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Abstract

We use Isabelle/HOL to verify elementary theorems and alternative
axiomatizations of classical extensional mereology.
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1 Introduction

In this paper, we use Isabelle/HOL to verify some elementary
theorems and alternative axiomatizations of classical extensional
mereology, as well as some of its weaker subtheories.1 We mostly
follow the presentations from [Simons, 1987], [Varzi, 1996] and
[Casati and Varzi, 1999], with some important corrections from
[Pontow, 2004] and [Hovda, 2009] as well as some detailed proofs
adapted from [Pietruszczak, 2018].2

We will use the following notation throughout.3

typedecl i
consts part :: i ⇒ i ⇒ bool (P)
consts overlap :: i ⇒ i ⇒ bool (O)
consts proper-part :: i ⇒ i ⇒ bool (PP)
consts sum :: i ⇒ i ⇒ i (infix ⊕ 52)
consts product :: i ⇒ i ⇒ i (infix ⊗ 53)
consts difference :: i ⇒ i ⇒ i (infix 	 51)
consts complement:: i ⇒ i (−)
consts universe :: i (u)
consts general-sum :: (i ⇒ bool) ⇒ i (binder σ 9)
consts general-product :: (i ⇒ bool) ⇒ i (binder π [8] 9)

2 Premereology

The theory of premereology assumes parthood is reflexive and
transitive.4 In other words, parthood is assumed to be a partial
ordering relation.5 Overlap is defined as common parthood.6

locale PM =
assumes part-reflexivity: P x x
assumes part-transitivity : P x y =⇒ P y z =⇒ P x z

1For similar developments see [Sen, 2017] and [Bittner, 2018].
2For help with this project I am grateful to Zach Barnett, Sam Baron, Bob Beddor,

Olivier Danvy, Mark Goh, Jeremiah Joven Joaquin, Wang-Yen Lee, Kee Wei Loo, Bruno
Woltzenlogel Paleo, Michael Pelczar, Hsueh Qu, Abelard Podgorski, Divyanshu Sharma,
Manikaran Singh, Neil Sinhababu, Weng-Hong Tang and Zhang Jiang.

3See [Simons, 1987] pp. 99-100 for a helpful comparison of alternative notations.
4For discussion of reflexivity see [Kearns, 2011]. For transitivity see [Varzi, 2006].
5Hence the name premereology, from [Parsons, 2014] p. 6.
6See [Simons, 1987] p. 28, [Varzi, 1996] p. 261 and [Casati and Varzi, 1999] p. 36.
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assumes overlap-eq: O x y ←→ (∃ z. P z x ∧ P z y)
begin

2.1 Parthood
lemma identity-implies-part : x = y =⇒ P x y
proof −

assume x = y
moreover have P x x by (rule part-reflexivity)
ultimately show P x y by (rule subst)

qed

2.2 Overlap
lemma overlap-intro: P z x =⇒ P z y =⇒ O x y
proof−

assume P z x
moreover assume P z y
ultimately have P z x ∧ P z y..
hence ∃ z. P z x ∧ P z y..
with overlap-eq show O x y..

qed

lemma part-implies-overlap: P x y =⇒ O x y
proof −

assume P x y
with part-reflexivity have P x x ∧ P x y..
hence ∃ z. P z x ∧ P z y..
with overlap-eq show O x y..

qed

lemma overlap-reflexivity: O x x
proof −

have P x x ∧ P x x using part-reflexivity part-reflexivity..
hence ∃ z. P z x ∧ P z x..
with overlap-eq show O x x..

qed

lemma overlap-symmetry: O x y =⇒ O y x
proof−

assume O x y
with overlap-eq have ∃ z. P z x ∧ P z y..
hence ∃ z. P z y ∧ P z x by auto
with overlap-eq show O y x..

qed

lemma overlap-monotonicity: P x y =⇒ O z x =⇒ O z y
proof −

assume P x y
assume O z x
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with overlap-eq have ∃ v. P v z ∧ P v x..
then obtain v where v: P v z ∧ P v x..
hence P v z..
moreover from v have P v x..
hence P v y using 〈P x y〉 by (rule part-transitivity)
ultimately have P v z ∧ P v y..
hence ∃ v. P v z ∧ P v y..
with overlap-eq show O z y..

qed

The next lemma is from [Hovda, 2009] p. 66.
lemma overlap-lemma: ∃ x. (P x y ∧ O z x) −→ O y z
proof −

fix x
have P x y ∧ O z x −→ O y z
proof

assume antecedent: P x y ∧ O z x
hence O z x..
with overlap-eq have ∃ v. P v z ∧ P v x..
then obtain v where v: P v z ∧ P v x..
hence P v x..
moreover from antecedent have P x y..
ultimately have P v y by (rule part-transitivity)
moreover from v have P v z..
ultimately have P v y ∧ P v z..
hence ∃ v. P v y ∧ P v z..
with overlap-eq show O y z..

qed
thus ∃ x. (P x y ∧ O z x) −→ O y z..

qed

2.3 Disjointness
lemma disjoint-implies-distinct: ¬ O x y =⇒ x 6= y
proof −

assume ¬ O x y
show x 6= y
proof

assume x = y
hence ¬ O y y using 〈¬ O x y〉 by (rule subst)
thus False using overlap-reflexivity..

qed
qed

lemma disjoint-implies-not-part: ¬ O x y =⇒ ¬ P x y
proof −

assume ¬ O x y
show ¬ P x y
proof
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assume P x y
hence O x y by (rule part-implies-overlap)
with 〈¬ O x y〉 show False..

qed
qed

lemma disjoint-symmetry: ¬ O x y =⇒ ¬ O y x
proof −

assume ¬ O x y
show ¬ O y x
proof

assume O y x
hence O x y by (rule overlap-symmetry)
with 〈¬ O x y〉 show False..

qed
qed

lemma disjoint-demonotonicity: P x y =⇒ ¬ O z y =⇒ ¬ O z x
proof −

assume P x y
assume ¬ O z y
show ¬ O z x
proof

assume O z x
with 〈P x y〉 have O z y

by (rule overlap-monotonicity)
with 〈¬ O z y〉 show False..

qed
qed

end

3 Ground Mereology

The theory of ground mereology adds to premereology the anti-
symmetry of parthood, and defines proper parthood as noniden-
tical parthood.7 In other words, ground mereology assumes that
parthood is a partial order.
locale M = PM +

assumes part-antisymmetry: P x y =⇒ P y x =⇒ x = y
assumes nip-eq: PP x y ←→ P x y ∧ x 6= y

begin
7For this axiomatization of ground mereology see, for example, [Varzi, 1996] p. 261 and

[Casati and Varzi, 1999] p. 36. For discussion of the antisymmetry of parthood see, for
example, [Cotnoir, 2010]. For the definition of proper parthood as nonidentical parthood,
see for example, [Leonard and Goodman, 1940] p. 47.
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3.1 Proper Parthood
lemma proper-implies-part: PP x y =⇒ P x y
proof −

assume PP x y
with nip-eq have P x y ∧ x 6= y..
thus P x y..

qed

lemma proper-implies-distinct: PP x y =⇒ x 6= y
proof −

assume PP x y
with nip-eq have P x y ∧ x 6= y..
thus x 6= y..

qed

lemma proper-implies-not-part: PP x y =⇒ ¬ P y x
proof −

assume PP x y
hence P x y by (rule proper-implies-part)
show ¬ P y x
proof

from 〈PP x y〉 have x 6= y by (rule proper-implies-distinct)
moreover assume P y x
with 〈P x y〉 have x = y by (rule part-antisymmetry)
ultimately show False..

qed
qed

lemma proper-part-asymmetry: PP x y =⇒ ¬ PP y x
proof −

assume PP x y
hence P x y by (rule proper-implies-part)
from 〈PP x y〉 have x 6= y by (rule proper-implies-distinct)
show ¬ PP y x
proof

assume PP y x
hence P y x by (rule proper-implies-part)
with 〈P x y〉 have x = y by (rule part-antisymmetry)
with 〈x 6= y〉 show False..

qed
qed

lemma proper-implies-overlap: PP x y =⇒ O x y
proof −

assume PP x y
hence P x y by (rule proper-implies-part)
thus O x y by (rule part-implies-overlap)

qed
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end

The rest of this section compares four alternative axiomatiza-
tions of ground mereology, and verifies their equivalence.

The first alternative axiomatization defines proper parthood as
nonmutual instead of nonidentical parthood.8 In the presence of
antisymmetry, the two definitions of proper parthood are equiv-
alent.9

locale M1 = PM +
assumes nmp-eq: PP x y ←→ P x y ∧ ¬ P y x
assumes part-antisymmetry: P x y =⇒ P y x =⇒ x = y

sublocale M ⊆ M1
proof

fix x y
show nmp-eq: PP x y ←→ P x y ∧ ¬ P y x
proof

assume PP x y
with nip-eq have nip: P x y ∧ x 6= y..
hence x 6= y..
from nip have P x y..
moreover have ¬ P y x
proof

assume P y x
with 〈P x y〉 have x = y by (rule part-antisymmetry)
with 〈x 6= y〉 show False..

qed
ultimately show P x y ∧ ¬ P y x..

next
assume nmp: P x y ∧ ¬ P y x
hence ¬ P y x..
from nmp have P x y..
moreover have x 6= y
proof

assume x = y
hence ¬ P y y using 〈¬ P y x〉 by (rule subst)
thus False using part-reflexivity..

qed
ultimately have P x y ∧ x 6= y..
with nip-eq show PP x y..

qed
show P x y =⇒ P y x =⇒ x = y using part-antisymmetry.

qed
8See, for example, [Varzi, 1996] p. 261 and [Casati and Varzi, 1999] p. 36. For the

distinction between nonmutual and nonidentical parthood, see [Parsons, 2014] pp. 6-8.
9See [Cotnoir, 2010] p. 398, [Donnelly, 2011] p. 233, [Cotnoir and Bacon, 2012] p. 191,

[Obojska, 2013] p. 344, [Cotnoir, 2016] p. 128 and [Cotnoir, 2018].
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sublocale M1 ⊆ M
proof

fix x y
show nip-eq: PP x y ←→ P x y ∧ x 6= y
proof

assume PP x y
with nmp-eq have nmp: P x y ∧ ¬ P y x..
hence ¬ P y x..
from nmp have P x y..
moreover have x 6= y
proof

assume x = y
hence ¬ P y y using 〈¬ P y x〉 by (rule subst)
thus False using part-reflexivity..

qed
ultimately show P x y ∧ x 6= y..

next
assume nip: P x y ∧ x 6= y
hence x 6= y..
from nip have P x y..
moreover have ¬ P y x
proof

assume P y x
with 〈P x y〉 have x = y by (rule part-antisymmetry)
with 〈x 6= y〉 show False..

qed
ultimately have P x y ∧ ¬ P y x..
with nmp-eq show PP x y..

qed
show P x y =⇒ P y x =⇒ x = y using part-antisymmetry.

qed

Conversely, assuming the two definitions of proper parthood are
equivalent entails the antisymmetry of parthood, leading to the
second alternative axiomatization, which assumes both equiva-
lencies.10

locale M2 = PM +
assumes nip-eq: PP x y ←→ P x y ∧ x 6= y
assumes nmp-eq: PP x y ←→ P x y ∧ ¬ P y x

sublocale M ⊆ M2
proof

fix x y
show PP x y ←→ P x y ∧ x 6= y using nip-eq.
show PP x y ←→ P x y ∧ ¬ P y x using nmp-eq.

qed
10For this point see especially [Parsons, 2014] pp. 9-10.
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sublocale M2 ⊆ M
proof

fix x y
show PP x y ←→ P x y ∧ x 6= y using nip-eq.
show P x y =⇒ P y x =⇒ x = y
proof −

assume P x y
assume P y x
show x = y
proof (rule ccontr)

assume x 6= y
with 〈P x y〉 have P x y ∧ x 6= y..
with nip-eq have PP x y..
with nmp-eq have P x y ∧ ¬ P y x..
hence ¬ P y x..
thus False using 〈P y x〉..

qed
qed

qed

In the context of the other axioms, antisymmetry is equivalent to
the extensionality of parthood, which gives the third alternative
axiomatization.11

locale M3 = PM +
assumes nip-eq: PP x y ←→ P x y ∧ x 6= y
assumes part-extensionality: x = y ←→ (∀ z. P z x ←→ P z y)

sublocale M ⊆ M3
proof

fix x y
show PP x y ←→ P x y ∧ x 6= y using nip-eq.
show part-extensionality: x = y ←→ (∀ z. P z x ←→ P z y)
proof

assume x = y
moreover have ∀ z. P z x ←→ P z x by simp
ultimately show ∀ z. P z x ←→ P z y by (rule subst)

next
assume z: ∀ z. P z x ←→ P z y
show x = y
proof (rule part-antisymmetry)

from z have P y x ←→ P y y..
moreover have P y y by (rule part-reflexivity)
ultimately show P y x..

next
from z have P x x ←→ P x y..
moreover have P x x by (rule part-reflexivity)

11For this point see [Cotnoir, 2010] p. 401 and [Cotnoir and Bacon, 2012] p. 191-2.
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ultimately show P x y..
qed

qed
qed

sublocale M3 ⊆ M
proof

fix x y
show PP x y ←→ P x y ∧ x 6= y using nip-eq.
show part-antisymmetry: P x y =⇒ P y x =⇒ x = y
proof −

assume P x y
assume P y x
have ∀ z. P z x ←→ P z y
proof

fix z
show P z x ←→ P z y
proof

assume P z x
thus P z y using 〈P x y〉 by (rule part-transitivity)

next
assume P z y
thus P z x using 〈P y x〉 by (rule part-transitivity)

qed
qed
with part-extensionality show x = y..

qed
qed

The fourth axiomatization adopts proper parthood as primi-
tive.12 Improper parthood is defined as proper parthood or iden-
tity.
locale M4 =

assumes part-eq: P x y ←→ PP x y ∨ x = y
assumes overlap-eq: O x y ←→ (∃ z. P z x ∧ P z y)
assumes proper-part-asymmetry: PP x y =⇒ ¬ PP y x
assumes proper-part-transitivity: PP x y =⇒ PP y z =⇒ PP x z

begin

lemma proper-part-irreflexivity: ¬ PP x x
proof

assume PP x x
hence ¬ PP x x by (rule proper-part-asymmetry)
thus False using 〈PP x x〉..

qed

end
12See, for example, [Simons, 1987], p. 26 and [Casati and Varzi, 1999] p. 37.
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sublocale M ⊆ M4
proof

fix x y z
show part-eq: P x y ←→ (PP x y ∨ x = y)
proof

assume P x y
show PP x y ∨ x = y
proof cases

assume x = y
thus PP x y ∨ x = y..

next
assume x 6= y
with 〈P x y〉 have P x y ∧ x 6= y..
with nip-eq have PP x y..
thus PP x y ∨ x = y..

qed
next

assume PP x y ∨ x = y
thus P x y
proof

assume PP x y
thus P x y by (rule proper-implies-part)

next
assume x = y
thus P x y by (rule identity-implies-part)

qed
qed
show O x y ←→ (∃ z. P z x ∧ P z y) using overlap-eq.
show PP x y =⇒ ¬ PP y x using proper-part-asymmetry.
show proper-part-transitivity: PP x y =⇒ PP y z =⇒ PP x z
proof −

assume PP x y
assume PP y z
have P x z ∧ x 6= z
proof

from 〈PP x y〉 have P x y by (rule proper-implies-part)
moreover from 〈PP y z〉 have P y z by (rule proper-implies-part)
ultimately show P x z by (rule part-transitivity)

next
show x 6= z
proof

assume x = z
hence PP y x using 〈PP y z〉 by (rule ssubst)
hence ¬ PP x y by (rule proper-part-asymmetry)
thus False using 〈PP x y〉..

qed
qed
with nip-eq show PP x z..
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qed
qed

sublocale M4 ⊆ M
proof

fix x y z
show proper-part-eq: PP x y ←→ P x y ∧ x 6= y
proof

assume PP x y
hence PP x y ∨ x = y..
with part-eq have P x y..
moreover have x 6= y
proof

assume x = y
hence PP y y using 〈PP x y〉 by (rule subst)
with proper-part-irreflexivity show False..

qed
ultimately show P x y ∧ x 6= y..

next
assume rhs: P x y ∧ x 6= y
hence x 6= y..
from rhs have P x y..
with part-eq have PP x y ∨ x = y..
thus PP x y
proof

assume PP x y
thus PP x y.

next
assume x = y
with 〈x 6= y〉 show PP x y..

qed
qed
show P x x
proof −

have x = x by (rule refl)
hence PP x x ∨ x = x..
with part-eq show P x x..

qed
show O x y ←→ (∃ z. P z x ∧ P z y) using overlap-eq.
show P x y =⇒ P y x =⇒ x = y
proof −

assume P x y
assume P y x
from part-eq have PP x y ∨ x = y using 〈P x y〉..
thus x = y
proof

assume PP x y
hence ¬ PP y x by (rule proper-part-asymmetry)
from part-eq have PP y x ∨ y = x using 〈P y x〉..
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thus x = y
proof

assume PP y x
with 〈¬ PP y x〉 show x = y..

next
assume y = x
thus x = y..

qed
qed

qed
show P x y =⇒ P y z =⇒ P x z
proof −

assume P x y
assume P y z
with part-eq have PP y z ∨ y = z..
hence PP x z ∨ x = z
proof

assume PP y z
from part-eq have PP x y ∨ x = y using 〈P x y〉..
hence PP x z
proof

assume PP x y
thus PP x z using 〈PP y z〉 by (rule proper-part-transitivity)

next
assume x = y
thus PP x z using 〈PP y z〉 by (rule ssubst)

qed
thus PP x z ∨ x = z..

next
assume y = z
moreover from part-eq have PP x y ∨ x = y using 〈P x y〉..
ultimately show PP x z ∨ x = z by (rule subst)

qed
with part-eq show P x z..

qed
qed

4 Minimal Mereology

Minimal mereology adds to ground mereology the axiom of weak
supplementation.13

locale MM = M +

13See [Varzi, 1996] and [Casati and Varzi, 1999] p. 39. The name minimal mereology
reflects the, controversial, idea that weak supplementation is analytic. See, for example,
[Simons, 1987] p. 116, [Varzi, 2008] p. 110-1, and [Cotnoir, 2018]. For general discussion
of weak supplementation see, for example [Smith, 2009] pp. 507 and [Donnelly, 2011].
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assumes weak-supplementation: PP y x =⇒ (∃ z. P z x ∧ ¬ O z y)

The rest of this section considers three alternative axiomatiza-
tions of minimal mereology. The first alternative axiomatization
replaces improper with proper parthood in the consequent of
weak supplementation.14

locale MM1 = M +
assumes proper-weak-supplementation:

PP y x =⇒ (∃ z. PP z x ∧ ¬ O z y)

sublocale MM ⊆ MM1
proof

fix x y
show PP y x =⇒ (∃ z. PP z x ∧ ¬ O z y)
proof −

assume PP y x
hence ∃ z. P z x ∧ ¬ O z y by (rule weak-supplementation)
then obtain z where z: P z x ∧ ¬ O z y..
hence ¬ O z y..
from z have P z x..
hence P z x ∧ z 6= x
proof

show z 6= x
proof

assume z = x
hence PP y z

using 〈PP y x〉 by (rule ssubst)
hence O y z by (rule proper-implies-overlap)
hence O z y by (rule overlap-symmetry)
with 〈¬ O z y〉 show False..

qed
qed
with nip-eq have PP z x..
hence PP z x ∧ ¬ O z y

using 〈¬ O z y〉..
thus ∃ z. PP z x ∧ ¬ O z y..

qed
qed

sublocale MM1 ⊆ MM
proof

fix x y
show weak-supplementation: PP y x =⇒ (∃ z. P z x ∧ ¬ O z y)
proof −

assume PP y x
hence ∃ z. PP z x ∧ ¬ O z y by (rule proper-weak-supplementation)
then obtain z where z: PP z x ∧ ¬ O z y..

