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Abstract: 
The fact that the same equations or mathematical models reappear in the descriptions of 
what are otherwise disparate physical systems can be seen as yet another manifestation of 
Wigner’s “unreasonable effectiveness of mathematics.”  James Clerk Maxwell famously 
exploited such formal similarities in what he called the “method of physical analogy.”  
Both Maxwell and Hermann von Helmholtz appealed to the physical analogies between 
electromagnetism and hydrodynamics in their development of these theories.  I argue that 
a closer historical examination of the different ways in which Maxwell and Helmholtz 
each deployed this analogy gives further insight into debates about the representational 
and explanatory power of mathematical models.   
 

 
I. Introduction: Wigner’s Puzzles 

 Eugene Wigner, in his classic paper “The Unreasonable Effectiveness of 

Mathematics in the Natural Sciences,” poses two challenges:  The first concerns the 

subject of his title most directly, namely the challenge of understanding how 

“mathematical concepts turn up in entirely unexpected connections” (Wigner 1960, p. 2).  

The second challenge is how we can “know whether a theory formulated in terms of 

mathematical concepts is uniquely appropriate” (p. 2), or what he later describes as the 

remarkable accuracy and (prima facie) explanatory power of false theories. There is, 

however, a third puzzle that lies at the intersection of Wigner's two challenges, and that is 

understanding how the same equations or mathematical models can sometimes reappear 

in the descriptions of what are otherwise very different sorts of physical systems.  This 
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puzzle not only raises questions about the unreasonable effectiveness of mathematics but 

also Wigner's worries about non-uniqueness and the prima facie explanatory power of 

false models. Moreover, this formal similarity between two distinct domains of science, 

can give rise to a methodology whereby the results obtained in elaborating the models in 

one domain can then be imported into the other domain to also solve problems there. 

 This third puzzle, involving the same mathematical equations reappearing in the 

descriptions of what are otherwise very different physical systems, is most strikingly 

illustrated in the works of James Clerk Maxwell and Hermann von Helmholtz.  Maxwell 

famously exploited these formal similarities between two distinct domains of science in 

what he called the method of physical analogy.  An early articulation of this methodology 

occurs in his 1855 article “On Faraday’s Lines of Force”, where he writes,  

By a physical analogy I mean that partial similarity between the laws of one 
science and those of another which makes each of them illustrate the other. . . . 
[W]e find the same resemblance in mathematical form between two different 
phenomena. (Maxwell [1855/56] 1890, p. 156)   

 
Maxwell used this methodology repeatedly in his development of the theory of 

electromagnetism, such as by drawing physical analogies between fluid dynamics 

(hydrodynamics) and electromagnetic phenomena.  He, for example, conceives of 

Faraday's lines of force as thin tubes carrying an imaginary incompressible fluid, though 

explicitly notes that this fluid should not be thought of as a physical hypothesis, but rather 

simply as a useful fiction.   

 Interestingly Helmholtz independently exploited this very same physical analogy; 

but rather than using hydrodynamics for the further development of electromagnetism, 
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Helmholtz used electromagnetism for the further development of hydrodynamics. 1  In his 

seminal 1858 paper on vortex motions, he writes that there is a 

remarkable analogy between the vortex-motion of fluids and the electro-magnetic 
action of electric currents. . . . I shall therefore frequently avail myself of the 
analogy of the presence of magnetic masses or of electric currents, simply to give 
a briefer and more vivid representation. (Helmholtz [1858], p.43; 1867, p. 486-
487) 

 
By using this physical analogy and fictitious representation, Helmholtz was able to derive 

three fundamental theorems of fluid dynamics that are still accepted today.2  While the 

fertility of this method of physical analogy is, I believe, indisputable, its philosophical 

grounding and implications are still not fully understood.  To many, Maxwell’s and 

Helmholtz’s remarkable successes using this method are just another indication of 

Wigner’s “unreasonable effectiveness of mathematics.”   

 In what follows I shall take a closer look at the different ways in which Maxwell 

and Helmholtz each deployed this physical analogy between hydrodynamics and 

electromagnetism, and offer a more nuanced historical understanding of how this 

methodology works.  My aim in this paper is not to reconstruct Maxwell’s logic of 

scientific discovery (for this see, for example, Buchwald’s (1985) rigorous and detailed 

book); rather, my aim is to use Maxwell’s own reflections on the method of physical 

                                                
1 There are some interesting parallels between Maxwell’s and Helmholtz’s methodology 
here and what I have called the “reciprocal correspondence principle methodology” in the 
context of classical and quantum mechanics.  Paul Dirac, for example, frequently used 
this latter method to solve problems in quantum theory by first translating them into the 
classical context, solving them there, and then using relations such as the correspondence 
principle, to import the solution back into quantum theory (see Bokulich 2008, Section 
3.2).  More generally, both methods illustrate an important, but often overlooked, 
“horizontal” dimension to model building (see, for example, Bokulich 2003). 
2 Lydia Patton (2009) has an excellent discussion of Helmholtz's work on fluid dynamics 
as presaging the Bild (picture) theory, and its subsequent influence on Hertz and 
Wittgenstein.   
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analogy as a framework for thinking about Wigner’s puzzles and the representational 

power of mathematics.  Maxwell does not simply employ these physical analogies and 

fictional posits with a naive opportunism, but rather engages in a philosophical reflection 

on both the legitimacy of such a methodology and its broader metaphysical implications.  

There are three points in Maxwell’s reflections on this methodology that I wish to call 

attention to:  The first concerns Maxwell’s views on how mathematical models represent 

reality; the second, his views on the explanatory power of mathematical models; and the 

third, the version of scientific structuralism that Maxwell believes underlies this method 

of physical analogy.  I shall conclude by showing the relevance of Maxwell’s reflections 

for Wigner’s puzzles and what I call the unreasonable effectiveness of the method of 

physical analogy.   

