Mereology

Ben Blumson

March 1, 2021

Abstract

We use Isabelle/HOL to verify elementary theorems and alternative
axiomatizations of classical extensional mereology.
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1 Introduction

In this paper, we use Isabelle/HOL to verify some elementary
theorems and alternative axiomatizations of classical extensional
mereology, as well as some of its weaker subtheories.! We mostly
follow the presentations from [Simons, 1987], [Varzi, 1996] and
[Casati and Varzi, 1999], with some important corrections from
[Pontow, 2004] and [Hovda, 2009] as well as some detailed proofs
adapted from [Pietruszczak, 2018].2

We will use the following notation throughout.?

typedecl i

consts part :: i = i = bool (P)

consts overlap :: { = i = bool (O)

consts proper-part :: i = i = bool (PP)

consts sum :: i = i = i (infix ® 52)

consts product :: i = ¢ = i (infix ® 53)

consts difference :: i = i = i (infix © 51)

consts complement:: i = i (—)

consts universe :: i (u)

consts general-sum :: (i = bool) = i (binder o 9)
consts general-product :: (i = bool) = i (binder 7 [§] 9)

2 Premereology

The theory of premereology assumes parthood is reflexive and
transitive.* In other words, parthood is assumed to be a partial
ordering relation.® Overlap is defined as common parthood.b

locale PM =
assumes part-reflexivity: P x x
assumes part-transitivity : Pry — Pyz—=— Pz z

'For similar developments see [Sen, 2017] and [Bittner, 2018].

2For help with this project I am grateful to Zach Barnett, Sam Baron, Bob Beddor,
Olivier Danvy, Mark Goh, Jeremiah Joven Joaquin, Wang-Yen Lee, Kee Wei Loo, Bruno
Woltzenlogel Paleo, Michael Pelczar, Hsueh Qu, Abelard Podgorski, Divyanshu Sharma,
Manikaran Singh, Neil Sinhababu, Weng-Hong Tang and Zhang Jiang.

3See [Simons, 1987] pp. 99-100 for a helpful comparison of alternative notations.

“For discussion of reflexivity see [Kearns, 2011]. For transitivity see [Varzi, 2006].

"Hence the name premereology, from [Parsons, 2014] p. 6.

5See [Simons, 1987] p. 28, [Varzi, 1996] p. 261 and [Casati and Varzi, 1999] p. 36.



assumes overlap-eq: Oz y «— (3 2. Pzx A Pz y)
begin

2.1 Parthood

lemma identity-implies-part : t =y =— Pxy
proof —
assume = y
moreover have P z z by (rule part-reflexivity)
ultimately show P z y by (rule subst)
qed

2.2 Overlap

lemma overlap-intro: P zx =— Pzy = O x y
proof—

assume P z z

moreover assume P z y

ultimately have P zz A P z y..

hence 3 z. Pzxz A P z y..

with overlap-eq show O x y..
qed

lemma part-implies-overlap: Pxy = Oz y
proof —
assume Pz y
with part-reflezivity have P x x A P x y..
hence 3 z. Pzxz A P z y..
with overlap-eq show O z y..
qed

lemma overlap-reflexivity: O z x

proof —
have P x x A P x x using part-reflexivity part-reflexivity..
hence 3 2. Pzx A P z ..
with overlap-eq show O z x..

qed

lemma overlap-symmetry: Oz y — O y x
proof—
assume O z y
with overlap-eq have 3 2. P zx A P z y..
hence 3 2. P zy A P z z by auto
with overlap-eq show O y z..
qed

lemma overlap-monotonicity: Pry — O zx = 0 z y
proof —

assume Pz y

assume O z z



with overlap-eq have 3 v. Pv 2z A P v z..
then obtain v where v: Pv z A P v z..
hence P v z..
moreover from v have P v z..
hence P v y using (P z y by (rule part-transitivity)
ultimately have Pv z A P v y..
hence 3 v. Pv 2z A P v y..
with overlap-eq show O z y..
qed

The next lemma is from [Hovda, 2009] p. 66.

lemma overlap-lemma: 3z. (Pzy A O zz) — Oy 2z
proof —
fix z
have Pz y AN Ozx — Oy =z
proof
assume antecedent: Pz y A O z x
hence O z z..
with overlap-eq have 3v. Pv z A P v z..
then obtain v where v: Pv 2z A P v z..
hence P v z..
moreover from antecedent have P x y..
ultimately have P v y by (rule part-transitivity)
moreover from v have P v z..
ultimately have Pv y A P v z..
hence Fv. Pvy A P o z..
with overlap-eq show O y z..
qed
thus 3z. (Pzy A Ozz) — Oy z.
qed

2.3 Disjointness

lemma disjoint-implies-distinct: -~ O x y = x # y
proof —
assume - O z y
show z # y
proof
assume z = y
hence — O y y using (- O z y by (rule subst)
thus Fulse using overlap-reflexivity..
qed
qed

lemma disjoint-implies-not-part: = O x y = = Pz y
proof —

assume - O z y

show - Pz y

proof



assume Pz y
hence O z y by (rule part-implies-overlap)
with (= O z y show Fulse..
qed
qed

lemma disjoint-symmetry: - Oz y = - Oy x
proof —
assume - Oz y
show = Oy z
proof
assume O y z
hence O z y by (rule overlap-symmetry)
with (— O z i show Fulse..
qed
qed

lemma disjoint-demonotonicity: Pxy — - 0O zy = - 0 z z
proof —
assume Pz y
assume - O z y
show = O z z
proof
assume O z z
with (P z i have O z y
by (rule overlap-monotonicity)
with (= O z y show Fulse..
qed
qed

end

3 Ground Mereology

The theory of ground mereology adds to premereology the anti-
symmetry of parthood, and defines proper parthood as noniden-
tical parthood.” In other words, ground mereology assumes that
parthood is a partial order.

locale M = PM +
assumes part-antisymmetry: Pxy — Pyx — z =y
assumes nip-eq: PPxy<— Pzy ANz #y

begin

"For this axiomatization of ground mereology see, for example, [Varzi, 1996] p. 261 and
[Casati and Varzi, 1999] p. 36. For discussion of the antisymmetry of parthood see, for
example, [Cotnoir, 2010]. For the definition of proper parthood as nonidentical parthood,
see for example, [Leonard and Goodman, 1940] p. 47.



3.1 Proper Parthood

lemma proper-implies-part: PPty —> Pz y
proof —

assume PP z y

with nip-eq have P x y A\ © # y..

thus P z y..
qed

lemma proper-implies-distinct: PP x y = x # y
proof —

assume PPz y

with nip-eq have Pz y A © # y..

thus z # y..
qed

lemma proper-implies-not-part: PPz y — — Py x
proof —
assume PP z y
hence P z y by (rule proper-implies-part)
show - Py«
proof
from (PP z y have z # y by (rule proper-implies-distinct)
moreover assume P y x
with (P z ¢ have z = y by (rule part-antisymmetry)
ultimately show Fulse..
qed
qed

lemma proper-part-asymmetry: PPz y = -~ PP y ¢
proof —
assume PPz y
hence P z y by (rule proper-implies-part)
from (PP z y have = # y by (rule proper-implies-distinct)
show — PP y x
proof
assume PP y x
hence P y z by (rule proper-implies-part)
with (P z y have z = y by (rule part-antisymmetry)
with x # y show Fulse..
qed
qed

lemma proper-implies-overlap: PPz y— Oz y
proof —

assume PPz y

hence P z y by (rule proper-implies-part)

thus O z y by (rule part-implies-overlap)
qed



end

The rest of this section compares four alternative axiomatiza-
tions of ground mereology, and verifies their equivalence.

The first alternative axiomatization defines proper parthood as
nonmutual instead of nonidentical parthood.® In the presence of
antisymmetry, the two definitions of proper parthood are equiv-
alent.”

locale M1 = PM +
assumes nmp-eq: PPz y<+— Pxy AN -~ Pyx
assumes part-antisymmetry: Prxy — Pyx =— 2z =1y

sublocale M C M1
proof
fix zy
show nmp-eq: PPz y+— Pxzy AN—-Pyz
proof
assume PPz y
with nip-eq have nip: Pz y A © # y..
hence z # y..
from nip have P z y..
moreover have = P y x
proof
assume Py z
with (P z y have z = y by (rule part-antisymmetry)
with x # y show False..
qed
ultimately show Pxy A = P y z..
next
assume nmp: Pxy AN~ Pyz
hence = P y z..
from nmp have P x y..
moreover have z # y
proof
assume z = y
hence — P y y using (— P y x) by (rule subst)
thus Fualse using part-reflexivity..
qed
ultimately have Pz y A x # y..
with nip-eq show PP z y..
qed
show P xy—=— P yzx —=— z = y using part-antisymmetry.
qed

8See, for example, [Varzi, 1996] p. 261 and [Casati and Varzi, 1999] p. 36. For the
distinction between nonmutual and nonidentical parthood, see [Parsons, 2014] pp. 6-8.

9See [Cotnoir, 2010] p. 398, [Donnelly, 2011] p. 233, [Cotnoir and Bacon, 2012] p. 191,
[Obojska, 2013] p. 344, [Cotnoir, 2016] p. 128 and [Cotnoir, 2018].



sublocale M1 C M
proof
fix z y
show nip-eq: PPxy+— Pxy ANz #y
proof
assume PP z y
with nmp-eq have nmp: Px y A = P y x..
hence — P y ..
from nmp have P z y..
moreover have z # y
proof
assume z = y
hence — P y y using (— P y o) by (rule subst)
thus Fulse using part-reflexivity..
qed
ultimately show Pz y A z # y..
next
assume nip: Pry Az # y
hence z # y..
from nip have P z y..
moreover have - Py z
proof
assume Py x
with (P z ¢ have z = y by (rule part-antisymmetry)
with x # y show Fulse..
qed
ultimately have Pz y A = P y z..
with nmp-eq show PP z y..
qed
show Pxy—=— Pyxr— z = y using part-antisymmetry.
qed

Conversely, assuming the two definitions of proper parthood are
equivalent entails the antisymmetry of parthood, leading to the
second alternative axiomatization, which assumes both equiva-
lencies.'®

locale M2 = PM +
assumes nip-eq: PPry+— Pxy ANz #y
assumes nmp-eq: PPrzy<+— Pxy AN~ Pyx

sublocale M C M2
proof
fix zy
show PPz y +— Pxy Az # y using nip-eq.
show PPz y +— Pxy A - P yx using nmp-eq.
qed

0For this point see especially [Parsons, 2014] pp. 9-10.



sublocale M2 C M
proof
fix z y
show PPz y +— Pxy Az # y using nip-eq.
show Pry—=—= Pyax =z =y
proof —
assume P z y
assume P y x
show z = y
proof (rule ccontr)
assume z # y
with (P z i have Pz y A = # y..
with nip-eq have PP z y..
with nmp-eq have Pz y A = P y z..
hence = P y z..
thus Fualse using (P y ©..
qed
qed
qed

In the context of the other axioms, antisymmetry is equivalent to
the extensionality of parthood, which gives the third alternative
axiomatization.'!

locale M3 = PM +
assumes nip-eq: PPz y<+— Pxy ANz #y
assumes part-extensionality: t = y +— (V 2. Pzxz +— P 2z y)

sublocale M C M3
proof
fix z y
show PPz y «— Pz y A x # y using nip-eq.
show part-extensionality: © = y «— (¥ 2. P zx «— P z y)
proof
assume 1 = y
moreover have V 2. Pz z +— P z z by simp
ultimately show V 2. P z z <— P z y by (rule subst)
next
assume z:V 2. Pzx +— Pz y
show z = y
proof (rule part-antisymmetry)
from z have Py z <— Py y..
moreover have P y y by (rule part-reflexivity)
ultimately show P y z..
next
from z have Pz z <— Pz y..
moreover have P z z by (rule part-reflexivity)

"For this point see [Cotnoir, 2010] p. 401 and [Cotnoir and Bacon, 2012] p. 191-2.



ultimately show P z y..
qed
qed
qed

sublocale M3 C M
proof
fix x y
show PPz y+— Pxy A x # y using nip-eq.
show part-antisymmetry: Pry=— Pyrz =z =y
proof —
assume P z y
assume P y x
haveV 2. Pzzx +— Pzy
proof
fix z
show Pzz +— P zy
proof
assume P z z
thus P z y using (P z y by (rule part-transitivity)
next
assume P z y
thus P z z using (P y © by (rule part-transitivity)
qed
qed
with part-extensionality show z = y..
qed
qed

The fourth axiomatization adopts proper parthood as primi-
tive.'? Improper parthood is defined as proper parthood or iden-
tity.

locale My =
assumes part-eq: Pxy<— PPrzyV x =y
assumes overlap-eq: Oxy «— (3 z. Pzx A P z y)
assumes proper-part-asymmetry: PP xy =— - PPy x
assumes proper-part-transitivity: PP xy — PPy z —> PPz 2
begin

lemma proper-part-irreflexivity: - PP x x

proof
assume PP z z
hence — PP z z by (rule proper-part-asymmetry)
thus Fulse using (PP z ©..

qed

end

12See, for example, [Simons, 1987], p. 26 and [Casati and Varzi, 1999] p. 37.

10



sublocale M C My
proof
fixzyz
show part-eq: Pz y+— (PPzyV z=1y)
proof
assume P z y
show PPz yV x =1y
proof cases
assume zr = y
thus PPz y V z = y..
next
assume z # y
with (P z i have Pz y A = # y..
with nip-eq have PP z y..
thus PPz y V z = y..
qed
next
assume PPz yV oz =y
thus Pz y
proof
assume PP z y
thus P z y by (rule proper-implies-part)
next
assume z = y
thus P z y by (rule identity-implies-part)
qed
qed
show Oz y +— (3 2. Pzz A P zy) using overlap-eq.
show PP z y = — PP y x using proper-part-asymmetry.
show proper-part-transitivity: PPty — PPy 2z =—> PP x 2
proof —
assume PPz y
assume PP y z
have Px 2z Nz # 2
proof
from (PP z y have P z y by (rule proper-implies-part)
moreover from (PP y 2 have P y z by (rule proper-implies-part)
ultimately show P xz z by (rule part-transitivity)
next
show z # 2
proof
assume r = 2
hence PP y z using (PP y 2 by (rule ssubst)
hence — PP z y by (rule proper-part-asymmetry)
thus Fulse using (PP z ..
qed
qed
with nip-eq show PP z z..

11



qed
qed

sublocale M4 C M
proof
fixzyz
show proper-part-eq: PP xy +— Pxy ANz # y
proof
assume PP x y
hence PPz y V z = y..
with part-eq have P z y..
moreover have z # y
proof
assume z = y
hence PP y y using (PP z i by (rule subst)
with proper-part-irreflexivity show False..
qed
ultimately show Pz y A z # y..
next
assume ths: Pz y AN x # y
hence z # y..
from rhs have P x y..
with part-eq have PP x y V z = y..
thus PPz y
proof
assume PPz y
thus PP z y.
next
assume z = y
with z # 1y show PP z y..
qed
qed
show Pz x
proof —
have = = z by (rule refl)
hence PPz z V z = z..
with part-eq show P z z..
qed
show Oz y +— (3 2. Pzz A P zy) using overlap-eq.
show Pxy=— Pycsc =z =y
proof —
assume P 7 y
assume Py z
from part-eq have PP x y V x = y using (P z ..
thus z =y
proof
assume PPz y
hence — PP y x by (rule proper-part-asymmetry)
from part-eq have PP y z V y = z using (P y o..

12



thus z =y
proof
assume PP y x
with (-« PP y » show z = y..
next
assume y = x
thus z = y..
qed
qed
qged
show Pxy=— Pyz=— Puxz
proof —
assume P z y
assume Py z
with part-eq¢ have PPy 2z V y = z..
hence PPz 2V z =2
proof
assume PP y z
from part-eq have PP x y V z = y using (P z ..
hence PP z 2
proof
assume PPz y
thus PP z z using (PP y 2 by (rule proper-part-transitivity)
next
assume r = y
thus PP z z using (PP y 2 by (rule ssubst)
ged
thus PPz 2z V z = z..
next
assume y = 2
moreover from part-eq have PP z y V = = y using (P z ..
ultimately show PP z 2 V z = z by (rule subst)
qed
with part-eq show P z z..
qed
qed

4 Minimal Mereology

Minimal mereology adds to ground mereology the axiom of weak
supplementation.!3

locale MM = M +

13See [Varzi, 1996] and [Casati and Varzi, 1999] p. 39. The name minimal mereology
reflects the, controversial, idea that weak supplementation is analytic. See, for example,
[Simons, 1987] p. 116, [Varzi, 2008] p. 110-1, and [Cotnoir, 2018]. For general discussion
of weak supplementation see, for example [Smith, 2009] pp. 507 and [Donnelly, 2011].

13



assumes weak-supplementation: PP yx = (3 2. Pzxz A= O z y)

The rest of this section considers three alternative axiomatiza-
tions of minimal mereology. The first alternative axiomatization
replaces improper with proper parthood in the consequent of
weak supplementation.'?

locale MM1 = M +
assumes proper-weak-supplementation:
PPyrx = (3 2. PPzz A= 0 zy)

sublocale MM C MM1
proof
fix z y
show PPyz = (3 2. PPzz A= O zy)
proof —
assume PP y
hence 3 z. P zz A = O z y by (rule weak-supplementation)
then obtain z where z: Pzax A = O z y..
hence = O z y..
from z have P z z..
hence Pzx N z £ z

proof
show 2z # z
proof
assume z = ¢
hence PP y z

using (PP y o by (rule ssubst)
hence O y z by (rule proper-implies-overlap)
hence O z y by (rule overlap-symmetry)
with (= O z i show False..
qged
qed
with nip-eq have PP z x..
hence PPzz AN -0 zy
using (= O z y..
thus 3 2. PPzz A = O z y..
qed
qed

sublocale MM1 C MM
proof
fix x y
show weak-supplementation: PP yx = (3 2. Pzaxz A = O z y)
proof —
assume PP y x
hence 3 z. PP zz A = O zy by (rule proper-weak-supplementation)
then obtain z where z: PP zz A = O z y..

