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Abstract 
 
International regulation of autonomous weapon systems (AWS) is increasingly conceived as an 

exercise in risk management. This requires a shared approach for assessing the risks of AWS. This 

paper presents a structured approach to risk assessment and regulation for AWS, adapting a qualitative 

framework inspired by the Intergovernmental Panel on Climate Change (IPCC). It examines the 

interactions among key risk factors—determinants, drivers, and types—to evaluate the risk magnitude 

of AWS and establish risk tolerance thresholds through a risk matrix informed by background 

knowledge of event likelihood and severity. Further, it proposes a methodology to assess community 

risk appetite, emphasizing that such assessments and resulting tolerance levels should be determined 

through deliberation in a multistakeholder forum. The paper highlights the complexities of applying 

risk-based regulations to AWS internationally, particularly the challenge of defining a global 

community for risk assessment and regulatory legitimization.  
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1. Introduction 
 
International regulation of autonomous weapon systems (AWS)1 for use in armed conflict is 

increasingly conceived as an exercise in risk management, namely, what assessment and mitigation 

measures are needed for reducing the risks of non-compliance with international humanitarian law 

(IHL) (Bhuta and Pantazopoulos 2016; Geiss 2016; Roff and Moyes 2016, 4; McFarland 2022, 403). 

For example, this is the approach taken by the International Committee of the Red Cross (ICRC) 

(2021).2 However, for international debate to advance, a framework is required to assess the risks of 

AWS. Currently, no such framework exists. While risk-based regulatory approaches for AI are 

emerging in other domains, such as with the European Union regulation on AI (the AI Act), these do 

not extend to the use of military AI.3 In addition, some literature identifies AWS risk types (Scharre 

2016; Laird 2020; Johnson 2020), but currently there is no framework for describing the interaction(s) 

among these types nor a method for a comparative assessment of risks against ethical and legal 

standards. 

A risk-based approach is an effective tool for understanding risk and steering decision-making 

to address the challenges associated with using AWS in armed conflict. This methodology facilitates a 

balanced and reasoned regulation of technologies that, while presenting inherent risks, could 

potentially yield benefits (Etzioni 2018). This approach is pertinent for managing emerging types of 

risks,4 as is often the case with AI. Among these challenges, one that particularly stands out with AI 

systems is the unpredictability of AWS behaviour during deployment (Taddeo et al. 2022). The 

 
1 We define an autonomous weapon system as “…an artificial agent which, at the very minimum, is able to change its own 
internal states to achieve a given goal, or set of goals, within its dynamic operating environment and without the direct 
intervention of another agent and may also be endowed with some abilities for changing its own transition rules without 
the intervention of another agent, and which is deployed with the purpose of exerting kinetic force against a physical entity 
(whether an object or a human being) and to this end is able to identify, select and attack the target without the intervention 
of another agent is an AWS. Once deployed, AWS can be operated with or without some forms of human control (in, on 
or out the loop)” (Taddeo and Blanchard 2022, 15). 
2 Similarly, guiding principle (g) affirmed by the UN CCW GGE (2019) states that: “Risk assessments and mitigation 
measures should be part of the design, development, testing and deployment of emerging technologies in any weapons 
systems.” See also the May 2023 report by Automated Decision Research, ‘Convergences in state positions on human 
control’, pp.10-12. 
3 There exist candidate frameworks for managing the risks of AI systems in the civil domain (Baybutt 2014; NIST 2023), 
but the distinctive character of armed conflict — such as differing prerogatives and risk thresholds for combatants and 
noncombatants — necessitate a specialized model for risk evaluation and management. 
4 Emerging risk can be defined as: “[…] the likelihood of loss, i.e. the probability of a certain consequence to occur in 
specific time and space under specified or insufficiently specified conditions” (Flage and Aven 2015, 62).  
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unpredictable behaviour of AWS underscores the value of a risk assessment process.5 Such a process 

helps address uncertainty problems and enhances the ability to evaluate and quantify the 

unpredictability associated with AWS behaviour during deployment.6  

The critical aspect of the predictability problem with AWS is its impact on assessing potential 

violations of relevant international law, particularly IHL. This difficulty extends to protecting civilians 

and combatants, with repercussions on normative approaches to AWS. An example of these 

approaches is that of the ICRC, which recommends that: 

“Unpredictable autonomous weapon systems should be expressly ruled out, notably because 

of their indiscriminate effects […] This would best be achieved with a prohibition on 

autonomous weapon systems that are designed or used in a manner such that their effects 

cannot be sufficiently understood, predicted and explained” (ICRC 2021, 2 - italics added). 

