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Abstract
Integrative structure modeling is a method for using information from multiple 
sources to compute structural models of biomolecular systems. It proceeds via four 
steps: (i) defining the model representation, which determines the variables whose 
values will be computed; (ii) constructing a function for scoring alternative models 
according to how well they accommodate input information; (iii) searching a space 
of candidate models for acceptable models; and (iv) analyzing acceptable models 
to evaluate their fit with input information. These steps are iterated until a model 
adequate for addressing biological questions is found. In this paper, we draw les-
sons from integrative modeling about effective integration and about modeling. We 
describe what it means to integrate information from multiple sources: Integration 
amounts to distributing information among the four steps of integrative modeling. 
Theory and data alike can be sources of information; this process thus generates 
models of information, rather than models of theory or models of data. We then 
propose heuristics for distributing information and designing multiple iterations 
of modeling. Effective iteration requires prioritizing the most reliable information 
and minimizing the time required to obtain an adequate model. Rather than being 
constructed from theory and assessed using data, models are constructed from any 
available information and assessed in a coherentist manner.

Keywords  Integration · Modeling · Information · Theory · Data · Structural 
biology · Evidence

1  Introduction

Modeling complex systems is challenging. Modelers typically have at their disposal a 
variety of empirical data, targeting different aspects of the target system or a different 
but related system. They must also take into account background theory. Empirical 
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data, background theory, and anything else that might be relevant to understanding 
the system are sources of information, which can be used as inputs for modeling. 
However, some pieces of information are less reliable than others. Data can be noisy; 
extrapolation from an experimental to a target system might be unwarranted; how a 
theory ought to be applied to the system can be uncertain; and there can be several 
ways to interpret a given piece of information. Moreover, it is typically not possible 
for a model to equally accommodate all information. Every model is compatible with 
different pieces of information to different degrees. And in many cases, the amount of 
information is vast, whereas time, funding, and other resources are limited. Modelers 
therefore face a pragmatic problem: How should they select from among a multitude 
of prima facie possible models, each of which accommodates different pieces of 
information to different degrees, making best use of time and other resources?

Philosophers have yet to adequately address this problem. The principle of total 
evidence says that one must take into account all available evidence in the formu-
lation of one’s hypotheses (Carnap, 1947), but is silent about how to do so when 
pieces of information come from multiple sources, target different parts or aspects 
of a system, are more or less reliable, and can be ambiguous about what they are 
evidence for. More recently, philosophers have discussed integration in several con-
texts, including the integration of fields, data, and explanations. But so far, these dis-
cussions represent a promising starting rather than end point for understanding how 
information from diverse sources and of variable reliability ought to be integrated in 
complex modeling problems.

Lindley Darden and Nancy Maull (1977), for instance, argue that two fields rely-
ing upon different empirical or conceptual tools to account for different aspects of 
the same phenomenon can be integrated when one field fills in gaps left open by 
the other. For example, early-twentieth-century cytology and genetics were both 
concerned with the nature of heredity. Cytology studied heredity by examining 
chromosomes using a light microscope, whereas genetics accounted for hereditary 
phenomena by postulating hypothetical entities, later known as genes. The integra-
tion of cytology and genetics began when Walter Sutton and Theodor Boveri noted 
analogues between chromosomes and genes. Viewed through a microscope, the chro-
mosomes of diploid organisms appeared as distinct individuals found in pairs; simi-
larly, genes were postulated to be distinct entities occurring in pairs. This and other 
similarities led Sutton and Boveri to propose what Darden and Maull call an interfield 
theory, the chromosome theory of Mendelian heredity: Genes were located on or in 
chromosomes. This theory in turn enabled further predictions. For example, given 
that the number of chromosomes was smaller than the number of genes, one could 
predict that some genes are linked on the same chromosome, rather than assorting 
independently (Darden & Maull, 1977).

Darden and Maull’s work has been helpfully amended and elaborated. Baetu 
(2011), for instance, shows that molecular biology may fill in details that are “black 
boxed” in mechanisms proposed by classical genetics—and that, in doing so, can 
improve classical explanations. Similarly, Marco Nathan  (2017) argues that merely 
bridging an explanatory gap does not constitute the integration of two fields. Rather, 
the concepts of one field must also be required for explanations in the other and vice 
versa, what Nathan calls explanatory relevance. Although this work is primarily con-
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cerned with whether two fields may be integrated without the reduction of one to the 
other, it is nonetheless relevant for our purposes because such integration proceeds 
by way of integrating information. Cytology and genetics became integrated when 
information from one field was brought to bear on information from the other, via a 
sort of cross-referencing.

Nevertheless, this work does not address the fact that there can be several plau-
sible interpretations of information, whether it comes from data or theory. When 
Darden and Maull write that genes were “hypothetical entities with known functions; 
chromosomes were entities visible with the light microscope with a postulated func-
tion” (1977, 51), they implicitly invoke a distinction between, on the one hand, what 
is hypothetical or postulated and, on the other, what is known or observed. Yet such 
a distinction is not always so clear-cut. Neither hypothetical nor observed entities are 
given, but instead come with a degree of uncertainty. Theories can be mistaken, and 
the hypothetical entities they posit may turn out not to exist (Kitcher, 1993; Laudan, 
1977). We must interpret what we see through a microscope; interpretation is often 
far from straightforward, since images can be noisy and our interpretations of them 
theory-laden and prone to other biases (Hacking, 1981; Hanson, 1958; Kuhn, 1962).

As a consequence, there are often many ways in which information can be inte-
grated. Interpreting a piece of information in one way may make it inconsistent with 
another piece of information (interpreted in a particular way). Further, sometimes 
perfect reconciliation between interpretations may be impossible. Different interpre-
tations may license different conclusions about a phenomenon, with the interpretation 
of one piece of information contradicting that of another. Rather than information 
lining up neatly as it does in the case of interfield theories, it is sometimes unclear 
how, precisely, it can be integrated. This point is especially important in the age of 
big data, when there is orders of magnitude more information available, and there-
fore many more plausible candidate integrations; limitations of resources such as 
time and funding must be taken into consideration in this context. Darden and Maull 
(1977) and cognate approaches to interfield theories do not address the possibility of 
multiple ways of integrating information, and the pragmatic constraints that preclude 
considering all of them.