1See [Simons, 1987] p. 28.

14



hence PP z z..
hence P z z by (rule proper-implies-part)
moreover from z have — O z y..
ultimately have Pzz A = O z y..
thus 3 z. Pzz A = O z y..
qed
qed

The following two corollaries are sometimes found in the litera-
ture.!?

context MM
begin

corollary weak-company: PP yx = (3 z. PP zx A z # y)
proof —
assume PP y x
hence 3 z. PP zx A = O z y by (rule proper-weak-supplementation)
then obtain z where z: PP z2 A - O z y..
hence PP z z..
from z have — O z y..
hence z # y by (rule disjoint-implies-distinct)
with (PP z » have PP z 2 A z # y..
thus 3 z. PPzz A z # y..
qed

corollary strong-company: PP yx = (3 2. PP zz A = Pz y)
proof —
assume PP y x
hence 3z. PP zz A = O z y by (rule proper-weak-supplementation)
then obtain z where z: PP z2z A = O z y..
hence PP z z..
from z have - O z y..
hence — P z y by (rule disjoint-implies-not-part)
with (PP z ) have PPzx A = P zy..
thus 3 z. PPzxz A = Pz y..
qed

end

If weak supplementation is formulated in terms of nonidentical
parthood, then the antisymmetry of parthood is redundant, and
we have the second alternative axiomatization of minimal mere-
ology.'6

locale MM2 = PM +

15See [Simons, 1987] p. 27. For the names weak company and strong company see
[Cotnoir and Bacon, 2012] p. 192-3 and [Varzi, 2016].

'6See [Cotnoir, 2010] p. 399, [Donnelly, 2011] p. 232, [Cotnoir and Bacon, 2012] p. 193
and [Obojska, 2013] pp. 235-6.

15



assumes nip-eq: PPxy<«— Przy ANz #y
assumes weak-supplementation: PP yx = (3 z. Pzz A= O z y)

sublocale MM2 C MM
proof
fix z y
show PPz y <— Pz y Az # y using nip-eq.
show part-antisymmetry: Pry =— Pyrz =z =y
proof —
assume Pz y
assume Py z
show z = y
proof (rule ccontr)
assume z # y
with (P z ) have Pz y A = # y..
with nip-eq have PP z y..
hence 3 2. P zy A = O z z by (rule weak-supplementation)
then obtain z where z: Pz y A = O z z..
hence = O z z..
hence - P z z by (rule disjoint-implies-not-part)
from z have P z y..
hence P z z using (P y 2> by (rule part-transitivity)
with (= P z ©» show Fulse..
qed
qed
show PPyxz = 3z. Pzx A = O z y using weak-supplementation.
qed

sublocale MM C MM?2
proof

fix z y

show PPz y +— (P zy A z # y) using nip-eq.

show PPyx = 3z Pzx A = O z y using weak-supplementation.
qed

Likewise, if proper parthood is adopted as primitive, then the
asymmetry of proper parthood is redundant in the context of
weak supplementation, leading to the third alternative axioma-
tization.!”

locale MM3 =
assumes part-eq¢: Prxy<+— PPzyVz =y
assumes overlap-eq: Oz y <— (3 2. Pzxz A P z y)
assumes proper-part-transitivity: PP ¢y = PPy 2z = PP x 2
assumes weak-supplementation: PP yz = (3 z. Pza A - O z y)
begin

lemma part-reflexivity: P x x

1"See [Donnelly, 2011] p. 232 and [Cotnoir, 2018].

16



proof —
have z = z..
hence PPz x V x = z..
with part-eq show P z z..
qed

lemma proper-part-irreflexivity: = PP x x
proof
assume PP x x
hence 3 z. P zx A = O z z by (rule weak-supplementation)
then obtain z where z: Pzz A = O z x..
hence — O z z..
from z have P z z..
with part-reflezivity have P z z A P z x..
hence 3 v. Pvz A P v x..
with overlap-eq have O z z..
with (= O z ©» show Fulse..
qed

end

sublocale MM3 C M}
proof
fixxyz
show Pxy «<— PP xy V x = y using part-eq.
show Oz y+— (3 2. Pzx A P zy) using overlap-eq.
show proper-part-irreflexivity: PPty — - PPy
proof —
assume PPz y
show - PP y x
proof
assume PP y z
hence PP y y using (PP z y by (rule proper-part-transitivity)
with proper-part-irreflexivity show False..
qed
qed
show PPz y = PP y z = PP x z using proper-part-transitivity.
qed

sublocale MM3 C MM
proof

fix z y

show PPyxz = (3 2. Pzz A = O 2z y) using weak-supplementation.
qed

sublocale MM C MMS3
proof
fixzyz
show Pz y +— (PP zyV z = y) using part-eq.

17



show Oz y +— (2. P zx A P z y) using overlap-eq.

show PPz y = PP y z = PP x z using proper-part-transitivity.

show PPyax = Jz. P zx A — O z y using weak-supplementation.
qed

5 Extensional Mereology

Extensional mereology adds to ground mereology the axiom of
strong Supple]rnemta‘cion.18

locale EM = M +
assumes strong-supplementation:
- Pzy= (2. PzzAN-0zy)
begin

Strong supplementation entails weak supplementation.'®

lemma weak-supplementation: PP xy = (32z. Pzy A - O z x)
proof —

assume PPz y

hence — P y z by (rule proper-implies-not-part)

thus 3z. Pz y A = O z z by (rule strong-supplementation)
qed

end

So minimal mereology is a subtheory of extensional mereology.?"

sublocale EM C MM
proof

fix yz

show PPyax = Jz. P zx A - O z y using weak-supplementation.
qed

Strong supplementation also entails the proper parts principle.?!

context EM
begin

lemma proper-parts-principle:
(32. PPzz) = (V2. PPzz — Pzy) = Puxy
proof —
assume Jz. PP z
then obtain v where v: PP v z..
hence P v z by (rule proper-implies-part)
assume antecedent: ¥V z. PP 22 — P z y

18See [Simons, 1987] p. 29, [Varzi, 1996] p. 262 and [Casati and Varzi, 1999] p. 39-40.
19Gee [Simons, 1987] p. 29 and [Casati and Varzi, 1999] p. 40.

20[Casati and Varzi, 1999] p. 40.

21Sce [Simons, 1987] pp. 28-9 and [Varzi, 1996] p. 263.
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hence PPvz — Puvy..
hence P v y using (PP v ..
with (P v »» have Pvax A P v y..
hence Jv. Pvxz A Poy..
with overlap-eq have O x y..
show Pz y
proof (rule ccontr)
assume - Pz y
hence 3z. Pzz A - O zy
by (rule strong-supplementation)
then obtain z where z: Pzax A = O z y..
hence P z z..
moreover have z # x
proof
assume z = z
moreover from z have = O z y..
ultimately have = O z y by (rule subst)
thus Fulse using (O z y..
qed
ultimately have P z z A z # z..
with nip-eq have PP 2 z..
from antecedent have PP z x — P z y..
hence P z y using (PP z ..
hence O z y by (rule part-implies-overlap)
from z have - O z y..
thus Fulse using O z ..
qed
qed

Which with antisymmetry entails the extensionality of proper
parthood.??

theorem proper-part-extensionality:
(32. PPzaxV PPzy) = =y +— (V2. PPzz +<— PP zy)
proof —
assume antecedent: 3z. PP zx V PP z y
show z = y <— (V2. PP z2x <— PP z y)
proof
assume z = y
moreover have Vz. PP zx +— PP z x by simp
ultimately show V2. PP z z +— PP z y by (rule subst)
next
assume right: Vz. PP z x <— PP z y
have Vz. PPzx — Pz y
proof
fix z
show PPzx — Pz y
proof

22Gce [Simons, 1987] p. 28, [Varzi, 1996] p. 263 and [Casati and Varzi, 1999] p. 40.
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assume PP z z
from right have PP z x +— PP z y..
hence PP z y using (PP z ..
thus P z y by (rule proper-implies-part)
ged
qed
haveVz. PPzy — Pz x
proof
fix z
show PPzy — P zx
proof
assume PP z y
from right have PP z x +— PP z y..
hence PP z z using (PP z ..
thus P z z by (rule proper-implies-part)
ged
qed
from antecedent obtain z where z: PP zz V PP z y..
thus z =y
proof (rule disjE)
assume PP z x
hence 3z. PP z z..
hence P z y using Vz. PPzx — Pz y
by (rule proper-parts-principle)
from right have PP z x +— PP z y..
hence PP z y using (PP z @..
hence 3z. PP z y..
hence P y x using Vz. PPzy — Pz
by (rule proper-parts-principle)
with <P x 3 show z =y
by (rule part-antisymmetry)
next
assume PP z y
hence 2. PP z y..
hence P y x using Vz. PPzy — Pz
by (rule proper-parts-principle)
from right have PP z x <— PP z y..
hence PP z z using (PP z ..
hence 3z. PP z z..
hence P z y using V2. PPz2x — Pz y
by (rule proper-parts-principle)

thus z =y
using (P y o by (rule part-antisymmetry)
qed
qed
qed

It also follows from strong supplementation that parthood is de-
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finable in terms of overlap.?3

lemma part-overlap-eq: Pz y «— (V2. O zz — O z y)
proof
assume Pz y
show (Vz. O zz — O z y)
proof
fix z
show Oza2 — Oz y
proof
assume O z ¢
with <P z ¢ show O z y
by (rule overlap-monotonicity)
qed
qed
next
assume right: Vz. O zx — Oz y
show Pz y
proof (rule ccontr)
assume - Pz y
hence 3z. Pzz A= 0O zy
by (rule strong-supplementation)
then obtain z where z: Pzx A = O z y..
hence — O z y..
from right have O zz — O z y..
moreover from z have P 2 z..
hence O z z by (rule part-implies-overlap)
ultimately have O z y..
with (= O z y show Fulse..
qed
qed

Which entails the extensionality of overlap.

theorem overlap-extensionality: t = y +— (Vz. O zz +— O z y)
proof
assume r = y
moreover have Vz. O zz +— O z z
proof
fix z
show O zz +— O z z..
qed
ultimately show Vz. Oz 2 +— O z y
by (rule subst)
next
assume 7ight: Vz. O zz +— Oz y
haveVz. Ozy — O z=x
proof
fix z

23See [Parsons, 2014] p. 4.
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from right have O z z <— O z y..
thus Oz y — O z z..
qed
with part-overlap-eq have P y x..
haveVz. Ozzx — Oz y
proof
fix z
from right have O z z <— O z y..
thus O z2 — O z y..
qged
with part-overlap-eq have P z y..
thus z =y
using (P y » by (rule part-antisymmetry)
qed

end

6 Closed Mereology

The theory of closed mereology adds to ground mereology con-
ditions guaranteeing the existence of sums and products.?*

locale CM = M +
assumes sum-eq: £ ® y = (THE 2. Vv. Ovz+— OvzV Ovy)
assumes sum-closure: 3z. Vv. Ovz<+— OvaxV Ovy
assumes product-eq:
x®y=(THE z.Vv. Pvz<+— Pvz A Puvy)
assumes product-closure:
Ozy=— 3Jz.Vv.Pvz+— PvzAPuvy
begin

6.1 Products

lemma product-intro:
Vw. Pwz+— (PwzANPuwy) =zQ0y=2z
proof —
assume z: Vw. Pwz +— (Pwz A Pwy)
hence (THE v.Vw. Pwv+— Pwxz AN Pwy) =2z
proof (rule the-equality)
fix v
assume v: Vw. Pw v +— (Pwax A Pwy)
have Vw. Pw v +— Pwz
proof
fix w

24See [Masolo and Vieu, 1999] p. 238. [Varzi, 1996] p. 263 and [Casati and Varzi, 1999]
p- 43 give a slightly weaker version of the sum closure axiom, which is equivalent given
axioms considered later.
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from z have Pw z «— (Pwzx A P w y)..
moreover from v have Pw v +— (Pwz A Pwy)..
ultimately show P w v <— P w z by (rule ssubst)
qed
with part-extensionality show v = z..
qed
thus z ® y = 2
using product-eq by (rule subst)
qed

lemma product-idempotence: t @ © = x
proof —
have Vw. Pwzx — Pwx A Pwzx
proof
fix w
show Pwzx +— Pwx ANPwzx
proof
assume P w
thus Pwx A P w x using (P w ..
next
assume Pwx A Pwx
thus P w z..
qed
qed
thus z ® z = z by (rule product-intro)
qed

lemma product-character:
Ozy= VYw. Pw(z®y)+— (Pwz ANPuwy))
proof —
assume O z y
hence 32. Vw. Pwz +— (Pwzx A Pwy) by (rule product-closure)
then obtain z where z: Vw. Pwz +— (Pwx A Pwy)..
hence z ® y = z by (rule product-intro)
thusVw. Pw (2 ® y) «— Pwaz APuwy
using z by (rule ssubst)
qed

lemma product-commutativity: Oz y —= 2 Q y =y @ x
proof —
assume O z y
hence O y z by (rule overlap-symmetry)
hence Vw. P w (y ® z) «— (P wy A P w ) by (rule prod-
uct-character)
hence Vw. Pw (y ® z) «— (P waz A P wy) by auto
thus z ® y = y ® z by (rule product-intro)
qed

lemma product-in-factors: Oz y = P (z @ y) ct AP (z R y) y
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proof —
assume O z y
hence Vw. P w (z ® y) «— P wa A P w y by (rule prod-
uct-character)
hence P (z® y) (t®y) +— P (z®@y)z AP (z® y) y.
moreover have P (z ® y) (z ® y) by (rule part-reflexivity)
ultimately show P (z @ y) 2 A P (z ® y) y..
qed

lemma product-in-first-factor: Oty = P (z ® y) «

proof —
assume Oz y
hence P (z ® y) z A P (z ® y) y by (rule product-in-factors)
thus P (z ® y) 2..

qed

lemma product-in-second-factor: O x y = P (z ® y) y

proof —
assume O z y
hence P (z ® y) z A P (2 ® y) y by (rule product-in-factors)
thus P (z ® y) y..

qed

lemma nonpart-implies-proper-product:
“PzyANOzy=— PP(zQ®y) z
proof —
assume antecedent: -~ Pz y AN Oz y
hence = P z y..
from antecedent have O z y..
hence P (z ® y) z by (rule product-in-first-factor)
moreover have (z ® y) # =
proof
assume (z Q@ y) =z
hence - P (z ® y) y
using (= P z y by (rule ssubst)
moreover have P (2 ® y) y
using (O z y by (rule product-in-second-factor)
ultimately show False..
qed
ultimately have P (z ® y) 2 Az ® y # ..
with nip-eq show PP (z ® y) x..
qed

lemma common-part-in-product: P zz AN Pzy=— Pz (z ® y)
proof —

assume antecedent: P zx N P z y

hence 3z. Pzz A P z y..

with overlap-eq have O x y..

hence Vw. Pw (z @ y) «— (Pwz A Pwy)
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by (rule product-character)
hence Pz (z ® y) «— (P zx A P zy)..
thus Pz (z ® y)
using (P zz A P z y..
qed

lemma product-part-in-factors:
Ozy=Pz(z®@y) = PzxANPzy
proof —
assume O z y
hence Vw. Pw (z @ y) +— (Pwx AN Pwy)
by (rule product-character)
hence Pz (z ® y) «— (P zx A Pz y)..
moreover assume P z (z ® y)
ultimately show P zx A P z y..
qed

corollary product-part-in-first-factor:
Ozy=—Pz(z®y) = Pzz
proof —
assume O z y
moreover assume P z (z ® y)
ultimately have Pzxz A Pz y
by (rule product-part-in-factors)
thus P z z..
qed

corollary product-part-in-second-factor:
Ozy=—Pz(z®y) = Pzy
proof —
assume O z y
moreover assume P 2z (z ® y)
ultimately have Pzz A P z y
by (rule product-part-in-factors)
thus P z y..
qed

lemma part-product-identity: Pz y — . ® y =z
proof —

assume Pz y

with part-reflezivity have P x x A P x y..

