

5.4.2. DEFINITION:
(1) Ais maximally satisfied just if for all initials E, (E,9) + TA.
(2) Ais optimally satisfied just if for all initials E, (£,?)  A.
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5.5 Relations between maxims, optima, plains and minors 5 SEMANTICS

(3) Ais plainly satisfied just if for all initials Z, (E,9?) =7 -A.
(4) A'is minorly satisfied just if for all initials &, (£,?) + =7-A A =TA.

5.4.3. DerintTION Notation:

(1) YA A is a maxim, as it is maximally satisfied.
(2) A A is an optimum, as it is optimally satisfied.
(3) E A A'is a plain, as it is plainly satisfied.
(4) £ A A is a minor, as it is minorly satisfied.

5.5 Relations between maxims, optima, plains and minors

5.5.1. DerinrTioN Of tautologies, antologies, determinates, standards:
(1) Ais atautology justif = A.
(2) Ais an antology just if MoA.
(3) Ais adeterminate justif (F A & =-A) @ (FA & =-A).
(4) A'is an indeterminate just if = A & = -A.
(5) Ais a standard, or a standard, just if Y (T"A" vT =A").
5.5.2. Exercise Show that (E, @) + {x|x € x} € {x|x € x} & T{x|x € x} € {x|x € x}.

5.5.3. Exercise Notice that {x|x € x} € {x|x € x} is maximally satisfied by Z, or {x|x € x} ¢ {x|x € x}
is maximally satisfied by E, and that {x|x € x} € {x|x € x} consequently is indefinite, in
the sense of Definition[5.6.113

5.5.4. POSTULATE

(1) OA:> EA

S
Q) ¥a=2A
B)EF Ao EA& E-A
4P As A& F-A
Proof:

(1): Usel7.116

(2): YPAa=sP 7oA, given Definitions and Soif & A, 2 7 A" holds. Also,
2 T°A" = A, which is 7.1[] Thus, & A only if S A.

(3): By Definitions[5.4.2[3|and[5.4.2]4]
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5.6 Orthodoxy, definiteness and paradoxicality 5 SEMANTICS

(4): Leftwards - A & kA = ° (TA Vv T=A) on account of Postulate|6.3.1] So for all
initials 2, (E,?) + (TA VvV T-A). As E A, so that for all initials E, (E,?) + =7 A, for all
initials =, (,9)  TA. So & A.

Rightwards - Given Y A, for all initials E, (E,?) + T A, so that by Definition[5.2.2/4, for all
EXy(y<a&llé(y <6 <a= (86 IFA)). Consequently,

NE[Hy(y <@ &Z5(y <6 <a = (E,6) F A)],

soforall E, (E,?) r =7T—-A, and so = A. Moreover, P A& E-A clearly entails absurdity,
so A= A In sum, M A = & A &==A. Finish by joining the directions. O

5.5.5. THEOREM: There are just minor and maximal tautologies. Optimal tautologies are
either minor or maximal, and minor tautologies are not maximal tautologies.

Proof: This follows from Theorems[5.5.4.3] and [5.5.414] o

5.6 Orthodoxy, definiteness and paradoxicality
5.6.1. DEFINITION:
(1) A is orthodox just if © Vi (TA V T-A).
(2) Set ais orthodox just if x € a is orthodox.
(3) Ais definite just if £ A or £ —A.
(4) Ais apocryphal just if orthodox and indefinite.
(5) Set ais apocryphal just if b € a is apocryphal for some set b.
5.6.2. Remark: Some definite sentences are determinate, and some are indeterminate.

5.6.3. Remark: Set s = {v|v € v} is apocryphal. For sentence s € s is apocryphal, by
cause of its orthodoxy and the fact that it is indefinite because # s € sand # s ¢ s.

5.6.4. DeriNniTiON: Formula A is paradoxical just if not orthodox. Given Definition|5.6.1
this is the case just if # V3(TA(F) v T-A(¥)): so there is, given Definition
initial E such that (E,?) + V(=T A(¥) A =T -A(¥)). By adapting Theorem|[14.1.1] we find
a vector 4 for instantiation so that (£,9) (=T A(a) A =T-A(Q))

5.6.5. DeriNiTiON: Sentence A is paradoxical just if not orthodox, just if59 (TAV T=A);
so there is, given Definition [5.4.2[2| an initial E such that (5,9?) r (=TA A =T =A).

5.6.6. DeriniTION: Set a is paradoxical just if not orthodox just ifs? Vx(Tx€aV Tx ¢ a);
so, given Definition there is an initial E such that (E,?) - Ix(=Tx € aA=Tx ¢ a).
Consequently, given Theorem|14.1.1} for some term b, (E,Q) + (=Tb €a AN=Tbh ¢ a).
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5.7 The non-triviality assumptions 5 SEMANTICS

5.6.7. Fact: The proof of Theoremshows that 2 (TAVT-A) = Y (TAVT=A), so
Definition mi entails that A is orthodox just if £ (TA v T=A). But the latter should
not be used for defining orthodoxy, as the induced revision of Definition|5.6.4|would not
give the intended extension for the term ‘paradoxical’.

5.7 The non-triviality assumptions
5.7.1. DerintTiON: A logical theory is trivial just if all of its sentences are derivable.

The assumption that there are fair initials for variants of £ amounts to assuming that the
system under consideration is not trivial, and, consequently, consistent. It follows from
(Bjgrdal 2012)), under the assumption that X;KP,, is consistent, that the empty set is a
fair intial for £ simpliciter. So if £3KP,, is consistent, then £ is not trivial.

§[25| shows that BH & RD has an account of NBGC + TA if NBGC + TA is consistent.
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6 MAXIMS

6 Maxims

{C Wy 2 f(x)}

6.1 Axioms & warrants, theorems & proofs.
6.1.1. DEFINITION:
(1) A warrant of an axiom is a semantic demonstration of it from Definition[5.2.2l

(2) A proof of a theorem is a demonstration of it from axioms and other theorems.

6.2 The relations between the varieties of theses

§[5.4] gave the semantic distinctions between maximally, optimally, plainly and minorly
true. The corresponding syntactic notions are maxim, optimum, plain and menor. Here
“plain” is used as a noun, and occasionally as an adjective. The word “menor” is a variant
of “minor”, according to the Oxford English Dictionary, and the term “minor” is here used
as an adjective, while “menor” is used as a noun.

6.2.1. PostuLatk of the soundness: £ is sound for all theses of the treatise, as that is
checked individually. So

MA= P A PAs A FAS EAand " A= £ A
6.2.2. Axiom Relations between maxims, optima, plains and menors:
M Ma= A
2)° A= A
B A FA& +F-A
WD MAs A& ¥-A

6.3 Arbitration
6.3.1. PostuLaTE (Optimal arbitration)
C(TAVT -A)® (A E-A).
Warrant ofl6.3. 11 Definition[5.2.2[6] states that
NE[(E ) kT A VT =A"] ® (IE[(E,e) k=T =A"] o NE[(E. ) ~T A"]).

The right disjunct of Definition|5.2.2[6/{amounts to A < k —A, given Definitions[5.4.2/3
and and (T"A" v T "=A") is entailed by the left disjunct of Definition|5.2.2/6

via Definitions[5.4.2[2|and [5.4.3[2] [
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6.4 Logic maxims 6 MAXIMS

6.3.2. TueoreMm (Maximal arbitration)
Y TA VT -A)® (FA o E-A).

Proof: Confer Fact It suffices to prove ° (TAV T-A) = M (TA Vv T=A). Make
use of a disjunctive syllogism to obtain Q (TT A" vTT =A") with Postulate from
2 (T°A” v T =A"), and use theorem ° 77 B” — T (7B’ vC) and disjunctive
syllogism with = (77T A" v TT "=A") to obtain © T°T A" v T =A"". Use Definitions
|5.4.2[1H5.4.2L2L |5.4.3L1|and|5.4.3[2|and the results noted to conclude & 7 A v T "=A
frome 7T A" vT -A"". O

6.4 Logic maxims
6.4.1. PostuLate Classical logic maxims:
(1) M A (B> A
(2) F' (A= (B—C) = (A= B) = (A= 0))
(3) ' (=B — -A) = (A — B)
(4) * vx(A - B) > (VxA — VxB)
(5) ' A > VvA, provided v is not free in A
(6) ¥ ¥vA — AL | provided b is substitutable for v in A

(7) If M belongs to (|6.4.1L1|—|6.4.1L6|), then so does " VT

6.4.2. Remark: The role of a maximal inference mode, which allows the deduction from
A (A — B) and P Ator B, is played by mode

6.4.3. REmark: An induction, upon[6.4.1[7|and[9.2.5| proves generalization is a derived
inference mode. Compare the proof of Theorem 45.4 of (Hunter 1971, pp. 174-175).

6.5 Maxims on truth

6.5.1. DerintTioN Russell’s paradoxical set:

r={x|x ¢ x}

6.5.2. PostuLATE Truth maxims:
(1) M T(A - B) > (TA - TB)
2) M TA— -T-4A
(B) M (TrervTréer) » (TAV T-A)
4) M TAVT-AV (T-T-B — TB)
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6.6 Warrants of truth maxims 6 MAXIMS

(5) M TAVT-AV (TB— TTB)

6) M T(TA - A) — (TAV T-A)

(7) M T(TA - TTA) — (TAV T-A)

(8) " ITA - TIvA.

) M TYA > WTA
(10) P Vu(a € u — b € u) — (A — Ab),for a and b both substitutable for v in A.
(11) M O({x|A}) = (¥xTA — TVxA)

6.6 Warrants of truth maxims

Warrant[6.5.2[1k Suppose (Z,y)  T(A — B) and (Z,y) + TA. It follows that for some
ordinal 6 and any ordinal e such that 6 < e < vy, (E,¢) + (A — B) and (E,¢) + A. So,
on account of Definition [5.2.2[1] (£, ¢) * B, and, consequently, (Z,y) + TB. So for any
ordinal v, (E,y) + T(A - B) - (TA - TB). (E,Q) v T(T(A—-B) - (TA — TB))is a
consequence of this, so u T(A - B) > (TA - TB). ]

Warrant[6.5.212} Assume (E,y)(TA — =T -A). It follows that (E,y) + (TA A T=A). As
a consequence, (E,y) I TA and (E,y) I T-A. It follows that for some ordinal 6 and any
ordinal e suchthatd <e <v,(E,¢) A and (E, ¢) + —A. But that is impossible. 1

Warrant[6.5. 203 The postulate’s maxim somewhat extends (Bjgrdal [2012)). Let an ordi-
nal 6 be monogamous just if a successor ordinal, so (Z,6) + 7B justif (§,5) r =7 =B, for
any sentence B. Y (TrervTré¢r) » (TAvV T=A) holds simply because monogamous
ordinals are monogamous ordinals. 1

Warrant[6.5.2l4: Let an ordinal y be reflected, just if (Z,v) + TB, provided (E,y) I
T-=T-B. Any limit ordinal 2 is reflected, for if B holds at all ordinals as from some ordinal
u below A according to E, then also =7 =B holds at all ordinals as from u below A accord-
ing to E. So limit ordinals are reflected, and successor ordinals are monogamous, in the
sense of Postulate[6.5.2[3] The content of[6.5.2[4]is thus that all ordinals are reflected or
monogamous, as for a monogamous successor ordinal §, ((£,6) - (TAVT=A),andifd is
a reflected limit ordinal, (E, 6) + (T-T-B — TB). In either case,[6.5.2[4is warranted. 1

Warrant[6.5. 215 Let an ordinal y be transitive just if for any A,

9O <y &TIEO 2 E= (B FA) =00 <y &TIEO = €= (B E) - TA)).

Precisely limit ordinals are transitive ordinals.

The content of Postulate is that ordinals are transitive, or monogamous, in the
sense of Warrant But that is true, as all ordinals larger than O are successor
ordinals or limit ordinals. So has been warranted. [
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Warrant[6.5.216F At successor ordinals this holds, because there the consequent is true.
Let A be a limit ordinal, and p such that

[é(p €<= (B & FTA - A,

sothat (£,2) + T(7T "A" — A). Suppose there is some ordinal o < 1 and p < o such that
E,0) Ik A. If so, (§,1) r TA. If there is no ordinal o < 1 and p < o such that (E,o) I A,
then (E,12) r T-A. So/6.5.2[6/has been warranted. 1

Warrant[6.5. 217 Postulate[6.5.2[7]holds at all successor ordinals, as the consequent al-
ways holds there. (E,A) - T(TA > TTA) = 26lle(6 e <1 = (E,e) v TA > TTA) if
A is a limit ordinal. But all ordinals € in the interval from and including ¢ and less than A
will have a successor e+1 which is also inthe interval, so also (E,e+1) + TA — T TA. But
the latter statement has the consequence that (E,¢) + A — T A. So we have established
that for any limit 4, (E,2) v T(TA — TTA) — T(A — TA). Given postulate[6.5.2[2]and
contraposition, we obtain that (E,2) - T(TA - TTA) — T(T-A — —A). At this point
is only takes postulate [6.5.2[6 to finish the warrant. ]

Warrant[6.5.208 Suppose (E,7) - 3vTA. On account of Definition[5.2.2[2] (E,y) + TA?
for a b substitutable for v in A. So, on account of Definition [5.2.2[4] it follows that for an
ordinal § and any ordinal € such that 6 < € < v, (E,€) r Ab for a b substitutable for v in
A. So on account of Definition[5.2.2[2] again, for an ordinal § and any ordinal e such that
§ < € <7,(E €) I IvA. So on account of Definition[5.2.2[4], (E,y) + T IvA. I

Warrant[6.5.209 Let ordinal y be such that (Z,v) + 7TVvA. There is, consequently, an
ordinal § such that for any ordinal € fulfilling 6 < e <y, (E,¢€) I VvA. So eithery =6+ 1 =
€ + 1 or vy is a limit ordinal such that (Z, €) + VvA for all ordinals € such that § < € < y.
In either case, (B, €) I+ YvA holds at any € smaller than y and at least as large as §. It
follows from Definition that (2,¢) A%, at any e smaller than y and at least as
large as &, for all b substitutable for v in A. So (E,y) + TA?, for all b substitutable for v
in A. So from Definition[5.2.2[2] again, (£,y) + VT A. So (E,B) F TYvA — VvTA holds
at any ordinal 8. So (E,?) - T(TVvA — VvTA), and consequently M TvwA — WTA. 1

Warrant[6.5. 2110 The warrant is in the proof of Theorem|11.2.1 1

Warrant[6. 5. 2111 — Notice that is the Barcan postulate for orthodox formulas.

