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A B S T R A C T

Scientific research is constrained by limited resources, so it is imperative that it be conducted efficiently. This
paper introduces the notion of epistemic expression, a kind of representation that expedites the solution of research
problems. Epistemic expressions are representations that (i) contain information in a way that enables more
reliable information to place the most stringent constraints on possible solutions and (ii) make new information
readily extractible by biasing the search through that space. I illustrate these conditions using historical and
contemporary examples of biomolecular structure determination. Then, I argue that the notion of epistemic
expression parts ways with pragmatic accounts of scientific representation and an understanding of models as
artifacts, neither of which require models to accurately represent. Explicating epistemic expression thus fills a gap
in our understanding of scientific practice, extending Morrison and Morgan's (1999) conception of models as
investigative instruments.
1. Introduction

Certain representational devices help scientists learn more about the
things they investigate than they might have been able to otherwise.
For instance, Francis Crick and James Watson's determination of the
DNA structure was facilitated by building physical models from pre-
cisely scaled pieces representing components of the molecule. It's not
that, without molecular models, it was impossible to determine the
DNA structure. Rosalind Franklin worked on the same problem without
building models, and there is reason to think that she might have been
the one to solve it (Maddox, 2002). It's just that these representations
made the information Crick and Watson sought readily available; they
were efficient; they saved time. Contemporary structural biology, too,
depends crucially upon how available information is represented. A
technique called integrative structure modeling, implemented in com-
puter software, facilitates the representation of information in ways
that enable the determination of biomolecular structures orders of
magnitude larger and more complex than DNA (Rout & Sali, 2019; Sali,
2021).

In science, like in many contexts, research is constrained by limited
resources, including time, funding, and materials. Scientists are moti-
vated by prestige, and their careers depend upon how much they can
publish, how much grant money they can attract, and how much influ-
ence their work garners. Pragmatic and sociological constraints like these
are a reality that shapes scientific practice. There is no such thing as
science conducted in some ideal world free from them. What's more, in
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many areas, such as biomedicine and climate science, research has sig-
nificant consequences for the good of humanity. It is imperative, there-
fore, to conduct research as efficiently as possible—that is, in a manner
that makes best use of limited resources.

The pernicious effects of sociological realities like the pressure to
publish can affect the quality of scientific work by, for instance, leading
to fewer reproducible results (Heesen, 2018). But this does not imply that
we should avoid maximizing efficiency, lest it lead to a sacrifice in
quality. Rather, we can understand efficiency in terms of the speed at
which high quality research—research conducted conscientiously,
without cutting corners—is produced. Given that efficiency is, as a matter
of fact, important, how can it be maximized?

This paper is concerned with how the representations scientists use
can play a central role in research heuristics that are efficient in this
sense. To that end, let us call representations that expedite their users'
ability to gather information about aspects of their target systems
epistemic expressions. The verb ‘to express’ has several connotations. It can
mean to convey, or to manifest, or to reveal, as when we express a
particular feeling through body language or facial expressions. It can
mean to represent, as when an equation expresses a mathematical
function. Its root is the Latin exprimere, to press or force out, and it can
have this quite literal meaning, too, as when we express the juice from an
orange. As an adjective, ‘express’ can mean high-speed or direct, as in
express post that delivers letters expediently or the express train that
makes no stops between origin and destination.

The notion of epistemic expression draws on each of these meanings:

Epistemic expressions are representations that (i) contain information
about the things they represent and (ii) make new information readily
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1 ‘Information’ here is understood broadly, as any bit of theory or empirical
evidence that might be relevant to what the structure looks like. Information in
this sense has two central properties: it is extensive, such that two independent
datasets containing the same amount of information contain twice as much
information as each alone; and it reduces uncertainty (Adriaans, 2020). Thus, the
sense of information at hand is aligned with Shannon information (Shannon,
1948; Shannon & Weaver, 1949). See also Su�arez and Bolinska (2021).
2 Framing the process in this way leaves open the question about whether

science is in the business of finding the truth. For a realist, a model most
consistent with the available information is most likely to be true; for an anti-
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extractible. They are thereby direct routes to solving research
problems.

In addition to discussing epistemic expression qua kind of representation
that facilitates efficient research heuristics, I will also consider it as the
activity in which epistemic expressions are used.

The aim of this paper is to describe what makes epistemic expression
possible by elaborating upon conditions (i) and (ii). I begin in Section 2
by characterizing the problem of biomolecular structure determination
as an iterative reduction of a space of possible structures. Then, in
Section 3, I argue that epistemic expressions expedite this process by (i)
containing information in a way that renders the degree to which in-
formation constrains possible solutions proportional to its reliability
and (ii) biasing the search through the possibility space toward the
correct solution, making information sought by investigators readily
available. In Section 4, I situate the notion of epistemic expression
against the backdrop of two related conceptualizations of scientific
models: as scientific representations understood pragmatically and as
artifacts. I argue that although epistemic expressions share some of the
features commonly attributed to scientific representations and models-
as-artifacts, accounts of the latter notions do not have the resources to
tell us how certain representations enhance research efficiency. The
account of epistemic expression I offer, therefore, is a necessary sup-
plement, illuminating an important aspect of modeling practice. I
conclude in Section 5 by showing that thinking about epistemic
expression can enhance our understanding of models as investigative
instruments (Morgan & Morrison 1999), which enable scientists to
learn about phenomena they know little or nothing about—and to do so
efficiently.

2. Characterizing the problem of biomolecular structure
determination

Let us begin by considering the mid-twentieth century problem of
DNA structure and contemporary problems of biomolecular structure
determination. In this section, I propose a way of understanding these
problems and identify factors contributing to solving them efficiently.

