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If perception is probabilistic, why doesn't it seem 
probabilistic? 

 

Ned Block 
NYU 

 

The success of the Bayesian perspective in explaining perceptual phenomena 
has motivated the view that perceptual representation is probabilistic.  But if 
perceptual representation is probabilistic, why doesn't normal conscious 
perception reflect the full probability functions that the probabilistic point of view 
endorses?  For example, neurons in cortical area MT that respond to the 
direction of motion are broadly tuned: a patch of cortex that is tuned to vertical 
motion also responds to horizontal motion, but when we see vertical motion, 
foveally, in good conditions, it does not look at all horizontal.  The standard 
solution in terms of sampling runs into the problem that sampling is an account of 
perceptual decision rather than perception. This paper argues that the best 
Bayesian approach to this problem does not require probabilistic representation. 

 

One motivation for treating neural representations as probabilistic is that neurons are 
stochastic devices: identical inputs to identical neurons will inevitably yield variation in 
firing patterns.  That applies to all neural representation, but there is a reason to expect 
perceptual representation in particular to be probabilistic because, given any activation 
of a perceptual system, there are many different environmental situations with different 
perceptible properties that could have produced it, some more probable than others. 
The visual system is said to cope with these facts by representing many of the possible 
environmental situations, each with a certain probability (1, 2).  Perceptual 
representation of a range of environmental situations, each with a certain probability, is 
what is meant in this article by ‘probabilistic representation’. 

For example, Vul, Hanus & Kanwisher say that "2 that internal representations are 
made up of multiple simultaneously-held hypotheses, each with its own probability of 
being correct2" (3). Gross & Flombaum describe "2 a growing body of work that 
emphasizes the probabilistic nature of the computations and representations involved in 
a perceiver’s attempts to ‘infer’ the distal scene from noisy signals and then store the 
representations it constructs."(4).  They advocate probabilistic representations in which 
perceptual properties are attributed to places or things with a certain probability.  

It is often noted that perception doesn't normally seem probabilistic (3, 5-7).  But how 
would perception seem if it did seem probabilistic?  The phenomenology of perception 
would reflect the probability distributions of probabilistic perceptual representations. 
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Figure 1 The response of a patch of cortex tuned to downward motion in area MT of 
monkey cortex.  (The curve is representative but hypothetical.) The height of the curve 
represents level of neuronal discharge.  The shaded area indicates the most active 
neurons.  From (8) with permission of the Society for Neuroscience. 

An example from motion-sensitive area MT that illustrates the problem is in Figure 1.  
Tuning curves in individual neurons for direction of motion have broad sensitivities.  (I 
will discuss populations of neurons later.) Tuning curves for neurons tuned to vertical 
downward motion respond also to a range of other motions, from horizontal motion to 
the left to horizontal motion to the right (8).    Still, when you look at a close medium size 
object moving vertically in good conditions, you do not normally see any hint of 
horizontal motion. 

The same point applies to detectors for orientation in early cortical areas of the visual 
system.  Seeing a vertical bar or grid activates neurons whose maximum response is to 
vertical grids.  Simple cells tuned to vertical respond to a wide range of other 
orientations, but to a lesser degree, typically with substantial activations by grids tilted 
up to 30o in either direction, clockwise and counter-clockwise (9, 10).    But when one 
views a vertical grid foveally in normal conditions, there is no hint of the 30o tilts.  You 

can verify this for yourself by looking at Figure 2. (The fovea is the center of the retina 

where cones are the densest.  A thumb at arm's length is seen entirely foveally.) 

 

 

Figure 2.  Oriented grids tilted from minus 30
o
 to plus 30

o
.  Ask yourself whether in viewing the central bar, you see 

any hint of the minus 30
o
 or plus 30

o 
grids.  

The probabilistic point of view as applied to individual neurons dictates that these 
degrees of activation in neurons are representations of probabilities that the stimulus 
has one or another of these orientations, so the representation of the orientation of a 
grid is often thought of as a set of hypotheses attributing different probabilities to various 
different grids, or, alternatively, as a probability function over orientations. 
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The reader may wonder whether the cortical areas mentioned really do support 
conscious perception rather than unconscious perception.  It is controversial whether 
visual area V1 supports conscious perception (11, 12), but other orientation-specific 
areas (e.g. V2 and V3) do support conscious perception.  The evidence is 
overwhelming that MT/MST supports conscious perception.  Micro-stimulation to 
MT/MST affects direction perception in monkeys according to the dominant tuning of the 
cells stimulated (13).  Damage to this area causes deficits in motion perception, 
including the total inability to see motion (11).  Subjects' perception of motion are 
correlated with the dominant tuning of motion-selective cells including 3-D as well as 2-
D motion (14).  Even illusory motion correlates with activation in this area (15).  