Assume

¥ O({x|A}) — (VxTA — TVxA).

It follows, by Definitions|5.2.2|and |5.4.3|, that for some fair function Z’:

(Z,9) =T (D({x|A}) — (VxTA — TVxA)). (6.6.1)

24
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Definition has the consequence:
Hy(y<? = Z5(y<6<? & (6.6.2)
E,6)  O({x|A}) AVXTA A=TVxA))
Case 1/2 -6 is a limit: Suppose
(2,6) F O({x|A}) A VxTA A =T VxA. (6.6.3)

Then, for all constants ¢, and all ordinals  larger than a £ smaller than ¢,
E,¢) - D({x|A}) A AL,
so as well

=, 0) F O({x|A}) A VxA.

Also, however,
E,0) k =T VxA,

so that for some ¢ < ¢ < 6,
E, ) I -AS.

So
=,0) F O({x|A}) A VxTA A =TVxA

cannot hold at a limit ordinal ¢.
Case 2/2 -6 =y +1is asuccessor. Suppose

(Z,6) F O({x|A}) A VxTA A =T VxA.

Then
(E,y) r dx-A,

so that there, by Theorem is a constant ¢ for which

(2,y) r -AL.

However, as
=,0) IF VxTA,

also
(2, y) r AS.
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So
=,0) F O({x|A}) A VxTA A=TVxA

cannot hold at a successor ordinal §.
Cases 1/2 and 2/2 entail that for any ordinal 3, (E,8) + OD({x|A}) — (VxTA — TVxA).

So (E,9) I T(D({x|]A}) — (VxTA — TVxA)), and so & O({x|A}) — (VxTA — TVxA).
That warrants Postulate s posit of 1 O({x|A}) — (VxTA — TVxA). I

6.6.4. Remark: The semantic justification for some of the maxims of Postulates
- can be lifted from (Bjardal 2012)(340-341).

6.6.5. Remark: Postulates[6.5.2[6]and[6.5.2]7 originate with (Turner[1990).

6.6.6. Remark: The maxims of Postulates|6.5.2[7|and|6.5.2/8|were notincluded in (Bjardal
2012), as the author thought they were both derivable. The warrant of Postulate [6.5.2[3]
shows that this was correct for its maxim schema, but the warrant of Postulate
suggests that Postulate [6.5.2.3|is needed for its semantical justification.

6.6.7. Remark: Although the converses of Postulates and |6.5.2[6/ hold at limit
ordinals, they are not maxims, for we may at a sucessor ¢ have that

(E,0) - (T=AV TA) A =T (TA — A),

and it happen for {x|x ¢ x} € {x|x ¢ x} at o or o+ 1. This contrasts with Remark 69.3.1.(ii)
in (Cantini|1996))(396).

6.6.8. Exercise: Let A be deferent just if for all fairs 2, (E,2) + TA ® (E,?) + T-A.
Show that just deferent formulas are orthodox.

6.6.9. Exercise: Prove that © VW(TAV T=A) = H VV(TAV T=A).

REMARK on Exercise Defining a formula A as orthodox just if M VV(TAV T=A),
instead of using Definition[5.6.1[1] is not advisable. For defining a formula as paradoxical
just if not orthodox, as in Definition [5.6.4}, would then induce an unacceptable extension
for the term “paradoxical”.
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7 OPTIMA

7 Optima

Pax optima rerum, quas homini novisse datum est: pax
una triumphis innumeris potior: pax, custodire salutem et
cives aequare potens.

Silius Italicus

We have, as in Theorem 2 of (Bjgrdal 2012, p. 342):
7.1. POSTULATE:

()ETATTA

2Q)E T-T-A<TA

(3) = T(TA—TB) -»T(A— B)

@) T(A>TA) & T(TA—- A)

(5) E VxTA(x) = TVxA(x)

6) F T'A" > A

It is left as an exercise to warrant the optimal tautologies.

To To To To To To
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8 PLAINS

8 Plains

Pure mathematics is, in its way, the poetry of logical ideas.

Albert Einstein

8.1. PostuLATE Plains:
(1) FT"A" - A.
Q) vA > TA.
(3) + TaIvA — TA.
(4) FWTA - TYvA.
(5) rer.
(6) rer.

8.2. Remark: Instances of the plains in Postulates [8.1[1] and [8.1[2] may be maxims or
minors. There are minor instances of Postulates[8.1[1] and [8.112] on account of Russell’s
paradoxical set, here denoted as in[8.115/ and [8.1/6| by the r of Definition on page
In the case of the attestor schema of Postulate the failure of some maximal
versions follow from Corollary The failure of the maximality for all instances of

Postulate is shown in §[14.3]
8.3. Exercise: As regards Postulates[8.1[5|and [8.1[6], prove that £ hasrrerandrr¢r.
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9 INFERENCE MODES

9 Inference modes

Recall that the valid inference from A to T "A" is the number theoretic
and meta theoretic principle that for all fairs E, if A is in the variety
of formula numbers + (E,9), then also T "A" isin+ (E,9).

9.1 The simple inference modes

Only -, 7 and one occurence of a formula variable are allowed in the formulas in the
antecedent and the consequent of the simple inference modes. Moreover, 7 may only
occur once in the antecedent, and in the consequent.

9.1.1. PostuLatk simple thetical inference modes:
1l FA=+ETA

FA=F=T-A

F-A=+T-A

F=A=+F-TA

FTA=FA

FTA=+F=T-A

FT-A=F-A

FT-A=+F-TA

O 0 N9 N B~ W

F-TA>=F-A
F=TA=+FrT-A
F=T-A=+A
12 F=T-A=+TA

—_ =
- O

The corresponding valid, simple maximal inference modes of Postulate[9.1.2]can be jus-
tified by the valid simple thetical inference modes in Postulate on account of the
syntactical correlate of Theorem which says that 1! A just if - A & y¥—A. The
inference mode of Postulate is for example a consequence of the conjunction
of the modes provided by Postulates and The other dependencies are
straightforward to establish.

9.1.2. PostuLAaTE simple maximal inference modes:
1 M a=sMT74
2 M A= aT-4
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P —A = T-A
P -A =M -TA
M TA=MA
TA= ' —~T-A
M 7-4A= ¢ -4
P T-4 = -TA
M TA =M -4
100 M -7A=M7-4
11 M -7-a=M4
12 M-T-A=8TA

O ®© N O L AW
Tz

9.2 Involved inference modes
9.2.1. PostuLATE Quantificational thetical modes:
1 FWTA=+TWWA
2 F=TYWWA =+ -WTA
3 vTIWVA=+ITA
9.2.2. PostuLaTE The Barcan mode: Postulates[9.2.1[1/and[9.2.1]2] justify

MvyTA = M TwA.

9.2.3. ReEmaARrk: Quantificational thetical mode does not enter such a combination
as do[9.2.1[1]and [9.2.12] for

FadvT A= F=TAVA

is not a valid mode schema; so neither is M 73yA = ™M 3YTA. This is clarified in the
limitative results of Theorem|{14.1.3] its Corollary|14.1.5] and Theorem|14.1.5|in §14.1|

9.2.4. PostuLatk Thetical distributive modes:
1 M (A>B) > (+rA=>+B).
2 M (A—>B)= (+-B=>+F-A).
3+(A—>B)= (I—M A =+ B).

9.2.5. PostuLaTE The maxim mode:

MAa-B= A= B).
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9.2.6. REMARK:

Postulate is entailed by Postulates[9.2.4/1land([9.2.4/2]

9.2.7. PostuLaTE Complex modes:
1 M TA= P T(TA o A) AT(T-A & =A) (The Tarski mode)
M TA> A= TAVT-A
M T-T-A= MTA
' T(TA— TB) = ¥ T(A - B)
FA & FB=F-T-AAN-T-B

A O(A(x)) = (I—M IxA = A¢ for some a substitutable for x in A).

~N O e AW

# A% for any constant a = £ VvA

Warrant@.2Z1k Clearly &' TA = & T(A A TA) A T(AA=T=A). It is librationistically
derivable that ! T((AATA) > T(A & TA) and ' T((A A -T-A) - T(=A & T-A)),
so Postulate suffices to finish. ]

Proof: (9.2.7.4) Suppose (E,?) + T(TA — TB). (i) Let p be be a ordinal as from which
TA — TB holds, so that

MéE(p <<= (B, ) (TA—> TB).

Thus (E,p+1) + (TA — T B), and therefore (&, p) + (A — B). Consequently, succeeding
successors will have TA — 7B and A — B. (ii) Let limit ordinal 1 < ¢, above p, have
TA — TB,and A — B below, as from p. As 1 < ¢, from the assumption on p, (E,1)
(TA— TB).As (E,2+ 1)+ (TA - TB), also (E,1) + (A — B). (iii) By a repetition of (i)
and (ii) it follows that A — B holds as from p below ¢, so that (£,?) + T(A — B). O

Proof: (9.2.716) This is established on page[47] in the proof of Theorem[14.2.1 m|
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10 ALETHIC COMPREHENSION

10 Alethic comprehension

If one, per impossibile, could have used naive comprehension for
truth, and for abstraction, the alethic comprehension principle
would have been true. Fortunately, one cannot justify the opposite
entailment from alethic comprehension to naive comprehension.

10.1. PostuLAaTE Alethic comprehension without parameters:

P Vx(x € {y|A} & T "A’}), where x is substitutable for y in A.

10.2. THEOREM Alethic comprehension with parameters from v:
P ViVx(x € {y|A} & T "A™}),where x is substitutable for y in A.

Proof: Appeal to and Postulate m|
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11 THE THEORY OF IDENTITY

11 The theory of identity

To be is that there is
something in all your
essences.

A streamlining of sections 4 and 5 of (Bjgrdal 2012, pp. 342-345) is obtained from the
inference modes [9.2.7[1] - [9.2.7[4, and as a result £ does not, as e.g. the comparable
systems studied by (Cantini|1996)), need additional axiomatic principles for having a well
behaved notion of identity in this section, or natural number in §13]

11.1 Co-essentiality

In a lasting contribution (Whitehead and Russell |[1927) improves upon Leibniz’ law, as
a bi-conditional corresponding with Definition|[11.1.2]is Principa Mathematica’s theorem
*13.101, proven via its predicative Definition *13.1 and its Axiom of Reducibility *12.1.

It bears mentioning that the second Principia author published the thorough monograph
(Russell [1900) on Leibniz, though this does not establish that he contributed theorem
*13.101. For a cursory reading of that historical treatise suggests that Russell did not
make such discoveries while writing that text.

We define the identity relation by means of a notion of co-essentiality, which is similar
to the relation named membership congruency by Abraham A. Fraenkel and Yehoshua
Bar-Hillel, and discussed in (A. A. Fraenkel and Bar-Hillel|1973, p. 27), though not used
in the previous edition (A. A. Fraenkel and Bar-Hillel [1958)).

11.1.1. DeriniTION: Sets a and b are co-essential just if Yu(a € u — b € u).

The term "co-essentiality" is coined from (Forster 2019), which relates that (Hailperin
1944) "gave the first of a number of finite axiomatisations of NF now known. Many
of them exploit the function x — {y|y € x} which is injective and total and is an €
-isomorphism. This function was known to Whitehead, who suggested to Quine that
{y|x € y} should be called the “essence” of x (a terminology clearly suggested by a view
of sets as properties-in-extension)." Incidentally, Quine was Whitehead’s student while
doing his doctorate at Harvard, but Quine obtained his doctorate twelve years before the
publication of (Hailperin|1944).

11.1.2. DeriniTiON Identity via co-essentiality:

a=b =—VYu(a€u—becu)

Notice that the definiens in Definition|11.1.2|is a conditional, and not a biconditional.

The justification for the analogous definition «13-01 in Principia Mathematica, will not
justify Definition[11.1.2| For the symmetry of Definition|11.1.2] is in £ shown by the proof
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11.1 Co-essentiality 11 THE THEORY OF IDENTITY

of|11.2.1/4|as follows, and it does not appeal to predicativity or the Axiom of reducibility,
as in the proof of «13-01 by (Whitehead and Russell|{1927).