14See [Simons, 1987] p. 28.
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hence PP z x..
hence P z x by (rule proper-implies-part)
moreover from z have ¬ O z y..
ultimately have P z x ∧ ¬ O z y..
thus ∃ z. P z x ∧ ¬ O z y..

qed
qed

The following two corollaries are sometimes found in the litera-
ture.15

context MM
begin

corollary weak-company: PP y x =⇒ (∃ z. PP z x ∧ z 6= y)
proof −

assume PP y x
hence ∃ z. PP z x ∧ ¬ O z y by (rule proper-weak-supplementation)
then obtain z where z: PP z x ∧ ¬ O z y..
hence PP z x..
from z have ¬ O z y..
hence z 6= y by (rule disjoint-implies-distinct)
with 〈PP z x〉 have PP z x ∧ z 6= y..
thus ∃ z. PP z x ∧ z 6= y..

qed

corollary strong-company: PP y x =⇒ (∃ z. PP z x ∧ ¬ P z y)
proof −

assume PP y x
hence ∃ z. PP z x ∧ ¬ O z y by (rule proper-weak-supplementation)
then obtain z where z: PP z x ∧ ¬ O z y..
hence PP z x..
from z have ¬ O z y..
hence ¬ P z y by (rule disjoint-implies-not-part)
with 〈PP z x〉 have PP z x ∧ ¬ P z y..
thus ∃ z. PP z x ∧ ¬ P z y..

qed

end

If weak supplementation is formulated in terms of nonidentical
parthood, then the antisymmetry of parthood is redundant, and
we have the second alternative axiomatization of minimal mere-
ology.16

locale MM2 = PM +

15See [Simons, 1987] p. 27. For the names weak company and strong company see
[Cotnoir and Bacon, 2012] p. 192-3 and [Varzi, 2016].

16See [Cotnoir, 2010] p. 399, [Donnelly, 2011] p. 232, [Cotnoir and Bacon, 2012] p. 193
and [Obojska, 2013] pp. 235-6.
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assumes nip-eq: PP x y ←→ P x y ∧ x 6= y
assumes weak-supplementation: PP y x =⇒ (∃ z. P z x ∧ ¬ O z y)

sublocale MM2 ⊆ MM
proof

fix x y
show PP x y ←→ P x y ∧ x 6= y using nip-eq.
show part-antisymmetry: P x y =⇒ P y x =⇒ x = y
proof −

assume P x y
assume P y x
show x = y
proof (rule ccontr)

assume x 6= y
with 〈P x y〉 have P x y ∧ x 6= y..
with nip-eq have PP x y..
hence ∃ z. P z y ∧ ¬ O z x by (rule weak-supplementation)
then obtain z where z: P z y ∧ ¬ O z x..
hence ¬ O z x..
hence ¬ P z x by (rule disjoint-implies-not-part)
from z have P z y..
hence P z x using 〈P y x〉 by (rule part-transitivity)
with 〈¬ P z x〉 show False..

qed
qed
show PP y x =⇒ ∃ z. P z x ∧ ¬ O z y using weak-supplementation.

qed

sublocale MM ⊆ MM2
proof

fix x y
show PP x y ←→ (P x y ∧ x 6= y) using nip-eq.
show PP y x =⇒ ∃ z. P z x ∧ ¬ O z y using weak-supplementation.

qed

Likewise, if proper parthood is adopted as primitive, then the
asymmetry of proper parthood is redundant in the context of
weak supplementation, leading to the third alternative axioma-
tization.17

locale MM3 =
assumes part-eq: P x y ←→ PP x y ∨ x = y
assumes overlap-eq: O x y ←→ (∃ z. P z x ∧ P z y)
assumes proper-part-transitivity: PP x y =⇒ PP y z =⇒ PP x z
assumes weak-supplementation: PP y x =⇒ (∃ z. P z x ∧ ¬ O z y)

begin

lemma part-reflexivity: P x x
17See [Donnelly, 2011] p. 232 and [Cotnoir, 2018].
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proof −
have x = x..
hence PP x x ∨ x = x..
with part-eq show P x x..

qed

lemma proper-part-irreflexivity: ¬ PP x x
proof

assume PP x x
hence ∃ z. P z x ∧ ¬ O z x by (rule weak-supplementation)
then obtain z where z: P z x ∧ ¬ O z x..
hence ¬ O z x..
from z have P z x..
with part-reflexivity have P z z ∧ P z x..
hence ∃ v. P v z ∧ P v x..
with overlap-eq have O z x..
with 〈¬ O z x〉 show False..

qed

end

sublocale MM3 ⊆ M4
proof

fix x y z
show P x y ←→ PP x y ∨ x = y using part-eq.
show O x y ←→ (∃ z. P z x ∧ P z y) using overlap-eq.
show proper-part-irreflexivity: PP x y =⇒ ¬ PP y x
proof −

assume PP x y
show ¬ PP y x
proof

assume PP y x
hence PP y y using 〈PP x y〉 by (rule proper-part-transitivity)
with proper-part-irreflexivity show False..

qed
qed
show PP x y =⇒ PP y z =⇒ PP x z using proper-part-transitivity.

qed

sublocale MM3 ⊆ MM
proof

fix x y
show PP y x =⇒ (∃ z. P z x ∧ ¬ O z y) using weak-supplementation.

qed

sublocale MM ⊆ MM3
proof

fix x y z
show P x y ←→ (PP x y ∨ x = y) using part-eq.
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show O x y ←→ (∃ z. P z x ∧ P z y) using overlap-eq.
show PP x y =⇒ PP y z =⇒ PP x z using proper-part-transitivity.
show PP y x =⇒ ∃ z. P z x ∧ ¬ O z y using weak-supplementation.

qed

5 Extensional Mereology

Extensional mereology adds to ground mereology the axiom of
strong supplementation.18

locale EM = M +
assumes strong-supplementation:
¬ P x y =⇒ (∃ z. P z x ∧ ¬ O z y)

begin

Strong supplementation entails weak supplementation.19

lemma weak-supplementation: PP x y =⇒ (∃ z. P z y ∧ ¬ O z x)
proof −

assume PP x y
hence ¬ P y x by (rule proper-implies-not-part)
thus ∃ z. P z y ∧ ¬ O z x by (rule strong-supplementation)

qed

end

So minimal mereology is a subtheory of extensional mereology.20

sublocale EM ⊆ MM
proof

fix y x
show PP y x =⇒ ∃ z. P z x ∧ ¬ O z y using weak-supplementation.

qed

Strong supplementation also entails the proper parts principle.21

context EM
begin

lemma proper-parts-principle:
(∃ z. PP z x) =⇒ (∀ z. PP z x −→ P z y) =⇒ P x y
proof −

assume ∃ z. PP z x
then obtain v where v: PP v x..
hence P v x by (rule proper-implies-part)
assume antecedent: ∀ z. PP z x −→ P z y

18See [Simons, 1987] p. 29, [Varzi, 1996] p. 262 and [Casati and Varzi, 1999] p. 39-40.
19See [Simons, 1987] p. 29 and [Casati and Varzi, 1999] p. 40.
20[Casati and Varzi, 1999] p. 40.
21See [Simons, 1987] pp. 28-9 and [Varzi, 1996] p. 263.
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hence PP v x −→ P v y..
hence P v y using 〈PP v x〉..
with 〈P v x〉 have P v x ∧ P v y..
hence ∃ v. P v x ∧ P v y..
with overlap-eq have O x y..
show P x y
proof (rule ccontr)

assume ¬ P x y
hence ∃ z. P z x ∧ ¬ O z y

by (rule strong-supplementation)
then obtain z where z: P z x ∧ ¬ O z y..
hence P z x..
moreover have z 6= x
proof

assume z = x
moreover from z have ¬ O z y..
ultimately have ¬ O x y by (rule subst)
thus False using 〈O x y〉..

qed
ultimately have P z x ∧ z 6= x..
with nip-eq have PP z x..
from antecedent have PP z x −→ P z y..
hence P z y using 〈PP z x〉..
hence O z y by (rule part-implies-overlap)
from z have ¬ O z y..
thus False using 〈O z y〉..

qed
qed

Which with antisymmetry entails the extensionality of proper
parthood.22

theorem proper-part-extensionality:
(∃ z. PP z x ∨ PP z y) =⇒ x = y ←→ (∀ z. PP z x ←→ PP z y)
proof −

assume antecedent: ∃ z. PP z x ∨ PP z y
show x = y ←→ (∀ z. PP z x ←→ PP z y)
proof

assume x = y
moreover have ∀ z. PP z x ←→ PP z x by simp
ultimately show ∀ z. PP z x ←→ PP z y by (rule subst)

next
assume right: ∀ z. PP z x ←→ PP z y
have ∀ z. PP z x −→ P z y
proof

fix z
show PP z x −→ P z y
proof

22See [Simons, 1987] p. 28, [Varzi, 1996] p. 263 and [Casati and Varzi, 1999] p. 40.
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assume PP z x
from right have PP z x ←→ PP z y..
hence PP z y using 〈PP z x〉..
thus P z y by (rule proper-implies-part)

qed
qed
have ∀ z. PP z y −→ P z x
proof

fix z
show PP z y −→ P z x
proof

assume PP z y
from right have PP z x ←→ PP z y..
hence PP z x using 〈PP z y〉..
thus P z x by (rule proper-implies-part)

qed
qed
from antecedent obtain z where z: PP z x ∨ PP z y..
thus x = y
proof (rule disjE)

assume PP z x
hence ∃ z. PP z x..
hence P x y using 〈∀ z. PP z x −→ P z y〉

by (rule proper-parts-principle)
from right have PP z x ←→ PP z y..
hence PP z y using 〈PP z x〉..
hence ∃ z. PP z y..
hence P y x using 〈∀ z. PP z y −→ P z x〉

by (rule proper-parts-principle)
with 〈P x y〉 show x = y

by (rule part-antisymmetry)
next

assume PP z y
hence ∃ z. PP z y..
hence P y x using 〈∀ z. PP z y −→ P z x〉

by (rule proper-parts-principle)
from right have PP z x ←→ PP z y..
hence PP z x using 〈PP z y〉..
hence ∃ z. PP z x..
hence P x y using 〈∀ z. PP z x −→ P z y〉

by (rule proper-parts-principle)
thus x = y

using 〈P y x〉 by (rule part-antisymmetry)
qed

qed
qed

It also follows from strong supplementation that parthood is de-
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finable in terms of overlap.23

lemma part-overlap-eq: P x y ←→ (∀ z. O z x −→ O z y)
proof

assume P x y
show (∀ z. O z x −→ O z y)
proof

fix z
show O z x −→ O z y
proof

assume O z x
with 〈P x y〉 show O z y

by (rule overlap-monotonicity)
qed

qed
next

assume right: ∀ z. O z x −→ O z y
show P x y
proof (rule ccontr)

assume ¬ P x y
hence ∃ z. P z x ∧ ¬ O z y

by (rule strong-supplementation)
then obtain z where z: P z x ∧ ¬ O z y..
hence ¬ O z y..
from right have O z x −→ O z y..
moreover from z have P z x..
hence O z x by (rule part-implies-overlap)
ultimately have O z y..
with 〈¬ O z y〉 show False..

qed
qed

Which entails the extensionality of overlap.
theorem overlap-extensionality: x = y ←→ (∀ z. O z x ←→ O z y)
proof

assume x = y
moreover have ∀ z. O z x ←→ O z x
proof

fix z
show O z x ←→ O z x..

qed
ultimately show ∀ z. O z x ←→ O z y

by (rule subst)
next

assume right: ∀ z. O z x ←→ O z y
have ∀ z. O z y −→ O z x
proof

fix z
23See [Parsons, 2014] p. 4.
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from right have O z x ←→ O z y..
thus O z y −→ O z x..

qed
with part-overlap-eq have P y x..
have ∀ z. O z x −→ O z y
proof

fix z
from right have O z x ←→ O z y..
thus O z x −→ O z y..

qed
with part-overlap-eq have P x y..
thus x = y

using 〈P y x〉 by (rule part-antisymmetry)
qed

end

6 Closed Mereology

The theory of closed mereology adds to ground mereology con-
ditions guaranteeing the existence of sums and products.24

locale CM = M +
assumes sum-eq: x ⊕ y = (THE z. ∀ v. O v z ←→ O v x ∨ O v y)
assumes sum-closure: ∃ z. ∀ v. O v z ←→ O v x ∨ O v y
assumes product-eq:

x ⊗ y = (THE z. ∀ v. P v z ←→ P v x ∧ P v y)
assumes product-closure:

O x y =⇒ ∃ z. ∀ v. P v z ←→ P v x ∧ P v y
begin

6.1 Products
lemma product-intro:
(∀w. P w z ←→ (P w x ∧ P w y)) =⇒ x ⊗ y = z

proof −
assume z: ∀w. P w z ←→ (P w x ∧ P w y)
hence (THE v. ∀w. P w v ←→ P w x ∧ P w y) = z
proof (rule the-equality)

fix v
assume v: ∀w. P w v ←→ (P w x ∧ P w y)
have ∀w. P w v ←→ P w z
proof

fix w
24See [Masolo and Vieu, 1999] p. 238. [Varzi, 1996] p. 263 and [Casati and Varzi, 1999]

p. 43 give a slightly weaker version of the sum closure axiom, which is equivalent given
axioms considered later.
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from z have P w z ←→ (P w x ∧ P w y)..
moreover from v have P w v ←→ (P w x ∧ P w y)..
ultimately show P w v ←→ P w z by (rule ssubst)

qed
with part-extensionality show v = z..

qed
thus x ⊗ y = z

using product-eq by (rule subst)
qed

lemma product-idempotence: x ⊗ x = x
proof −

have ∀w. P w x ←→ P w x ∧ P w x
proof

fix w
show P w x ←→ P w x ∧ P w x
proof

assume P w x
thus P w x ∧ P w x using 〈P w x〉..

next
assume P w x ∧ P w x
thus P w x..

qed
qed
thus x ⊗ x = x by (rule product-intro)

qed

lemma product-character :
O x y =⇒ (∀w. P w (x ⊗ y) ←→ (P w x ∧ P w y))

proof −
assume O x y
hence ∃ z. ∀w. P w z ←→ (P w x ∧ P w y) by (rule product-closure)
then obtain z where z: ∀w. P w z ←→ (P w x ∧ P w y)..
hence x ⊗ y = z by (rule product-intro)
thus ∀w. P w (x ⊗ y) ←→ P w x ∧ P w y

using z by (rule ssubst)
qed

lemma product-commutativity: O x y =⇒ x ⊗ y = y ⊗ x
proof −

assume O x y
hence O y x by (rule overlap-symmetry)
hence ∀w. P w (y ⊗ x) ←→ (P w y ∧ P w x) by (rule prod-

uct-character)
hence ∀w. P w (y ⊗ x) ←→ (P w x ∧ P w y) by auto
thus x ⊗ y = y ⊗ x by (rule product-intro)

qed

lemma product-in-factors: O x y =⇒ P (x ⊗ y) x ∧ P (x ⊗ y) y
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proof −
assume O x y
hence ∀w. P w (x ⊗ y) ←→ P w x ∧ P w y by (rule prod-

uct-character)
hence P (x ⊗ y) (x ⊗ y) ←→ P (x ⊗ y) x ∧ P (x ⊗ y) y..
moreover have P (x ⊗ y) (x ⊗ y) by (rule part-reflexivity)
ultimately show P (x ⊗ y) x ∧ P (x ⊗ y) y..

qed

lemma product-in-first-factor : O x y =⇒ P (x ⊗ y) x
proof −

assume O x y
hence P (x ⊗ y) x ∧ P (x ⊗ y) y by (rule product-in-factors)
thus P (x ⊗ y) x..

qed

lemma product-in-second-factor : O x y =⇒ P (x ⊗ y) y
proof −

assume O x y
hence P (x ⊗ y) x ∧ P (x ⊗ y) y by (rule product-in-factors)
thus P (x ⊗ y) y..

qed

lemma nonpart-implies-proper-product:
¬ P x y ∧ O x y =⇒ PP (x ⊗ y) x

proof −
assume antecedent: ¬ P x y ∧ O x y
hence ¬ P x y..
from antecedent have O x y..
hence P (x ⊗ y) x by (rule product-in-first-factor)
moreover have (x ⊗ y) 6= x
proof

assume (x ⊗ y) = x
hence ¬ P (x ⊗ y) y

using 〈¬ P x y〉 by (rule ssubst)
moreover have P (x ⊗ y) y

using 〈O x y〉 by (rule product-in-second-factor)
ultimately show False..

qed
ultimately have P (x ⊗ y) x ∧ x ⊗ y 6= x..
with nip-eq show PP (x ⊗ y) x..

qed

lemma common-part-in-product: P z x ∧ P z y =⇒ P z (x ⊗ y)
proof −

assume antecedent: P z x ∧ P z y
hence ∃ z. P z x ∧ P z y..
with overlap-eq have O x y..
hence ∀w. P w (x ⊗ y) ←→ (P w x ∧ P w y)
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by (rule product-character)
hence P z (x ⊗ y) ←→ (P z x ∧ P z y)..
thus P z (x ⊗ y)

using 〈P z x ∧ P z y〉..
qed

lemma product-part-in-factors:
O x y =⇒ P z (x ⊗ y) =⇒ P z x ∧ P z y

proof −
assume O x y
hence ∀w. P w (x ⊗ y) ←→ (P w x ∧ P w y)

by (rule product-character)
hence P z (x ⊗ y) ←→ (P z x ∧ P z y)..
moreover assume P z (x ⊗ y)
ultimately show P z x ∧ P z y..

qed

corollary product-part-in-first-factor :
O x y =⇒ P z (x ⊗ y) =⇒ P z x

proof −
assume O x y
moreover assume P z (x ⊗ y)
ultimately have P z x ∧ P z y

by (rule product-part-in-factors)
thus P z x..

qed

corollary product-part-in-second-factor :
O x y =⇒ P z (x ⊗ y) =⇒ P z y

proof −
assume O x y
moreover assume P z (x ⊗ y)
ultimately have P z x ∧ P z y

by (rule product-part-in-factors)
thus P z y..

qed

lemma part-product-identity: P x y =⇒ x ⊗ y = x
proof −

assume P x y
with part-reflexivity have P x x ∧ P x y..
hence P x (x ⊗ y) by (rule common-part-in-product)
have O x y using 〈P x y〉 by (rule part-implies-overlap)
hence P (x ⊗ y) x by (rule product-in-first-factor)
thus x ⊗ y = x using 〈P x (x ⊗ y)〉 by (rule part-antisymmetry)

qed

lemma product-overlap: P z x =⇒ O z y =⇒ O z (x ⊗ y)
proof −

25



assume P z x
assume O z y
with overlap-eq have ∃ v. P v z ∧ P v y..
then obtain v where v: P v z ∧ P v y..
hence P v y..
from v have P v z..
hence P v x using 〈P z x〉 by (rule part-transitivity)
hence P v x ∧ P v y using 〈P v y〉..
hence P v (x ⊗ y) by (rule common-part-in-product)
with 〈P v z〉 have P v z ∧ P v (x ⊗ y)..
hence ∃ v. P v z ∧ P v (x ⊗ y)..
with overlap-eq show O z (x ⊗ y)..

qed

lemma disjoint-from-second-factor :
P x y ∧ ¬ O x (y ⊗ z) =⇒ ¬ O x z

proof −
assume antecedent: P x y ∧ ¬ O x (y ⊗ z)
hence ¬ O x (y ⊗ z)..
show ¬ O x z
proof

from antecedent have P x y..
moreover assume O x z
ultimately have O x (y ⊗ z)

by (rule product-overlap)
with 〈¬ O x (y ⊗ z)〉 show False..

qed
qed

lemma converse-product-overlap:
O x y =⇒ O z (x ⊗ y) =⇒ O z y

proof −
assume O x y
hence P (x ⊗ y) y by (rule product-in-second-factor)
moreover assume O z (x ⊗ y)
ultimately show O z y

by (rule overlap-monotonicity)
qed

lemma part-product-in-whole-product:
O x y =⇒ P x v ∧ P y z =⇒ P (x ⊗ y) (v ⊗ z)

proof −
assume O x y
assume P x v ∧ P y z
have ∀w. P w (x ⊗ y) −→ P w (v ⊗ z)
proof

fix w
show P w (x ⊗ y) −→ P w (v ⊗ z)
proof
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assume P w (x ⊗ y)
with 〈O x y〉 have P w x ∧ P w y

by (rule product-part-in-factors)
have P w v ∧ P w z
proof

from 〈P w x ∧ P w y〉 have P w x..
moreover from 〈P x v ∧ P y z〉 have P x v..
ultimately show P w v by (rule part-transitivity)

next
from 〈P w x ∧ P w y〉 have P w y..
moreover from 〈P x v ∧ P y z〉 have P y z..
ultimately show P w z by (rule part-transitivity)

qed
thus P w (v ⊗ z) by (rule common-part-in-product)

qed
qed
hence P (x ⊗ y) (x ⊗ y) −→ P (x ⊗ y) (v ⊗ z)..
moreover have P (x ⊗ y) (x ⊗ y) by (rule part-reflexivity)
ultimately show P (x ⊗ y) (v ⊗ z)..

