
Conscious behavior through reflexive dialogs

Pierre Bonzon

HEC, University of Lausanne
1015 Lausanne, Switzerland

pierre.bonzon@unil.ch

Abstract. We consider the problem of executing conscious behavior i.e., of
driving an agent’s actions and of allowing it, at the same time, to run concurrent
processes reflecting on these actions. Toward this end, we express a single
agent’s plans as reflexive dialogs in a multi-agent system defined by a virtual
machine. We extend this machine’s planning language by introducing two
specific operators for reflexive dialogs i.e., conscious and caught for monitoring
beliefs and actions, respectively. The possibility to use the same language both to
drive a machine and to establish a reflexive communication within the machine
itself stands as a key feature of our model.

1 Introduction

Intelligent behavior, presumably, is strongly related to the concept of consciousness.
In order to achieve true machine intelligence, one ought therefore to address the issue
of modeling and executing conscious behavior. In the absence of a commonly agreed
meaning for this term, we use it here in a somehow restricted sense i.e., to refer to the
goal of "driving an agent’s actions and of allowing it, at the same time, to run
concurrent processes reflecting on these actions". We shall therefore not attempt to
model the truly reflexive concept of "conscious to be conscious", which would be
required for instance to capture the concept of "consciousness of having beliefs".

When compared to classical AI problems, such as automatic planning and/or
reasoning, the amount of research devoted so far to this subject is rather limited.
Surprisingly, we could hardly find more than a few references pertaining to recent
work done in this area [5] [8] [15]. Provided that consciousness essentially functions
as a mirror, the lack of formal models for the intelligence itself suggests that models
of conscious behavior could not have anything to reflect upon. Furthermore, as this
reflection seems to rely on internal linguistic representations relating beliefs and
mental attitudes [6] [7], the lack of adequate formal languages for this purpose
indicates why conscious behavior cannot be easily reproduced.

Comprehensive agent models, if available, could however well replace
disembodied intelligence theories as the basis for modeling conscious behavior. More
precisely, we envision that any system capable of mechanizing an agent’s behavior
could be first extended to reflect its selection of actions i.e., to somehow notify the
agent of its choices. The language used by the system itself to plan actions should
then be extended to use in turn these internal notifications. For an agent to be

mailto:Pierre.bonzon@unil.ch

conscious would then simply mean being able to recognize and acknowledge internal
notifications at will. This overall process could be iterated to represent the concept of
“conscious to be conscious”, and so on. Consciousness, taken as a whole, could thus
be considered as the resulting "closure relation". As already indicated, we shall
however refrain ourselves from exploring this concept, and be content with a possible
implementation of the first iteration only.

Our recent proposal, that introduces formal communication primitives within a
multi-agent system [3] and defines a language for agent dialogs [4], is an example of
an agent model that can be used for this purpose. In this approach, consciousness will
primarily function as a monitor of actions and beliefs (in the weak sense of the word
and not in Hoare’s strict sense) that allows for the triggering of new actions. As such,
this concept of consciousness is truly reminiscent of previously introduced artifacts,
such as demons1. Our basic idea that departs from these earlier attempts is as follows:
in order to catch internal notifications, any conscious agent will engage in multiple
ongoing conversations with itself. The way for an agent to engage in multiple
conversations with other agents have already been discussed in [4], and will be
reviewed below. As a result, each communicating agent will be considered as a
multithreaded entity interleaving concurrent conversations. The introduction of
reflexive dialogs (in a non-traditional sense i.e., of having a dialog “with oneself”
instead of "about itself") then simply requires an extension of their synchronization
processes. From there, any agent’s plan will be represented as a reflexive dialog.

This model, which will be thoroughly developed in this paper, definitively reflects
a "static" capability i.e., that of being conscious of explicit beliefs and of actions
performed in full awareness. Different approaches might be possible. As an example,
Baars [1] develops a concept of consciousness very much akin to a form of discovery
and learning i.e., the "dynamic" process of getting conscious of facts resulting from
myriads of sensations. We shall further relate these two approaches in our conclusion.

Let us further point out here the differential aspects pertaining to the consciousness
of beliefs, on one hand, and of actions, on the other. As an agent’s beliefs are
considered part of his local state, they can be represented by logical formulas that are
stored in his memory. The consciousness of an agent’s beliefs is therefore persistent
i.e., can be solicited at any time. In contrast, any action that he chooses to perform
either have an effect on the environment or lead to an updating of his local state, and
usually has no direct trace in his memory (unless, of course, it gives rise to an ad hoc
new belief, as will be shown at the end of this paper). As such the consciousness of an
agent’s actions is volatile i.e., must be caught “on the fly” when these actions occur.
The differentiation just made will lead us to the definition of two distinct operators
i.e., conscious and caught for monitoring beliefs and actions, respectively.

