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Abstract 

This paper presents a comprehensive analysis of the SEIRS COVID-19 pandemic model with saturated 

incidence rate. By modifying the existing model and proposing a new simplified version, we investigate 

the dynamics of disease transmission, including the impact of saturation terms on disease spread. 

Through stability analysis at disease-free and endemic equilibria, we aim to enhance understanding of 

the spread of COVID-19 and inform effective control strategies. Drawing on mathematical models and 

epidemiological insights, this study contributes to the ongoing efforts to combat the global pandemic. 
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1. INTRODUCTION 

Coronavirus Disease (COVID-19) is an infectious disease caused by a newly discovered 

coronavirus. Most people infected with the (COVID-19) virus will experience mild to moderate 

respiratory illness and recover without requiring special treatment. Older people and those with 

underlying medical problems like cardiovascular disease, diabetes, chronic respiratory disease and 

cancer are more likely to develop serious illness. The best way to prevent and slow down transmission 

is to be well informed about (COVID-19) virus; the disease is causes and how it spreads. 

At this time, there are no specific vaccines or treatments for (COVID-19). However, there are many 

ongoing clinical trials evaluating potential treatments. WHO (World Health Organization) will continue 

to provide updated information as soon as clinical findings become available (WHO).    

[1] and [2] studied mathematical model for malaria transmission dynamics on human and mosquito 

population with non-linear forces of infectious disease and Malaria model with stage-structured 

mosquitoes. Dynamics of multiple species and strains of malaria together with on the numerical 

simulation of the effect of saturation terms on the SEIRS epidemic model was analyzed in [3] and [4]. 

[5], [6] and [7] considered the dynamical behavior of epidemiological models with non linear incidence 

rate and Reproduction numbers and Sub-threshold endemic equilibria for compartmental models of 

disease transmission with Permanence and Extinction for a non-autonomous SEIRS epidemic model. [8] 

Studied the Lyapunov functions and global properties for SEIR and SEIS epidemic models. Likewise, 

in [9] the Stability analysis of an HIV/AIDS epidemic model with treatment was identified.   

In this paper, the work of Kolawole M.K. [10] was extended to incorporate vaccine (treatment rate). 

We present our results in the form of Basic Reproduction Number 0R  using Next Generation Matrix 

Method. Theorems are used to prove the Local and Global Stabilities of disease free and endemic 

equilibria. With the numerical simulations, the results showed the effect of Vaccine (treatment rate), 

transmission rate and disease induced death rate in the model.  

 

2.THE BASIC MATHEMATICAL MODEL 

In this paper, model of Kolawole M.K. (2016) was modified   

The Existing model of KOLAWOLE (2016) 
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Proposed model 
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For the purpose of simplicity, the new Proposed model becomes; 
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3.DISEASE FREE EQUILIBRIUM (DFE) 

At disease free equilibrium 0,0,0= == RE   
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4.ENDEMIC EQUILIBRIUM  

At Endemic Equilibrium, ,0I  

To get 
*R  
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Then *S  gives, 
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Then compartment *I becomes,
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Then 
*E becomes,

 
)7(

)(

)(

0)(

*
*

**

**









Imd
E

IvdE

IvdE

++
=

+++=

=+++−

 

 

5.

5.  BASIC REPRODUCTION NUMBER 0R

 

Using next generation matrix, 
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The equation with the dominant Eigen value becomes,
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6. LOCAL STABILITY OF DISEASE FREE EQUILIBRIUM 

We Linearize the system of equation in (3) by setting 
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The Linearized system gives, 
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The Jacobian matrix of equation (10) becomes,
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stable.     
 

Now, if 

,1
222

2

0 
−


a

R




 in equation (12) then,  

It shows that only one sign will be positive then the other part will be negative. 

Now, if 


 

is replaced with 
−

 in equation (13), we say

 
)14(0))(1)()(()2( 02

222
2 =

−
−++++−+++++ R

a
vdvd






 

There are one sign changes in the above equilibrium; hence it has one exact negative root. Also, we replace 
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There is just a sign change, which shows that there is one negative root. That is, not all Eigen Values are 
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7. GLOBAL STABILITY OF DISEASE FREE EQUILIBRIUM 

We consider the Lyapunov function, 
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Hence, the Disease Free Equilibrium is Globally Asymptotically Stable. 

 

    8. LOCAL STABILITY OF ENDEMIC EQUILIBRIUM
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Therefore, it implies that since all Eigen values are negative the endemic equilibrium is Locally Asymptotically 

Stable. 

 

 

9. RESULTS AND DISCUSSION  

1. 

 

Fig 1 shows that the transmission rate is low. 

2. 

 

Fig 2 shows that the transmission rate is high 

 

3. 
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Fig 3 shows that the transmission rate, Saturation terms and Vaccine are high 

4.  

 

Fig 4 shows that the transmission rate, Saturation terms and Vaccine are low 

 

 

 

5.  
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Fig 5 shows that the Vaccine is high 

 

6. 

 

Fig 6 shows that Vaccine is low 

 

 

 

 

 

 

7. 
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Fig 7 shows that the saturation terms are high 

 

8. 

 

 

Fig 8 shows that the saturation terms are low 

 

 

 

 

 

DISCUSSION OF RESULTS 
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The results of our study on the SEIRS COVID-19 pandemic model with saturated incidence rate provide 

valuable insights into the dynamics of disease transmission and the effectiveness of control measures. 

Our analysis revealed the significant impact of saturation terms on disease spread, with high saturation 

terms indicating a more rapid transmission rate compared to low saturation terms. By incorporating 

vaccine considerations and disease-induced death rates into the model, we were able to assess the role 

of these factors in controlling the spread of COVID-19. 

Furthermore, the examination of the basic reproduction number using the Next Generation Matrix 

Method allowed us to evaluate the potential for disease control and mitigation strategies. Theorems 

proving the local and global stabilities of disease-free and endemic equilibria provided a foundation for 

understanding the dynamics of the pandemic and identifying critical points for intervention. Through 

numerical simulations, we observed the effects of vaccine coverage, transmission rates, and disease-

induced death rates on the model, highlighting the importance of these factors in shaping the trajectory 

of the pandemic. 

Overall, our findings underscore the complexity of COVID-19 transmission dynamics and the need for 

multifaceted approaches to disease control. By elucidating the interplay of various 

factors[12],[13],[14],[15],[16],[17],[18],[19],[20],[21] in the spread of the virus, our study contributes to 

the growing body of knowledge aimed at informing public health policies and interventions to combat 

the ongoing pandemic. 

 

CONCLUSION 

Our study on the SEIRS COVID-19 pandemic model with saturated incidence rate has provided valuable 

insights into the dynamics of disease transmission and the impact of key factors such as saturation terms, 

vaccine coverage, and disease-induced death rates. By analyzing the basic reproduction number and 

stability of equilibria, we have enhanced our understanding of the spread of COVID-19 and identified 

critical points for intervention. 

It is essential to continue refining and updating mathematical models to reflect the evolving nature of the 

pandemic and inform evidence-based strategies for disease control. By integrating mathematical 

modeling with epidemiological insights, we can better navigate the complexities of COVID-19 

transmission dynamics and work towards effective public health responses to mitigate the impact of the 

virus. 
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