In the late 1940s, DNA was known to consist of either two or three
polynucleotide chains and four bases: the purines, adenine and guanine,
and the pyrimidines, cytosine and thymine. What remained to be
determined was how these component parts fit together. Were there two
or three polynucleotide chains, and how were they connected to one
another? What folded conformation did the molecule adopt? Searching
for the structure of DNA was like attempting to assemble the pieces of a
very complex puzzle. Those pieces could only fit together in particular
ways; clues for assembling them came from experimental data such as X-
ray diffraction photographs and theoretical considerations such as ste-
reochemical principles.

Contemporary structural biologists, too, aim to determine struc-
tural models by taking empirical and theoretical information to be
constraints on permissible structures. They have at their disposal a
greater amount of information than Crick and Watson did. Notably, in
addition to X-ray crystallography, solution nuclear magnetic reso-
nance (NMR) spectroscopy and cryo-electromagnetic tomography can
produce atomic-resolution models of biomolecular structures. Further,
the Protein Data Bank (PDB), an online database that houses hundreds
of thousands of previously determined protein and nucleotide struc-
tures, gives researchers easy access to information about related
molecules (Berman et al., 2000). Contemporary structural biologists
also tackle more complex problems. For example, the 52-MDa Nuclear
Pore Complex (NPC) contains about 550 subunits of approximately 30
types (Alber et al., 2007). But the essential task remains the same: to
determine a structural model with the help of theoretical and empir-
ical information or, in other words, to find a model that accommo-
dates available information sufficiently well (Rout & Sali, 2019; Sali,
2021).
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Both the DNA and contemporary biomolecular structure determina-
tion cases can be characterized as proceeding via the successive elimi-
nation of portions of a space of possible structures through taking into
consideration different pieces of empirical and theoretical information,
each of which constrains the structure in particular ways.1 For instance, if
one had evidence that DNA contains two rather than three strands, one
could eliminate all three-stranded structures from further consideration.
If one then learned that these strands were connected by the bases, one
could eliminate all structures that had the bases radiating outwards
(Bolinska, 2018).

Of course, this is not a neat, linear process—far from it. Instead,
different pieces of information had to be considered merely possible
constraints on the structure: each was liable to mislead with respect to
what it was taken to indicate about it. This is precisely what happened
when Lawrence Bragg, John Kendrew, and Max Perutz attempted to
solve the problem of polypeptide chain folding a few years before
Crick and Watson were working on DNA. Bragg et al. (1950) were
heavily influenced by an X-ray diffraction photograph of the protein
keratin taken by William Astbury in 1932. This photograph was widely
believed to indicate that the polypeptide chain would have a structure
that repeated every 5.1 Å. In fact, however, the structure—which Linus
Pauling determined a few years later—was found to have a subunit
repeating every 5.4 Å. It turned out that the spot on the photograph
seemingly resulting from a repeating subunit every 5.1 Å was instead
caused by what became known as a ‘coiled coil’ higher-order structure
(Judson, 1996). That is, there was an unexpected alternative inter-
pretation available for what Astbury's photograph said about the
structure of the folded polypeptide chain. In contemporary biomole-
cular structure determination, too, each piece of information is merely
a possible constraint on structure: data are often sparse, noisy, or
ambiguous, and therefore difficult to interpret with respect to what
they indicate about the target system (Schneidman-Duhovny et al.,
2014).

The process of structure determination, then, is an iterative one,
proceeding by consideration of hypothetical structures suggested by
combining different constraints: if we take these pieces of experimental
data or theory as constraining the structure in such-and-such way, what
follows? In particular, do we get a structure compatible with other in-
formation? If not, then we need to reconsider how constraints have been
applied; perhaps we have made an error in interpretation or application
somewhere along the line. Each iteration allows us to revise some of the
assumptions we made in the previous one. The process continues until a
model sufficiently compatible with available information has been
found.2

An efficient strategy for determining biomolecular structures is one
that, as much as possible, constrains the structure in the right way through
the consideration of each piece of information. It reduces the likelihood
of becoming misled by some piece of information, eliminating the correct
structure from the possibility space (as Bragg, Kendrew, and Perutz did)
and necessitating starting the process all over again to determine where
one went wrong. Such a strategy minimizes how many iterations are
required, on average, to get the right solution by reducing the likelihood
of having to backtrack on any given occasion (Bolinska, 2018). Further,
an efficient strategy directs one's attention toward parts of the possibility
realist, consistency with information is a mark of empirical adequacy.



A. Bolinska Studies in History and Philosophy of Science 100 (2023) 107–115
space in which the correct structure is likeliest to be found. Because the
space of possible structures is so large, it could take a long time to search
its entirety.3 Without an efficient search strategy, one might end up
searching indefinitely. This is particularly true the greater the size of the
possibility space, and therefore even more important in contemporary
structural biology.

3. Epistemic expression in biomolecular structure determination

With an understanding of biomolecular structure determination as
the successive narrowing-down of a space of possible structures by
considering information of varied reliability in place, let us turn to the
role that epistemic expression plays in this process. I will argue that
epistemic expressions share two common features: (i) they contain in-
formation in a way that enables the most reliable information to place the
most stringent constraints on permissible structures (Section 3.1) and (ii)
they facilitate the ready extraction of the information sought by in-
vestigators by biasing the search through the possibility space toward
places in which the correct structure is likeliest to be located (Section
3.2).
4 Note that 'model representation' is technical terminology, not to be confused
with the more general notions of representation that philosophers use, such as
the ones discussed in Section 4.
5 A set of atoms can also be represented by a larger sphere, such as a bead

corresponding to an amino acid residue or even a whole protein subunit. The
model representation can specify the trajectory of a single system over time, or a
3.1. Containing information

Recall that Bragg, Kendrew, and Perutz were misled by Astbury's X-
ray diffraction photograph of keratin, proposing a solution that accorded
with the common interpretation of that photograph as indicating a 5.1 Å
repeat in the structure. But their structure erred in another way, too: it
violated a stereochemical constraint. Due to a phenomenon known as
resonance, the peptide bond, typically depicted in structural formulae as
a single bond, in fact has partial double-bond character. Therefore, this
bond is planar; rotation about it is prohibited. Yet the structure that
Bragg, Kendrew, and Perutz selected for the folded polypeptide chain
permitted rotation about the peptide bond (Olby, 1974).