 

II. Maxwell's Method of Physical Analogy 

 As Maxwell himself describes it, the most immediate source of inspiration for his 

method of physical analogy, was William Thomson’s (Lord Kelvin) use of the analogy 

between heat and electrostatics, as presented in an 1842 paper.3  In a letter to Thomson in 

the spring of 1855 Maxwell acknowledges this influence: 

I am trying to construct two theories, mathematically identical, in one of which 
the elementary conceptions shall be about fluid particles attracting at a distance 
while in the other nothing (mathematical) is considered but various states of 
polarization tension &c existing at various parts of space.  The result will 
resemble your analogy of the steady motion of heat.  Have you patented that 
notion with all its applications? for I intend to borrow it for a season without 
mentioning anything about heat...but applying it in a somewhat different way to a 

                                                
3 Thomson, W. (1842) “On the Uniform Motion of Heat in Homogeneous Solid Bodies, 
and its Connection with the Mathematical Theory of Electricity”, Cambridge 
Mathematical Journal 3: 71-84.   
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more general case. (Maxwell letter to Thomson, 15 May, 1855; in Harman 1990, 
pp. 306-307).4   

As we will see below, Maxwell greatly expanded Thomson's method of physical analogy, 

using it in a more general way.  Nancy Nersessian explains the difference between 

Thomson's and Maxwell's use of the method of analogy as follows:  

Thomson's method was to take an existing mathematical representation of a 
known physical system . . . as an analogical source. . . .That is, Thomson 
proceeded directly to the mathematical structures using a formal analogy between 
the two real-world domains. . . . What makes Maxwell's [approach]. . . different is 
that the analogical sources to be mapped to the domain of electromagnetism were 
not ready to hand, but had to be constructed.  (Nersessian 2008, p. 51) 

 
This more creative use of the method of analogy has been remarked on by many, such as 

Giora Hon and Bernard Goldstein who argue that it anticipated a very modern approach 

to modeling: 

Unlike Thomson, Maxwell described an artifact--an imaginary scheme--which he 
set into an analogical relation with the newly discovered electromagnetic 
phenomena. . . . this shift constitutes a new methodology: the application of 
contrived analogy, which may be considered the harbinger of the modern 
methodology of modeling. (Hon and Goldstein 2012, p. 246) 

 
In order to better understand these innovations, let us turn to a closer examination of 

Maxwell's method.   

 Maxwell introduces his physical analogy as a middle path between what he calls a 

“purely mathematical formula” on the one hand and a “physical hypothesis” on the 

other.5  He notes that if one adopts a purely mathematical approach, conceiving of these 

                                                
4 In this same letter, Maxwell also mentions to Thomson that he has been investigating 
hydrodynamics and gives the example of vortex motion: "I have been investigating fluid 
motion with reference to stability and I have got results when the motion is confined to 
the plane of xy.  I do not know if the method is new. It only applies to an incompressible 
fluid moving in a plane" (Maxwell letter to Thomson, 15 May, 1855; Larmor 1937, p.12).  
Helmholtz's treatise on vortex motion would appear just two years later.   
5 Turner (1955), for example, has talked extensively about this feature of Maxwell's 
methodology. 
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equations as nothing more than a string of mathematical symbols, then "we entirely lose 

sight of the phenomena to be explained; and though we may trace out the consequences 

of given laws, we can never obtain more extended views of the connexions of the 

subject" (Maxwell [1855/56] 1890, p. 155).  According to Maxwell, an approach that 

conceives of these equations simply as a piece of mathematics is impoverished, and 

unable to generate scientific explanations.  On the other hand, he also warns against the 

dangers of trying to investigate and explain phenomena through what he describes as the 

distorting medium of a physical hypothesis, which can lead to a sort of blindness and 

rashness of conclusions (Maxwell [1855/56] 1890, p. 156).  The proper methodology, 

according to Maxwell, is that of physical analogy, which he describes as a way of getting 

physical ideas without actually adopting a full physical hypothesis.   

A physical analogy is a resemblance in the form of the equations between what 

are otherwise different sorts of phenomena.  In his 1870 address to the Mathematical and 

Physical Sections of the British Association, Maxwell describes the foundation of his 

method of physical analogy as follows: 

[T]he mathematical processes and trains of reasoning in one science resemble 
those in another so much that his knowledge of the one science may be made a 
most useful help in the study of the other.  When he examines into the reason of 
this, he finds that . . .  the mathematical forms of the relations of the quantities are 
the same in both systems, though the physical nature of the quantities may be 
utterly different. (Maxwell [1870] 1890, p. 218)   

 
He goes on to note that these formal similarities provide the basis for a powerful 

methodology, which he describes as, 

a method to enable the mind to grasp some conception or law in one branch of 
science, by placing before it a conception or law in a different branch, and 
directing the mind to lay hold of that mathematical form which is common to the 
corresponding ideas in the two sciences, leaving out of the account for the present 
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the difference between the physical nature of the real phenomena. (Maxwell 
[1870] 1890, p. 219) 

 
Note in these quotations that Maxwell distinguishes rather sharply between what he calls 

the form of the relations between quantities and the physical nature of the quantities 

themselves.  His method of physical analogy—despite the adjective physical—is not 

between the physical nature of quantities in the two sciences, which as he emphasizes can 

be quite different in the two systems being compared.  It is rather an analogy between the 

relational or structural features of the two domains of phenomena.   

 Maxwell defends this methodology not simply as a lazy scientist’s shortcut, but 

rather as a method that can lead to novel insights into a system that would be missed by 

simply studying that system alone: 

[T]he recognition of the formal analogy between the two systems of ideas leads to 
a knowledge of both, more profound than could be obtained by studying each 
system separately. (Maxwell 1870, p.219; Garber et al. 1986, p. 94) 

 
Maxwell’s own seminal discoveries using such a methodology furnishes some striking 

evidence in favor of this claim.   