hence P z (z ® y) by (rule common-part-in-product)

have O z y using (P z y by (rule part-implies-overlap)

hence P (z ® y) z by (rule product-in-first-factor)

thus z ® y = z using (P z (z ® y)) by (rule part-antisymmetry)
qed

lemma product-overlap: P z2x = O zy = 0z (z ® y)
proof —
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assume P z x
assume O z y
with overlap-eq have 3v. Pv z A P v y..
then obtain v where v: Pv z A P v y..
hence P v y..
from v have P v z..
hence P v z using (P z x» by (rule part-transitivity)
hence Pvax A P vy using (P v ..
hence P v (z ® y) by (rule common-part-in-product)
with (P v have Pvz A Pv (z ® ¥)..
hence 3v. Pvz A Pv (z ® y)..
with overlap-eq show O z (z ® y)..
qed

lemma disjoint-from-second-factor:
PryAn—-0z(y®2) = - 0zxz
proof —
assume antecedent: Pz y A = Oz (y ® 2)
hence - Oz (y ® 2)..
show - O z 2
proof
from antecedent have P z y..
moreover assume O z 2z
ultimately have O z (y ® 2)
by (rule product-overlap)
with (= O z (y ® 2)) show Fulse..
qed
qed

lemma converse-product-overlap:
Ozy=—0z(z®y) = 0zy
proof —
assume O z y
hence P (z ® y) y by (rule product-in-second-factor)
moreover assume O z (z ® y)
ultimately show O z y
by (rule overlap-monotonicity)
qed

lemma part-product-in-whole-product:
Ozy=PzvAPyz= P2y (v®2)
proof —
assume O z y
assume Pz v A Py =z
have Vw. Pw (z ® y) — P w (v ® 2)
proof
fix w
show Pw (2 ® y) — Pw (v ® 2)
proof
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assume P w (z ® y)
with <Oz yp have Pwax AN Pwy
by (rule product-part-in-factors)
have Pw v A Pwz
proof
from (P wx A P w1y have P w z..
moreover from (P z v A Py 2 have P z v..
ultimately show P w v by (rule part-transitivity)
next
from <P wx A P w1y have P w y..
moreover from <Pz v A Py 2 have Py z..
ultimately show P w z by (rule part-transitivity)
qged
thus P w (v ® 2) by (rule common-part-in-product)
qed
qed
hence P (z @ y) (zQy) — P (z®y) (v® 2)..
moreover have P (z ® y) (z ® y) by (rule part-reflexivity)
ultimately show P (z ® y) (v ® 2)..
qed

lemma right-associated-product: (Jw. Pwx A Pwy AN Pwz) =
NVw. Pw(z®(y®2)+— PwzA(PwyAPuwz))
proof —
assume antecedent: (Jw. Pwz A Pwy A Pwz)
then obtain w where w: Pwz A Pwy A Pw z.
hence P w z..
from w have Pw y A P w z..
hence Jw. Pwy A P w z..
with overlap-eq have O y z..
hence yz: Vw. Pw (y ® z) +— (Pwy AN Pwz)
by (rule product-character)
hence Pw (y ® z) «— (Pwy A P w 2)..
hence P w (y ® 2)
using (Pwy A Pw 2..
with (P w2 have Pwz A P w (y ® 2)..
hence 3w. Pwz A Pw (y ® 2)..
with overlap-eq have O z (y ® z)..
hence zyz: Vw. Pw (2 ® (y ® 2)) «— Pwz A Pw(y ® 2)
by (rule product-character)
show Vw. Pw (z® (y® 2)) «—= Pwaz A (PwyA Pw2)
proof
fix w
from yz have wyz: Pw (y ® 2) «— (Pwy A Pw z)..
moreover from zyz have
Puw(z® (y® 2)) +— PwazANPw(y® z2)..
ultimately show
Pw(z®(y®z2)+—PwzsA(PwyAPwz)
by (rule subst)
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qed
qed

lemma left-associated-product: (3w. Pwx AN Pwy A Pw z) =
Vw Pw((z®y ®2)«— (PwzANPwy) N Pwz)
proof —
assume antecedent: (3w. Pwz AN Pwy A Pwz)
then obtain w where w: Pwax AN Pwy A P w z..
hence Pwy A P w z..
hence P w y..
have P w z
using (P wy A Pw 2..
from w have P w z..
hence Pwxz AN Pwy
using (P w ..
hence 3z. Pzxz A P z y..
with overlap-eq have O x y..
hence zy: Vw. Pw (z ® y) «— (Pwz A Pwy)
by (rule product-character)
hence Pw (z ® y) +— (Pwa A Pwy).
hence P w (z ® y)
using (Pwzx A P w ..
hence Pw (z ® y) A P w z
using (P w 2..
hence Jw. Pw (z ® y) A P w z..
with overlap-eq have O (z ® y) z..
hence zyz: Vw. Pw (2 @ y) ® 2) +—> Pw (z @ y) AN Pw 2
by (rule product-character)
show Vw. Pw (z ® y) ® 2) «— (Pwz APwy) N Pwz
proof
fix v
from zy have vzy: Pv (z ® y) «— (Pvz A Pvy)..
moreover from zyz have
Pov((z®@y)®@z2)«—>Pv(r®y) ANPoz.
ultimately show P v ((z ® y) ® 2) +— (Pvaz A Pvy) ANPuvz
by (rule subst)
qed
qed

theorem product-associativity:
Bw.PwzAPwyANPwz) =20 (Y2 =20y Q2
proof —
assume ante:(Jw. Pwxz AN Pwy A Pw2)
hence Vw. Pw (z ® (y® 2)) «— Pwaz A (Pwy A Pwz))
by (rule right-associated-product)
moreover from ante have
Vw.Pw((z®y) @2 +«— (PwzANPwy) N Pwz)
by (rule left-associated-product)
ultimately have Vw. Pw (z ® (y ® 2)) +— Pw ((z ® y) ® 2)
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by simp
with part-extensionality show 2 ®@ (y ® 2) = (z ® y) ® z..
qed

end

6.2 Differences

Some writers also add to closed mereology the axiom of difference

closure.2?

locale CMD = CM +
assumes difference-eq:
20 y=(THE 2z Vw. Pwz<+— Pwz A—- Owy)
assumes difference-closure:
Bw. PwzAN-Owy) = F2z.Vw. Pwz+—PwzxA- 0w

y)
begin

lemma difference-intro:
Vw. Pwz+— PwzsA-Ouwy) =z6y==2
proof —
assume antecedent: (Vw. Pwz +— Pwzx A = O wy)
hence (THE z.Yw. Pwz<+— Pwz A=~ Owy) =z
proof (rule the-equality)
fix v
assume v: Yw. Pwv+— Pwax A= Owy)
have Vw. Pwv +— Pwz
proof
fix w
from antecedent have P w z «+— Pwaxz A = O w y..
moreover from v have Pwv<+— Pwax A - O wy..
ultimately show P w v «— P w z by (rule ssubst)
qed
with part-extensionality show v = z..
qed
with difference-eq show © & y = 2z by (rule ssubst)
qed

lemma difference-idempotence: = Oz y = (x O y) =z
proof —
assume - Oz y
hence — O y z by (rule disjoint-symmetry)
have Vw. Pwx +— Pwax A= Owy
proof
fix w
show Pwz +— Pwz A—-Owy
proof

?5See, for example, [Varzi, 1996] p. 263 and [Masolo and Vieu, 1999] p. 238.
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assume P w x
hence = O y w using (- O y »
by (rule disjoint-demonotonicity)
hence -~ O w y by (rule disjoint-symmetry)
with (P w ) show Pwax A = O w y..

next
assume Pwzx A - Owy
thus P w z..
qed
qged
thus (z © y) = z by (rule difference-intro)
qed

lemma difference-character: (3w. Pwz A = O wy) =
Vw. Pw(zoy)+—PwzA-0wy)
proof —
assume Jw. Pwax A - Owy
hence 3z Vw. Pw z «— P wa A~ O wy by (rule differ-
ence-closure)
then obtain z where z: Vw. Pwz +— Pwz A= O w y..
hence (z © y) = z by (rule difference-intro)
thus Vw. Pw (z © y) «— Pwaz A =~ O w y using z by (rule
ssubst)
qed

lemma difference-disjointness:
(3z.PzzAN=-0zy) = -0y (zO6y)
proof —
assume dz. Pzaz A= 0 zy
hence zmy: Vw. Pw (z © y) +— (Pwz A = O wy)
by (rule difference-character)
show = Oy (z © y)
proof
assume O y (z © y)
with overlap-eq have 3v. Pvy A P v (z © y)..
then obtain v where v: Pvy A P v (z © y)..
from amy have Pv (z © y) +— (Pvz A= O v y)..
moreover from v have P v (z © y)..
ultimately have Pvz A = O v y..
hence = O v y..
moreover from v have P v y..
hence O v y by (rule part-implies-overlap)
ultimately show False..
qed
qed

end
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6.3 The Universe

Another closure condition sometimes considered is the existence
of the universe.26

locale CMU = CM +
assumes universe-eq: u = (THE z. Vw. P w 2)
assumes universe-closure: 3y. Vz. Pz y
begin

lemma universe-intro: (Vw. P wz) = u = z
proof —
assume z: Vw. P w z
hence (THE z.Yw. P w z) = z
proof (rule the-equality)
fix v
assume v: Vw. P w v
have Vw. Pw v +— Pwz
proof
fix w
show Pwv +— Pwz
proof
assume P w v
from z show P w z..
next
assume P w z
from v show P w v..

qged
qed
with part-extensionality show v = z..
qed
thus u = z using universe-eq by (rule subst)

qed

lemma universe-character: Pz u
proof —
from universe-closure obtain y where y: V2. P z y..
hence u = y by (rule universe-intro)
hence Vz. P x u using y by (rule ssubst)
thus P z u..
qed

lemma - PP u z

proof
assume PP u x
hence — P z u by (rule proper-implies-not-part)
thus False using universe-character..

qed

26See, for example, [Varzi, 1996] p. 264 and [Casati and Varzi, 1999] p. 45.
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lemma product-universe-implies-factor-universe:
Ory=—2Qy=u=—>2=u
proof —
assume r @ y = u
moreover assume O z y
hence P (z ® y) z
by (rule product-in-first-factor)
ultimately have P u z
by (rule subst)
with universe-character show = = u
by (rule part-antisymmetry)
qed

end

6.4 Complements

As is a condition ensuring the existence of complements.?”

locale CMC = CM +
assumes complement-eq: —x = (THE z. Vw. P w z +— = O w )
assumes complement-closure:
Fw. - Owz) = Fz.Vw.Pwz+— - 0wz
assumes difference-eq:
z0y=(THE 2z Vw. Pwz+— Pwz AN- Owy)
begin

lemma complement-intro:
NVw.Pwz+—-0wz) = —z=2
proof —
assume antecedent: Vw. Pw z +— - Owz
hence (THE z. Vw. Pwz+— - Owz) =z
proof (rule the-equality)
fix v
assume v: Vw. Pwv<+— -~ Owzx
have Vw. Pwv +— Pwz
proof
fix w
from antecedent have P w z +— — O w x..
moreover from v have P w v <— = O w z..
ultimately show P w v «<— P w z by (rule ssubst)
qed
with part-extensionality show v = z..
qed
with complement-eq show —z = 2z by (rule ssubst)
qed

27See, for example, [Varzi, 1996] p. 264 and [Casati and Varzi, 1999] p. 45.

32



lemma complement-character:
Fw. - Owz) = Vw. Pw (—z) — - Owaz)
proof —
assume Jw. -~ O wz
hence (2. Vw. P w z +— = O w z) by (rule complement-closure)
then obtain z where z: Vw. Pw z +— - O w z..
hence —z = z by (rule complement-intro)
thus Vw. Pw (—z) «— - Owz
using z by (rule ssubst)
qged

lemma not-complement-part: 3w. =~ O wr = = Pz (—x)
proof —
assume Jw. - O wz
hence Vw. Pw (—z) +— -~ O wz
by (rule complement-character)
hence Pz (—z) «— = O z z..
show — P z (—x)
proof
assume Pz (—z)
with (P z (—z) +— — O z 2» have = O z z..
thus Fulse using overlap-refiexivity..
qed
qed

lemma complement-part: =~ O x y = P x (—vy)
proof —

assume - Oz y

hence 2. = O z y..

hence Vw. Pw (—y) «+— " Owy

by (rule complement-character)

hence Pz (—y) +— = O z y..

thus P z (—y) using (- O z y..
qed

lemma complement-overlap: = O zy = O z (—y)
proof —
assume - Oz y
hence P z (—y)
by (rule complement-part)
thus O z (—y)
by (rule part-implies-overlap)
qed

lemma or-complement-overlap: Vy. O yxz VvV Oy (—x)
proof

fix y

show Oy zV Oy (—x)

proof cases
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assume O y z
thus Oyz VvV Oy (—z)..
next
assume - Oy z
hence O y (—z)
by (rule complement-overlap)
thus Oyz VvV Oy (—z)..
qed
qed

lemma complement-disjointness: 3v. = O vz = = O z (—x)
proof —
assume Jv. - O vz
hence w: Vw. Pw (—z) +— - O wz
by (rule complement-character)
show = O z (—z)
proof
assume O z (—z)
with overlap-eq have 3v. Pvxz A P v (—z)..
then obtain v where v: P vz A P v (—zx)..
from w have P v (—z) +— = O v x..
moreover from v have P v (—z)..
ultimately have - O v z..
moreover from v have P v z..
hence O v z by (rule part-implies-overlap)
ultimately show Fulse..
qed
qed

lemma part-disjoint-from-complement:
Jv. 2 Ove= Pyz = - 0y (—x)
proof
assume Jv. - O vz
hence — O z (—z) by (rule complement-disjointness)
assume P y x
assume O y (—z)
with overlap-eq have 3v. Pvy A P v (—x)..
then obtain v where v: P vy A P v (—x)..
hence P v y..
hence P v z using (P y @ by (rule part-transitivity)
moreover from v have P v (—z)..
ultimately have Pvz A P v (—x)..
hence 3v. Pva A Pv (—x)..
with overlap-eq have O z (—z)..
with (= O z (—z) show False..
qed

lemma product-complement-character: (Jw. Pwxz A = O w y) =
NMVw. Pw(z® (—y)) «— (Pwz A (= Owy)))
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proof —
assume antecedent: 3w. Pwxz A - Owy
then obtain w where w: Pwz A = O w y..
hence P w z..
moreover from w have - O w y..
hence P w (—y) by (rule complement-part)
ultimately have Pwax A P w (—y)..
hence 3w. Pwa A P w (—y)..
with overlap-eq have O z (—vy)..
hence prod: (Vw. Pw (z ® (—y)) «— (Pwz A Pw (—y)))
by (rule product-character)
show Vw. Pw (z ® (—y)) «— (Pwz A (- O wy))
proof
fix v
from w have = O w y..
hence Jw. = O w y..
hence Vw. Pw (—y) «+— - Owy
by (rule complement-character)
hence P v (—y) «— - O v y..
moreover have P v (z ® (—y)) +— (Pvz A Pov (—y))
using prod..
ultimately show P v (z ® (—y)) «— (Pvz A (= Ovy))
by (rule subst)
qed
qed

theorem difference-closure: (Jw. Pwxz A = O wy) =

(Fz.Vw. Pwz+— Pwz A= Owy)
proof —

assume Jw. Pwax A - Owy

hence Vw. Pw (z ® (—y)) «—= Pwz A= Owy

by (rule product-complement-character)

thus (3z. Vw. Pwz +— Pwz A= O wy) by (rule ex])

qed

end

sublocale CMC C CMD
proof
fix x y
show 2 & y = (THE z.Vw. Pwz=(Pwz A= O wy))
using difference-eq.
show (Jw. Pwz A= O wy) =
(Fz.VYw. Pwz=(PwzA- Owy))
using difference-closure.
qed

corollary (in CMC) difference-is-product-of-complement:
Buw.PwzAN-Ouwy) = (z0y) =z (—y)
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proof —
assume antecedent: 3w. Pwxz A - Owy
hence Vw. Pw (z ® (—y)) ¢—= Pwz A= Owy
by (rule product-complement-character)
thus (z © y) = 2 ® (—y) by (rule difference-intro)
qed

Universe and difference closure entail complement closure, since
the difference of an individual and the universe is the individual’s
complement.

locale CMUD = CMU + CMD +
assumes complement-eq: —x = (THE z. Vw. P w z <— = O w )
begin

lemma universe-difference:
Bw. - Owz) = Vw. Pw(udz)+— - 0wz
proof —
assume Jw. - O w x
then obtain w where w: = O w z..
from universe-character have P w u.
hence Pwu A = O w z using (= O w ..
hence 3z. Pzu A = O z z..
hence uz: Vw. Pw (u© z) ¢— (Pwu A - O wz)
by (rule difference-character)
show Vw. Pw (u & z) «— - Owzx
proof
fix w
from uz have wuz: Pw (v © z) «— (Pwu A = O wzx)..
show Pw (u© z) «— - Owzx
proof
assume P w (u © x)
with wuz have Pw u A = O w z..
thus - O w z..
next
assume - O w z
from universe-character have P w u.
hence Pwu A = O wz using (- O w ..
with wuz show P w (u & z)..
qed
qed
qed

theorem complement-closure:
Fw. - Owz)= Fz.Vw. Pwz+— 0wz
proof —
assume Jw. - O w x
hence Vw. Pw (u© 2) +— -~ Owz
by (rule universe-difference)
thus 2. Vw. Pw z +— = O w z..
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qed
end

sublocale CMUD C CMC
proof
fix x y
show —z = (THE z.Yw. Pw z +— (- O w 1))
using complement-eq.
show Jw. -~ Owz = Fz. Vw. Pwz +— (- O wx)
using complement-closure.

show 2 © y = (THE z. Yw. Pwz=(Pwz A= Owy))

using difference-eq.
qed

corollary (in CMUD) complement-universe-difference:
Fy. - Oyz) = —z=(vO2x)
proof —
assume Jw. - O w x
hence Vw. Pw (u© 2) +— -~ Owz
by (rule universe-difference)
thus —z = (v © 1)
by (rule complement-intro)
qed

7 Closed Extensional Mereology

Closed extensional mereology combines closed mereology with

extensional mereology.?®

locale CEM = CM + EM

Likewise, closed minimal mereology combines closed mereology

with minimal mereology.

locale CMM = CM + MM

But famously closed minimal mereology and closed extensional
mereology are the same theory, because in closed minimal mere-
ology product closure and weak supplementation entail strong

supplementation.3’

sublocale CMM C CEM
proof
fix z y

28See [Varzi, 1996] p. 263 and [Casati and Varzi, 1999] p. 43.
2°See [Casati and Varzi, 1999] p. 43.
308ee [Simons, 1987] p. 31 and [Casati and Varzi, 1999] p. 44.
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show strong-supplementation: = Pz y=— (3 2. Pzz A= O z y)

proof —
assume - Pz y
show 3 2. Pzz A= 0zy
proof cases
assume Oz y
with <= Pz y have - Pz y A O z y..

hence PP (z ® y) = by (rule nonpart-implies-proper-product)
hence 3 z. Pzz A = O z (x ® y) by (rule weak-supplementation)

then obtain z where z: Pzz A = O z (z ® y)..

hence — O z y by (rule disjoint-from-second-factor)

moreover from z have P 2 z..
hence PzaxAN—-0zy
using (— O z p..
thus 3 z. Pzz A = O z y..
next
assume = O z y
with part-reflexivity have Pz z A = O z y..
thus (3 z. Pzz A= O zy)..
qed
qed
qed

sublocale CEM C CMM..