Bragg, Kendrew, and Perutz's fundamental mistake was to rely too
heavily on Astbury's photograph and not enough on information about
bond lengths, bond angles, and stereochemical rules in directing their
successive possibility space reduction. The former information was less
reliable than the latter. X-ray diffraction photographs were amenable to
several interpretations, which could be based on mistaken assumptions.
On the other hand, precise values for bond lengths and angles had been
determined and refined over years using a variety of experimental
methods, and stereochemical principles held the status of highly
confirmed theory (Bolinska, 2018). Thus, it was unlikely that the correct
structure would be incompatible with these pieces of information; they
were “constraints that the final answer had in any case to satisfy” (Crick,
1988, p. 60; emphasis added).

Crick and Watson's model-building served as an epistemic expression
because the pieces from which they built their models were constructed
precisely to scale, and thereby contained information about bond
lengths, bond angles, and stereochemical rules. Any model that could be
built from the pieces thus automatically took this information into ac-
count: it was impossible for it to get a bond length or angle wrong, or to
violate a stereochemical rule, as Bragg, Kendrew, and Perutz's model of
protein did. Moreover, the model omitted less reliable information—such
as that contained in X-ray diffraction photographs—altogether, enabling
hypothetical structures that were incompatible with that information to
nonetheless be taken seriously as candidates for the correct solution.
Taking seriously structures that did not accommodate less reliable in-
formation as candidate solutions decreases the likelihood of missteps like
Bragg, Kendrew, and Perutz's. Indeed, Bragg, Kendrew, and Perutz
3 If we allow the bond lengths and angles in candidate structures to adopt any
real value, the search space is infinitely large. However, given limitations of the
precision of our instrumentation, we can understand their values as being
discrete rather than continuous (Bolinska, 2018).
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considered a structure similar to Pauling's correct structure for the folded
polypeptide chain (the alpha helix), but ruled it out because it was
incompatible with the common interpretation of Astbury's photograph
(Bragg et al., 1950). Had they accorded this incompatibility less impor-
tance, they might have realized that structure's other virtues.

By automatically taking information about bond lengths, bond angles,
and stereochemical considerations into account, model-building put
certain structures (those that could be physically constructed from the
pieces) up for consideration and ruled others (those that couldn't) out.
Because this information was reliable, model-building constrained which
solutions were possible in the right way, making errors less likely. Model-
building thus contributed to the efficiency of Crick and Watson's deter-
mination of the DNA structure, since backtracking to determine the
source of an error can be computationally costly.

Whereas the epistemic expression in the case of DNA structure
determination contained only the most reliable information, the more
sophisticated machinery of integrative modeling permits information to
constrain models to varying degrees. The aim of integrative modeling is to
take all available information—from theory, experiment, and other
models—into account to construct models of biomolecular structures that
are sufficiently precise for answering biological questions. Model con-
struction proceeds in three steps: defining the model representation,
constructing a function for scoring alternative models, and searching a
space of candidate models (Rout & Sali, 2019; Sali, 2021). Information
can shape different steps, constraining models to varying degrees
depending upon where and how it is used. Below, I describe what each
step involves. I show that the most reliable information should be used to
define the model representation and carry out searching, whereas less
reliable information can be used for scoring.

The first step of integrative modeling is to define the model repre-
sentation,4 which specifies the mathematical variables whose values will
be determined by modeling. For example, a common aim of modeling is
to determine positions of individual atoms; in such a case, the model
representation consists of x, y, and z coordinates for each atom in a
structure. Alternatively, atoms and larger system components can be
fixed with respect to each other into rigid bodies corresponding to pre-
viously determined structures.5 Crick and Watson can be understood as
having done just this in building models from pieces representing larger
components of DNA, such as the bases adenine, guanine, cytosine, and
thymine.6 Their model pieces took for granted the atomic structures of
these components, which had already been experimentally determined;
the remaining question was how they were positioned relative to one
another. Thus, the variables in Crick and Watson’s model representation
were the positions of these larger components, rather than of individual
atoms.

The model representation effectively defines a space of in-principle
possible models, with each model in the space specifying values for
each of the model variables. In the DNA case, for example, the space of in-
principle possible models included all possible arrangements of the
model components with respect to one another. Defining the model
representation places very stringent constraints on which models can be
found: a model that isn't included in the space of in-principle possible
models is thereby excluded from further consideration. Using unreliable
system that exists in multiple states. For other examples, see Box 1 in Rout and
Sali (2019).
6 Indeed, Crick and Watson's model-building can be understood as an early

instance of integrative modeling, in the sense that they aimed to take into ac-
count information from multiple theoretical and experimental sources in the
determination of the DNA structure (Rout & Sali, 2019).



9 The notion of a scoring function landscape can be illustrated by a simplified
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information to define the model representation therefore has serious
potential to mislead: it can eliminate the correct model from consider-
ation at this early stage.

