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Model-data symbiosis is the view that there is an interdependent and mutually beneficial 
relationship between data and models, whereby models are not only data-laden, but data are also 
model-laden or model filtered.  In this paper I elaborate and defend the second, more 
controversial, component of the symbiosis view.  In particular, I construct a preliminary 
taxonomy of the different ways in which theoretical and simulation models are used in the 
production of data sets.  These include data conversion, data correction, data interpolation, data 
scaling, data fusion, data assimilation, and synthetic data.  Each is defined and briefly illustrated 
with an example from the geosciences.  I argue that model-filtered data are typically more 
accurate and reliable than the so-called raw data, and hence beneficially serve the epistemic aims 
of science.  By illuminating the methods by which raw data are turned into scientifically useful 
data sets, this taxonomy provides a foundation for developing a more adequate philosophy of 
data.   
 

 
 
1. Introduction.  What is the relationship between data and theoretical models?  There is what 
we might call the folk view of data, which says that data and models are completely distinct sorts 
of things.  Data just are elements of reality, offering an unmediated window onto the world, 
while theoretical models are human constructs.  Data are always epistemically privileged, this 
view continues, and any tampering with data is a corruption of that data.  When data and 
theoretical models disagree, it is always the data that win.  While this folk view has long been 
challenged by philosophers of science (e.g., Hanson 1958), it still often shapes our thinking 
about data; indeed, the alternative view of data that should replace it has remained significantly 
undertheorized.   
 One of the most influential early thinkers about the relationship between data and models 
is Patrick Suppes (1962), who challenges the simplistic view that there are just two things, data 
and models, which are directly compared to each other.  Rather than the raw data, Suppes argues 
that scientists are more typically interested in 'models of the data', which are processed and 
abstracted versions of the data that have been subjected to appropriate statistical analyses.  
Although his insights mark an important advance in philosophical thinking about data, both 
Suppes and most philosophers of science who follow him have largely black-boxed how data 
models are produced.   
 My aim in this paper is to shed light on the various processes by which data are turned 
into data models.  This requires explicitly moving beyond the folk theory of data and recognizing 
that there is a more complicated relationship between data and theoretical models.  Paul Edwards 
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(1999; 2010) has argued that we should view the model-data relationship as symbiotic, rather 
than as oppositional.  By model-data symbiosis Edwards means that there is an interdependent 
and mutually beneficial relationship between data and models.  There are two components to the 
model-data symbiosis view: On the one hand, models are data-laden, in that large amounts of 
data often go into the construction and calibration of theoretical models.  On the other hand—and 
more controversially—data are also model-laden, or as Edwards puts it, "model filtered." 
Although insightful, Edwards' account of model-data symbiosis is limited in that it has not yet 
been fleshed out nor received much in the way of philosophical analysis.  Discussions have also 
been confined to the context of climate science, potentially leading to the mistaken view that it is 
unique to this subfield.   
 In this paper I focus on the second, more controversial component of model-data 
symbiosis: the model-ladenness of data.  More specifically, I construct a taxonomy of the 
different ways that theoretical and simulation models are used in the production of data.  To 
avoid confusion, rather than Suppes's term 'data model,' I will instead speak of 'data sets'.  
Furthermore, I will use 'data processing' as a generic term for the methods by which so-called 
'raw' data are turned into data sets that can be used by scientists as evidence for or against 
various claims.  Data processing involves all sorts of statistical methods, and my primary focus 
here will be on those data processing techniques that make substantial use of theoretical or 
simulation models.   
 Each of the central sections of this paper describes a model-based data processing 
technique or way in which data can be model-laden.1  The taxonomy consists of seven broad 
categories: data conversion, data correction, data interpolation, data scaling, data fusion, data 
assimilation, and synthetic data.  Each of these is briefly illustrated with an example from the 
geosciences, specifically hydrology, volcanology, geophysics, seismology, and stratigraphy.  
This taxonomy, though preliminary, provides a deeper understanding of the relationship between 
data and models and is an essential component of developing a more adequate philosophy of 
data.   
 