In brief, the problem to be discussed here is that conscious perception does not 
normally reflect the probabilistic hypotheses other than the dominant one.  The 
response that I have often gotten from Bayesians is that it is a mistake to focus on the 
level of individual neurons.  A Bayesian computation that combines information from 
many neurons in a population can be used to decide which hypothesis or narrow band 
of hypotheses best predicts the overall neural activations. (These are "likelihoods" in a 
sense to be explained.)  If the perceiver is in a scanner, combining responses of many 
neurons allows for decoding of the visual input orientation (16).  However, it is unclear 
how the procedures that allow the neuroscientist to decode from a population relate to 
the perceiver's decoding from populations.  There is no inner eye that looks at 
populations.  There has to be some mechanism of combination, but as far as I can 
determine, none has been proposed.    Unless some such mechanism is found, we 
should not suppose there is any explicit representation (17) of these likelihoods.  That 
is, we should treat the likelihoods or likelihood functions "instrumentally", i.e. as "as if" 
constructs. 

The subject of this article is probabilistic representation in perception, not cognition 
(thinking, reasoning, deciding).  And it is probabilistic representation, not representation 
of probabilities.  Let me explain the difference.    The probabilistic perceptual 
representations at issue here are of this sort: <red, therei, .7>, to be read as a 
representation of redness at the location indicated by 'therei', with a .7 probability.  But 
what if what is represented in perception is not redness but itself a probability, say that 
the probability is .3 that something is red? This is a representation of a probability.  
Humans certainly have cognitive representations of probabilities.  We know that if A 
causally influences B, then the presence of A makes B more probable.  And we use 
such representations in reasoning and problem solving (18, 19).  There is some 
evidence of representations of probabilities in perception (20), though I am not 
persuaded that this study concerns perception as opposed to perceptual judgment.  If 
there is perception of probability, the question arises as to whether there could be a 
probabilistic representation of probability, for example, a representation of the form: 
<probability of redness of .3, therei, .7>.  (If this seems unintelligible, note that I can 
have a .9 credence that the probability of decay of a certain subatomic particle is .1.) In 
any case, this article concerns probabilistic representation, not representation of 
probabilities; and in perception, not cognition.   

.  
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I will mention two proposals that have been made concerning the role of probabilistic 
representation in the phenomenology of perception, confidence and precision, arguing 
that they do not deal with the problem at hand.  Then I will return to a discussion of 
more promising approaches which focus on populations of neurons. 

Confidence  

Some say that a conscious reflection of probabilistic representation can be found in 
conscious confidence.  One can have a conscious sense of a low degree of confidence 
that that is Isaac in the distance.  As one gets closer, one's conscious confidence that it 
is Isaac might increase (21). However, such confidences involve cognitive 
categorization of perception (where cognition is the domain of thought and reasoning).   
One can be very confident that one sees something, less confident that one sees a 
person, still less confident that one sees a guy in a ill-fitting suit, and still less confident 
that one sees Isaac (6). The fact that conscious confidence depends on the imposition 
of cognitive categories raises the question of the extent to which the phenomenology of 
confidence is perceptual phenomenology. 

Morrison has countered by appealing to perceptual categorization, saying it is the 
perceptual categories that make the confidences perceptual (22).  However, it is not the 
case that perceptual categorization is involved in all perception.  The operational index 
of perceptual categorization is faster and more accurate discrimination across 
perceptual categories than within perceptual categories.  And that obtains in only some 
cases of perception, for example color perception and phoneme perception. Using the 
example of oriented grids, there may be categorical perception of cardinal orientations, 
but the same issue arises for plus or minus 15o from a 25o tilt where no cardinal 
orientations are involved.    

In any case, perceptual categorization does nothing to solve the problem of the 
perception of direction or orientation that we started with.  In normal foveal perception of 
a vertical grid, we are not aware of the 30o tilts at all, so we are certainly not aware of 
them with low confidences. 

Another confidence-based approach would be metacognitive confidence, the 
confidence that a certain probability estimate is correct.  Confidence in this sense is 
strongly conceptual; for example, it requires the concept of probability.  So 
metacognitive confidence is unlikely to be perceptual. 

Precision 

Another proposal about the manifestation of probabilistic representation in the 
phenomenology of perception is that what Vul, et al. and Gross & Flombaum interpret 
probabilistically should instead be seen in terms of representational precision (6).  In the 
case of the orientation cells that are tuned to verticality but are also activated by a wide 
range of other orientations, the manifestation of this wide responsiveness might be blur.  
Of course, vertical things may look blurry in a fog, but the problem at hand is why they 
don't look blurry in foveal perception in standard conditions despite the wide tuning of 
individual neurons. 

It has been suggested that the low quality of color information in the peripheral retina 
shows that perception really is highly indeterminate. Our impression of determinacy is 
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supposed to be an illusion (23-27).  My first point against this claim is that it is a myth 
that there are insufficient color receptors in the periphery of the retina to see vivid 
colors.  Discrimination of one hue from another is as good at 50o as in the fovea if the 
color stimuli are large enough (28).  And there is some color sensitivity out to 80o to 90o.   
I called this a myth (29, p. 534) and a recent article describes it as a “widespread 
misconception even among vision scientists” (30).  Second, it is well known that there is 
integration of color information over time within visual cortex.  Third, “memory color” 
effects are well known.  Similar points are made in (29, 31). 