11.1.3. Lemma: # TNu(aeu—becu) - TVula eu— b € u)).
Proof: Suppose A Yu(a € u — b € u). By instantiation we have:
P Yu(a eu — b eu) —
(a € {viVu(a €eu - veu)} > be{viVu(la eu - v eu)}).
Butt' a € {vVu(a € u — v € u)}, so that

e Yu(aceu—>beu) - be{vVu(a eu - v eu)}.

Finish with Alethic Comprehension and Postulate [9.1.2[1] O
11.1.4. LEMMA: M T(a=b— Ta=b)

Proof: Use Definition[T1.1.2]and Lemma O
11.1.5. LEMMA: T(T a#b’ —>a#+b)

Proof: Use Lemma([11.1.4] Postulates[6.5.2[2}[9.1.2[1]and logic. o
11.1.6. LEMMA:

B T(T ~Vu(a €eu — b eu) — ~Vu(a € u— b € u))
Proof: Use Lemma and Definition[11.1.2 O

11.1.7. LEMMA:
i T((TVu(a €u — b €u)) > VYu(a€u— b eu))

Proof: Combine Lemma with Postulate [7.114 to obtain

P T(=Vu(a€eu—>beu) > T-Yula €u— b eun)).
An instance of Theorem[6.5.2[2]is
N T(T-Yu(a €u — b eu) > ~TYu(a €u— b €u)).

A hypothetical syllogism and contraposition now suffices to finish the proof. O
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11.2 The adequacy of identity as co-essentiality
11.2.1. Tueorem (Orthodoxy, equivalence and fungibility)

(1) M Ta=bvTa#b Orthodoxy
2) Ma=a Reflexivity
(3) Ma=bAab=c—a=c Transitivity
(4) Ma=b—ob=a Symmetry
(5) Ma=b— (A¢ — AL, with a and b substitutable for v in A. Fungibility
Proof:
1. Use Lemma[i11.1.5and Postulate[6.5.2(6]
2. Trivial

3. Trivial, given Definition{11.1.2
4. Clearly,

iy YWaev—obev) o (ac{wVviwev saev)} > (be{wlVv(iwev 5aev)}.

But

Mg e {wlVv(w € v > a € v)},

so that by alethic comprehension,

P Vy(aev —>bev) > TVv(bev —acv). (11.2.2)
An instance of Lemma|11.1.4states:

I—MVv(bev—>aev)—>TVv(b€v—>a€v). (11.2.3)
By invoking on equation|11.2.3|we obtain
T VYw(bev—oaev) >W(bev—>acvy). (11.2.4)

Finish with a hypothetical syllogism with equations|11.2.2|and [11.2.4] and lastly
an appeal to co-essentiality Definition|11.1.2

5. The promissory note issued in sentence Warrant 6.3.W10 of Postulate|6.5.2/10| on
page [24] of §lf]is satisfied, and the mentioned Postulate is warranted.

Suppose, for a and b substitutable for v in A, and fair function ZE,

(B, QKT (Vu(a € u— b eu) — (AY = Ab)).
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On account of the validity of the mode of we get

(B, O T-T (Vu(a € u — b € u) A A% A -AD).

It follows from Definition[5.2.211 that

(Z,9) - =TT (Vu(a € u — b € u) A A% A =AP).

On account of Postulate

(E,9) F =T~(TVu(a € u — b € u) A TAY A T-AD).

On account of the tautologicality of Lemma|11.1.7| we get

(E,9) F ~T-(Vu(a € u — b € u) ATA A =T AD).

From alethic comprehension and existential generalization we obtain

EDr-T-NVu(a€u—>beu)ANJu(acunb ¢u)),

which is absurd. So Postulate[6.5.2/10|is tautological, and we are done. O
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12 Alphabetologicality

That the universe was formed by a fortuitous concourse
of atoms, I will no more believe than that the accidental
Jjumbling of the alphabet would fall into a most ingenious
treatise of philosophy.

Jonathan Swift

Postulates [12.1|and [12.2| express, given Definition that identity is an equivalence
relation which is neutral with respect to alphabetological variants.

12.1. PostuLaTe The Lindenbaum-Tarski closure for identity: If classical logic proves that
Vx(A(x) < B(x)), then
M {xlA(x)} = {x[B(x)}.

12.2. PostuLate Alphabetical indifference:
{x|A(0)} = {(x[B(x)} — {x|A(x)} = {y|B(x):},

where y is substitutable for x in B.

12.3. DerinmTioN Alphabetologicality: Two sets are alphabetological variants of each
other just if they are identical on account of Postulates|12.1|and|[12.2]

Postulates [12.1| and [12.2| compensate somewhat for the loss of extensionality in £, as
per §21] and secure such theorems as:

T {xlA(x)} = {y1A(y) A F2(B(2) V ~B(2)}.
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13 ARITHMETIC

13 Arithmetic

The numbers may be said to rule the whole world of quantity, and the four rules of
arithmetic may be regarded as the complete equipment of the mathematician.

James C. Maxwell

13.1. DEeFINITION

(1) @={x|x #x}

(2) d ={x|x=aVxea}

(3) w=A{x|Vy(@ e yAVz(zey > €y) D x€y)}
13.2. THEOREM

(1) Moew

(2) ] Vx(x € w — X' € w)

(3) w is orthodox

(4) P Vv @ eyAVz(zey o7 €ey) o Vx(xew > x€Yy))

(5) ' A(@) AVx(A(x) > A(Y)) = Vy(y € w = A(y))
Proof:

1. Combine alethic comprehension and the fact that

e TVy(@ € yAVz(zey > 7 €y) > D€ y)

2. This follows from alethic comprehension and
n Vx(T(Vy(2 € yAVz(zey > 7 €y) D x€y)) —
T(Vy(@eyAVz(zey - 7 €y) - x' €y))).
3. From logic:

Mo ewAVr(xew—x €w) —
(Vy(oeyAVx(xey—ox'€y) dacy) > acw).

By combining 1 and 2 we have

M Vy(@eyAVr(xey ox €y) >a€y) > acw).

Postulates[6.5.2[1/and [9.1.2[1], and alethic comprehension, give us

I—MaEa)—>’Ta€w.
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along with Postulates|6.5.2[1],[6.5.2[2]and [6.5.2/6| give us

M TacwVTad¢w

As a was arbitrary, A Vx(Tx € wV Tx ¢ w), and the proof is finished.
4. Immediate, given 3, as it is equivalent with

P Vx(x ew > Vy(@€eyAVz(zey > 7 €y) > x€y)).

5. For the following, compare (Cantini|1996, p. 356).
13.3. DeriNiTION: Let, for arbritrary sentence A(x),
A'(x) = A(2) AVx(A(x) = A(X)) = A(x)).

By logic,
A (2) & P VX (A (x) = A'(X)).

The inference mode of Postulate[9.1.2[1] and Postulate [6.5.2[10 entail

M TA (2) & M VT (A/(x) - A'(xX)).
By quantifier distribution and Postulate we get

M TA (2) & PV (TA (x) - TA' (X)).
Alethic comprehension gives us

H @ e {yIA' ()} & F Vx(x € {y|A'(0)} = x € FIA (D).
Adjunction gives us
M @ e {yIA' ()} AVx(x € (A ()} > ¥ € (YA (D).

4 and the inference of mode give us
A Vx(x € w — x € {y|A’"(y)}).

From 3 and[9.2.7[1lwe have

P Vx(Tx €w — x € w),

so that
M Vx(Tx € w— x € {y|A'(y)}).

Alethic comprehension gives us
e Vx(Tx € w— TA(x)),

which, combined with establishes

M Vx(x € w — A'(x))
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Finish with an appeal to Definition and rearrangement. m|
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14 SHORTCOMINGS AND REDRESSES

14 Shortcomings and redresses

If all problems seem resolved, look in another direction!

§6]is supplemented with negative results, which to a large degree depend upon §11}]

14.1 Shortcoming related to existential instantiation
Despite the important Theorem which justifies

14.1.1. THEOREM

for some term a

(5, a) I+ EIx(—|’TA A=T=A) —m—m—— (E, )k (—(TA? A —|T—|Af§),

and consequently

14.1.2. THEOREM Optimal existential instantiation:

If +© dxA, then O A¢ for some term a

There is, nevertheless, as pointed to in Remark the following limitative result:

14.1.3. Tueorem (Maximal lack of existential instantiation)

It may happen that ¥ 3xA, and for no term a, Al
Proof: As the proof of Theorem|14.1.5 m|
14.1.4. CoroLLARY: Maximal existential instantiation, in the form

M 3xA = za (P AY), is not valid.

14.1.5. THEOREM: The inference mode @' 73xA = " 3xT 4 is not valid.

Proof: Let A be (x = @ & r € r). Obviously, Y 73xA holds. Suppose that Y oaTAl If
so (E,?) = T3axTA, and there is an ordinal v such that (£,8) + 3xT A holds whenever
v < B < Q. Let limit ordinal A satisfy y < 1 < @, so that (E,1) + 3xT A. On account of
[5.2.2[1]and[5.2.2[2] there is a term a and an ordinal § such that a = @ < r € r holds at all
ordinals 6 which satisfy § < 8 < A. But this is impossible, as r € r holds at some of those
ordinals, and r ¢ r holds at others, whereas identity is orthodox. O

As stated in Remark Theorem [14.1.5| entails that the attestor schema of Postulate
does not hold as a maxim, for, as its proof just showed, some instances of the
schema 73vA — IvT A are minor, i.e. paradoxical, truths.
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14.2 An orthodox redress
14.2.1. TueoremThe validity of[9.2.7[6]is shown, as announced on page [33}

M O(Ax) = (M 3xA = & A%, for some a substitutable for x in A).

Proof:

Assume that A(x) is orthodox, i.e. & TA(x) vV T-A(x). (14.2.2)

By soundness,
™M 3xA = & 3xA, so for all fair functions E, (E,?) r T3xA. (14.2.3)
As ? is a stabilising ordinal, (E,?) - 3xA. (14.2.4)
Given Definition and Theorem foraa, (E,Q) r AL (14.2.5)
As A(x) is orthodox, (E,?) + T AY. (14.2.6)
So & A“. (14.2.7)
So[0.2.7dis valid. (14.2.8)
i

14.3 The Barcan failure

As mentioned in Remark[8.2], it will be shown that the Barcan schema, in Postulate
does not hold as a maxim, but only as a thesis.

The precursor to this negative result, in a truth theoretic context, is McGee’s paradox, in
(McGee [1985), which we adapt to our context. Compare (Cantini |1996, pp. 380-382)
and (Bjgrdal 2012, p. 537).

First we decide upon some notions:

14.3.1. DEFINITION: For r in[14.3.115| recall Definition

(1) a = {x|x€eaVvx=a}.

(2) {a,b} = {x|x € aV x € b}.

(3) {a} ={a,a}.

(4) ay = {u|Vx((@,a) e x AVy, z({y,z) €x = (¥, {vlv e z})) D uecx)}.
5) t={xlx=rAx¢xA-=Tx € x}.

(6) UseO, 1, 2, ...for the members of w.

(7) Let o= t and = {vlv € t3}.
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(8) B(tl') - 3W(<W,tlf> €Et,) >ré¢ t
(9) B(x) = 3w((w,x) et,) >r¢x

14.3.2. LEMMA: For any a, a,, is orthodox.
Proof: Adapt the proof of [Theorem|13.2.3| m|
14.3.3. LEMMA:

E, VD) rr=rArérAn=Trerjustif Ais a limit.

Proof: For any successor ordinal y +1, (E, y +1) F =7Tr €r & r € r. Precisely at any limit
ordinal A, (E,A) rr¢rA-=Trer. m|

14.3.4. THEOREM
Let @ < ? be a limit ordinal, and B be o + w :
1. (E,B) + VxTB(x)
2. (E,B) r =TVxB(x).
Proof: 1. If (E,8) + -3Iw({w,x) € t,), it follows that (E,8) + 7B(x) on account of

Lemma|14.3.2} If, on the other hand, (E,8)  3w({w,t;) € t,) we have that (E, 8) I
TB(t;), as there is a y > a +i such that

Vé(a <y 26 <pB=(E0) I B(t)).

So for any term y, (E, B) I+ TB(y), and so E(B) + VxT B(x).

2. Otherwise, (E,B) I+ TVxB(x), and we would have (E,§) + VxB(x) as from some
ordinal 6 below 8 and above «a. Let § =— a + (n + 1), for finite ordinal n > 0, be such
an ordinal. A (8, 6) I+ B(tg), by instantiation, this entails that (E,a + (n+ 1)) I B(7).
As £ Gw({w,t;) € t,), it follows that (E,a + (n+ 1)) + r ¢ t;. As a consequence,

E,a+1) r r ¢ t;. But the latter entails (E,a) = (r # r Vr € r VTt € 1) which
contradicts Lemma([14.3.3] as « is presupposed to be a limit ordinal. m

14.3.5. THEOREM
Ila\fll VxTB(x) — TVxB(x).

Proof: Theorem |14.3.4|with Definition entail that for some g,
(E,B) ¥ VxTB(x) = TVxB(x).