 
2. Data Conversion. The first category in the taxonomy—data conversion—is arguably the most 
widespread, though often not recognized.  Many instruments directly measure not the quantity of 
interest, but rather a proxy, which then must be converted.2  For example, the raw data provided 
by a thermometer is the height of a mercury column, which then gets converted into data about 
temperature, using information about the expansion rate of this metal.  In a well-designed and 
well-calibrated instrument, this conversion is done automatically, essentially black-boxing the 
complex inferential process that went into the construction and calibration of the instrument 
(Chang 2004; Tal 2017).   
 The path from proxy to quantity of interest can be either straightforward or quite 
complex.  In complex cases, data conversion is often mediated by a theoretical model involving 
idealized representations.  An example from geophysics is the use of seismic reflection data to 

                                                
1 Eran Tal (2012) has argued for an even more fundamental sense in which models are involved 
in the production of data in his conception of measurement as a form of model-based inference.  
This is distinct from (though compatible with) the senses in which data are model-laden that I 
highlight in this paper.   
2 Data conversion is required in what Parker calls 'derived measurements' (2017, p. 281). 



 3 

measure subsurface depth.  The data quantity of interest is depth, namely how far below the 
surface some particular reservoir of gas, oil, or water is.  The data quantity that is actually 
collected, however, is two-way travel time of an acoustic signal.  In order to convert time (t) to 
depth (km) one needs to know the velocity of the signal.  The challenge, however, is that the 
velocity depends on the type of rock, sand, water, etc. it is traveling through, and most 
subsurfaces are composed of heterogeneous layers.   
 In order to solve this problem, geoscientists must construct what is called a 'velocity 
model,' which is a 3D representation of the subsurface that allows one to distribute the attribute 
of velocity within the cube.3  More specifically, one must first create a layer model of the 
subsurface that estimates the subsurface features, such as identifying the different types of rocks 
and the geometries and thicknesses of these layers.  The subsurface model is itself created by 
combining and extrapolating from various other sorts of data, including data from boreholes, 
which give more precise information about the different rock types and their depths in a 
localized region.  The information gleaned from these borehole samples then needs to be 
extrapolated over the larger area of interest, by estimating (e.g., through geostatistics) how the 
properties vary as one moves laterally away from the borehole control points.  Additional data 
from seismic images is integrated into an idealized subsurface model, which then allows one to 
associate specific velocities with different points or regions of the 3D velocity model.  
Depending on the precision and accuracy needed for the depth data, geoscientists will construct a 
more or less detailed velocity model, allowing one to convert the two-way travel time data used 
as a proxy into the data quantity of interest, namely subsurface depth.   
 Depth data measured in this way not only contains uncertainties arising from the two-way 
travel time measurement, but also uncertainties arising from the velocity model.  The important 
point, however, is that the depth data obtained from the velocity model conversion is less 
uncertain than depth data collected without such a model.  Hence, model-filtered data can be 
more reliable (have a greater precision and accuracy) than data produced without such a model.  
 
 
3. Data Correction. A second, common way in which data are model filtered is through data 
correction.  Most data in the geosciences are collected in the field, rather than lab.  Because field 
data are not collected in a controlled experimental environment, they are typically a complex 
superposition of the signal of interest and various sources of noise.  Stephen Norton and 
Frederick Suppe (2001) introduce a helpful distinction between physical control and vicarious 
control.  Physical control is what one finds in a well-designed controlled experiment: one isolates 
the variable of interest by physically removing (e.g., by purifying, isolating, or shielding from) 
other unwanted causes.  In many cases, however, physical control is not feasible and unwanted 
influences must be removed vicariously, which involves measuring or estimating their influence, 
and removing them mathematically during data processing.   
 Vicarious data correction is required for gravitational data collected by gravimeters.  A 
gravimeter is a simple but highly sensitive instrument for measuring minute differences in 
gravity.  Gravimeters are used to detect gravitational anomalies, which are differences between 
locally observed and theoretically expected values of gravity, due to a variation in the density of 
the underlying rocks.  These gravity anomalies can be used to detect geologic features in the 
upper crust that are relevant to natural hazards, such as earthquake faults.   