It might be said that, rather than blur, the perception represents a determinable rather 
than a determinate (32).  A determinate is a more specific way of having a 
determinable, as red is a more specific way of being colored. The 
determinable/determinate relation is relative—red is determinate relative to colored but 
determinable relative to scarlet.  The suggestion that we are aware of determinables 
does have the advantage of predicting that we don't see low probability alternatives, but 
it throws out the baby with the bathwater by denying that we see the high probability 
alternatives as well.  How would the determinable hypothesis apply to the vertical grid or 
vertical motion examples?  Perhaps the determinable would be motion that deviates 
from vertical at most by a small acute angle.  If 'small' is supposed to cover the full 
range of putatively represented angles, the problem is just restated, and if 'small' covers 
a smaller range, the proposal does not face up to the problem how it is that perception 
does not reflect the probabilistic representations outside that range. 

Populations 

Thus far, it may seem that I am arguing that if perception is probabilistic, it would seem 
probabilistic; it doesn't seem so, so it isn't probabilistic. That is not my argument.  There 
are a number of ways in which probabilistic perception might not seem probabilistic.  
The most promising candidates involve populations of neurons. I mentioned earlier that 
the information required to determine the conscious perception is spread over 
populations.  The question at hand is whether the mechanisms by which this information 
is integrated requires actual probabilistic representation.  My overall point is that the 
best approach to population responses don’t involve commitment to actual explicit 
probabilistic representations because they are to be understood in terms of Marr’s 
“computational” level, to be explained below. 

The next two sections concern two population-based approaches: sampling and 
competition.  I endorse the latter and go on to explain that it is compatible with Bayesian 
approaches. 

Sampling 
Sampling is a way of moving from probabilistic representations to narrower probability 
distributions or to non-probabilistic representations in populations of neurons.  Any such 
process can be described as sampling but as we will see in the next section, there is 
another approach that is less naturally described as sampling. The big attraction of 
sampling from a Bayesian perspective is that optimal Bayesian inference is intractable 
but sampling isn't.  My objection to sampling is that standard sampling models model 
perceptual decision rather than perception itself. 
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The term "sampling" covers any process in which items are chosen from a distribution, 
e.g. drawing balls from an urn.  The "standard" form of sequential sampling according to 
a recent review (33) is the Diffusion Decision Model in which the subject is given a task, 
say of deciding whether a bar is tilted to the left or to the right.  A threshold of evidence 
is set for each of the choices, and the system samples from the distribution of 
responses.  Samples are the input and the output is a decision.  (Some writers treat the 
decision itself as a sample (34).) In one version, each sample is treated as an item of 
evidence in a Bayesian calculation of posterior probability.  If the accumulation of 
evidence reaches the threshold for clockwise before the threshold for counter-
clockwise, the perceptual decision is clockwise (33, 35).   

Applied to the problem at hand, the suggestion would be that probabilistic 
representations are unconscious, but conscious perception reflects the sampling, not 
the probabilistic representations themselves.    The sampling answer to "If perception is 
probabilistic, why doesn't it seem probabilistic?" then is that unconscious perception is 
probabilistic but conscious perception is not. 

Vul, et al. say "Internal representations are graded probability distributions, yet 
responses about, and conscious access to, these representations is limited to discrete 
samples. Our mind appears to perform Bayesian inference without our knowing it."  
Gross & Flombaum (p. 361), referencing Vul, et al., put it this way: "perceivers construct 
from noisy transduced signals probabilistic representations (assignments of credences 
over a space of possibilities concerning the distal scene) that take into account, as best 
they can, expected relationships among the scene’s various features; performance, in 
response to a specific query, then involves ‘sampling’ from the probabilistic 
representations stored in visual memory" (italics added). 

However, we don't need a query for the vertical grid or vertical motion to look vertical.  
Without any particular task or query or focused attention, vertical objects in the world 
seen foveally in normal conditions tend to look vertical.  You may be reading this on a 
computer screen whose sides are vertical and look vertical despite the fact that there is 
no task concerning them and you are not attending directly to them.  Further, Bayesian 
models of sampling standardly require cognitive categories imposed in advance as part 
of the subject’s task.  In the example above, the categories were tilted left and tilted 
right.  But then the same problem arises as already mentioned in connection with 
confidence.  When sampling depends on the imposition of cognitive categories, that 
raises the question of the extent to which the phenomenology of the conscious state is 
genuinely perceptual phenomenology. 

The basic problem is that sampling models model perceptual decision rather than 
perception, i.e. the formation of a percept.  Perception takes place routinely with no 
task, explicit or implicit, and without any need for perceptual decision as to which 
cognitive category to apply.  I am appealing here and in what follows to the difference 
between perception and cognition--where cognition includes thought, reasoning and 
decision-making.  Although I can't argue for it here, I believe that perceptual 
representations are constitutively iconic, non-conceptual and non-propositional in 
content whereas cognitive representations do not have these properties.  There is an 
important divide between the types of representations involved in perception and 
cognition (36-38). 
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An advocate of sampling might suggest that there is always sampling in conscious 
perception, independently of any task.  If there are many samples, the problem this 
article started with arises: The samples will be samples of different orientations, so why 
doesn't vision reflect all the samples?  The supposition that there is a single random 
sample leading to a point estimate would predict widespread illusion.   