I argued that, in the DNA case, the shapes of constituent parts were
well known and highly confirmed, so it was prudent for these to constitute
the system components of DNA, the positions of which were to be
determined by modeling. We can now extend this point to contemporary
integrative modeling: just as only the most reliable information was
(rightly) contained in the model pieces for constructing a model of DNA,
so too should only the most reliable information be used to define the
model representation in integrative modeling. For example, in deter-
mining the structure of the Nuclear Pore Complex (NPC), researchers took
for granted the structures of nucleoporins, key components of the NPC, in
defining the model representation (Alber et al., 2007). The structures of
nucleoporins had been previously experimentally determined, so using
them in defining the model representation was likely to help narrow down
the possibility space correctly, just as using the components in the DNA
modeling case did for Crick and Watson. In contrast, relying on less reli-
able information to define the model representation would have the po-
tential to mislead, in the same way that Bragg, Kendrew, and Perutz had
been misled by the 5.1 Å spot in Astbury's photograph.7

Once a space of in-principle possible models has been defined by
specifying the model representation, the next step of integrative
modeling is to score each of these models with respect to how well they
accommodate all of the input information. Most commonly, a least-
squares scoring function is used, corresponding to a weighted sum of
spatial restraints:

S¼Σi ωi

�
Xi －Xi

o
�2
;

where the sum runs over all spatial restraints i, Xi is the value of a
restrained spatial feature in a model, Xi

o is its measured value, and ⍵i is
the weight of the restraint. For example, a restraint (i) based on an NMR
spectrum may compare the distance between two specific atoms in a
model (Xi) with an experimental observation that this distance is less
than 4.5 Å (Xi

o), weighted by our relative confidence in the measurement
(⍵i). Each restraint thereby quantifies how much a computed property of
a model deviates from what the input information specifies. By design,
minimization of S minimizes the difference between the model and in-
formation about it (Rout & Sali, 2019; Sali, 2021).

In the case of DNA, any information that was less reliable than
bond lengths and angles and stereochemical rules was omitted from
model-building altogether. The scoring step in contemporary integra-
tive modeling, however, gives us the resources to use information of
intermediate reliability to constrain which structures are considered.
The scoring function S sums over all spatial restraints, weighted ac-
cording to our relative confidence in them. It thereby permits less
reliable information to serve as a constraint on the structure to a lesser
extent than information used to define the model representation.
Whereas using information to define the model representation excludes
any models incompatible with that information from further consid-
eration, scoring permits information to constrain which structures are
possible to a degree commensurate with its reliability. The weighting
factor ωi enables quantifying how important it is to accommodate
different pieces of information, such that more weight can be placed
on more reliable information. Contemporary integrative modeling
therefore permits more degrees of freedom in how information of
varying reliability can constrain which models are permissible than the
DNA case does.8

The first condition on epistemic expression, then, is that the most
reliable information place the most stringent constraints on which struc-
tures are permissible. Less reliable information may constrain structure if
7 See also Bolinska and Sali (2023).
8 See also Bolinska and Sali (2023).
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representational resources allow—as in the case of contemporary inte-
grative modeling—but it must do so to a lesser degree, permitting
consideration of structural models that deviate from it somewhat.

Let us turn now to the second condition on epistemic expression: that
certain new information—namely, the information sought by inves-
tigators—be rendered readily available to them. What does it mean to
make information readily available in the DNA and contemporary inte-
grative modeling cases?
3.2. Extracting new information

In the previous section, I showed that the most reliable pieces of in-
formation can be used to define the model representation, where in the
DNA case, this amounts to specifying the pieces fromwhichmodels will be
constructed and in contemporary integrative modeling, the variables
whose values will be determined. I also showed that defining the model
representation effectively specifies a space of in-principle possible models.

The next step of the modeling process is to search that space for the
correct structure. Epistemic expressions expedite the extraction of in-
formation sought by investigators by biasing the search process toward
regions of the space in which the correct structure is most likely to be
found.

In the case of DNA, searching took place manually, via the con-
struction of models from component pieces. The medium from which the
pieces were made biased the search through the space by rendering
certain models easier to construct than others. Those structures that were
impossible to construct were ruled out immediately; they couldn't even
be taken into explicit consideration. Other structures were possible to
construct, but only with some difficulty. For instance, a model of DNA
that had like-with-like base pairing would pinch in some places and bulge
in others. This mechanical strain in the model corresponded to steric
strain in the molecule (Charbonneau, 2013), enabling the physical me-
dium of the model to bias Crick and Watson's search through the space of
prima facie possible models toward places in which the correct structure
was likeliest to be found.

Not all ways of representing information have this feature. For
instance, a table listing bond lengths and angles would contain the same
information as the physical model pieces did, but it would not offer the
same searching bias that building models from precisely scaled pieces
could. Information represented in a table would instead necessitate
performing extensive numerical calculations. According to Pauling, who
inspired Crick and Watson to adopt the model-building method, such
calculations would be “so complex as to resist successful execution”
(Judson, 1996, p. 63). In other words, failing to use an epistemic
expression in this case might have precluded solving this problem (in
practice, if not in principle).

In contemporary integrative modeling, searching is a partially auto-
mated process. Recall that the scoring function S quantifies how consis-
tent a model is with all input information. The next step of integrative
modeling, then, is to search the space of prima facie possible models for
acceptable models, those that are sufficiently consistent with input in-
formation. In principle, a systematic enumeration generating every
possible model one by one with sufficient granularity would be most
thorough. However, enumeration is rarely computationally feasible,
given the size of biomolecular structures and the precision required to
enumerate them. So stochastic sampling methods, such as various Monte
Carlo schemes, can be used instead. These methods aim to map the shape
of the scoring function landscape9 as a function of all model variables
example. A model representation that included only x and y coordinates for a
single component of a modelled system would generate a space of in-principle
possible models that included all possible permutations of x and y coordinates
for that component. In such a case, this landscape would consist of x, y, and S
variables.
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without enumerating each model. They rely on heuristics that instead
bias the search toward models that are more likely to be acceptable (Rout
& Sali, 2019; Sali, 2021).

Rather than constraining the search physically, then, stochastic
sampling methods rely on algorithms designed to preferentially search
portions of the space of possible structures that are more likely to contain
the correct structure. Further, they may also take into account informa-
tion about the structure that wasn't used in the representation and
scoring steps of modeling. For instance, in their determination of the
position of a membrane protein in the NPC, researchers limited their
search to the membrane, rather than searching the whole space of
possible structures. The information that a particular protein was located
in the membrane could be used to bias the search toward places in which
the correct structure was likeliest to be found (Alber et al., 2007).