It follows that
(E,?) ¥ T(VxTB(x) = TVxB(x)),

and an appeal to Definition finishes the proof. m|
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14.3.6. THEOREM:
' VaxTB(x) — TVxB(x)

Proof: Appeal to soundness, i.e. in the case
P VT B(x) — TVaB(x) = H VxTB(x) — TVxB(x),
and Theorem|[14.3.5 O

14.3.7. THEOREM: For some formula A,

FVxTA — TVxA & FVxTAA-=TVxA

Proof: Let B(x) in Theorem|14.3.6|be A, and combine with Postulate m|

14.4 £ is omega-consistent
Recall that Theorem states that £ is omega-consistent.

(McGee [1985) famously isolated a rudimentary theory of truth which is consistent but
w-inconsistent. (Friedman and Sheard [1987) proposed a more substantial a theory of
truth, which inherits the w-inconsistency property. (Halbach|1994) studied the Friedman
and Sheard logic, and found that its proof-theoretic strength is the same as the theory
of ramified analysis for all finite levels.

Given Theorem [14.3.7], an essential ingredient in the proof of McGee’s negative result
fails in £, viz. the statement that

Vx(x ew—T AXx)') > T Vx(x e w > Ax)") (14.4.1)

in (McGee|1985, p. 399). Notice that At Vx(x ew — T Ax)") & VxT x € w — A(x)", so
14.4.1|follows from the Barcan-formula whose thesishood is denied by Theorem|14.3.7
Moreover, exceptions to[14.4.1]in £ follow from Theorem and Mcgee’s argument.

14.5 More orthodox redresses
Theorem|[14.2.1| (Orthodox existential instantiation)
A D(A(x)) = (I—M AxA = A{ for some a substitutable for x in A).

Proof: As on page[47] m

14.5.1. THEOREM Orthodox attestor: If A(x) is orthodox, then
B TAxA(x) = 1 AT A®x).
Proof: Appeal to Theorem|14.2.1] and existential generalization. O
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14.5.2. THEOREM The Barcan formula holds for orthodox formulas:
' O(B(x)) = £ (VxTB(x) — TVxB(x)).

Proof: As on page[33] m
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15 CLASSICALITIES AND DEVIATIONS

15 Classicalities and deviations

On a signalé beaucoup d’antinomies, et le désaccord a subsisté, personne n’a été convaincu; d’une
contradiction, on peut toujours se tirer par un coup de pouce! Je veux dire par un distinguo.

Henri Poincaré

The Grundlagenkrise which struck the mathematical and philosophical communities as a
consequence of the paradoxes, showed one could not presuppose all pretheorethically
plausible comprehension principles in set theory or semantics.

In the following some facts which relate to desiderata fulfilled by £ will be expressed.
The reader may compare with the desiderata of (Leitgeb |2007) and (Sheard |2003)), or
others, concerning theories on paradoxes. Some of the facts on desiderata follow from

§[14.4} §[15.29and §[15.3]

15.1 Facts on desiderata met fully, or partially, by £
15.1.1. Fact: There are no type restricions imposed, and there is no language hierarchy.

15.1.2. Facr: Truth is compositional over ™ , and over similar set theoretic contexts. But
it is not compositional over +, as there are cases such that + A and + B but not - A A B.

15.1.3. Fact: Truth is a set, and so truth is as well a predicate. So it is a consequence
from the alethic comprehension principle of §10|that truth-paradoxes and set-paradoxes
are treated in the same way in £.

15.1.4. Fact: On account of results in § £ is classic in the sense that ' A only if
classical logic does not prove —A, and if classical logic proves A then £ A. Moreover, - B
if B is a thesis of classical logic, and if + B then classical logic does not prove —B.

15.1.5. Facrt: £ is unswerving in the sense that that if A is a paradoxical sentence, then
£ should have + A or + —A, and indeed it as a rule has both.

15.1.6. Fact: The outer veridical logic of £ is the set of theses which encapsulate truth
statements. ¥ 7°A> v =T "A” is for example an instance of The Law of Excluded Middle
of classical logic in the outer veridical logic of £. The inner veridical logic of £ is the set
of theses which are encapsulated by a truth predicate. T AV -A” s for example an
instance of The Law of Excluded Middle of classical logic in the inner verdidical logic of
£. It is a consequence of Fact[15.1.4] that the inner and outer veridical logics of £ are
classical, as they should be.

15.1.7. Fact: The variety of truth conditionals summed up in Exercise [15.2.2| has the
consequence that the outer veridical and inner veridical logics of 7, see Fact|[15.1.6
coincide in £, in the sense of Definitions[15.2.1[7]and [15.2.1[10]

15.1.8. Fact: As related in §9] £ has novel inferential modes. The conjunction of these
may seem to be an amputation of the classical inferential principle modus ponens. But
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15.2 The truth-conditionals 15 CLASSICALITIES AND DEVIATIONS

they are in reality an extension of the classical inference rule modus ponens, as the maxim
mode [9.2.5| serves all the purposes as modus ponens serves in classical logics, and all
classical logical theses are maxims of £. The inference modes £ has beyond the maxim
mode helps engender novel minor theses which are out of reach for classical logic.

15.1.9. Facr: A naive desideratum is that £ should obtain all truth-biconditionals, as in
Definitions[15.2.1l1]and[15.2.1]7, with their weak counterparts, by means of the inference
modes which £ endorses, as per §9] £ compensates for the fact that the statements of
Definitions [15.2.1[1], [15.2.1]2] [15.2.1]3] and [15.2.1]4] are not true with the truth of the
statements of Definitions [15.2.1[5] and [15.2.1[6] and with the fact that the inferential
modes exhibited in Definitions [15.2.1[7] and [15.2.1[10| can be used. A consequence of
this is that revenge paradoxicalities are not a threat. For more on this, see §[18

15.1.10. Fact: By §14.4] £is omega-consistent, soit allows for standard interpretations.

15.2 The truth-conditionals

15.2.1. DEFINITION:

1 Hale material truth adequacy: T A o A
2 Hale material truthwards adequacy: MTA — A
3 Hale material truthly adequacy: MTA > A
4 Weak material truth adequacy: FTA oA
5 Weak material truthwards adequacy: + 7 'A" « A
6 Weak material truthly adequacy: FTA > A
7 Hale formal truth adequacy: MT°A oA
8 Hale formal truthwards adequacy: F 7 A” <A
9 Hale formal truthly adequacy: MT7A =M
10 Weak formal truth adequacy: FT A erA
11 Weak formal truthwards adequacy: FTA <A

12 Weak formal truthly adequacy: FTA=FA

15.2.2. Exercise. £ obeys the formal and as well the weak material truthwards and
truthly adequacies of Definition[15.2.1] The first four adequacies in the list fail on account
of paradoxicalities

15.3 £ is classic and paraclassical, but it is not paraconsistent
Let T be a theory.
15.3.1. DeriniTioN: T is adjunctive justif+ A& + B=+ A AB.
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15.3.2. DerintTioN: T is dejunctive justifFr AAB =+ A & + B.

15.3.3. DeriniTiON: T is cosistent just if forno p, T+ p and T + —p.

15.3.4. Derintrion: Tis consistent justif forno p, T¥ p A —p

15.3.5. DeriNiTION: T is contrasistent just if it is not cosistent.

15.3.6. DerintTiON: T is contradictory just if it is inconsistent.

15.3.7. DeriniTiON: Let 7 be classical logic.

15.3.8. DerINITION A IS an antithesis of T just if —A is a thesis of T.

15.3.9. DeriniTION $ is @ sedation of T iff no thesis of $is an antithesis of T.
15.3.10. DeriniTION X is an extension of T just if all theses of T are theses of X.
15.3.11. DeriniTiON: Let 7 be classical logic.

15.3.12. Fact.Bl

That X is a proper extension of T holds just if
X is an extension of Tand T is not an extension of X.

15.3.13. DerintTION Progressive, moderate and classic theories:
1 Tis progressive just if it is a proper extension of 7.
2 Tis moderate just if it is a sedation of 7.
3 Tis classic just if it is progressive and moderate.
15.3.14. DeriniTION T is coherent just if it is classic.
15.3.15. DerinttioN T is extraclassical just if it is classic and contrasistent.
15.3.16. DeriNiTiON T is extracoherent just if it is coherent and contrasistent.

15.3.17. LEmMma £ is an extension of 7.

Proof: Appeal to §6.4] |

15.3.18. LEmMma 7 iS not an extension of £.

Proof: Given the solution to Exercise[8.3] £ has the paradoxical thesesr € rand r ¢ r. But
rerandr ¢r are not theses of classical logic. O

15.3.19. LEmmA £ is progressive.

Proof: £isaproper extension of r given Fact{15.3.12] Lemma|15.3.12land Lemma|15.3.18
An appeal to Definition|15.3.13[1| suffices to finish the proof. O

3For the following definition, and the notions involved here, compare with (Bjgrdal{2015, p. 511).
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15.3.20. LemMma £ is moderate.

Proof: If T proves —A, M-A as £ is progressive. Axiom justified by Postulate
entails that if T proves —A, v -A & ¥ A. So a fortiori, if  proves —A, ¥ A. By
contraposition, if + A then r does not prove —A. A is arbitrary, so no thesis of £ is an
antithesis of classical logic . Consequently, £ is a sedation of . An appeal to Definition

15.3.13[2/finishes the proof. m|

15.3.21. THEOREM £ is classic.

Proof: From Definition|{15.3.13[3| as £ is progressive and moderate given Lemma|15.3.19
and Lemma[15.3.18 O

15.3.22. Exercise T is contrasistent just if for some p, T+ pand T+ —p.

15.3.23. Exercisk If T is contrasistent and adjunctive then T is contradictory.

15.3.24. Exercisk If Tis contradictory and dejunctive then T is contrasistent.

15.3.25. Exercisk If Tis dejunctive and adjunctive, T is contradictory iff contrasistent.
15.3.26. Exercisk If Tis dejunctive and adjunctive, T is cosistent just if consistent.
15.3.27. Exercise Adjunction is not a valid inference mode in £.

15.3.28. Exercisk £ is extraclassic and extracoherent, and so contrasistent.

15.3.29. Exercise Paraconsistent theories are not classic.

15.3.30. TuEOREM £ iS not paraconsistent.

Proof: Given Theorem [15.3.21| and Exercise [15.3.29| paraconsistent theories are not
classic. But £ is classic by Theorem|15.3.21 O

15.3.31. ReEmark The pairs consistency & cosistency and contrasistency & contradiction
conflate in classical contexts, for classical systems are adjunctive and dejunctive.

15.3.32. Remark With proper comprehension, most paraconsistent theories are not even
moderate, as then some contradiction is a thesis.

15.3.33. Remark. The well-known non-adjunctive paraconsistent logic of (Jaskowski
1999) and (Jaskowski [1948), is moderate even with liberal comprehension principles.
But is it not conservative, and so not classic.

15.4 Incompatability and complementarity

15.4.1. DeriniTioN (Incompatability) The theses A and B of a consistent theory T are
incompatible just if T proves A, B, and —-(A A B).
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15.4.2. TueoreM (£ has incompatible theses) By the result of Exercise £ proves

R € Rand R ¢ R. But £ is conservative, given §15.3 So the thesesR e RandR ¢ R of £
are incompatible, for given its conservativeness, £ proves =-(R € RAR ¢ R).

15.4.3. DerinttioN (Complementarity) A and —A in a theory T are complementary just if
they are incompatible theses of T.

15.4.4. CoroLLARY £ has complementary theses
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16 The Liar is Russell’s condition on his set

Thus mathematics may be defined as the subject in
which we never know what we are talking about, nor
whether what we are saying is true.

Bertrand Russell

Frank Ramsey argued, in (Ramsey (1925, p. 20), that there is an essential difference
between syntactical paradoxes which “involve only logical or mathematical terms such
as class and number”, and semantic paradoxes, which “...are not purely logical, and
cannot be stated in logical terms alone; for they all contain some reference to thought,
language, or symbolism”.

Ramsey considered Russell’s paradox a canonical representative of syntactic paradoxes,
and the Liar he considered an archetypical semantic paradox.

In (A. A. Fraenkel and Bar-Hillel 1958, p. 5), the authors adjudged:

“Since (Ramsey 1925)) it has become customary to distinguish between log-
ical and semantic (sometimes also called syntactic or epistemological) anti-
nomies.”

It is here argued, to the contrary, that one should take paradoxes, as the Liar-paradox,
to be so inextricably intertwined with set theoretical paradoxes so as not consider them
to be different in kinds.

Others reached the same conclusion, but on the basis of considerations different from
the ones adduced further below:

(Scott|1974)(1967) argued that the Zermelo axioms were justified by type theoretic rea-
soning:

“The truth is that there is only one way of avoiding the paradoxes: namely,
the use of some form of the theory of types. That was at the basis of both
Russell’s and Zermelo’s intuitions. Indeed the best way to regard Zermelo's
theory is as a simplification and extension of Russell’s. (We mean Russell’s
simple theory of types, of course.) The simplification was to make the types
cumulative.” (Scott|1974)(208)

Alonzo Church, who was my teacher in a graduate seminary in logic, with an oral exam,
in the spring of 1989, at UCLA, virtually equated Russell’s theory of types and Alfred
Tarski’s resolution of the Liar paradox, in (Church|1976), as he stated:

“In the light of this it seems justified to say that Russell’s resolution of the
semantical antinomies is not a different one than Tarski’s but is a special case
of it.”(Church ({1976, p. 756)

The interest of Scott’s and Church’s points of view, for our purposes here, is that they
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16 THE LIAR IS RUSSELL’S CONDITION ON HIS SET

take Tarski’s resolution of the alleged semantic paradoxes to be the same as Russell’s or
Zermelo’s resolution of the allegedly syntactical, set theoretic paradoxes.