What about the literature more closely related to the aims of this paper, addressing 
the integration of data, explanations, and methods?1 This literature discusses ample 
examples of such integration, acknowledging the variety of sources of data, methods 
of their generation, and forms in which they are presented. However, two lacunae 
remain. First, these examples are presented at a coarse grain; detailed descriptions 
of what such integration consists in or how it takes place are absent. Second, norma-
tive guidance for how to conduct integrative research effectively—and in particular, 
how to select among competing ways of integrating information—is also not offered. 
Anya Plutynski, for instance, points to several instances of integration in the study 
of carcinogenesis, writing that “familial data was integrated with subsequent work 
on the rates and character of retinal development” and that “work on the character 

1 See, for instance, Brigandt (2010, 2013a, 2013b), Leonelli (2013, 2016), MacLeod and Nersessian 
(2013), Mitchell (2002, 2003, 20092019), Mitchell and Gronenborn (2017), O’Malley and Soyer (2012), 
and Plutynski (2013, 2018).
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of tissue renewal in the colon has informed understanding of how carcinogenesis 
develops in that tissue” (2013, 471). But she does not further describe what is meant 
by “integrating” or “informing” in these instances. Similarly, Sabina Leonelli sug-
gests that “new data types, such as data about how Miscanthus behaves in the field, 
can be usefully integrated with data about Arabodopsis metabolism, resulting in new 
knowledge about how plants produce energy in both species” (2013, 509). Yet she 
too does not specify further what plant scientists actually do when they “integrate” 
this data. Neither Plutynski nor Leonelli provide normative accounts of what makes 
integrative strategies effective in their respective case studies.

Filling these lacunae is important. The value of integrative research strategies 
has been widely acknowledged, both by scientists and philosophers. Evolutionary 
systems biologists Michalodimitrakis and Islam, for instance, put it this way: “the 
interplay of modeling and experiments takes the research much further than either 
approach on its own” (2009, 28; quoted in O’Malley & Soyer, 2012, 64). A task for 
philosophers is to explain why. In virtue of what is integrative research superior to 
using a single method, dataset, or explanation alone? That is, what are the epistemi-
cally significant features of integrative research? Merely identifying some instances 
of integration in various scientific practices is not enough to answer these questions. 
Instead, we need to examine the mechanics of successful integration, that is, to gain 
an understanding of what, precisely, such integration consists in. 

Understanding the mechanics of successful integration is key. Implicit in the 
widespread acknowledgement of the value of integrative research is the assumption 
that the research has been conducted in a principled way, with methodological rigor 
and care. We can imagine cases of integrative research in which methods, datasets, 
or explanations are integrated, but in an ad hoc, unprincipled, or sloppy manner. It 
would be hard to argue that such research would be superior to obtaining scientific 
knowledge from a single method, dataset, or explanation alone. 

In this paper, we thus provide a detailed descriptive and normative account of 
integration by examining the practice of integrative structure modeling (“integra-
tive modeling” for short) in structural biology. Structural biologists aim to construct 
structural models of biomolecular systems, i.e., to determine the relative positions 
and orientations of components such as atoms, residues, and secondary structure ele-
ments. For smaller systems like single proteins, they can use traditional methods 
like X-ray crystallography and NMR (nuclear magnetic resonance) spectroscopy 
to do so. However, for larger systems consisting of hundreds of macromolecules, 
such methods are insufficient. This is especially so given that biologists often want 
to understand these systems’ dynamics—how they assemble and disassemble—and 
their functions—how they interact with other systems—to gain insight into their 
evolutionary history or develop medical therapies. To construct dynamic structural 
models of large systems, a variety of disparate information, coming from multiple 
experiments, physical theories, statistical analyses, and previously determined mod-
els, is required.2 For example, the yeast Nuclear Pore Complex (NPC), a ~ 52-MDa 
channel mediating the exchange of small ions across the nuclear membrane, consists 

2 Structures of sufficiently large and complex systems cannot be currently solved using structure predic-
tion relying on machine learning, such as AlphaFold (Callaway, 2020).
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of ~ 550 protein subunits of ~ 30 different types. Constructing a structural model of 
the NPC required information from multiple sources, including X-ray crystallogra-
phy, small angle scattering, and NMR spectroscopy, as well as comparisons to previ-
ously determined structures and molecular mechanics force fields (Alber et al., 2007; 
Rout & Sali, 2019; Sali, 2021).

Integrative modeling is a method for integrating all such information.3 It proceeds 
via four steps: first, the model representation, which determines the variables whose 
values are to be computed by modeling, is defined; second, a function for scoring 
alternative models according to how well they accommodate input information is 
constructed; third, acceptable models—those that accommodate input information 
sufficiently well—are identified by searching a space of candidate models; finally, 
these models are analyzed to evaluate their precision and fit with input information. 
This process is iterated until an ensemble of acceptable models precise enough for 
addressing biological questions is found (Alber et al., 2007; Rout & Sali, 2019; Sali, 
2021). We describe the mechanics of integrative modeling, showing what it means to 
integrate information using this method. We further offer normative guidance, pro-
posing heuristics for effective integrative modeling.

Although we focus primarily on integrative modeling as a vehicle for integration, 
our analysis also offers a fresh perspective on modeling. In particular, we provide 
an alternative to the hierarchical view of models (Giere, 2010; Mayo, 1996; Suppes, 
1962). The hierarchical view was developed to address a puzzle: Scientific models 
are abstract and idealized, whereas the systems they represent are concrete and, more-
over, often not directly accessible. How, then, can we determine whether our models 
accurately represent these systems? The solution involves a hierarchy of different 
kinds of models that forges a connection between our abstract and idealized models 
and the concrete systems they represent. On this view, we construct our models solely 
on the basis of theory; they are thus referred to as models of theory. Although we can-
not access the systems these models represent directly, we can gather data about them 
via experiment or observation. We may then identify patterns among these data, such 
as functions that accommodate them sufficiently well. In other words, we construct 
distinct models from the data called models of data. We assess our models of theory 
by comparing them to our models of data.4

According to the hierarchical view, theory and data have distinct functions: Theory 
is used for model construction; data is used for model assessment (via data models). 
In contrast, we will show that information from any source—including theory and 
data—can be used for model construction. Rather than models of theory or models 
of data, integrative modeling thus generates models of information (Bolinska, forth-
coming). We further show that these models are assessed in a coherentist manner, 
according to how well they accommodate all such information.

The paper proceeds as follows. Section 2 describes the aim of integrative model-
ing as producing models of information, and the mechanics of integration, captured 

3 In discussing integrative modeling, we therefore extend Sandra Mitchell’s (Mitchell, 2019, 2020; Mitch-
ell & Gronenborn, 2017) work on integrating X-ray crystallography with NMR spectroscopy using joint 
refinement.

4 The hierarchy of models also includes other elements (e.g., models of experiment), which we omit here.
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by its four-step, iterative workflow. Section 3 proposes heuristics for effective inte-
gration in terms of how to distribute information among the steps of modeling and 
how to design each subsequent iteration of these steps. Section 4 draws lessons from 
our case study, showing how it moves philosophical discussions about integration 
and modeling forward. Section 5 concludes, highlighting parallels between integra-
tive modeling and integrative research in other domains, showing how our account 
can help us to better understand and perhaps even improve such research.