7.1 Sums

context CEM
begin

lemma sum-intro:
Vw Owz+— (OwzV Owy) =2zPy=2
proof —
assume sum: ¥V w. Owz +— (OwzV O wy)
hence (THE v.V w. Ow v +— (Owz V O w y))
proof (rule the-equality)
fix a
assume a:V w. Owa+— (OwzV Owy)
have V w. Owa +— O w z
proof
fix w
from sum have O w z +— (O wz V O w y)..

z

moreover from ¢ have O wa +— (Owz VvV O w y)..
ultimately show O w a <— O w z by (rule ssubst)

qed
with overlap-extensionality show a = z..
qed
thus z ¢ y = 2
using sum-eq by (rule subst)

38



qed

lemma sum-idempotence: © ® x =
proof —
haveV w. Owz +— (OwzV O w x)
proof
fix w
show Owz +— (Owz VvV O wx)
proof (rule iffT)
assume O w z
thus Owz VvV O w z..
next
assume Owz V O wx
thus O w z by (rule disjE)
qed
qed
thus = & z = x by (rule sum-intro)
qed

lemma part-sum-identity: Pyr — z ® y =«
proof —
assume Py z
haveV w. Owz +— (Owz VvV Owy)
proof
fix w
show Owz +— (Owz VvV O wy)
proof
assume O w z
thus Owz VvV O w y..
next
assume OwzV Owy
thus O w z
proof
assume O w z
thus O w z.
next
assume O w y
with (P y 2» show O w z
by (rule overlap-monotonicity)
qed
qed
qed
thus = @ y = x by (rule sum-intro)
qed

lemma sum-character: ¥V w. O w (z ® y) «— (Owz VvV O w y)
proof —
from sum-closure have (3 2.V w. Ow z +— (Owz VvV O wy)).
then obtain ¢ where a:V w. Owa <— (Owz VvV O wy)..
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hence z ® y = a by (rule sum-intro)
thusV w. Ow (e @ y) «— (Owz VvV Owy)
using a by (rule ssubst)
qed

lemma sum-overlap: O w (x @ y) +— (OwzV O wy)
using sum-character..

lemma sum-part-character:
Puw(zdy)+— VMv.Ovw— OvzV Ovy)
proof
assume P w (z @ y)
showV v. Ovw — OvzV Ovy
proof
fix v
show Ovw — OvzV Ovy
proof
assume O v w
with (P w (z @ y)> have O v (z @ y)
by (rule overlap-monotonicity)
with sum-overlap show O vz VvV O v y..
qed
qed
next
assume 7ight: V v. Ovw — OvzV Ovy
haveV v. Ovw — O v (z @ y)
proof
fix v
from right have O vw — Owvz VvV O v y..
with sum-overlap show O vw — O v (z @ y)
by (rule ssubst)
qed
with part-overlap-eq show P w (z & y)..
qed

lemma sum-commutativity: © & y =y ® x

proof —
from sum-character have V. w. O w (y ® z) «— Owy V O w .
henceV w. Ow (y ® z) +— O wz V O wy by metis
thus z @ y = y @ = by (rule sum-intro)

qed

lemma first-summand-overlap: O zz = O z (z & y)
proof —

assume O z z

hence O zz VvV O z y..

with sum-overlap show O z (z & y)..
qed
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lemma first-summand-disjointness: = O z (z & y) = - O z zx
proof —
assume - 0 z (z ® y)
show - O zz
proof
assume O z
hence O z (z & y) by (rule first-summand-overlap)
with (= O z (z @ y)> show Fulse..
qed
qged

lemma first-summand-in-sum: P z (z & y)
proof —
haveV w. Owz — O w (z @ y)
proof
fix w
show Owz — O w (z & y)
proof
assume O w z
thus O w (z @ y)
by (rule first-summand-overlap)
qed
qed
with part-overlap-eq show P z (z @ y)..
qed

lemma common-first-summand: Pz (x ® y) N Pz (x @ 2)
proof

from first-summand-in-sum show P z (z @ y).

from first-summand-in-sum show P z (z @ z).
qed

lemma common-first-summand-overlap: O (z & y) (z & 2)
proof —
from first-summand-in-sum have P z (z @ y).
moreover from first-summand-in-sum have P x (z & 2).
ultimately have Pz (x @ y) A Pz (z @ 2)..
hence 3 v. Pv (z ® y) A Pv (z ® 2)..
with overlap-eq show ?thesis..
qed

lemma second-summand-overlap: O zy = O z (z @ y)
proof —
assume O z y
from sum-character have O z (z @ y) «— (O zz V O z y)..
moreover from (O z ¢y have O zz V O z y..
ultimately show O z (z @ y)..
qed
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lemma second-summand-disjoininess: = O z (z ® y) = = 0 z y
proof —
assume - 0 z (z ® y)
show = O z y
proof
assume O zy
hence O z (z @ y)
by (rule second-summand-overlap)
with = O z (z @ y) show Fulse..
qged
qed

lemma second-summand-in-sum: Py (z @ y)
proof —
haveV w. Owy — Ow (z @ y)
proof
fix w
show Owy — Ow (z @ y)
proof
assume O w y
thus O w (z @ y)
by (rule second-summand-overlap)
qed
qed
with part-overlap-eq show Py (z & y)..
qed

lemma second-summands-in-sums: Py (x @ y) A Pv (2 ® v)
proof

show Py (z @ y) using second-summand-in-sum.

show P v (z @ v) using second-summand-in-sum.
qed

lemma disjoint-from-sum: = Oz (x ® y) «— 0 zx A—-0zy
proof —
from sum-character have O z (z ® y) +— (O zz V O z y)..
thus ?thesis by simp
qed

lemma summands-part-implies-sum-part:
PrzANPyz= P (zDy) 2
proof —
assume antecedent: Px 2z N Py z
haveV w. Ow (z ® y) — O w z
proof
fix w
have w: Ow (z ® y) +— (Owz V O wy)
using sum-character..
show Ow (z® y) — Owz

42



proof
assume O w (z @ y)
with w have O wz vV O w y..
thus O w 2
proof
from antecedent have P x z..
moreover assume O w z
ultimately show O w z
by (rule overlap-monotonicity)
next
from antecedent have P y z..
moreover assume O w y
ultimately show O w z
by (rule overlap-monotonicity)
qed
qed
qed
with part-overlap-eq show P (z @ y) z..
qed

lemma sum-part-implies-summands-part:
Px®y) z=PxzANPyz
proof —
assume antecedent: P (z @ y) z
show Px 2z AN Pyz
proof
from first-summand-in-sum show P x z
using antecedent by (rule part-transitivity)
next
from second-summand-in-sum show P y z
using antecedent by (rule part-transitivity)
qed
qed

lemma in-second-summand: Pz (t ® y) A= Ozzx = Pzy
proof —
assume antecedent: Pz (x @ y) A = O zx
hence P z (z @ y)..
show P z y
proof (rule ccontr)
assume - P z y
hence 3 v. PvzA—-Owvy
by (rule strong-supplementation)
then obtain v where v: Pv 2z A = O v y..
hence = O v y..
from v have P v z..
hence P v (z & y)
using (P z (z ® y)) by (rule part-transitivity)
hence O v (z @ y) by (rule part-implies-overlap)
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from sum-character have O v (z ® y) «+— O va V O v y..
hence O vz VvV O v y using <O v (z ® y)..
thus Fulse
proof (rule disjE)
from antecedent have -~ O z z..
moreover assume O v z
hence O z v by (rule overlap-symmetry)
with (P v 2» have O z 2
by (rule overlap-monotonicity)
hence O z z by (rule overlap-symmetry)
ultimately show Fulse..
next
assume O v y
with (= O v i show Fulse..
qed
qed
qed

lemma disjoint-second-summands:
Pov(z®dy NANPv(z®dz2)—= - 0yz=— Poz
proof —
assume antecedent: P v (z ® y) A P v (x @ 2)
hence P v (z @ 2)..
assume - O y z
show P v x
proof (rule ccontr)
assume - Pvz
hence 3 w. P w v A = O w z by (rule strong-supplementation)
then obtain w where w: P wv A = O w z..
hence = O w z..
from w have P w v..
moreover from antecedent have P v (z @ z)..
ultimately have P w (z @ 2) by (rule part-transitivity)
hence Pw (z @ 2z) A = O w z using (= O w ..
hence P w z by (rule in-second-summand)
from antecedent have P v (z @ y)..
with (P w v have P w (z @ y) by (rule part-transitivity)
hence Pw (z & y) A = O w z using <= O w ..
hence P w y by (rule in-second-summand)
hence P w y A P w z using (P w 2..
hence 3 w. Pwy AN P w z..
with overlap-eq have O y z..
with (= O y 2» show Fulse..
qed
qed

lemma right-associated-sum:

Ow@ae(yd2)+— OwzV (OwyV Ow:z)
proof —
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from sum-character have O w (y @ 2) «— O wyV O w z..
moreover from sum-character have
Ow(zd(y®2)«— (OwzV Ow(y P z2))..
ultimately show ?thesis
by (rule subst)
qed

lemma left-associated-sum:
Ow((zdy) ®@2)«— (OwzV Owy)VOw:z
proof —
from sum-character have O w (x @ y) +— (O wz V O w y)..
moreover from sum-character have
Ow((z®y) ®@2)+— Ow(zdy VO wz.
ultimately show ?thesis
by (rule subst)
qed

theorem sum-associativity: © @ (y ® 2) = (z D y) & 2
proof —
have V w. Ow (z® (y® 2)) «— Ow (z ® y) ® 2)
proof
fix w
have Ow (z® (y @ 2)) «— (OwzV Owy)V Owz
using right-associated-sum by simp
with left-associated-sum show
Ow(z®d (yd 2) «— Ow ((z® y) ® 2) by (rule ssubst)
qed
with overlap-extensionality show z @ (y @ 2) = (z @ y) & z..
qed

7.2 Distributivity

The proofs in this section are adapted from [Pietruszczak, 2018]
pp. 102-4.

lemma common-summand-in-product: Pz ((z & y) @ (z & 2))
using common-first-summand by (rule common-part-in-product)

lemma product-in-first-summand:
~O0yz—=P(zoy @z
proof —
assume - O y z
haveV v. Pv (2 @ y) ® (r ® 2)) — Pox
proof
fix v
show Pv ((z® y) ® (@ 2)) — Poz
proof
assume P v ((z ® y) @ (z @ 2))
with common-first-summand-overlap have
Pov(z®y) ANPo(z @ 2) by (rule product-part-in-factors)
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thus P v z using (= O y 2 by (rule disjoint-second-summands)
qed

qed
hence P ((z @ y) ® (z @ 2)) (z D y) ® (z & 2)) —
P{(zdy) @ (z& 2)) .
thus P ((z @ y) ® (z ® 2)) z using part-reflexivity..
qed

lemma product-is-first-summand:
“0yz= (DY) xdz2) =z
proof —
assume - O y 2
hence P ((z ® y) ® (z @ 2)) «
by (rule product-in-first-summand)
thus (2 @ y) ® (z © 2) =«
using common-summand-in-product
by (rule part-antisymmetry)
qed

lemma sum-over-product-left: O yz=—= P (z ® (y ® 2)) ((z ® y) ®
(z ® 2))
proof —
assume O y z
hence P (y® 2z) ((z ® y) ® (z @ 2)) using second-summands-in-sums
by (rule part-product-in-whole-product)
with common-summand-in-product have
Pr(z@y)@@@d2)AP(y®2) ((zdy) @ (zd 2))..
thus P (z & (y ® 2)) ((z & y) ® (z & 2))
by (rule summands-part-implies-sum-part)
qed

lemma sum-over-product-right:
Oyz=P((zdy) @ (z®2) (z® (y® 2)
proof —
assume O y z
show P ((z® y) @ (@ 2)) (z® (y ® 2))
proof (rule ccontr)
assume = P ((z & y) © (z © 2)) (z & (y z))
hence 3 v. Pov((z®y) @ (@ 2) A= 0v(zd (y ® 2))
by (rule strong-supplementation)
then obtain v where v:
Po(zey @@az))A-0v(@e(y2).
hence = O v (z @ (y ® 2))..
with disjoint-from-sum have vd: = O vz A= O v (y ® 2)..
hence - O v (y ® 2)..
from vd have = O v z..
from v have P v ((z & y) ® (z & 2))..
with common-first-summand-overlap have
vs: Pv (z @ y) A Pv(z @ z) by (rule product-part-in-factors)
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hence P v (z @ y)..
hence Pv (z @ y) A = O vz using (- O v »..
hence P v y by (rule in-second-summand)
moreover from vs have P v (z @ 2)..
hence Pv (z @ 2) A = O vz using (- O v ..
hence P v z by (rule in-second-summand)
ultimately have Pv y A P v z..
hence P v (y ® z) by (rule common-part-in-product)
hence O v (y ® z) by (rule part-implies-overlap)
with (= O v (y ® z)) show Fulse..
qed
qed

Sums distribute over products.

theorem sum-over-product:
Oyz= 18 (yz2)=(2dy Q (z& 2)
proof —
assume O y z
hence P (z & (y ® 2)) ((z & y) ® (z & 2))
by (rule sum-over-product-left)
moreover have P ((z @ y) @ (z ® 2)) (z ® (y ® 2))
using (O y 2 by (rule sum-over-product-right)
ultimately show 2 @ (y ® 2) = (z ® y) ® (z & 2)
by (rule part-antisymmetry)
qed

lemma product-in-factor-by-sum:
Ozy=P 22y (z® (y D 2)
proof —
assume O z y
hence P (z ® y) z
by (rule product-in-first-factor)
moreover have P (z ® y) y
using <O z y by (rule product-in-second-factor)
hence P (z ® y) (y & 2)
using first-summand-in-sum by (rule part-transitivity)
with (P (z ® y) 2» have P (z @ y) s A P (2 ® y) (y & 2)..
thus P (z ® y) (z ® (y & 2))
by (rule common-part-in-product)
qed

lemma product-of-first-summand:

Ozy=—-0z2= P (2 (y® 2) (z®y)
proof —

assume O z y

hence O z (y ® 2)

by (rule first-summand-overlap)
assume - O 1 2
show P (z @ (y & 2)) (z @ 1)
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proof (rule ccontr)
assume - P (z ® (y ® 2)) (z ® y)
hence 3 v. Pv (2@ (y® 2) A= Ov (z Q@ y)
by (rule strong-supplementation)
then obtain v where v: Pv (2 ® (y @ 2)) A= O v (z ® y)..
hence Pv (z ® (y & 2))..
with (O z (y ® 2)» have Pvz A Pv (y & 2)
by (rule product-part-in-factors)
hence P v z..
moreover from v have = O v (z ® y)..
ultimately have Pvz A = O v (z ® y)..
hence — O v y by (rule disjoint-from-second-factor)
from (Pvz A Pv(y® z) have Pv (y ® 2)..
hence Pv (y & 2) A = O v y using (— O v p..
hence P v z by (rule in-second-summand)
with (P v 2» have Pvz A P v z..
hence 3 v. Pvxz A P o z..
with overlap-eq have O z z..
with (= O z 2» show False..
qed
qged

theorem disjoint-product-over-sum:
Ozy=-022=2z2Q0(yYd2)=2Qy
proof —
assume O z y
moreover assume — O z 2
ultimately have P (z ® (y @ 2)) (z ® y)
by (rule product-of-first-summand)
moreover have P (z ® y)(z ® (y @ 2))
using (O z y by (rule product-in-factor-by-sum)
ultimately show 2 ® (y ® 2) =2 ® y
by (rule part-antisymmetry)
qed

lemma product-over-sum-left:
OzyNOzz=P @ (yd2)(z®y) @& (z® 2))
proof —
assume Oz y A Oz 2
hence O z y..
hence O z (y ® z2) by (rule first-summand-overlap)
show P (z® (y & 2)((z © 9) & (s ® 2))
proof (rule ccontr)
assume - P (z ® (y & 2))((z ® y) ® (z ® 2))
hence 3 v. Pv (2@ (y@ 2) A= 0v ((z®@y) & (z® 2))
by (rule strong-supplementation)
then obtain v where v:
Pv(eyez)A-0v(z®y) & (e 2).
hence = O v ((z ® y) & (z ® 2))..
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with disjoint-from-sum have oxyz:
“0v(z®@y) A= O0v(z® 2).

from v have Pv (z ® (y @ 2))..

with (O z (y @ 2)» have pryz: Pvz A Pov (y & 2)
by (rule product-part-in-factors)

hence P v z..

moreover from ozyz have - O v (z ® y)..