In £ there are bridge principles, as for example per Theorem and Definition be-
tween given, supposedly syntactical paradoxes, and supposedly semantical paradoxes.

16.1. THEOREM: There is a liar sentence L given by ' L « =7 L".

Proof: By alethic comprehension,

MreroT Ten. (16.2)

By negating both sides of the biconditional in[16.2] we get

Mrgre-T T¢1) . (16.3)

16.4. DEFINITION:
L—r¢r,

Substituting with L of Definition in equation gives the more canonical form for
the Liar sentence:

MLe -7 L. (16.5)
O

16.5|is resolved as Russell’s paradox.

16.6. ProrosiTiON: Liar sentences, and variants, with provenances from classical Greek
philosophy, should be taken as given by maxims of Theorems as

16.7. THEOREM: rL,+-L,+ 7L, + 7 =L, + =7 =L and - =7 L.

Proof: We know that+rerand+r ¢ r, so from Definition + L and + —=L. Finish with
[9.2.4[Tland [9.2.412] O

16.8. OsservatioN: Each element in variety [L, 7 'L", =7 “=L"] is incompatible with any
member of [-L, 7 "=L", =7 'L"] in £, and vice versa. Moreover, each element in variety
[L, 7L, =7 "=L"]is complementary to precisely one member of [-L, 7 "=L", =7 'L"]
in £, and vice versa.
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17 Librationist incompleteness phenomena

Kurt Gddel, when colleague John Bachall presented himself as a physicist at an
Institute for Advanced Studies faculty dinner: "I don’t believe in natural science."

(Regis|[1988, p. 58)

Itis of interest to note that the proofs of Gédel’s incompleteness theorem typically appeal
to the theorys cosistency, which conflates with its consistency in the classical frameworks
which are usually presupposed. So may consistent contrasistent theories, as £, possibly
finesse the limitation? Let us explore this cursorily, without commitments.

Observe first that 7 maximally obeys the Hilbert-Bernays-L&éb derivability conditions in
the sense that for all A and B,

LMA=MT7TA
M TA S TTAY.
3. TASB - (TA > TB).

Take ! 7°A" to express not only that A is a true maxim, but as well that A is provable
as a maxim. Take therefore a thesis as ' 3x=Tx to expresses that £ is not trivial, and
P —IxT “Tx A =Tx to express that £ does not prove a contradiction, or inconsistency.

Let us at this point restate[16.5} # L & =7 L.

If one supposes #1 L it follows that ' 7L from 1, and #' =7 L from m If one
supposes b -L it follows that 1 7 =L from 1, and ' 7 "L from[16.5} so that one with
Postulate has #' 7'=L" and ' =7 "=L. As £ is maximally adjunctive so that
[ A& " B] = " AAB, ineither case ' 7 =L A =T "=L’. So neither ' =L nor ¢ L,
but rather - =L and + L. So the sentence —L which is maximally incomplete, in the sense
that neither =L nor L is a maxim, is nevertheless a minor thesis.

It was pointed out, by means of Exercises |5.5.2| and [5.5.3| and Definition that
neither - s € s nor+ s ¢ s, if s = {x|x € x}. But this is not a genuine incompleteness, as
neithere s e snores ¢ s.

The author does not know that there is a sentence A such that I7VI A and such that we
should want that ' A, nor that there is a sentence B such that ¥ B and such that we
should want that + B. Certainly, if C is the statement that there is a certain inaccessible
cardinal larger or equal to the first hypothetized 7-inaccesible cardinal, it will be the case,
with the assumptions made, that even |7V' CY, where Vis as in § and the notation CY
as in Definition It is not obvious to the author, however, at this point, that we
should want ' CV.

But for the record, given §25|if D is the statement that there is an inaccesible cardinal,
and that there for any inaccessible cardinal is a larger inaccessible cardinal, then & pV.
However, those inaccessible cardinals count as 0-inaccessible cardinals here, and the
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17 LIBRATIONIST INCOMPLETENESS PHENOMENA

theory NBG+TA has a standard model in V, if { is the first 7-inaccessible cardinal, i.e.
the first regular limit of inaccessible cardinals.
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18 The reflective theory of comprehension

Two paradoxes are better than one;
they may even suggest a solution.

Edward Teller

One may as a first approximation take the reflective theory of truth comprehension that is
supported by the librationist set theoryto be expressed above all by the inference modes
of §9} and especially the simple inference modes, for truth. The reflective theory of set
comprehension is obtained from the reflective theory of truth comprehension via alethic
comprehension.

18.1 Responsible naiveté without revenge

The revenge problem is avoided as £ is unswerving, in the sense of Fact|{15.1.5] and as
it has complementary theses in the sense of Definition|15.4.3

Consider the Liar sentence L of Equation If + L, it follows that v =7 "L’ via the
equation. However, it as well follows that + 7L from + L and inference mode [9.1.1[1]
So+ 7 'L and + L state things as they are. Moreover, given + =7 "L", it follows that + =L
via inference mode[9.1.1]9] So + —-L and v =7 "L" state things as they are.

It is not a desirable option to prefer ¥ L and ¥ —-L, for £ L and £ =L, and one should
attempt to have + B whenever £ B. Moreover, it has, as discussed in Fact|15.1.5, been
presupposed as desideratum that £ be unswerving, and decide paradoxical sentences.

18.2 Argumenta ad paradoxo

That an assumption in £ has the consequence that + A and + —A does not suffice as a
proof by contradiction against the assumption. Instead, if the considerations leading to
+ A and + —A cannot be extended to arrive at + A A —A, they constitute an argumentum
ad paradoxo to show that A and —A are complementary theses of £. The considerations
in §18.1]are argumenta ad paradoxo, which justify such metamathematical statements
as that L and —-L are complementary theses of £.
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19 THE MANIFESTATION SETS

19 The manifestation sets

There are very few theorems in advanced analysis which have been demonstrated in a logically
tenable manner. Everywhere one finds this miserable way of concluding from the special to the
general and it is extremely peculiar that such a procedure led to so few of the so-called paradoxes.

Niels Henrik Abel

We explain the manifestation set construction in §19.1] and will as from §25| see that
it facilitates £'s ability to be extended with strong set theoretic principles. In §19.2 we
show how we may obtain Quine atoms via orthodox manifestation sets. The foci in the
succeeding sections will be upon negative results: In §19.3| we account for the auto-
combative paradox. Next, in §20| we elucidate the virtually universal paradoxicality of
power sets. Finally the failure of extensionality in £ is discussed in §21], where it is shown
that all orthodox sets are distinct from, as well as co-extensional with infinitely many co-
extensional and pairwise distinct orthodox sets.

19.1 The manifest construction

For the following construction, cfr. (Bjgrdal [2012)(345-46), (Cantini|1996)(76), (Visser
1989)(695-96) and earlier literature referred to there. One may, plausibly, find that
Roger’s theorem and Kleene’s second recursion theorem are related, but the proof that
there are manifestation sets does not rely upon any presuppositions on computability.

19.1.1. DeriNniTioN Kuratowskian ordered pairs:

(a,b) = {{a},{a, b}}

19.1.2. DeriniTioN The manifestation set A of formula A(vg, vy):
(1) vpb == Fvy(vo = (v,b) A vy € b)
(2) @ = {v2[Fvo, vi((vo, vi) = va A A(vg, vi) "™}

(3) A ={vlvna}

19.1.3. THEOREM Manifest comprehension, for the manifestation set in|Definition|19.1.2/3}

Mvy(v e A o TTAGW,A))

MVr(v e A o TTAGL,A))

Proof: From [Definition[19.1.2/3|and alethic comprehension,

MeeA o Tecna.
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As a consequence of |Definition[19.1.2[1|we have

A Tena & T3Iva(vy ={c,a) Avy € a)

From the two previous steps, |Definition [19.1.2[2] alethic comprehension and we
have

M e e Ao TIn(va = (e, a) ATIvg, vi((vo.v1) = va A A(vo, )i "™))

It follows, by means of the theory of identity, that

MeeA o TTA(,v)A

vy?

so that, on account of [Definition|19.1.2/3|and Definition|4.5.19

MceeA o TTA(CA).

Finish with universal generalization. O
19.1.4. CoroLLarY Orthodox manifestation:

If A(vo,v1) is orthodox, *' V(v e A & A(v,A)).

19.1.5. Tueorem(Comprehension for orthodox manifestation set with parameters)

Some manifestation sets have parameters, so if orthodox A has the free variables in v:

M ViVB(v € A o A(B,v,A)).

Proof: Adjust Definition[19.1.2| For the notation, recall Definition|4.5.21 O

19.2 Quine atoms

The most elementary Quine atom is the manifestation set = of formula vy = v{. By means
of manifest comprehension,

P YWwive=eoTTv==). (19.2.1)

As identity is an orthodox relation,

A Ywiye=eov==x=). (19.2.2)

As identity is an equivalence relation,
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P . (19.2.3)

So from equations|19.2.2/and (19.2.3]

M =e= (19.2.4)

19.2.5. Exercise: Prove that there are infinitely many distinct Quine atoms.

19.3 The autocombatant

In contrast to orthodox manifestation sets, many are paradoxical. This is for example the
case with the following quite heretical manifestations set ¢, which generates an infinity
of incompatible and complementary theses.

19.3.1. Tueorem (The autocombative truths) ¢ is the manifestation set of formula vy ¢ v4,
so that:
EVYv(veg) & =Vv(v ¢¢).

Proof: On account of Theorem
M vu(v eg o TTv ¢g),

so that by soundness
M V(v eg & TTv ¢¢).

If A is any limit below the closure ordinal ¢, we will, for any term a, and any fair function
E, have that (E,2) I+ a ¢¢; otherwise a contradiction would follow as a ¢¢ would hold at
succeeding successor ordinals o, o + 1 and o + 2 below 1. Consequently, we for such a
limit A as well have that (E,4+2) I a €¢. From[5.2.2[2|we have that (E, 1)  Yv(v ¢¢) and
(E,1+2) VYv(v €g)). As a result, (£,9)  =T-Vv(v €¢)) and (E,?) + =T -Vv(v ¢¢)). The
proof finishes by invoking Definitions|5.4.23|and|5.4.3[3| m|
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20 Powersets are paradoxical lestas P({v|v = v})

Das Wesen der Mathematik liegt in ihrer Freiheit.
Georg Cantor

Use standard notation, so that " a c b & Vx(x € a — x € b), and posit

20.1. DeriNntTION The power set of a:

P(a) = {v|v C a}.

It turns out that a power set is paradoxical unless it is the power set of a maximally filled
set b for which " Vx(x € b).

20.2. DeriNtTION The universal set:

U=—={v|lv=v}

20.3. THEOREM « is paradoxical if ' Vx(x € a < x € U) :

Proof: We use a case distincion to provide a distinct proof for the case where " 3v(v ¢ a).
(1) If y Av(v ¢ a), use the autocombatant ¢, of Theorem|19.3.1} for which

FYv(v e€) & +VYv(v ¢€).

In this case +¢¢ P(a) and +¢€ P(a), so P(a) is paradoxical.

(2) If ¥" Av(v ¢ a),r UeP(a)and+ U ¢ P(a), so P(a) is paradoxical. i
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21 Non-extensionality and Ursets

It is impossible to be a mathematician without being a poet in soul.
Sofia Kovalevskaya

The principle of extensionality’s failure in type free theories is well known, and many have
contributed to the deposit of knowledge.

Let us first posit
21.1. DeriniTiON The principle of extensionality:
M e

Fra=b—a=hb.

A particularly easy proof of the failure of the extensionality principle in £ is obtained by
making use of the fact that for any limit ordinal A,

EA+D)F{y=vI= P evia{vy=v}#{vvev)

As a consequence, there are sets a and b such that # a Ehoa= b, and so it follows, a
fortiori,thaté\é/I a<b—a=b,Butd afbhbsa=b=>F afb—a=>bisasoundness
requirement, so that |794 a<bh—a=h.

(Gilmore [1974) showed that a partial set theory proves that there is an orthodox set a
such thata = ¢ and a # . (Bjogrdal 2012, p. 345) relates Lev Gordeev’s more concise
proof of the same result as Gilmore’s, in the context of Explicit Mathematics, and some
on why it was published in (Beeson |1985)), with acknowledgement.

Define Gordeev’s set with the manifestation theorem|19.1.3] so that one may posit
21.2. DeriniTioN (Via manifestation)Vx(x € g & TT(x =@ Ax = §).

21.3. THEOREM: [Gordeev] g is (i) orthodox, so P x e g (x=0Ax=g), (i) empty
and (iii) distinct from @.

Proof: As the proof of Theorem 4 in (Bjgrdal 2012, p. 345): (i) g is orthodox, on account
of the theory of identity. (ii) As My e g o (x=0Ax=9), B x e g — g =@,s0 ¢ is empty.
(iii) ¢ # @, for else ¢ = {¢} on account of Theorem (i), which contradicts (ii). m|

(Cantini [1996)(74), relates a proof, by Pierluigi Minari that we for any orthodox set a
may find a distinct orthodox set b such that a and b are nevertheless co-extensional.