qed

lemma right-associated-product: (∃w. P w x ∧ P w y ∧ P w z) =⇒
(∀w. P w (x ⊗ (y ⊗ z)) ←→ P w x ∧ (P w y ∧ P w z))

proof −
assume antecedent: (∃w. P w x ∧ P w y ∧ P w z)
then obtain w where w: P w x ∧ P w y ∧ P w z..
hence P w x..
from w have P w y ∧ P w z..
hence ∃w. P w y ∧ P w z..
with overlap-eq have O y z..
hence yz: ∀w. P w (y ⊗ z) ←→ (P w y ∧ P w z)

by (rule product-character)
hence P w (y ⊗ z) ←→ (P w y ∧ P w z)..
hence P w (y ⊗ z)

using 〈P w y ∧ P w z〉..
with 〈P w x〉 have P w x ∧ P w (y ⊗ z)..
hence ∃w. P w x ∧ P w (y ⊗ z)..
with overlap-eq have O x (y ⊗ z)..
hence xyz: ∀w. P w (x ⊗ (y ⊗ z)) ←→ P w x ∧ P w (y ⊗ z)

by (rule product-character)
show ∀w. P w (x ⊗ (y ⊗ z)) ←→ P w x ∧ (P w y ∧ P w z)
proof

fix w
from yz have wyz: P w (y ⊗ z) ←→ (P w y ∧ P w z)..
moreover from xyz have

P w (x ⊗ (y ⊗ z)) ←→ P w x ∧ P w (y ⊗ z)..
ultimately show

P w (x ⊗ (y ⊗ z)) ←→ P w x ∧ (P w y ∧ P w z)
by (rule subst)
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qed
qed

lemma left-associated-product: (∃w. P w x ∧ P w y ∧ P w z) =⇒
(∀w. P w ((x ⊗ y) ⊗ z) ←→ (P w x ∧ P w y) ∧ P w z)

proof −
assume antecedent: (∃w. P w x ∧ P w y ∧ P w z)
then obtain w where w: P w x ∧ P w y ∧ P w z..
hence P w y ∧ P w z..
hence P w y..
have P w z

using 〈P w y ∧ P w z〉..
from w have P w x..
hence P w x ∧ P w y

using 〈P w y〉..
hence ∃ z. P z x ∧ P z y..
with overlap-eq have O x y..
hence xy: ∀w. P w (x ⊗ y) ←→ (P w x ∧ P w y)

by (rule product-character)
hence P w (x ⊗ y) ←→ (P w x ∧ P w y)..
hence P w (x ⊗ y)

using 〈P w x ∧ P w y〉..
hence P w (x ⊗ y) ∧ P w z

using 〈P w z〉..
hence ∃w. P w (x ⊗ y) ∧ P w z..
with overlap-eq have O (x ⊗ y) z..
hence xyz: ∀w. P w ((x ⊗ y) ⊗ z) ←→ P w (x ⊗ y) ∧ P w z

by (rule product-character)
show ∀w. P w ((x ⊗ y) ⊗ z) ←→ (P w x ∧ P w y) ∧ P w z
proof

fix v
from xy have vxy: P v (x ⊗ y) ←→ (P v x ∧ P v y)..
moreover from xyz have

P v ((x ⊗ y) ⊗ z) ←→ P v (x ⊗ y) ∧ P v z..
ultimately show P v ((x ⊗ y) ⊗ z) ←→ (P v x ∧ P v y) ∧ P v z

by (rule subst)
qed

qed

theorem product-associativity:
(∃w. P w x ∧ P w y ∧ P w z) =⇒ x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z

proof −
assume ante:(∃w. P w x ∧ P w y ∧ P w z)
hence (∀w. P w (x ⊗ (y ⊗ z)) ←→ P w x ∧ (P w y ∧ P w z))

by (rule right-associated-product)
moreover from ante have
(∀w. P w ((x ⊗ y) ⊗ z) ←→ (P w x ∧ P w y) ∧ P w z)
by (rule left-associated-product)

ultimately have ∀w. P w (x ⊗ (y ⊗ z)) ←→ P w ((x ⊗ y) ⊗ z)
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by simp
with part-extensionality show x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z..

qed

end

6.2 Differences

Some writers also add to closed mereology the axiom of difference
closure.25

locale CMD = CM +
assumes difference-eq:

x 	 y = (THE z. ∀w. P w z ←→ P w x ∧ ¬ O w y)
assumes difference-closure:
(∃w. P w x ∧ ¬ O w y) =⇒ (∃ z. ∀w. P w z ←→ P w x ∧ ¬ O w

y)
begin

lemma difference-intro:
(∀w. P w z ←→ P w x ∧ ¬ O w y) =⇒ x 	 y = z

proof −
assume antecedent: (∀w. P w z ←→ P w x ∧ ¬ O w y)
hence (THE z. ∀w. P w z ←→ P w x ∧ ¬ O w y) = z
proof (rule the-equality)

fix v
assume v: (∀w. P w v ←→ P w x ∧ ¬ O w y)
have ∀w. P w v ←→ P w z
proof

fix w
from antecedent have P w z ←→ P w x ∧ ¬ O w y..
moreover from v have P w v ←→ P w x ∧ ¬ O w y..
ultimately show P w v ←→ P w z by (rule ssubst)

qed
with part-extensionality show v = z..

qed
with difference-eq show x 	 y = z by (rule ssubst)

qed

lemma difference-idempotence: ¬ O x y =⇒ (x 	 y) = x
proof −

assume ¬ O x y
hence ¬ O y x by (rule disjoint-symmetry)
have ∀w. P w x ←→ P w x ∧ ¬ O w y
proof

fix w
show P w x ←→ P w x ∧ ¬ O w y
proof

25See, for example, [Varzi, 1996] p. 263 and [Masolo and Vieu, 1999] p. 238.

29



assume P w x
hence ¬ O y w using 〈¬ O y x〉

by (rule disjoint-demonotonicity)
hence ¬ O w y by (rule disjoint-symmetry)
with 〈P w x〉 show P w x ∧ ¬ O w y..

next
assume P w x ∧ ¬ O w y
thus P w x..

qed
qed
thus (x 	 y) = x by (rule difference-intro)

qed

lemma difference-character : (∃w. P w x ∧ ¬ O w y) =⇒
(∀w. P w (x 	 y) ←→ P w x ∧ ¬ O w y)

proof −
assume ∃w. P w x ∧ ¬ O w y
hence ∃ z. ∀w. P w z ←→ P w x ∧ ¬ O w y by (rule differ-

ence-closure)
then obtain z where z: ∀w. P w z ←→ P w x ∧ ¬ O w y..
hence (x 	 y) = z by (rule difference-intro)
thus ∀w. P w (x 	 y) ←→ P w x ∧ ¬ O w y using z by (rule

ssubst)
qed

lemma difference-disjointness:
(∃ z. P z x ∧ ¬ O z y) =⇒ ¬ O y (x 	 y)

proof −
assume ∃ z. P z x ∧ ¬ O z y
hence xmy: ∀w. P w (x 	 y) ←→ (P w x ∧ ¬ O w y)

by (rule difference-character)
show ¬ O y (x 	 y)
proof

assume O y (x 	 y)
with overlap-eq have ∃ v. P v y ∧ P v (x 	 y)..
then obtain v where v: P v y ∧ P v (x 	 y)..
from xmy have P v (x 	 y) ←→ (P v x ∧ ¬ O v y)..
moreover from v have P v (x 	 y)..
ultimately have P v x ∧ ¬ O v y..
hence ¬ O v y..
moreover from v have P v y..
hence O v y by (rule part-implies-overlap)
ultimately show False..

qed
qed

end
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6.3 The Universe

Another closure condition sometimes considered is the existence
of the universe.26

locale CMU = CM +
assumes universe-eq: u = (THE z. ∀w. P w z)
assumes universe-closure: ∃ y. ∀ x. P x y

begin

lemma universe-intro: (∀w. P w z) =⇒ u = z
proof −

assume z: ∀w. P w z
hence (THE z. ∀w. P w z) = z
proof (rule the-equality)

fix v
assume v: ∀w. P w v
have ∀w. P w v ←→ P w z
proof

fix w
show P w v ←→ P w z
proof

assume P w v
from z show P w z..

next
assume P w z
from v show P w v..

qed
qed
with part-extensionality show v = z..

qed
thus u = z using universe-eq by (rule subst)

qed

lemma universe-character : P x u
proof −

from universe-closure obtain y where y: ∀ x. P x y..
hence u = y by (rule universe-intro)
hence ∀ x. P x u using y by (rule ssubst)
thus P x u..

qed

lemma ¬ PP u x
proof

assume PP u x
hence ¬ P x u by (rule proper-implies-not-part)
thus False using universe-character..

qed
26See, for example, [Varzi, 1996] p. 264 and [Casati and Varzi, 1999] p. 45.
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lemma product-universe-implies-factor-universe:
O x y =⇒ x ⊗ y = u =⇒ x = u

proof −
assume x ⊗ y = u
moreover assume O x y
hence P (x ⊗ y) x

by (rule product-in-first-factor)
ultimately have P u x

by (rule subst)
with universe-character show x = u

by (rule part-antisymmetry)
qed

end

6.4 Complements

As is a condition ensuring the existence of complements.27

locale CMC = CM +
assumes complement-eq: −x = (THE z. ∀w. P w z ←→ ¬ O w x)
assumes complement-closure:
(∃w. ¬ O w x) =⇒ (∃ z. ∀w. P w z ←→ ¬ O w x)

assumes difference-eq:
x 	 y = (THE z. ∀w. P w z ←→ P w x ∧ ¬ O w y)

begin

lemma complement-intro:
(∀w. P w z ←→ ¬ O w x) =⇒ −x = z

proof −
assume antecedent: ∀w. P w z ←→ ¬ O w x
hence (THE z. ∀w. P w z ←→ ¬ O w x) = z
proof (rule the-equality)

fix v
assume v: ∀w. P w v ←→ ¬ O w x
have ∀w. P w v ←→ P w z
proof

fix w
from antecedent have P w z ←→ ¬ O w x..
moreover from v have P w v ←→ ¬ O w x..
ultimately show P w v ←→ P w z by (rule ssubst)

qed
with part-extensionality show v = z..

qed
with complement-eq show −x = z by (rule ssubst)

qed

27See, for example, [Varzi, 1996] p. 264 and [Casati and Varzi, 1999] p. 45.
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lemma complement-character :
(∃w. ¬ O w x) =⇒ (∀w. P w (−x) ←→ ¬ O w x)

proof −
assume ∃w. ¬ O w x
hence (∃ z. ∀w. P w z ←→ ¬ O w x) by (rule complement-closure)
then obtain z where z: ∀w. P w z ←→ ¬ O w x..
hence −x = z by (rule complement-intro)
thus ∀w. P w (−x) ←→ ¬ O w x

using z by (rule ssubst)
qed

lemma not-complement-part: ∃w. ¬ O w x =⇒ ¬ P x (−x)
proof −

assume ∃w. ¬ O w x
hence ∀w. P w (−x) ←→ ¬ O w x

by (rule complement-character)
hence P x (−x) ←→ ¬ O x x..
show ¬ P x (−x)
proof

assume P x (−x)
with 〈P x (−x) ←→ ¬ O x x〉 have ¬ O x x..
thus False using overlap-reflexivity..

qed
qed

lemma complement-part: ¬ O x y =⇒ P x (−y)
proof −

assume ¬ O x y
hence ∃ z. ¬ O z y..
hence ∀w. P w (−y) ←→ ¬ O w y

by (rule complement-character)
hence P x (−y) ←→ ¬ O x y..
thus P x (−y) using 〈¬ O x y〉..

qed

lemma complement-overlap: ¬ O x y =⇒ O x (−y)
proof −

assume ¬ O x y
hence P x (−y)

by (rule complement-part)
thus O x (−y)

by (rule part-implies-overlap)
qed

lemma or-complement-overlap: ∀ y. O y x ∨ O y (−x)
proof

fix y
show O y x ∨ O y (−x)
proof cases
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assume O y x
thus O y x ∨ O y (−x)..

next
assume ¬ O y x
hence O y (−x)

by (rule complement-overlap)
thus O y x ∨ O y (−x)..

qed
qed

lemma complement-disjointness: ∃ v. ¬ O v x =⇒ ¬ O x (−x)
proof −

assume ∃ v. ¬ O v x
hence w: ∀w. P w (−x) ←→ ¬ O w x

by (rule complement-character)
show ¬ O x (−x)
proof

assume O x (−x)
with overlap-eq have ∃ v. P v x ∧ P v (−x)..
then obtain v where v: P v x ∧ P v (−x)..
from w have P v (−x) ←→ ¬ O v x..
moreover from v have P v (−x)..
ultimately have ¬ O v x..
moreover from v have P v x..
hence O v x by (rule part-implies-overlap)
ultimately show False..

qed
qed

lemma part-disjoint-from-complement:
∃ v. ¬ O v x =⇒ P y x =⇒ ¬ O y (−x)

proof
assume ∃ v. ¬ O v x
hence ¬ O x (−x) by (rule complement-disjointness)
assume P y x
assume O y (−x)
with overlap-eq have ∃ v. P v y ∧ P v (−x)..
then obtain v where v: P v y ∧ P v (−x)..
hence P v y..
hence P v x using 〈P y x〉 by (rule part-transitivity)
moreover from v have P v (−x)..
ultimately have P v x ∧ P v (−x)..
hence ∃ v. P v x ∧ P v (−x)..
with overlap-eq have O x (−x)..
with 〈¬ O x (−x)〉 show False..

qed

lemma product-complement-character : (∃w. P w x ∧ ¬ O w y) =⇒
(∀w. P w (x ⊗ (−y)) ←→ (P w x ∧ (¬ O w y)))
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proof −
assume antecedent: ∃w. P w x ∧ ¬ O w y
then obtain w where w: P w x ∧ ¬ O w y..
hence P w x..
moreover from w have ¬ O w y..
hence P w (−y) by (rule complement-part)
ultimately have P w x ∧ P w (−y)..
hence ∃w. P w x ∧ P w (−y)..
with overlap-eq have O x (−y)..
hence prod: (∀w. P w (x ⊗ (−y)) ←→ (P w x ∧ P w (−y)))

by (rule product-character)
show ∀w. P w (x ⊗ (−y)) ←→ (P w x ∧ (¬ O w y))
proof

fix v
from w have ¬ O w y..
hence ∃w. ¬ O w y..
hence ∀w. P w (−y) ←→ ¬ O w y

by (rule complement-character)
hence P v (−y) ←→ ¬ O v y..
moreover have P v (x ⊗ (−y)) ←→ (P v x ∧ P v (−y))

using prod..
ultimately show P v (x ⊗ (−y)) ←→ (P v x ∧ (¬ O v y))

by (rule subst)
qed

qed

theorem difference-closure: (∃w. P w x ∧ ¬ O w y) =⇒
(∃ z. ∀w. P w z ←→ P w x ∧ ¬ O w y)

proof −
assume ∃w. P w x ∧ ¬ O w y
hence ∀w. P w (x ⊗ (−y)) ←→ P w x ∧ ¬ O w y

by (rule product-complement-character)
thus (∃ z. ∀w. P w z ←→ P w x ∧ ¬ O w y) by (rule exI )

qed

end

sublocale CMC ⊆ CMD
proof

fix x y
show x 	 y = (THE z. ∀w. P w z = (P w x ∧ ¬ O w y))

using difference-eq.
show (∃w. P w x ∧ ¬ O w y) =⇒
(∃ z. ∀w. P w z = (P w x ∧ ¬ O w y))
using difference-closure.

qed

corollary (in CMC) difference-is-product-of-complement:
(∃w. P w x ∧ ¬ O w y) =⇒ (x 	 y) = x ⊗ (−y)
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proof −
assume antecedent: ∃w. P w x ∧ ¬ O w y
hence ∀w. P w (x ⊗ (−y)) ←→ P w x ∧ ¬ O w y

by (rule product-complement-character)
thus (x 	 y) = x ⊗ (−y) by (rule difference-intro)

qed

Universe and difference closure entail complement closure, since
the difference of an individual and the universe is the individual’s
complement.
locale CMUD = CMU + CMD +

assumes complement-eq: −x = (THE z. ∀w. P w z ←→ ¬ O w x)
begin

lemma universe-difference:
(∃w. ¬ O w x) =⇒ (∀w. P w (u 	 x) ←→ ¬ O w x)

proof −
assume ∃w. ¬ O w x
then obtain w where w: ¬ O w x..
from universe-character have P w u.
hence P w u ∧ ¬ O w x using 〈¬ O w x〉..
hence ∃ z. P z u ∧ ¬ O z x..
hence ux: ∀w. P w (u 	 x) ←→ (P w u ∧ ¬ O w x)

by (rule difference-character)
show ∀w. P w (u 	 x) ←→ ¬ O w x
proof

fix w
from ux have wux: P w (u 	 x) ←→ (P w u ∧ ¬ O w x)..
show P w (u 	 x) ←→ ¬ O w x
proof

assume P w (u 	 x)
with wux have P w u ∧ ¬ O w x..
thus ¬ O w x..

next
assume ¬ O w x
from universe-character have P w u.
hence P w u ∧ ¬ O w x using 〈¬ O w x〉..
with wux show P w (u 	 x)..

qed
qed

qed

theorem complement-closure:
(∃w. ¬ O w x) =⇒ (∃ z. ∀w. P w z ←→ ¬ O w x)

proof −
assume ∃w. ¬ O w x
hence ∀w. P w (u 	 x) ←→ ¬ O w x

by (rule universe-difference)
thus ∃ z. ∀w. P w z ←→ ¬ O w x..
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qed

end

sublocale CMUD ⊆ CMC
proof

fix x y
show −x = (THE z. ∀w. P w z ←→ (¬ O w x))

using complement-eq.
show ∃w. ¬ O w x =⇒ ∃ z. ∀w. P w z ←→ (¬ O w x)

using complement-closure.
show x 	 y = (THE z. ∀w. P w z = (P w x ∧ ¬ O w y))

using difference-eq.
qed

corollary (in CMUD) complement-universe-difference:
(∃ y. ¬ O y x) =⇒ −x = (u 	 x)

proof −
assume ∃w. ¬ O w x
hence ∀w. P w (u 	 x) ←→ ¬ O w x

by (rule universe-difference)
thus −x = (u 	 x)

by (rule complement-intro)
qed

7 Closed Extensional Mereology

Closed extensional mereology combines closed mereology with
extensional mereology.28

locale CEM = CM + EM

Likewise, closed minimal mereology combines closed mereology
with minimal mereology.29

locale CMM = CM + MM

But famously closed minimal mereology and closed extensional
mereology are the same theory, because in closed minimal mere-
ology product closure and weak supplementation entail strong
supplementation.30

sublocale CMM ⊆ CEM
proof

fix x y
28See [Varzi, 1996] p. 263 and [Casati and Varzi, 1999] p. 43.
29See [Casati and Varzi, 1999] p. 43.
30See [Simons, 1987] p. 31 and [Casati and Varzi, 1999] p. 44.
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show strong-supplementation: ¬ P x y =⇒ (∃ z. P z x ∧ ¬ O z y)
proof −

assume ¬ P x y
show ∃ z. P z x ∧ ¬ O z y
proof cases

assume O x y
with 〈¬ P x y〉 have ¬ P x y ∧ O x y..
hence PP (x ⊗ y) x by (rule nonpart-implies-proper-product)

hence ∃ z. P z x ∧ ¬ O z (x ⊗ y) by (rule weak-supplementation)
then obtain z where z: P z x ∧ ¬ O z (x ⊗ y)..
hence ¬ O z y by (rule disjoint-from-second-factor)
moreover from z have P z x..
hence P z x ∧ ¬ O z y

using 〈¬ O z y〉..
thus ∃ z. P z x ∧ ¬ O z y..

next
assume ¬ O x y
with part-reflexivity have P x x ∧ ¬ O x y..
thus (∃ z. P z x ∧ ¬ O z y)..

qed
qed

qed

sublocale CEM ⊆ CMM ..