The rest of this paper is organized as follows: in section 2, we review previously
published material in order to provide the reader with a basic understanding of our
concept of agents dialog and its associated virtual machine. Section 3 shows how to
represent any single agent’s plans as a reflexive dialog. Section 4 proposes the
language extension allowing for the agent to reflect on his actions. Finally section 5
introduces the virtual machine extensions needed to notify an agent of his actions.

1 « a procedure that watches for some condition to become true and then activates an associated
process »[14]

2 A model of social agents with reactive and proactive capabilities

In this section, we review the agent model introduced in [3] [4].

2.1 A language for agent dialogs

In order to get, first, an intuitive feeling for the language introduced in [4], let us
consider the solution of the two-agent meeting-scheduling problem presented in [11].
In this problem, one agent is designated as the host and the other one as the invitee.
Both agents have free time slots to meet e.g., if li refers to agent's i local state

lhost meet(13) ∧ meet(15) ∧ meet(17)
linvitee meet(14) ∧ meet(16) ∧ meet(17)

and they must find their earliest common slot (in this case, 17). We use a predicate
epmeet(T1,T) meaning “T1 is the earliest possible meeting time after T”, defined as
∀T1∀T∀T′ (meet(T1)∧(T1>=T)∧¬(meet(T′)∧(T′ >=T)∧(T′ <T1)) ⇒ epmeet(T1,T))

The solution involves successive negotiation cycles. The host has the responsibility
of starting each cycle with a given lower time bound T. A cycle comprises three steps,
each step involving an exchange of messages. In the first step, the host initializes a
call/return exchange calling on the invitee to find out his earliest meeting slot T1 after
T. In the second step, roles are swapped: the invitee initializes a call/return calling on
the host to find out his earliest meeting slot T2 after T1. In the third step, the host
either confirms an agreement on time T2 (if T1=T2) by initializing a tell/ask
exchange, or starts a new cycle with T2 as his new lower bound.

This solution can be informally expressed as follows:
“start with a call/return exchange,
 proceed with a return/call exchange,
 conclude with a tell/ask exchange and save the meeting time or resume”

The corresponding, implicitly synchronized dialogs are then
dialog(invite(Invitee, T), [T1,T2],

[call(Invitee,epmeet(T1,T)),
 return(Invitee,epmeet(T2,T1)),
 ((T1=T2 | [tell(Invitee,confirm(T2)),

 execute(save(meeting(T2)))]);
 (T1\=T2| [resume(invite(Invitee,T2))]))])

dialog(reply(Host), [T,T1,T2],
 [return(Host,epmeet(T1,T)),
 call(Host,epmeet(T2,T1)),
 ((T1=T2 | [ask(Host,confirm(T2)),

 execute(save(meeting(T2)))]);
 (T1\=T2| [resume(reply(Host))]))])

where “,” and “;” are sequence (or conjunctive) and alternative (or disjunctive)
operators, respectively. Variables start with capital letters, and variables that are local
to a dialog are listed before the messages. As it can be seen in this example, each
dialog consists of a branching sequence of messages i.e., a sequence with an end
alternative containing guarded messages. Similarly to lists, branching sequences can

have an embedded structure. Unless they are resumed (with a resume message),
dialogs are exited at the end of each embedded branching sequence (e.g. the above
example, after the execute messages). Actions interleaved with messages can be
executed with an execute message. Sub-dialogues can be entered with an enter
message, similarly to ordinary procedures (for an example, see section 2.4). The
corresponding BNF syntax is given below in Fig. 1

<dialog> ::= dialog(<dialogName>(<dialogParams>),<varList>,<branchSeq>)

<varList> ::= [] || [<varName>|<varList>]

<branchSeq> ::= [] || [<alt>] || <seq>

<alt> ::= <guardMes> || (<guardMes>;<alt>)

<seq> ::= [<mes>|<branchSeq>]

<guardMes> ::= (<guard>|<branchSeq>)

<mes> ::= <messageName>(<messageParams>)

<messageName> ::= ask || tell || call || return || execute || enter || resume

Fig. 1. BNF productions

As usual, “|” separates the head and tail of a list i.e., [m1|[m2|…[]]]=[m1,m2,…].
We also use “|” to isolate the guard in a guarded message. To avoid confusion, we use
“||” as metasymbol for representing choices. We leave out the definitions for names,
parameters, and guards, these being identifiers, first order terms and expressions,
respectively. Branching sequences permit end alternatives, but do not allow for
starting or middle alternatives i.e., cannot contain the list pattern [<alt>|
<branchSeq>].