 One might think that Maxwell's emphasis on formal correspondences, that ignore 

the physical differences between the systems being compared would lead him to defend a 

very abstract, mathematical characterization of scientific theories and models.  As we will 

see, however, he does not advocate investigating these analogies between the formal 

relations in an abstract, purely mathematical way.  Rather, it is the method of physical 

analogy because these formal relations are to be investigated in what Maxwell calls their 

“embodied form.” 
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III. "Embodied" Mathematical Models 

 Despite Maxwell’s emphasis on formal relations, he argues that we should remain 

grounded as far as possible in a physical interpretation of these mathematical quantities 

and relations.  He writes, for example, in “On Faraday’s Line of Force”,  

My aim has been to present the mathematical ideas to the mind in an embodied 
form . . . not as mere symbols, which convey neither the same ideas, nor readily 
adapt themselves to the phenomena to be explained. (Maxwell [1855/56] 1890, p. 
187) 

 
He emphasizes this notion of embodied mathematics again in his discussion of 

Lagrangian mechanics:   

The aim of Lagrange was, as he tells us himself, to bring dynamics under the 
power of the calculus, and therefore he had to express dynamical relations in 
terms of the corresponding relations of numerical quantities. . . . We must 
therefore avail ourselves of the labours of the mathematician, and selecting from 
his symbols those which correspond to conceivable physical quantities, we must 
retranslate them into the language of dynamics.  In this way our words will call up 
the mental images, not of certain operations of the calculus, but of certain 
characteristics of the motion of bodies.  (Maxwell [1876] 1890, p. 308) 

 
Maxwell is quite dismissive of formalist approaches that conceive of mathematical 

models in physics as simply a piece of pure mathematics.  He instead calls attention to 

the complicated back and forth process by which physical considerations and 

mathematical formalisms develop in tandem, each one continually being re-tailored to the 

other.   

In these passages, Maxwell is also calling attention to an important distinction 

that we often loose sight of when thinking about the representational power of 

mathematics.  When we write down an equation or mathematical model there are really 

three different models we can intend by this expression: First, it might be conceived of as 

just a piece of pure mathematics--a string of symbols.  Second, there is what Maxwell 
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calls the mathematics in its embodied form.  Here the quantities and relations are given a 

dynamical or physical interpretation, but it need not be in terms of the physical system 

one is investigating; the emphasis is rather on the general dynamical relations and 

properties, which can be instantiated by a number of different physical systems.  Third, 

there is the equation as an expression of a particular physical hypothesis, where the 

physical interpretation is specifically in terms of the concrete system one is describing.  

With his notion of an embodied mathematical model, Maxwell is trying to carve out a 

middle ground between a mathematical model interpreted simply as a piece of abstract 

mathematics and a mathematical model interpreted as the expression of some particular 

mechanical or physical hypothesis. 

 

 

 

 

 

 

 

 
Figure 1: “Embodied” mathematical models as an intermediate level between the equation interpreted as 
pure mathematics (at the highest level of abstraction) and the equation interpreted as the expression of a 
particular physical hypothesis (at the most concrete level).  Note that there can be multiple different kinds 
of concrete systems (A, B, C) which are instantiations of the general dynamical relations and properties 
expressed at the embodied level.  Thus, for example, “A” can be used as an analogous or fictional 
representation for the investigation of physical system “B”.   
 

 

   

 

EMBODIED EQUATION AS EXPRESSION 
OF GENERAL DYNAMICAL RELATIONS. 

Equation as expression 
of concrete physical 
hypothesis B 

Equation as expression 
of concrete physical 
hypothesis C 

Equation as expression 
of concrete physical 
hypothesis A 

EQUATION AS PURE 
MATHEMATICS 



 10 

In her discussion of Maxwell’s methodology, Nancy Nersessian similarly calls 

attention to these various levels of abstraction in terms of what she describes as the 

process of generic abstraction in model-based reasoning.  She writes, 

Maxwell was able to formulate the laws of the electromagnetic field by 
abstracting from specific mechanical models the dynamical properties and 
relations. . . . [T]hese common dynamical properties and relations were separated 
from the specific instantiations provided in the models through which they had 
been rendered concrete.  The generic mechanical relationships represented by the 
imaginary systems of the models served as the basis from which he abstracted a 
mathematical structure of sufficient generality. (Nersessian 2002, p.157) 
 

What she describes as the model understood as a representation of “generic mechanical 

relationships” (apart from various possible concrete realizations) corresponds to this 

second “embodied” level, which Maxwell is emphasizing as so important.  It can be 

distinguished both from the model as an abstract mathematical structure at one end, and 

from those mechanical relations as realized in a particular concrete system, at the other 

end.  Recognizing the model as an expression of generic mechanical or dynamical 

relations allows one to use a particular concrete instantiation of those relations—even if a 

fictional or imaginary one—to stand in as a proxy for the particular physical system one 

is investigating.   

 

 

IV. A Role for Fictions 

 Both Maxwell’s and Helmholtz’s use of the method of physical analogy lead them 

to embrace the legitimacy of fictional modeling.  Helmholtz, for example, justifies his use 

of fictional magnetic masses and fictional electrical currents in his studies of 

hydrodynamics on the grounds that,  
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[b]y means of these theorems a series of forms of motion, concealed in the class 
of the unexamined integrals of the hydrodynamic equations, at least becomes 
accessible to the imagination even if the complete integration is possible only in a 
few of the simplest cases. (Helmholtz 1858, p.43) 

 
By thinking through these mathematical equations in a fictional embodied form, 

Helmholtz is able to arrive at results that would be difficult to extract through purely 

formal methods.   

 Maxwell similarly embraces the legitimacy of such fictional modeling, as long as 

one does not lose sight of the fact that it is only a fiction.  When, for example, he 

conceives of Faraday’s lines of force as fine tubes carrying an imaginary incompressible 

fluid, he warns, 

The substance here treated of must not be assumed to possess any of the 
properties of ordinary fluids except those of freedom of motion and resistance to 
compression.  It is not even a hypothetical fluid. . . . It is merely a collection of 
imaginary properties. . . . The use of the word “Fluid” will not lead us into error, 
if we remember that it denotes a purely imaginary substance (Maxwell [1855/56] 
1890, p. 160). 