2  The mechanics of integration in integrative modeling

What does it mean to “integrate” information? In this section, we describe the 
mechanics of integration in integrative structure modeling. We begin by discussing 
input information and the aim of integrative modeling as producing models of infor-
mation (Sect. 2.1). Then, we show how information is converted into a structural 
model via its four-step, iterative workflow (Sect. 2.2).5

2.1  Input information and the aim of integrative modeling

Input information for integrative modeling can come from several types of sources. 
First, it can be determined by various experimental techniques, including X-ray crys-
tallography, NMR spectroscopy, chemical cross-linking, and genetic interactions. 
Second, information can come from physical theory, such as a molecular mechan-
ics force field that specifies preferred stereochemistry and non-bonded interactions. 
Third, it can come from statistical sequence-structure patterns, extracted from a large 
set of previously determined protein structures deposited in an online repository 
called the Protein Data Bank (Berman et al., 2000). Fourth, information can come 
from prior models, such as structures of subunits in a complex to be modeled. Finally, 
information can come from a scientist’s intuition, hypothetical reasoning, or even 
guesswork. For the purposes of this paper, then, “information” should be understood 
broadly, as anything that might constrain which models are acceptable.6

Different pieces of information can target different parts of a system (e.g., different 
proteins in a complex of proteins) or different aspects of the same part (e.g., positions 
and distances between atoms). Further, our confidence in how we take information to 
constrain structural models can vary. For instance, we might be very confident that 
a particular segment of a protein sequence folds into an alpha-helix, given that most 
such sequence segments in other proteins are helical; in contrast, we might be entirely 
uncertain about a guess that two proteins in an affinity co-purified complex of mul-

5 Due to space constraints, we highlight only those elements of integrative modeling most pertinent to this 
paper’s aims. For a more comprehensive description of integrative modeling, see Rout and Sali (2019) 
and Sali (2021).

6 Information in our sense is broader than Leonelli’s notion of data as “any product of research activities, 
ranging from artifacts such as photographs to symbols such as letters or numbers, that is collected, stored, 
and disseminated in order to be used as evidence for knowledge claims” (2016, 77; see also Leonelli 
(2013)); it includes theory and educated guesses, neither of which are direct products of research activi-
ties or evidence per se.
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tiple proteins contact each other (Rout & Sali, 2019; Sali, 2021). That is, some pieces 
of information are more reliable than others, where a piece of information is reliable 
to the extent that we can be confident that it constrains structural models correctly.

There are several sources of uncertainty in information, each of which can limit 
our confidence that a piece of information constrains structural models correctly. 
First, information can be sparse: There can be more degrees of freedom in the model 
than data points. If sparseness is not given due consideration, there is a risk of overfit-
ting the data, proposing just one or a small handful of models when there may in fact 
be more that are equally consistent with input information. Second, information is 
subject to random and systematic error. For example, in X-ray crystallography, ran-
dom error can come from noise in the X-ray flux and detector, systematic error from 
radiation damage or irregularities in the crystal. Third, information can be ambigu-
ous. For example, it is generally not possible to determine which of three methyl 
protons is responsible for producing a given nuclear Overhauser effect (NOE) signal 
in solution NMR (Schneidman-Duhovny et al., 2014). Evaluating information with 
respect to these sources of uncertainty, then, enables assessing its reliability.

Integrative modeling aims to generate models that accommodate all input infor-
mation, where a model accommodates a piece of information to the extent that it is 
consistent with that information. For instance, suppose an experimental observation 
indicates a distance of less than 4  Å between two particular atoms. A model that 
locates those two atoms 3.5 Å apart accommodates this information better than one 
in which they are 4.5 Å apart. Because no model accommodates all information per-
fectly, the aim of integrative modeling is to generate models that accommodate all 
information sufficiently well. These models are thus akin to models of data positing 
a relationship among data in a given dataset, for instance, by fitting a curve to them. 
The difference is that information from any source can be used as an input for their 
construction; we may thus conceive of them as models of information.

Since there is typically more than one model that accommodates all information 
sufficiently well, integrative modeling aims to generate an ensemble of such mod-
els. The model ensemble—rather than an individual instance of a model within the 
ensemble—should be regarded as the desired outcome of the modeling process. It 
captures the uncertainty in the information arising from the sources discussed above.7 
Structural biologists often refer to the model ensemble as “the model,” and we will 
follow suit where appropriate.

In addition to accommodating information sufficiently well, models must also 
be sufficiently complete, detailed, and precise for answering biological questions of 
interest. A model is sufficiently complete if it includes the part of the modeled system 
needed to answer the questions; for example, a question about enzymatic catalysis 
likely requires a model of an enzyme to include the active site. A model is sufficiently 
detailed if it depicts the modeled system with the granularity needed to answer the 
question; for example, a question about enzymatic catalysis likely requires a model 
that specifies atomic positions, rather than representing amino acid residues with 

7 This is different from cases in which multiple models are required because each makes different, often 
incompatible, idealizing assumptions (cf. Dickson, 2006; Fehr, 2006; Mitchell, 2002, 2003; Morrison, 
2011, 2015; Weisberg, 2007, 2013).
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coarse-grained beads. Finally, a model ensemble is sufficiently precise if the vari-
ability among models in the ensemble is sufficiently low; for instance, an ensemble 
of atomic models that vary on a scale larger than the size of an atom is unlikely to be 
sufficiently precise for questions about catalysis.

The outcome of successful integrative modeling is a sufficiently precise ensemble 
of acceptable models, each of which is complete and detailed enough for answering 
biological questions. Henceforth, we omit these qualifications, referring to such an 
ensemble simply as an “ensemble of acceptable models.”

2.2  The integrative modeling workflow

Generating an ensemble of acceptable models is an iterative process that proceeds via 
four steps: defining the model representation, scoring a model against input informa-
tion, searching for acceptable models, and analyzing the model (Fig. 1).