ultimately have Pvz A =~ O v (z @ y)..

hence — O v y by (rule disjoint-from-second-factor)

from oxyz have - O v (z ® 2)..

with (P vz have Pvaz A = O v (z ® 2)..

hence — O v z by (rule disjoint-from-second-factor)

with (= O vy have = Ovy A= Ow z.

with disjoint-from-sum have - O v (y & 2)..

from pzyz have P v (y @ 2)..

hence O v (y @ 2) by (rule part-implies-overlap)

with (= O v (y @ z)) show Fulse..

qed
qed

lemma product-over-sum-right:
OzyNOzz=P((z®Ry) & (z2)(z (y® 2))
proof —
assume antecedent: Oz y A O z 2
have P (2 ®@ y) (@ (y® 2)) AP (2@ 2) (2 @ (y ® 2))
proof
from antecedent have O z y..
thus P (z ® 9) (z ® (y & 2))
by (rule product-in-factor-by-sum)
next
from antecedent have O z z..
hence P (z ® 2) (z ® (2 ® v))
by (rule product-in-factor-by-sum)
with sum-commutativity show P (z ® 2) (z ® (y ® 2))
by (rule subst)
qed
thus P((z ®@ y) @ (z ® 2))(z ® (y & 2))
by (rule summands-part-implies-sum-part)
qed

theorem product-over-sum:
OzyNOzrz=2R(yd2) =20y ®(z® 2)
proof —
assume antecedent: O zy A O z z
hence P (z @ (y ® 2))((z ® y) & (z @ 2))
by (rule product-over-sum-left)
moreover have P((z @ y) ® (z ® 2))(z ® (y ® 2))
using antecedent by (rule product-over-sum-right)
ultimately show 2 ® (y ® 2) = (z Q@ y) @ (z @ 2)
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by (rule part-antisymmetry)
qed

lemma joint-identical-sums:
vow=zdy=O0zvAOzw=— ((z2@v) @ (zQw) =z
proof —
assume v G w =x D y
moreover assume Oz v A O z w
hencez @ (V@B w) =2Rvd T w
by (rule product-over-sum)
ultimately have 1 ® (z ® y) = 2 ® v & z ® w by (rule subst)
moreover have (z ® (z ® y)) = z using first-summand-in-sum
by (rule part-product-identity)
ultimately show ((z ® v) ® (z ® w)) = z by (rule subst)
qed

lemma disjoint-identical-sums:
vQuw=z@y=—=>-"0yvAN-"Ouwzr=zx=0vAy=uw
proof —
assume identical: v w =2 D y
assume disjoint: - Oyv A - Owz
show 2 = v A y=w
proof
from disjoint have = O y v..
hence (z ® y) ® (z ® v) =«
by (rule product-is-first-summand)
with identical have (v ® w) ® (z ® v) =z
by (rule ssubst)
moreover from disjoint have = O w z..
hence (v ® w) ® (VB z) = v
by (rule product-is-first-summand)
with sum-commutativity have (v ® w) ® (z ® v) = v
by (rule subst)
ultimately show z = v by (rule subst)
next
from disjoint have - O w z..
hence (y® w) @ (yd ) =y
by (rule product-is-first-summand)
moreover from disjoint have = O y v..
hence (w ® y) ® (w ® v) = w
by (rule product-is-first-summand)
with sum-commutativity have (w @ y) ® (v & w) = w
by (rule subst)
with identical have (w ® y) @ (z B y) = w
by (rule subst)
with sum-commutativity have (w & y) ® (y & z) = w
by (rule subst)
with sum-commutativity have (y ® w) ® (y ® z) = w
by (rule subst)

50



ultimately show y = w
by (rule subst)
qed
qed

end

7.3 Differences

locale CEMD = CEM + CMD
begin

lemma plus-minus: PPyr = y @& (z S y) =«
proof —
assume PP y x
hence 3 z. P zz A = O z y by (rule weak-supplementation)
hence zmy:¥Y w. Pw (z © y) «— (Pwz A= Owy)
by (rule difference-character)
haveV w. Owz +— (OwyV Ow (z © y))
proof
fix w
from zmy have w: Pw (z © y) ¢«— (Pwz A= O wy)..
show Owz +— (OwyV Ow (z 8 y))
proof
assume O w x
with overlap-eq have 3 v. Pv w A P v z..
then obtain v where v: Pvw A P v z..
hence P v w..
from v have P v z..
show OwyV Ow (z & y)
proof cases
assume O v y
hence O y v by (rule overlap-symmetry)
with (P v w» have O y w by (rule overlap-monotonicity)
hence O w y by (rule overlap-symmetry)
thus Owy VvV O w (z & y)..
next
from zmy have Pv (z © y) «+— (Pvaz A - Ovy).
moreover assume = O v y
with <P v 2 have Pvz A= O wvy..
ultimately have P v (z © y)..
with (P v w» have Pvw A P (z © y)..
hence 3 v. Pvw A Pv (z & y)..
with overlap-eq have O w (z & y)..
thus Owy VvV O w (z © y)..
ged
next
assume OwyV Ow (z O y)
thus O w z
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proof

from (PP y » have P y x
by (rule proper-implies-part)
moreover assume O w y
ultimately show O w z
by (rule overlap-monotonicity)

next
assume O w (z © y)
with overlap-eq have 3 v. Pvw A P v (z & y)..
then obtain v where v: Pvw A P v (z & y)..
hence P v w..
from zmy have Pv (z © y) «+— (Pva A= Ovy).
moreover from v have P v (z © y)..
ultimately have Pvz A = O v y..
hence P v z..
with (P v w» have Pvw A P v z..
hence 3 v. Pvw A P v z..
with overlap-eq show O w z..

qed

qed
qed
thus y® (z 6 y) ==z
by (rule sum-intro)
qed

end

7.4 The Universe

locale CEMU = CEM + CMU
begin

lemma something-disjoint: © # v = (3 v. = O v x)
proof —
assume t # u
with universe-character have Pz u A x # u..
with nip-eq have PP x u..
hence 3 v. PvuAN-Ovzx
by (rule weak-supplementation)
then obtain v where Pv u A = O v z..
hence = O v z..
thus 3 v. = O v z..
qed

lemma overlaps-universe: O x u
proof —
from universe-character have P x u.
thus O z u by (rule part-implies-overlap)
qed
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lemma universe-absorbing: r & u = u
proof —
from universe-character have P (z & u) u.
thus z & u = u using second-summand-in-sum
by (rule part-antisymmetry)
qed

lemma second-summand-not-universe: x ® y # u = y # u
proof —
assume antecedent: © @ y # u
show y # u
proof
assume y = u
hence z ® u # u using antecedent by (rule subst)
thus Fulse using universe-absorbing..
qed
qed

lemma first-summand-not-universe: t @ y #* u = T # u
proof —
assume z @ y £ u
with sum-commutativity have y @ z # u by (rule subst)
thus z # u by (rule second-summand-not-universe)
qed

end

7.5 Complements

locale CEMC = CEM + CMC +
assumes universe-eq: v = (THE z. ¥V y. P y x)
begin

lemma complement-sum-character: ¥V y. Py (z & (—x))
proof
fix y
haveV v. Ovy — OwvzV Ov (—x)
proof
fix v
show Ovy — OvzV Ov(—x)
proof
assume O v y
show OvzV Ov (—x)
using or-complement-overlap..
qed
qed
with sum-part-character show Py (z & (—zx))..
qed
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lemma universe-closure: 3 z.V y. Py x
using complement-sum-character by (rule exl)

end

sublocale CEMC C CEMU
proof
show u = (THE z. Yw. P w z) using universe-eq.
show 3 z.V y. Py x using universe-closure.
qed

sublocale CEMC C CEMD
proof
qed

context CEMC
begin

corollary universe-is-complement-sum: v = ¢ & (—z)
using complement-sum-character by (rule universe-intro)

lemma strong-complement-character:

r#u= ¥V v. Pv(—z) — - Ovzx)
proof —

assume t # u

hence 3 v. = O v z by (rule something-disjoint)

thus V v. Pv (—z) «— — O v z by (rule complement-character)
qed

lemma complement-part-not-part: x # u = Py (—x) = - Pyz
proof —
assume z # u
henceV w. Pw (—z) «— - Owux
by (rule strong-complement-character)
hence y: Py (—z) «— - O y x..
moreover assume P y (—z)
ultimately have - O y z..
thus -~ Pyz
by (rule disjoint-implies-not-part)
qed

lemma complement-involution: © # v = = = —(—x)
proof —
assume z # u
have - Puz
proof
assume P u z
with universe-character have x = u
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by (rule part-antisymmetry)
with x # w show False..
qed
hence 3 v. PvuAN-Ovzx
by (rule strong-supplementation)
then obtain v where v: Pvu A = O v z..
hence - O v z..
hence 3 v. - O v z..
hence notz: V w. Pw (—z) +— - Owz
by (rule complement-character)
have —z # u
proof
assume —z = u
hence V w. P w u +— — O w z using notzx by (rule subst)
hence Pz v <— - O z z..
hence — O z z using universe-character..
thus Fulse using overlap-reflexivity..
qed
have = P u (—x)
proof
assume P u (—z)
with universe-character have —z = u
by (rule part-antisymmetry)
with (—z # w show Fualse..
qed
hence 3 v. Pvu A = O v (—x)
by (rule strong-supplementation)
then obtain w where w: Pwu A = O w (—zx)..
hence - O w (—z)..
hence 3 v. = O v (—x)..
hence notnotz: V w. P w (—(—2)) +— - O w (—x)
by (rule complement-character)
hence Pz (—(—z)) +— - O z (—x)..
moreover have - O z (—z)
proof
assume O z (—z)
with overlap-eq have 3 s. P sx A P s (—x)..
then obtain s where s: P sz A P s (—x)..
hence P s z..
hence O s z by (rule part-implies-overlap)
from notx have P s (—z) +— = O s z..
moreover from s have P s (—z)..
ultimately have = O s z..
thus False using <O s ..
qed
ultimately have P z (—(—z))..
moreover have P (—(—z)) «
proof (rule ccontr)
assume - P (—(—z)) z

95



hence 3 s. Ps (—(—z)) A= O sz
by (rule strong-supplementation)
then obtain s where s: P s (—(—z)) A = O s z..
hence - O s z..
from notnotz have P s (—(—z)) «+— (= O s (—x))..
moreover from s have P s (—(—x1))..
ultimately have = O s (—z)..
from or-complement-overlap have O s z V O s (—z)..
thus False
proof
assume O s
with (= O s ) show Fulse..
next
assume O s (—z)
with (= O s (—z )» show Fulse..

qed
qed
ultimately show z = —(—z)
by (rule part-antisymmetry)
qed

lemma part-complement-reversal: y # w=—= Pxy = P (—y) (—x)
proof —
assume y # u
hence ny:V w. Pw (—y) +— - O wy
by (rule strong-complement-character)
assume Pz y
have z # u
proof
assume z = u
hence P u y using (P x 3 by (rule subst)
with universe-character have y = u
by (rule part-antisymmetry)
with (y # w show False..
qed
henceV w. Pw (—z) +— - Owzx
by (rule strong-complement-character)
hence P (—y) (—z) +— = O (—y) z..
moreover have - O (—y) ¢
proof
assume O (—y) z
with overlap-eq have 3 v. P v (—y) A P v x..
then obtain v where v: P v (—y) A P v z..
hence P v (—vy)..
from ny have P v (—y) +— — O v y..
hence — O v y using (P v (—y)..
moreover from v have P v z..
hence P v y using (P z
by (rule part-transitivity)
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hence O v y
by (rule part-implies-overlap)
ultimately show Fulse..
qed
ultimately show P (—y) (—z)..
qed

lemma complements-overlap: © & y # v = O(—z)(—y)
proof —
assume @ y # u
hence 3 z. - 0 z (z @ y)
by (rule something-disjoint)
then obtain z where z:—= 0 z (z & y)..
hence = O z z by (rule first-summand-disjointness)
hence P z (—z) by (rule complement-part)
moreover from z have - O z y
by (rule second-summand-disjointness)
hence P z (—y) by (rule complement-part)
ultimately show O(—z)(—y)
by (rule overlap-intro)
qged

lemma sum-complement-in-complement-product:
2y u— P(—(z 8 y)(-z® —y)
proof —
assume @ y # u
hence O (—z) (—v)
by (rule complements-overlap)
henceV w. Pw (—z ® —y) «— (P w (—z) A P w (—vy))
by (rule product-character)
hence P(—(z ® y))(—z ® —y)«—(P(—(z & y))(—z) A P(—(z &
y)(=y))-.
moreover have P (—(z @ y))(—z) A P (—(z @ y))(—y)
proof
show P (—(z @ y))(—z) using x ® y # w first-summand-in-sum
by (rule part-complement-reversal)
next
show P (—(z ® y))(—y) using & @ y # w second-summand-in-sum
by (rule part-complement-reversal)
qed
ultimately show P (—(z @ y))(—z ® —y)..
qed

lemma complement-product-in-sum-complement:
z®y#Fu= Pz —y)(-(z ®y))
proof —
assume z G y # u
hence Vw. Pw (—(x ® y)) +— - O w (z & y)
by (rule strong-complement-character)
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hence P (—2 ® —y) (—(z® y)) +— (- 0 (—z ® —y) (z & y))..
moreover have - O (—z ® —y) (z & y)
proof
have O(—z)(—y) using @ & y # w by (rule complements-overlap)
hence p: ¥V v. Pv ((—2) ® (—y)) +— (P v (—z) A P v (—y))
by (rule product-character)
have O(—z @ —y)(z ® y) +— (O(—z @ —y) 2V O(—z ® —y)y)
using sum-character..
moreover assume O (—z ® —y)(z & y)
ultimately have O (—2 ® —y) zV O (-2 ® —y) y..
thus Fulse
proof
assume O (—2 ® —y) z
with overlap-eq have 3 v. Pv (—z ® —y) A P v x..
then obtain v where v: Pv (—z ® —y) A P v z..
hence P v (—z ® —y)..
from p have P v ((—z) ® (—y)) «— (P v (—z) A Pv (—y))..
hence P v (—z) A P v (—y) using (P v (—2 ® —y)..
hence P v (—z)..
have z # v using <z @ y # w
by (rule first-summand-not-universe)
hence Vw. Pw (—z) +— - Owz
by (rule strong-complement-character)
hence P v (—z) <— - O v z..
hence - O v z using (P v (—z)..
moreover from v have P v z..
hence O v z by (rule part-implies-overlap)
ultimately show False..
next
assume O (—z ® —y) y
with overlap-eq have 3 v. Pv (—z ® —y) A P v y..
then obtain v where v: P v (—z ® —y) A P v y..
hence Pv (—z ® —y)..
from p have P v ((—2) ® (—y)) ¢— (P v (—z) A Pv (—y))..
hence P v (—z) A P v (—y) using (P v (—z ® —y)..
hence P v (—y)..
have y # v using <z @ y # w
by (rule second-summand-not-universe)
hence Vw. Pw (—y) +— - Owy
by (rule strong-complement-character)
hence P v (—y) «— — O v y..
hence -~ O v y using (P v (—y)..
moreover from v have P v y..
hence O v y by (rule part-implies-overlap)
ultimately show False..
qed
qed
ultimately show P (—z ® —y) (—(z & y))..
qed
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theorem sum-complement-is-complements-product:
t@yFu= —(z@y) =(-z® —y)
proof —
assume z G y # u
show —(z @ y) = (-2 ® —y)
proof (rule part-antisymmetry)
show P (— (z® y)) (— 2 ® — y) using @ @ y # w
by (rule sum-complement-in-complement-product)
show P (—z® — y) (— (z ® y)) using @ @ y # w
by (rule complement-product-in-sum-complement)
qed
qed

lemma complement-sum-in-product-complement:
Ozy=z#u=y#u= P ((-2) ® (—y)(-(z ®y))
proof —
assume O z y
assume z # u
assume y # u
have z ® y # u
proof
assume r @ y = u
with <O z ) have z = u
by (rule product-universe-implies-factor-universe)
with ¢z # w show Fulse..
qed
hence notzty: V w. Pw (—(z @ y)) +— = O w (z @ y)
by (rule strong-complement-character)
hence P((—2)&(—1))(—(@ ® y)) +— ~0((—0)& (1)@ © y).
moreover have - O ((—z) ® (—y)) (z ® y)
proof
from sum-character have

Vw Ow((—2) ® (—y)) +—= (O w (—z) V O w(—y)).

hence O(z ® y)((—z)®B(—y)) +— (O(z ® y)(—z) V Oz ®

Y)(=y))--
moreover assume O ((—z) @ (—y)) (z @ y)
hence O (z ® y) ((—z) ® (—y)) by (rule overlap symmetry)
ultimately have O (z ® y) (—z) V O (z ® y) (—y)..

thus False
proof
assume O (z ® y)(—x)
with overlap-eq have 3 v. Pv (z ® y) A P v (—x)..