 
He explicitly distinguishes here between a fictional posit and a physical hypothesis.  He 

argues that as long as we don’t lose sight of the fictional nature of the posit, then we 

won’t be mislead in reasoning with such fictional models.   

Maxwell dismisses the idea that the same results could be achieved by simply 

restricting oneself to the formal equations alone.  In his discussion of the analogy 

between light and vibrations of an elastic medium.  He writes, 

The other analogy, between light and vibrations of an elastic medium extends 
farther, but, though its importance and fruitfulness cannot be over-estimated, we 
must recollect that it is founded only on a resemblance in form between the laws 
of light and those of vibrations.  By stripping it of its physical dress and reducing 
it to a theory of ‘transverse alternations,’ we might obtain a system of truth 
strictly founded on observation, but probably deficient both in the vividness of its 
conceptions and the fertility of its method. (Maxwell [1855/56] 1890, p. 156) 
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In this passage we again see that Maxwell’s willingness to make use of fictional models 

is tied to his belief in the importance of working with mathematical models in an 

embodied form.   

 Maxwell’s use of fictions to provide a physical embodiment for his mathematical 

modeling culminates in his famous vortex-idle wheel model of the electromagnetic 

medium.   

 

Figure 2: Maxwell’s (1861/62) vortex-idle wheel model of the electromagnetic medium (from plate VIII, 
figure 2, facing p. 488). 
 

As we see in the figure here, the model consists of rows of vortices, that is, cells of 

rotating fluid, that are stacked on top of each other.  In order to keep the vortices rotating 

in the right directions, Maxwell introduces a layer of round “idle wheel” particles in 

between adjacent cells to allow the vortices to rotate in same direction.  The rotating 

vortices are taken to represent the magnetic field, while the translation of the idle wheel 

particles represents the electric current.  After working through all the details of this 

vortex model, Maxwell reminds his reader that it should not be interpreted literally: 

The conception of a particle having its motion connected with that of vortex by 
perfect rolling contact may appear somewhat awkward.  I do not bring it forward 
as a mode of connexion existing in nature, or even as that which I would willingly 
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assent to as an electrical hypothesis.  It is, however, a mode of connexion which is 
mechanically conceivable, . . . and it serves to bring out the actual mechanical 
connexions between the known electro-magnetic phenomena; so that I venture to 
say that any one who understands the provisional and temporary character of this 
hypothesis, will find himself rather helped than hindered by it in his search after 
the true interpretation of the phenomena. (Maxwell [1861/62] 1890, p. 486) 

 
Maxwell in this passage describes three possible ways of interpreting his model: first, it 

might be thought of as a literal description of what is actually going on in 

electromagnetic phenomena—an option he rejects outright; second, it could be 

interpreted as an hypothesis—a possible candidate for what is going on in an 

electromagnetic medium—an interpretation which he rejects as well.  The third 

interpretation, which Maxwell endorses, is that it is a model which is consistent with 

certain mechanical/dynamical laws and, moreover, is able to capture in its fictional 

representation the correct mechanical/dynamical relations of electromagnetic phenomena.  

After introducing his fictional vortex model, Maxwell concludes, “we have now shewn in 

what way electro-magnetic phenomena may be imitated by an imaginary system of 

molecular vortices” (Maxwell [1861/62] 1890, p. 488; emphasis added).  Once again, he 

notes that as long as we keep the fictional status of this model in mind, we will not be 

misled by it.  

 Maxwell’s use of fictional models such as this highlights the point, often 

forgotten in contemporary philosophy of science, that fictional models can embody true 

physical information.  This is a point I have defended at greater length in the context of 

fictional models of quantum systems (Bokulich 2008, 2009) and that William Wimsatt 

(1987), for example, has defended in the context of evolutionary biology.  The striking 

successes of Maxwell’s use of imaginary mechanical models in his development of 

electromagnetism offers a nice illustration of what Wimsatt calls the use of “false models 
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as a means to truer theories” (Wimsatt 1987, 23).  Hence, as Jordi Cat has argued, “the 

[traditional] dichotomy between realism and instrumentalism proves inadequate for 

making sense of Maxwell’s position” (Cat 2001, p. 398).6 

 
 
V.  Maxwell, Helmholtz, and the Hydrodynamic-Electromagnetic Analogy 

 As we have seen, there is a striking similarity between Maxwell’s and 

Helmholtz’s uses of the method of physical analogy.  Not only do they take a similar 

view of the importance of embodied fictional models, but they also both apply this 

methodology to the exact same pair of theories: electromagnetism and hydrodynamics.  

Nonetheless, a closer look at their writings reveals that they did not just differ on which 

way they ran the analogy.  Interestingly, they also differed on how they thought the 

particular physical quantities hooked up with the mathematical formalism.   

 In his 1858 paper on the hydrodynamic equations, Helmholtz justifies drawing an 

analogy between hydrodynamics and electromagnetism on the grounds that both 

phenomena satisfy equations with the same formal structure.  He explains, 

The mathematical similarity of these two classes of natural phenomena rests upon 
this, that in the case of water vortices, for those parts of the water mass that have 
no rotation, a velocity potential exists that satisfies the equation: 

 
which equation holds everywhere except within the vortex filaments.  If, however, 
we consider the vortex filaments as always closed . . . then the space for which the 
differential equation for j is valid is multiply connected.  . . . Such also is the case 
with the electromagnetic effects of a closed electric current.  . . . the force it exerts 
on a magnetic particle can be considered as the differential quotients of a potential 
function V that satisfies the equation: 

 
                                                
6 While I agree with Cat’s conclusion here, our motivations are somewhat different. 
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. . . Thus, in the case of vortex motions of water as in the case of electromagnetic 
effects, the velocities or forces outside the space traversed by vortex filaments or 
electric currents depend upon multivalued potential functions.  (Helmholtz 
[1858], p. 57) 
 

Although both sets of phenomena satisfy equations with the same formal structure, there 

is still the question of the proper physical interpretation of the terms, and more 

specifically, which particular physical quantities are going to be identified in the analogy.   