However, implementing such a prohibition would face challenges as delineating between predictable 

and unpredictable AWS is not straightforward since (un)predictability of AWS behaviour exists as a 

spectrum ranging from entirely predictable to completely unpredictable.7 

At the same time, the ICRC's appeal for a sufficient level of understanding highlights the 

importance of establishing a comprehensive framework for evaluating the predictability of AWS. This 

framework could help facilitate the identification of systems of a requisite level of predictability for 

meeting ethical and legal standards, thereby separating them from those that do not, with the 

possibility of feeding into an emerging two-tier regulatory approach (ICRC 2022; van den Boogaard 

2024). 

Moreover, predictability should not be considered in isolation. The acceptability of AWS, 

including its regulatory treatment, should be determined through a comprehensive assessment that 

includes predictability, among other risk factors. For example, an AWS — or a component thereof — 

that is highly unpredictable but has a negligible actual impact might be considered acceptable under 

certain conditions.   

 
5 The unpredictability of an AI system is not boundless but limited by the system affordances – the set of hardware and 
software specifications that determine the range of possible actions of a machine. 
6 The predictability problem refers to the limited certainty with which one can predict the behaviour of an AWS, and more 
broadly of AI systems, once deployed (Taddeo et al. 2022). Unpredictable systems are not a new issue. They are common 
in mathematics and physics, and limits on the ability to predict the outcomes of artificial systems have been proven formally 
since the 1950s (Rice 1956; Moore 1990; Musiolik and Cheok 2021). Wiener and Samuel debated the predictability of AI 
systems in a famous exchange in 1960 (Wiener 1960; Samuel 1960).  
7 In real-world scenarios, neither of these two extremes is likely to be encountered: on one end are mechanistic systems 
with limited adaptability, and on the other, systems no military would (or ought) deploy due both to the excessive risk 
involved and lack of military effectiveness.  
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Following these considerations, this paper proposes a risk-based regulatory approach to AWS. 

Such an approach would offer a basis for a common understanding of AWS risk and a structured 

method for quantifying various uncertainties associated with AWS, including but not limited to 

(un)predictability. It can feed into emerging regulatory approaches and enable a transparent and 

scientifically sound examination of necessary trade-offs in the regulatory process. 

The paper is structured as follows. Section 2 adapts a qualitative framework from the 

Intergovernmental Panel on Climate Change (IPCC) and applies it to AWS. This section shows how 

understanding the interactions among three key risk factors—determinants, drivers, and types—helps 

assess the overall risk magnitude of AWS (subsection 2.1). It also discusses setting a risk tolerance 

threshold using a risk matrix, enhanced by considering background knowledge on event likelihood 

and severity (subsection 2.2). Section 3 introduces a methodology for evaluating a community's risk 

appetite and its integration with established risk thresholds, noting that definitive risk appetite and 

tolerance levels should result from discussions in a legitimate multistakeholder forum. The paper 

acknowledges the challenges of applying risk-based regulation for AWS, highlighting the difficulty of 

defining a global community for risk assessment and legitimization purposes, a task more daunting 

internationally than in domestic contexts (Peel 2010). Section 4 concludes by summarising the main 

insights. 

 

2. A risk framework for AWS: risk magnitude, risk appetite, and background knowledge 

Risk-based policies can streamline governance interventions by setting priorities and objectives based 

on explicit criteria, such as (1) risk magnitude – the combination of harm likelihood and severity of 

consequences – and (2) risk appetite – the amount of risk that an organization or individual is willing 

to take in pursuit of their objectives.8 These factors inform resource and cost distribution about risk 

management and allow for coping with uncertainties by making probabilistic predictions about 

potential hazards. An additional criterion is (3) background knowledge, which refers to the robustness of 

the information underpinning a particular belief about the probability of a risk event occurring and its 

potential outcomes (Aven 2015; 2017). Essential criteria for this assessment include the availability 

and relevance of data, the validity of assumptions, comprehension of the studied phenomena and 

processes, consensus among experts, and an evaluation of the foundational knowledge of the study. 