Fig. 1  Integrative structure modeling workflow. A Integrative modeling is an iterative process that con-
verts input information about a biomolecular system into its structural model. The light blue rectangle 
indicates a single instance of model construction. B Each aspect of integrative modeling is defined. C 
Each aspect of integrative modeling is illustrated with an example
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2.2.1  Defining the model representation

The first step of integrative modeling is to use some of the available information to 
define the model representation, which specifies the mathematical variables whose 
values will be determined by modeling and their allowed range. The most impor-
tant model variables are typically positions of system components. For instance, a 
common aim is to determine positions of individual atoms. However, sometimes 
there is not enough information to do so, and a set of atoms can be represented by a 
larger sphere, such as a coarse-grained bead corresponding to an amino acid residue 
or protein subunit. System components can also be fixed with respect to each other 
into a rigid body corresponding to a previously determined structure. Further, some 
samples contain a mixture of structures; characterizing them may necessitate a model 
representation with separate sets of coordinates for each structure in the mixture, 
together with the structures’ relative concentrations. Although positions of model 
components are most important, other model variables can also be included in the 
model representation.8

The number and nature of the variables that comprise the model representation 
determine how well a model can accommodate input information. In general, a model 
can better accommodate input information if its representation includes a greater 
number of co-existing structural states, fewer rigid bodies, and higher resolution par-
ticles—a point that will be important in the heuristics we propose in Sect. 3.3.

2.2.2  Scoring a model against input information

The model representation effectively defines a space of in-principle possible models, 
with each model in the space specifying values for each of the model variables. The 
next step is to determine how consistent each model is with the input information. 
The assumption is that models that are more consistent with more of the information 
are more likely to be correct. Thus, information can be used to construct a scoring 
function quantifying the match between a model and the input information and to 
compute its value.

Most commonly, a least-squares scoring function is used, corresponding to a 
weighted sum of spatial restraints:

	 S = Σiωi(Xi − Xo
i )2,

where the sum runs over all spatial restraints i, Xi is the value of a restrained spatial 
feature in a model, Xi

o is its measured value, and ωi is the weight of the restraint. 
Minimization of S will by design minimize the difference between the model and 
available information. Each restraint thereby quantifies the deviation of a computed 
property of a model from that specified by the input information. For example, a 
restraint (i) based on an NMR spectrum may compare the distance between two spe-
cific atoms in a model (Xi) with an experimental observation that this distance is 

8 For example, isotropic temperature factors indicating the fluctuations of atoms around their average posi-
tions in crystallography are often included.

1 3

Page 9 of 25     69 



Synthese          (2025) 205:69 

less than 4.5 Å (Xi
o), weighted by our relative confidence in the measurement (ωi). 

Summing over all such restraints, weighted according to our relative confidence in 
them, gives us the value for the scoring function S.9 The scoring function enables us 
to determine which models are acceptable, where acceptable models are those that 
accommodate input information to a sufficient degree.

2.2.3  Searching for acceptable models

The space of in-principle possible models must then be searched to find all acceptable 
models—those that are sufficiently consistent with input information, as quantified 
by the scoring function.10 In principle, the best search is a systematic enumeration 
that generates every possible model one by one with sufficient granularity. However, 
enumeration is rarely computationally feasible, given the size of biomolecular struc-
tures and the precision required to enumerate them. So stochastic sampling methods, 
such as various Monte Carlo schemes, can be used instead. These methods rely on 
heuristics that bias the search toward models that are more likely to be acceptable, 
without enumerating all models. They aim to map the shape of the scoring function 
landscape as a function of all model variables.

Some of the available information can be used to constrain the model space that is 
searched. For example, we can limit the search for positions of a membrane protein 
to the membrane or limit sampling to a single symmetry unit of a system (Kim et al., 
2018). All else being equal, the smaller the search space, the more computationally 
feasible the modeling task.

2.2.4  Analysis of the model

Any candidate models generated by the search process are next analyzed to determine 
whether they satisfy all input information and are complete and detailed enough for 
answering biological questions. A model’s failure to satisfy all input information—its 
inconsistency with some data, theory, statistical preference, or prior model—indi-
cates that something has gone awry, though it is not always clear where the problem 
lies. Perhaps the model representation is incorrect or the input information is not as 
reliable as was assumed, provided that the scoring function form and its parameter 
values are accurate.

The analysis step terminates the modeling process once an ensemble of accept-
able models is found. Otherwise, modeling proceeds via another iteration, the aim 
of which is to eliminate the source of inconsistencies. Is the problem with (some of) 
the information? Or is it instead with (some of) the ways in which it was used, that 
is, how it was interpreted with respect to the target system or apportioned among the 
steps of modeling? The answers to these questions have a normative dimension; we 
therefore reserve discussion for how to address them for Sect. 3.3.

9 The best possible scoring function, however, is the Bayesian posterior model density, because it specifies 
the probability of a model M given information I, P(M/I) (Rieping et al., 2005).

10 Strictly speaking, there might be infinitely many acceptable models because variables could be defined 
to arbitrarily many significant figures; thus, only a representative sample of models need be determined.
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3  Heuristics for effective integrative modeling

In the previous section, we described the integrative modeling workflow, beginning 
by clarifying the notion of input information and the aim of integrative modeling, 
and then explicating the four steps of this process. In doing so, we have given an 
example of what integration consists in—of the mechanics of integration—in the 
context of structural biology. Rather than merely stating that information from mul-
tiple sources becomes integrated, we specified how such integration takes place: via 
the application of different pieces of information in each of the four steps of model-
ing. Information from one source might be used in defining the model representation, 
while information from another is used for constructing and evaluating the scoring 
function. Still other information can be used to guide the search through the space of 
in-principle possible models or to analyze the models generated by the search. We 
find, then, that modelers must make decisions about how to use different pieces of 
information in the integrative modeling workflow. We will show that some ways of 
doing so are better than others. In this section, we address the question: What does it 
mean to conduct integrative modeling effectively?

3.1  The efficiency of integrative modeling

We will understand effective integrative modeling in terms of efficiency. Normally, 
several iterations of modeling are required to compute an ensemble of acceptable 
models. Within an iteration, input information can typically be integrated in more 
than one reasonable way: There may be several conceivable model representations, 
interpretations of information, scoring functions, or searching algorithms. Yet deci-
sions about how to conduct each step of the modeling process affect which model 
ensemble (if any) is constructed: Different model ensembles will result from different 
such decisions. For a typical modeling problem, it would take more time and com-
putational resources than available to combine and recombine information into every 
possible permutation to see which models result and evaluate them. There is a limit 
to how many such permutations can even be considered.It is therefore imperative that 
integrative modeling be conducted efficiently. “Efficiency” is sometimes used pejora-
tively, suggesting corner-cutting or insufficient rigor. Here, we are instead concerned 
with maximizing the efficiency of rigorous investigations conducted according to 
explicit standards.

The efficiency of integrative modeling is a function of two factors: how many 
iterations are required to obtain an ensemble of acceptable models and how much 
time each iteration takes. We characterize an iteration of modeling as spanning the 
time from completing the previous iteration to the moment before starting the next 
one. Understood this way, each iteration includes not only the four steps of modeling, 
but also any time for deliberation before implementing these steps and any further 
information-gathering—for instance, by conducting more experiments—in prepara-
tion for the next iteration. This characterization of time per iteration enables us to 
define the efficiency of integrative modeling as the sum of iteration times.