Helmholtz identifies the specific physical analogs as follows:  

Each rotating water particle a thus determines in every other particle b . . . a 
velocity whose direction is perpendicular to the plane through the axis of rotation. 
. . .The magnitude of this velocity is directly proportional to the volume of a, its 
velocity of rotation . . . and inversely proportional to the square of the distance 
between both particles.   Exactly the same law holds for the force that would be 
exerted by an electric current at a, parallel to the axis of rotation, on a magnetic 
particle at b.  (Helmholtz [1858], p. 56) 

 

In other words, Helmholtz takes the rotating water particles to be analogous to the 

electric current, and those water particles whose motion is perpendicular to the plane of 

rotation are taken to be analogous to the motion of a magnetic particle.   
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LINES OF FLUID MOTION 

 

 
     LINES OF MAGNETIC FORCE 

 

Figure 3: Helmholtz on the analogs in the hydrodynamic-electromagnetic analogy 
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 Maxwell seems to have first become aware of Helmholtz’s paper and use of this 

analogy while writing Part II of “On Physical Lines of Force.”  He argues that although 

they are essentially using the same physical analogy, he believes that Helmholtz has 

incorrectly identified the corresponding analogs.  Maxwell writes, 

Professor Helmholtz has investigated the motion of an incompressible fluid, and 
has conceived lines drawn so as to correspond at every point with the 
instantaneous axis of rotation of the fluid there.  He has pointed out that the lines 
of fluid motion are arranged according to the same laws with respect to the lines 
of rotation, as those by which the lines of magnetic force are arranged with 
respect to electric currents.  On the other hand, in this paper I have regarded 
magnetism as a phenomenon of rotation, and electric currents as consisting of the 
actual translation of particles, thus assuming the inverse of the relation between 
the two sets of phenomena. (Maxwell [1861/62] 1890, p. 503) 
 

Maxwell appeals to several recent experiments, such as those by Ampère and by 

Thomson, in defense of his view that it is magnetism that should be identified as the 

phenomenon depending on rotation, while electric currents are to be regarded as a 

“species” of translation.   

 

HYDRODYNAMICS ELECTROMAGNETISM 
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Figure 4: Maxwell’s alternative view of the proper analogs in the hydrodynamic-electromagnetic analogy.  
 

 I want to argue that this difference between Helmholtz and Maxwell on how to 

identify the analogs in the physical analogy raises a number of interesting philosophical 

issues.  First, even when one has specified the type of physical system that is correctly 
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described by a system of equations, the meanings of the terms in the equation cannot be 

read off the mathematical equation alone—how those mathematical terms should be 

“embodied” (to use Maxwell’s phrase) is still a nontrivial task.  Mathematical equations 

do not wear their interpretations on their sleeves.  This distinction is often forgotten when 

looking at a familiar equation in science—the physical embodiment of the equation has 

come to appear indistinguishable to us from its formal expression.  Keeping this 

distinction in mind can help make sense of what are to some “puzzling” episodes in the 

history of science, when a scientist has successfully written down an equation expressing 

a new law, but fails to recognize its proper physical interpretation or physical 

implications. 

 Second, I want to argue that Maxwell’s experience, seeing Helmholtz deploy the 

same physical analogy, but with a different physical interpretation of the mathematical 

terms led Maxwell to start thinking about what he called the “mathematical classification 

of physical quantities.”  Maxwell begins to articulate these ideas in Part IV of “On 

Physical Lines of Force”, where he describes several different kinds of physical 

phenomena that all satisfy the same structural or formal relations.  He begins by 

describing the electromagnetic case: 

The connexion between the distribution of lines of magnetic force and that of 
electric currents may be completely expressed by saying that the work done on a 
unit of imaginary magnetic matter, when carried around any closed curve, is 
proportional to the quantity of electricity which passes through the closed curve.  
The mathematical form of this law may be expressed as in equations [below], 
which I here repeat, where a, b, g are the rectangular components of magnetic 
intensity, and p, q, r are the rectangular components of steady electric currents, 
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. 
 

Maxwell then goes on to note that this same system of equations can also be used to 

describe the relation between other sets of phenomena in physics: 

(1) If a, b, g represent displacements, velocities, or forces, then p, q, r will be 
rotatory displacements, velocities of rotation, or moments of couples 
producing rotation, in the elementary portions of the mass. 

(2) If a, b, g represent rotatory displacements in a uniform and continuous 
substance, then p, q, r represent the relative linear displacement of a particle 
with respect to those in its immediate neighbourhood.7  

(3) If a, b, g represent rotatory velocities of vortices whose centres are fixed, then 
p, q, r represent the velocities with which loose particles placed between them 
would be carried along.8 

Maxwell then concludes from these different examples,  

It appears from all these instances that the connexion between magnetism and 
electricity has the same mathematical form as that between certain pairs of 
phenomena, of which one has a linear and the other a rotatory character. 
(Maxwell [1861/62] 1890, pp. 502-503) 
 

The fact that the same mathematical relation can be found in the description of otherwise 

different physical phenomena led him to reflect on the utility of a mathematical 

classification of quantities.   

                                                
7 He cites Thomson’s (1847) paper “On a Mechanical Representation of Electric, 
magnetic, and Galvanic Forces”. 
8 He cites Part II of his “On Physical Lines of Force” where he introduces vortex-idle 
wheel model.   
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In an 1871 article Maxwell tackles this issue head on, and begins by explaining 

the different ways in which one might try to classify physical quantities.  He writes, “One 

very obvious classification of quantities is founded on that of the sciences in which they 

occur.  . . . But the classification which I now refer to is founded on the mathematical or 

formal analogy of the different quantities, and not on the matter to which they belong” 

(Maxwell [1871] 1890, p. 257).  He argues that a mathematical classification of quantities 

is important in allowing us to make more efficient use of physical analogies in science. 