7.1 Sums
context CEM
begin

lemma sum-intro:
(∀ w. O w z ←→ (O w x ∨ O w y)) =⇒ x ⊕ y = z

proof −
assume sum: ∀ w. O w z ←→ (O w x ∨ O w y)
hence (THE v. ∀ w. O w v ←→ (O w x ∨ O w y)) = z
proof (rule the-equality)

fix a
assume a: ∀ w. O w a ←→ (O w x ∨ O w y)
have ∀ w. O w a ←→ O w z
proof

fix w
from sum have O w z ←→ (O w x ∨ O w y)..
moreover from a have O w a ←→ (O w x ∨ O w y)..
ultimately show O w a ←→ O w z by (rule ssubst)
qed
with overlap-extensionality show a = z..

qed
thus x ⊕ y = z

using sum-eq by (rule subst)
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qed

lemma sum-idempotence: x ⊕ x = x
proof −

have ∀ w. O w x ←→ (O w x ∨ O w x)
proof

fix w
show O w x ←→ (O w x ∨ O w x)
proof (rule iffI )

assume O w x
thus O w x ∨ O w x..

next
assume O w x ∨ O w x
thus O w x by (rule disjE)

qed
qed
thus x ⊕ x = x by (rule sum-intro)

qed

lemma part-sum-identity: P y x =⇒ x ⊕ y = x
proof −

assume P y x
have ∀ w. O w x ←→ (O w x ∨ O w y)
proof

fix w
show O w x ←→ (O w x ∨ O w y)
proof

assume O w x
thus O w x ∨ O w y..

next
assume O w x ∨ O w y
thus O w x
proof

assume O w x
thus O w x.

next
assume O w y
with 〈P y x〉 show O w x

by (rule overlap-monotonicity)
qed

qed
qed
thus x ⊕ y = x by (rule sum-intro)

qed

lemma sum-character : ∀ w. O w (x ⊕ y) ←→ (O w x ∨ O w y)
proof −

from sum-closure have (∃ z. ∀ w. O w z ←→ (O w x ∨ O w y)).
then obtain a where a: ∀ w. O w a ←→ (O w x ∨ O w y)..
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hence x ⊕ y = a by (rule sum-intro)
thus ∀ w. O w (x ⊕ y) ←→ (O w x ∨ O w y)

using a by (rule ssubst)
qed

lemma sum-overlap: O w (x ⊕ y) ←→ (O w x ∨ O w y)
using sum-character..

lemma sum-part-character :
P w (x ⊕ y) ←→ (∀ v. O v w −→ O v x ∨ O v y)

proof
assume P w (x ⊕ y)
show ∀ v. O v w −→ O v x ∨ O v y
proof

fix v
show O v w −→ O v x ∨ O v y
proof

assume O v w
with 〈P w (x ⊕ y)〉 have O v (x ⊕ y)

by (rule overlap-monotonicity)
with sum-overlap show O v x ∨ O v y..

qed
qed

next
assume right: ∀ v. O v w −→ O v x ∨ O v y
have ∀ v. O v w −→ O v (x ⊕ y)
proof

fix v
from right have O v w −→ O v x ∨ O v y..
with sum-overlap show O v w −→ O v (x ⊕ y)

by (rule ssubst)
qed
with part-overlap-eq show P w (x ⊕ y)..

qed

lemma sum-commutativity: x ⊕ y = y ⊕ x
proof −

from sum-character have ∀ w. O w (y ⊕ x) ←→ O w y ∨ O w x.
hence ∀ w. O w (y ⊕ x) ←→ O w x ∨ O w y by metis
thus x ⊕ y = y ⊕ x by (rule sum-intro)

qed

lemma first-summand-overlap: O z x =⇒ O z (x ⊕ y)
proof −

assume O z x
hence O z x ∨ O z y..
with sum-overlap show O z (x ⊕ y)..

qed
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lemma first-summand-disjointness: ¬ O z (x ⊕ y) =⇒ ¬ O z x
proof −

assume ¬ O z (x ⊕ y)
show ¬ O z x
proof

assume O z x
hence O z (x ⊕ y) by (rule first-summand-overlap)
with 〈¬ O z (x ⊕ y)〉 show False..

qed
qed

lemma first-summand-in-sum: P x (x ⊕ y)
proof −

have ∀ w. O w x −→ O w (x ⊕ y)
proof

fix w
show O w x −→ O w (x ⊕ y)
proof

assume O w x
thus O w (x ⊕ y)

by (rule first-summand-overlap)
qed

qed
with part-overlap-eq show P x (x ⊕ y)..

qed

lemma common-first-summand: P x (x ⊕ y) ∧ P x (x ⊕ z)
proof

from first-summand-in-sum show P x (x ⊕ y).
from first-summand-in-sum show P x (x ⊕ z).

qed

lemma common-first-summand-overlap: O (x ⊕ y) (x ⊕ z)
proof −

from first-summand-in-sum have P x (x ⊕ y).
moreover from first-summand-in-sum have P x (x ⊕ z).
ultimately have P x (x ⊕ y) ∧ P x (x ⊕ z)..
hence ∃ v. P v (x ⊕ y) ∧ P v (x ⊕ z)..
with overlap-eq show ?thesis..

qed

lemma second-summand-overlap: O z y =⇒ O z (x ⊕ y)
proof −

assume O z y
from sum-character have O z (x ⊕ y) ←→ (O z x ∨ O z y)..
moreover from 〈O z y〉 have O z x ∨ O z y..
ultimately show O z (x ⊕ y)..

qed
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lemma second-summand-disjointness: ¬ O z (x ⊕ y) =⇒ ¬ O z y
proof −

assume ¬ O z (x ⊕ y)
show ¬ O z y
proof

assume O z y
hence O z (x ⊕ y)

by (rule second-summand-overlap)
with 〈¬ O z (x ⊕ y)〉 show False..

qed
qed

lemma second-summand-in-sum: P y (x ⊕ y)
proof −

have ∀ w. O w y −→ O w (x ⊕ y)
proof

fix w
show O w y −→ O w (x ⊕ y)
proof

assume O w y
thus O w (x ⊕ y)

by (rule second-summand-overlap)
qed

qed
with part-overlap-eq show P y (x ⊕ y)..

qed

lemma second-summands-in-sums: P y (x ⊕ y) ∧ P v (z ⊕ v)
proof

show P y (x ⊕ y) using second-summand-in-sum.
show P v (z ⊕ v) using second-summand-in-sum.

qed

lemma disjoint-from-sum: ¬ O z (x ⊕ y) ←→ ¬ O z x ∧ ¬ O z y
proof −

from sum-character have O z (x ⊕ y) ←→ (O z x ∨ O z y)..
thus ?thesis by simp

qed

lemma summands-part-implies-sum-part:
P x z ∧ P y z =⇒ P (x ⊕ y) z

proof −
assume antecedent: P x z ∧ P y z
have ∀ w. O w (x ⊕ y) −→ O w z
proof

fix w
have w: O w (x ⊕ y) ←→ (O w x ∨ O w y)

using sum-character..
show O w (x ⊕ y) −→ O w z
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proof
assume O w (x ⊕ y)
with w have O w x ∨ O w y..
thus O w z
proof

from antecedent have P x z..
moreover assume O w x
ultimately show O w z

by (rule overlap-monotonicity)
next

from antecedent have P y z..
moreover assume O w y
ultimately show O w z

by (rule overlap-monotonicity)
qed

qed
qed
with part-overlap-eq show P (x ⊕ y) z..

qed

lemma sum-part-implies-summands-part:
P (x ⊕ y) z =⇒ P x z ∧ P y z

proof −
assume antecedent: P (x ⊕ y) z
show P x z ∧ P y z
proof

from first-summand-in-sum show P x z
using antecedent by (rule part-transitivity)

next
from second-summand-in-sum show P y z

using antecedent by (rule part-transitivity)
qed

qed

lemma in-second-summand: P z (x ⊕ y) ∧ ¬ O z x =⇒ P z y
proof −

assume antecedent: P z (x ⊕ y) ∧ ¬ O z x
hence P z (x ⊕ y)..
show P z y
proof (rule ccontr)

assume ¬ P z y
hence ∃ v. P v z ∧ ¬ O v y

by (rule strong-supplementation)
then obtain v where v: P v z ∧ ¬ O v y..
hence ¬ O v y..
from v have P v z..
hence P v (x ⊕ y)

using 〈P z (x ⊕ y)〉 by (rule part-transitivity)
hence O v (x ⊕ y) by (rule part-implies-overlap)
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from sum-character have O v (x ⊕ y) ←→ O v x ∨ O v y..
hence O v x ∨ O v y using 〈O v (x ⊕ y)〉..
thus False
proof (rule disjE)

from antecedent have ¬ O z x..
moreover assume O v x
hence O x v by (rule overlap-symmetry)
with 〈P v z〉 have O x z

by (rule overlap-monotonicity)
hence O z x by (rule overlap-symmetry)
ultimately show False..

next
assume O v y
with 〈¬ O v y〉 show False..

qed
qed

qed

lemma disjoint-second-summands:
P v (x ⊕ y) ∧ P v (x ⊕ z) =⇒ ¬ O y z =⇒ P v x

proof −
assume antecedent: P v (x ⊕ y) ∧ P v (x ⊕ z)
hence P v (x ⊕ z)..
assume ¬ O y z
show P v x
proof (rule ccontr)

assume ¬ P v x
hence ∃ w. P w v ∧ ¬ O w x by (rule strong-supplementation)
then obtain w where w: P w v ∧ ¬ O w x..
hence ¬ O w x..
from w have P w v..
moreover from antecedent have P v (x ⊕ z)..
ultimately have P w (x ⊕ z) by (rule part-transitivity)
hence P w (x ⊕ z) ∧ ¬ O w x using 〈¬ O w x〉..
hence P w z by (rule in-second-summand)
from antecedent have P v (x ⊕ y)..
with 〈P w v〉 have P w (x ⊕ y) by (rule part-transitivity)
hence P w (x ⊕ y) ∧ ¬ O w x using 〈¬ O w x〉..
hence P w y by (rule in-second-summand)
hence P w y ∧ P w z using 〈P w z〉..
hence ∃ w. P w y ∧ P w z..
with overlap-eq have O y z..
with 〈¬ O y z〉 show False..

qed
qed

lemma right-associated-sum:
O w (x ⊕ (y ⊕ z)) ←→ O w x ∨ (O w y ∨ O w z)

proof −
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from sum-character have O w (y ⊕ z) ←→ O w y ∨ O w z..
moreover from sum-character have

O w (x ⊕ (y ⊕ z)) ←→ (O w x ∨ O w (y ⊕ z))..
ultimately show ?thesis

by (rule subst)
qed

lemma left-associated-sum:
O w ((x ⊕ y) ⊕ z) ←→ (O w x ∨ O w y) ∨ O w z

proof −
from sum-character have O w (x ⊕ y) ←→ (O w x ∨ O w y)..
moreover from sum-character have

O w ((x ⊕ y) ⊕ z) ←→ O w (x ⊕ y) ∨ O w z..
ultimately show ?thesis

by (rule subst)
qed

theorem sum-associativity: x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z
proof −

have ∀ w. O w (x ⊕ (y ⊕ z)) ←→ O w ((x ⊕ y) ⊕ z)
proof

fix w
have O w (x ⊕ (y ⊕ z)) ←→ (O w x ∨ O w y) ∨ O w z

using right-associated-sum by simp
with left-associated-sum show

O w (x ⊕ (y ⊕ z)) ←→ O w ((x ⊕ y) ⊕ z) by (rule ssubst)
qed
with overlap-extensionality show x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z..

qed

7.2 Distributivity

The proofs in this section are adapted from [Pietruszczak, 2018]
pp. 102-4.
lemma common-summand-in-product: P x ((x ⊕ y) ⊗ (x ⊕ z))

using common-first-summand by (rule common-part-in-product)

lemma product-in-first-summand:
¬ O y z =⇒ P ((x ⊕ y) ⊗ (x ⊕ z)) x

proof −
assume ¬ O y z
have ∀ v. P v ((x ⊕ y) ⊗ (x ⊕ z)) −→ P v x
proof

fix v
show P v ((x ⊕ y) ⊗ (x ⊕ z)) −→ P v x
proof

assume P v ((x ⊕ y) ⊗ (x ⊕ z))
with common-first-summand-overlap have

P v (x ⊕ y) ∧ P v (x ⊕ z) by (rule product-part-in-factors)
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thus P v x using 〈¬ O y z〉 by (rule disjoint-second-summands)
qed

qed
hence P ((x ⊕ y) ⊗ (x ⊕ z)) ((x ⊕ y) ⊗ (x ⊕ z)) −→

P ((x ⊕ y) ⊗ (x ⊕ z)) x..
thus P ((x ⊕ y) ⊗ (x ⊕ z)) x using part-reflexivity..

qed

lemma product-is-first-summand:
¬ O y z =⇒ (x ⊕ y) ⊗ (x ⊕ z) = x

proof −
assume ¬ O y z
hence P ((x ⊕ y) ⊗ (x ⊕ z)) x

by (rule product-in-first-summand)
thus (x ⊕ y) ⊗ (x ⊕ z) = x

using common-summand-in-product
by (rule part-antisymmetry)

qed

lemma sum-over-product-left: O y z =⇒ P (x ⊕ (y ⊗ z)) ((x ⊕ y) ⊗
(x ⊕ z))
proof −

assume O y z
hence P (y ⊗ z) ((x ⊕ y) ⊗ (x ⊕ z)) using second-summands-in-sums

by (rule part-product-in-whole-product)
with common-summand-in-product have

P x ((x ⊕ y) ⊗ (x ⊕ z)) ∧ P (y ⊗ z) ((x ⊕ y) ⊗ (x ⊕ z))..
thus P (x ⊕ (y ⊗ z)) ((x ⊕ y) ⊗ (x ⊕ z))

by (rule summands-part-implies-sum-part)
qed

lemma sum-over-product-right:
O y z =⇒ P ((x ⊕ y) ⊗ (x ⊕ z)) (x ⊕ (y ⊗ z))

proof −
assume O y z
show P ((x ⊕ y) ⊗ (x ⊕ z)) (x ⊕ (y ⊗ z))
proof (rule ccontr)

assume ¬ P ((x ⊕ y) ⊗ (x ⊕ z)) (x ⊕ (y ⊗ z))
hence ∃ v. P v ((x ⊕ y) ⊗ (x ⊕ z)) ∧ ¬ O v (x ⊕ (y ⊗ z))

by (rule strong-supplementation)
then obtain v where v:

P v ((x ⊕ y) ⊗ (x ⊕ z)) ∧ ¬ O v (x ⊕ (y ⊗ z))..
hence ¬ O v (x ⊕ (y ⊗ z))..
with disjoint-from-sum have vd: ¬ O v x ∧ ¬ O v (y ⊗ z)..
hence ¬ O v (y ⊗ z)..
from vd have ¬ O v x..
from v have P v ((x ⊕ y) ⊗ (x ⊕ z))..
with common-first-summand-overlap have

vs: P v (x ⊕ y) ∧ P v (x ⊕ z) by (rule product-part-in-factors)
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hence P v (x ⊕ y)..
hence P v (x ⊕ y) ∧ ¬ O v x using 〈¬ O v x〉..
hence P v y by (rule in-second-summand)
moreover from vs have P v (x ⊕ z)..
hence P v (x ⊕ z) ∧ ¬ O v x using 〈¬ O v x〉..
hence P v z by (rule in-second-summand)
ultimately have P v y ∧ P v z..
hence P v (y ⊗ z) by (rule common-part-in-product)
hence O v (y ⊗ z) by (rule part-implies-overlap)
with 〈¬ O v (y ⊗ z)〉 show False..

qed
qed

Sums distribute over products.
theorem sum-over-product:

O y z =⇒ x ⊕ (y ⊗ z) = (x ⊕ y) ⊗ (x ⊕ z)
proof −

assume O y z
hence P (x ⊕ (y ⊗ z)) ((x ⊕ y) ⊗ (x ⊕ z))

by (rule sum-over-product-left)
moreover have P ((x ⊕ y) ⊗ (x ⊕ z)) (x ⊕ (y ⊗ z))

using 〈O y z〉 by (rule sum-over-product-right)
ultimately show x ⊕ (y ⊗ z) = (x ⊕ y) ⊗ (x ⊕ z)

by (rule part-antisymmetry)
qed

lemma product-in-factor-by-sum:
O x y =⇒ P (x ⊗ y) (x ⊗ (y ⊕ z))

proof −
assume O x y
hence P (x ⊗ y) x

by (rule product-in-first-factor)
moreover have P (x ⊗ y) y

using 〈O x y〉 by (rule product-in-second-factor)
hence P (x ⊗ y) (y ⊕ z)

using first-summand-in-sum by (rule part-transitivity)
with 〈P (x ⊗ y) x〉 have P (x ⊗ y) x ∧ P (x ⊗ y) (y ⊕ z)..
thus P (x ⊗ y) (x ⊗ (y ⊕ z))

by (rule common-part-in-product)
qed

lemma product-of-first-summand:
O x y =⇒ ¬ O x z =⇒ P (x ⊗ (y ⊕ z)) (x ⊗ y)

proof −
assume O x y
hence O x (y ⊕ z)

by (rule first-summand-overlap)
assume ¬ O x z
show P (x ⊗ (y ⊕ z)) (x ⊗ y)
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proof (rule ccontr)
assume ¬ P (x ⊗ (y ⊕ z)) (x ⊗ y)
hence ∃ v. P v (x ⊗ (y ⊕ z)) ∧ ¬ O v (x ⊗ y)

by (rule strong-supplementation)
then obtain v where v: P v (x ⊗ (y ⊕ z)) ∧ ¬ O v (x ⊗ y)..
hence P v (x ⊗ (y ⊕ z))..
with 〈O x (y ⊕ z)〉 have P v x ∧ P v (y ⊕ z)

by (rule product-part-in-factors)
hence P v x..
moreover from v have ¬ O v (x ⊗ y)..
ultimately have P v x ∧ ¬ O v (x ⊗ y)..
hence ¬ O v y by (rule disjoint-from-second-factor)
from 〈P v x ∧ P v (y ⊕ z)〉 have P v (y ⊕ z)..
hence P v (y ⊕ z) ∧ ¬ O v y using 〈¬ O v y〉..
hence P v z by (rule in-second-summand)
with 〈P v x〉 have P v x ∧ P v z..
hence ∃ v. P v x ∧ P v z..
with overlap-eq have O x z..
with 〈¬ O x z〉 show False..

qed
qed

theorem disjoint-product-over-sum:
O x y =⇒ ¬ O x z =⇒ x ⊗ (y ⊕ z) = x ⊗ y

proof −
assume O x y
moreover assume ¬ O x z
ultimately have P (x ⊗ (y ⊕ z)) (x ⊗ y)

by (rule product-of-first-summand)
moreover have P (x ⊗ y)(x ⊗ (y ⊕ z))

using 〈O x y〉 by (rule product-in-factor-by-sum)
ultimately show x ⊗ (y ⊕ z) = x ⊗ y

by (rule part-antisymmetry)
qed

lemma product-over-sum-left:
O x y ∧ O x z =⇒ P (x ⊗ (y ⊕ z))((x ⊗ y) ⊕ (x ⊗ z))

proof −
assume O x y ∧ O x z
hence O x y..
hence O x (y ⊕ z) by (rule first-summand-overlap)
show P (x ⊗ (y ⊕ z))((x ⊗ y) ⊕ (x ⊗ z))
proof (rule ccontr)

assume ¬ P (x ⊗ (y ⊕ z))((x ⊗ y) ⊕ (x ⊗ z))
hence ∃ v. P v (x ⊗ (y ⊕ z)) ∧ ¬ O v ((x ⊗ y) ⊕ (x ⊗ z))

by (rule strong-supplementation)
then obtain v where v:

P v (x ⊗ (y ⊕ z)) ∧ ¬ O v ((x ⊗ y) ⊕ (x ⊗ z))..
hence ¬ O v ((x ⊗ y) ⊕ (x ⊗ z))..
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with disjoint-from-sum have oxyz:
¬ O v (x ⊗ y) ∧ ¬ O v (x ⊗ z)..