 
8 A definition of risk tolerance understood as “risk appetite” of this kind can be found in the ISO Risk Management – 
Principles and Guidelines (2009).  
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The efficacy of risk-based governance strategies in establishing nuanced tolerance thresholds for 

AWS is significantly enhanced by the specificity of the three criteria outlined. To assess the risks 

associated with AWS, one must evaluate their potential positive and negative impact, and then balance 

this against the risk appetite of the concerned community, considering its values, goals, cultural 

practices, and expectations. Specific tolerance thresholds result from such a blend of external 

(magnitude) and internal (appetite) perspectives on risk. The goal of risk tolerance thresholds in this 

context is to inspire normative guidelines for regulating AWS, determining either their prohibition, or 

their broad or conditional acceptability, thus informing risk management measures.9  

 To assess the risk magnitude of AWS, we use a risk framework originating from IPCC climate 

change risk policy reports and their subsequently expanded literature (Simpson et al. 2021). Climate 

change and AWS risks pose similar challenges, as both result in increasingly complex risk magnitudes 

due to the interplay of various factors and a significant reliance on specific contexts and stakeholders 

(Bhuta and Pantazopoulos 2016). Their associated risks represent global issues that require a unified 

international response. 

 

2.1. The climate change risk framework for qualifying risk magnitude of AWS 

 

The IPCC framework identifies critical risk factors and their interactions for risk assessment of an 

event. According to the revised framework (Simpson et al. 2021), risk magnitude results from three 

sets of interactions between: (1) determinants, (2) drivers, and (3) types.10 The first set refers to 

interactions between four risk determinants: (H) Hazard, (E) Exposure, (V) Vulnerability, and (R) 

Response. The second set refers to risk drivers, that is, the individual components of determinants. 

Risk drivers impact the overall risk magnitude by interacting in various ways, such as aggregating, 

compounding, or cascading.11 The third set of interactions refers to how the risk magnitude of a 

specific event interacts with other risk types, each having its determinants and drivers. Risk types can 

 
9 Similar frameworks can be found elsewhere. One example is the ALARP (‘As Low As Reasonably Practicable’) principle 
which serves as a normative standard within UK legislation for risk management, especially within industries critical to 
safety. This principle also plays a pivotal role in the UK health system's framework for risk management. It establishes 
three categorizations of risk tolerance: unacceptable risk, tolerable risk, and broadly acceptable risk (Baybutt 2014; 
Abrahamsen et al. 2018).  
10 These three sets of interactions occur at levels of increasing complexity.  
11 These interactions cut across determinants, drivers, and risk types. Aggregate is when independent drivers collectively 
impact the risk magnitude; compounding is when a combination of drivers unidirectionally or bi-directionally affects the 
risk; cascading is when one driver sets off others, leading to a chain reaction of further drivers. 
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be grouped into extrinsic risks and ancillary risks. We shall illustrate (non-exhaustively) the content of 

all these risk factors by applying them to the AWS scenario: 

 
- (H) Hazard denotes any potential source or condition that could affect individuals adversely, 

things, values, or the environment. Several hazard drivers may have an impact on the risk 

magnitude of AWS. For example, the level of autonomy in determining how much human 

supervision is needed in operating the AWS poses potential risks due to malfunctioning or 

poorly specified reward functions. Multiple levels and shades of autonomy are pertinent to 

this discussion, such as whether autonomy pertains to system critical functions, like target 

identification and selection, or in manoeuvring and navigation (Boulanin et al. 2020; Longpre, 

Storm, and Shah 2022). Malfunctions can trigger a chain reaction, leading to multiple 

unintended engagements (Leys 2018). Adaptive capabilities, e.g., through machine learning 

methods, may enable AWS to learn from past environmental interactions or present battlefield 

conditions, enhance performance, and adjust to changing conditions, but also increase overall 

unpredictability (Hua 2019; Holland Michel 2020; Schwarz 2021; Taddeo and Blanchard 2022). 

Target recognition capability, e.g., whether the use of AWS minimizes collateral damage and 

enhances adherence to IHL or, by contrast, undermines respect for IHL by increasing rates 

of noncombatant targeting. Several hazard drivers associated with common AI vulnerabilities 

have significant consequences for AWS, such as model overfitting, adversarial attacks (Akhtar 

and Mian 2018), transfer learning problems (Weiss, Khoshgoftaar, and Wang 2016), and data 

poisoning (Biggio and Roli 2018). Payload is another critical hazard driver since the type and 

quantity of payload influences its danger level: e.g., an AWS equipped with a cluster munition 

is more dangerous than one equipped with munitions with a smaller blast radius. Other key 

hazard drivers of AWS include their operational range and duration – long-range AWS, 

carrying out missions hundreds or thousands of miles away from their control stations, present 

risks of prolonged engagement without direct human supervision due to reduced response 

time and diminished operator situational awareness (Boulanin et al. 2020; Horowitz 2021).   