Ten years later Maxwell again brings up what we might refer to as “Helmholtz’s 

mistake,” and explicitly connects it to this issue of the mathematical classification of 

quantities.   He suggests that one useful way of classifying physical vectors is in terms of 

those which are defined with respect to a translation versus those defined with reference 

to rotation.  He notes once again that Helmholtz misconstrues this physical analogy by 

representing the magnetic force by the velocity of the fluid (a species of translation) and 

representing the electric current by the rotation of the elements of the fluid (a species of 

rotation).  For Maxwell not just any fictional embodiment of the mathematics will do—

the physical quantities identified in the physical analogy must be of the same 

mathematical type.  Simply having the same mathematical equations describing the two 

sets of phenomena is not enough.  Knowing, for example, whether the rotational 

component should be identified with electricity or magnetism cannot be read off the 

equations themselves, and instead requires bringing a whole body of experimental 

evidence to bear.  The fact that Maxwell brings up Helmholtz’s mistake in several 

different articles, spanning more than ten years, I argue, is not in any way to undermine 

Helmholtz’s genius (for which Maxwell had great respect); rather, for Maxwell, this 
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episode served to bring out a subtle set of philosophical issues that he was struggling to 

articulate.   

 

VI. Maxwell’s Scientific Structuralism 

 The striking successes of his method of physical analogy led Maxwell at several 

points in his career to reflect on what it was about the world—or our knowledge of the 

world—that undergirded the fertility of this method.  Early on in his career, Maxwell 

devotes an entire paper to precisely this question, which he titles, “Are There Real 

Analogies in Nature?”  Maxwell begins the essay by dismissing the obvious objection 

that “no question exists as to the possibility of an analogy without a mind to recognise 

it—that is rank nonsense” (Maxwell [1856] 1882, p. 236).  But he continues,  

Now, if in examining the admitted truths in science and philosophy, we find 
certain general principles appearing throughout a vast range of subjects, and 
sometimes re-appearing in some quite distinct part of human knowledge . . . are 
we to conclude that these various departments of nature in which analogous laws 
exist, have a real inter-dependence; or that their relation is only apparent and 
owing to the necessary conditions of human thought? (Maxwell [1856] 1882, p. 
236) 

 
Maxwell offers two possible answers here: one is a broadly Kantian answer, that we find 

the same principles throughout nature because they are conditions of human thought; that 

is, these analogies are, in a sense, an artifact of the nature of our own minds, and not in 

the world.  Maxwell rejects this Kantian answer in favor of the view that there is a real 

interdependence in these various branches of science, which exists independently of our 

minds.   
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 To understand Maxwell’s view that there are real analogies in nature, it is 

necessary to take a closer look at what I will refer to as Maxwell’s version of scientific 

structuralism.  In this same article on analogies in nature, he writes, 

[A]lthough pairs of things may differ widely from each other, the relation in the 
one pair may be the same as that in the other.  Now, as in a scientific point of 
view the relation is the most important thing to know, a knowledge of the one 
thing leads us a long way towards a knowledge of the other. (Maxwell [1856] 
1882, p. 243)   

 
There are two points worth highlighting in this passage.  First, he argues that although the 

nature of the physical quantities—the relata in the two analogs—can be quite different, 

the form of the relations between those quantities in the two cases can be the same.  

Maxwell seems to be emphasizing here the structural—rather than physical—nature of 

the phenomena being compared.  Second, Maxwell further emphasizes that it is these 

structural features of the phenomena that are the most important for science to know.   

 As Richard Olson (1975) has recounted in great detail, Maxwell’s views here 

have their roots in Scottish Common Sense philosophy, which emphasized the 

importance of analogical thinking more generally, and in the philosophy of Sir William 

Hamilton, who was Maxwell’s metaphysics and logic teacher at the University of 

Edinburgh.  Of particular interest to our discussion here, one can also see elements of 

Maxwell’s structuralism in the views of some of the prominent Scottish mathematicians 

who preceded Maxwell at Edinburgh.  For example, Colin MacLaurin (1698-1746), in his 

Treatise on Fluxions writes, “[O]ur ideas of relations are often clearer and more distinct 

than of the things to which they belong; and to this we may ascribe, in some measure, the 

peculiar evidence of the mathematics” (MacLaurin [1742] 1801, p. 52).   
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 Similarly, the Edinburgh mathematician and philosopher Dugald Stewart (1753-

1828) writes, “the knowledge of the philosopher is more extensive than that of other men 

in consequence of the attention which he gives, not merely to objects and events, but to 

the relations which different objects and different events bear to each other” (Stewart 

1792, p. 433).  Stewart then connects this emphasis on a knowledge of the relations to the 

unreasonable effectiveness of mathematics when he writes, “there are various relations 

existing among physical events and various connexions existing among these relations.  It 

is owing to this circumstance that mathematics is so useful an instrument in the hands of 

the physical inquirer” (Stewart 1792, p. 437).  Like Maxwell, Stewart connects this 

emphasis on relations to the fertility of analogical thinking: “[T]hings which have no 

resemblance to each other may nevertheless be analogous; analogy consisting in a 

resemblance or correspondence of relations” (Stewart 1829, p. 275).9  It is quite 

plausible, as Olson and others have suggested, that Maxwell’s views were shaped by 

these philosophically inclined mathematicians as well.10   

 In his Treatise on Electricity Maxwell distinguishes sharply between the relations 

between the phenomena and the phenomena themselves.  In presenting his method of 

physical analogy he writes,  

In many cases the relations of the phenomena in two different physical questions 
have a certain similarity . . . The similarity which constitutes the analogy is not 
between the phenomena themselves, but between the relations of these 
phenomena.  (Maxwell 1888, p. 51; emphasis added) 
 

                                                
9 Stewart here cites the work of his teacher at Edinburgh, the philosopher Adam 
Ferguson.   
10 See also Suárez’s (forthcoming) Chapter 2 for a discussion of these influences on 
Maxwell. 
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He warns that just because two sets of phenomena share the same formal relations or are 

described by the same system of equations does not mean that they share the same 

physical causes.  He continues, 

We must not conclude from the partial similarity of some of the relations . . . that 
there is any real physical similarity between the causes of these phenomena.  The 
similarity is a similarity between relations, not a similarity between the things 
related. (Maxwell 1888, p. 52)   
 

As we will see next, the fact that two sets of phenomena may have very different physical 

causes operating, despite being described by the same mathematical model has important 

implications for Maxwell’s views on scientific explanation. 