from v have P v (x ⊗ (y ⊕ z))..
with 〈O x (y ⊕ z)〉 have pxyz: P v x ∧ P v (y ⊕ z)

by (rule product-part-in-factors)
hence P v x..
moreover from oxyz have ¬ O v (x ⊗ y)..
ultimately have P v x ∧ ¬ O v (x ⊗ y)..
hence ¬ O v y by (rule disjoint-from-second-factor)
from oxyz have ¬ O v (x ⊗ z)..
with 〈P v x〉 have P v x ∧ ¬ O v (x ⊗ z)..
hence ¬ O v z by (rule disjoint-from-second-factor)
with 〈¬ O v y〉 have ¬ O v y ∧ ¬ O v z..
with disjoint-from-sum have ¬ O v (y ⊕ z)..
from pxyz have P v (y ⊕ z)..
hence O v (y ⊕ z) by (rule part-implies-overlap)
with 〈¬ O v (y ⊕ z)〉 show False..

qed
qed

lemma product-over-sum-right:
O x y ∧ O x z =⇒ P((x ⊗ y) ⊕ (x ⊗ z))(x ⊗ (y ⊕ z))

proof −
assume antecedent: O x y ∧ O x z
have P (x ⊗ y) (x ⊗ (y ⊕ z)) ∧ P (x ⊗ z) (x ⊗ (y ⊕ z))
proof

from antecedent have O x y..
thus P (x ⊗ y) (x ⊗ (y ⊕ z))

by (rule product-in-factor-by-sum)
next

from antecedent have O x z..
hence P (x ⊗ z) (x ⊗ (z ⊕ y))

by (rule product-in-factor-by-sum)
with sum-commutativity show P (x ⊗ z) (x ⊗ (y ⊕ z))

by (rule subst)
qed
thus P((x ⊗ y) ⊕ (x ⊗ z))(x ⊗ (y ⊕ z))

by (rule summands-part-implies-sum-part)
qed

theorem product-over-sum:
O x y ∧ O x z =⇒ x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z)

proof −
assume antecedent: O x y ∧ O x z
hence P (x ⊗ (y ⊕ z))((x ⊗ y) ⊕ (x ⊗ z))

by (rule product-over-sum-left)
moreover have P((x ⊗ y) ⊕ (x ⊗ z))(x ⊗ (y ⊕ z))

using antecedent by (rule product-over-sum-right)
ultimately show x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z)
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by (rule part-antisymmetry)
qed

lemma joint-identical-sums:
v ⊕ w = x ⊕ y =⇒ O x v ∧ O x w =⇒ ((x ⊗ v) ⊕ (x ⊗ w)) = x

proof −
assume v ⊕ w = x ⊕ y
moreover assume O x v ∧ O x w
hence x ⊗ (v ⊕ w) = x ⊗ v ⊕ x ⊗ w

by (rule product-over-sum)
ultimately have x ⊗ (x ⊕ y) = x ⊗ v ⊕ x ⊗ w by (rule subst)
moreover have (x ⊗ (x ⊕ y)) = x using first-summand-in-sum

by (rule part-product-identity)
ultimately show ((x ⊗ v) ⊕ (x ⊗ w)) = x by (rule subst)

qed

lemma disjoint-identical-sums:
v ⊕ w = x ⊕ y =⇒ ¬ O y v ∧ ¬ O w x =⇒ x = v ∧ y = w

proof −
assume identical: v ⊕ w = x ⊕ y
assume disjoint: ¬ O y v ∧ ¬ O w x
show x = v ∧ y = w
proof

from disjoint have ¬ O y v..
hence (x ⊕ y) ⊗ (x ⊕ v) = x

by (rule product-is-first-summand)
with identical have (v ⊕ w) ⊗ (x ⊕ v) = x

by (rule ssubst)
moreover from disjoint have ¬ O w x..
hence (v ⊕ w) ⊗ (v ⊕ x) = v

by (rule product-is-first-summand)
with sum-commutativity have (v ⊕ w) ⊗ (x ⊕ v) = v

by (rule subst)
ultimately show x = v by (rule subst)

next
from disjoint have ¬ O w x..
hence (y ⊕ w) ⊗ (y ⊕ x) = y

by (rule product-is-first-summand)
moreover from disjoint have ¬ O y v..
hence (w ⊕ y) ⊗ (w ⊕ v) = w

by (rule product-is-first-summand)
with sum-commutativity have (w ⊕ y) ⊗ (v ⊕ w) = w

by (rule subst)
with identical have (w ⊕ y) ⊗ (x ⊕ y) = w

by (rule subst)
with sum-commutativity have (w ⊕ y) ⊗ (y ⊕ x) = w

by (rule subst)
with sum-commutativity have (y ⊕ w) ⊗ (y ⊕ x) = w

by (rule subst)
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ultimately show y = w
by (rule subst)

qed
qed

end

7.3 Differences
locale CEMD = CEM + CMD
begin

lemma plus-minus: PP y x =⇒ y ⊕ (x 	 y) = x
proof −

assume PP y x
hence ∃ z. P z x ∧ ¬ O z y by (rule weak-supplementation)
hence xmy:∀ w. P w (x 	 y) ←→ (P w x ∧ ¬ O w y)

by (rule difference-character)
have ∀ w. O w x ←→ (O w y ∨ O w (x 	 y))
proof

fix w
from xmy have w: P w (x 	 y) ←→ (P w x ∧ ¬ O w y)..
show O w x ←→ (O w y ∨ O w (x 	 y))
proof

assume O w x
with overlap-eq have ∃ v. P v w ∧ P v x..
then obtain v where v: P v w ∧ P v x..
hence P v w..
from v have P v x..
show O w y ∨ O w (x 	 y)
proof cases

assume O v y
hence O y v by (rule overlap-symmetry)
with 〈P v w〉 have O y w by (rule overlap-monotonicity)
hence O w y by (rule overlap-symmetry)
thus O w y ∨ O w (x 	 y)..

next
from xmy have P v (x 	 y) ←→ (P v x ∧ ¬ O v y)..
moreover assume ¬ O v y
with 〈P v x〉 have P v x ∧ ¬ O v y..
ultimately have P v (x 	 y)..
with 〈P v w〉 have P v w ∧ P v (x 	 y)..
hence ∃ v. P v w ∧ P v (x 	 y)..
with overlap-eq have O w (x 	 y)..
thus O w y ∨ O w (x 	 y)..

qed
next

assume O w y ∨ O w (x 	 y)
thus O w x
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proof
from 〈PP y x〉 have P y x

by (rule proper-implies-part)
moreover assume O w y
ultimately show O w x

by (rule overlap-monotonicity)
next

assume O w (x 	 y)
with overlap-eq have ∃ v. P v w ∧ P v (x 	 y)..
then obtain v where v: P v w ∧ P v (x 	 y)..
hence P v w..
from xmy have P v (x 	 y) ←→ (P v x ∧ ¬ O v y)..
moreover from v have P v (x 	 y)..
ultimately have P v x ∧ ¬ O v y..
hence P v x..
with 〈P v w〉 have P v w ∧ P v x..
hence ∃ v. P v w ∧ P v x..
with overlap-eq show O w x..

qed
qed

qed
thus y ⊕ (x 	 y) = x

by (rule sum-intro)
qed

end

7.4 The Universe
locale CEMU = CEM + CMU
begin

lemma something-disjoint: x 6= u =⇒ (∃ v. ¬ O v x)
proof −

assume x 6= u
with universe-character have P x u ∧ x 6= u..
with nip-eq have PP x u..
hence ∃ v. P v u ∧ ¬ O v x

by (rule weak-supplementation)
then obtain v where P v u ∧ ¬ O v x..
hence ¬ O v x..
thus ∃ v. ¬ O v x..

qed

lemma overlaps-universe: O x u
proof −

from universe-character have P x u.
thus O x u by (rule part-implies-overlap)

qed
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lemma universe-absorbing: x ⊕ u = u
proof −

from universe-character have P (x ⊕ u) u.
thus x ⊕ u = u using second-summand-in-sum

by (rule part-antisymmetry)
qed

lemma second-summand-not-universe: x ⊕ y 6= u =⇒ y 6= u
proof −

assume antecedent: x ⊕ y 6= u
show y 6= u
proof

assume y = u
hence x ⊕ u 6= u using antecedent by (rule subst)
thus False using universe-absorbing..

qed
qed

lemma first-summand-not-universe: x ⊕ y 6= u =⇒ x 6= u
proof −

assume x ⊕ y 6= u
with sum-commutativity have y ⊕ x 6= u by (rule subst)
thus x 6= u by (rule second-summand-not-universe)

qed

end

7.5 Complements
locale CEMC = CEM + CMC +

assumes universe-eq: u = (THE x. ∀ y. P y x)
begin

lemma complement-sum-character : ∀ y. P y (x ⊕ (−x))
proof

fix y
have ∀ v. O v y −→ O v x ∨ O v (−x)
proof

fix v
show O v y −→ O v x ∨ O v (−x)
proof

assume O v y
show O v x ∨ O v (−x)

using or-complement-overlap..
qed

qed
with sum-part-character show P y (x ⊕ (−x))..

qed
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lemma universe-closure: ∃ x. ∀ y. P y x
using complement-sum-character by (rule exI )

end

sublocale CEMC ⊆ CEMU
proof

show u = (THE z. ∀w. P w z) using universe-eq.
show ∃ x. ∀ y. P y x using universe-closure.

qed

sublocale CEMC ⊆ CEMD
proof
qed

context CEMC
begin

corollary universe-is-complement-sum: u = x ⊕ (−x)
using complement-sum-character by (rule universe-intro)

lemma strong-complement-character :
x 6= u =⇒ (∀ v. P v (−x) ←→ ¬ O v x)

proof −
assume x 6= u
hence ∃ v. ¬ O v x by (rule something-disjoint)
thus ∀ v. P v (−x) ←→ ¬ O v x by (rule complement-character)

qed

lemma complement-part-not-part: x 6= u =⇒ P y (−x) =⇒ ¬ P y x
proof −

assume x 6= u
hence ∀ w. P w (−x) ←→ ¬ O w x

by (rule strong-complement-character)
hence y: P y (−x) ←→ ¬ O y x..
moreover assume P y (−x)
ultimately have ¬ O y x..
thus ¬ P y x

by (rule disjoint-implies-not-part)
qed

lemma complement-involution: x 6= u =⇒ x = −(−x)
proof −

assume x 6= u
have ¬ P u x
proof

assume P u x
with universe-character have x = u
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by (rule part-antisymmetry)
with 〈x 6= u〉 show False..

qed
hence ∃ v. P v u ∧ ¬ O v x

by (rule strong-supplementation)
then obtain v where v: P v u ∧ ¬ O v x..
hence ¬ O v x..
hence ∃ v. ¬ O v x..
hence notx: ∀ w. P w (−x) ←→ ¬ O w x

by (rule complement-character)
have −x 6= u
proof

assume −x = u
hence ∀ w. P w u ←→ ¬ O w x using notx by (rule subst)
hence P x u ←→ ¬ O x x..
hence ¬ O x x using universe-character..
thus False using overlap-reflexivity..

qed
have ¬ P u (−x)
proof

assume P u (−x)
with universe-character have −x = u

by (rule part-antisymmetry)
with 〈−x 6= u〉 show False..

qed
hence ∃ v. P v u ∧ ¬ O v (−x)

by (rule strong-supplementation)
then obtain w where w: P w u ∧ ¬ O w (−x)..
hence ¬ O w (−x)..
hence ∃ v. ¬ O v (−x)..
hence notnotx: ∀ w. P w (−(−x)) ←→ ¬ O w (−x)

by (rule complement-character)
hence P x (−(−x)) ←→ ¬ O x (−x)..
moreover have ¬ O x (−x)
proof

assume O x (−x)
with overlap-eq have ∃ s. P s x ∧ P s (−x)..
then obtain s where s: P s x ∧ P s (−x)..
hence P s x..
hence O s x by (rule part-implies-overlap)
from notx have P s (−x) ←→ ¬ O s x..
moreover from s have P s (−x)..
ultimately have ¬ O s x..
thus False using 〈O s x〉..

qed
ultimately have P x (−(−x))..
moreover have P (−(−x)) x
proof (rule ccontr)

assume ¬ P (−(−x)) x
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hence ∃ s. P s (−(−x)) ∧ ¬ O s x
by (rule strong-supplementation)

then obtain s where s: P s (−(−x)) ∧ ¬ O s x..
hence ¬ O s x..
from notnotx have P s (−(−x)) ←→ (¬ O s (−x))..
moreover from s have P s (−(−x))..
ultimately have ¬ O s (−x)..
from or-complement-overlap have O s x ∨ O s (−x)..
thus False
proof

assume O s x
with 〈¬ O s x〉 show False..

next
assume O s (−x)
with 〈¬ O s (−x )〉 show False..

qed
qed
ultimately show x = −(−x)

by (rule part-antisymmetry)
qed

lemma part-complement-reversal: y 6= u =⇒ P x y =⇒ P (−y) (−x)
proof −

assume y 6= u
hence ny: ∀ w. P w (−y) ←→ ¬ O w y

by (rule strong-complement-character)
assume P x y
have x 6= u
proof

assume x = u
hence P u y using 〈P x y〉 by (rule subst)
with universe-character have y = u

by (rule part-antisymmetry)
with 〈y 6= u〉 show False..

qed
hence ∀ w. P w (−x) ←→ ¬ O w x

by (rule strong-complement-character)
hence P (−y) (−x) ←→ ¬ O (−y) x..
moreover have ¬ O (−y) x
proof

assume O (−y) x
with overlap-eq have ∃ v. P v (−y) ∧ P v x..
then obtain v where v: P v (−y) ∧ P v x..
hence P v (−y)..
from ny have P v (−y) ←→ ¬ O v y..
hence ¬ O v y using 〈P v (−y)〉..
moreover from v have P v x..
hence P v y using 〈P x y〉

by (rule part-transitivity)
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hence O v y
by (rule part-implies-overlap)

ultimately show False..
qed
ultimately show P (−y) (−x)..

qed

lemma complements-overlap: x ⊕ y 6= u =⇒ O(−x)(−y)
proof −

assume x ⊕ y 6= u
hence ∃ z. ¬ O z (x ⊕ y)

by (rule something-disjoint)
then obtain z where z:¬ O z (x ⊕ y)..
hence ¬ O z x by (rule first-summand-disjointness)
hence P z (−x) by (rule complement-part)
moreover from z have ¬ O z y

by (rule second-summand-disjointness)
hence P z (−y) by (rule complement-part)
ultimately show O(−x)(−y)

by (rule overlap-intro)
qed

lemma sum-complement-in-complement-product:
x ⊕ y 6= u =⇒ P(−(x ⊕ y))(−x ⊗ −y)

proof −
assume x ⊕ y 6= u
hence O (−x) (−y)

by (rule complements-overlap)
hence ∀ w. P w (−x ⊗ −y) ←→ (P w (−x) ∧ P w (−y))

by (rule product-character)
hence P(−(x ⊕ y))(−x ⊗ −y)←→(P(−(x ⊕ y))(−x) ∧ P(−(x ⊕

y))(−y))..
moreover have P (−(x ⊕ y))(−x) ∧ P (−(x ⊕ y))(−y)
proof

show P (−(x ⊕ y))(−x) using 〈x ⊕ y 6= u〉 first-summand-in-sum
by (rule part-complement-reversal)

next
show P (−(x ⊕ y))(−y) using 〈x ⊕ y 6= u〉 second-summand-in-sum

by (rule part-complement-reversal)
qed
ultimately show P (−(x ⊕ y))(−x ⊗ −y)..

qed

lemma complement-product-in-sum-complement:
x ⊕ y 6= u =⇒ P(−x ⊗ −y)(−(x ⊕ y))

proof −
assume x ⊕ y 6= u
hence ∀w. P w (−(x ⊕ y)) ←→ ¬ O w (x ⊕ y)

by (rule strong-complement-character)
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hence P (−x ⊗ −y) (−(x ⊕ y)) ←→ (¬ O (−x ⊗ −y) (x ⊕ y))..
moreover have ¬ O (−x ⊗ −y) (x ⊕ y)
proof
have O(−x)(−y) using 〈x ⊕ y 6= u〉 by (rule complements-overlap)
hence p: ∀ v. P v ((−x) ⊗ (−y)) ←→ (P v (−x) ∧ P v (−y))

by (rule product-character)
have O(−x ⊗ −y)(x ⊕ y) ←→ (O(−x ⊗ −y) x ∨ O(−x ⊗ −y)y)

using sum-character..
moreover assume O (−x ⊗ −y)(x ⊕ y)
ultimately have O (−x ⊗ −y) x ∨ O (−x ⊗ −y) y..
thus False
proof

assume O (−x ⊗ −y) x
with overlap-eq have ∃ v. P v (−x ⊗ −y) ∧ P v x..
then obtain v where v: P v (−x ⊗ −y) ∧ P v x..
hence P v (−x ⊗ −y)..
from p have P v ((−x) ⊗ (−y)) ←→ (P v (−x) ∧ P v (−y))..
hence P v (−x) ∧ P v (−y) using 〈P v (−x ⊗ −y)〉..
hence P v (−x)..
have x 6= u using 〈x ⊕ y 6= u〉

by (rule first-summand-not-universe)
hence ∀w. P w (−x) ←→ ¬ O w x

by (rule strong-complement-character)
hence P v (−x) ←→ ¬ O v x..
hence ¬ O v x using 〈P v (−x)〉..
moreover from v have P v x..
hence O v x by (rule part-implies-overlap)
ultimately show False..

next
assume O (−x ⊗ −y) y
with overlap-eq have ∃ v. P v (−x ⊗ −y) ∧ P v y..
then obtain v where v: P v (−x ⊗ −y) ∧ P v y..
hence P v (−x ⊗ −y)..
from p have P v ((−x) ⊗ (−y)) ←→ (P v (−x) ∧ P v (−y))..
hence P v (−x) ∧ P v (−y) using 〈P v (−x ⊗ −y)〉..
hence P v (−y)..
have y 6= u using 〈x ⊕ y 6= u〉

by (rule second-summand-not-universe)
hence ∀w. P w (−y) ←→ ¬ O w y

by (rule strong-complement-character)
hence P v (−y) ←→ ¬ O v y..
hence ¬ O v y using 〈P v (−y)〉..
moreover from v have P v y..
hence O v y by (rule part-implies-overlap)
ultimately show False..

qed
qed
ultimately show P (−x ⊗ −y) (−(x ⊕ y))..

qed
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theorem sum-complement-is-complements-product:
x ⊕ y 6= u =⇒ −(x ⊕ y) = (−x ⊗ −y)

proof −
assume x ⊕ y 6= u
show −(x ⊕ y) = (−x ⊗ −y)
proof (rule part-antisymmetry)

show P (− (x ⊕ y)) (− x ⊗ − y) using 〈x ⊕ y 6= u〉

by (rule sum-complement-in-complement-product)
show P (− x ⊗ − y) (− (x ⊕ y)) using 〈x ⊕ y 6= u〉

by (rule complement-product-in-sum-complement)
qed

qed

lemma complement-sum-in-product-complement:
O x y =⇒ x 6= u =⇒ y 6= u =⇒ P ((−x) ⊕ (−y))(−(x ⊗ y))

proof −
assume O x y
assume x 6= u
assume y 6= u
have x ⊗ y 6= u
proof

assume x ⊗ y = u
with 〈O x y〉 have x = u

by (rule product-universe-implies-factor-universe)
with 〈x 6= u〉 show False..

qed
hence notxty: ∀ w. P w (−(x ⊗ y)) ←→ ¬ O w (x ⊗ y)

by (rule strong-complement-character)
hence P((−x)⊕(−y))(−(x ⊗ y)) ←→ ¬O((−x)⊕(−y))(x ⊗ y)..
moreover have ¬ O ((−x) ⊕ (−y)) (x ⊗ y)
proof

from sum-character have
∀ w. O w ((−x) ⊕ (−y)) ←→ (O w (−x) ∨ O w (−y)).
hence O(x ⊗ y)((−x)⊕(−y)) ←→ (O(x ⊗ y)(−x) ∨ O(x ⊗

y)(−y))..
moreover assume O ((−x) ⊕ (−y)) (x ⊗ y)
hence O (x ⊗ y) ((−x) ⊕ (−y)) by (rule overlap-symmetry)
ultimately have O (x ⊗ y) (−x) ∨ O (x ⊗ y) (−y)..
thus False
proof

assume O (x ⊗ y)(−x)
with overlap-eq have ∃ v. P v (x ⊗ y) ∧ P v (−x)..
then obtain v where v: P v (x ⊗ y) ∧ P v (−x)..
hence P v (−x)..
with 〈x 6= u〉 have ¬ P v x

by (rule complement-part-not-part)
moreover from v have P v (x ⊗ y)..
with 〈O x y〉 have P v x by (rule product-part-in-first-factor)
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ultimately show False..
next

assume O (x ⊗ y) (−y)
with overlap-eq have ∃ v. P v (x ⊗ y) ∧ P v (−y)..
then obtain v where v: P v (x ⊗ y) ∧ P v (−y)..
hence P v (−y)..
with 〈y 6= u〉 have ¬ P v y

by (rule complement-part-not-part)
moreover from v have P v (x ⊗ y)..
with 〈O x y〉 have P v y by (rule product-part-in-second-factor)
ultimately show False..