 

- (E) Exposure denotes the inventory of items in reach of a hazard source. Exposure drivers 

for AWS can include civilian population proximate to the operational area, and combatants 

directly involved in the conflict (Nurick 1945; McMahan 2010). However, it can also 

encompass other military personnel, such as ground-based troops near AWS operation but 
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not directly involved in their control or deployment, and personnel involved in supporting 

roles, such as logistics and maintenance (Blanchard and Taddeo 2023). The potential harm 

from AWS can also extend to physical entities such as infrastructure – e.g., bridges and 

powerplants – or natural environments, including natural resources like groundwater, and 

digital ecosystems such as data systems. AWS can impact value-based assets, including those 

rooted in normative, e.g., Just War Theory) (Blanchard and Taddeo 2022) and legal 

frameworks (e.g., IHL) (Anderson and Waxman 2017; Sassoli 2014) directly or through their 

material implications. For example, AWS deployment may violate the principle of distinction 

(Melzer 2008), as algorithms for target identification might not reliably distinguish between 

combatants and noncombatants. Indirectly, the deployment of AWS without proper 

assessment could breach precautionary obligations, such as the principle of precautions in 

attack, detailed in Article 57 of the Additional Protocol I to the 1949 Geneva Conventions, 

requiring all conflict parties to take feasible measures to minimize harm to civilians and civilian 

objects (Winter 2022; Thurnher 2018). 

 

- (V) Vulnerability denotes the attributes or circumstances that make the exposed elements 

susceptible to adverse effects when exposed to the hazard source. Vulnerability drivers relate 

to the exposed elements, i.e., individuals, things/environment, and values. For individuals, the 

vulnerability drivers may differ between combatants and noncombatants. For combatants, 

vulnerabilities primarily arise from inadequate measures for handling AWS and preventing 

their malfunctioning, e.g., inadequate protection, insufficient training, unfamiliarity with AWS, 

and over-reliance. Noncombatants may face increased risks due to proximity to conflict areas, 

lack of information about and countermeasures to AWS, socioeconomic or coercive 

limitations preventing them from relocating, and difficulties in providing rescue or protection 

to specific groups. Social and existential factors act as vulnerability drivers, resulting in unequal 

impacts from the deployment of AWS. This approach underscores the necessity of 

acknowledging the increased risks borne by individuals with disabilities, marginalized 

communities, populations in the Global South, and women and girls, and incorporating these 

considerations into assessments of AWS deployment impacts (Muñoz and Díaz 2021; Conway 

2020; Figueroa et al. 2023; Ramsay-Jones 2019; Chandler 2021; UN Women 2023). The 

dependence on assistive technologies or medical devices, susceptible to disruption by AWS 

collateral damage, can also heighten vulnerability (Quinn 2021). Additionally, studies on 

Electronic copy available at: https://ssrn.com/abstract=4781751



 8 

remote warfare in places like Afghanistan and Pakistan have documented the psychological 

impact of drone presence on civilians (Edney-Browne 2019). These effects are notably severe 

among marginalized and vulnerable groups, including children, who may cease attending 

school, and women, who have experienced increased rates of miscarriage due to the stress 

associated with the constant threat (Molyneux 2021; Figueroa et al. 2023). This indicates the 

complex and potentially far-reaching consequences of AWS deployment. 

Vulnerability drivers regarding things and the environment may be the fragility of some 

(digital) infrastructures, e.g. their vulnerability to cyber-attacks, their strategic importance for 

populations, and the long-term susceptibility of some environments to damage. Lastly, ethical, 

and legal values could be at greater risk when there are weak political and/or judicial 

institutions, inefficient legal safeguards about AWS, and inadequately defined rules.   

 

- (R) Response pertains to (pre-existing) strategies and measures that mitigate risk magnitude, 

revealing a community's resilience to specific risks. AWS response drivers encompass 

technological solutions and legal or governance protections (Molyneux 2021). Technological 

drivers include fail-safe mechanisms (e.g., through function allocation) (Canellas and Haga 

2015), effective warnings, geofencing, remote deactivation, and operational duration limits. 

Response drivers include mechanisms for halting or suspending attacks to prevent breaches 

of distinction or proportionality principles and adjusting attack timing to minimize civilian 

exposure, such as programming AWS to prevent targeting in populated areas (Thurnher 2018).  

From the legal point of view, response drivers include incentives for adopting technical 

safeguards as well as governance measures, such as mandatory external controls and audits for 

AWS deployment (e.g., through oversight authorities), effective liability frameworks, 

certification protocols, transparency mandates, obligatory reporting, practices that foster trust 

in military operations (Roff and Danks 2018; Blanchard, Thomas, and Taddeo 2024; Tadde, 

Blanchard, and Thomas 2024), standards for data quality, and regulatory sandboxes. Whether 

an AWS manufacturer or implementer complies with conformity assessments, for example, 

by obtaining certification from a recognized body, it typically indicates a lower risk profile, 

either broadly or in specific instances (Novelli et al. 2024). Nonetheless, due to the lack of 

comprehensive AWS regulations, only a few measures effectively mitigate other risk factors. 