2.2 A virtual machine for executing dialogs

As thoroughly developed in [4], the language introduced in section 2.1 can be
compiled and executed on a virtual machine. This compilation amounts to rewriting
each dialog into a non-deterministic plan (see below), and at the same time generates
the necessary conditions to ensure its sequential execution. The abstract machine
itself defines the run of a class of agents as a loop interleaving individual agent run
cycles. It is given by the following procedure

procedure runClass(e,l)
loop
 for all i such that lClass agent(i) do
 sense(li,e);
 if li plan(p0

i)
 then reacti(e,l,p0

i);
 if l Class priority(n0)
 then processClass(e,l,n0)

where e represents the state of the environment, l the local state of a class of agents
defined by a vector l = [lClass,l1…ln], and the components lClass and li are the local state

of the class and its members identified by an integer i=1…n, respectively. We assume
that predicate agent is such that lClass agent(i) whenever agent i belongs to the class.
The language defining each li includes a set P of non-deterministic plan names (nd-
plan in short) and four predicates plan, priority, do and switch. For each agent i, its
current nd-plan pi ∈ P refers to a set of implications “conditions” ⇒ do(pi, a) or
“conditions” ⇒ switch(pi, pi'), where a is an action (for an example, see section 2.4).
Similarly to plans, processes of explicit priority n encompass implications
“conditions” ⇒ do(n, a). We further assume that each agent’s initial nd-plan p0

i and
the class highest priority n0 can be deduced from l i.e., that li plan(p0

i) and lClass

priority(n0), respectively.
In each run cycle, initial plans p0

i are activated by a procedure reacti.
Synchronization of message pairs occurs globally through a procedure processClass.
These procedures are defined as:

procedure reacti(e,l,pi)
if li do(pi, a)
then (e,l) ← τi(e,l,a)
else if li switch(pi, pi')
 then reacti(e,l,pi′)

procedure processClass(e,l,n)
if l Class do(n, a)
then (e,l) ← τClass(e,l,a);
 processClass(e,l,n)
else if n >0
 then processClass(e,l,n-1)
In these procedures, the state transformer functions τi and τClass are used to

interpret actions and synchronize operations, respectively. As their names imply, nd-
plans are not executed sequentially. At each run cycle, procedure reacti will be called
with the (possibly variable) initial plan p0

i deduced for each agent. In each recursive
reacti call, the agent’s first priority is to deduce and carry out an action a from its
current plan pi. Otherwise, it may switch from pi to pi'. If the switch predicate defines
decision trees rooted at each p0

i, then reacti will go down this decision tree. This
mechanism allows an agent to adopt a new plan whenever a certain condition occurs,
and then to react with an appropriate action. As a result, actions will be chosen one at
a time. In contrast to nd-plans, dialogs must be executed sequentially. Towards this
end, the rewriting of dialogs into nd-plans generates implications of the form
“conditions” ⇒ do(pi, a) only. In other words, there will be no switching of plans,
and the state transformer function τ associated with the message enter (for entering
sub-dialogs) will use instead a stack to reflect the dynamic embedding of dialogs.
The conditions in each implication include both a synchronization and a sequencing
condition (for further details, see [4]), and the action a always incorporate a
predefined message together with some updating operations related to the conditions.
As a result, a sequential execution of dialogs will be emulated, though actually each
action will still be deduced one at the time using the mechanism defined for nd-plans.

As for procedure processClass, it will execute, in descending order of priorities, all
processes whose conditions are satisfied. Processes will be used for the purpose of

synchronizing message pairs. Synchronization occurs when the two messages forming
a pair (i.e., tell(r,ϕ)/ask(s,ψ) or call(r,ϕ)/return (s,ψ) issued by sender s and receiver
r) are acknowledged. It is triggered by two processes defined as

 ack(s,tell(r,ϕ)) ∧ ack(r,ask(s,ψ))) ⇒ do(2, tellAsk(s,r,ϕ,ψ))
 ack(s,call(r,ϕ)) ∧ ack(r,return(s,ψ)) ⇒ do(1, callReturn(s,r,ϕ,ψ))

where the acknowledgment flag ack(i,message) is raised in lClass when the message
issued by agent i is interpreted using function τi (for further details, see [3]). Similarly
to actions, the synchronizing operations tellAsk and callReturn are interpreted by state
transformer functions τClass that uses lClass as a blackboard.