qed
qed
ultimately show P ((−x) ⊕ (−y))(−(x ⊗ y))..

qed

lemma product-complement-in-complements-sum:
x 6= u =⇒ y 6= u =⇒ P(−(x ⊗ y))((−x) ⊕ (−y))

proof −
assume x 6= u
hence x = −(−x)

by (rule complement-involution)
assume y 6= u
hence y = −(−y)

by (rule complement-involution)
show P (−(x ⊗ y))((−x) ⊕ (−y))
proof cases

assume −x ⊕ −y = u
thus P (−(x ⊗ y))((−x) ⊕ (−y))

using universe-character by (rule ssubst)
next

assume −x ⊕ −y 6= u
hence −x ⊕ −y = −(−(−x ⊕ − y))

by (rule complement-involution)
moreover have −(−x ⊕ −y) = −(−x) ⊗ −(−y)

using 〈−x ⊕ −y 6= u〉

by (rule sum-complement-is-complements-product)
with 〈x = −(−x)〉 have −(−x ⊕ −y) = x ⊗ −(−y)

by (rule ssubst)
with 〈y = −(−y)〉 have −(−x ⊕ −y) = x ⊗ y

by (rule ssubst)
hence P (−(x ⊗ y))(−(−(−x ⊕ −y)))

using part-reflexivity by (rule subst)
ultimately show P (−(x ⊗ y))(−x ⊕ −y)

by (rule ssubst)
qed

qed

theorem complement-of-product-is-sum-of-complements:
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O x y =⇒ x ⊕ y 6= u =⇒ −(x ⊗ y) = (−x) ⊕ (−y)
proof −

assume O x y
assume x ⊕ y 6= u
show −(x ⊗ y) = (−x) ⊕ (−y)
proof (rule part-antisymmetry)

have x 6= u using 〈x ⊕ y 6= u〉

by (rule first-summand-not-universe)
have y 6= u using 〈x ⊕ y 6= u〉

by (rule second-summand-not-universe)
show P (− (x ⊗ y)) (− x ⊕ − y)
using 〈x 6= u〉 〈y 6= u〉 by (rule product-complement-in-complements-sum)
show P (− x ⊕ − y) (− (x ⊗ y))
using 〈O x y〉 〈x 6= u〉 〈y 6= u〉 by (rule complement-sum-in-product-complement)

qed
qed

end

8 General Mereology

The theory of general mereology adds the axiom of fusion to
ground mereology.31

locale GM = M +
assumes fusion:
∃ x. ϕ x =⇒ ∃ z. ∀ y. O y z ←→ (∃ x. ϕ x ∧ O y x)

begin

Fusion entails sum closure.
theorem sum-closure: ∃ z. ∀ w. O w z ←→ (O w a ∨ O w b)
proof −

have a = a..
hence a = a ∨ a = b..
hence ∃ x. x = a ∨ x = b..
hence (∃ z. ∀ y. O y z ←→ (∃ x. (x = a ∨ x = b) ∧ O y x))

by (rule fusion)
then obtain z where z:
∀ y. O y z ←→ (∃ x. (x = a ∨ x = b) ∧ O y x)..

have ∀ w. O w z ←→ (O w a ∨ O w b)
proof

fix w
from z have w: O w z ←→ (∃ x. (x = a ∨ x = b) ∧ O w x)..
show O w z ←→ (O w a ∨ O w b)
proof

assume O w z
31See [Simons, 1987] p. 36, [Varzi, 1996] p. 265 and [Casati and Varzi, 1999] p. 46.
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with w have ∃ x. (x = a ∨ x = b) ∧ O w x..
then obtain x where x: (x = a ∨ x = b) ∧ O w x..
hence O w x..
from x have x = a ∨ x = b..
thus O w a ∨ O w b
proof (rule disjE)

assume x = a
hence O w a using 〈O w x〉 by (rule subst)
thus O w a ∨ O w b..

next
assume x = b
hence O w b using 〈O w x〉 by (rule subst)
thus O w a ∨ O w b..

qed
next

assume O w a ∨ O w b
hence ∃ x. (x = a ∨ x = b) ∧ O w x
proof (rule disjE)

assume O w a
with 〈a = a ∨ a = b〉 have (a = a ∨ a = b) ∧ O w a..
thus ∃ x. (x = a ∨ x = b) ∧ O w x..

next
have b = b..
hence b = a ∨ b = b..
moreover assume O w b
ultimately have (b = a ∨ b = b) ∧ O w b..
thus ∃ x. (x = a ∨ x = b) ∧ O w x..

qed
with w show O w z..

qed
qed
thus ∃ z. ∀ w. O w z ←→ (O w a ∨ O w b)..

qed

end

9 General Minimal Mereology

The theory of general minimal mereology adds general mereology
to minimal mereology.32

locale GMM = GM + MM
begin

It is natural to assume that just as closed minimal mereology and
closed extensional mereology are the same theory, so are general

32See [Casati and Varzi, 1999] p. 46.
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minimal mereology and general extensional mereology.33 But
this is not the case, since the proof of strong supplementation in
closed minimal mereology required the product closure axiom.
However, in general minimal mereology, the fusion axiom does
not entail the product closure axiom. So neither product closure
nor strong supplementation are theorems.
lemma product-closure:

O x y =⇒ (∃ z. ∀ v. P v z ←→ P v x ∧ P v y)
nitpick [expect = genuine] oops

lemma strong-supplementation: ¬ P x y =⇒ (∃ z. P z x ∧ ¬ O z y)
nitpick [expect = genuine] oops

end

10 General Extensional Mereology

The theory of general extensional mereology, also known as clas-
sical extensional mereology adds general mereology to exten-
sional mereology.34

locale GEM = GM + EM +
assumes sum-eq: x ⊕ y = (THE z. ∀ v. O v z ←→ O v x ∨ O v y)
assumes product-eq:

x ⊗ y = (THE z. ∀ v. P v z ←→ P v x ∧ P v y)
assumes difference-eq:

x 	 y = (THE z. ∀w. P w z = (P w x ∧ ¬ O w y))
assumes complement-eq: − x = (THE z. ∀w. P w z ←→ ¬ O w x)
assumes universe-eq: u = (THE x. ∀ y. P y x)
assumes fusion-eq: ∃ x. F x =⇒
(σ x. F x) = (THE x. ∀ y. O y x ←→ (∃ z. F z ∧ O y z))

assumes general-product-eq: (π x. F x) = (σ x. ∀ y. F y −→ P x y)

sublocale GEM ⊆ GMM
proof
qed

10.1 General Sums
context GEM
begin

33For this mistake see [Simons, 1987] p. 37 and [Casati and Varzi, 1999] p. 46. The
mistake is corrected in [Pontow, 2004] and [Hovda, 2009]. For discussion of the significance
of this issue see, for example, [Varzi, 2009] and [Cotnoir, 2016].

34For this axiomatization see [Varzi, 1996] p. 265 and [Casati and Varzi, 1999] p. 46.
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lemma fusion-intro:
(∀ y. O y z ←→ (∃ x. F x ∧ O y x)) =⇒ (σ x. F x) = z
proof −

assume antecedent: (∀ y. O y z ←→ (∃ x. F x ∧ O y x))
hence (THE x. ∀ y. O y x ←→ (∃ z. F z ∧ O y z)) = z
proof (rule the-equality)

fix a
assume a: (∀ y. O y a ←→ (∃ x. F x ∧ O y x))
have ∀ x. O x a ←→ O x z
proof

fix b
from antecedent have O b z ←→ (∃ x. F x ∧ O b x)..
moreover from a have O b a ←→ (∃ x. F x ∧ O b x)..
ultimately show O b a ←→ O b z by (rule ssubst)

qed
with overlap-extensionality show a = z..

qed
moreover from antecedent have O z z ←→ (∃ x. F x ∧ O z x)..
hence ∃ x. F x ∧ O z x using overlap-reflexivity..
hence ∃ x. F x by auto
hence (σ x. F x) = (THE x. ∀ y. O y x ←→ (∃ z. F z ∧ O y z))

by (rule fusion-eq)
ultimately show (σ v. F v) = z by (rule subst)

qed

lemma fusion-idempotence: (σ x. z = x) = z
proof −

have ∀ y. O y z ←→ (∃ x. z = x ∧ O y x)
proof

fix y
show O y z ←→ (∃ x. z = x ∧ O y x)
proof

assume O y z
with refl have z = z ∧ O y z..
thus ∃ x. z = x ∧ O y x..

next
assume ∃ x. z = x ∧ O y x
then obtain x where x: z = x ∧ O y x..
hence z = x..
moreover from x have O y x..
ultimately show O y z by (rule ssubst)

qed
qed
thus (σ x. z = x) = z

by (rule fusion-intro)
qed

The whole is the sum of its parts.
lemma fusion-absorption: (σ x. P x z) = z
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proof −
have (∀ y. O y z ←→ (∃ x. P x z ∧ O y x))
proof

fix y
show O y z ←→ (∃ x. P x z ∧ O y x)
proof

assume O y z
with part-reflexivity have P z z ∧ O y z..
thus ∃ x. P x z ∧ O y x..

next
assume ∃ x. P x z ∧ O y x
then obtain x where x: P x z ∧ O y x..
hence P x z..
moreover from x have O y x..
ultimately show O y z by (rule overlap-monotonicity)

qed
qed
thus (σ x. P x z) = z

by (rule fusion-intro)
qed

lemma part-fusion: P w (σ v. P v x) =⇒ P w x
proof −

assume P w (σ v. P v x)
with fusion-absorption show P w x by (rule subst)

qed

lemma fusion-character :
∃ x. F x =⇒ (∀ y. O y (σ v. F v) ←→ (∃ x. F x ∧ O y x))

proof −
assume ∃ x. F x
hence ∃ z. ∀ y. O y z ←→ (∃ x. F x ∧ O y x)

by (rule fusion)
then obtain z where z: ∀ y. O y z ←→ (∃ x. F x ∧ O y x)..
hence (σ v. F v) = z by (rule fusion-intro)
thus ∀ y. O y (σ v. F v) ←→ (∃ x. F x ∧ O y x) using z by (rule

ssubst)
qed

The next lemma characterises fusions in terms of parthood.35

lemma fusion-part-character : ∃ x. F x =⇒
(∀ y. P y (σ v. F v) ←→ (∀w. P w y −→ (∃ v. F v ∧ O w v)))

proof −
assume (∃ x. F x)
hence F : ∀ y. O y (σ v. F v) ←→ (∃ x. F x ∧ O y x)

by (rule fusion-character)
show ∀ y. P y (σ v. F v) ←→ (∀w. P w y −→ (∃ v. F v ∧ O w v))
proof

35See [Pontow, 2004] pp. 202-9.
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fix y
show P y (σ v. F v) ←→ (∀w. P w y −→ (∃ v. F v ∧ O w v))
proof

assume P y (σ v. F v)
show ∀w. P w y −→ (∃ v. F v ∧ O w v)
proof

fix w
from F have w: O w (σ v. F v) ←→ (∃ x. F x ∧ O w x)..
show P w y −→ (∃ v. F v ∧ O w v)
proof

assume P w y
hence P w (σ v. F v) using 〈P y (σ v. F v)〉

by (rule part-transitivity)
hence O w (σ v. F v) by (rule part-implies-overlap)
with w show ∃ x. F x ∧ O w x..

qed
qed

next
assume right: ∀w. P w y −→ (∃ v. F v ∧ O w v)
show P y (σ v. F v)
proof (rule ccontr)

assume ¬ P y (σ v. F v)
hence ∃ v. P v y ∧ ¬ O v (σ v. F v)

by (rule strong-supplementation)
then obtain v where v: P v y ∧ ¬ O v (σ v. F v)..
hence ¬ O v (σ v. F v)..
from right have P v y −→ (∃w. F w ∧ O v w)..
moreover from v have P v y..
ultimately have ∃w. F w ∧ O v w..
from F have O v (σ v. F v) ←→ (∃ x. F x ∧ O v x)..
hence O v (σ v. F v) using 〈∃w. F w ∧ O v w〉..
with 〈¬ O v (σ v. F v)〉 show False..

qed
qed

qed
qed

lemma fusion-part: F x =⇒ P x (σ x. F x)
proof −

assume F x
hence ∃ x. F x..
hence ∀ y. P y (σ v. F v) ←→ (∀w. P w y −→ (∃ v. F v ∧ O w v))

by (rule fusion-part-character)
hence P x (σ v. F v) ←→ (∀w. P w x −→ (∃ v. F v ∧ O w v))..
moreover have ∀w. P w x −→ (∃ v. F v ∧ O w v)
proof

fix w
show P w x −→ (∃ v. F v ∧ O w v)
proof
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assume P w x
hence O w x by (rule part-implies-overlap)
with 〈F x〉 have F x ∧ O w x..
thus ∃ v. F v ∧ O w v..

qed
qed
ultimately show P x (σ v. F v)..

qed

lemma common-part-fusion:
O x y =⇒ (∀w. P w (σ v. (P v x ∧ P v y)) ←→ (P w x ∧ P w y))

proof −
assume O x y
with overlap-eq have ∃ z. (P z x ∧ P z y)..
hence sum: (∀w. P w (σ v. (P v x ∧ P v y)) ←→
(∀ z. P z w −→ (∃ v. (P v x ∧ P v y) ∧ O z v)))
by (rule fusion-part-character)

show ∀w. P w (σ v. (P v x ∧ P v y)) ←→ (P w x ∧ P w y)
proof

fix w
from sum have w: P w (σ v. (P v x ∧ P v y))
←→ (∀ z. P z w −→ (∃ v. (P v x ∧ P v y) ∧ O z v))..

show P w (σ v. (P v x ∧ P v y)) ←→ (P w x ∧ P w y)
proof

assume P w (σ v. (P v x ∧ P v y))
with w have bla:
(∀ z. P z w −→ (∃ v. (P v x ∧ P v y) ∧ O z v))..

show P w x ∧ P w y
proof

show P w x
proof (rule ccontr)

assume ¬ P w x
hence ∃ z. P z w ∧ ¬ O z x

by (rule strong-supplementation)
then obtain z where z: P z w ∧ ¬ O z x..
hence ¬ O z x..
from bla have P z w −→ (∃ v. (P v x ∧ P v y) ∧ O z v)..
moreover from z have P z w..
ultimately have ∃ v. (P v x ∧ P v y) ∧ O z v..
then obtain v where v: (P v x ∧ P v y) ∧ O z v..
hence P v x ∧ P v y..
hence P v x..
moreover from v have O z v..
ultimately have O z x

by (rule overlap-monotonicity)
with 〈¬ O z x〉 show False..

qed
show P w y
proof (rule ccontr)
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assume ¬ P w y
hence ∃ z. P z w ∧ ¬ O z y

by (rule strong-supplementation)
then obtain z where z: P z w ∧ ¬ O z y..
hence ¬ O z y..
from bla have P z w −→ (∃ v. (P v x ∧ P v y) ∧ O z v)..
moreover from z have P z w..
ultimately have ∃ v. (P v x ∧ P v y) ∧ O z v..
then obtain v where v: (P v x ∧ P v y) ∧ O z v..
hence P v x ∧ P v y..
hence P v y..
moreover from v have O z v..
ultimately have O z y

by (rule overlap-monotonicity)
with 〈¬ O z y〉 show False..

qed
qed

next
assume P w x ∧ P w y
thus P w (σ v. (P v x ∧ P v y))

by (rule fusion-part)
qed

qed
qed

theorem product-closure:
O x y =⇒ (∃ z. ∀w. P w z ←→ (P w x ∧ P w y))

proof −
assume O x y
hence (∀w. P w (σ v. (P v x ∧ P v y)) ←→ (P w x ∧ P w y))

by (rule common-part-fusion)
thus ∃ z. ∀w. P w z ←→ (P w x ∧ P w y)..

qed

end

sublocale GEM ⊆ CEM
proof

fix x y
show ∃ z. ∀w. O w z = (O w x ∨ O w y)

using sum-closure.
show x ⊕ y = (THE z. ∀ v. O v z ←→ O v x ∨ O v y)

using sum-eq.
show x ⊗ y = (THE z. ∀ v. P v z ←→ P v x ∧ P v y)

using product-eq.
show O x y =⇒ (∃ z. ∀w. P w z = (P w x ∧ P w y))

using product-closure.
qed
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context GEM
begin

corollary O x y =⇒ x ⊗ y = (σ v. P v x ∧ P v y)
proof −

assume O x y
hence (∀w. P w (σ v. (P v x ∧ P v y)) ←→ (P w x ∧ P w y))

by (rule common-part-fusion)
thus x ⊗ y = (σ v. P v x ∧ P v y) by (rule product-intro)

qed

lemma disjoint-fusion:
∃w. ¬ O w x =⇒ (∀w. P w (σ z. ¬ O z x) ←→ ¬ O w x)

proof −
assume antecedent: ∃w. ¬ O w x
hence ∀ y. O y (σ v. ¬ O v x) ←→ (∃ v. ¬ O v x ∧ O y v)

by (rule fusion-character)
hence x: O x (σ v. ¬ O v x) ←→ (∃ v. ¬ O v x ∧ O x v)..
show ∀w. P w (σ z. ¬ O z x) ←→ ¬ O w x
proof

fix y
show P y (σ z. ¬ O z x) ←→ ¬ O y x
proof

assume P y (σ z. ¬ O z x)
moreover have ¬ O x (σ z. ¬ O z x)
proof

assume O x (σ z. ¬ O z x)
with x have (∃ v. ¬ O v x ∧ O x v)..
then obtain v where v: ¬ O v x ∧ O x v..
hence ¬ O v x..
from v have O x v..
hence O v x by (rule overlap-symmetry)
with 〈¬ O v x〉 show False..

qed
ultimately have ¬ O x y

by (rule disjoint-demonotonicity)
thus ¬ O y x by (rule disjoint-symmetry)

next
assume ¬ O y x
thus P y (σ v. ¬ O v x)

by (rule fusion-part)
qed

qed
qed

theorem complement-closure:
∃w. ¬ O w x =⇒ (∃ z. ∀w. P w z ←→ ¬ O w x)

proof −
assume (∃w. ¬ O w x)
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hence ∀w. P w (σ z. ¬ O z x) ←→ ¬ O w x
by (rule disjoint-fusion)

thus ∃ z. ∀w. P w z ←→ ¬ O w x..
qed

end

sublocale GEM ⊆ CEMC
proof

fix x y
show − x = (THE z. ∀w. P w z ←→ ¬ O w x)

using complement-eq.
show (∃w. ¬ O w x) =⇒ (∃ z. ∀w. P w z = (¬ O w x))

using complement-closure.
show x 	 y = (THE z. ∀w. P w z = (P w x ∧ ¬ O w y))

using difference-eq.
show u = (THE x. ∀ y. P y x)

using universe-eq.
qed

context GEM
begin

corollary complement-is-disjoint-fusion:
∃w. ¬ O w x =⇒ − x = (σ z. ¬ O z x)

proof −
assume ∃w. ¬ O w x
hence ∀w. P w (σ z. ¬ O z x) ←→ ¬ O w x

by (rule disjoint-fusion)
thus − x = (σ z. ¬ O z x)

by (rule complement-intro)
qed

theorem strong-fusion: ∃ x. F x =⇒
∃ x. (∀ y. F y −→ P y x) ∧ (∀ y. P y x −→ (∃ z. F z ∧ O y z))

proof −
assume ∃ x. F x
have (∀ y. F y −→ P y (σ v. F v)) ∧

(∀ y. P y (σ v. F v) −→ (∃ z. F z ∧ O y z))
proof

show ∀ y. F y −→ P y (σ v. F v)
proof

fix y
show F y −→ P y (σ v. F v)
proof

assume F y
thus P y (σ v. F v)

by (rule fusion-part)
qed
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qed
next

have (∀ y. P y (σ v. F v) ←→
(∀w. P w y −→ (∃ v. F v ∧ O w v)))
using 〈∃ x. F x〉 by (rule fusion-part-character)

hence P (σ v. F v) (σ v. F v) ←→ (∀w. P w (σ v. F v) −→
(∃ v. F v ∧ O w v))..
thus ∀w. P w (σ v. F v) −→ (∃ v. F v ∧ O w v) using

part-reflexivity..
qed
thus ?thesis..