Theorem 5 (ii) in (Bjgrdal |2012)(346), whose proof was left as an exercise, states the
result that Minari’s construction can be generalized, as in Theorem This result
appears to be the most general non-extensionality result which has been available, and
the mentioned exercise is solved, by the following
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21.4. THEOREM: For orthodox set b, there are infinitely many pairwise distinct orthodox
and co-extensional sets, which are all co-extensional with »# and distinct from 5.

Proof: Let orthodox v; be given, and let v,,; be the manifestation set of

i=n i=n i=n
(/\VlGvi/\vi¢V1)V(Avi¢vi/\\/v,~:v1)

i=1 =1 i=1

so that, by manifest comprehension and the logic of identity,

i=n i=n i=n

Yv(v € vy © ((/\v EV; ANV # vn+1) \% (/\v,- ¢ v; A U; :vn+1)).
[:1 l:1 l=1

If \/fj’f(vi = vns1), it follows that P Unsl € Upsl © Unsl € Une1, Which is impossible. So
/\jj’l’(vi # vn41). Clearly, /\jj’{(u,-g vu+1). The process can be iterated, so we are done. O

Theorem extends Theorem to ordinal limit chiffers larger than w.

70



22 NAMES AND SETS OF URELEMENTE TO TRANSFINITE ORDERS

22 Names and sets of Urelemente to transfinite orders

Os numeros s@o as regras dos seres, e a
matemdtica é o regulamento do mundo.

Francisco Gomes Teixeira
22.1. DEFINITION:
(1) Letwv; = ¢, as in Definition[21.2]
(2) Forany neQ,, 'n isthe v, of Theorem(21.4
(3) v? = {x|V¥y(vo € y AVz(v; €y D vzs1 €y) D X EY)}.

22.2. THEOREM: [For manifestation set v,,]

iy Vx(x €vy & (x=v, Ady(y € v Ax =Y))).

22.3. REMARK: v, in Theorem is orthodox as v in Definition is orthodox.
22.4. THEOREM: (i) v,, is empty. (ii) P Vy(y e v - v, #y)}

Proof: (i) If a were an element of v,, Mg = vy A Ay(y € v” Aa = y). Given Theorem
all members of v are empty sets. Consequently, if a were an element of v, then
v, would be an empty set. So v, is an empty set. (ii) A rendition of Theorem is
A Vx(x ¢ v, & (x=v, - Vy(y e v¥ — x #y))), SO, as a consequence,

M Vo & Uy = (Vy = v, = Vy(y € VY > v, £ ).

The proof finishes by invoking the maxim mode as ' v, ¢ v, on account of (). o

22.5. DEFINITION:
(1) cisanursetjustifc= "n', for somen € Q,.
(2) Inaccordance with Definition[4.5.4], '2222221", "222221", "22221", "2221", 221", 21"
and “1° are the symbolic ursets: #', "¢, ‘¢", V', |, V', "o,
(3) The symbolic ursets are the atomic names, which denote the primitive symbols.

(4) Recall Definition of £(ng) = |loga(ng + 1)], which uses log, and the floor
function | |, to define the length ¢(ng) of the bijective base-2 cipher needed to
express a given chiffer ny.
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22 NAMES AND SETS OF URELEMENTE TO TRANSFINITE ORDERS

(5) So

t(e)=£(1) =1

€(v) = £(21) =2

€(l) = £(221) =3

e(Y) =€(2221) = 4
€(s) = £(22221) =5
€(&) = £(222221) = 6
C(#) = £(2222221) = 7.

(6) Given Definition the joining of names is defined by positing

—~

r hl
g ™ ‘ny == ‘non; = ‘ng n; =— no-2€(”‘)+n1 .

(7) Given Definition we may use Definition|22.5/6/to construe composite names
gramatically correct by joining names whilst obeying the formation rules of §4.5|

(8) For goode {symbol, symbol string, variable, formula, constant, term, sentence},
"N is a good name just if N is a good.

22.6. Cavear: In formula VvT “A", “ ' is a term operating formula forming operator, so
the evaluation of 7 "A"? is comparable with OA”, where O is any formula operating for-
mula forming operator. So, for example, 7 v=v"%is T"b=b". A subtle substitution
function, e.g. as with (Smorynski|[1977, 837 et passim) in the proof of Gddel’s incom-
pleteness theorem, is not needed, for there is no use of quantification into an opaque, or

otherwise “intensional”, context.
Notice that at this point Theorem may straightforwardly be extended:
22.7. TueorewMm (Sets of Urelemente to any order)

Given Definition|22.1/2 v in Definition serves as the set of the expression names
defined in §21] Given Theorems|[22.2]and[22.4](i), v, is another empty set distinct from
all members of v“ But we may now define a new omega ordered set of Ursets

w

v? = {x|Vy(vy € Y AVzZ(v, €y > U1 €Y) > x € Y)}.

v“?, and indeed v# for any ordinal 8, may serve as sets of Ursets, or Urelemente, for
whatever purpose one may have in mind, including that of naming extramathematical
things to equip £ with domains useful for applied mathematics, including logic.
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23 HERITORS AND REGULARS

23 Heritors and regulars

A man is like a fraction whose numerator is what he is and whose denominator is what
he thinks of himself. The larger the denominator, the smaller the fraction.

Leo Tolstoy

Heritors and regulars are defined, and their behavior regulated so as to support the de-
velopment of the interpretation of NBG set theory of §25|

23.1. DeriniTioN: The Heritor is H = {x|x = {y|y € x}}.
23.2. DerINITION: a iS an heritor just if g e K.
23.3. DeriNiTION: H(a) = a = {x|x € a}

23.4. THEOREM: The Heritor and heritors are orthodox.
Proof: The Heritor is orthodox by identity theory, and heritors by Postulate|6.5.2l6, O

23.5. DerINITION: a iS an hyposet of set b just if a = {x|x € a A x € b}.
23.6. Axiom:
g Ha) A H(b) Aac b — a={x|x €aANx € b}.

23.7. THEOREM: .
M H(a) AH(D)Aa=b — a=b.

Proof: An instance of Axiom is £ Hb)yANH(a) A\bca— b={x|x € bAx € a}.
{x|x € a Ax € b} = {x|x € b Ax € a}, given §12] so just wed with the statement instance
H(a) N\H(b)y Aac b — a={x|x €aAx € b} of Axiom|23.6 m|

23.8. Axiom:
At H(a) A\H(b) Na C b «— a={x|x € a Ax € b},

so if a is a hyposet of b, then a and b are heritors, and a is a subheritor of b.

23.9. THEOREM:

P H(a) AH(D) > (ac b o a={x]x€anxeb)}).

Proof: Invoke Axioms|23.6land[23.8l O
23.10. Axiom (Heritors are hereditarily heritors)

e H(y) » Vx(x € y > H(x)).

23.11. OBservaTIiON: This section’s axioms do not commit to the existence of heritors.
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23 HERITORS AND REGULARS

23.12. DeriNiTioN (Regular sets)

R(x) =3Fy(yex) > Jy(yexAVz(z¢xVz¢y))

23.13. Exercise Regular hereditarily orthodox sets are hereditarily regular.

Our attention below will be upon regular heritors.
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24 CHOICE, POWER, POTENCY AND COUNTABILITY

24 Choice, power, potency and countability

The axiom of choice is obviously true, the well-ordering principle
obviously false, and who can tell about Zorn’s lemma?

Jerry Bona

Not all things worth counting are countable, and not all things that
count are worth counting.

Albert Einstein

We show that the librationist universe is countable. Theorem|20.3|is one of the important
reasons why that is so. Theorem establishes that there is an orthodox bijection
from the set of natural numbers w to the full universe U. §24.6]spells out how it is that
Cantor’s arguments, linked to power sets, are circumvented in £, with recourse to the
bijection euro from w to the universe, and the choice-function ¢‘x upon which it is based.

24.1 The denumerable wellordering

24.1.1. DEFINITION:

HaHb[(Constant(a) A Constant(b) A (E,a@)  a < b)

)
(x(xnQ &x <a& (E,a)kFx=a) uy(ynQ &y <b & (E, @) Il-y:b))]

24.1.2. COROLLARY:

E,ara=bs Ea)radb& (E,a)Fa>b

24.1.3. DEFINITION:

Ea)ra<xbe (B a)radb & (E,a)Fa+b

24.1.4. Axiom The wellordering:

(B, ) FVx,y(x<yVx=yVxpy)

24.1.5. Axiom The orthodoxy of the wellordering:

<, and its cognate relations, are orthodox.
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24.2 Function application notation24 CHOICE, POWER, POTENCY AND COUNTABILITY

24.2 Function application notation

24.2.1. DEFINITION:

fla=b=VxVyVz(((x,y) € fA(x,2) € f) > y=2)A(a,b) € f.

24.2.2. DEFINITION:

24.2.3. DEFINITION:
xefla=3y(f'asyArxey)

24.2.4. DEFINITION:
flaex=3y(f'acyAyex)

24.2.5. Remark: The notation = is used instead of =, for there are paradoxical functions
as e.g.

g={ )k ={2tA((rer—y=2)A(rér—y={2})},

for r = {x|x ¢ x}. For g we do have that Ay VaVyVz(((x,y) € g A (x,2) € g) = y = 2).
But, notice that (E,a) + ({@},{@}) € gjustif (E,a+1) v ({@},2) € g. SO we cannnot
write g‘{@} = {@} in the former case, and g‘{@} = @ in the latter case. For identity is
an orthodox equivalence relations. So we use = to avoid problems with the theory of
identity in exotic cases.

24.2.6. Remark: There certainly are sets of more orthodox functions so that a function
h is an element in one of them only if & VxVy(h'x =y > T "h'x = y").

24.2.7. Remark: The author introduced and discussed the notation = in the article
(Bjardal 2008, pp. 55-66), whose English translation is «“2+2=4" is misleading», for
such reasons which are adduced here.

24.3 The choice function
On account of ancient Greek diuéicée, for was selected, we define 9w, the atled of w:

24.3.1. DeriNtTION The choice function:
Ow={x|[(x ewAVy(yew - x <y}

24.3.2. DeriNiTION Iterated choices from b:

az9"bos (m=0Aa=9¢b)Vidn(new Am=n+1 /\at?‘(b\UQib))).
i=0
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24.4 The enumerator 24 CHOICE, POWER, POTENCY AND COUNTABILITY

24.4 The enumerator

Given Axiom[24.1.5| the orthodoxy of w and U, and the fact that ¢"w is orthodox if w is
orthodox, we posit

24.4 1. DerinttTioN of the Enumerator:

€ = {(n,x)|n € w Ax € 9"U}
24.4.2. TueoreM (€ is orthdox)
Proof: As 9"U, for n € w is orthodox. |

24.4.3. TueoreM (The functionality of €)

iy VaVyVz(((x,y) €€ A (x,2) €€) > y=2)

Proof: Obvious, given Definitions[24.3.2|and [24.4.1|and Theorem|[24.4.2 m|

24.4.4. THEOREM

M E€nzxo (nx)e€onecwnxe o (U)

Proof: On account of Definitions [24.2.1|and [24.4.1] and Theorem |24.4.3 O

24.4.5. THEOREM
€ is a bijection from w to U.

Proof: Given §24.1} as the orders of w and Q match, and for any constant a, anQ, as all
sets are finite positive von Neumann ordinals according to the meta language. O

24.5 The enumeration postulates

For any ordinal a:

24.5.1. POSTULATE:
HaHb(constant(a) & constant(b) =

(Z, ) FYn(n € w — (3="x(x <a) AT y(yab) —a= b)))

24.5.2. POSTULATE:
a,b,c, ((E,a) + Vn(n Ew — (((a, by e € & T "x(x < b)) “

(({v|v cavv=a)c)e€&TMx(x < c))))
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24.5 The enumeration postulates 24 CHOICE, POWER, POTENCY AND COUNTABILITY

24.5.3. POSTULATE:
E,a)FVn(n€w— y(n,y) € €))

24.5.4. POSTULATE:
(B,a) FVydn(n € w A {n,y) € €)

24.5.5. POSTULATE:

(B,a) FVaVn'Vy({(n,y) e €EA(n',y) e € > n=n)

24.5.6. POSTULATE:

(E,@) FVnVyVz({n,y) € €A (n,y) €€ = y=2)

Some consequences of the enumeration postulates:

24.5.7. THEOREM:
e 3% (x <L)

24.5.8. THEOREM:

HaHb(constant(a) & constant(b) =

M Vn(new — (Hznx(x <a) AFTy(y<b) »a= b)))

24.5.9. THEOREM:

Hb[constant(b) = ((@, b) € € & F%(x « b))]

24.5.10. THEOREM:
Ia, b, c, (I—M Vn(n €w — (((n, by e € & T "x(x <« b)) o
(({vlv envv=n)c)e€ &I x(x 4 c)))))
24.5.11. THEOREM:
N Vyan(n € w A (n,y) € €)

Proof: As all sets are finite von Neumann ordinals of the meta language, and w has the
same order as Q. O
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24.6 Absolute countability 24 CHOICE, POWER, POTENCY AND COUNTABILITY

24.6 Absolutely all sets are countable

If some set is uncountable, some set of subsets of w is uncountable. We have earlier in-
troduced the power set P(a) = {x|x c a}, and will first consider its import on the question.
Thereon we consider the potency set of a set a as given by

24.6.1. DerintTION: P(a) = {x|x ={y|]y e x Ay € a}}.

The potency set construction is very important in §25| Here the preoccupation is with
showing that neither power sets nor potency sets generate uncountable sets.