2.3 Engaging in multiple conversations

Agents should be allowed to engage in multiple conversations. A possible solution is
to define a parallel operator that can be used at the message level i.e., to interleave
possible concurrent messages [10] [11]. We favor the simpler solution whereby each
agent is a multi-threaded entity interleaving concurrent conversations. In this
extended model, dialogs are now syntactic entities that, once compiled into plans, can
be associated with multiple conversations implemented as concurrent threads. Just as
our multi-agent system was implemented as a multi-threaded entity of agents using
predicate agent, our multi-threaded agent will be implemented as a multi-threaded
entity of conversations using an additional predicate conversation as follows

procedure runClass(e,l)
loop
 for all i such that lClass agent(i) do
 sense(li,e);
 for all j such that li conversation(j) do
 if li plan(p0

ij)
 then reacti(e,l,p0

ij);
 if l Class priority(n0)
 then processClass(e,l,n0)

where li conversation(j) means “conversation thread j is attached to agent i ” and
p0

ij is the initial compiled plan associated with thread j of agent i. An additional
primitive message concurrent can then be used in any dialog to create a new
conversation thread when required (for an example, see the end of section 2.4). The
synchronization processes must be redefined accordingly as follows

 ack(sj,tell(r,ϕ)) ∧ ack(rk,ask(s,ψ))) ⇒ do(2, tellAsk(sj,rk,ϕ,ψ))
 ack(sj,call(r,ϕ)) ∧ ack(rk,return(s,ψ)) ⇒ do(1, callReturn(sj,rk,ϕ,ψ))

where the acknowledgment flag ack(ij, message) is raised when the message issued by
conversation thread j of agent i is interpreted. Note that messages are still addressed
to a given agent rather than to a specific thread of that agent.

As dialogs can include execute messages that allow in turn for the execution of any
action, the language just reviewed constitutes a general model of social agents with
sensing, reactive and proactive capabilities [16] (this latter capability deriving from

the deduction of variable initial plans p0
i). Its "operational semantics" is defined by

the virtual machine together with the compiling functions contained in [4].

2.4 Example: a vacuum cleaner robot

To illustrate the concepts just reviewed, let us consider a vacuum cleaner robot that
can choose either to work i.e., move and suck any dirt on sight, or to go back home and
wait. Let us further assume that the robot must stop whenever an alarm condition is
raised. These three behaviors correspond to three possible nd-plans, i.e. work, home,
and pause. The robot's overall behavior can be represented by a decision tree rooted at
a single initial plan and defined by the following implications, where the predicate
in(X,Y) and dirt(X,Y) are used to mean "the agent is located at (x,y)" and "there is
dirt at (x,y)", respectively, and the action stop, move, back, and suck have the obvious
corresponding meaning:
 alarm ⇒ switch(initial,pause)

 ¬alarm ⇒ switch(initial,start)

 true ⇒ do(pause,stop)

 dirt(_,_) ⇒ switch(start,work)

 ¬dirt(_,_) ⇒ switch(start,home)

 in(X,Y)∧ dirt(X,Y) ⇒ do(work,suck(X,Y))

 in(X,Y)∧ ¬dirt(X,Y) ⇒ do(work,move(X,Y))

 in(X,Y) ⇒ do(home,back(X,Y))

These implications can be directly interpreted on the virtual machine of section 2.2.
Each run cycle will be initiated with the single initial plan and then go down the
decision tree. Each action will be deduced “just on time”, thus ensuring a truly
reactive behavior. Equivalently, this robot can be specified by the following dialogs
(that, at this point, do not involve any communication):
 dialog(initial, [],

[((alarm | [enter(pause)]);
 (not alarm | [enter(start)]))])

 dialog(pause, [],
[execute(stop)])

 dialog(start, [],
[((dirt(_,_) | [enter(work)]);
 (not dirt(_,_) | [enter(home)]))])

 dialog(work, [X,Y],
[((in(X,Y),dirt(X,Y) | [execute(suck(X,Y)),

 resume(initial)]);
 (in(X,Y),not dirt(X,Y) | [execute(move(X,Y)),

 resume(initial)]))])
 dialog(home, [X,Y],

[((in(X,Y) | [execute(back(X,Y)),
 resume(initial)]))])

The rewriting of dialogs into nd-plans generate conditions that will ensure their
sequential execution, similarly to that of ordinary procedures (e.g., after entering start

from initial, the control will be transferred to either work or home, and so on). Unless
explicitly directed to resume at some point, dialogs are exited at the end of each
embedded branching sequence, and the dialog that was left on entering is then
resumed by default. In the above example, the initial dialog is explicitly resumed
after the execution of each action, thus enforcing the same reactive behavior as
before.