Despite this, AWS ongoing development and use is already influencing perceptions of what is 
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technically and ethically feasible, outstripping deeper societal and political debate on what 

should be normatively acceptable (Bode and Huelss 2018). 

Against this background, such technical or legal response drivers in any context necessitate 

revaluating the overall risk associated with deploying AWS.  

The overall risk level associated with AWS should also be considered in relation to its interaction with 

extrinsic and ancillary risk types. Several extrinsic factors could amplify the overall risk magnitude. A 

critical, extrinsic risk involves regulatory and liability uncertainties, specifically the lack of clear and 

cohesive regulations governing AWS design, development, deployment, and usage. The absence of 

unified rules and coordination can lead to an increased risk of civilian harm or violations of IHL. This 

issue becomes particularly acute in coordinated missions (e.g., peacekeeping) involving multiple states, 

each adhering to differing standards and regulations regarding AWS use (Blanchard, Thomas, and 

Taddeo 2024). Such disparities can exacerbate the overall risk magnitude, highlighting the need for 

harmonized international standards on AWS deployment. 

In addition, regulatory inefficiencies, especially concerning liability mechanisms, can result in 

unclear distribution of primary (damage prevention) and secondary (damage retribution) costs related 

to AWS deployment. Another crucial extrinsic risk is political risks, such as geopolitical tensions and 

shifts in political climates, which may prompt AWS misuse. For instance, political pressure might 

accelerate the deployment of AWS without comprehensive testing across all potential conflict 

scenarios. Finally, economic factors, including financial instability, supply chain disruptions, economic 

sanctions, or challenges in military procurement, constitute extrinsic risks insofar as they can impede 

technological advancements or the effective implementation of security measures for AWS. These 

economic challenges can stifle the development of safety mechanisms and reduce operational risks. 

For instance, financial constraints might limit research and development funding for AWS, hindering 

the incorporation of advanced safety features. Similarly, supply chain issues could delay the delivery 

of critical components necessary for AWS reliability and security enhancements.   

Ancillary risks emerge from risk regulation itself. These risks come in several types. For 

instance, innovation risk may arise if the regulatory framework is excessively restrictive, potentially 

impeding innovation and development. This is closely tied to opportunity risk, which refers to the 

potential loss of benefits that arise from advanced technologies. For instance, overregulation could 

inhibit the use of AWS, thereby preventing the realization of possible benefits, such as greater 

adherence to the cardinal principles of IHL. At the same time, as already seen, under-regulation also 

presents risks, e.g., unharmonized and unequal global regulation, or inconsistent enforcement of the 
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same, for AWS. This is a significant concern given the cross-border use of these technologies. Lastly, 

a risk-based paradigm also entails its own ‘risks’ as strategic aims, values, and even alliances can be 

undermined by excessive focus on risk management (Beck 1992). 

 

2.2. A risk matrix for AWS 

The risk matrix is a semi-quantitative tool commonly used in risk analysis (Ni, Chen, and Chen 2010). 

However, it has been criticised, prompting recommendations for cautious application (Cox Jr 2008; 

Markowski and Mannan 2008; Aven and Cox Jr 2016). Despite this, it is an effective tool for selecting 

risk control measures when accurately refined.  

Risk matrices typically integrate two main input variables — severity of harm and likelihood 

(frequency) of occurrence — to calculate a risk rating by positioning each severity-likelihood 

combination within the matrix. It segments the severity of consequences, probability, and the resultant 

risk index into various levels, each described qualitatively and quantified on specific scales. In our 

methodology, these qualitative descriptions are informed by identifying and analysing the four main 

risk determinants, their drivers, and both extrinsic and ancillary risks, as detailed in section 2.1. 

To illustrate this, we have hypothesized categorizing the severity of harm into five levels – e.g., 

major, serious, moderate, light, and minimal. Similarly, the likelihood of occurrence can range from 0 

(impossible) to 1 (certain).12  The combination of severity and probability sets four (preliminary) risk 

tolerance thresholds that AWS can fall into, namely negligible (N), low (L), high (H), and extreme (E):   

 

 

 

 
 

 

 

 

 

 

 

 

 
12 Generally, risk severity is influenced by all the four risk determinants, while the likelihood is mainly influenced by the 
interaction between hazard and response drivers.  