We are now ready to put forward our normative proposal, our heuristics for maxi-
mizing the efficiency of integrative modeling. We begin by considering how informa-
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tion should be distributed among the steps of modeling (Sect. 3.2). Then, we consider 
the role of iteration in effective integrative modeling (Sect. 3.3).

3.2  Using information effectively

In this section, we argue that it matters which piece of information is used for which 
step of modeling: Some ways of distributing information can, on average, generate 
an ensemble of acceptable models within fewer iterations. We do so by extending an 
analysis of Linus Pauling’s determination of the structure of the folded polypeptide 
chain (Pauling et al., 1951), proposed by one of us (Bolinska, 2018).

3.2.1  Pauling’s heuristic for determining the structure of the folded polypeptide 
chain

Bolinska (2018) understands the process of determining the structure of the folded 
polypeptide chain as a stepwise narrowing-down of a space of candidate models. 
The structure of the extended polypeptide chain had been established by the time 
Pauling was working toward determining its folded structure (Fig. 2). The space of 
candidate models therefore contained all of the ways in which the polypeptide chain 
might fold. Different pieces of information—either theoretical considerations or 
experimental data—could guide the elimination of portions of this possibility space. 
Stereochemical rules dictating energetically favorable molecular conformations and 
X-ray diffraction photographs of the protein keratin were especially important pieces 
of information. Which information should be considered first? Pauling chose stereo-
chemical rules. He determined the structure of the folded polypeptide chain from 
known bond lengths and angles, representing the side chains of amino acid residues 
as R groups. Only after he determined a structure compatible with this information 
did he consult X-ray diffraction data.

Bolinska (2018) explains why his heuristic was successful. Stereochemical rules 
were highly confirmed theoretical considerations; it was unlikely that the structure of 
the folded polypeptide chain violated them. In contrast, X-ray crystallography was 
a relatively new experimental technique. X-ray diffraction photographs were blurry 
and seemed compatible with several interpretations. As a consequence, a model that 

Fig. 2  The general structure of the polypeptide chain. R groups represent side chains that differ for 
different amino acid residues
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appeared to be incompatible with an X-ray diffraction photograph might nonetheless 
be correct. Pauling’s alpha helix, for example, was incompatible with an influential 
X-ray diffraction photograph of the protein keratin taken by William Astbury, who 
interpreted it as indicating a repeating subunit every 5.1 Å (Astbury & Street, 1932).

Bolinska (2018) argues that considering stereochemical rules before X-ray diffrac-
tion photographs was a better heuristic than considering the latter before the former 
because it warranted greater confidence that, with the consideration of each piece of 
information, portions of the possibility space were eliminated correctly. Narrowing 
down the space of possible structures correctly is crucial: Mistakenly eliminating the 
right structure from the possibility space would necessitate starting the process over 
and determining where one went wrong. This heuristic minimizes how many itera-
tions are, on average, required to get the right solution by reducing the likelihood of 
having to backtrack.

3.2.2  Applying Pauling’s heuristic: prioritizing the most reliable information

Pauling’s heuristic originates from a more general principle: Modelers should rely 
most heavily upon the most reliable information. Applying this principle to contem-
porary integrative modeling tells us to use the most reliable information to define 
the model representation and to guide searching. Because the model representation 
specifies which models are under consideration in the first place, it is impossible to 
find a model whose variables are not included in the representation. Defining the 
model representation incorrectly is thus a significant error: it precludes, from the out-
set, finding the correct model(s). Indeed, we might understand Pauling as effectively 
having defined the model representation when he took for granted the structure of the 
extended polypeptide chain, attempting to fold it (rather than some other structure) 
into an energetically favorable conformation. In the framework of integrative mod-
eling, we might say that the variables he included in the model representation were 
positions of different polypeptide chain components, some represented at the atomic 
level (e.g., atoms in the polypeptide backbone), others at a coarser grain (e.g., side 
chains represented as R groups) (Fig. 2).

A similar argument applies to the searching step. Using information in searching 
delimits the range of values the model variables can adopt. Just as we cannot find a 
model whose variables are not included in the model representation, we also cannot 
find a model where we do not search. A historical case can illustrate this point. In 
an attempt to determine the folded structure of the polypeptide chain that preceded 
Pauling’s, Sir Lawrence Bragg, John Kendrew, and Max Perutz (1950) listed twenty 
possible structural models, selecting from among them those that were compatible 
with the 5.1-Å repeat indicated by Astbury’s photograph. We can understand Bragg, 
Kendrew, and Perutz as having used information from that photograph to guide their 
search through the space of possible structures. This turned out to be a mistake. Their 
proposed structure violated a stereochemical rule: It allowed rotation about the pep-
tide bond, which has partial double-bond character and is therefore planar. Mean-
while, Astbury’s interpretation of his photograph as indicating a 5.1-Å repeat was 
eventually found to be mistaken (Judson, 1996; Olby, 1974).
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In contemporary integrative modeling, using unreliable information to guide 
searching can also mislead. For instance, using the information that the NPC has 
eightfold symmetry for searching means that we only search a single symmetry unit 
and assume that the structure is replicated accordingly (Kim et al., 2018). Since doing 
so precludes the possibility of finding a structure without such a symmetry, only the 
most reliable information should be used for this step.

Information in which we have intermediate confidence is best suited for scoring. 
The scoring function enables us to quantify our confidence by weighting the impor-
tance of accommodating information relative to its reliability. For example, an NMR 
NOE data point restrains the maximal distance between a pair of atoms, via an upper 
distance bound term in the scoring function, and an electron microscopy density map 
restrains the shape of a model, via a correlation coefficient between the map and 
model. The weights we select for these terms in the scoring function reflect our rela-
tive confidence in the corresponding data.

Information in which our confidence is low may best be left out of model construc-
tion altogether, and instead reserved for analysis. For instance, suppose we know 
that mutating a residue in a protein prevents it from forming a complex with another 
protein. This information can be interpreted in two ways: either the mutation pre-
vents the formation of the complex because it is located in the interface between 
the proteins, or it modifies the interface through allostery, and is located elsewhere. 
Given uncertainty about which of these interpretations is correct, it is unclear what 
conclusions this information warrants (Kaake et al., 2021). Reserving this informa-
tion for analysis makes the construction of models inconsistent with it possible. If 
those models are indeed found to be inconsistent with the information, we have a 
ready explanation for the inconsistency: There is a problem with (our interpretation 
of) the information, rather than the models. However, we may find that the models 
we construct without this information are consistent with it. In this case, we may use 
the information differently in a subsequent iteration of modeling—a point we discuss 
in the next section.