24.6.1 <€restricted to P({x|x € w})

€ restricted to the power set of {x|x € w} is

€lpdakeny = {(x.Y)[(x,y) e €Ay € P({x|x € w})}, (24.6.2)

which has w as domain and P({x|x € w}) as range. Given Definitions [24.3.2|and [24.4.1],
equation|24.6.2| may be equivalently stated as

€lp(ewy =L Y)Ix €w Ay € XUAYy € P({x|x € w})}. (24.6.3)
24.6.4. THEOREM
P YuvVvVw((u,v) € €lpxlxew)) A (U, W) € €lp((xxew)) =V =W).
Proof: Obvious, from the built up of €|p(yrew)) With orthodox function ¢*. O

To attempt Cantor’s proof by contradiction for uncountability, assume that €|p(yrew))
surjects from w to P({x|x € w}) and posit

24.6.5. DEFINITION:
S={xlxcewAx¢ €|P({xrew)) ‘x}.

24.6.6. TueoreMm For an m € w,
' (m,S) € €lp((aixew))-
Proof: A consequence of Equation[24.6.3|and alethic comprehension is
I—M (m,S) € €|P({x|x€w}) ST mewNnSe9"UAS e P({x|x € w})".
Let m € w be the natural number such that ! S € 9"U, so " m € wAS € 9"U. But besides,

'S e P({x|x € w}), as s c {x]x € w}. So MmewASe9UAS e P({x|x € w}). Thus,
on account of inference mode 9.1 .2 M TmewASe9UAS e P({x|x € w})”. Finish

by using the maxim mode m|

24.6.7. Tueorem There is an m € w such that #' €|p((re)) m = S.

79
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Proof: Invoke Theorems|24.6.4/and|[24.6.6| and Definition[24.2.1 O

From Definition|24.6.5|and alethic comprehension,

MmeSo T mewAme€lpixpren)) m . (24.6.8)
Given Definition|24.2.3
M meSoT mewA VY(Elp(xjrewy M=y > m ¢ y) . (24.6.9)

Given Theorems [24.6.4|and |24.6.7| and the fact that there is only one m € w such that
S € 9"U, for the appropriate m, Vy(€|p(xjxew)) ‘M =y <> y =S). So that

M meSoT mewrmeS). (24.6.10)

But it was assumed that m € w, which is an orthodox statement, so that

MmeSo T meSs) . (24.6.11)
As
FT‘meS) - méS (24.6.12)
and
rmeS—T meS), (24.6.13)
it follows that
FméS (24.6.14)
and
FT me¢S —T meS’ . (24.6.15)
But
M T meS »-Tm¢es, (24.6.16)
so that
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FT méS — =T m¢S’, (24.6.17)

and consequently

F—=T mesS’. (24.6.18)

But an instance of the inference mode[9.1.2[11]is

F=T m¢S =>rmeSs, (24.6.19)

so that

FmeS. (24.6.20)

A joining of equations|24.6.14|and |24.6.20| results in

FrmeS&+rmégS. (24.6.21)

But this merely amounts to an argumentum ad paradoxo, and it has not been proven that
€|p({xlxew}) is NOt a function with domain w which is onto its range P({x|x € w}).

24.6.2 <€restricted to P(w)

The potency set of w is
Plw) ={xlx={y|ly ex Ay € w}}. (24.6.22)

€ restricted to the potency set of w is
€lp@w) ={(xY)I(x,y) e €Ay € P(w)}, (24.6.23)

which has w as domain and P(w) as its range. Given Definition|24.4.1| equation|24.6.23
may be equivalently stated as

€lpw) ={(,xcwny e (U)AyeP(w)}, (24.6.24)
24.6.25. Fact €, P(w) and €[y, are orthodox.

Proof: € is orthodox given Theorem [24.4.2] P(w) on account of the theory of identity,
and €|y, is orthodox because € and P(w) are orthodox. O

24.6.26. Fact
M VXV WVz((x, y) € €lpw) A (5,2) € Elpw) — ¥ = 2).
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Proof: As € is functional. O

24.6.27. Assumption Orthodox function €|y, surjects from w to P(w):

Yw(w € P(w) = Fv(v € w A€lpw) v = w)).

24.6.28. DEFINITION:
S={xlx € w Ax & €]p,) x}.

24.6.29. AssumpPTioN S = {yly c w Ay € S}: S € P(w).
24.6.30. AssumptioN S is orthodox.

Proof: From Assumption[24.6.29] Axiom and Theorem [23.4] i
24.6.31. AssumpTiON An m € w is such that €[y, ‘m = S.
Proof: From Assumption|24.6.27 m|

24.6.32. ASSUMPTION H" Vx(x €S & x € w Ax & €pw) X).
Proof: Given Definition[24.6.28and the fact that S is orthodox. m
24.6.33. AsSUMPTION F' Vx(x €S o x € w AVY(Elpwyx =y = X EY).
Proof: On account of Definition[24.2.3]and Assumption |
24.6.34. ASSUMPTION H' (meS—->mg\S).
Proof: It was agreed in Assumption [24.6.31|that for an m € w, €|p(,)‘m = S. o
24.6.35. AssuMPTION m ¢ S — Jy(€lp)'m =y Am € y).
Proof: From Assumption the agreement of Assumption |
24.6.36. THEOREM For functional £:

if & Ay(f‘a=yAacy)and e f‘a = c,then Maeec.

Proof- Because 1 [(a,y) € f A(a,c) € f] = y=c,as fis functional, and because
P ((d,e) € fo fid=e)if g (f is functional). m|

24.6.37. AsSUMPTION F| (m¢S—>me\S).

Proof: Appeal to Assumption|24.6.35/and Theorem|24.6.36 O
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24.6.38. ASSUMPTION F' m € S Am ¢S

Proof: From Assumptions|24.6.34|and|24.6.37| m|

The contradiction in the maximal context of Assumption |24.6.38|is false, so it follows
that a previous assumption is to be discarded. We do that by stating the following

24.6.39. THEOREM Assumption|24.6.29|is false, and so PS # {x|x €S A x € w}.

Proof: The discussion in §24.6.2 O
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25 AND THE THEORIES OF VONSETS

25 % and the theories of vonsets

If people do not believe that mathematics is simple, it is
only because they do not realize how complicated life is.

John von Neumann

Recall Definitions 23.3]and 23.12
25.1. DeriniTion Set theory % is £ plus Axioms|[23.6}(23.8},123.10|
25.2. DeriNiTION BH&R(D) is @ plus H(D) plus R(D), with D as in Definition [25.4.6

Let NBGC + TA be Neumann-Bernays-Gddel set theory with Global Choice and Tarski’s
Axiom. An interpretation of NBGC + TA is developed in ®H&R(D) below.

Natural weakenings and extensions of NBGC + TA are as well taken to be theories of
vonsets. Needless to say, but all vonsets are sets, though some sets are not vonsets.

The term “natural” in the previous paragraph is left undefined, as investigations should
not be restrained. So we here disregard philosophical quandaries related to the fact that
the term “vonset” may have different meanings, whatever that is, in natural extensions
of NBG which are not consistent with each other, such as NBG + the Axiom of choice,
and NBG + the Axiom of determinacy.

25.1 The potency vonset

We saw in §20|that power sets as classically defined are mathematically useless, as they
are paradoxical lest of a non-paradoxical universal set.

Potency vonsets are potency sets, as all vonsets are sets.

The notion of potency set was introduced in Definition |24.6.1

Pla) = {xlx={ylyex Ay e€a}l}

25.1.1. THEOREM: The potency vonset of a vonset a contains precisely a’s hypovonsets,
in the sense of Definition[23.5]

Proof: Use Axioms|23.10/and|25.4.10|and Theorem entail that vonsets are heritors,
and from Axioms|[23.6/and[23.8| O

25.1.2. THEOREM:
P(a) is orthodox, and all of its members are hereditarily heritors.

Proof: P(a) is orthodox by the logic of identity. Its members, if any, are heritors on
account of Axiom and are hereditarily heritors given Axiom|[23.10 m|
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25.1.3. THEOREM:
P(a) is empty if a is not an heritor.

Proof: Appeal to Axiom ]

25.1.4. THEOREM:
P Vx(x € Pa) & H(x) AH(a) Ax C a).

Proof: Appeal to Theorem and Definition[24.6.1 m|

25.2 The Grothendieck vonset of w relative to v
25.2.1. DerintTION: Let
G(v,w,vo,v1,) :Vy(w EYA Vz[z €y —(z€Pvi) AP(z) e P(vi) AP(2) € y)] A

Vz(z € P(y) Az ¢ y — 3f[f € v A Bijection(f)A
(Vx0)(x0 € y = Tx1(x1 € 2 A (x0,x1) € [f))

(¥x1)(x1 € 2 = xo(x0 € y A (x0.x1) € F)]) = vo € )

Use Theorem|19.1.5|to obtain the manifestation set with parameters G(v, w),
25.2.2. THEOREM The Grothendieck of w relative to v:
P Yuvw(u € §(v,w) & TTVy(w €EyAVz[zey -

(z € P(G(v, W) A P(z) € P(G(v, W) A P(2) € )] A
Vz(z € P(y) Az ¢y — 3f[f € v A Bijection(f)A
(Vx0)(xo € y = Ax1(x1 € 2 A (x0,x1) € f))

(¥x1) (1 € 2= Fro(xo € y A (¥0,31) € F)I) = u € ¥))

25.2.3. THEOREM: G(v,w) is orthodox for orthodox v and w, so that
P YuVw(u € G(v, w) <—>Vy(w €EyAVz[zey—

(z € P(G(v, W) A P(2) € P(S(v, W) AP(2) € y)| A
Vz(z € P(y) Az ¢ y — 3f[f € v A Bijection(f)A
(Vxo)(xo € y — Tx1(x1 € 2 A (x0,X1) € [))

(Vx1)(x1 € z = Txo(xo € y A (x0,x1) € f))]) Du e Y))

Proof: As in the proof that w is orthodox, of [Theorem [13.2[3| on page noting that
P(G(v,w)) is an orthodox heritor by cause of Theorem|25.1.2 O

25.2.4. Remark: For appropriate v and w, Theorem [25.2.3| amounts to Tarski’s axiom,
which states that all sets are members of a Grothendieck-universe. Tarski-Grothendieck
set theory is usually presented as ZFC + Tarski’'s axiom.
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25.3 Capture
In this section we presuppose that the sets and conditions invoked are orthodox.

25.3.1. DeriNntTioN Capture with B from w:

CB,w) = {x[3y(y e w AVz((x,y); € B & y =12))}

25.3.2. THEOREM: Capture is equivalent with replacement.

Proof: i) If a vonset is obtained from capture with B from w, it can be obtained from
replacement by using the functional condition Yz((x,y); € B & y = 2). ii) If a vonset is
obtained from replacement by functional B so that VxVyVz((x,y) e BA(x,z) € B — y =2),
it can be obtained from capture by using the condition as in Definition O

25.3.3. THEOREM: Capture, as replacement, entails specification.

Proof: Use the functional B® =— {(x,y)|x € B A x = y)} as capture vonset relative to a
vonset a, and observe that the existence of the vonset {x|x € a A B(x)} is justified by
capture and extensionality, which holds for V and D below, as per Theorem|[25.4.13] O

25.4 VandD
25.4.1. DerintTioN Of the drift of u:

D(u) ={wlw € u VVv([u € v AE = {(x;,x;)|(x;,x;) € u> Axj € Xj} €EVA
Vxi(xiev —>{ylycuny ¢x;} €v) AVXVx;j(x; EVAX; €Ev > x;NXx; EV)A
Vx;(xi € v — dom(x;) = {y|3x((y,x) € x;)} € V) A
Vxi(x; € v — {y|3x;, xk (y = (xj,xk) AXj €Ex; Avp €vi)} EV)A
Vx;(x; € v — {y|3x; I I (v = (xj, X1, X1) A (X, X1, X7) € X} € V) A

Vaxi(x; € v — {y|3x; 33, (y = (xj, X0, x1) A (X, %1, %) € X} €v)] = w e v)}

25.4.2. DerintTioN of V(vg, vy):

V(vo,vl):\v’v((wev/\VwEviEv:{w,x}ev/\VwEV:UWEV/\
Vwev:Pw)={xlx={ylyexAyew}tevA
Vwev:9w)={x|[xewAVy(yew ->xdy)levA
Ywev: G(D(vy),w) ev A
Yw € vWWB € D(v1): C(B,w) = {x[Ty(y € w AVz((x,y); € B & y=12))} €v)

—)V()EV)
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25.4.3. DerintTion of V via manifestation from Definition

P Vi ueVHTTVv[[wev/\Vweviev:{w,x}Ev/\‘v’wev:Uwev/\

Vwev:Pw)={xlx={ylyexAyew}}evA
Vwev:9w)={x|[(xewAVy(yew s xdy)evA

Vwev: G(D(V),w) ev A

Yw € vwWB € D(V):C(B,w) = {x|3y(y € w AVz((x,y); € B & y=2))} €]

—>uev]]