Severity 

Major L H H E E 

Serious N H H E E 

Moderate N L H H H 

Light N N L H H 

Minimal  N N N N N 

 0 – 0.20 0.20 – 0.40 0.40 – 0.60 0.60 – 080 0.80 – 1 

 Likelihood (%) 
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Table 1.  Risk matrix adapted from (Ni, Chen, and Chen 2010) 

 

This risk matrix is a foundational tool for assessing the risk magnitudes associated with using AWS. 13 

It should be regarded as an initial framework rather than a conclusive method for managing AWS risk, 

given that standard risk matrices have faced critique and calls for refinement. One approach to 

enhance the accuracy of risk calculations involves representing all variables within the matrix as fuzzy 

sets – which include linguistic terms of variables and description range – instead of fixed metrics, 

allowing for a more nuanced interpretation of risk factors (Markowski and Mannan 2008). An 

alternative method involves replacing the discrete categories in traditional risk matrices with 

continuous scales for consequence and likelihood, leading to a continuous probability consequence 

diagram (Duijm 2015). This method can offer advantages, although it does not fix all the limitations 

of standard risk matrices, including potential ambiguity in assessing consequences. It allows for the 

representation of uncertainty using uncertainty bands.14  

Although this paper does not aim to determine the definitive risk matrix approach or the best way 

to overcome it, it emphasizes the critical need for ongoing research in this domain, particularly 

considering the opportunity to develop a risk-based regulatory framework for AWS.  

A final critical aspect to consider is the subjective assignment of likelihood and consequence 

within risk matrix approaches (Duijm 2015). This is a challenge, especially regarding risk-based 

regulations for AWS. Subjectivity can lead to divergent risk assessments for comparable AWS 

deployments across various regulatory entities or inconsistencies within the same organization across 

different periods. Such variability contributes to confusion among AWS developers and users, 

fostering uncertainty regarding compliance obligations and the sufficiency of implemented safety 

protocols. Ultimately, if risk assessments are perceived as arbitrary due to subjective risk factor 

evaluations, AWS developers and operators may question the regulatory framework's validity and 

applicability, undermining the rationale of a risk-based approach. 

To address and mitigate the negative impacts of this subjectivity, it is crucial to utilize one of the 

above-mentioned three criteria for risk assessment: background knowledge. Acknowledging that risk 

 
13 The four risk magnitude coefficients might also be compared to the four tolerance thresholds of the EU AIA (i.e., 
minimal, limited, high, and unacceptable risks). While the AIA does not regulate AWS, it provides a standard many AI 
models must adhere to. Given AI technologies are often dual-use, the EU AIA could thereby indirectly effect AWS or AI-
driven safety components for AWS. 
14 Other alternative approaches recur to using bow ties and Bayesian influence diagrams (Meyer and Reniers 2022). 
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magnitude can be determined through various methods, including qualitative approaches (e.g., the 

IPCC framework) and semi-quantitative methods (risk matrices), it becomes imperative to incorporate 

background knowledge. This knowledge outlines the depth and reliability of the information that 

underpins judgments concerning the likelihood and severity of a particular risk event (Aven 2017). Its 

inclusion aims to clarify the subjectivity inherent in risk assessments, acknowledging that information 

volume, origin, and reliability shape the subjectivity observed in these evaluations. Making explicit the 

role of background knowledge in shaping risk assessments can help stabilize interpretations and 

enhance the transparency of risk-based regulatory frameworks for AWS. 

Assessing background knowledge for AWS requires analysing the availability of relevant data, the 

soundness of assumptions, understanding of the subject matter —often judged by the known accuracy 

of predictive models used, expert consensus, and evaluating the base knowledge for unexpected events 

(Aven 2017, 44; 2015, 26). This may involve examining data on AWS performance from simulations, 

field trials, and real-world deployments, as well as studying perceptions of military AWS use 

(Rosendorf, Smetana, and Vranka 2022). It is also essential to secure agreement among military 

experts, AI researchers, and ethicists on the ethical deployment and risks of AWS (Mitchell 2019). 

After gathering background knowledge, the risk matrix can be refined following Aven's 

recommendation: adjusting probability values based on the robustness of the underlying knowledge, 

categorized as ‘strong’, ‘medium’, or ‘weak’. For example, if the probability of erroneous targeting by 

AWS (event 1) is initially assessed as low (0 - 0.20%) but the knowledge supporting this assessment is 

‘weak’, its risk magnitude could be equivalent to that of an adversarial attack on AWS (event 2), which 

has a higher assessed probability (0.20-0.40%) but is supported by ‘strong’ knowledge (Aven 2015). 