                                                
3 I owe this characterization to the geophysicist Luca Fava (personal communication).   
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 The units of gravity measurements are cm/s2 or Gals (Galileos), though gravimeter 
measurements are typically in mGals.  One challenge is that most of the measured variation in 
the gravity field is not due to differences in the density of the underlying rock that is of 
geological interest.  Instead, the measured gravity data is a composite of this geological signal 
and a number of other effects that are not geologically meaningful.  Hence the "raw" gravimeter 
data must be corrected by modeling these other effects and subtracting them.  For example, one 
must correct for variations in gravity due to latitude.  Although we are taught that the 
acceleration of gravity on Earth is 9.8 m/s2, this value actually varies from about 9.78 m/s2 at the 
equator to 9.83 m/s2  at the poles; this "latitude correction" can be up to 5,000 mGals (Keller 
2018).  A second data correction, the "free air correction," arises from variations in gravity due to 
elevation, which varies about 0.0386 mGals for every meter.  A third correction is the Bouguer 
correction, which takes into account the mass of material between the base station and 
gravimeter.  This requires constructing an idealized model of the topography and estimating its 
density.  With this topographical model, the gravitational effect of the topography can be 
subtracted from the measured gravity value.  Nearby hills and valleys can also attract the mass of 
the gravimeter and must be corrected for in a terrain model.  In mountainous regions, these 
corrections can be as much as 10s of mGals (ibid).  
 As we see in this long (and not even complete) list of correction factors, the raw data of 
gravity measurements are not particularly helpful in detecting gravitational anomalies in the 
Earth's crust unless the data are first corrected.  These corrections are neither negligible nor 
typically small compared to the effect one is trying to detect.  Hence, isolating this data signal 
requires constructing a subtraction model that vicariously removes all these unwanted 
components of the data signal.  Once again, the model-filtered data are much more accurate than 
the raw; indeed without these corrections the data are useless for geoscientists.   
 
 
4. Data Interpolation.  A third way in which data are model-laden is through interpolation.  
Data sampling is typically sparse and uneven in space and time, yet many analysis methods and 
projects require data values that are regularly spaced.  Interpolation methods are ways to fill in 
the data gaps by estimating or predicting additional data points that were not directly measured.  
Geostatistics is the branch of statistics concerned with developing such methods. There are many 
different interpolation methods, ranging from simple nearest neighbor interpolation or smooth 
surface interpolation, to more complex model-based methods, such as Stochastic Partial 
Differential Equation (SPDE) model interpolation (Lindgren et al. 2011).   
 In their simplest form, interpolation methods assume that locations that are closer 
together are more similar than those far apart, and they seek to estimate the dependency of some 
variable (or variables) on geographical distance from the observation points.  By incorporating 
more physical information, initial assumptions of isotropy or stationarity might need to be 
relaxed.  SPDE models are spatial models for interpolation that can accommodate these more 
complicated dependency relations, as well as provide uncertainty analyses for the interpolated 
data.  
 Geoscience applications of SPDE model interpolation include constructing contour maps 
of magnetic field data to find magnetic anomalies indicating iron-ore deposits.  The measured 
magnetic field data is typically sparse over the region of interest.  The SPDE model-based 
interpolation method can be used to estimate some of the missing data points, and provide a 
more detailed contour map that delineates the location of the deposits.  In a recent paper Guo and 
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colleagues test the SPDE model-based interpolation method against both other interpolation 
methods and real field data and conclude that  

the predicted values are quite close to the observed data.  Compared to [other 
interpolation methods]. . . the SPDE model-based method provided the smoothest and 
most accurate map.  The borehole data have verified that the SPDE method gives more 
useful detailed information. (Guo et al. 2019, p. 11) 

 
Geophysical field data are thus model-laden in that a proper subset of the data points are not in 
fact directly measured or observed, but rather are estimated using sophisticated model-based 
statistical interpolation techniques.  
 