Limiting searching in these ways made new information readily
available by isolating themost likely part of the possibility space in which
the correct structure might lie. The alternative, searching by enumera-
tion, might be so computationally expensive as not to be practically
feasible, just as attempting to narrow down the DNA structure without
the aid of a biasing mechanism such as model-building would be. By
expediting the search through the possibility space, epistemic expression
can render a problem solvable in practice that might otherwise be solv-
able only in principle.

3.3. Summary and key features

Determining biomolecular structures can be understood as proceed-
ing by elimination of candidate structures based on different pieces of
information, some of which are more reliable than others. This section
showed how epistemic expressions can serve as direct routes to the
identification of the correct structure from a vast space of possible
structures. We considered the role of epistemic expression in two cases:
Crick and Watson's determination of the DNA structure (via molecular
model-building) and contemporary biomolecular structure determina-
tion (via integrative modeling). I argued that epistemic expressions
contain information about the things they represent in a manner that
ensures that the most reliable information places the tightest constraints
on which structure is permissible. They further render new information
readily extractible by biasing the search through the space of possible
structures toward places in which the correct structure is likeliest to be
found.

With this framework in place, let me highlight some central features
of epistemic expression. First, epistemic expressions enhance research
efficiency, but that doesn't mean they are infallible. The express post
wouldn't be the express post if it consistently delivered letters at the same
rate or slower than the standard post. This isn't to say that it always does
so—it can get held up from time to time—but rather that, all else being
equal, it is quicker. Its quick delivery is a product of procedures that are,
on average, more efficient. Similarly, epistemic expressions are repre-
sentations that tend to enhance research efficiency. Because research
efficiency depends on numerous complex and interdependent factors,
they might not always succeed in doing so. Nonetheless, epistemic ex-
pressions' tendency to enhance research efficiency is a product of their
having the right features—namely, their enabling information to
constrain structure to an extent that is warranted by its reliability and
making the problem's solution salient by facilitating an effective search of
the space of possible structures.

Second, what counts as an epistemic expression is relative to in-
vestigators' aims and cognitive capacities, as well as to how much and
which information they have at their disposal. Here, we have been dis-
cussing the determination of biomolecular structures, but epistemic
expression could be used for other epistemic aims such as prediction or
understanding. Indeed, often biomolecular structures are determined
with other goals in mind, such as predicting a drug's mechanism of action
or understanding the molecular basis of heredity. Moreover, these goals
can determine which information is most important and the resolution of
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representation required to meet them. For instance, understanding
catalysis typically requires atomic-level resolution at the active site res-
idues of an enzyme, whereas a coarser-grained representation might be
sufficient for other purposes. Finally, epistemic expressions in cases in
which investigators have little information available will by necessity
contain less reliable information; that is the best we can do in cases of
exploratory research. Because of this context-sensitivity, what qualifies
as an epistemic expression must be considered on a case-by-case basis.

Third, relative to each investigative context, there are better and
worse epistemic expressions; that is, epistemic expressions can expedite
the efficiency of scientific research strategies to varying degrees. For
example, while Pauling was sick and confined to bedrest, he decided to
tackle the problem of polypeptide chain folding. He began by drawing
out the polypeptide chain on a piece of paper (Fig. 1). Folding and
refolding the paper along the peptide bonds, he searched through the
space of possible structures, trying out different pitches for the helix
(Judson, 1996). Thematerial of the paper, together with the rough sketch
of the polypeptide chain, contained information about bond lengths and
angles and stereochemical rules. However, these bond lengths and angles
were not drawn precisely to scale, and the material of the paper could not
bias the search through the possibility space to the same extent as
physical models could.

But, importantly, not anything goes. There are some forms of repre-
sentation that simply do not increase efficiency or may even detract from
it; they do not qualify as epistemic expressions. For instance, suppose
that, rather than constructing models from precisely scaled pieces, Crick
andWatson had instead taken blocks of Lego and randomly assigned each
to a component of the molecule, trying to determine the structure by
building a model from them. This model would not help them to find the
structure more quickly because it would not contain the relevant infor-
mation about bond lengths and angles.

We should therefore think about epistemic expression as a success
term in the same way we do explanation. There are better and worse
explanations, but when we ask questions about the nature of explanation,
we are primarily interested in what makes an explanation a good one. We
acknowledge that some explanations are better than others, and that
some putative explanations are so bad that they are not explanatory at
all—they do not in fact qualify as explanations. Similarly, here I am
interested in what makes epistemic expressions effective. There can be
epistemic expressions that are somewhat less effective, but still enhance
research efficiency. But not all representations are epistemic expressions,
nor are all cognitive activities in which representations are used instances
of epistemic expression.

This point contrasts discussions about the nature of so-called scien-
tific representation, which many authors do not regard to be a success
term in this way. We consider some of these discussions in the next
section.

4. Do we need an account of epistemic expression?

I have proposed an account of epistemic expression, a kind of repre-
sentation that helps facilitate efficient scientific research strategies. But is
such an account necessary? It might be thought that we already have
answers to the questions this paper addresses. After all, a widely
acknowledged aim of accounts of scientific representation is to explain
how, by way of representing their target systems, models enable their
users to learn about those systems (Bailer-Jones, 2003; Frigg, 2006; Frigg
& Nguyen, 2020; Poznic, 2016; Weisberg, 2013). Some analyses of sci-
entific representation make their commitment to this aim explicit,
adopting alternative terms alongside or instead of “scientific represen-
tation.” For instance, Mauricio Su�arez (2004) takes scientific represen-
tation to be a form of “cognitive representation,” where cognitive
representations are those that can facilitate inference-making or surro-
gative reasoning (Swoyer, 1991) about their target systems. Others favor
“epistemic representation,” highlighting the knowledge-gathering role of
this class of representation (Bolinska, 2013, 2016; Contessa, 2007; Frigg



Fig. 1. Pauling's 1982 reproduction of his original (1948) drawing of the polypeptide chain. Ava Helen and Linus Pauling Papers, Special Collection & Archives
Research Center, Oregon State University Libraries.