As it can be seen in the above examples, the conditions in the implications defining
nd-plans are identical to the guards in the guarded messages of the corresponding
dialog. Furthermore, the do and switch predicates are used for the same purpose as the
execute and enter messages, respectively. Intuitively then, a non-deterministic plan
can thus be represented by a non-communicating dialog. Reversibly, any dialog can
be compiled back into a nd-plan that do not contain any switch predicate. As already
indicated, this arises because the state transformer functions for interpreting
messages uses a stack to reflect the dynamic embedding of dialogs resulting from
successive enter messages.

As a first step towards allowing an agent to reflect on his behavior, let us now try
and express possible parallel tasks in dialogs. Recalling from the end of section 2.2
the possibility for a dialog to create concurrent conversation threads, our robot
behavior can be further represented by the following dialogs
 dialog(initial, [],

[concurrent(pause),
[concurrent(start)])

 dialog(pause, [],
[((alarm | [execute(stop)]))])

 dialog(start, [],
[((not alarm | [concurrent(work),

 concurrent(home)]))])

 dialog(work, [X,Y],
[((dirt(_,_),in(X,Y),dirt(X,Y) | [execute(suck(X,Y)),

 resume(work)]);
 (dirt(_,_),in(X,Y),not dirt(X,Y) | [execute(move(X,Y)),

 resume(work)]))])
 dialog(home, [X,Y],

[((not dirt(_,_),in(X,Y) | [execute(back(X,Y)),
 resume(home)]))])

where concurrent guards are pushed one level “below” (i.e., the guards of concurrent
conversation threads are checked on entry in these threads). Dialogs work and home
can now resume themselves, as they are now concurrent together with dialog pause
waiting for an eventual alarm. Let us further note that these two dialogs actually must
resume themselves: if the initial dialog were to be resumed instead, as in the
preceding example, superfluous new concurrent threads would then be created.

Before proceeding, it is noteworthy to point out here the role of guards in guarded
messages. If a guard does not get satisfied (e.g., as in the case of the pause dialog,
when no alarm has been received yet), the associated message is not sent. If there are
no other alternatives, the dialog gets simply suspended until the guard gets satisfied.
The guarded message as a whole thus acts as a monitor or demon i.e., it will stand
alive, watch and wait until its associated message can eventually be sent.

3 Representing agent plans as reflexive dialogs

According to their intuitive meaning (and as defined by their compiling functions in
which guarded messages are rewritten into implications), guards are required to be
deductible from the agent local state. Let us now recall our introductory discussion
about the persistence of beliefs v/s the volatility of action consciousness. We thus
have to conclude that, in contrast to the monitoring of beliefs illustrated in the
preceding example, guarded commands cannot be used to monitor actions. Looking
for an alternative and general solution that will apply to both cases, our basic idea is
to try and catch internal notifications by allowing any agent to engage in multiple
conversations with itself. Towards this end, we first need to be able to process
reflexive dialogs (in a non-traditional sense of the word i.e., a dialog "with oneself").
An ad hoc extension of the synchronization processes presented in section 2.2 simply
requires two additional synchronization processes, defined as follows:

 ack(sj,tell(k,ϕ)) ∧ ack(sk,ask(j,ψ))) ⇒ do(2, tellAsk(sj,sk,ϕ,ψ))
 ack(sj,call(k,ϕ)) ∧ ack(sk,return(j,ψ)) ⇒ do(1, callReturn(sj,sk,ϕ,ψ))

where the sender and the receiver are the threads j and k attached to agent s. Reflexive
messages are thus sent by and addressed to specific threads of a given agent.