 
5. Data Scaling. Often in geoscientific research there is a discrepancy of scales: data is collected 
at one scale, models operate at another, and decision makers are asking questions at yet a third 
scale.  These discrepancies can involve differences in both spatial and temporal scales.  To solve 
this problem, scientists must develop various methods to transfer data and information from one 
scale to another: When this involves going from a small (or short time) scale to a large (or long 
time) scale, it is called upscaling.  When it involves going from a large (or long time) scale to a 
small (or short time) scale it is called downscaling.   
 Consider hydraulic conductivity, which describes the ease with which a fluid (such as 
water) moves through pores and cracks in a material (e.g., rock or soil); it depends on a number 
of factors, such as the intrinsic permeability of the material, the degree of saturation, the 
viscosity of fluid.  The data for hydraulic conductivity is typically collected in the lab from 
measurements made on relatively small sediment cores.  However, numerical groundwater 
models, often concerned with entire aquifer systems spanning hundreds of square kilometers, 
require values of hydraulic conductivity at the much larger scale of the model blocks (Bierkens 
et al. 2001, p. 4).  Hence the hydraulic conductivity data must be upscaled for use in groundwater 
models.   
 A key obstacle to transferring data across scales is heterogeneity, and in such cases 
models are essential for upscaling or downscaling data.  Hydraulic conductivity is such a 
heterogeneous quantity: it can vary up to several orders of magnitude within an aquifer, making 
upscaling nontrivial.  Fernàndez-Garcia et al. (2009) discuss the use of multirate mass transfer 
models (MRMT) as a constitutive equation for upscaling solute transport (the movement of 
substances like fertilizers or pollutants in ground water) which depends primarily on hydraulic 
conductivity.  The MRMT model is a way of representing a wide variety of mass transfer 
processes occurring across a wide variety of scales at the same time.  They can be used to 
upscale the observed hydraulic conductivity data into a larger support volume, and thus make 
this data useful for answering questions about the transport of pollutants on the larger scale of 
interest.  
 The discrepancy of scales between data, models, and decisions can be understood as one 
component of what has been termed the tyranny of scales problem, which has attracted the 
attention of philosophers of science (e.g., Batterman 2013).  The use of models to upscale and 
downscale data, described here, has emerged as one important strategy for taming the tyranny of 
scales.   
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6. Data Fusion.  Data fusion, also known as data integration, refers to a broad family of methods 
for combining heterogeneous data sources into a coherent and improved data product (Wald 
1999).  One example of model-based data fusion is the integration of various types of 
stratigraphic data in the construction of global timelines.  The stratigraphic record contains many 
different types of data: Physical events (including volcanic ash falls and tuffs, geomagnetic 
polarity reversals, meteorite impact deposits), chemical events (including stable isotope 
excursions, wide-spread anoxic events), biological events (first and last appearances of taxa, 
mass extinction horizons, ecological events) and others.  The task is to merge these diverse types 
of data and construct a time ordered data set of "as many ancient evolutionary, ecological, 
geochemical and geophysical events as possible" (Sadler 2014, p.4).  There are several 
challenges, however, that make this a nontrivial task. 
 One challenge is that these stratigraphic data are gathered locally, at particular outcrops 
or well cores, but need to be correlated with data gathered at many different, spatially-distant 
locations.  Although the principle of superposition dictates that lower stratigraphic layers are 
older, this principle only applies to data collected at a single location.  However, as Sadler notes, 
"global patterns of cause and effect do not emerge until geologic strata of the same age can be 
identified across widely dispersed locations (Sadler 2004, p. 188).  Furthermore, these 
stratigraphic records at distant locations are incomplete, fallible, and sometimes even 
contradictory.  Thus, despite vast quantities of data, there is a problem of underdetermination 
regarding how exactly the data should be coherently integrated into a single timeline.  Such 
projects are an example of what Edwards, in the context of climate modeling, calls making data 
global, which he defines as “building complete, coherent, and consistent global data sets from 
incomplete, inconsistent, and heterogeneous data sources” (Edwards 2010, p. 251).   
 In order to integrate these vast quantities of data—in ways that respect the different levels 
of uncertainty and different constraints that these diverse kinds of physical, chemical,  and 
biological data must satisfy—models are essential.  There are several computer models that 
implement different algorithms for integrating the diverse types of data.  These can differ in the 
ways they search for an optimal ordering of events and in the ways they measure misfit.  Most of 
these programs contain theoretically substantive rules about permissible adjustments based on 
the different types of data.  Sadler, who developed one such computer model, CONOP, has 
analogized the different types of stratigraphic data and their uncertainties to being either like 
nails, jacks, or clamps (Sadler 2012; Sadler et al. 2014).  Volcanic ash fall or tuff, which are 
some of the few events that can be radiometrically dated, are analogized to 'nails' that have a 
fixed position in the timeline.  Local taxon ranges, defined by the first appearance of a fossil 
taxon and its last appearance in the fossil record, are analogized to jacks that can be stretched 
apart to fit a composite sequence, since they are unlikely to represent the true first or last 
appearance of the taxon.  Other data, like stable isotope excursions or paleomagnetic reversals 
between samples of opposite polarity, by contrast, are treated like clamps—conservative 
uncertainty intervals that can be squeezed to fit the same timeline of events.  As Sadler explains, 
"sequencing algorithms seek an optimal time line to which all sections can be fit without moving 
any of the nails and by the least expenditure of energy to extend the jacks and squeeze the 
clamps" (Sadler 2012, p. 330).   
 These computer models are an essential tool in integrating the vast quantities of different 
types of stratigraphic data in physically meaningful ways.  Although the time-ordering solutions 
for these data sets may not always be unique, "the set of equally good solutions leads directly to 
explicit uncertainty statements" (Sadler et al. 2014, p. 5).  Model-based data fusion, thus, is 
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important not only for constructing data sets that can be useful as evidence for various theoretical 
hypotheses (in a way the nonintegrated data are not), but also provide a way to quantify the 
uncertainty inherent in the fused data set.   
 