11 See also Frigg (2006), Frigg & Ngyuen (2020), and Shech (2015).
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& Nguyen, 2020; Shech, 2015) or describe models as artifacts that
function as epistemic tools (Knuuttila, 2005, 2011, 2017).

In this section, however, I argue that they do not in fact have these
answers. To be clear, my aim is not to suggest that they should have them
or to criticize them for failing to meet their explanatory goals, nor is it to
suggest that they are fundamentally incompatible with epistemic
expression.10 Rather, it is to address the plausible suggestion, outlined
above, that they might be readily extended to obviate the need for a
distinct concept of epistemic expression. I show that these accounts, by
themselves, cannot tell us how certain representations can help re-
searchers solve problems more efficiently than they would have been
able to without them.

To see why, I will highlight a tension that arises when we try to ac-
count for learning from models while also regarding models that
misrepresent their targets as scientific representations (Section 4.1). I
will show that two plausible suggestions for resolving this tension—via a
pragmatic understanding of scientific representation (Section 4.2) or
conceiving of models as artifacts (Section 4.3)—significantly weaken the
sense of learning from models in question. Understanding models as
epistemic expressions can help us to better understand the stronger sense
of learning that is often imperative in science.

4.1. The tension between learning from models and the possibility of
misrepresentation

Representations do not always succeed in accurately portraying their
target systems, and a widespread view holds that this should not preclude
them from qualifying as scientific representations. Su�arez writes that “[o]
n discovering particular inaccuracies in [a particular] representation we
are very rarely inclined to withdraw the claim that it is a representation”
(2003, 226). Permitting misrepresentation is commonly thought to be a
condition of conceptual adequacy. For instance, according to Andreas
10 Indeed, epistemic expressions are a subset of scientific representations that
satisfy further conditions.
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Bartels, “the very concept of representation presupposes the possibility of
a distinction between the case in which some X misrepresents some Y and
the case in which X does not represent Y at all” (2006, 13). On such an
understanding, misrepresentation is a species of representation; accord-
ingly, an adequate account of scientific representation must encompass
cases of successful representation and misrepresentation alike.11 Again,
note the contrast with much of the literature on explanation, which
conceives of explanation largely as a success term.

A tension arises. On its face, the aim of devising an account of sci-
entific representation that includes misrepresentation as a species seems
incompatible with the aim of explaining how learning from models is
possible. For if a model is a poor enough misrepresentation of its target,
in what sense can we learn about the target by consulting the model?

4.2. Resolving the tension (i): pragmatic accounts of scientific
representation

One way of resolving the tension is to argue that models enable the
drawing of inferences about their targets, but that these inferences need
not be true. This line of thinking is endorsed by proponents of pragmatic
accounts of scientific representation (e.g., Contessa, 2007; Frigg &
Nguyen, 2016, 2018, 2020; Giere, 2004, 2010; Su�arez, 2004; Van
Fraassen, 2008), those that emphasize the role of users and their pur-
poses in the activity of representation, rather than narrowly focusing on
the relationship between a model and its target.12 It originates in R. I. G.
Hughes's (1997) denotation-demonstration-interpretation (DDI) account
of scientific representation, according to which we begin by denoting
elements of the target with elements of the model; then we demonstrate
that a particular conclusion is true by reasoning within the model; finally,
12 Views in this latter family have been variously referred to as informational
(Chakravartty, 2010), two-place (Knuuttila, 2011), or substantive reductive
(Su�arez, 2010) accounts of representation. See, for instance, Van Fraassen
(1980, 1989), French (2003), Da Costa and French (2003), and Bartels (2006).
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we interpret our findings with respect to the target, inferring that the
corresponding conclusion is true of it, too.

Hughes's DDI account has been extended and refined, for instance in
Roman Frigg and James Nguyen's (2016, 2018, 2020) DEKI account.
DEKI “places no restrictions on the choice of the vehicle” of representa-
tion (Frigg&Nguyen, 2016, p. 235) but holds that, in addition to denoting
its target, a model must also exemplify certain features and come with a
key enabling the imputation of at least one of these features to the target. A
feature is exemplified when it is instantiated and highlighted—that is,
selected as relevant and made epistemically accessible—in a model.
Learning about the target system is made possible by the key:

“[I]f one’s preferred model is [to] be used to provide information
about an actual system in the world, then one has to be explicit about
how features of the model are supposed to correspond to features one
conjectures the target to have. Ignoring this connection amounts to
investigating the model without investigating any actual system in
the world” (Frigg & Nguyen, 2020, 182).

In other words, the key is what connects the model to some system in
the world, rendering it a model of that system. Yet keys can be “highly
conventional” and need not rely on any similarity between vehicle and
target (ibid.). And representation need not be accurate; indeed, the sys-
tem “need not possess any of the features that are ascribed to it” by the
model (ibid., 178; my emphasis).

The fact that pragmatic accounts of scientific representation are
committed to permitting misrepresentation is precisely what makes them
unsuitable for explaining epistemic expression. Consider again the case
in which Crick and Watson build models from Lego blocks. This hypo-
thetical model-building activity would meet the conditions of pragmatic
accounts, even sophisticated ones like DEKI. Crick and Watson could use
the Lego blocks to denote parts of the DNA molecule, and the model they
could construct would denote DNA. The blocks and the models con-
structed from them could also exemplify certain features, such as being
rigid, having a particular shape, and being connected to one another in
certain ways. These features are instantiated in the pieces and high-
lighted in the resultant model; by construction, they can be selected as
relevant features; and they are epistemically accessible. The model can
come with a key associating the spatial relations among the pieces with
spatial relations among the components of DNA, and these features can
be imputed to DNA.