To illustrate this, let us now define a generic dialog conscience as follows:
dialog(conscience(P), [Thread],

[((P | [return(Thread,P)]))])

Suppose that this dialog has been attached to a given agent, and receives the message
call(conscience(P),P) sent by a concurrent conversation (named Thread) attached to
the same agent. This dialog will then either return the belief P and exit, if this belief
holds in the agent’s local state, or wait, in the contrary case. Let us further consider a
new message conscious that can be macro expanded as follows
conscious(P) ==> (concurrent(conscience(P)), call(conscience(P),P))

This message will first create a conscience thread and then work as described above
i.e., like a monitor for beliefs that will stand alive, watch and wait until expected
beliefs are effective. If we assume that reflexive dialogs are precompiled to macro
expand conscious messages and to include the generic dialog conscience, then our last
example of section 2.4 can be rewritten as follows:
 reflexive(initial, [],

[concurrent(pause),
 concurrent(start)])

 reflexive(pause, [],
[conscious(alarm),
 execute(stop)])

 reflexive(start, [],
[conscious(not alarm),
 concurrent(work),
 concurrent(home)])

 reflexive(work, [X,Y],
[conscious(dirt(_,_)),
 conscious(in(X,Y)),
 ((dirt(X,Y) | [execute(suck(X,Y)),

 resume(work)]);
 (not dirt(X,Y) | [execute(move(X,Y)),

 resume(work)]))])
 reflexive(home, [X,Y,]

[conscious(not dirt(_,_)),
 conscious(in(X,Y)),
 execute(back(X,Y)),
 resume(home)])

Let us stress here that this solution leads to the same behavior as before. In other
words, in this example, the monitoring of individual beliefs using reflexive dialogs
instead of guarded messages does not bring anything new. The explicit modeling of
conscience threads does however open the door to more complex consciousness
models relying on mental attitudes e.g., could lead to model such things as a troubled,
selective or biased conscience. A similar scheme, introduced in the next section, will
allow for the monitoring of actions.

The verification of dialog protocols expressed as concurrent reentrant threads
guarded with conscious monitors could be quite an intricate task. In order to prevent
concurrent threads to get “stuck”, their monitors should not get bound by external
variables. In the above example, the monitors of concurrent threads work and home
get bound by local variables X and Y. In contrast, actions suck(X,Y) and move(X,Y)
cannot be expressed as concurrent reentrant threads because their monitor would be
bound by external variables X and Y.

4 Executing conscious behavior by reflecting on one’s own actions

As alluded to in our introductory discussion, the consciousness of an agent’s actions
is volatile i.e., must be caught “on the fly” when these actions actually occur. What
we need to implement now is a mechanism whereby an agent will first be notified
of, and then reflect on each of its actions individually. Once again, our language for
agent dialogs will be used for this purpose. In contrast to the consciousness of an
agent’s beliefs, the sender of the notifications cannot be the agent itself, who will be
solely the receiver, and the notifications will be sent by the underlying virtual
machine. Towards this end, let us define a generic dialog reflect as follows
dialog(reflect(P), [Thread],
 [ask(react,P),
 tell(Thread,P)])

As before, suppose that this dialog has been attached to a given agent and receives
the message ask(reflect(P),P) sent by a concurrent thread attached to the same agent.
This dialog will first send the message ask(react,P) to a pseudo thread react
representing the machine itself (or, more precisely, the react procedure of an extended
virtual machine, as it will be explained in the next section) and then wait for an
answer. Upon receiving a notification, it will in turn answer the asking thread by

sending the message tell(Thread,P). Let us further consider a new message caught that
can be macro expanded as follows
caught(P) ==> (concurrent(reflect(P)), ask(reflect(P),P))

This message will first create a reflect thread and then work as described above i.e.,
will monitor the notification of actions. If we assume that reflexive dialogs are
precompiled to macro expand caught messages and to include the dialog reflect, then
any behavior could be directed to reflect on his own actions, using a concurrent
reflexive dialog introspect saving ad hoc new beliefs done(P) as follows:
reflexive(initial, [],

[concurrent(“any behavior”),
 concurrent(introspect)])

reflexive (introspect, [P],
 [caught(execute(P)),
 execute(save(done(P))),

 resume(introspect)])

reflexive (“any behavior”, [P],
 […
 conscious(done(P)),

 …])
The monitoring of actions just presented represents a first step towards modeling
conscious behavior. As illustrated by the introspect thread, any number of concurrent
threads could similarly be designed to reflect in various ways on the execution of
actions. For example, the ad hoc new beliefs done(P) created by the introspect thread
could be monitored in turn to relate the consciousness of previous actions to that of
the current action, and so on.