 
7. Data Assimilation.  A particularly close form of model-data symbiosis is data assimilation, 
which is defined broadly as the optimal integration of data with dynamical model estimates to 
provide a more accurate 'assimilation estimate' of the quantity (or geophysical field) of interest.  
Data assimilation methods take into consideration the uncertainties associated with both data and 
models, and draw the estimate closer to whichever has the lower uncertainty, while incorporating 
relevant information from the other source.  Data assimilation algorithms can be quite complex 
and can involve many of the previously discussed model-filtering methods, such as model-based 
interpolation, extrapolation, scaling, correction, and data fusion.  What typically sets data 
assimilation methods apart is that they are aimed at producing dynamic, regularly updated, 
estimates and forecasts, rather than static assessments.   
 Data assimilation methods were first developed in meteorology, and in that context have 
been discussed by Wendy Parker (2016, 2017) who analyzes the implications of these methods 
for the epistemology of measurement.  Data assimilation methods have spread to other 
geosciences, such as oceanography, hydrology, and volcanology.  Reichle notes "in the Earth 
sciences, data assimilation involves nonlinear, highly complex, and exceedingly large systems 
with complicated error structures that defy the straightforward application of classical 
optimization methods" (2008, p. 1413).  Data assimilation can be used to target different sources 
of uncertainty: in atmospheric and oceanic studies where dynamics are chaotic, the focus of data 
assimilation is often on the estimation of initial conditions, whereas in land surface dynamics the 
focus is instead on uncertain forcing  or boundary conditions and model parametrizations (ibid).  
 In volcanology, data assimilations methods are being used to develop forecasting 
methods for volcanic eruptions (Zhang and Gregg 2017).  The ascent and accumulation of 
magma prior to an eruption can lead to subtle ground deformation and gravity changes, which 
can be measured and studied by volcano geodesy.  As Fernández and colleagues note,  

Recent decades have seen an explosion in the quality and quantity of volcano geodetic 
data. . . . [H]owever, [with this] comes a need for new approaches to analysis, modeling, 
and interpretation. (Fernández et al. 2017, p. 1) 