The evidence for probabilistic representation in ordinary perception is problematic.  To 
get evidence for sampling, Vul, et al. had to produce a perceptual situation in which 
subjects were making weakly informed guesses, something that does not happen in 
prototypical foveal vision.  They presented 26 letters in quick succession for 20 ms each 
with 47 ms in between letters.  In the series, one letter was surrounded by a circle and 
the subjects' task was to say which letter was circled.  The innovation of Vul, et al. was 
to ask for multiple guesses about the same perception, the results of which they 
describe as sampling from a distribution of hypotheses in that very perception.   

However, anyone who has been a subject in such a rapid series of percepts—15 letters 
in a single second-- knows that the subjective impression is one of guessing.  A similar 
problem arises for a second experiment in which letters were "crowded" together in 
space. In crowded perception, most notably in the periphery of the visual field, there is 
more than one object in an "integration field", making the perception bewildering.  One 
subject in a (different) crowding experiment was quoted as saying “It looks like one big 
mess2I seem to take features of one letter and mix them up with those of another.”  
Another subject said: “I know that there are three letters.  But for some reason, I can’t 
identify the middle one, which looks like it’s being stretched and distorted by the outer 
flankers” (39, p. 1139).  The evidence for probabilistic perception in a case in which 
subjects are subjectively guessing does not automatically apply to ordinary foveal 
perception in which a vertical line looks vertical, despite representations in the visual 
system of lower probability tilts.  In the Vul, et al. cases, competition has broken down 
and there are many simultaneously present percepts. 

Further, what Vul, et al. describe as sampling from a distribution was a matter of making 
a series of four decisions about what letter was cued.  Subjects got monetary rewards, 
more money for getting the letter right on the first guess and less for the subsequent 
three guesses, so they had to evaluate which of these conceptual categorizations they 
were most sure of.  Their responses required complex cognition involving the imposition 
of concepts on whatever perceptual information they had. 

In sum, standard forms of sequential sampling require the imposition of cognitive 
categories, something that may never be involved in genuine perception.  Sampling is 
more of a model of perceptual decision than of perception, i.e. the formation of 
percepts.  And a highly cited item of evidence for sampling involves uncertain 
perception that is quite different from the kind of perception that gives rise to the original 
problem. 

The problems with the sampling approach motivate looking at another approach to 
populations of neurons, competition. 
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Competition  
What seems to me the most promising approach is based on the notion of competition.  
I know that some will see competition as an implementation of sampling but the key 
difference, as I have been saying, is that competition routinely happens without any 
need for a perceptual decision.  One kind—not the only kind-- of competition is involved 
in the "global workspace" model of consciousness (40).  See Figure 3.  The outer ring 
indicates the sensory surfaces of the body.  Circles are neural systems and lines are 
links between them.  Filled circles are activated systems and thick lines are activated 
links.  Activated neural coalitions compete with one another to trigger recurrent 
(reverberatory) activity, symbolized by the ovals circling strongly activated networks.  
Sufficiently activated networks trigger recurrent activity in cognitive areas in the center 
of the diagram and they in turn feed back to the sensory activations, maintaining the 
sensory excitation until displaced by a new dominant coalition.  Not everyone accepts 
the global workspace theory as a theory of consciousness (including me), but it does 
serve to illustrate one kind (again, not the only kind) of competition among sensory 
activations that in many circumstances is "winner-takes-all", with the losers precluded 
from consciousness. 

(I have argued that recurrent activations confined to the back of the head can be 
conscious without triggering central activation.   Because of local recurrence, these are 
"winners" in a local competition without triggering global workspace activation (41).   
Strong recurrent activations in the back of the head normally trigger “ignition”, in which a 
winning neural coalition in the back of the head spreads into recurrent activations in 
frontal areas that in turn feed-back to sensory areas.   See Figure 3. As Dehaene and 
colleagues have shown, such locally recurrent activations can be produced reliably with 
a strong stimulus and strong distraction of attention (42)  Since I am concerned in this 
paper with normal perception, I will ignore my disagreement with the model here.) 

Another case in which losing representations are precluded from consciousness is 
rivalry, both rivalry that can be experienced with one or both eyes (as with the Necker 
cube and standard figure/ground stimuli) and binocular rivalry.  In rivalry, alternative 
representations compete for dominance because of mechanisms of reciprocal inhibition.  
The losing representations rise again when the dominant perceptions are weakened by 
adaptation.  One evolutionary explanation for reciprocal inhibition is that vision has to 
cope with damage to the eye in which there is some distorted registration that must be 
inhibited in favor of a dominant percept (43).  In this winner-takes-all competition, the 
mechanism is competition and dominance.   
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Figure 3. Schematic diagram of the global workspace. I am grateful to Stan Dehaene for 
supplying this drawing.  Dark pointers added. 
 