 

VII. Physical Analogies and Scientific Explanation 

 The question remains whether Maxwell believed that the discovery of a physical 

analogy between a new domain of phenomenon and one already mathematically 

described carried any explanatory force.  If by explanation we mean something like a 

causal explanation, then Maxwell’s answer is clearly no. In his discussion of the physical 

analogy between electromagnetism and hydrodynamics, he denies that this analogy 

should be taken as a physical or causal explanation.  He writes approvingly of 

Helmholtz’s discussion of this same analogy, “He does not propose this as an explanation 

of electro-magnetism; for though the analogy is perfect in form, the dynamics of the two 

systems are different” (Maxwell [1871] 1890, p.263).  Although the mathematical models 

or equations describing these two set of phenomena are the same, the “physics” of the 

two systems is quite different, hence it should not be construed as anything like a causal 

explanation.   
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 Interestingly, Maxwell makes precisely the same point with regard to his vortex 

model.  Referring back to his work in “On Physical Lines of Force”, he writes in 186511 

I have on a former occasion attempted to describe a particular kind of motion and 
a particular kind of strain, so arranged as to account for the phenomena.  In the 
present paper I avoid any hypothesis of this kind; and in using such words as 
electric momentum and electric elasticity in reference to the known phenomena . . 
. I wish merely to direct the mind of the reader to mechanical phenomena which 
will assist him in understanding the electrical ones.  All such phrases in the 
present paper are to be considered illustrative, not as explanatory. (Maxwell 
[1865] 1890, pp. 563-564).   
 

In a post card written to his close colleague and friend Peter Guthrie Tait in 1867, 

Maxwell tries to further explain this difference between his approach in the paper just 

quoted from and his approach in “On Physical Lines of Force”.  Maxwell writes, 

There is a difference between a vortex theory ascribed to Maxwell . . . and a 
dynamical theory of Electromagnetics by the same author in Phil Tran 1865.  The 
former is built up to show that the phenomena are such as can be explained by a 
mechanism.  The nature of this mechanism is to the true mechanism what an 
orrery is to the solar system.  The latter is built on Lagranges Dynamical Equation 
and is not wise about vortices. (Maxwell to Tait, December, 1867; quoted in 
Harman 1998, p. 118) 

 

An orrery does not purport to be an explanation of the causes of the motion of the solar 

system, only a representation of the dynamical relations between the elements in the solar 

system.  Finally he makes this point yet again in the Treatise, where he explicitly 

describes it as a model that is not to be interpreted literally: 

The attempt which I then made to imagine a working model of this mechanism 
must be taken for no more than it really is, a demonstration that mechanism may 
be imagined capable of producing a connexion mechanically equivalent to the 
actual connexion of the parts of the electromagnetic field. (Maxwell 1873, pp. 
416-417)12 

                                                
11 “A Dynamical Theory of the Electromagnetic Field” 
12 Treatise Volume 2.  He goes on to say “The problem of determining the mechanism 
required to establish a given species of connexion between the motions of the parts of a 
system always admits of an infinite number of solutions” (Maxwell 1873, p. 417).  
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Thus, it is clear that Maxwell does not take his physical analogies and fictional models to 

be explanatory in the straightforward sense of providing a literal mechanistic or causal 

explanation.   

 Moreover, both Maxwell and Helmholtz also recognize that these physical 

analogies are typically only partial, and argue that it is just as important to study where 

these analogies break down, as where they hold.  In “On Physical Lines of Force”, for 

example, Maxwell argues that these “coincidences in the mathematical expressions” of 

two sets of phenomena are in fact only partial coincidences, and “that they are only 

partial is proved by the divergence of the laws of the two sets of phenomena in other 

respects” (Maxwell [1861/62] 1890, p. 488). 13   Thus it is not just in their physical nature 

that these analogs differ, they will also typically differ with respect to other formal 

relations.  Nonetheless Maxwell holds out the possibility that “[w]e may chance to find, 

in the higher parts of physics, instances of more complete coincidence, which may 

require much investigation to detect their ultimate divergence (Maxwell [1861/62] 1890, 

p. 488).  Maxwell seems to envision different levels of abstraction at which various 

formal correspondences might be found.  By going to a higher level of abstraction, 

physicists and mathematicians can continue to rework and extend these analogies, 

making them look more complete than they did at a lower level of abstraction.   

 While physical analogies are not meant to provide a causal-mechanical 

explanation of the phenomena to which they are applied, there is another sense in which 

Maxwell seems to suggest that such physical analogies do carry some explanatory force.  
                                                
13 In the Treatise he gives the example that “it is only a particular class of cases of the 
conduction of heat that have analogous cases in electrostatics” (Maxwell 1888, p. 52). 
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Maxwell accounts for the success of the method of physical analogy by noting that “all 

analogies of this kind depend on principles of a more fundamental nature” (Maxwell 

[1871] 1890, p. 258).  He elaborates on the relevance of these principles for his views on 

scientific explanation in a later work where he writes, 

When any phenomenon can be described as an example of some general principle 
which is applicable to other phenomena, that phenomena is said to be explained.  
Explanations, however, are of very various orders, according to the degree of 
generality of the principle which is made use of. (Maxwell [1875] 1986, p. 217) 

 
Maxwell is not only highlighting the importance of abstract principles in scientific 

explanation, but also articulating a notion of explanatory depth, according to which some 

scientific explanations may be counted as “deeper” than others.   

 Insofar as physical analogies depend on abstract principles, and these abstract 

principles carry a certain degree of explanatory force, then the physical analogies can be 

thought of as providing a kind of explanation in this limited sense.  On this view, the 

physical analogy can be thought of as a representation—an embodied representation—of 

this abstract principle, which is itself explanatory.   