 
In order to draw correct inferences about what is going on below the surface of the Earth, the 
data need to be combined with models that explore "the geometry and volume of plumbing 
systems, which offer critical context for interpreting the mechanisms and characteristics of unrest 
and eruption" (ibid).  Both inverse and (forward) numerical models are used.  The geodetic data 
are complicated by the fact that they are a composite of not just the 'magmatic signal', but also 
other signals such as tectonic changes and anthropogenic changes (e.g., due to ground water 
extraction); hence, subtraction models and other model-based data correction methods (section 3) 
are required.  The power of geodetic data in forecasting eruptions is also increased by integrating 
it with other kinds of data (section 6), such as seismic and gas emission data (Fernández et al. 
2017, p. 1).  Zhang and Gregg conclude "developing data assimilation strategies to incorporate 
the vast array of volcano monitoring data sets into increasingly sophisticated geodynamics 
models is critical for future efforts to assess volcanic unrest" (2017, p.  23).  As we see in this 
example, data assimilation is an intimate form of model-data symbiosis with the potential to lead 
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to more powerful and useful information than either the (geodetic) data or the (geodynamics) 
models alone, and moreover give near real time forecasts, relevant to natural geohazard 
management.   
 
 
8. Synthetic Data.  If we think of the mixing of models and data as a spectrum, with pure (raw) 
data at one end and pure simulation model products at the other, synthetic data would fall at the 
extreme of the model end.  Synthetic data (also referred to as 'virtual observations') are data sets 
produced not by any measurements or observations of the world, but rather by the output of 
simulation models.  They are included in the taxonomy because synthetic data play a crucial role 
in testing, refining, and sometimes implementing the data processing techniques discussed in the 
previous sections.  Thus, they play a beneficial role in the production of real data sets, 
characteristic of model-data symbiosis.   
 Real data—though often mediated in complex ways by models and computer 
simulations—are distinguished from synthetic data by the fact that they are the result of a 
physical interaction with the world (Parker 2017).  Insofar as the simulation models that produce 
synthetic data are based on empirically-derived theories, laws, and principles, they are not 
entirely divorced from the empirical world, though this point should not be overstated.  As 
synthetic data become more common, it is critical for users to know the provenance of the data 
they are working with, and to what extent they are real or virtual observations (e.g., Beven, 
Buytaert, and Smith 2012).  As Parker (2009, 2016, 2017) has cogently argued, both in the 
context of debates about the difference between physical experiments and simulation 
experiments and in the context of data assimilation, the key issue to keep sight of is the degree of 
epistemic reliability.   
 Most of the model-based data filtering methods discussed in previous sections have made 
use of synthetic data in testing the adequacy, and improving the reliability, of these methods.  
For example, in data conversion (section 2), synthetic data have been used to test the sensitivity 
of the time-depth converted data to errors in the velocity model.  In the context of data correction 
(section 3), Bokulich (2018) discusses how synthetic data are used to test phylogenetic model-
based data correction methods that attempt to reconstruct more accurate paleodiversity data from 
the incomplete and biased fossil record.  By starting with synthetic, and hence exactly known, 
paleodiversity data, one can subject that data to various known biases and deletions, and see how 
well the data correction methods perform at recovering the true initial paleodiversity.  Such 
simulation studies reveal not just the degree of reliability or robustness (under error) of these 
methods, but also where these data correction methods are likely to break down or systematically 
lead one astray.  
 Synthetic data have also been used to test data fusion methods (section 6), such as in the 
stratigraphic data-integration methods used to time correlate distant biostratigraphic events 
(Edwards 1984).  Similarly, synthetic data were used to develop and test the reliability of the 
data assimilation in volcano geodesy. 
 Synthetic data thus play a critical role in testing and refining many of the model-based 
data correction methods, and help ensure the production of more accurate real data sets.  As 
Bokulich (2018) notes, although a data-correction method's ability to work well on synthetic data 
does not prove its reliability in the more complicated context of real data, it does provide an 
informative minimum constraint: a data-correction method that fails to perform well on synthetic 
data is unlikely to succeed in the real world.   