then obtain v where v: Pv (z ® y) A P v (—x)..
hence P v (—z)..
with ¢z # w have - Pv x
by (rule complement-part-not-part)
moreover from v have P v (z @ y)..
with (O z y have P v x by (rule product-part-in-first-factor)
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ultimately show False..
next
assume O (z ® y) (—vy)
with overlap-eq have 3 v. P v (z ® y) A P v (—vy)..
then obtain v where v: P v (z ® y) A P v (—vy)..
hence P v (—y)..
with (y # w have - P v y
by (rule complement-part-not-part)
moreover from v have P v (z ® y)..
with <O z y have P v y by (rule product-part-in-second-factor)
ultimately show Fulse..
qed
qed
ultimately show P ((—z) @ (—y))(—(z ® y))..
qed

lemma product-complement-in-complements-sum:
r#u=y#u=— P(=(z®y)((-2) & (-y))

proof —
assume t # u
hence z = —(—z)

by (rule complement-involution)
assume y # u
hence y = —(—vy)
by (rule complement-involution)
show P (—(z ® y))((=2) & ()
proof cases
assume —z b —y = u
thus P (—(z ® y))((—z) ® (-y))
using universe-character by (rule ssubst)
next
assume —z @ —y £ u
hence —z & —y = —(—(—z & — y))
by (rule complement-involution)
moreover have —(—z @ —y) = —(—z) ® —(—y)
using (—x & —y # w
by (rule sum-complement-is-complements-product)
with (z = —(—z)) have —(—z ® —y) =2 ® —(—v)
by (rule ssubst)
with <y = —(—y) have —(—z® —y) =2z y
by (rule ssubst)
hence P (—(z @ y))(—(—(~z & —y)))
using part-reflexivity by (rule subst)
ultimately show P (—(z ® 9))(—z & —y)
by (rule ssubst)
qed
qed

theorem complement-of-product-is-sum-of-complements:
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Ozy=z@y#u= —(z®y) =(-2) & (-y)
proof —
assume O z y
assume z @ y # u
show —(z ® y) = (—-2) ® (-y)
proof (rule part-antisymmetry)
have z # v using <z ® y # w
by (rule first-summand-not-universe)
have y # v using <z & y # w
by (rule second-summand-not-universe)
show P (— (& 9)) (- o & — )
using  # w (y # w by (rule product-complement-in-complements-sum)
show P (—2® —y) (— (z & y))
using (O z y @ # w y # w by (rule complement-sum-in-product-complement)
qed
qed

end

8 General Mereology

The theory of general mereology adds the axiom of fusion to
ground mereology.3!

locale GM = M +
assumes fusion:
Jr.opr=3F 2VyOyz+— Tz ozNOyuz)
begin

Fusion entails sum closure.

theorem sum-closure: 3 2.V w. Owz +— (OwaV Owb)
proof —
have a = a..
hence a = a V a = b..
hence 3 z. z =a VvV z = b..
hence (3 2.V y. Oyz+— T z. (x=aVzz=>bAOyuzx))
by (rule fusion)
then obtain z where 2:
Vy Oyz+— 3 z.(z=aVz=>0 AO0yuz).
haveV w. Owz +— (OwaV O whb)
proof
fix w
from z have w: Owz+— (3 z. (z=aVz=0) A Owau).
show Ow z+— (OwaV O wb)
proof
assume O w z

31See [Simons, 1987] p. 36, [Varzi, 1996] p. 265 and [Casati and Varzi, 1999] p. 46.
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with w have 3 z. (x =aV 2z =0) A O wz..
then obtain z where z: (t =aV z=0) A O w z..
hence O w z..
from z have x = a V 2 = b..
thus OwaV Owbd
proof (rule disjE)
assume z = a
hence O w a using (O w v by (rule subst)
thus Owa Vv O wb..
next
assume z = b
hence O w b using (O w » by (rule subst)
thus OwaV O wb..
qed
next
assume OwaV Owb
hence 3 z. (x=aVaz=0)AOwzx
proof (rule disjE)
assume O w a
with «a =aV a=b have (a=aV a=0>b A Owa..
thus 3 2. (z=aV 2 =0 A Owaz..
next
have b = b..
hence b = a vV b = b..
moreover assume O w b
ultimately have (b=aV b= 0b) A O wb..
thus 3 z. (t=aVaz=0 A Owaz.

qged
with w show O w z..
qed
qed
thus 3 2.V w. Owz +— (OwaV Owb)..
qed
end

9 General Minimal Mereology

The theory of general minimal mereology adds general mereology
to minimal mereology.??

locale GMM = GM + MM

begin

It is natural to assume that just as closed minimal mereology and
closed extensional mereology are the same theory, so are general

323ee [Casati and Varzi, 1999] p. 46.
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minimal mereology and general extensional mereology.?> But
this is not the case, since the proof of strong supplementation in
closed minimal mereology required the product closure axiom.
However, in general minimal mereology, the fusion axiom does
not entail the product closure axiom. So neither product closure
nor strong supplementation are theorems.

lemma product-closure:
Ozy= (3 2Yv.Pvz<— PvzAPuoy)
nitpick [ezpect = genuine] oops

lemma strong-supplementation: =~ Pxy = (3 2. Pzx A = O 2z y)
nitpick [expect = genuine] oops

end

10 General Extensional Mereology

The theory of general extensional mereology, also known as clas-
sical extensional mereology adds general mereology to exten-
sional mereology.3*

locale GEM = GM + EM +
assumes sum-eq: £ ® y = (THE 2. Vv. Ovz<+— OvzV Ovy)
assumes product-eq:
2®y=(THE z.Vv. Pvz+— Pvax A Puy)
assumes difference-eq:
xOy=(THE z.Vw. Pwz=(Pwzx A~ Owy))
assumes complement-eq: — ¢ = (THE z. Yw. Pwz +— = O w )
assumes universe-eq: w = (THE . Vy. Py x)
assumes fusion-eq: dz. F z =
(cz. Fz2) =(THE z.Vy. Oyxz +— (32. Fz AN Oy 2))
assumes general-product-eq: (m . Fz) = (0 z.Vy. Fy — Pz y)

sublocale GEM C GMM
proof
qed

10.1 General Sums

context GEM
begin

33For this mistake see [Simons, 1987] p. 37 and [Casati and Varzi, 1999] p. 46. The
mistake is corrected in [Pontow, 2004] and [Hovda, 2009]. For discussion of the significance
of this issue see, for example, [Varzi, 2009] and [Cotnoir, 2016].

34For this axiomatization see [Varzi, 1996] p. 265 and [Casati and Varzi, 1999] p. 46.
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lemma fusion-intro:
Vy. Oyz— 3. FzANOyz) = (cz. Fo)=12
proof —
assume antecedent: (Vy. Oy z +— (Jz. Fz A O y 1))
hence (THE z.Vy. Oyxz +— (2. Fz A Oyz2)) ==z
proof (rule the-equality)
fix a
assume a: (Vy. Oy a +— (3z. Fz A O yx))
have Vz. Oz a +— Oz 2
proof
fix b
from antecedent have O b z «— (3z. Fz A O b 1)..
moreover from ¢ have O b a +— (3z. Fz A O b z)..
ultimately show O b a «— O b z by (rule ssubst)
qed
with overlap-extensionality show a = z..
qed
moreover from antecedent have O z z <— (Jz. Fx A O z x)..
hence dz. F o A O z z using overlap-reflezivity..
hence dz. F x by auto
hence (0 z. Fz) = (THE 2. Vy. Oyz +— (2. Fz A Oy 2))
by (rule fusion-eq)
ultimately show (o v. F'v) = z by (rule subst)
qed

lemma fusion-idempotence: (¢ z. z = z) = 2
proof —
haveVy. Oy z+— (3z. 2=z A O y x)
proof
fix y
show Oy z++— (Fz.z=2 AN Oyx)
proof
assume O y 2
with refl have z = 2z A O y z..
thus dz. z =2 A O y x..
next
assume Jdz. z2=2 AN O yzx
then obtain z where z: z =2 A O y z..
hence z = z..
moreover from z have O y z..
ultimately show O y z by (rule ssubst)
qed
qed
thus (0 z. z =1z) = 2
by (rule fusion-intro)
qed

The whole is the sum of its parts.

lemma fusion-absorption: (o z. Pz 2) = 2
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proof —
have (Vy. Oy z +— (3z. Pz z A O y x))
proof
fix y
show Oy z+— (3. Pxz A O yux)
proof
assume O y z
with part-reflexivity have P z z A O y z..
thus dz. Pz 2z A O y z..
next
assume dz. Pz 2z A Oy
then obtain x where z: Px 2z A O y z..
hence P z z..
moreover from z have O y z..
ultimately show O y z by (rule overlap-monotonicity)
qed
qed
thus (0 z. Pz 2) = 2
by (rule fusion-intro)
qed

lemma part-fusion: Pw (0 v. Pvz) = Pwz
proof —

assume P w (o v. P v x)

with fusion-absorption show P w z by (rule subst)
qed

lemma fusion-character:

dz. Fr = (Vy. Oy (0 v. Fv) «— (3z. Fz A Oyx))
proof —

assume Jz. F z

hence 2. Vy. Oy z+— (dz. Fz A Oy x)

by (rule fusion)

then obtain z where 2z: Vy. Oy z +— (2. Fz A O y x)..

hence (o v. F'v) = z by (rule fusion-intro)

thus Vy. Oy (o v. Fv) +— (3z. Faz A O y z) using z by (rule
ssubst)
qed

The next lemma characterises fusions in terms of parthood.?®

lemma fusion-part-character: 3z. F v =

Vy.Py(cv. Fv)«— VYw. Pwy — (Jv. Fv A O ww)))
proof —

assume (Jz. F 1)

hence F: Vy. Oy (0 v. Fv) «— (2. Fz A O y z)

by (rule fusion-character)
show Vy. Py (o v. Fv) +— Vw. Pwy — (3v. Fuv A O ww))
proof

35See [Pontow, 2004] pp. 202-9.
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fix y
show Py (o0 v. Fv) «— VYw. Pwy — (Fv. Fv A O ww))
proof
assume P y (o v. Fv)
show Vw. Pwy — (3v. Fov A O w )
proof
fix w
from F' have w: O w (o0 v. Fv) <— (2. Fz A O w z)..
show Pwy — (Jv. Fv A Oww
proof
assume P w y
hence P w (¢ v. F v) using <P y (o v. F o)
by (rule part-transitivity)
hence O w (o v. F v) by (rule part-implies-overlap)
with w show Jz. Fz A O w z..
qed
qed
next
assume right: Vw. Pwy — (3v. Fuv A O wv)
show Py (o v. Fv)
proof (rule ccontr)
assume - Py (o v. F v)
hence 3v. Pvy A = O v (0 v. F o)
by (rule strong-supplementation)
then obtain v where v: Pvy A = O v (o v. F'v)..
hence = O v (0 v. F v)..
from right have Pvy — Qw. Fw A O v w)..
moreover from v have P v ..
ultimately have Jw. Fw A O v w..
from F have O v (0 v. Fv) «— (3z. Fz A O v z)..
hence O v (o0 v. F v) using Gw. Fw A O v w..
with (= O v (¢ v. F v)) show Fulse..
qed
qed
qed
qed

lemma fusion-part: F x = Pz (0 z. F x)
proof —
assume F' z
hence Jz. F z..
hence Vy. Py (o v. Fv) «— (VYw. Pwy — (3v. Fv A O wv))
by (rule fusion-part-character)
hence Pz (0 v. Fv) «— (Vw. Pwz — (3v. Fv A O ww))..
moreover have Vw. Pwz — (Jv. Fv A O wv)
proof
fix w
show Pwz — (Jv. Fv A O ww)
proof
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assume P w x
hence O w z by (rule part-implies-overlap)
with (F ) have Fx A O w z..
thus 3v. Fv A O w v..
qed
qed
ultimately show P z (o v. F v)..
qed

lemma common-part-fusion:
Ozy=— Vw.Pw(cv. PvzAPuvy)«— (PwzAPuwy))
proof —
assume O z y
with overlap-eq have 3z. (P zxz A P z y)..
hence sum: (Vw. Pw (o v. (Pva A Puvy)) «—
(Vz. Pzw— (Jv. (Pvz APovy) A O zv)))
by (rule fusion-part-character)
show Vw. Pw (0 v. (Pvaz APvy))+— (PwzAPuwy)
proof
fix w
from sum have w: P w (o v. (Pvz A Pvy))
+—— Vz.Pzw— (Jv.(Pvxz APovy) A O zv))..
show Pw (0 v. (Pvz APuvy)) «— (PwazAPuwy)
proof
assume Pw (0 v. (Pvz A Poy))
with w have bla:
Vz. Pzw— (3v. (Pvax APuvy) A O zv))..
show Pwz A Pwy
proof
show P w z
proof (rule ccontr)
assume - Pwz
hence 3z. Pzw A= 0O zzx
by (rule strong-supplementation)
then obtain z where z: Pz w A = O z z..
hence = O z z..
from bla have Pz w — (3v. (Pvz A Puvy) A O zwv).
moreover from z have P z w..
ultimately have Jv. (Pvaz A Pvy) A O z ..
then obtain v where v: (Pvz A Puvy) A O z ..
hence Pvx A P v y..
hence P v z..
moreover from v have O z v..
ultimately have O z z
by (rule overlap-monotonicity)
with (= O z 2» show False..
qed
show P w y
proof (rule ccontr)
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assume - P wy
hence 3z. Pzw A= 0 zy
by (rule strong-supplementation)
then obtain z where z: Pz w A = O z y..
hence = O z y..
from bla have Pz w — (3v. (Pvz A Puvy) A O zv).
moreover from z have P z w..
ultimately have 3v. (Pvaz A Pvy) A O zv..
then obtain v where v: (Pvz A Puvy) A O zv..
hence Pvz A P v y..
hence P v y..
moreover from v have O z v..
ultimately have O z y
by (rule overlap-monotonicity)
with (= O z y show Fulse..
qed
qed
next
assume Pwx AN Pwy
thus Pw (o v. (Pvz A Puy))
by (rule fusion-part)
qed
qed
qed

theorem product-closure:
Ozy=— (F2.Vw. Pwz+— (Pwz AP wy))
proof —
assume O z y
hence (Vw. Pw (0 v. (Pvz APvy)) +— (Pwz A Puwy))
by (rule common-part-fusion)
thus 3z. Vw. Pwz +— (Pwz A Pwy).
qed

end

sublocale GEM C CEM
proof
fix x y
show 3z Vw. Owz=(OwzV Owy)
using sum-closure.
show 2 @ y = (THE z.Yv. Ovz+— OvaV Ovy)
using sum-eq.
show 2 ® y = (THE z.¥Yv. Pvz <— Pvx A Puy)
using product-eq.
show Oz y = (32 Vw. Pwz=(Pwz A Pwy))
using product-closure.
qed
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context GEM
begin

corollary Ozy = 2 ® y=(c v. Pvaz A Puy)
proof —
assume Oz y
hence Yw. Pw (c v. (Pvz APovy))+— (Pwz A Puwy))
by (rule common-part-fusion)
thus 2 ® y = (0 v. Pva A P v y) by (rule product-intro)
qged

lemma disjoint-fusion:
Jw. - Owzr = VYw. Pw(cz-0zz)+— - 0wz
proof —
assume antecedent: 3w. - O w x
henceVy. Oy (c v.~n Ovzx)«— (Jv.m Ovz A Oyw)
by (rule fusion-character)
hence z: Oz (c v. -~ Ovz) +— (Fv.7 Ovz A Ozwv)..
show Vw. Pw (0 2.~ O zz) «— - Owzx
proof
fix y
show Py (c 2.~ Ozz)«— -~ Oyx
proof
assume Py (0 z. 7 O z )
moreover have = 0 z (0 z. = O z x)
proof
assume O z (o 2. = O z 1)
with z have (3v. = O vz A O z v)..
then obtain v where v: = O v A O z v..
hence - O v z..
from v have O z v..
hence O v z by (rule overlap-symmetry)
with (= O v x) show False..
qged
ultimately have - O z y
by (rule disjoint-demonotonicity)
thus - O y z by (rule disjoint-symmetry)
next
assume = O y z
thus Py (0 v. - O v )
by (rule fusion-part)
qed
qed
qed

theorem complement-closure:

Jw. - Owz= (Fz.Yw. Pwz+— - 0wr)
proof —

assume (Jw. = O w x)
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hence Vw. Pw (0 2. 7 Ozz)«— - Owz
by (rule disjoint-fusion)
thus 32. Vw. Pwz +— - O w x..
qed

end

sublocale GEM C CEMC
proof
fix z y
show — ¢ = (THE z.Vw. Pwz <— = O w )
using complement-eq.
show (3w. - Owz) = (Fz.Vw. Pwz= (- 0 wx))
using complement-closure.
show 2 © y = (THE z.Vw. Pwz=(Pwz A= Owy))
using difference-eq.
show v = (THE z. Vy. P y x)
using universe-eq.
qed

context GEM
begin

corollary complement-is-disjoint-fusion:
Jw. - Owz= —2z= (02 -0z
proof —
assume Jw. - O w x
henceVw. Pw(c 2. 7 Ozz)«— - Owz
by (rule disjoint-fusion)
thus — 2= (0 2. = 0 z 1)
by (rule complement-intro)
qed

theorem strong-fusion: 3z. F v —
dz. Vy. Fy— Pyx) AN Vy. Pyzs — (Fz. Fz AN Oy=z)
proof —
assume Jz. F z
have (Vy. Fy — Py (o v. Fv)) A
Vy. Py (cv. Fv)— 32z. Fz A Oyz)
proof
show Vy. FFy — Py (o v. Fv)
proof
fix y
show Fy — Py (0 v. Fv)
proof
assume F'y
thus Py (o v. Fv)
by (rule fusion-part)
qed
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qed
next
have (Vy. Py (o0 v. F'v) «—
Vw. Pwy — (Fv. FovA O ww)))
using (Jz. F by (rule fusion-part-character)
hence P (o v. Fv) (0 v. Fv) +— (Vw. Pw (o v. Fv) —
(Fv. Fuv A O ww))..
thus Vw. P w (0 v. Fv) — (3v. F v A O w v) using
part-reflexivity..
qged
thus ?thesis..
qed

theorem strong-fusion-eq: 3z. F oz = (0 z. F z) =
(THEx. Vy. Fy — Pyx) AN(Vy. Pyz — (3z. Fz A Oy 2)))
proof —
assume Jz. F z
have (THE z. Vy. Fy — Pyax) AN Vy. Pyx — (3z. Fz A O
y2) = (o 5. Fa)
proof (rule the-equality)
show Vy. Fy — Py (cz. Fx)) A(Vy. Py (o . Fz) — (32
FzAOvy2)
proof
show Vy. Fy — Py (0 z. Fx)
proof
fix y
show Fy — Py (0 z. Fx)
proof
assume F'y
thus Py (o z. F x)
by (rule fusion-part)
qed
qed
next
show (Vy. Py (c z. Fz) — (3z. Fz A Oy 2))
proof
fix y
show Py (c z. Fz) — (2. Fz AN Oy2)
proof
have Vy. Py (c v. Fv) +— VYw. Pwy — (3v. FvA O
w v))
using Jz. F » by (rule fusion-part-character)
hence Py (0 v. Fv) «— (Ww. Pwy — (Gv. Fo A Ow
v))..
moreover assume P y (o z. F 1)
ultimately have Vw. Pwy — (3v. Fv A O w v)..
hence Py y — (3v. Fu A O yv)..
thus Jv. F v A O y v using part-reflexivity..
qed
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qged
qed
next
fix z
assume z: (Vy. Fy — Pyz) AN Vy. Pyx — (32z. FzA Oy
z))
have Vy. Oyxz «— (2. Fz A O y 2)
proof
fix y
show Oyz+— (3z. Fz AN Oy2)
proof
assume O y z
with overlap-eq have 3v. Pvy A P v x..
then obtain v where v: Pvy A P v ..
from z have Vy. Pyz — (3z. Fz A O y 2)..
hence Pvz — (2. Fz A O v z)..
moreover from v have P v z..
ultimately have 3z. Fz A O v z..
then obtain z where z: 'z A O v z..
hence F z..
from v have P v y..
moreover from z have O v z..
hence O z v by (rule overlap-symmetry)
ultimately have O z y by (rule overlap-monotonicity)
hence O y z by (rule overlap-symmetry)
with (F' 2 have F z A O y z..
thus 2. Fz A O y z..
next
assume Jz. Fz A Oyz
then obtain z where z: FF'z A O y z..
from z have Vy. Fy — Py z..
hence F z — P z z..
moreover from z have F z..
ultimately have P z z..
moreover from z have O y z..
ultimately show O y z
by (rule overlap-monotonicity)
qged
qed
hence (0 z. Fz) =z
by (rule fusion-intro)
thus z = (0 z. F z)..
qed
thus ?thesis..
qed

lemma strong-sum-eq: x ® y = (THE z. (Pxz AN Pyz) AN Yw. Pw

z— OwzV Owy))
proof —
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have (THE z. (Pz 2 ANPyz) AN (Yw. Pwz— OwzV Owy))
=rDy
proof (rule the-equality)
show (Pz (z® y) APy(z @ y) AN Vw. Pw(z® y) — Ow
zV Owy)
proof
show Pz (z ® y) AN Py (z & y)
proof
show P z (z @ y) using first-summand-in-sum.
show Py (z @ y) using second-summand-in-sum.
qed
showVw. Pw(z®y) — OwzV Owy
proof
fix w
show Pw(z @ y) — OwzV Owy
proof
assume P w (z @ y)
hence O w (z @ y) by (rule part-implies-overlap)
with sum-overlap show O wz VvV O w y..
qed
ged
qed
fix z
assume z: (Pz2APyz) AN Yw. Pwz— OwzV Owy)
hence Px 2z AN Py z..
have Vw. Ow z +— (Owz V O wy)
proof
fix w
show Owz ¢— (Owz VvV Owy)
proof
assume O w z
with overlap-eq have 3v. Pvw A P v z..
then obtain v where v: Pvw A P v z..
hence P v w..
from z have Vw. Pwz — Owz VvV O wy..
hence Pvz — OwvzV Owvy..
moreover from v have P v z..
ultimately have O vz vV O v y..
thus Owz VvV Owy
proof
assume O v x
hence O z v by (rule overlap-symmetry)
with (P v w» have O = w by (rule overlap-monotonicity)
hence O w z by (rule overlap-symmetry)
thus Owz v O w y..
next
assume O v y
hence O y v by (rule overlap-symmetry)
with (P v w» have O y w by (rule overlap-monotonicity)
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hence O w y by (rule overlap-symmetry)
thus Owz Vv O w y..
qed
next
assume OwzV Owy
thus O w 2
proof
from (Px 2z A Py 2 have Pz z..
moreover assume O w x
ultimately show O w 2
by (rule overlap-monotonicity)
next
from (Px 2 A Py 2 have P y z..
moreover assume O w y
ultimately show O w z
by (rule overlap-monotonicity)
qed
qged
qed
hence z @ y = z by (rule sum-intro)
thus z =z @ y..
qed
thus ?thesis..
qed

10.2 General Products

lemma general-product-intro: (Vy. Oy z <— (32. Vy. Fy — Pz
NWANOyz) = (nz. Faz) =1z
proof —
assume Vy. Oyz+— (32. Vy. Fy — Pzy) A Oy 2)
hence (o z. Vy. Fy — Pz y) = z by (rule fusion-intro)
with general-product-eq show (w z. F' z) = x by (rule ssubst)
qed

lemma general-product-idempotence: (7 2. z = z) = x
proof —
have Vy. Oyz «— (2. Vy.y=2 — Pzy) AN Oy2)
by (meson overlap-eq part-reflexivity part-transitivity)
thus (7 z. z = z) = z by (rule general-product-intro)
qed

lemma general-product-absorption: (v z. Pz 2) = z
proof —
have Vy. Oyz +— (3z. Yy. Pzry — Pzy) AN Oy 2)
by (meson overlap-eq part-reflexivity part-transitivity)
thus (7 z. Pz z) = z by (rule general-product-intro)
qed
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lemma general-product-character: 3z. Vy. Fy — P zy =
Vy. Oy (mrz. Faz)«— 3z Vy. Fy— Pzy) AN Oy z)
proof —
assume (3z. Vy. Fy — Pz y)
hence (2. Vy. Oyz +— (2. Vy. Fy — Pzy) A Oy 2))
by (rule fusion)
then obtain z where z:
Vy. Oyz+— (z. Vy. Fy — Pzy) A Oy 2)..
hence (7 z. F z) = z by (rule general-product-intro)
thus Vy. Oy (mz. Fz) «— (2. Vy. Fy — Pzy) A Oy 2)
using z by (rule ssubst)
qed

corollary — (3z. Fz) = u = (7 z. F x)
proof —
assume antecedent: - (x. F z)
have Vy. Py (m z. F z)
proof
fix y
show Py (m z. F z)
proof (rule ccontr)
assume = Py (7 z. F 1)
hence3z. Pzy A — Oz (7 z. F z) by (rule strong-supplementation)
then obtain z where z: Pz y A = O z (7w z. F z)..
hence - O z (7 z. F z)..
from antecedent have bla: V y. Fy — P z y by simp
hence 3 v.V y. Fy — Puy..
hence (Vy. Oy (rz. Fz) «— (32. Yy. Fy — Pzy) AN Oy
2)) by (rule general-product-character)
hence O z (r 2. Fz) «— (3v. Yy. Fy — Povy) A O zv)..
moreover from bla have (V y. Fy — Pzy) AN Oz z
using overlap-reflexivity..
hence 3 v. (V y. Fy — Puvy) A O zv..
ultimately have O z (7 z. F 1)..
with (= O z (7 z. F z)) show Fulse..
qed
qed
thus v = (7 z. F z)
by (rule universe-intro)
qed

end

10.3 Strong Fusion

An alternative axiomatization of general extensional mereology
adds a stronger version of the fusion axiom to minimal mereology,
with correspondingly stronger definitions of sums and general
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sums.36

locale GEM1 = MM +
assumes strong-fusion: 3z. Fx = Jz. Vy. Fy — Pyz) A (Vy.
Pyz— (3z. FzA Oy2)
assumes strong-sum-eq: © ® y = (THE z. (Pxz 2 AN Py z) A (Yw.
Pwz— OwzV Owy))
assumes product-eg:
z®y=(THE z.Vv. Pvz<+— Pvaz A Puvy)
assumes difference-eq:
rOy=(THE z.Vw. Pwz=(Pwzx A - Owy))
assumes complement-eq: — ¢ = (THE z.Vw. Pw z +— - O w )
assumes universe-eq: w = (THE . Vy. P y x)
assumes strong-fusion-eq: 3z. F'o = (0 z. F z) = (THE z. (Vy.
Fy— Pyx)ANNVy.Pyz — (Fz. Fz A Oy 2)))
assumes general-product-eq: (1 . Fz) = (0 2. Vy. Fy — P x y)
begin

theorem fusion:
dz. oz = (2. Vy. Oyz+— (Fz. p 2 A O yx))
proof —
assume 3. ¢ z
hence 3z. (Vy. py — Pyax) A Vy. Pyz — (2.0 2N 0y
2)) by (rule strong-fusion)
then obtain z where 2:
Vy.opy—Pyaz) AN(Vy. Pyz — (Fz. o 2z A Oy 2))..
have Vy. Oyz <— (3v. o v A O yv)
proof
fix y
show O yz +— (3v.p v A O yv)
proof
assume O y ¢
with overlap-eq have 3z. Pz y A P z ..
then obtain z where z: Pz y A P z ..
hence P z z..
from z have Vy. Pyz — (Jv. o v A O y v)..
hence Pz — (3v. ¢ v A O z v)..
hence JFv. ¢ v A O z v using (P z @..
then obtain v where v: ¢ v A O z v..
hence O z v..
with overlap-eq have 3w. P w 2z A P w v..
then obtain w where w: Pw 2z A P w v..
hence P w z..
moreover from z have P z y..
ultimately have P w y
by (rule part-transitivity)
moreover from w have P w v..
ultimately have P w y A P w v..

36See [Tarski, 1983] p. 25. The proofs in this section are adapted from [Hovda, 2009].
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hence Jw. Pwy A P w v..
with overlap-eq have O y v..
from v have ¢ v..
hence ¢ v A O y v using (O y »..
thus Jv. ¢ v A O y ..
next
assume Jv. p v A O y v
then obtain v where v: ¢ v A O y v..
hence O y v..
with overlap-eq have 3z. Pz y A P z v..
then obtain z where z: Pz y A P z v..
hence P z v..
from z have Vy. p y — P y z..
hence ¢ v — P v z..
moreover from v have ¢ v..
ultimately have P v z..
with (P z v»» have P z x
by (rule part-transitivity)
from z have P z y..
thus O y z using (P z o
by (rule overlap-intro)
qed
qed
thus (32 Vy. Oy z<+— (Fz. oz A O yx))..
qed

lemma pair: Fv. (Vw.
— (Fz. (z=2V 2z
proof —
have z = z..
hence zr =z VvV z = y..
hence Jv. v =2 V v = y..
thus ?thesis
by (rule strong-fusion)
qed

Vw=gy) — Pwv) N YVw. Pwwo
w

lemma or-id: (v=zVo=yY) AOwv= OwzV Owy
proof —
assume v: (v=zVov=y) A Owv
hence O w v..
from v have v =2z V v = y..
thus OwzV Owy
proof
assume v =
hence O w z using (O w v by (rule subst)
thus Owz Vv O w y..
next
assume v = y
hence O w y using (O w v by (rule subst)
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thus Owz vV O w y..
qed
qed

lemma strong-sum-closure:
2. (Pxz2ANPyz)AN(Vw.Pwz— OwzV Owy)
proof —
from pair obtain z where z: (Vw. (w=2zV w=y) — Pw2z) A
NVw.Pwz— (Fv.(v=zVuv=y)A O wv)).
have (Pzz2APyz) N(Vw.Pwz — OwzV O wy)
proof
from z have allw: Vw. (w=2V w=1y) — P w z.
hencez=zVz=y — Pzxz.
moreover have z = z V z = y using refl..
ultimately have P r z..
from allw have y =2V y=y — Py z..
moreover have y = z V y = y using refi..
ultimately have P y z..
with (P x 2 show Pz z A Py z..
next
show Vw. Pwz — OwzV Owy
proof
fix w
show Pwz — OQwzV Owy
proof
assume P w z
from z have Vw. Pwz — 3v. (v=2zVov=y) A Owwv)..
hence Pwz — (3v. (v=zVov=y) A Owwv)..
hence 3v. (v =2V v=y) A O wv using P w ..
then obtain v where v: (v=2V v=y) A O wv..
thus O wz V O w y by (rule or-id)
ged
qed
qed
thus ?thesis..
qed

end

sublocale GEMI1 C GMM
proof
fixzyop
show (3z. ¢ ) = (F2.Vy. Oy z +— (Jz. p z A O y z)) using
fusion.
qed

context GEM1
begin
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lemma least-upper-bound:
assumes sf:
(Vy. Fy —Pyx) N(Vy. Pyz — (3z. Fz A Oy 2z)))
shows [ub:
Vy. Fy— Pyx) AN(Vz. Yy. Fy — Pyz) — Pzx2)
proof
from sf show Vy. Fy — Py z..
next
show (Vz. (Vy. Fy — Pyz) — Pz 2)
proof
fix z
show (Vy. Fy — Pyz) — Pz 2z
proof
assume z: Vy. Fy — Py z
from pair obtain v where v: Vw. (w =2V w=2) — P wv)
ANVw Pwv— By. (y=2zVy=2) AOwy)).
hence left: Vw. (w=2V w=2) — P wwv)..
hence (t =2V 2z =2) — Pzo.
moreover have x = z V & = z using refi..
ultimately have P z v..
have z = v
proof (rule ccontr)
assume z # v
from left have z =z V 2 =2 — P z v..
moreover have z = ¢ V z = z using refl..
ultimately have P z v..
hence P z v A z # v using (z # v..
with nip-eq have PP z v..
hence Jw. P w v A = O w z by (rule weak-supplementation)
then obtain w where w: Pw v A = O w z..
hence P w v..
from v have right:

Vw.Pwov— Jy. (y=zVy=2 A0Owy)..
hence Pwv — By. (y=zVy=2)AN0Owy).
hence Jy. (y=2V y=2) A O wy using (P w v..
then obtain s where s: (s=2V s=2) A O w s..
hence s =z V s = z..
thus Fulse
proof
assume s = z
moreover from s have O w s..
ultimately have O w z by (rule subst)
with overlap-eq have 3t. Pt w A Pt x..
then obtain ¢t where ¢: Pt w A Pt z..
hence Pt z..
from sf have (Vy. Pyxz — (3z. Fz A Oy 2))..
hence Ptz — (2. Fz A Ot 2)..
hence 3z. F z A Ot z using (P t ..
then obtain ¢ where a: Fa A O t a..
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hence F a..
from sf have ub: Vy. Fy — Py x..
hence Fa — P a z..
hence P a z using (F a..
moreover from ¢ have O ¢ a..
ultimately have O ¢t z
by (rule overlap-monotonicity)
from ¢t have Pt w..
moreover have O z t
proof —
from z have Fa — P a z..
moreover from a have F a..
ultimately have P a z..
moreover from a have O ¢t a..
ultimately have O t z
by (rule overlap-monotonicity)
thus O z t by (rule overlap-symmetry)
qed
ultimately have O z w
by (rule overlap-monotonicity)
hence O w z by (rule overlap-symmetry)
from w have - O w z..
thus Fualse using <O w 2..
next
assume s = 2
moreover from s have O w s..
ultimately have O w z by (rule subst)
from w have - O w z..
thus Fulse using (O w 2)..
qed
qed
thus P z z using (P z v by (rule ssubst)
qed
qed
qed

corollary strong-fusion-intro: (Vy. Fy — Pyxz) AN Vy. Pyxz —
(2. F2N0Oyz2) = (cz. Fz) =1
proof —

assume antecedent: (Vy. Fy — Pyxz) N (Vy. Pyz — (F2. F 2
A Oy z))

with least-upper-bound have lubz:

~NVy. Fy — Pyx)ANNz. Vy. Fy — Pyz) — Pz 2).

from antecedent have Vy. Pyz — (32. F 2z A O y 2)..

hence Pz z — (2. Fz AN Oz 2).

hence Jz. F z A O x z using part-reflexivity..

then obtain z where 2: F z A O x z..

hence F z..

hence 3z. F z..