 

VIII. The Unreasonable Effectiveness of the Method of Physical Analogy 

Maxwell ends Part II of “On Physical Lines of Force” by reflecting on the 

philosophical significance of the non-uniqueness of such fictional modeling, and more 

generally the striking successes of his method of physical analogy.  He writes, 

The facts of electro-magnetism are so complicated and various, that the 
explanation of any number of them by several different hypotheses must be 
interesting, not only to physicists, but to all who desire to understand how much 
evidence the explanation of phenomena lends to the credibility of a theory, or how 
far we ought to regard a coincidence in the mathematical expression of two sets of 
phenomena as an indication that these phenomena are of the same kind.  
(Maxwell [1861/62] 1890, p. 488) 
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Maxwell is raising two interesting philosophical issues here.  The first is essentially 

Wigner’s second puzzle about the uniqueness of theories in physics and the apparent 

success of false theories. Given that we can construct multiple—mutually inconsistent—

models of the phenomena, each of which can successfully account for the observable 

phenomena, then how do we know which hypothesis or model is correct?  The apparent 

“explanation” of a set of phenomena by a particular physical or mechanical model can no 

longer naively be taken as a direct confirmation of that model.  

 The second philosophical issue that Maxwell is raising, concerns the method of 

physical analogy more specifically: namely, can we infer from the fact that two sets of 

phenomena obey the same mathematical equations that they are the same kind of physical 

phenomena?  For example, can we conclude from the fact that electro-magnetic 

phenomena and hydrodynamic phenomena can be accurately described by means of the 

same mathematical models, that electricity is essentially a fluid?  The answer, as 

Maxwell makes clear, is no—the similarity in question is between the form of the 

relations, not the physical nature of the relata.  As we have seen, however, there is for 

Maxwell a second, subtler sense in which two phenomena can be “of the same kind”: 

they can be two different physical tokens representable by the same type of mathematical 

quantity.14  This is the beginning of Maxwell’s answer to the unreasonable effectiveness 

of the method of physical analogy.   

 Maxwell’s more complete answer to Wigner’s puzzles—regarding both the 

applicability of mathematics in general and the effectiveness of his methodology more 

                                                
14 For example, both the magnetic field and vorticity are quantities that transform as 
pseudovectors, gaining a sign change under transformations such as reflections. 
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specifically—seems to rely on the familiar “Book of Nature” metaphor.  In his article on 

“Real Analogies in Nature,” Maxwell considers two metaphysical possibilities: 

Perhaps the ‘book,’ as it has been called, of nature is regularly paged; if so, no 
doubt the introductory parts will explain those that follow, and the methods taught 
in the first chapters will be taken for granted and used as illustrations in the more 
advanced parts of the course; but if it is not a ‘book’ at all, but a magazine,  
nothing is more foolish to suppose that one part can throw light on another. 
(Maxwell [1856] 1882, p. 243) 

 
In order for his method of physical analogy to work, Maxwell assumes that the same 

structures must reappear throughout nature as variations on a theme.  If there is not in fact 

a structural continuity across different areas of science, then as Maxwell says, it would be 

foolish to expect the method of physical analogy to work. What was posed as an open 

question in this early article, becomes a confident assertion 17 years later: “The Book of 

Nature, in fact, contains elementary chapters, and, to those who know where to look for 

them, the mastery of one chapter is a preparation for the study of the next” (Maxwell 

[1873] 1986, p. 126).  Did Maxwell think that this Book of Nature was written in the 

language of mathematics?  From his emphasis on the importance of having an embodied 

mathematics, I suspect that while he believed that the syntax of nature was mathematical, 

he would say that its semantics was not (cf. McMullin 1985).   

 There is, however, another answer to Wigner’s puzzles, that begins to emerge 

from a close examination of this historical episode involving Maxwell and Helmholtz.  

First, the way in which mathematical models hook up with physical quantities is not 

something that is given, but rather is forged with difficulty.  As “Helmholtz’s mistake” 

makes clear, even once one has established that a physical system can be adequately 

described by some equation, there is still the nontrivial question of how the particular 

mathematical quantities are to be hooked up with the physical ones.  It might be clear 
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from the mathematical equation that it describes a pair of phenomena, one of which has a 

rotatory and the other a linear character, as Maxwell puts it; but the equation itself does 

not tell us which one represents electricity and which one represents magnetism, for 

example.  That can only be determined after many experiments.   

 Second, this suggests not only that we need to be careful in trying to read the 

physics off of the mathematics, but that there is also a more complicated process by 

which mathematics comes to represent the world.  Another way to put this might be to 

say that mathematics doesn’t represent the world, it represents our physical models of the 

world, and it is those physical models that in turn represent the world.15  Conceptually, 

one can think of there being multiple layers (as in Fig. 1), and Maxwell, with his 

emphasis on embodied mathematics is calling our attention to the importance of this 

middle layer.   

 Third, the analogies between different sets of phenomena, which are described by 

the same mathematical models, are only partial.  It is only by reworking the analogies—

both from the side of mathematics and from the side of physics, through ever higher 

levels of abstraction that they eventually come to look the same.  As we saw in this 

historical episode, Helmholtz built the theory of hydrodynamics on the backbone of 

electromagnetism and Maxwell developed electrodynamics while drawing analogies to 

hydrodynamics.  The fact that these two different domains of physics can be described by 

                                                
15 I owe this way of putting the point to John Stachel (personal communication).  I have 
not offered a theory of representation here, though I suspect something like Mauricio 
Suárez’s (2004) inferential conception is largely right.   
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some of the same mathematical models should not, perhaps, strike us as quite so 

surprising after all.16   

 

  

                                                
16 Ivor Grattan-Guinness (2008) also cites the fact that theories are often built in analogy 
with other theories in the explanation of what he calls “the reasonable (though perhaps 
limited) effectiveness of mathematics in the natural sciences” (p.7) 
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