Although the explanation of rivalry in terms of reciprocal inhibition and adaptation is very 
well confirmed (44), there are Bayesian accounts, including accounts based on 
sampling, that have some utility in predicting some specific details of the dominance of 
rivalrous stimuli.  Some of these accounts take neural noise to be the factor that triggers 
switches (45), whereas others suggest the driving factor is predictions in frontal cortex 
in triggering switches (43, 46, 47).  In addition, there are Bayesian approaches to 
adaptation itself (48).  The sampling accounts in this application avoid the problem for 
sampling mentioned earlier of explaining perceptual decision rather than perception, 
since the rivalrous states are first and foremost rivalrous perceptions rather than 
perceptual decisions, and also obtain when there is no task (49).  However, what is 
most obviously probabilistic about rivalry is the transitions between perceptions, since 
one cannot predict the time or length of one episode of dominance on the basis of those 
that precede it (50).  Sampling accounts can model perceptual transitions among non-
probabilistic representations rather than perceptual representations (51).  One could say 
that Bayesian theories of perceptual transitions involve "implicit" probabilistic 
representation (51), but it is explicit perceptual representation that leads to the question 
of the title of this article.  Further, Bayesian models do not supplant models that appeal 
to adaptation and competition (reciprocal inhibition), but rather provide a framework for 
integrating rivalry with other perceptual phenomena (52). 

Interestingly in some perceptual situations, not only is the losing representation 
suppressed--its putatively probabilistic aspect is repressed too.  Hakwan Lau and 
Megan Peters and their colleagues recorded from intracranial electrodes in epilepsy 
patients as they were viewing noisy stimuli that could either be faces or houses.  They 
found that face/house decisions were based on the strength of both face and house 
representations but that confidence judgments did not take into account the strength of 
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the decision-incongruent representation (53).  The face representation can beat out the 
house representation by a slight margin but only the strength of the face representation 
is involved in determining confidence.  This result is compatible with probabilistic 
representation but suggests limitations on it1. Like Trump, consciousness likes winners, 
not losers, even if the losers are almost on a par with the winners, probabilistically 
speaking. 

In a binocular rivalry setup if the two pictures are locally compatible, the perception will 
reflect merger of the pictures.  For example, a male and a female face that are locally 
compatible will be seen as a combined androgynous face (55).  (Local compatibility has 
to do with whether small patches are lighter or darker than the background.  If they are 
locally of opposite polarity (one patch lighter, one darker), then they are incompatible.) 
So, in a binocular setup, competing images can lead to rivalry or to merging, depending 
on local compatibility.  Merging can sometimes involve patches of both stimuli. These 
two modes are often contrasted, with only rivalry being classified as "winner-takes-all".  
But merging can also be considered as a kind of winner-takes-all process that is 
different from rivalry in which the male and female faces are losers and the 
androgynous face is the winner. 

A similar process occurs in perception of motion direction.  When neurons representing 
opposite directions are stimulated, the result is that one direction wins.  When neurons 
represent different but not opposite directions, there is a kind of vector averaging 
process (8).  In both cases, varying representations give way to a single winner.  Using 
electrodes that stimulate areas of MT in monkey cortex, Nichols and Newsome were 
able to show that when there are activations representing directions that differ by more 
than 140o, one direction is completely suppressed (as in rivalry), whereas when they 
differ by less than 140o, the result is a perception that averages the vectors.   

The proposal then is that we should think about population codes in terms of 
competition for dominance.  What is conscious is the result of competition, the 
competing representations prior to that resolution being unconscious.  Competing 
representations resolve either with the weak dying out so that the strong can live, or 
with merging or averaging.  The big advantage of the framework of competition over 
sampling is that competition does not require a perceptual decision. 

Why are the losing representations not represented in consciousness?  It may be that 
consciousness requires a minimal level of strength of activation or local recurrent 
circuits, both of which have independent support (56, 57).  The global workspace and 
higher order accounts are alternatives.  My hope is that getting clear about the role of 
competition in perception will help to guide research on this question. 

                                                      
1 Mudrik et. al. 54. Mudrik L, Breska A, Lamy D, Deouell L. Integration Without 
Awareness: Expanding the Limits of Unconscious Processing. Psychological Science. 
2011;22(6):764-70. showed that boosting the contrast of the suppressed image makes it 
more likely to be seen consciously.  I suppose someone might claim that contrast 
reflects probability but an alternative description is that the higher the contrast the more 
competitively efficacious the representation. 
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Advocates of sampling may say that competition is just an implementation of sampling 
and that losing representations are just representations that represent low probabilities. 
Further, the strongest activations don't always win, and that could be used to suggest 
probabilistic representation.  Although the strongest, most skilled and heaviest wrestler 
probably will win, that does not show that the wrestlers represent probabilities or that 
representations of probabilities are involved in wrestling matches.  One event can be 
more probable than another without any representation of probabilities.   To reiterate: 
the competition framework does not require the imposition of cognitive categories and 
so is distinct from the sampling framework.   