On the DEKI account, then, the Lego block model of DNA would
qualify as a scientific representation of DNA. But it would not tell Crick
and Watson much about the structure of DNA, and therefore would not
enhance the efficiency of learning about its structure. For, given that the
pieces do not resemble the components of the molecules in the relevant
respects, the models constructed from them would not tell Crick and
Watson anything about its structure. Instead, they would tell them about
a hypothetical structure with components that have the shapes the model
ascribes to them.13 Contra DEKI, the existence of a key enabling the
imputation of some features of the model to features of the target is not
enough for the model to be a model of the structure.

This point highlights a widespread confusion. Following Nelson
Goodman (1968), many authors insist that resemblance is not necessary
for aboutness or reference, which can be established by stipulation (e.g.,
Callender & Cohen, 2006). This is a core component of the intuition that
misrepresentation is a species of representation: representation is
reducible to reference; anything can refer to anything else; therefore,
even severely misrepresentational models can represent.

There is a sense of reference on which this is correct. We can indeed
take anything to denote or stand in for anything else simply by stipulating
13 This also isn't to deny that there are scenarios in which thinking about a
hypothetical system can lead us to learn about an actual one, such as the
modeling of perpetual motion machines or populations with three sexes to show
why our world doesn't include them (Weisberg, 2007).

113
that it does so; that is, anything can serve as what Liu (2015) calls a
symbolic vehicle of representation of a given target. This is how con-
ventional signs and symbols take on their meaning. But in modeling the
structure of DNA, we do not want our model to be about that structure
merely in this weak sense of just pointing to it. Our goal isn't to use the
model in place of “structure” when talking about the structure, or as a
symbol directing our attention to it. Rather, we want it to be about the
structure in a stronger sense: we want it to be an epistemic vehicle of
representation (Liu, 2015), enabling us to learn what the structure is like
from it. And the Lego block model does not enable us to do so. It is simply
not about the structure in this stronger sense.

An analogy can illustrate the point. We could certainly stipulate that a
portrait of Rafael Nadal refers to Roger Federer, and then use the Nadal
portrait to talk about Federer in certain contexts. For instance, we could
use it as a token on a virtual tennis court to demonstrate how Federer
moved across the court in his last match. The Nadal portrait, as a result of
our stipulative act, comes to refer to Federer in this context. But there is a
distinct and common understanding of aboutness in which the Nadal
portrait cannot be about Federer because the Nadal portrait doesn't have
the right representational content. Although we can use it as a place-
holder to refer to Federer in a context like the one described here, it's still
a portrait of Nadal.14 We cannot use it if we want to learn what Federer
looks like. There are different senses of aboutness or reference: a weaker
sense, in which aboutness can be established by fiat; and a stronger sense,
in which some degree of resemblance is required. When we want to learn
about what something is like, rather than just pointing to it, the weaker
sense of reference as denotation is not enough.

This is not to say that the stronger sense of aboutness requires com-
plete resemblance; it instead permits misrepresentation to a certain de-
gree. For instance, we could still learn something about what Federer
looks like from a caricature of him that exaggerated some of his fea-
tures.15 And of course there could be disagreement about what degree of
misrepresentation is bad enough to preclude learning about his appear-
ance. But the point is that mere stipulation, whereby a bona fide portrait
of Nadal is taken to represent Federer, will not do. By requiring a degree
of resemblance to their targets, epistemic expressions enable learning
about them in a stronger sense than pragmatic accounts of scientific
representation can accommodate.

Further, epistemic expressions do more than just enabling surrogative
reasoning. We can reason about a system consisting of two ships moving
along the surface of the sea by denoting each of the ships by a pen, and
having the pens move along a piece of paper. We can then infer that the
actual ships have similar trajectories on the surface of the sea as do the
pens on the piece of paper. According to Su�arez (2004), the fact that the
pens-on-paper system refers to the ships on the sea, and that we can make
inferences from the former to the latter, makes the pens-on-paper system
a scientific representation of the ships on the sea. Reference and facili-
tating surrogative reasoning are what make the pens-on-paper system a
scientific representation of the ships-on-sea system.

The case of epistemic expression is more complex. We do not simply
denote certain elements of DNA structure with elements of the model,
then build the model, and finally infer that DNA has a corresponding
structure. Rather than merely denoting components of DNA, the model
pieces contain reliable information about them. They do so by virtue of
being constructed precisely to scale; the information they contain is thus
sufficiently accurate for the purpose at hand. Similarly, in contemporary
integrative modeling, information can be used either to define the model
representation or for scoring alternative models with respect to how well
they accommodate input information; it matters which information is
14 As Elay Shech (2015) points out, on most accounts of linguistic and pictorial
representation, reference is derived from the representational content.
15 Indeed, misrepresentation can have a useful epistemic function, since it can
serve to highlight important features of the target. This can be true both of
caricatures and of idealized models.
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used in which step. What's more, in both cases, information is presented
in a form that biases the reduction of the space of possible solutions to-
ward the correct solution. Surrogative reasoning is certainly involved,
but it alone does not suffice for epistemic expression.

Thus, although pragmatic accounts of scientific representation seem
at first glance to be able to answer questions about how certain repre-
sentations can enhance the efficiency of scientific research strategies,
they are ultimately unsuited to this purpose. Epistemic expressions are
not mere surrogates for reasoning. Their connection to the targets they
represent is not entirely conventional: it is vital that they contain infor-
mation that reliably constrains the space of possible solutions to a
research problem, and that they enable the ready emergence of that so-
lution by biasing the search through this space.