3.3  Iterating effectively

In the previous section, we showed that the distribution of information among the 
steps of integrative modeling can reduce the number of iterations required to obtain 
an ensemble of acceptable models. We then introduced heuristics for how to distrib-
ute information within an iteration of modeling. We now discuss various functions of 
iteration and provide heuristics for iterating effectively.

One such function is to refine models, making them more precise. At the end of 
the previous section, we argued that unreliable information should be reserved for 
analysis so that it cannot influence model construction. We suggested that a model’s 
inconsistency with that information could be readily explained, given the informa-
tion’s unreliability. However, we also noted that a model may instead turn out to 
be consistent with the unreliable information. In such a case, a process of refine-
ment can be initiated. For example, one piece of information available for modeling 
the Nup84 complex was data from X-ray crystallography, suggesting a particular 
interface between two proteins. However, differences between the crystallographic 
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experimental context and a protein’s native environment sometimes preclude extrap-
olating from experimental results to that environment. Researchers thus wondered 
whether the crystallographic interface reflected how these proteins come together in 
vivo (Fernandez-Martinez et al., 2012). As in the case that we considered at the end 
of the previous section (Kaake et al., 2021), it was unclear what conclusions were 
warranted: the proteins could come together in the same way, but they might not. 
Researchers thus constructed models without this information, reserving it for analy-
sis. When analysis revealed the models to be consistent with the crystallographic 
data, researchers’ skepticism about whether the crystallographic interface reproduced 
cellular conditions was eliminated. Their newfound confidence justified using the 
crystallographic data in model construction in subsequent iterations, resulting in a 
more precise model (Fernandez-Martinez et al., 2012). When iteration is used for 
refinement, the outcome of earlier iterations of modeling warrants the redistribution 
of information in subsequent iterations.

However, in addition to determining how to apportion information among the 
steps of modeling, modelers must also make other decisions. For instance, they 
must decide how accommodating the model representation should be, where a more 
accommodating model representation is one that has a greater number of variables 
(i.e., is more fine-grained, flexible, or has more states; see Sect. 2.2.1). How should 
they do so? We suggest that modelers should err on the side of a modeling protocol 
that finds fewer rather than more acceptable models, preferring a less accommodating 
model representation in earlier iterations of modeling. Recall that the goal of model-
ing is to find a sufficiently precise ensemble of acceptable models, each of which is 
sufficiently complete and detailed for answering biological questions (Sect. 2.1). In 
practice, completeness and detail can be established by defining a model represen-
tation that contains the required components at a sufficient level of granularity for 
answering biological questions. Therefore, at the end of an iteration of modeling, 
the remaining task is to determine whether the ensemble of acceptable models is suf-
ficiently precise to be useful; this outcome constitutes the aim of modeling, terminat-
ing the iterative process.

However, there are two ways in which modeling can fall short of this aim: by 
finding no acceptable models, or by finding an ensemble of acceptable models that is 
insufficiently precise for answering biological questions. Further, before conducting 
an iteration of modeling, a modeler does not know whether the iteration will end in 
an ensemble of acceptable models that is sufficiently precise to be useful; no accept-
able models; or an insufficiently precise ensemble of acceptable models. Given this 
uncertainty about the outcome of an iteration of modeling, if one way of falling short 
of the aim of modeling is better than the other, modelers ought to err on the side 
of that outcome. This reasoning is familiar from the argument from inductive risk. 
Scientific reasoning is inductive and therefore prone to error. There are two kinds of 
error a scientist can make: concluding that there is an effect when in fact there isn’t 
one (i.e., a false positive) or concluding that there is no effect when in fact there is 
one (i.e., a false negative). When they test hypotheses, scientists must set signifi-
cance thresholds. According to the argument from inductive risk, where they set these 
thresholds biases the direction in which they err, either toward false positives or false 
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negatives.11 A more general principle can be extracted: When we make decisions 
under uncertainty, we should consider the consequences of different ways of erring, 
rather than simply aiming for our desired outcome.

We can apply this principle to integrative modeling as follows. One way of err-
ing, finding an insufficiently precise ensemble of acceptable models, would generally 
necessitate performing more experiments, which are typically more time-consum-
ing and costly than modeling. The only way to increase the precision of the output 
model is to use more information in the input; achieving this goal often requires more 
experimental resources. In contrast, finding no acceptable models merely requires 
conducting further iterations of modeling, which is generally quicker and cheaper. 
Our guiding principle for maximizing efficiency, then, is that, all else being equal, 
modelers should err on the side of finding fewer acceptable models. Erring in this 
direction helps to minimize the average time required for an iteration of modeling.

Erring on the side of fewer acceptable models tells us to adopt the least accom-
modating conceivable representation given the desired use of the model. If a less 
accommodating representation enables us to find an ensemble of acceptable models, 
we find out immediately. Further, less accommodating representations increase the 
efficiency of searching for acceptable models because they have fewer variables, gen-
erally resulting in fewer models in the search space. All else being equal, an iteration 
that includes a less accommodating model representation takes less time than one that 
includes a more accommodating representation.

Adopting the least accommodating conceivable representation can initiate a pro-
cess of self-correction (Chang, 2004), whereby the representation is made more 
accommodating until a sufficiently precise ensemble of acceptable models is found. 
For example, in modeling the structure of the yeast Spindle Pole Body, researchers 
were uncertain whether one component formed an extended rigid rod or there instead 
existed a pivot point at which the sequence folded upon itself. Based on results from 
X-ray crystallography, they began by assuming it to be an extended rigid rod, a less 
accommodating representation. They were unable to find a model that satisfied all 
information, so they next chose a model representation with a pivot point. Adopting 
this more accommodating representation enabled them to find a model satisfying all 
information (Viswanath et al., 2017).

Adopting the least accommodating representation can also initiate a process of 
trial-and-error. The aim of integrative modeling is to use all available information 
in the determination of the structure of a biomolecular system. But as it is currently 
implemented in software, there is a limit to what information can be included in 
a single iteration. For example, researchers possessed data indicating that the SEA 
complex contained either one or three copies of protein subunits Sea4 and Seh1, but 
it wasn’t clear which possibility was more likely. They started by including just one 
subunit in the model representation (erring on the side of finding fewer acceptable 
models). When no acceptable models were found, they considered a representation 
with three subunits in the next iteration, producing a model that satisfied all informa-
tion (Algret et al., 2014).

11 The argument from inductive risk further asserts that such thresholds cannot be set without considering 
non-epistemic values (Douglas, 2000).
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More generally, when no acceptable models are found, either there are problems 
with one (or more) of the first three steps of modeling or the information is less pre-
cise than expected. Given this indeterminacy, a modeler should begin by assessing 
whether a problem might have arisen in one of the first three steps of modeling. The 
alternative, performing more experiments to help interpret information and its preci-
sion more accurately, would require more time per iteration.