This approach ensures that the risk matrix reflects not just the likelihood of events, but the confidence 

in the data underpinning those likelihood assessments. 

However, a mere calculus is insufficient to establish risk tolerance thresholds for policymaking. 

This is because risk measurements are somewhat abstract and can be influenced by the subjective 

inclinations of the concerned community. In the next section, we shall outline a method for gauging 

this community's risk tolerance and how it links with our previously defined risk thresholds. 

 

3. Risk appetite: International Humanitarian Law (IHL) and Just War Theory (JWT) 

The risk magnitude coefficient, quantifiable through specific metrics, should be evaluated considering 

the concerned community's risk appetite. This involves adapting the assessment of potential 

consequences to reflect the community's values, objectives, and practices. For this reason, we suggest 
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that a possible method to calculate risk appetite is by balancing the values and objectives of that 

community against the concrete importance, for that community, of deploying AWS, with the aim to 

maximize the marginal benefits between these two aspects. The result of this two-phase process could 

serve as the primary metric for establishing risk tolerance thresholds that would dictate varying levels 

of safeguards for AWS. These could range from complete prohibition to voluntary adherence to codes 

of conduct. 

To gauge risk tolerance, we need to identify the target community and determine the risks it would 

deem acceptable, considering cultural habits, values, objectives, and socio-political conditions. In 

essence, what level of risk is the community willing to take on? Given the inherent complexity of 

cultures and political contingencies, particularly in heterogeneous and broad contexts, we shall 

consider them as variables to be determined contingently, and we will not factor them into this 

analysis. Instead, we shall concentrate on values and objectives. 

Concerning the target community, multiple stakeholders, including military and defence entities, 

civilian populations, and humanitarian organizations, are relevant. Given AWS cross-national 

deployment and the necessity for widespread stakeholder coordination, it is important to set risk 

tolerance thresholds with the international community in mind. The risk tolerance of entities 

comprising this community is shaped by concerns over global stability, compliance with relevant 

international law (and case law) and human rights legislation, possible misuses of military technologies, 

and arms proliferation. The international community's risk tolerance is critical to establishing a global 

AWS risk assessment framework. 

Understanding this risk tolerance requires evaluating how using a specific AWS (i.e., a specific 

technical configuration in a specific context), with its associated risk magnitude, interferes with the 

community’s normative background. This process requires balancing two sets of competing interests: 

the military interest in deploying an AWS and the interest to preserve fundamental values and 

objectives. Based on this balancing act, the interference of an AWS with specific values or objectives 

can be judged as either broadly acceptable, acceptable under some conditions, or completely 

unacceptable.15 In other words, the risk tolerance filters the quotient of risk magnitude through 

 
15 Assuming only three risk tolerance thresholds, as in the ALARP (‘As Low As Reasonably Possible’) UK risk management 
approach (UKHSE 2001).  
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evaluative judgments and trade-offs, leading to different thresholds of risk tolerance for each specific 

AWS.16  

The sources for discerning the international community’s normative background may vary 

between deliberative fora, but are likely to include legislative texts comprising IHL, international 

human rights law (IHRL),  and other relevant international laws, including non-proliferation and 

disarmament law.17 We illustrate the methodology by considering IHL and the ethical framework of 

JWT to infer the guiding values and objectives. Other principles could be considered. 

IHL and JWT share key principles concerning the legitimacy and usage of weapons, including 

distinction, proportionality, necessity, and precautions in attack.18 Risk tolerance hinges on balancing 

these principles and the (social) interest in adopting AWS. This may be achieved by evaluating the 

degree to which the risk magnitude of an AWS interferes with, and potentially undermines, IHL and 

JWT principles. The interference should be counterbalanced by the concrete benefit expected from 

using the AWS. The process of weighing rights against public interest, or against other rights, is a 

standard practice in law-making and judicial reasoning (Bongiovanni and Valentini 2018). Indeed, legal 

principles are optimization commands, and our goal is to realize them to the greatest extent possible 

given the juridical and factual possibilities (Alexy 2000). As Aharon Barak points out, the basic rule of 

balancing establishes: “[…] a general criterion for deciding between the marginal benefit to the public 

good and the marginal limit to human rights.” Furthermore, that  

“[…] the extent that greater importance is attached to preventing the marginal limit to a human 

right and to the extent that the probability of the right being limited is higher, the marginal benefit 

to the public interest brought about by the limitation must be of greater importance, of greater 

urgency, and possessing a greater probability of materializing” (Barak 2010, 11).  