4.3. Resolving the tension (ii): models as artifacts

An alternative approach to resolving the tension between learning
from models and taking misrepresentation to be a species of scientific
representation, championed by Tarja Knuuttila, is to understand models
as artifacts, “external tools for thinking, the construction and manipulation
of which are crucial to their epistemic functioning” (Knuuttila, 2011, p.
263).16 According to Knuuttila (2011, 2017), models are epistemic tools
that constrain and afford solutions to a problem by virtue of being
concretely manipulable; they act as scaffolds for cognition by making
important features of the system salient to their users. Although it builds
on Morrison and Morgan's (1999) conception of models as investigative
tools, Knuuttila's understanding parts ways with it in its rejection of the
idea that models' representational role is necessary for explaining how
we learn from them. Just as a hammer can be used to drive a nail into a
wall without representing anything, so too can we account for the
epistemic function of models “quite apart from any determinate repre-
sentational ties to specific real-world target systems they might have”
(Knuuttila, 2011, p. 267). This approach, then, takes a step further than
pragmatic approaches that adopt a deflationary or minimalist attitude
toward representation. Thinking about models as artifacts thus “loosens
them from any preestablished, fixed and well-defined representational
relationships” (Knuuttila, 2005, p. 1261).

Knuuttila's models-as-artifacts view, with its emphasis on the con-
struction andmanipulation of models, comes closest to being able to supply
an understanding of epistemic expression. However, contra Knuuttila, I
urge that certain determinate representational ties to target systems are
required for epistemic expression. As I showed in Section 3.1, the success of
Crick and Watson's model-building depended crucially on model pieces
being constructed precisely to scale—that is, their accurately representing
components of the molecule. Similarly, the success of contemporary inte-
grative structure modeling depends upon information correctly constrain-
ing the possibility space in the representation and scoring steps. But the
Legomodel-building case, which is not an instance of epistemic expression,
could qualify as an artifact in Knuuttila's sense: the Lego pieces could act as
tools for thinking that constrain and afford solutions to the problem, being
concretely manipulable andmaking certain features salient. Thus, being an
artifact is not sufficient for being an epistemic expression.

Knuuttila holds that models “are valued often […] for what they
produce [rather] than for being truthful representations of their (sup-
posed) natural target systems,” since “usually we do not know enough
about those systems, which is exactly the point of modeling” (2005,
1268). What I have shown is that what models produce is in fact depen-
dent on their being truthful representations of certain aspects of their
target systems. Knuuttila is right that the point of modeling is often to
learn about systems we don't understand well. But the success of
modeling depends on our ability to correctly embody the information
that we do have—even when we don't have much. Furthermore, as I have
16 See also Boon and Knuuttila (2009), Knuuttila (2005, 2011, 2017) and
Knuuttila and Voutilainen (2003).
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shown, given that we have varying degrees of confidence in the infor-
mation we have, it is imperative that we choose the most reliable in-
formation to guide our efforts.

Thus, Knuuttila's models-as-artifacts approach, too, does not have the
resources to explain how certain representations can enhance research
efficiency. It cannot stand in for an account of epistemic expression.

5. Conclusion: models as investigative instruments reexamined

Discussions of the nature of scientific representation often overlook
an important distinction: between contexts in which representations
serve the purpose of communicating what's already known about a target
and those in which they facilitate investigation of a poorly understood
target (Bolinska, 2016). But this distinction, I maintain, is significant
because it highlights different functions of models and therefore different
ways of thinking about what is important about them.

When we already understand a system fairly well, we can worry about
how best to convey what we know about it to others. But when we don't
yet know very much, the challenge is wholly different: how do we
represent something when we don't know how it is presented in the first
place? We are faced with several layers of uncertainty—in what we do
and don't know, and in whether and how to capture different pieces of
information in our representations. Our task is to leverage what we do
know to learn more. ‘Leverage,’ with its root ‘lever’, is an apt term here:
how can we best use what we are most confident that we know well to
increase most efficiently how much more we can learn about a system?

To answer these questions, I introduced the notion of epistemic
expression, where an epistemic expression helps its users to solve a sci-
entific problem most expediently. Contra pragmatic accounts of repre-
sentation and the models-as-artifacts view, I argued that sufficiently
accurate representation is essential for epistemic expression. What is
more, which information a representation contains and how it does so is
crucial: epistemic expressions must contain information in a way that
enables more reliable information to constrain the possibility space to a
greater extent. And they must present that information to their users in a
way that makes the solution to their research problem readily extractible
by biasing the search toward places in which it is likeliest to be found.
Whereas Crick and Watson built physical molecular models to expedite
the determination of the DNA structure, integrative modeling in
contemporary structural biology is implemented in computer software.
Despite the difference in medium and method, molecular model-building
and integrative modeling both served as epistemic expressions in the
determination of biomolecular structure.

This account of epistemic expression therefore extends Morrison and
Morgan's (1999) conception of models as investigative instruments by
saying more about how models' independence from and dependence on
the things they represent is important for learning from them. Partial
dependence matters because without it, it's not clear that we are learning
about the system in question in the first place. Although models are
partially independent from the systems they are about, they “must also
connect in some way with the theory or the data from the world,” since
“otherwise we can say nothing about those domains” (Morrison & Mor-
gan, 1999, p. 17). I've shown that the connection is a product of their
containing sufficiently accurate information about reliably known con-
straints. Contra Knuuttila, certain preestablished, fixed, and well-defined
representational relationships are required for successful epistemic
expression. Partial independence, too, is important because it is what
enables users to access information that would otherwise be inaccessible
to them. In particular, epistemic expressions' form, be it the physical
medium of molecular model pieces or the steps of integrative modeling
implemented in software, enables new information—the solution to the
research problem—to be extracted from the information at hand. Espe-
cially with the rise of big data in areas like biology (Leonelli, 2016), such
partial independence is especially crucial. Together, these features
explain how “models can have a life of their own” (Morrison & Morgan,
1999, p. 18) in the generation of scientific knowledge.
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