As V is orthodox on account of Theorems|23.4/and|25.4.11|,

25.4.4. THEOREM:
Ay Vu[u GVHVV[[Q}EV/\VWGVVXEVI{W,X} EVvAYwEV: Uw EVA

Vwev:Pw)={xlx={ylyexAyew}}evA
Ywev:2w)={x|[xewAVy(yew - xdy)lev A

Ywev: G(D(V),w) ev A

Yw € vwWB € D(V): C(B,w) = {x|3y(y € w AVz((x,y); €B & y =2))} € V]

—>uev]]

25.4.5. THE pDRIFT EQUATION: D=D(V).
25.4.6. Derinttion of the drift of all classes:
D={w|w e VVVV([V € v AE ={(x;,x;)|(x;,x;) € V2 Ax; € X} EVA
Vxi(xi€ev—>{ulu e VAugx;} €v) AVx;Vxj(x; EVAX; €V > x,NXj EV)A
Vx;(x; € v — dom(x;) = {w|3Ix((w,x) € x;)} € V) A
Vxi(x; € v — {u|3x;, xi (u = (xj,x1) Ax; €x; Avi €V)} €v) A
Vxi(x; € v — {u|3x; 3, Ixg (u = (xj, X0, x1) A (X, X1, X)) € X} €V) A

Vxi(x; € v — {u|3x; I 3xg (u = (xj, x0, x1) A (Xj, %7, %) € x;} € v)] —Wwe v)}

25.4.7. Fact: A" V c D.

25.4.8. THEOREM The definition of V, with recourse to D:

A Vu[ueV(—)Vv[[wev/\Vweviev:{w,x}evAVwev:Uwev/\

Ywev:Pw)={xlx={ylyexAyew}}evA
Vwev:9w)={x|(xewAVy(yew - xdy)}evA
Ywev:9(D,w) ev A

Yw e vwWB e D:C(B,w) = {x|3y(y € w AVz((x,y); € B & y=2))} €]

—>u€v]]
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25.4.9. DerintTioN: V is the class of all vonsets.
25.4.10. Axiom: H(D).
25.4.11. THEOREM: H (V).

Proof: On account of Axioms|[23.10/and[25.4.10l O

25.4.12. CororLLarY: V and D are orthodox.

Proof: Use Axiom|[25.4.10, Theorem|25.4.11|and Theorem O

25.4.13. THEOREM: Co-extensional members of VU D are identical.

Proof: Use Axioms|23.10/and|25.4.10}, Theorem |25.4.11|and, finally, Theorem ]

25.4.14. THEOREM: V = {x|x € V A x € D}.

Proof: As H(V) and H(D) on account of Axiom|25.4.10|and Theorem [25.4.11| appeals
to Theorems and Fact[25.4.7|suffice to finish the proof. m|

25.4.15. Axiom The drift is wellfounded R(D).

25.4.16. TurorewMm All classes are wellfounded.
Proof: Invoke the result of Exercise[23.13 O
25.4.17. TuroreM All vonsets are wellfounded.

Proof: Given Fact|25.4.7| a vonset in V is as well a class member of D. So the vonset is
wellfounded on account of Theorem mi

25.4.18. TueoreMm D is not a class.

Proof: If D were a class, it would on account of Definition [25.4.6|follow that DeD, which
contradicts Axiom O

25.4.19. Remark: Instead of postulating Axiom one may obtain a suitable reg-
ular class V* of all regular vonsets by taking it to be the class of all elements of a potency
set of an ordinal in V. That invokes the consistency proof of ZFC with regularity given the
consistency of ZFC~ = ZFC without regularity, by (Kunen|1980, chapter 3), or a similar
relative consistency proof. Given Kunen'’s result, however, and the relative consistency
results obtained earlier by (Skolem|[1923) and (Neumann 1929), we know that we can
safely posit Axiom|[25.4.15

25.4.20. THEOREM: V is not a vonset.

Proof: Appeal to Definition[25.4.9/and Theorem|[25.4.15 m|
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25.5

Primitive theorems for classes

We leave is as an exercise to prove the following from Definition|25.4.6

25.5.1.

25.5.2.

25.5.3.

25.5.4.

25.5.5.

25.5.6.

25.5.7.

25.5.8.

25.6
25.6.1.

25.6.2.

25.6.3.

25.6.4.

THEOREM V is a class:
VY € D.

THEOREM Membership class:
E={(x,y)lxe VAyeVAxey}eD.

THEOREM Intersection class:
VA € DVB € D3C € DVx(x € C <> x € A Ax € B).

THEOREM Complement class:
VA e DB € DVx(x € B & x ¢ A).

THEOREM Domain class:
VA € D3B € DVx(x € B & 3y((x,y) € A)).

THEOREM Product by V class:
VA eDIB e DVx(x € B & IyFz(x = (y,2) Aye A AzeV)).

THEOREM Circular permutation class:
VA € D3B € DVxVyVz((x,v,2) € B & (y,z,x) € A).

THEOREM Transposition class:

VA € DB € DVxVyVz((x,y,z2) € B & (x,z,y) € A).

The Tuple-lemmas
LEMMA:

YA € D3B; € DVxVyVz((x,y,z) € B; & (x,y) € AAz € V).

LEMMA:

VA € D3B; € DVxVyVz((x,z,y) € B, & (x,y) e ANz €V).

LEMMA:

VA € D3B3 € DVxVyVz((z,x,y) € B3 & (x,y) e AAz€V).

LEMMA:
VA € D3B4 € DVxVy((y,x) € By & (x,y) € A).

Proof: Use Theorem[25.5.6/to get By, Theorem|[25.5.8 on B; to get B,, Theorem[25.5.7
on B; to get B3, and use Theorem|25.5.7|on B,, plus Theorem|[25.5.5| to get By. O
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25.7 The class existence theorem
25.8 The expansion lemma
25.9 ProofthatV is orthodox

25.10 Proof that all members of V are orthodox
As HH by Axiom ... This is done already.

25.11 Global well ordering
Useful explanation of

Global well ordering given global choice.
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25.11  Global well ordering 25 AND THE THEORIES OF VONSETS
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26 Space for librationist category theory?

La filosofia e scritta in questo grandissimo libro, che contin-
uamente ci sta aperto innanzi agli occhi (io dico I’'Universo),
ma non si puo intendere, se prima non il sapere a intender la
lingua, e conoscer i caratteri ne quali é scritto. Egli é scritto
in lingua matematica, e i caratteri son triangoli, cerchi ed
altre figure geometriche, senza i quali mezzi e impossibile
intenderne umanamente parola; senza questi é un aggirarsi
vanamente per un oscuro labirinto.

Galilei

The author has learned that set theories as NBGC + TA are considered ideal for category
theory, and wants to investigate whether that can be done in the librationist framework
set up for mentioned set theories in §25|
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27 The theory of vansets NF in %©H (W)

The analogy between the myth of mathematics and the myth of physics is, in some
additional and perhaps fortuitous ways, strikingly close. Consider, for example,
the crisis which was precipitated in the foundations of mathematics, at the turn of
the century, by the discovery of Russell’s paradox and other antinomies of set the-
ory. These contradictions had to be obviated by unintuitive, ad hoc devices; our
mathematical myth-making became deliberate and evident to all. But, what, of
physics? An antinomy arose between the undular and the corpuscular accounts
of light; and if this was not as out-and-out a contradiction as Russell’s paradox,
I suspect that the reason is that physics is not as out-and-out as mathematics.

Willard van Orman Quine, in (Quine|1961|, pp. 18-19)

We give an account of Willard van Quine’s set theory New Foundations, of (Quine|1937)),
via the axiomatization offered by (Hailperin|1944, p. 10), which is adapted here:

Py:
P
: Va3pVaVy(({x}, {y}) e B & (x,y) € @)
: Va3BVYxVyVz((x,y,z2) € B < (x,y) € @)
: Ya3pvaxVyVz((x,z,y) € B & (x,y) € @)
: Ya3pvxVy((y,x) e B & x € a)
:Va3B(x € B & Yu((u, {x}) € a))

: YVa3pvxVy((y,x) € B & (x,y) € a)

P 3BVx(x € B Fy(x = {y}))

Py

ApVx(x e B y(x ey Ax ¢ y)
YuVv3pVx(x e B (x ¢u Vv x ¢v))

IBVxVy(({x},y) € B x €y)

Notice that Py was not included in (Hailperin|1944, p. 10).

U was reserved for the full universal set {x|x = x} of £. In the previous section V was
reserved for the class of all vonsets, as defined via manifestation there.

W, with associated mnemonic device die Welt, is reserved the Quinean vanset of all
vansets, as defined via manifestation below in this section.
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27.1. DEFINITION:

Wvg,v)) = Vv([{xlEly(x EYAXEY)}EVA

VwVx(wevAxev s {yevi|(ygwVyegx)}ev)A
Yw(w €v — {({x}, {y} € vil(x,y) e w} €v) A

Yw(w ev — {(x,y,2) € vi|(x,y) e w} € V) A

Yw(w ev = {(x,z,y) € vi|(x,y) e w} €Vv) A

Yww ev = {(y,x) € vi|(x,y) e w} €v) A

Ywwev - {x evi|Vy(y evi = (y,{x}) ew)} €v) A
Yww ev = {(y,x) evilxew}ev) A

Vwwev - {xevi|Ty(yeviAx={yH}ev) A
Yw(w ev = {({x},y) € vilx € y} € V)]

—>V()€V)

Use Definitions|[27.1]and [19.1.2/to obtain

27.2. THEOREM:

Yu(u e W TTVV([{x|3y(x EYAXEY)}EVA

VwVx(wevAxev > {yeWl[(y¢gwVyex)}ev)A
Yw(w ev — {({x},{y} e W|(x,y) e w} ev) A

Yww ev — {(x,y,2) € W|(x,y) e w} €v) A

Yw(w ev — {(x,z,y) € W|(x,y) e w} €v) A

Vw(w ev — {(y,x) € W|(x,y) e w} ev) A

Vwwev > {x e WVy(y e W - (y,{x}) ew)} ev) A
Vw(wev = {(y,x) e Wlx e w} ev) A

Vwwev > {xeW|Ty(ye WAx={yHh}ev) A
Vww ev - {({x},y) e Wlx e y} € v)]

—>u€v))

27.3. THEOREM: W is orthodox.

Proof: Adapt the the proof of[Theorem|[13.2[3| m|
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27.4. THEOREM:

Yu(u e W Vv([{xlEIy(x EYAXEY)}EVA

VwVx(wevAxev—-o{yeW|(y¢wVyéx)tev)A
Vww ev — {({x},{y} e W|(x,y) e w} ev) A
Ywwev — {(x,y,2) € W|(x,y) e w} €v) A
Yw(wev — {(x,z,y) € W|(x,y) e w} €v) A

Vw(w ev = {(y,x) € W|(x,y) ew} ev) A

Vwiwev - {x e WVy(y e W— (y,{x}) ew)} ev) A
Vwwev = {(y,x) e Wlxew} ev)A

Vwwev > {xeW|Ty(ye WAx={yHh}ev) A
Vw(wev - {({x},y) e Wlx € y} € v)]

—Uuc v))
Proof: A consequence of Theorem as W is orthodox, given Theorem[27.3] |

27.5. Axiom: H(W)

27.6. THEOREM: Co-extensional sets in W are identical.
Proof: Use Axiom[23.10land Theorem |

The proper identity for W is of course given by

27.7. DEFINITION:
agb=Vv(v€W—>(a€v—>b€v).

By Axiom Theorem and Theorem combined with the results of (Hailperin
1944), it follows that ®W accounts for Quine’s set theory NF.
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28 A istruejustif A states the truth

La logique est I’hygiéne des mathématiques.
André Weil

The following perspective upon the semantics is useful for some purposes.
28.1. DeriniTioN: The closure ordinal @ is the truth.

28.2. DeriNtTION: The way of sentence Ais [6: 6 < 2 & (5, 9) IF A].

28.3. DeriNITION: A States the supremum of its way.

28.4. DerINITION: A expresses its way.

28.5. DeriNiTION: A’ is true just if A states the truth.

28.6. DeriNiTION: “A” is false just if "=A" is true.

28.7. DerintTiON: The way of A A B is the way of intersected with the way of B.
28.8. DerintTiON: The way of —A is the truth minus the way of A.

Here the sentence A" is true may be interpreted as+ 7 "A", and the sentence A states
the truth as equivalent with + A.

Moreover, “just if” is here to be interpreted via the bidirectional entailment in
FT A" ©FA.

It is a fact that
F=T A" ©F —A,

S0, consequently,
M TA oM A

The connectives are not truth-functional in librationism, but they are way-functional,
and can be accounted for by following classical interdefinability connections as in any
Boolean algebra: The way of the negation —A of A, is truth minus the way of A, and the
way of the conjunction A A B is the intersection of the way of A and the way of B. The
ways of sentences built up from other connectives follow from their definitions in terms
- and A.

According to librationism, a true paradoxical sentence L and its true companion sentence
-L complement each other. For the way of L, as defined in Definition is in such a
case a set of ordinals with ¢ as least upper bound, whereas as well the way of —=L is a set
of ordinals with ¢ as least upper bound; moreover, the ways of L and —L do not overlap.
Thus, by the Definition L does not express the same as what —L expresses, for L
and -L have different ways.
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