5 An extended virtual machine for sending notifications

In order to complete the model, the virtual machine presented in section 2.2 must be
extended to send internal notifications, when required. This extended virtual machine
can be defined as follows:

procedure runClass(e,l)
loop
 for all i such that lClass agent(i) do
 sense(li,e);
 for all j such that li conversation(j) and j≠ reflect(_) do
 if li plan(p0

ij)
 then reacti(e,l,p0

ij);
 reflecti(e,l);

 if l Class priority(n0)
 then processClass(e,l,n0)

In order to avoid infinite recursion, this machine is prevented from sending
notifications about notifications (in other words, the consciousness is not iterated to
represent the concept of “being conscious to be conscious”, and so on). The reflect

threads are thus not interleaved with other threads, but are executed separately in each
cycle using procedure reflecti(e,l). This procedure is defined in turn as follows:

procedure reflecti(e,l)
if li conversation(reflect(r))
 and li do(reflect(r), a)
then (e,l) ← τi(e,l,a);
 reflecti(e,l)

As a result of the end recursive call reflecti(e,l), all ready messages of all concurrent
reflect threads attached to agent i will be sent without delay. The actual notification
takes place within an extended procedure reacti(e,l,pij) defined as follows:

procedure reacti(e,l,pij)
if lj do(pij, a)
then (e,l) ← τi(e,l,a);
 if li conversation(reflect(r))
 and a= (save(_,_),save(_,_),r)
 then ack(ireact,tell(reflect(r),r) ← true
else if li switch(pij, pij')

 then reactij(e,l,pij')

Any action a resulting from the compilation of dialogs has the form of a triplet
a=(save(_,_),save(_,_),r), where r is one of the predefined message. After executing
an action a, this extended procedure will check if the message r just processed can be
matched with a reflect(r) thread attached to agent i. If so, it will raise an
acknowledgment flag ack(ireact,tell(reflect(r),r)) that in turn will be paired for
synchronization with the acknowledgement flag ack(ireflect(r),ask(react,r)) raised by
message ask(react,r) from thread reflect(r). As the thread react actually does not exist,
this amounts to emulating communication between the machine and the agent i.
 This overall process can be represented by the following picture that elaborates on
the abstract, top-level view of an agent as given in Wooldridge’s reference paper [16]:

Agent i

sense

Environment

Conversation jm

plan react do

plan react do

Conversation jn

Conversation reflect

do reflect

state

Agent i

sense

Environment

Conversation jm

plan react do

Conversation jm

plan react do

plan react do

Conversation jn

plan react do

Conversation jn

Conversation reflect

do reflect

Conversation reflect

do reflect

state

Fig. 2.

6 Related and further work

Previous proposals for representing consciousness either lack an explicit formal
model [8] [9], functional specifications towards a possible implementation [5], or
both [15]. Using the same language to drive a machine and to reflexively
communicate within the machine itself stands as a key feature of our own model. As
consciousness basically works as a mirror, we view this duality to be an essential
characteristics.

As already pointed out in the introduction, our model definitively reflects a "static"
capability i.e., that of being conscious of explicit beliefs and of actions performed in
full awareness. Baars [1] develops a concept of consciousness very much akin to a
"dynamic" process of discovery and learning i.e., that of getting conscious of implicit
facts resulting from sensations. Intuitively, Baars sees the human brain as being
populated by myriads of parallel unconscious processors that compete for access into
a global workspace. This workspace functions as a serial channel of limited capacity
that can broadcast information to the unconscious processors. In various (possibly
embedded) contexts, unconscious processors may form coalitions that will then force
their way into the global workspace. Baars’ theory is only described in general terms,
and captured graphically in sets of diagrams of the type given below:

Consciousness

Contexts

Unconscious specialized processes

Process coalition

Broadcast

Consciousness

Contexts

Unconscious specialized processes

Process coalition

Broadcast

Fig. 3.

Although Baars himself once wrote ”we now have a number of computational
formalisms that can be used to make the current theory more explicit and testable”,
we do not know of any attempt to develop the corresponding formalization. These
ideas however have already found their way into practical applications [8].
Unfortunately, as in many other artificial intelligence models, the “theory is the
program” i.e., theoretical concepts are buried into ad hoc implementations that alone
cannot qualify as a formalization of the theory.

Similarities do exist between Baars’ theory involving a distributed system of
parallel unconscious processors and our model of concurrent threads in a multi-agent

system. First, our use of a blackboard for synchronizing messages is similar to Baars’
workspace for broadcasting conscious messages. Other analogies to be found include:

serial information broadcast v/s our blocking communication primitives
goal hierarchies v/s our plan decision trees
dominant goal v/s our initial plan deduction
and (possibly) process coalition v/s theory lifting.