qed

theorem strong-fusion-eq: ∃ x. F x =⇒ (σ x. F x) =
(THE x. (∀ y. F y −→ P y x) ∧ (∀ y. P y x −→ (∃ z. F z ∧ O y z)))

proof −
assume ∃ x. F x
have (THE x. (∀ y. F y −→ P y x) ∧ (∀ y. P y x −→ (∃ z. F z ∧ O

y z))) = (σ x. F x)
proof (rule the-equality)

show (∀ y. F y −→ P y (σ x. F x)) ∧ (∀ y. P y (σ x. F x) −→ (∃ z.
F z ∧ O y z))

proof
show ∀ y. F y −→ P y (σ x. F x)
proof

fix y
show F y −→ P y (σ x. F x)
proof

assume F y
thus P y (σ x. F x)

by (rule fusion-part)
qed

qed
next

show (∀ y. P y (σ x. F x) −→ (∃ z. F z ∧ O y z))
proof

fix y
show P y (σ x. F x) −→ (∃ z. F z ∧ O y z)
proof

have ∀ y. P y (σ v. F v) ←→ (∀w. P w y −→ (∃ v. F v ∧ O
w v))

using 〈∃ x. F x〉 by (rule fusion-part-character)
hence P y (σ v. F v) ←→ (∀w. P w y −→ (∃ v. F v ∧ O w

v))..
moreover assume P y (σ x. F x)
ultimately have ∀w. P w y −→ (∃ v. F v ∧ O w v)..
hence P y y −→ (∃ v. F v ∧ O y v)..
thus ∃ v. F v ∧ O y v using part-reflexivity..

qed
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qed
qed

next
fix x
assume x: (∀ y. F y −→ P y x) ∧ (∀ y. P y x −→ (∃ z. F z ∧ O y

z))
have ∀ y. O y x ←→ (∃ z. F z ∧ O y z)
proof

fix y
show O y x ←→ (∃ z. F z ∧ O y z)
proof

assume O y x
with overlap-eq have ∃ v. P v y ∧ P v x..
then obtain v where v: P v y ∧ P v x..
from x have ∀ y. P y x −→ (∃ z. F z ∧ O y z)..
hence P v x −→ (∃ z. F z ∧ O v z)..
moreover from v have P v x..
ultimately have ∃ z. F z ∧ O v z..
then obtain z where z: F z ∧ O v z..
hence F z..
from v have P v y..
moreover from z have O v z..
hence O z v by (rule overlap-symmetry)
ultimately have O z y by (rule overlap-monotonicity)
hence O y z by (rule overlap-symmetry)
with 〈F z〉 have F z ∧ O y z..
thus ∃ z. F z ∧ O y z..

next
assume ∃ z. F z ∧ O y z
then obtain z where z: F z ∧ O y z..
from x have ∀ y. F y −→ P y x..
hence F z −→ P z x..
moreover from z have F z..
ultimately have P z x..
moreover from z have O y z..
ultimately show O y x

by (rule overlap-monotonicity)
qed

qed
hence (σ x. F x) = x

by (rule fusion-intro)
thus x = (σ x. F x)..

qed
thus ?thesis..

qed

lemma strong-sum-eq: x ⊕ y = (THE z. (P x z ∧ P y z) ∧ (∀w. P w
z −→ O w x ∨ O w y))
proof −
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have (THE z. (P x z ∧ P y z) ∧ (∀w. P w z −→ O w x ∨ O w y))
= x ⊕ y

proof (rule the-equality)
show (P x (x ⊕ y) ∧ P y (x ⊕ y)) ∧ (∀w. P w (x ⊕ y) −→ O w

x ∨ O w y)
proof

show P x (x ⊕ y) ∧ P y (x ⊕ y)
proof

show P x (x ⊕ y) using first-summand-in-sum.
show P y (x ⊕ y) using second-summand-in-sum.

qed
show ∀w. P w (x ⊕ y) −→ O w x ∨ O w y
proof

fix w
show P w (x ⊕ y) −→ O w x ∨ O w y
proof

assume P w (x ⊕ y)
hence O w (x ⊕ y) by (rule part-implies-overlap)
with sum-overlap show O w x ∨ O w y..

qed
qed

qed
fix z
assume z: (P x z ∧ P y z) ∧ (∀w. P w z −→ O w x ∨ O w y)
hence P x z ∧ P y z..
have ∀w. O w z ←→ (O w x ∨ O w y)
proof

fix w
show O w z ←→ (O w x ∨ O w y)
proof

assume O w z
with overlap-eq have ∃ v. P v w ∧ P v z..
then obtain v where v: P v w ∧ P v z..
hence P v w..
from z have ∀w. P w z −→ O w x ∨ O w y..
hence P v z −→ O v x ∨ O v y..
moreover from v have P v z..
ultimately have O v x ∨ O v y..
thus O w x ∨ O w y
proof

assume O v x
hence O x v by (rule overlap-symmetry)
with 〈P v w〉 have O x w by (rule overlap-monotonicity)
hence O w x by (rule overlap-symmetry)
thus O w x ∨ O w y..

next
assume O v y
hence O y v by (rule overlap-symmetry)
with 〈P v w〉 have O y w by (rule overlap-monotonicity)
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hence O w y by (rule overlap-symmetry)
thus O w x ∨ O w y..

qed
next

assume O w x ∨ O w y
thus O w z
proof

from 〈P x z ∧ P y z〉 have P x z..
moreover assume O w x
ultimately show O w z

by (rule overlap-monotonicity)
next

from 〈P x z ∧ P y z〉 have P y z..
moreover assume O w y
ultimately show O w z

by (rule overlap-monotonicity)
qed

qed
qed
hence x ⊕ y = z by (rule sum-intro)
thus z = x ⊕ y..

qed
thus ?thesis..

qed

10.2 General Products
lemma general-product-intro: (∀ y. O y x ←→ (∃ z. (∀ y. F y −→ P z
y) ∧ O y z)) =⇒ (π x. F x) = x
proof −

assume ∀ y. O y x ←→ (∃ z. (∀ y. F y −→ P z y) ∧ O y z)
hence (σ x. ∀ y. F y −→ P x y) = x by (rule fusion-intro)
with general-product-eq show (π x. F x) = x by (rule ssubst)

qed

lemma general-product-idempotence: (π z. z = x) = x
proof −

have ∀ y. O y x ←→ (∃ z. (∀ y. y = x −→ P z y) ∧ O y z)
by (meson overlap-eq part-reflexivity part-transitivity)

thus (π z. z = x) = x by (rule general-product-intro)
qed

lemma general-product-absorption: (π z. P x z) = x
proof −

have ∀ y. O y x ←→ (∃ z. (∀ y. P x y −→ P z y) ∧ O y z)
by (meson overlap-eq part-reflexivity part-transitivity)

thus (π z. P x z) = x by (rule general-product-intro)
qed
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lemma general-product-character : ∃ z. ∀ y. F y −→ P z y =⇒
∀ y. O y (π x. F x) ←→ (∃ z. (∀ y. F y −→ P z y) ∧ O y z)

proof −
assume (∃ z. ∀ y. F y −→ P z y)
hence (∃ x. ∀ y. O y x ←→ (∃ z. (∀ y. F y −→ P z y) ∧ O y z))

by (rule fusion)
then obtain x where x:
∀ y. O y x ←→ (∃ z. (∀ y. F y −→ P z y) ∧ O y z)..

hence (π x. F x) = x by (rule general-product-intro)
thus (∀ y. O y (π x. F x) ←→ (∃ z. (∀ y. F y −→ P z y) ∧ O y z))

using x by (rule ssubst)
qed

corollary ¬ (∃ x. F x) =⇒ u = (π x. F x)
proof −

assume antecedent: ¬ (∃ x. F x)
have ∀ y. P y (π x. F x)
proof

fix y
show P y (π x. F x)
proof (rule ccontr)

assume ¬ P y (π x. F x)
hence ∃ z. P z y ∧ ¬ O z (π x. F x) by (rule strong-supplementation)

then obtain z where z: P z y ∧ ¬ O z (π x. F x)..
hence ¬ O z (π x. F x)..
from antecedent have bla: ∀ y. F y −→ P z y by simp
hence ∃ v. ∀ y. F y −→ P v y..
hence (∀ y. O y (π x. F x) ←→ (∃ z. (∀ y. F y −→ P z y) ∧ O y

z)) by (rule general-product-character)
hence O z (π x. F x) ←→ (∃ v. (∀ y. F y −→ P v y) ∧ O z v)..
moreover from bla have (∀ y. F y −→ P z y) ∧ O z z

using overlap-reflexivity..
hence ∃ v. (∀ y. F y −→ P v y) ∧ O z v..
ultimately have O z (π x. F x)..
with 〈¬ O z (π x. F x)〉 show False..

qed
qed
thus u = (π x. F x)

by (rule universe-intro)
qed

end

10.3 Strong Fusion

An alternative axiomatization of general extensional mereology
adds a stronger version of the fusion axiom to minimal mereology,
with correspondingly stronger definitions of sums and general
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sums.36

locale GEM1 = MM +
assumes strong-fusion: ∃ x. F x =⇒ ∃ x. (∀ y. F y −→ P y x) ∧ (∀ y.

P y x −→ (∃ z. F z ∧ O y z))
assumes strong-sum-eq: x ⊕ y = (THE z. (P x z ∧ P y z) ∧ (∀w.

P w z −→ O w x ∨ O w y))
assumes product-eq:

x ⊗ y = (THE z. ∀ v. P v z ←→ P v x ∧ P v y)
assumes difference-eq:

x 	 y = (THE z. ∀w. P w z = (P w x ∧ ¬ O w y))
assumes complement-eq: − x = (THE z. ∀w. P w z ←→ ¬ O w x)
assumes universe-eq: u = (THE x. ∀ y. P y x)
assumes strong-fusion-eq: ∃ x. F x =⇒ (σ x. F x) = (THE x. (∀ y.

F y −→ P y x) ∧ (∀ y. P y x −→ (∃ z. F z ∧ O y z)))
assumes general-product-eq: (π x. F x) = (σ x. ∀ y. F y −→ P x y)

begin

theorem fusion:
∃ x. ϕ x =⇒ (∃ z. ∀ y. O y z ←→ (∃ x. ϕ x ∧ O y x))

proof −
assume ∃ x. ϕ x
hence ∃ x. (∀ y. ϕ y −→ P y x) ∧ (∀ y. P y x −→ (∃ z. ϕ z ∧ O y

z)) by (rule strong-fusion)
then obtain x where x:
(∀ y. ϕ y −→ P y x) ∧ (∀ y. P y x −→ (∃ z. ϕ z ∧ O y z))..

have ∀ y. O y x ←→ (∃ v. ϕ v ∧ O y v)
proof

fix y
show O y x ←→ (∃ v. ϕ v ∧ O y v)
proof

assume O y x
with overlap-eq have ∃ z. P z y ∧ P z x..
then obtain z where z: P z y ∧ P z x..
hence P z x..
from x have ∀ y. P y x −→ (∃ v. ϕ v ∧ O y v)..
hence P z x −→ (∃ v. ϕ v ∧ O z v)..
hence ∃ v. ϕ v ∧ O z v using 〈P z x〉..
then obtain v where v: ϕ v ∧ O z v..
hence O z v..
with overlap-eq have ∃w. P w z ∧ P w v..
then obtain w where w: P w z ∧ P w v..
hence P w z..
moreover from z have P z y..
ultimately have P w y

by (rule part-transitivity)
moreover from w have P w v..
ultimately have P w y ∧ P w v..

36See [Tarski, 1983] p. 25. The proofs in this section are adapted from [Hovda, 2009].
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hence ∃w. P w y ∧ P w v..
with overlap-eq have O y v..
from v have ϕ v..
hence ϕ v ∧ O y v using 〈O y v〉..
thus ∃ v. ϕ v ∧ O y v..

next
assume ∃ v. ϕ v ∧ O y v
then obtain v where v: ϕ v ∧ O y v..
hence O y v..
with overlap-eq have ∃ z. P z y ∧ P z v..
then obtain z where z: P z y ∧ P z v..
hence P z v..
from x have ∀ y. ϕ y −→ P y x..
hence ϕ v −→ P v x..
moreover from v have ϕ v..
ultimately have P v x..
with 〈P z v〉 have P z x

by (rule part-transitivity)
from z have P z y..
thus O y x using 〈P z x〉

by (rule overlap-intro)
qed

qed
thus (∃ z. ∀ y. O y z ←→ (∃ x. ϕ x ∧ O y x))..

qed

lemma pair : ∃ v. (∀w. (w = x ∨ w = y) −→ P w v) ∧ (∀w. P w v
−→ (∃ z. (z = x ∨ z = y) ∧ O w z))
proof −

have x = x..
hence x = x ∨ x = y..
hence ∃ v. v = x ∨ v = y..
thus ?thesis

by (rule strong-fusion)
qed

lemma or-id: (v = x ∨ v = y) ∧ O w v =⇒ O w x ∨ O w y
proof −

assume v: (v = x ∨ v = y) ∧ O w v
hence O w v..
from v have v = x ∨ v = y..
thus O w x ∨ O w y
proof

assume v = x
hence O w x using 〈O w v〉 by (rule subst)
thus O w x ∨ O w y..

next
assume v = y
hence O w y using 〈O w v〉 by (rule subst)
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thus O w x ∨ O w y..
qed

qed

lemma strong-sum-closure:
∃ z. (P x z ∧ P y z) ∧ (∀w. P w z −→ O w x ∨ O w y)

proof −
from pair obtain z where z: (∀w. (w = x ∨ w = y) −→ P w z) ∧

(∀w. P w z −→ (∃ v. (v = x ∨ v = y) ∧ O w v))..
have (P x z ∧ P y z) ∧ (∀w. P w z −→ O w x ∨ O w y)
proof

from z have allw: ∀w. (w = x ∨ w = y) −→ P w z..
hence x = x ∨ x = y −→ P x z..
moreover have x = x ∨ x = y using refl..
ultimately have P x z..
from allw have y = x ∨ y = y −→ P y z..
moreover have y = x ∨ y = y using refl..
ultimately have P y z..
with 〈P x z〉 show P x z ∧ P y z..

next
show ∀w. P w z −→ O w x ∨ O w y
proof

fix w
show P w z −→ O w x ∨ O w y
proof

assume P w z
from z have ∀w. P w z −→ (∃ v. (v = x ∨ v = y) ∧ O w v)..
hence P w z −→ (∃ v. (v = x ∨ v = y) ∧ O w v)..
hence ∃ v. (v = x ∨ v = y) ∧ O w v using 〈P w z〉..
then obtain v where v: (v = x ∨ v = y) ∧ O w v..
thus O w x ∨ O w y by (rule or-id)

qed
qed

qed
thus ?thesis..

qed

end

sublocale GEM1 ⊆ GMM
proof

fix x y ϕ
show (∃ x. ϕ x) =⇒ (∃ z. ∀ y. O y z ←→ (∃ x. ϕ x ∧ O y x)) using

fusion.
qed

context GEM1
begin
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lemma least-upper-bound:
assumes sf :
((∀ y. F y −→ P y x) ∧ (∀ y. P y x −→ (∃ z. F z ∧ O y z)))

shows lub:
(∀ y. F y −→ P y x) ∧ (∀ z. (∀ y. F y −→ P y z) −→ P x z)

proof
from sf show ∀ y. F y −→ P y x..

next
show (∀ z. (∀ y. F y −→ P y z) −→ P x z)
proof
fix z
show (∀ y. F y −→ P y z) −→ P x z
proof
assume z: ∀ y. F y −→ P y z
from pair obtain v where v: (∀w. (w = x ∨ w = z) −→ P w v)

∧ (∀w. P w v −→ (∃ y. (y = x ∨ y = z) ∧ O w y))..
hence left: (∀w. (w = x ∨ w = z) −→ P w v)..
hence (x = x ∨ x = z) −→ P x v..
moreover have x = x ∨ x = z using refl..
ultimately have P x v..
have z = v
proof (rule ccontr)
assume z 6= v
from left have z = x ∨ z = z −→ P z v..
moreover have z = x ∨ z = z using refl..
ultimately have P z v..
hence P z v ∧ z 6= v using 〈z 6= v〉..
with nip-eq have PP z v..
hence ∃w. P w v ∧ ¬ O w z by (rule weak-supplementation)
then obtain w where w: P w v ∧ ¬ O w z..
hence P w v..
from v have right:
∀w. P w v −→ (∃ y. (y = x ∨ y = z) ∧ O w y)..

hence P w v −→ (∃ y. (y = x ∨ y = z) ∧ O w y)..
hence ∃ y. (y = x ∨ y = z) ∧ O w y using 〈P w v〉..
then obtain s where s: (s = x ∨ s = z) ∧ O w s..
hence s = x ∨ s = z..
thus False
proof
assume s = x
moreover from s have O w s..
ultimately have O w x by (rule subst)
with overlap-eq have ∃ t. P t w ∧ P t x..
then obtain t where t: P t w ∧ P t x..
hence P t x..
from sf have (∀ y. P y x −→ (∃ z. F z ∧ O y z))..
hence P t x −→ (∃ z. F z ∧ O t z)..
hence ∃ z. F z ∧ O t z using 〈P t x〉..
then obtain a where a: F a ∧ O t a..
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hence F a..
from sf have ub: ∀ y. F y −→ P y x..
hence F a −→ P a x..
hence P a x using 〈F a〉..
moreover from a have O t a..
ultimately have O t x
by (rule overlap-monotonicity)

from t have P t w..
moreover have O z t
proof −
from z have F a −→ P a z..
moreover from a have F a..
ultimately have P a z..
moreover from a have O t a..
ultimately have O t z
by (rule overlap-monotonicity)

thus O z t by (rule overlap-symmetry)
qed
ultimately have O z w
by (rule overlap-monotonicity)

hence O w z by (rule overlap-symmetry)
from w have ¬ O w z..
thus False using 〈O w z〉..

next
assume s = z
moreover from s have O w s..
ultimately have O w z by (rule subst)
from w have ¬ O w z..
thus False using 〈O w z〉..

qed
qed
thus P x z using 〈P x v〉 by (rule ssubst)

qed
qed

qed

corollary strong-fusion-intro: (∀ y. F y −→ P y x) ∧ (∀ y. P y x −→
(∃ z. F z ∧ O y z)) =⇒ (σ x. F x) = x
proof −

assume antecedent: (∀ y. F y −→ P y x) ∧ (∀ y. P y x −→ (∃ z. F z
∧ O y z))

with least-upper-bound have lubx:
(∀ y. F y −→ P y x) ∧ (∀ z. (∀ y. F y −→ P y z) −→ P x z).

from antecedent have ∀ y. P y x −→ (∃ z. F z ∧ O y z)..
hence P x x −→ (∃ z. F z ∧ O x z)..
hence ∃ z. F z ∧ O x z using part-reflexivity..
then obtain z where z: F z ∧ O x z..
hence F z..
hence ∃ z. F z..
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hence (σ x. F x) = (THE x. (∀ y. F y −→ P y x) ∧ (∀ y. P y x −→
(∃ z. F z ∧ O y z))) by (rule strong-fusion-eq)

moreover have (THE x. (∀ y. F y −→ P y x) ∧ (∀ y. P y x −→
(∃ z. F z ∧ O y z))) = x

proof (rule the-equality)
show (∀ y. F y −→ P y x) ∧ (∀ y. P y x −→ (∃ z. F z ∧ O y z))

using antecedent.
next

fix w
assume w:
(∀ y. F y −→ P y w) ∧ (∀ y. P y w −→ (∃ z. F z ∧ O y z))

with least-upper-bound have lubw:
(∀ y. F y −→ P y w) ∧ (∀ z. (∀ y. F y −→ P y z) −→ P w z).