4  Lessons from integrative modeling

Let us take stock. We began with the observation that modeling complex systems 
poses significant challenges. Different information targets different parts or aspects 
of the modeled system and some pieces of information are more reliable than others. 
There are often many possible ways to integrate information, and pragmatic limita-
tions preclude considering all of them. How, then, should a modeler proceed? We 
examined integrative modeling in structural biology as a case study for answering 
this question. We described its mechanics, showing how integration takes place via 
its four-step, iterative workflow, and offered heuristics for integrating information 
effectively.

Integrative modeling provides us a rich source of insight, both about integration 
(which need not involve modeling) and about modeling (which need not involve 
integrating information from varied sources). We therefore draw some lessons about 
integration and modeling from our analysis.

4.1  Understanding integration

Our primary goal is to use integrative modeling as a foothold for better understanding 
integration. What is the value of integrative research? As many have noted, we need 
integrative research for sufficiently complex problems because they resist solution by 
traditional means. For example, James Griesemer shows that David Wake’s integra-
tive approach to evolutionary biology enabled him to solve problems that “would 
not have been solved so well by non-integrative approaches” (2013, 525). Similarly, 
Ingo Brigandt argues that it is “necessary to integrate different theoretical models 
and modes of explanations” to account for the evolutionary origin of novelties (2010, 
304). Putting multiple pieces of information together gives us a picture of the whole 
that would be difficult or impossible to obtain otherwise. Integrative research can 
enable, for instance, the localization of errors via triangulation (MacLeod & Ner-
sessian, 2013) or the coordination of different causal models, sometimes operating 
at different levels, resulting in a fuller explanation of target phenomena than each 
could provide on its own (Bechtel, 2013; Mitchell, 2009; Plutynski, 2013). Integra-
tive research is thus “vital to some instances of success in science” (Brigandt, 2013b, 
461).

But our case study reveals that the mere necessity of integration for solving com-
plex problems doesn’t wholly account for its value. Unlike pieces of a jigsaw puzzle 
that only fit together in a single way, there are often many ways in which information 
from various experimental and theoretical sources can be integrated, since there can 
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be several plausible interpretations of information and ways of weighing the impor-
tance of a model’s accommodating each one. A philosophical account of integration 
ought to shed light on how decisions about the interpretation and accommodation of 
information that are the very substance of integration should be made.

We have shown that integrative research is effective when it includes a way of 
prioritizing the most reliable information, enabling it to place the most stringent con-
straints on acceptable solutions to a research problem. If this heuristic seems obvious, 
recall what can happen if it is not followed. It is plausible that, had Bragg, Kendrew, 
and Perutz explicitly considered the reliability of available information, they might 
not have made the blunder they did. Further, and more importantly, it is not always 
clear what it means in practice to prioritize the most reliable information. The heuris-
tics for effective integrative modeling we’ve proposed offer a concrete way of doing 
so: Use the most reliable information for representation and searching; less reliable 
information for scoring; and the least reliable information for analysis.

Extending more general philosophical considerations about the epistemic value of 
iteration (Chang, 2004), our case study highlights its functions in effective integrative 
research. Iteration can enable the redistribution of information among the steps of 
modeling by increasing researchers’ confidence in some pieces of information. Even 
information that initially appears to be unreliable can become useful when it is found 
to be consistent with models produced without it. That is, integrating some informa-
tion in a particular way enables reassessment of the reliability of other information, 
warranting its use as a more stringent constraint in subsequent iterations. Assessing 
consistency with other information, rather than agreement with the target system, 
enables this reassessment of information’s reliability. Effective integrative research, 
then, enables researchers to extract as much new information as possible from the 
information they already have, thereby maximizing its value.

Iteration also plays a role in defining the model representation. When they define 
the model representation, modelers ought to consider not only which model represen-
tation is best suited to their goals, but also which way of getting it wrong—making it 
too accommodating or not accommodating enough—would be more productive. The 
more general takeaway is that, in any iterative process, researchers should consider 
not only the outcome of a particular iteration, but also different ways of erring. Doing 
so enables them to err in the direction that best promotes an efficient iterative process.

Finally, the iterativity of integrative modeling enables the reassessment of how 
information was integrated within a given iteration. Finding no acceptable models at 
the end of an iteration indicates that an error has been made. Subsequent iterations 
constitute a systematic attempt to identify its source. This function of iteration is 
crucial. We began with the observation that, in complex modeling problems, there is 
often a lot of information and many possible ways in which it could be integrated, 
but time and other limited resources preclude trying all of them. Several permuta-
tions of available information can nonetheless be assessed. Although trial and error 
is involved in this assessment, it need not take place in an ad hoc, haphazard fashion. 
Our heuristics for designing iterations of integrative modeling introduce some syste-
maticity to the process.
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4.2  Understanding modeling

With these lessons about integration in hand, let us now turn to what we can learn 
about modeling. We will show that our analysis also sheds light on the nature of 
model construction and evaluation, as well as on the significance of abstraction in 
these processes. We do so by contrast to the hierarchical view of models, which was 
introduced by Patrick Suppes (1962) and has since been developed (Giere, 2010; 
Mayo, 1996). According to this view, models of theory are constructed from theo-
retical principles together with various auxiliary assumptions that enable their appli-
cation to particular systems. For example, a model of the earth-moon system can 
be constructed from Newton’s laws of motion together with additional constraints 
(Giere, 2010). Since we often do not have direct access to the systems our models 
represent, we cannot compare them directly to these systems. Instead, we can collect 
data via experiment or observation—for instance, noting the position of the moon at 
various points in time. We can then infer a relationship among the data called a model 
of data. We use models of data to assess models of theory. The key point for our pur-
poses is that theory is used for the construction of (theoretical) models, data for their 
assessment, with models of data acting as intermediaries in this process.12

In contrast, we framed the challenge addressed by integrative modeling in terms 
of finding a model that best accommodates all available information—from data, 
theory, or any other source. Accordingly, we saw that information from theory and 
data alike may be used in model construction, that is, for defining the model repre-
sentation, constructing a scoring function, and searching for acceptable models. We 
end up with neither models of theory nor models of data, but rather with models of 
information (Bolinska, forthcoming). Similarly, information from any source may be 
used for model evaluation, that is, reserved for the analysis step. Rather than using 
theory to construct models and data to assess them, the construction and assessment 
of models alike may rely upon information from either theory or data. Theory and 
data can serve the same epistemic ends; there is no sharp delineation between them.