I don't deny that competition can be understood in probabilistic terms.  Winning a 
competition could be described as a probabilistic decision.  Any detailed model of 
competition could be described in probabilistic terms.  My conclusion is not that the 
probabilistic view is false but that it should be understood instrumentally rather than as 
describing actual probabilistic representations.   As I will argue in the next section, the 
best attitude towards the Bayesian formalism is an "as if" or instrumentalist attitude, and 
that attitude is very common in Bayesian writing. 

There are a number of experimental studies that purport to show probabilistic 
representations in human visual cortex.  Van Bergen, et al. (34) start by conceding, of 
the probabilistic hypothesis that "direct neural evidence supporting this hypothesis is 
currently lacking".  They purport to remedy this situation.  They showed subjects 
randomly oriented grids while doing brain scans (fMRI), focusing on early visual cortical 
areas (V1,V2, V3).  Subjects were required to rotate a bar to match the orientations they 
saw, giving the experimenters a behavioral measure of precision of response.  Using 
fMRI, they were able to decode the orientations subjects were seeing.  They measured 
the "cortical uncertainty" of orientations in an individual perception. The measure they 
adopted is not easy to describe in a non-technical way but what is easy to describe is 
the way they chose among various candidates: by looking for the measure of 
uncertainty in an individual perception that correlated best with variation from perception 
to perception.  This variation is depicted in Figure 4.  The width of the distribution in the 
graph of actual orientation vs decoded orientation is a measure of "cortical uncertainty" 
over time. 

There are three results, all involving the notion of "cortical uncertainty".  My response to 
those results is that what they call "cortical uncertainty" is equally well described as 
"degree of cortical competition".  The reason that the dots Figure 4 are scattered 
instead of clustered tightly is that neurons respond to many different orientations, 
creating many competing representations for each stimulus.  Of course, degree of 
cortical competition can be regarded as an implicit representation of uncertainty.  But 
merely implicit probabilistic representation does not give rise to the puzzle of the title of 
this article. 
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Figure 4 A graph of decoded orientation vs. actual orientation of the stimulus.  Thanks 
to Weiji Ma for this figure.  See (34), Supplementary Material 1.   

The first of van Bergen, et al.'s three results has to do with something called the 
"oblique effect", a phenomenon not mentioned here so far (and one that has nothing to 
do with the discussion of orientations earlier).  The phrase "oblique effect" refers to the 
phenomenon that subjects are more accurate in reporting cardinal (horizontal and 
vertical) orientations than for oblique orientations.  The van Bergen result is that their 
measure of cortical uncertainty was higher for oblique than for cardinal grids.  They say 
cortical uncertainty explains behavioral uncertainty.  However, degree of cortical 
competition gives essentially the same explanation, but without commitment to 
probabilistic representation. 

Van Bergen, et al. also showed (this is the second result) that when they presented the 
same orientation repeatedly, subjects' behavioral precision was predicted by the cortical 
uncertainty.  Again, this fact can be seen as behavioral precision predicted by degree of 
cortical competition. 

The third result is the most impressive.  They argue that the visual system tracks its own 
uncertainty.  It is well known that subjects' orientation judgments are biased towards 
oblique and against cardinal orientations (a different sort of oblique effect).  They found 
that when cortical uncertainty was high, the bias towards oblique orientations was 
stronger than when cortical uncertainty was low, suggesting that the visual system 
monitors its own uncertainty on a trial by trial basis, relying more on bias when cortical 
uncertainty is high.  But "monitoring competition" and "monitoring uncertainty" can be 
descriptions of the same facts.    

Similar points apply to the observation that the weight given to different senses when 
they are integrated in perception depends on the relative reliability of those senses and 
how quickly it can be computed (58, 59).  "Monitoring reliability" and "monitoring 
competition" can refer to the same process.   

Van Bergen, et al. conclude that this is "strong empirical support for probabilistic models 
of perception" (p.1729) but their results do not distinguish between instrumentalist and 
realist construals of this claim. 
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There are independent grounds for caution in concluding that perceptual 
representations are probabilistic or that uncertainty is represented in perception.  A 
useful corrective comes from a recent study of pea plants that shows that growth of 
roots of pea plants involves sensitivity to variation in nutrients (60). 

 

  

Figure 5. This is the "graphical abstract" for (60). Reprinted with permission from 
Elsevier. 

Individual pea plants had their roots separated into different pots as indicated in Figure 
5.  The conditions could be rich (lots of nutrients) or poor, and variable (i.e. fluctuating) 
or constant.  In rich conditions, the plants grew a larger mass of roots in the constant 
pot; in poor conditions, the plants grew a larger mass of roots in the variable plot.  As 
the authors note, the plants were risk prone in poor and risk averse in rich conditions, 
fitting the predictions of risk sensitivity theory.  Were the plants monitoring the 
uncertainty in nutrients reaching their roots?  The plants have no nervous system and 
no one has found anything that could be called a representation of uncertainty.  Any talk 
of plants "monitoring" uncertainty would have to be regarded as "as if" talk unless there 
is evidence to the contrary.  I suggest we should take a similar attitude towards the 
sensitivity to uncertainty shown in the van Bergen study: it should be understood in an 
"as if" framework unless we have evidence for a more realistic interpretation. 