To show how these types of balancing choices work, Alexy has provided a quantitative criterion, the 

well-known Weight Formula (Wx,y):  

 
16 Political and normative factors influence risk magnitude, as assigning weight to hazard, exposure, vulnerability, and 
response drivers reflects risk perception. Thus, risk appetite is partly inferred from risk magnitude assessment. However, 
risk magnitude, while not fully objective, can mirror the broad inter-subjectivity among experts (Aven, Renn, and Rosa 
2011) and is more objective than risk appetite, which heavily depends on subjective perceptions. 
17 International Humanitarian Rights Law (IHRL) may be relevant here, although its status and its applicability to AWS is 
contested with the United Nations Human Rights Council (UNHCR) having requested its Advisory Committee to prepare 
a study into this area (United Nations Human Rights Council 2022; Blanchard 2023). 
18 Precautions in attack is most closely paralleled in JWT by ‘due care’. Due care entails normative assumptions about the 
fair distribution of risks in war, for instance, the obligation of due care, which requires combatants to accept greater risks 
to themselves to ensure that they hit only the right target in order to diminish the risks to noncombatants (Walzer 1977, 
156; Orend 2001, 12–13; Avishai Margalit and Michael Walzer 2009; McMahan 2010). 
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The Weight Formula can be applied as a tool for making explicit (or establishing) the international 

community's tolerance for the risk of AWS: Ix would correspond to the degree of interference an AWS 

has on a (set of) principle(s) within the scope of IHL or JWT in a concrete situation, e.g., the principle 

of distinction (Px) as it is impacted using a drone with autonomy in its critical functions. The coefficient 

of the risk magnitude of the AWS will largely influence the coefficient of this factor. Cy would 

correspond to the concrete importance of satisfying the colliding interest brought about by the AWS, 

e.g., national security or strategic deterrence (Py). Finally, Wx and Wy denote the abstract values the 

community assigns to the two principles.19  

This formula puts into practice a proportionality test. For Alexy, it is a way to operationalize the 

concept of strict proportionality, which echoes the principle of proportionality required by IHL. In 

both instances, proportionality aims to evaluate whether the significance of fulfilling a particular 

interest or principle can justify infringing upon another.  

The components of the Weight Formula can indeed be assigned numerical values using arithmetic 

or geometric sequences (such as 0, 2, 4, 16). Inherent in the structure of the formula, a higher result 

in the ratio tends to prioritize safeguarding the principle that is being impacted using the specific AWS. 

This reflects a low-risk tolerance threshold for that specific AWS. Conversely, lower values in the ratio 

suggest a greater willingness to sacrifice the principle – but never eliminate it – corresponding to a 

higher risk tolerance threshold. 

In this article, we refrain from assigning numerical values or ranges to the principles of IHL or 

JWT. This decision stems from the absence of established regulatory frameworks or consensus on 

risk levels of AWS, coupled with the contentious nature of assigning numerical values, which can be 

perceived as arbitrary.20  

In conclusion, our objective is to clarify the essential factors and their interactions, highlighting 

that effective risk-based regulation for AWS necessitates a combination of evaluating risk magnitude, 

background knowledge, and risk appetite. The latter is influenced by subjective preferences and 

becomes apparent in the trade-offs between principles and interests. We believe that the most effective 

 
19 Often it is not possible to infer the abstract value of some principles, especially where they are incommensurable. This 
would mean that greater importance will be assigned to the concrete circumstances. 
20 The methodology of proportionality does not exclusively depend on numerical magnitudes, such as Alexy’s formula, 
but can still engage with quantitative reasoning. An example includes using Pareto superiority criteria to assess 
proportionality, thus maintaining the foundational quantitative assessment principle (Sartor 2013). 
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approach, morally and legally, is to assess this risk appetite by finding a proportional balance between 

these principles and interests.  

 

4. Conclusion  

The international discourse on regulating and potentially using AWS in armed conflict can progress 

only when founded on a shared evaluation of the risks associated with AWS. To support this 

discussion, we have introduced a semi-quantitative methodology, drawing on risk science literature, to 

assess and evaluate these risks and to establish risk tolerance thresholds for policymaking activities. If 

– or indeed once – a risk threshold for underpinning international regulations is determined, 

mechanisms for the monitoring and verification of compliance with such regulations will still be 

required. Article 36 of Additional Protocol 1 to the Geneva Conventions has been proposed as a 

potential mechanism for ensuring compliance in the design and development of AWS, although the 

lack of its explicit and implicit content raises doubts about its (current) suitability for this purpose.21 

In either case, we hope the above risk assessment framework can help advance such efforts. 
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