What emerges is a coherentist view of knowledge. No single piece or kind of 
information acts as a foundation upon which models are constructed. Instead, the 
reliability of all information must be assessed and reassessed using the iterative inte-
grative modeling workflow. The reliability of information must be assessed, first, 
to enable the appropriate distribution of information among the steps of modeling 
that we argued for in Sect. 3.2. If it proves impossible to construct a model on the 
basis of a given distribution of information—which reflects a given assessment of 
reliability—then reliability must be reassessed and information redistributed accord-
ingly in a subsequent iteration of modeling. In the analysis step, models are assessed 
according to how well they accommodate all available information; when no model 
can accommodate all information sufficiently well, those models that accommodate 
more reliable information are favored. Rather than taking some pieces of information 
to be known or given, the reliability of every piece of information—and the models 
constructed on the basis of particular reliability assessments—are evaluated in an 

12 Although the hierarchical view has drawn criticism, this basic role differentiation for theory and data is 
widely accepted (Bokulich & Parker, 2021; Karaca, 2018; Leonelli, 2019).
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iterative fashion. Revising assessments of reliability, models, or both is encouraged 
if a coherent picture does not emerge.13

This view takes seriously the fact that we cannot access biomolecular complexes 
independently of the experimental means at our disposal (Chang, 2022; Matthiessen, 
2022). The assessment of models therefore takes place entirely within the realm of 
modeling, rather than by comparison to the world outside this realm. Again, we may 
invoke the analogy to data models. Consider the curve-fitting problem: How should 
we select between infinitely many curves that capture a given dataset to varying 
degrees? This problem arises because data are a product of both the target phenom-
enon and measurement error. We want the curve we select to accurately reflect the 
target phenomenon, not noise introduced by the measurement process (Forster and 
Sober 1994). That is, we want to accommodate the data sufficiently well without 
overfitting them. Because we cannot compare the curve directly to the phenomenon it 
represents, we must use a principled means to select a curve from the data itself. For 
instance, Forster and Sober (1994) invoke the Akaike Information Criterion as a way 
to balance the competing desiderata of goodness-of-fit and simplicity.

Similarly, in integrative modeling, models are assessed according to how well 
they accommodate different pieces of information, rather than by comparison to their 
target systems. But assessing these models is not just curve-fitting. As we pointed out, 
the challenge that integrative modeling addresses is that vast amounts of information 
of variable reliability must be accounted for, each targeting different parts or aspects 
of the target system. Addressing this challenge requires further tools, which the itera-
tive process of integrative modeling gives us.

Our models-of-information framework enables us to set aside philosophical ques-
tions about abstraction (e.g., Cartwright, 1983; Godfrey-Smith, 2009; Jones, 2005), 
focusing instead on their practical ramifications. Scientists are often concerned pre-
cisely with these, that is, with how much detail to include in a model. For instance, 
Chris Eliasmith and Oliver Trujillo (2014) describe large-scale brain modeling as 
follows:

“Is there a right ‘level of detail’? We believe that this is simply an ill-posed 
question. [...] [T]he appropriate scale is determined by balancing two things: 
first, the questions that need to be answered and second, the computational 
resources” (2014, 3).

Our case study offers concrete normative guidance for how to strike this balance. 
Integrative modeling requires modelers to decide, when they determine the model 
representation, which variables to include in the model and at what level of detail. 
That is, they must adopt particular abstractions, assuming them for the sake of model 
construction. Our heuristics show how the level of detail should be determined ini-
tially and how it can be reassessed in later iterations of modeling: Begin with a less 
accommodating model representation, i.e., include less detail. If no acceptable model 
can be found, adopt a more accommodating representation in the next iteration.

13 For a detailed account of models of information and the coherentist picture of scientific knowledge sup-
ported by this view, see Bolinska (forthcoming).
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Philosophical questions about abstraction have to do with how well a model can 
represent its target. But as mentioned above, the relationship between model and 
target cannot be assessed using some independent means. Instead, all we can do is 
build certain abstractions into our models, assessing those models over the course of 
multiple iterations. In other words, the issues our paper addresses are in some sense 
prior to questions about abstraction and representation. We take a key contribution of 
our paper to be that, even if we set these issues aside, significant challenges must still 
be addressed, arising from the volume, variable reliability, and ambiguity of available 
information.

5  Conclusion: Beyond integrative modeling

We conclude by suggesting how our lessons from integrative modeling can be applied 
to domains outside structural biology. The challenges that integrative modeling was 
designed to address are also present in other domains. Especially in an age of big 
data, scientists often have a lot of information at their disposal. Each piece of infor-
mation, whether it comes from theory or from data, may admit of many interpreta-
tions. Therefore, there can be many ways to integrate this information. Moreover, 
resource limitations incentivize efficiency. Researchers must be strategic about how 
they integrate information, prioritizing some ways of interpreting and integrating 
information over others.

Further, the steps of integrative modeling often have analogs—even in research 
that does not use modeling per se. In any domain, researchers must either begin by 
selecting the variables whose values will be determined (as in integrative modeling) 
or, more generally, by specifying a research problem and what qualifies as an accept-
able solution. They must determine, for instance, how precise or detailed a solution 
they seek and what aspect of the system in question to target. Second, they must 
evaluate solutions to the research problem—be they models, as in our case study, or 
other epistemic products, like theories or explanations. Even if that evaluation is not 
explicit or quantitative, researchers must nonetheless determine how well putative 
models, theories, or explanations can accommodate or account for different pieces of 
information. Third, any research problem has a space of possible solutions—again, 
whether this space is explicitly acknowledged as such or not. Fourth, some form of 
analysis must take place once a plausible solution has been identified. Moreover, 
research in many domains involves iteration. Therefore, the heuristics for effective 
integrative modeling we propose can be extended to other domains. They may serve 
as a blueprint for how researchers can take all available information, put it into a 
model, and evaluate that model in a coherentist way.

There are limitations, though. Eric Hochstein (2023) has argued that, for large-
scale models of the brain, integration need not consist in a single unified model or 
theory. Rather, shared metaphysical commitments between multiple models make 
extrapolation between them possible; integration consists not in a unified model, but 
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in the possibility of extrapolation that such shared commitments afford.14 Whether 
a form of modeling akin to integrative modeling is possible in other domains will 
depend, then, on what their goals are. Given that integrative modeling aims to deter-
mine the structures of biomolecular complexes—the positions and orientations of 
their component parts—it is easy enough to conceive of information as constraints 
on structural models. In fields in which explanatory goals are less well defined, more 
multiplicitous, or more open-ended, this kind of integration may not be feasible or 
desirable. Nevertheless, given the analogs to integrative modeling in other domains 
adumbrated above, we contend that many problems are amenable to our account. 
Further specifying the prospects and limitations of its extension to disparate prob-
lems is a task for future work.
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