The conclusion of Dener, et. al. (p. 1766) fits with my methodological suggestion: 

Plants’ risk sensitivity reinforces the oft-repeated assertion that complex adaptive 
strategies do not require complex cognition (adaptive strategies may be complex 
for us to understand, without necessarily being complex for organisms to 
implement).  Bacteria 2 fungi 2, and plants generate flexible and impressively 
complex responses through ‘‘decision’’ processes embedded in their 
physiological architecture, implementing adaptive responses that work well under 
a limited set of ecological circumstances (i.e., that are ecologically rational)  

In sum, sensitivity to uncertainty does not require representation of anything, including 
uncertainty.   
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Why Bayesian approaches do not require probabilistic representation 

One argument for probabilistic representation in perception is that Bayesian models of 
perception have been highly successful and that they (putatively) presuppose 
probabilistic representation.  I will argue that on the most plausible construal of 
Bayesian models, they do not presuppose probabilistic representation.  Bayesian 
accounts of visual perception compute the probability density functions of various 
configurations of stimuli in the environment on the basis of prior probabilities of those 
environmental configurations and likelihoods of visual “data” if those environmental 
configurations obtain.  (Visual data are often taken to be activations in early vision.) 

Bayes’ Theorem states that the probability of a hypothesis about the environment (e.g. 
that there is a certain distribution of colors on a surface) given visual data is proportional 
to the prior probability of that hypothesis multiplied by the probability of the visual data 
given the hypothesis.   If h is the environmental hypothesis, e is the evidence from 
visual data and p(h|e) is the probability of h given e, then p(h|e) is proportional to p(e|h) 

× p(h).  p(e|h) is the "likelihood" (of the visual data given the environmental hypothesis) 
and p(h) is the prior probability of the environmental hypothesis.  (An equivalence rather 
than a statement of proportionality requires a normalizing factor so that probabilities 
sum to 1.) 

In Bayesian updating, the system uses the previous probability of the environmental 
hypothesis as the prior in changing the hypothesis about the environment in response to 
new visual data.   So, Bayesian updating requires multiplying one’s current prior 
probability estimate times one’s current estimate of likelihood to get the probability of 
the environmental hypothesis, given current stimulation.  Then the posterior probability 
of the environmental hypothesis becomes the new prior.  The most plausible version of 
these theories are hierarchical in that the visual system is divided into stages with 
distinct priors and likelihoods at each stage.  In the "predictive coding" version of the 
account, predictions in the form of priors are sent down the visual hierarchy (i.e. towards 
the sense organs) while error signals (the prediction minus the data) are sent upwards 
(52, 61). 

What would show that something that deserves to be called Bayesian inference actually 
occurs in perception? In the most straightforward implementation, there would have to 
be perceptual representations of prior probabilities for alternative hypotheses, 
perceptual representations of likelihoods, and some process that involves something 
that could be described as multiplication of these values.  (Additional arithmetic 
complexity would be added by utility functions that compare the utility of the various 
environmental hypotheses.)   

It is common for those who emphasize Bayesian processes in perception to appeal to 
global optimality.  Many perceptual processes are Bayes optimal but many are not.  As 
Rahnev and Denison (62) note in a review of sub-optimal processes in perception, there 
is an extensive literature documenting suboptimal performance.  In any case, Bayes 
optimality is neutral between instrumentalist and realist construals. 

Often, Bayesian theories of perception are held as computations in an ideal observer, 
an observer who uses Bayesian principles to optimally compute what is in the 
environment on the basis of visual data.  Ideal observer theories are instrumentalist in 
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that they are not committed to the representation in real visual systems of priors or 
likelihoods or their multiplication within the system.  Bayesian models, construed from 
the ideal observer point of view, do not license attributions of probabilistic 
representation (63, 64).  For example, Maloney & Mamassian show how non-Bayesian 
reinforcement learning can result in behavior that comports well with an ideal Bayesian 
observer (65). 

Sanborn & Chater (66) argue that an approximation process that samples from 
representations but does not compute over probabilities would mimic standard 
probabilistic fallacies in reasoning.  They suggest implementation of the sampling 
process in a connectionist network of a sort that would not plausibly support 
probabilistic representation. 

However, some Bayesian accounts are more “realist” about priors and likelihoods (and 
utilities) that are represented explicitly in perceptual systems.   A major problem with 
realist theories in which Bayesian inference literally takes place in the brain is that the 
kind of Bayesian computations that would have to be done are known to be 
computationally intractable (66).  So, any realist version of Bayesianism will have to tell 
us what exactly is supposed to be involved in the computations.   