 9 

 
 
9. Conclusion.  Here I examined seven prominent ways in which data can be model-laden: data 
conversion, data correction, data interpolation, data scaling, data fusion, data assimilation, and 
synthetic data.  While these capture the most common model-based data-processing methods in 
the geosciences, there is further work to do in elaborating and refining this taxonomy in light of 
new examples.  Although these categories are conceptually distinct, a model-based data-
processing technique can simultaneously perform more than one of these functions, such as in 
the case of data assimilation, which as we saw can effect a data correction, interpolation, and 
fusion within one method.   
 With this taxonomy, we can now see how the folk view of data is inadequate.  This view, 
recall, can be understood as consisting of four central claims: The first is that data and models 
are completely distinct sorts of things.  As we have seen, although data and models are 
conceptually distinct, in practice the line between them is often blurred, not just in extreme cases 
such as data assimilation, but also in more mundane cases of data conversion.   
 The second claim of the folk view is that data just are elements of reality, or marginally 
better, are an unmediated window onto reality.  Although data are certainly a window onto the 
world, they are a mediated window.  As Sabina Leonelli has emphasized, "despite their scientific 
value as ‘given,’ data are clearly made. They are the results of complex processes of interaction 
between researchers and the world” (Leonelli 2016, p. 71).  Hence data should not be equated 
with world.   
 The third claim of the folk view is that data are always most epistemically reliable, 
trumping theory and models whenever they clash.  As we have seen, however, data are also 
subject to bias and error, and should be understood as having an associated uncertainty, just as 
model predictions do.  A high-profile case where data were judged to be less epistemically 
reliable than models was the 2011 conflict between satellite and weather-balloon data and 
climate models, which came before a U.S. Congressional hearing (Lloyd 2012 and references 
therein).  As Elisabeth Lloyd recounts, "in the end (and in short) it now appears that the models 
were mostly right and the early data were mostly wrong" (p. 391).  Lloyd argues that this case 
shows the need for a more "complex empiricism" than has been previously recognized.   
 The fourth claim of the folk view of data is that any tampering with data is a corruption 
of the data and a lowering of its epistemic reliability.  As I hope has become clear in the many 
examples from the geosciences discussed here, at least some "tampering" with data in fact 
increases its epistemic reliability.  Most importantly, it is not a question that can be judged a 
priori, and instead depends on an investigation of the details of the case.   
 Why can't geoscientists just use the raw data?  Why do they need to model-filter their 
data at all?  As we have seen, there are many reasons.  First, as we saw, geoscientific data are 
typically collected in the field, rather than in a controlled laboratory setting.  Hence the data are a 
complex admixture of various signals and noise.  Second, despite the vast and rapidly growing 
quantities of geoscientific data, they are still often insufficient to answer many of the questions 
of interest, and hence there is an underdetermination, unless the data are interpolated, 
augmented, or interpreted with the help of various models.  Third, many quantities of 
geoscientific interest cannot be measured directly, and hence require conversion from a 
measured proxy quantity.  Fourth, there are often multiple, diverse—and sometimes 
conflicting—sources of data about a quantity of interest, which need to be adjudicated and 
combined in complicated ways.  And, finally, the geosciences must grapple with vast spatial and 
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temporal scales, which typically do not correspond to the scales at which data can be gathered.  
For all these reasons and more, the model-filtering of data is needed.   
 A central aim of this paper has been to make plausible the prima facie counterintuitive 
claim that model-filtered data can—in some instances—be more accurate and reliable than so-
called raw data, and hence beneficially serve the epistemic aims of science.  My claim is not that 
model-laden data are always more epistemically reliable; the model-based processing of data, if 
not done appropriately, can introduce artefacts into the data and systematically mislead 
researchers.  All these model-based data-filtering techniques are fallible to varying degrees in 
different contexts, and hence their epistemic reliability should be rigorously assessed, and not 
assumed.  It is essential for the successful development and deployment of model-data symbiosis 
that the uncertainties associated with both data and models be quantified and appropriately 
propagated.  Furthermore, these data-processing techniques must be rigorously tested by all 
available means, including through the use of synthetic data.  There is much work for 
methodologically reflective scientists and philosophers of science to do in sorting out cases 
where model-data symbiosis may be problematic or circular.  The preliminary taxonomy of the 
model-ladenness of data given here opens up the conceptual space to undertake such further 
evaluative projects, and provides a valuable foundation for the continued development of a more 
adequate philosophy of data.   
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