hence (∀ z. (∀ y. F y −→ P y z) −→ P w z)..
hence (∀ y. F y −→ P y x) −→ P w x..
moreover from antecedent have ∀ y. F y −→ P y x..
ultimately have P w x..
from lubx have (∀ z. (∀ y. F y −→ P y z) −→ P x z)..
hence (∀ y. F y −→ P y w) −→ P x w..
moreover from lubw have (∀ y. F y −→ P y w)..
ultimately have P x w..
with 〈P w x〉 show w = x

by (rule part-antisymmetry)
qed
ultimately show (σ x. F x) = x by (rule ssubst)

qed

lemma strong-fusion-character : ∃ x. F x =⇒ ((∀ y. F y −→ P y (σ x.
F x)) ∧ (∀ y. P y (σ x. F x) −→ (∃ z. F z ∧ O y z)))
proof −

assume ∃ x. F x
hence (∃ x. (∀ y. F y −→ P y x) ∧ (∀ y. P y x −→ (∃ z. F z ∧ O y

z))) by (rule strong-fusion)
then obtain x where x:
(∀ y. F y −→ P y x) ∧ (∀ y. P y x −→ (∃ z. F z ∧ O y z))..

hence (σ x. F x) = x by (rule strong-fusion-intro)
thus ?thesis using x by (rule ssubst)

qed

lemma F-in: ∃ x. F x =⇒ (∀ y. F y −→ P y (σ x. F x))
proof −

assume ∃ x. F x
hence ((∀ y. F y −→ P y (σ x. F x)) ∧ (∀ y. P y (σ x. F x) −→

(∃ z. F z ∧ O y z))) by (rule strong-fusion-character)
thus ∀ y. F y −→ P y (σ x. F x)..

qed

lemma parts-overlap-Fs:
∃ x. F x =⇒ (∀ y. P y (σ x. F x) −→ (∃ z. F z ∧ O y z))
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proof −
assume ∃ x. F x
hence ((∀ y. F y −→ P y (σ x. F x)) ∧ (∀ y. P y (σ x. F x) −→

(∃ z. F z ∧ O y z))) by (rule strong-fusion-character)
thus (∀ y. P y (σ x. F x) −→ (∃ z. F z ∧ O y z))..

qed

lemma in-strong-fusion: P z (σ x. z = x)
proof −

have ∃ y. z = y using refl..
hence ∀ y. z = y −→ P y (σ x. z = x)

by (rule F-in)
hence z = z −→ P z (σ x. z = x)..
thus P z (σ x. z = x) using refl..

qed

lemma strong-fusion-in: P (σ x. z = x) z
proof −

have ∃ y. z = y using refl..
hence sf :
(∀ y. z = y −→ P y (σ x. z = x)) ∧ (∀ y. P y (σ x. z = x) −→

(∃ v. z = v ∧ O y v))
by (rule strong-fusion-character)

with least-upper-bound have lub: (∀ y. z = y −→ P y (σ x. z = x))
∧ (∀ v. (∀ y. z = y −→ P y v) −→ P (σ x. z = x) v).

hence (∀ v. (∀ y. z = y −→ P y v) −→ P (σ x. z = x) v)..
hence (∀ y. z = y −→ P y z) −→ P (σ x. z = x) z..
moreover have (∀ y. z = y −→ P y z)
proof

fix y
show z = y −→ P y z
proof

assume z = y
thus P y z using part-reflexivity by (rule subst)

qed
qed
ultimately show P (σ x. z = x) z..

qed

lemma strong-fusion-idempotence: (σ x. z = x) = z
using strong-fusion-in in-strong-fusion by (rule part-antisymmetry)

10.4 Strong Sums
lemma pair-fusion: (P x z ∧ P y z) ∧ (∀w. P w z −→ O w x ∨ O w
y) −→ (σ z. z = x ∨ z = y) = z
proof
assume z: (P x z ∧ P y z) ∧ (∀w. P w z −→ O w x ∨ O w y)
have (∀ v. v = x ∨ v = y −→ P v z) ∧ (∀ v. P v z −→ (∃ z. (z = x
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∨ z = y) ∧ O v z))
proof
show ∀ v. v = x ∨ v = y −→ P v z
proof
fix w
from z have P x z ∧ P y z..
show w = x ∨ w = y −→ P w z
proof
assume w = x ∨ w = y
thus P w z
proof
assume w = x
moreover from 〈P x z ∧ P y z〉 have P x z..
ultimately show P w z by (rule ssubst)

next
assume w = y
moreover from 〈P x z ∧ P y z〉 have P y z..
ultimately show P w z by (rule ssubst)

qed
qed

qed
show ∀ v. P v z −→ (∃ z. (z = x ∨ z = y) ∧ O v z)
proof
fix v
show P v z −→ (∃ z. (z = x ∨ z = y) ∧ O v z)
proof
assume P v z
from z have ∀w. P w z −→ O w x ∨ O w y..
hence P v z −→ O v x ∨ O v y..
hence O v x ∨ O v y using 〈P v z〉..
thus ∃ z. (z = x ∨ z = y) ∧ O v z
proof
assume O v x
have x = x ∨ x = y using refl..
hence (x = x ∨ x = y) ∧ O v x using 〈O v x〉..
thus ∃ z. (z = x ∨ z = y) ∧ O v z..

next
assume O v y
have y = x ∨ y = y using refl..
hence (y = x ∨ y = y) ∧ O v y using 〈O v y〉..
thus ∃ z. (z = x ∨ z = y) ∧ O v z..

qed
qed

qed
qed
thus (σ z. z = x ∨ z = y) = z

by (rule strong-fusion-intro)
qed
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corollary strong-sum-fusion: x ⊕ y = (σ z. z = x ∨ z = y)
proof −

have (THE z. (P x z ∧ P y z) ∧
(∀w. P w z −→ O w x ∨ O w y)) = (σ z. z = x ∨ z = y)

proof (rule the-equality)
have x = x ∨ x = y using refl..
hence exz: ∃ z. z = x ∨ z = y..
hence allw: (∀w. w = x ∨ w = y −→ P w (σ z. z = x ∨ z = y))

by (rule F-in)
show (P x (σ z. z = x ∨ z = y) ∧ P y (σ z. z = x ∨ z = y)) ∧
(∀w. P w (σ z. z = x ∨ z = y) −→ O w x ∨ O w y)

proof
show (P x (σ z. z = x ∨ z = y) ∧ P y (σ z. z = x ∨ z = y))
proof

from allw have x = x ∨ x = y −→ P x (σ z. z = x ∨ z = y)..
thus P x (σ z. z = x ∨ z = y)

using 〈x = x ∨ x = y〉..
next

from allw have y = x ∨ y = y −→ P y (σ z. z = x ∨ z = y)..
moreover have y = x ∨ y = y

using refl..
ultimately show P y (σ z. z = x ∨ z = y)..

qed
next

show ∀w. P w (σ z. z = x ∨ z = y) −→ O w x ∨ O w y
proof

fix w
show P w (σ z. z = x ∨ z = y) −→ O w x ∨ O w y
proof

have ∀ v. P v (σ z. z = x ∨ z = y) −→ (∃ z. (z = x ∨ z = y)
∧ O v z) using exz by (rule parts-overlap-Fs)

hence P w (σ z. z = x ∨ z = y) −→ (∃ z. (z = x ∨ z = y) ∧
O w z)..

moreover assume P w (σ z. z = x ∨ z = y)
ultimately have (∃ z. (z = x ∨ z = y) ∧ O w z)..
then obtain z where z: (z = x ∨ z = y) ∧ O w z..
thus O w x ∨ O w y by (rule or-id)

qed
qed

qed
next

fix z
assume z: (P x z ∧ P y z) ∧ (∀w. P w z −→ O w x ∨ O w y)
with pair-fusion have (σ z. z = x ∨ z = y) = z..
thus z = (σ z. z = x ∨ z = y)..

qed
with strong-sum-eq show x ⊕ y = (σ z. z = x ∨ z = y)

by (rule ssubst)
qed
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corollary strong-sum-intro:
(P x z ∧ P y z) ∧ (∀w. P w z −→ O w x ∨ O w y) −→ x ⊕ y = z

proof
assume z: (P x z ∧ P y z) ∧ (∀w. P w z −→ O w x ∨ O w y)
with pair-fusion have (σ z. z = x ∨ z = y) = z..
with strong-sum-fusion show (x ⊕ y) = z

by (rule ssubst)
qed

corollary strong-sum-character : (P x (x ⊕ y) ∧ P y (x ⊕ y)) ∧ (∀w.
P w (x ⊕ y) −→ O w x ∨ O w y)
proof −

from strong-sum-closure obtain z where z:
(P x z ∧ P y z) ∧ (∀w. P w z −→ O w x ∨ O w y)..

with strong-sum-intro have x ⊕ y = z..
thus ?thesis using z by (rule ssubst)

qed

corollary summands-in: (P x (x ⊕ y) ∧ P y (x ⊕ y))
using strong-sum-character..

corollary first-summand-in: P x (x ⊕ y) using summands-in..

corollary second-summand-in: P y (x ⊕ y) using summands-in..

corollary sum-part-overlap: (∀w. P w (x ⊕ y) −→ O w x ∨ O w y)
using strong-sum-character..

lemma strong-sum-absorption: y = (x ⊕ y) =⇒ P x y
proof −
assume y = (x ⊕ y)
thus P x y using first-summand-in by (rule ssubst)

qed

theorem strong-supplementation: ¬ P x y =⇒ (∃ z. P z x ∧ ¬ O z y)
proof −
assume ¬ P x y
have ¬ (∀ z. P z x −→ O z y)
proof
assume z: ∀ z. P z x −→ O z y
have (∀ v. y = v −→ P v (x ⊕ y)) ∧
(∀ v. P v (x ⊕ y) −→ (∃ z. y = z ∧ O v z))

proof
show ∀ v. y = v −→ P v (x ⊕ y)
proof
fix v
show y = v −→ P v (x ⊕ y)
proof
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assume y = v
thus P v (x ⊕ y)

using second-summand-in by (rule subst)
qed

qed
show ∀ v. P v (x ⊕ y) −→ (∃ z. y = z ∧ O v z)
proof
fix v
show P v (x ⊕ y) −→ (∃ z. y = z ∧ O v z)
proof
assume P v (x ⊕ y)
moreover from sum-part-overlap have

P v (x ⊕ y) −→ O v x ∨ O v y..
ultimately have O v x ∨ O v y by (rule rev-mp)
hence O v y
proof
assume O v x
with overlap-eq have ∃w. P w v ∧ P w x..
then obtain w where w: P w v ∧ P w x..
from z have P w x −→ O w y..
moreover from w have P w x..
ultimately have O w y..
with overlap-eq have ∃ t. P t w ∧ P t y..
then obtain t where t: P t w ∧ P t y..
hence P t w..
moreover from w have P w v..
ultimately have P t v

by (rule part-transitivity)
moreover from t have P t y..
ultimately show O v y

by (rule overlap-intro)
next
assume O v y
thus O v y.

qed
with refl have y = y ∧ O v y..
thus ∃ z. y = z ∧ O v z..

qed
qed

qed
hence (σ z. y = z) = (x ⊕ y) by (rule strong-fusion-intro)
with strong-fusion-idempotence have y = x ⊕ y by (rule subst)
hence P x y by (rule strong-sum-absorption)
with 〈¬ P x y〉 show False..

qed
thus ∃ z. P z x ∧ ¬ O z y by simp

qed

lemma sum-character : ∀ v. O v (x ⊕ y) ←→ (O v x ∨ O v y)
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proof
fix v
show O v (x ⊕ y) ←→ (O v x ∨ O v y)
proof

assume O v (x ⊕ y)
with overlap-eq have ∃w. P w v ∧ P w (x ⊕ y)..
then obtain w where w: P w v ∧ P w (x ⊕ y)..
hence P w v..
have P w (x ⊕ y) −→ O w x ∨ O w y using sum-part-overlap..
moreover from w have P w (x ⊕ y)..
ultimately have O w x ∨ O w y..
thus O v x ∨ O v y
proof

assume O w x
hence O x w

by (rule overlap-symmetry)
with 〈P w v〉 have O x v

by (rule overlap-monotonicity)
hence O v x

by (rule overlap-symmetry)
thus O v x ∨ O v y..

next
assume O w y
hence O y w

by (rule overlap-symmetry)
with 〈P w v〉 have O y v

by (rule overlap-monotonicity)
hence O v y by (rule overlap-symmetry)
thus O v x ∨ O v y..

qed
next

assume O v x ∨ O v y
thus O v (x ⊕ y)
proof

assume O v x
with overlap-eq have ∃w. P w v ∧ P w x..
then obtain w where w: P w v ∧ P w x..
hence P w v..
moreover from w have P w x..
hence P w (x ⊕ y) using first-summand-in

by (rule part-transitivity)
ultimately show O v (x ⊕ y)

by (rule overlap-intro)
next

assume O v y
with overlap-eq have ∃w. P w v ∧ P w y..
then obtain w where w: P w v ∧ P w y..
hence P w v..
moreover from w have P w y..
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hence P w (x ⊕ y) using second-summand-in
by (rule part-transitivity)

ultimately show O v (x ⊕ y)
by (rule overlap-intro)

qed
qed

qed

lemma sum-eq: x ⊕ y = (THE z. ∀ v. O v z = (O v x ∨ O v y))
proof −

have (THE z. ∀ v. O v z ←→ (O v x ∨ O v y)) = x ⊕ y
proof (rule the-equality)

show ∀ v. O v (x ⊕ y) ←→ (O v x ∨ O v y) using sum-character.
next

fix z
assume z: ∀ v. O v z ←→ (O v x ∨ O v y)
have (P x z ∧ P y z) ∧ (∀w. P w z −→ O w x ∨ O w y)
proof

show P x z ∧ P y z
proof

show P x z
proof (rule ccontr)

assume ¬ P x z
hence ∃ v. P v x ∧ ¬ O v z

by (rule strong-supplementation)
then obtain v where v: P v x ∧ ¬ O v z..
hence ¬ O v z..
from z have O v z ←→ (O v x ∨ O v y)..
moreover from v have P v x..
hence O v x by (rule part-implies-overlap)
hence O v x ∨ O v y..
ultimately have O v z..
with 〈¬ O v z〉 show False..

qed
next

show P y z
proof (rule ccontr)

assume ¬ P y z
hence ∃ v. P v y ∧ ¬ O v z

by (rule strong-supplementation)
then obtain v where v: P v y ∧ ¬ O v z..
hence ¬ O v z..
from z have O v z ←→ (O v x ∨ O v y)..
moreover from v have P v y..
hence O v y by (rule part-implies-overlap)
hence O v x ∨ O v y..
ultimately have O v z..
with 〈¬ O v z〉 show False..

qed
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qed
show ∀w. P w z −→ (O w x ∨ O w y)
proof

fix w
show P w z −→ (O w x ∨ O w y)
proof

from z have O w z ←→ O w x ∨ O w y..
moreover assume P w z
hence O w z by (rule part-implies-overlap)
ultimately show O w x ∨ O w y..

qed
qed

qed
with strong-sum-intro have x ⊕ y = z..
thus z = x ⊕ y..

qed
thus ?thesis..

qed

theorem fusion-eq: ∃ x. F x =⇒
(σ x. F x) = (THE x. ∀ y. O y x ←→ (∃ z. F z ∧ O y z))

proof −
assume ∃ x. F x
hence bla: ∀ y. P y (σ x. F x) −→ (∃ z. F z ∧ O y z)

by (rule parts-overlap-Fs)
have (THE x. ∀ y. O y x ←→ (∃ z. F z ∧ O y z)) = (σ x. F x)
proof (rule the-equality)

show ∀ y. O y (σ x. F x) ←→ (∃ z. F z ∧ O y z)
proof

fix y
show O y (σ x. F x) ←→ (∃ z. F z ∧ O y z)
proof

assume O y (σ x. F x)
with overlap-eq have ∃ v. P v y ∧ P v (σ x. F x)..
then obtain v where v: P v y ∧ P v (σ x. F x)..
hence P v y..
from bla have P v (σ x. F x) −→ (∃ z. F z ∧ O v z)..
moreover from v have P v (σ x. F x)..
ultimately have (∃ z. F z ∧ O v z)..
then obtain z where z: F z ∧ O v z..
hence F z..
moreover from z have O v z..
hence O z v by (rule overlap-symmetry)
with 〈P v y〉 have O z y by (rule overlap-monotonicity)
hence O y z by (rule overlap-symmetry)
ultimately have F z ∧ O y z..
thus (∃ z. F z ∧ O y z)..

next
assume ∃ z. F z ∧ O y z
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then obtain z where z: F z ∧ O y z..
from〈∃ x. F x〉 have (∀ y. F y −→ P y (σ x. F x))

by (rule F-in)
hence F z −→ P z (σ x. F x)..
moreover from z have F z..
ultimately have P z (σ x. F x)..
moreover from z have O y z..
ultimately show O y (σ x. F x)

by (rule overlap-monotonicity)
qed

qed
next

fix x
assume x: ∀ y. O y x ←→ (∃ v. F v ∧ O y v)
have (∀ y. F y −→ P y x) ∧ (∀ y. P y x −→ (∃ z. F z ∧ O y z))
proof

show ∀ y. F y −→ P y x
proof

fix y
show F y −→ P y x
proof

assume F y
show P y x
proof (rule ccontr)

assume ¬ P y x
hence ∃ z. P z y ∧ ¬ O z x

by (rule strong-supplementation)
then obtain z where z: P z y ∧ ¬ O z x..
hence ¬ O z x..
from x have O z x ←→ (∃ v. F v ∧ O z v)..
moreover from z have P z y..
hence O z y by (rule part-implies-overlap)
with 〈F y〉 have F y ∧ O z y..
hence ∃ y. F y ∧ O z y..
ultimately have O z x..
with 〈¬ O z x〉 show False..

qed
qed

qed
show ∀ y. P y x −→ (∃ z. F z ∧ O y z)
proof

fix y
show P y x −→ (∃ z. F z ∧ O y z)
proof

from x have O y x ←→ (∃ z. F z ∧ O y z)..
moreover assume P y x
hence O y x by (rule part-implies-overlap)
ultimately show ∃ z. F z ∧ O y z..

qed
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qed
qed
hence (σ x. F x) = x

by (rule strong-fusion-intro)
thus x = (σ x. F x)..

qed
thus (σ x. F x) = (THE x. ∀ y. O y x ←→ (∃ z. F z ∧ O y z))..

qed

end

sublocale GEM1 ⊆ GEM
proof

fix x y F
show ¬ P x y =⇒ ∃ z. P z x ∧ ¬ O z y

using strong-supplementation.
show x ⊕ y = (THE z. ∀ v. O v z ←→ (O v x ∨ O v y))

using sum-eq.
show x ⊗ y = (THE z. ∀ v. P v z ←→ P v x ∧ P v y)

using product-eq.
show x 	 y = (THE z. ∀w. P w z = (P w x ∧ ¬ O w y))

using difference-eq.
show − x = (THE z. ∀w. P w z ←→ ¬ O w x)

using complement-eq.
show u = (THE x. ∀ y. P y x)

using universe-eq.
show ∃ x. F x =⇒ (σ x. F x) = (THE x. ∀ y. O y x ←→ (∃ z. F z
∧ O y z)) using fusion-eq.

show (π x. F x) = (σ x. ∀ y. F y −→ P x y)
using general-product-eq.

qed

sublocale GEM ⊆ GEM1
proof

fix x y F
show ∃ x. F x =⇒ (∃ x. (∀ y. F y −→ P y x) ∧ (∀ y. P y x −→ (∃ z.

F z ∧ O y z))) using strong-fusion.
show ∃ x. F x =⇒ (σ x. F x) = (THE x. (∀ y. F y −→ P y x) ∧

(∀ y. P y x −→ (∃ z. F z ∧ O y z))) using strong-fusion-eq.
show (π x. F x) = (σ x. ∀ y. F y −→ P x y) using general-product-eq.
show x ⊕ y = (THE z. (P x z ∧ P y z) ∧ (∀w. P w z −→ O w x ∨

O w y)) using strong-sum-eq.
show x ⊗ y = (THE z. ∀ v. P v z ←→ P v x ∧ P v y)

using product-eq.
show x 	 y = (THE z. ∀w. P w z = (P w x ∧ ¬ O w y))

using difference-eq.
show − x = (THE z. ∀w. P w z ←→ ¬ O w x) using complement-eq.
show u = (THE x. ∀ y. P y x) using universe-eq.

qed
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