Michael Rescorla argues for a realist version of Bayesianism in which priors are 
explicitly represented (64, 67).  He doesn’t say explicitly that likelihoods are explicitly 
represented and that the multiplication of one by the other is real.  Rescorla’s argument 
is based on the fact that we have good Bayesian models of how priors evolve in 
response to changing environmental conditions.  For example, such models predict that 
if one exposes a subject to stimulation in which luminance and stiffness are correlated, 
the priors will change so that stiff objects are seen as more luminant. And this prediction 
is born out.  Further, the “light comes from overhead” prior can be changed by 
experience.  Overall, he says, a realist interpretation yields explanatory generalizations 
that would be missed on an instrumentalist interpretation. The principle is that the best 
explanation of successful prediction is that the entities referred to in the theories that 
generate the prediction really exist and to a first approximation really have the 
properties ascribed to them in the theory (68). The specific application here is that our 
ability to predict how priors will change supports the hypothesis that priors are really 
represented in perception. 

I find this argument unconvincing because whatever it is about the computations of a 
system that simulates the effect of represented priors (for example, the proposal by 
Sanborn & Chater) might also be able to simulate the effect of change of priors.  
Without a comparison of different mechanisms that can accomplish the same goal, the 
argument for realism is weak. 

Further, perception is an inherently noisy process in part because the neural processing 
is characterized by random fluctuations.  The representations must be regarded as 
approximate.  But what is the difference between approximate implementation of 
Bayesian inference and behaving roughly as if Bayesian inference is being implemented 
(7, 64)?  Until this question is answered, the jury is out on the dispute between realist 
and anti-realist views.   

Recent debates about Bayesianism in perception have appealed to David Marr's 
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famous three levels of description of perception.  The top level, the computational level 
specifies the problem computationally whereas the next level down, the algorithmic level 
specifies how the input and output are represented and what processes are supposed 
to move from the input and output.  To use one of Marr's examples, in the 
characterization of a cash register, the computational level would be arithmetic.  One 
variant of the algorithmic level would specify a base 10 numerical system using Arabic 
numerals plus the techniques that elementary school students learn concerning adding 
the least significant digits first.  An alternative to this type of algorithm and 
representation might use binary representation and an algorithm level involving AND 
and X-OR gates (69).  The lowest level, the implementation level, asks how the 
algorithms are implemented in hardware.  In an old-fashioned cash register, 
implementation would involve gears and in older computer implementations of binary 
arithmetic, magnetic cores that can be in either one of two states (70). 

Many prominent Bayesians say that most Bayesians are working at the computational 
level.  For example, Griffiths, et al.: “Most Bayesian models of cognition are defined at 
Marr’s (71) “computational level,” characterizing the problem people are solving and its 
ideal solution. Such models make no direct claims about cognitive processes—what 
Marr termed the “algorithmic level” (2). 

In sum, the Bayesian perspective is powerful, but it does not require a realist or 
algorithmic interpretation.  Instrumentalist versions of Bayesianism as giving 
explanations at Marr’s computational level are well supported and are not committed to 
probabilistic representations. 

Conclusion 

My proposal is that competition among unconscious representations yields conscious 
representations through winner-takes-all processes of elimination or merging.  The 
competition framework does not require any particular task or cognitive categorization 
and in that respect is better than the sampling framework.  The process can be 
considered Bayesian but only on an instrumentalist interpretation pitched at Marr's 
computational level rather than the algorithmic level. 

Perhaps the strongest challenge to my account is Bayesian sampling accounts of 
competition, especially the use of sampling models to predict some of the details of 
binocular rivalry (45, 46).  However, (1) the conflict between different Bayesian models 
(noise vs predictions as the driving factor), (2) the fact that probabilistic transitions in 
rivalry do not require probabilistic representations, (3) the point made in connection with 
pea plants and (4) the strong considerations in favor of the computational rather than 
algorithmic level in Bayesian explanations counter the challenge.  

To head off one misinterpretation, I am not suggesting that there is a single stage of 
processing (a Cartesian Theater (72)) where competition is resolved. The competition at 
any stage of the visual hierarchy may perhaps be resolved at the same stage or at a 
higher stage, but that does not entail that there is a single stage at which everything is 
resolved.  
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In sum, my answer to the question "If perception is probabilistic, why doesn't it seem 
probabilistic?" is that we would do well to think of probabilities in perception 
instrumentally, avoiding the realist interpretations that motivate the question of the title.2 
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Figure 1 The response of a patch of cortex tuned to downward motion in area MT/V5 of monkey 
cortex.  (The curve is representative but hypothetical.) The height of the curve represents level of neuronal 
discharge.  The shaded area indicates the most active neurons.  From (8) with permission of the Society for 

Neuroscience.  
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Figure 2.  Oriented grids tilted from minus 30o to plus 30o.  Ask yourself whether in viewing the central bar, 
you see any hint of the minus 30o or plus 30o grids.  
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Figure 3. Schematic diagram of the global workspace. I am grateful to Stan Dehaene for supplying this 
drawing.  Dark pointers added.  
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Figure 4 A graph of decoded orientation vs. actual orientation of the stimulus.  Thanks to Weiji Ma for this 
figure.  See (28), Supplementary Material 1.  
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Figure 5. This is the "graphical abstract" for (54). Reprinted with permission from Elsevier.  
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