This last point is a mere conjecture that deserves an explanation. The concept of
theory lifting was introduced by J. McCarthy in his attempt at formalizing contexts
[12]. An executable account of this concept was given in [2]. We now suspect, and
will try and formalize the hypothesis, that theory lifting can be used to model process
coalition. As an example of a "Gedanken" experiment [8] that may be attempted, “a
white square” should be recognized as “a sail” or “a hanging bed sheet” by lifting
contextual knowledge associated with the surrounding landscape.

7 Conclusions

The explicit modeling of conscience threads, introduced in section 3, together with
the possible reflection on one's own actions presented in section 4, opens the door to
more complex consciousness models that should go beyond the simple monitoring of
beliefs illustrated in this paper.

From a technical point of view, it is interesting to note that the conscious operator
was defined using a call(r,ϕ)/return(s,ψ) pair of communication primitives, where
ϕθ=ψθ and lr ψθ , with lr referring to the agent’s local state holding his beliefs.
In contrast, the caught operator was defined using a ask(s,ψ)/tell(r,ϕ) pair involving a
simplified ϕ ψθ operation (because the agent’s local state cannot be of any use in
this case). Somehow, this a posteriori justifies the choice of communication
primitives we made in [3].

We are well aware of the formal inconsistencies that arise when trying to model
self referential sentences using a single uniform language, as discovered by Montague
[13]. To escape from these pitfalls, we adopted a constructivist point of view i.e.,
similarly to nature itself, we grounded our concept of consciousness on successive,
distinct operational layers, as summarized in the following pictures:

Neurons

Hardware

Fig. 4. Natural consciousness v/s simulated consciousness

Whereas inner layers interact with neighbors only (i.e., the virtual machine executes
on the hardware, nd-plans are interpreted by this machine, dialogs are compiled into
nd-plans, etc.), outer consciousness does rely on a direct access to a deeper underlying
layer i.e., the virtual machine represented by the pseudo thread react. We are tempted
to postulate that similar things happen in the working of natural consciousness.

Acknowledgment

We are indebted to an anonymous referee for his careful reading of this paper.

References

1. B.J. Baars, A Cognitive Theory of Consciousness, Cambridge University Press (1988)

2. P. Bonzon, A Reflexive Proof System for Reasoning in Context, Proc. 14th Nat'l Conf. On AI
, AAAI97 (1997)

3. P. Bonzon, An Abstract Machine for Communicating Agents Based on Deduction, in: J.-J.
Meyer & M.Tambe (eds), Intelligent Agents VIII, LNAI vol. 2333, Springer Verlag (2002)

4. P. Bonzon, Compiling Dynamic Agent Conversations, in:M.Jarke,J.Koehler&G.Lakemeyer
(eds), Advances in Artificial Intelligence, LNAI vol. 2479, Springer Verlag (2002)

5. J. Cunningham, Towards an Axiomatic Theory of Consciousness, Logic Journal of the IGPL,
vol. 9, no 2 (2001)

6. D.C. Dennett, Consciousness Explained, Little Brown (1991)

7. O. Flanagan, Consciousness Reconsidered, MIT Press (1992)

8. S. Franklin & A. Graesser, A Software Agent Model of Consciousness, Consciousness and
Cognition, vol. 8 (1999)

9. S. Franklin, Modeling Consciousness and Cognition in Software Agents, in: N. Taatgen,
(ed.), Proceedings of the International Conference on Cognitive Modeling, Groeningen
(2000)

10. G. de Giacomo, Y.Lespérance and H. Levesque, ConGolog, a Concurrent Programming
Language Based on the Situation Calculus, Artificial Intelligence, vol. 121 (2000)

11. K.V. Hendricks, F.S. de Boer, W.van der Hoek and J.-J. Meyer, Semantics of
Communicating Agents Based on Deduction and Abduction, in: F.Dignum & M.Greaves
(eds), Issues in Agent Communication, LNAI vol. 1916, Springer Verlag (2000)

12. J. McCarthy, Notes on Formalizing Context, Proc.13th Joint Conf. on Artificial Intelligence
IJCAI93 (1993)

13. R. Montague, Syntactical treatment of modalities, with corollaries on reflexion principles and
finite axiomatizability, Acta Philosophica Fennica, vol. 16 (1963)

14. E. Rich, Artificial Intelligence, McGraw-Hill (1983)

15 A. Sloman & R. Chrisley, Virtual Machines and Consciousness, submitted (2002)

16. M.Wooldridge, Intelligent Agents, in:G.Weiss (ed.), Multiagent Systems, MIT Press (1999)