80



hence (0 z. Fz) = (THEz. Yy. Fy — Pyz) AN Vy. Pyz —
(3z. Fz A Oy z))) by (rule strong-fusion-eq)
moreover have (THE z. (Vy. Fy — Pyz) AN (Vy. Pyz —
(2. FzANOyz)) ==
proof (rule the-equality)
show Vy. Fy — Pyx) AN Vy. Pyxz — (2. Fz A Oy 2))
using antecedent.
next
fix w
assume w:
NVy. Fy —Pyw) AN Vy. Pyw — (Fz. Fz AN Oy2z)
with least-upper-bound have lubw:
~Vy. Fy—Pyw)AN(Vz. Vy. Fy — Pyz) — Pwz).
hence (Vz. Vy. Fy — Pyz) — P w 2)..
hence (Vy. Fy — Pyz) — P w x..
moreover from antecedent have Vy. F y — P y ..
ultimately have P w z..
from lubz have (Vz. Vy. Fy — Pyz) — Pz 2z)..
hence (Vy. Fy — Py w) — Pz w..
moreover from lubw have (Vy. Fy — Py w)..
ultimately have P z w..
with (P w 2 show w =
by (rule part-antisymmetry)
qed
ultimately show (o z. F z) = z by (rule ssubst)
qed

lemma strong-fusion-character: 3z. F v — (Vy. Fy — Py (o x.
Fz)) NVy. Py (cz. Fz) — (3z. Fz A Oy 2)))
proof —

assume Jz. F z

hence (Jz. Vy. Fy — Pyax) ANy. Pyz — (32 FzA Oy
2))) by (rule strong-fusion)

then obtain z where z:

My Fy— Pyz) ANVy. Pyz — (3z. Fz A Oy 2))..

hence (o z. F ) = z by (rule strong-fusion-intro)

thus ?thesis using z by (rule ssubst)
qed

lemma F-in: 3z. Fo = (Vy. Fy — Py (0 z. Fx))
proof —
assume Jz. F z
hence (Vy. Fy — Py (c z. Fz)) AN (Vy. Py (0 z. Fz) —
(3z. Fz A Oy z))) by (rule strong-fusion-character)
thusVy. Fy — Py (0 z. Fzx)..
qed

lemma parts-overlap-Fs:
dz. Fr = (Vy. Py (c . Fz) — (2. Fz A Oy 2))
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proof —

assume Jz. F'z

hence (Vy. Fy — Py (c . Fz)) N (Vy. Py (0 z. Fz) —
(3z. Fz A Oy z))) by (rule strong-fusion-character)

thus (Vy. Py (0 z. Fz) — (2. Fz A Oy 2))..
qed

lemma in-strong-fusion: P z (o x. z = x)
proof —
have Jy. z = y using refi..
henceVy. 2=y — Py (0 z. 2= 1)
by (rule F-in)
hence z =2 — Pz (0 z. 2 = z)..
thus P z (o z. z = ) using refl..
qed

lemma strong-fusion-in: P (o0 ©. z = z) 2
proof —
have Jy. z = y using refl..
hence sf:
NVy.z=y— Py(ocz.z2=2)ANNVy. Py(ocz.2z=12 —
(Fv.z=v A O yv))
by (rule strong-fusion-character)
with least-upper-bound have lub: (Vy. z
ANNVou Vy. 2=y — Pyv) — P (oz 2
hence (Vv. (Vy. 2=y — P yv) —>P( ox 2
hence Vy. 2=y — Pyz) — P (c 2.z =
moreover have (Vy. 2=y — Py z
proof
fix y
show z =y — Pyz
proof
assume z = y
thus P y z using part-reflezivity by (rule subst)
qed
qed
ultimately show P (o z. z = z) z..
qed

||Q

— Py (oz z=1)
z) v)-

lemma strong-fusion-idempotence: (o x. z = z) = 2z
using strong-fusion-in in-strong-fusion by (rule part-antisymmetry)

10.4 Strong Sums

lemma pair-fusion: (PzzANPyz) AN Yw. Pwz— OwzV Ow
Yy — (0z.z=zVz=y) =z

proof

assume z: (PzzAPyz)ANVw. Pwz— OwzV Owy)
have Vv.v=2Vuv=y — Pvz) ANVv.Pvz— (3z. (z=1
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Vz=y) A Owvz)
proof
show Vv.v=zVuv=y — Povz
proof
fix w
from z have Pz 2z A P y z..
show w=zVw=y — Pwz
proof
assume w =z V w =y
thus P w 2
proof
assume w = x
moreover from (P z z A P y 2 have P z z..
ultimately show P w z by (rule ssubst)
next
assume w = y
moreover from (P x 2z A Py 2 have P y z..
ultimately show P w z by (rule ssubst)
qed
qed
qed
show Vu. Pvz — (2. (z=2Vz2z=y) AN Ovz)
proof
fix v
show Pvz — (z. (z=2zVz=9y) A Ovz)
proof
assume P v z
from z have Vw. Pwz — Owz V O w y..
hence Pvz — OwvzxzV Owvy..
hence O vz vV O v y using (P v 2..
thus 3z. (z=2Vz=y) AOvz
proof
assume O vz
have z = z V z = y using refi..
hence (z =z V 2z =y) A O vz using (O v »..
thus 3z. (z=2Vz=y) A Owvz.
next
assume O v y
have y =z Vv
hence (y =
thus 3z. (z =
qed
qed
qed
qed
thus (0 z. z2=2Vz=y) =1z
by (rule strong-fusion-intro)
qed

= y using refi..
= y) A O vy using <O v p..

Y
vy
zVz=y)AOuvz.
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corollary strong-sum-fusion: t & y = (0 2. 2 =z V 2z = y)
proof —
have (THE z. (Pxzz N Py z) A
Vw.Pwz— OwzV Owy)=(0z2z=zVz=y)
proof (rule the-equality)
have z = z V = = y using refi..
hence exz: 3z. z =2z V z = y..
hence allv: Vw. w=zVw=y — Pw(cz z2=2V z=1y))
by (rule F-in)
show (Pz(cz.z=azVz=y)ANPy(cz.2=2Vz=y))A
NVw. Pw(ocz. z=2zVz=y) — OwzV Owy)
proof
show (Pz (0 z.2=a2Vz=y) APy(cz z=2V z=y))
proof
from allvhave r =2 Va=y— Px(cz.2=2V z=y)..
thus Pz (0 z. 2= V 2 = y)
using =2V =1p.
next
from allwhave y=2zVy=y— Py(cz.z2=2V z2=y).
moreover have y =z V y =y
using refl..
ultimately show Py (0 z. z =z V z = y)..
qged
next
showVw. Pw(cz.z=2Vz=y) — OwzV Owy
proof
fix w
show Pw(oc z.z=zVz=y) — OwzV Owy
proof
haveVv. Pv (0 z.z=zVz=y) — (Fz. (z=2zV z=1y)
A O v z) using exz by (rule parts-overlap-Fs)
hence Pw (0 z.z=zVz2z=y) — (Jz. (z=zVz2=1y) A
Owz)..
moreover assume P w (0 z. z =12V z = )
ultimately have (3z. (z =z V z=y) A O w 2)..
then obtain z where z: (z =z V z2=y) A O w z..
thus O wz V O w y by (rule or-id)
qed
qged
qed
next
fix z
assume z: (Pz2APyz)ANNVNw. Pwz— OwzV Owy)
with pair-fusion have (o 2. z =2V z = y) = z..
thus z = (0 z. 2=2 V z = y)..
qed
with strong-sum-eq show ¢ @ y = (0 z. z =2 V 2 = y)
by (rule ssubst)
qed
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corollary strong-sum-intro:

(PrzANPyz)ANNVw Pwz— OwzV Owy —2Py==z2
proof

assume z: (Pz2ANPyz) ANVNVw. Pwz— OwzV Owy)

with pair-fusion have (o 2. z =2V 2z = y) = z..

with strong-sum-fusion show (z ® y) = 2

by (rule ssubst)

qed

corollary strong-sum-character: (Pz (x ® y) APy (x ® y)) A Vw.
Pw(z®dy) — OwzV Ouwy)
proof —
from strong-sum-closure obtain z where z:
(PzzANPyz)ANNMw. Pwz— OwazV Owy)..
with strong-sum-intro have © @ y = z..
thus ?thesis using z by (rule ssubst)
qed

corollary summands-in: (P z (x @& y) A Py (z & y))
using strong-sum-character..

corollary first-summand-in: P x (x ® y) using summands-in..
corollary second-summand-in: Py (z & y) using summands-in..

corollary sum-part-overlap: (Vw. Pw (z @ y) — Owz V O wy)
using strong-sum-character..

lemma strong-sum-absorption: y = (z & y) = Pz y
proof —

assume y = (z @ y)

thus P z y using first-summand-in by (rule ssubst)
qed

theorem strong-supplementation: = Pxy = (3z. Pzax A = O z y)
proof —
assume = Pz y
have = (Vz. Pzz — O z y)
proof
assume z:Vz. Pzz — O zy
have (Vv. y=v— Po(z @ y)) A
Vv.Pov(z®y) — Bz.y=2AN0wv2)
proof
show Vv. y=v — Pv (z® y)
proof
fix v
show y =v — Puv (z & y)
proof
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assume y = v
thus P v (z @ y)
using second-summand-in by (rule subst)
qed
qed
show Vu. Pv(z @ y) — (Fz.y=2A Ov2)
proof
fix v
show Pv (z ® y) — (Bz.y=2AN 0wv2)
proof
assume P v (z @ y)
moreover from sum-part-overlap have
Pv(zdy) — OvzV Owvy..
ultimately have O v z V O v y by (rule rev-mp)
hence O v y
proof
assume O vz
with overlap-eq have 3w. Pw v A P w x..
then obtain w where w: P w v A P w z..
from z have Pwz — O w y..
moreover from w have P w z..
ultimately have O w y..
with overlap-eq have 3t. Pt w A Pt y..
then obtain t where ¢: Pt w A Pt y..
hence P t w..
moreover from w have P w v..
ultimately have P t v
by (rule part-transitivity)
moreover from ¢t have Pt y..
ultimately show O v y
by (rule overlap-intro)
next
assume O v y
thus O v y.
qed
with refl have y = y A O v y..
thus dz.y =2 A O v z..
qed
qed
qed
hence (0 z. y = z) = (z @ y) by (rule strong-fusion-intro)
with strong-fusion-idempotence have y = z @ y by (rule subst)
hence P z y by (rule strong-sum-absorption)
with (= P z y show Fulse..
qed
thus 32. Pzxz A = O z y by simp
qed

lemma sum-character: Vv. O v (z @ y) +— (OvzV Ovy)
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proof
fix v
show Ov (z® y) «— (OvaV Ovy)
proof
assume O v (z @ y)
with overlap-eq have 3w. Pw v A Pw (z & y)..
then obtain w where w: Pwv A Pw (z & y)..
hence P w v..
have Pw (2 @ y) — O wx V O w y using sum-part-overlap..
moreover from w have P w (z & y)..
ultimately have O w2z vV O w y..
thus Ovz VvV Ovy
proof
assume O w z
hence O z w
by (rule overlap-symmetry)
with (P w v»» have O z v
by (rule overlap-monotonicity)
hence O v z
by (rule overlap-symmetry)
thus Ovz VvV Ovwvy..
next
assume O w y
hence O y w
by (rule overlap-symmetry)
with (P w v have O y v
by (rule overlap-monotonicity)
hence O v y by (rule overlap-symmetry)
thus Ovz Vv Owvy..
qed
next
assume OvzV Ovy
thus O v (z & y)
proof
assume O vz
with overlap-eq have Jw. Pwv A P w ..
then obtain w where w: P wv A P w z..
hence P w v..
moreover from w have P w z..
hence P w (z @ y) using first-summand-in
by (rule part-transitivity)
ultimately show O v (z & y)
by (rule overlap-intro)
next
assume O v y
with overlap-eq have 3w. P wv A P w y..
then obtain w where w: P w v A P w y..
hence P w v..
moreover from w have P w y..

87



hence P w (z @ y) using second-summand-in
by (rule part-transitivity)
ultimately show O v (z & y)
by (rule overlap-intro)
qed
qed
qed

lemma sum-eq: ¢ @ y = (THE z.Vv. Ovz=(0vzV Ovy))
proof —
have (THE z.Vv. Ovz+— (OvzV Ovy) =z®y
proof (rule the-equality)
show Vv. Ov (z @ y) «— (O vz V O vy) using sum-character.
next
fix z
assume 2: Vv. Ovz<+— (OvzV Ovy)
have (Pzz2APyz) AN(VNw.Pwz— OwzV Owy)
proof
show Px 2z AN Pyz
proof
show Pz z
proof (rule ccontr)
assume - Pz 2
hence Jv. Pvz A - O vz
by (rule strong-supplementation)
then obtain v where v: Pvz A = O v z..
hence = O v z..
from z have O vz <— (Ovz VvV Ovy).
moreover from v have P v z..
hence O v z by (rule part-implies-overlap)
hence O vz VvV O v y..
ultimately have O v z..
with (= O v 2 show Fulse..
qed
next
show P y z
proof (rule ccontr)
assume - Py 2
hence 3v. Pvy A= O vz
by (rule strong-supplementation)
then obtain v where v: Pvy A = O v z..
hence = O v z..
from z have Ovz+— (OvzV Ovy)..
moreover from v have P v y..
hence O v y by (rule part-implies-overlap)
hence O vz VvV O v y..
ultimately have O v z..
with (= O v 2 show Fulse..
qed
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qged
show Vw. Pwz — (OwzV O wy)
proof
fix w
show Pwz — (Owz V O wy)
proof
from z have Owz +— Owz VvV O w y..
moreover assume P w z
hence O w z by (rule part-implies-overlap)
ultimately show O wz VvV O w y..
qed
qed
qed
with strong-sum-intro have x ® y = z..
thus z = 2 @ y..
qed
thus ?thesis..
qed

theorem fusion-eq: 3z. F v =
(cx. Fz) = (THEz.Vy. Oyxz +— (3z. Fz A Oy 2)
proof —
assume Jz. F z
hence bla: Vy. Py (o0 z. Fz) — (32z. Fz AN Oy 2)
by (rule parts-overlap-F's)
have (THE z.Vy. Oyxz +— (32. Fz2NOyz)) = (o z. Fux)
proof (rule the-equality)
show Vy. Oy (0 z. Fz) «— (2. F2z N Oy 2)
proof
fix y
show Oy (c z. Fz) «— (3z. Fz A Oyz)
proof
assume O y (0 z. F 1)
with overlap-eq have 3v. Pvy A Pv (0 z. F z)..
then obtain v where v: Pvy A Pv (0 z. F z)..
hence P v y..
from bla have Pv (0 z. Fz) — (32z. Fz A O v 2)..
moreover from v have P v (o z. F x)..
ultimately have (3z. Fz A O v 2)..
then obtain z where z: F 2z A O v z..
hence F' z..
moreover from z have O v z..
hence O z v by (rule overlap-symmetry)
with (P v o have O z y by (rule overlap-monotonicity)
hence O y z by (rule overlap-symmetry)
ultimately have F z A O y z..
thus (3z. Fz A Oy 2)..
next
assume 3z. Fz AN Oyz
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then obtain z where z: F 2z A O y z..
from3z. F o have (Vy. Fy — Py (0 z. F 1))
by (rule F-in)
hence F z — Pz (o z. F z)..
moreover from z have F z..
ultimately have P z (o z. F x)..
moreover from z have O y z..
ultimately show O y (0 z. F'z)
by (rule overlap-monotonicity)
qged
qed
next
fix z
assume z: Vy. Oyz +— (Fv. Fo A Oyv)
have Vy. Fy — Pyx) A(Vy. Pyz — (2. Fz A O y 2))
proof
show Vy. Fy— Pyz
proof
fix y
show Fly — Pyzx
proof
assume F'y
show P y z
proof (rule ccontr)
assume - Py x
hence 3z. Pzy A—- O zzx
by (rule strong-supplementation)
then obtain z where z: Pz y A = O z z..
hence = O z z..
from z have O zz +— (3v. Fv A O zv)..
moreover from z have P z y..
hence O z y by (rule part-implies-overlap)
with £y have Fy A O z y..
hence Jy. Fy A O z y..
ultimately have O z z..
with (= O z ©» show Fulse..
qed
qed
qged
show Vy. Pyaz — (32z. Fz A Oy 2)
proof
fix y
show Pyxz — (32. F2 N Oy 2)
proof
from z have O y z «+— (2. Fz A O y 2)..
moreover assume P y
hence O y z by (rule part-implies-overlap)
ultimately show 3z. Fz A O y z..
qed
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qged
qed
hence (0 z. Fz) =z
by (rule strong-fusion-intro)
thus z = (0 z. F z)..
qed
thus (0 2. Fz) = (THEz.Vy. Oyz <— (3z. Fz A Oy 2))..
qed

end

sublocale GEM1 C GEM
proof
fixzy F
show ~Pzy=— d2. Pzz A~ 0Ozy
using strong-supplementation.
show 2 @ y = (THE z.¥Yv. Ovz<+— (OvzV Ovy))
using sum-eq.
show z ® y = (THE z.Yv. Pvz <— Pvz A Puy)
using product-eq.
show 2 © y = (THE z.Vw. Pwz=(Pwz A= Owy))
using difference-eq.
show — ¢ = (THE z. Yw. Pwz ¢— = O w )
using complement-eq.
show v = (THE z. Vy. Py z)
using universe-eq.
show 3z. Fo = (0 . Fz) = (THE 2. Vy. Oyz +— (32 Fz
A Oy z)) using fusion-eq.
show (mrz. Fz)=(c z.Vy. Fy — Puy)
using general-product-eq.
qed

sublocale GEM C GEM1
proof
fixxy F
show 32. Fz = (2. Vy. Fy — Pyx) AN (Vy. Pyz — (Jz.
F 2z A Oy z))) using strong-fusion.
show 3z. Fr = (0 . Fz) = (THEz. Vy. Fy — Py x) A
(Vy. Pyxz — (2. F 2z A Oy 2))) using strong-fusion-eq.
show (m z. Fz) = (0 2. Vy. Fy — P z y) using general-product-eq.
show 2 ® y=(THE z. (Pz2ANPyz) N(Vw.Pwz— OwzV
O w y)) using strong-sum-eq.
show z ® y = (THE 2. Yv. Pvz<+— Pvxz A Puvy)
using product-eq.
show 2 © y = (THE z. Yw. Pwz=(Pwz A= Owy))
using difference-eq.
show — z = (THE z. YV w. Pw z +— — O w ) using complement-eq.
show u = (THE z. Vy. P y z) using universe-eq.
qed
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