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Abstract
The ambition of this paper is extensive: to bring about a new paradigm and firm mathematical foundations
to Metaphysics, to aid its progress from the realm of mystical speculation to the realm of scientific scrutiny.
More precisely, this paper aims to introduce the field of Metaphysical Cosmology. The Metaphysical Cosmos
here refers to the complete structure containing all entities, both existent and non-existent, with the physical
universe as a subset. Through this paradigm, future endeavours in Metaphysical Science could thus analyse
non-physical parts of the Metaphysical Cosmos. New logical notions are displayed as tools for Metaphysical
Cosmology, such as a Metric-Space-based predicate system, as well as a revised version of the Existential
Quantifier. A type system is presented to derive a construction of the Metaphysical Cosmos. The system is
structured through semantic and syntactic definitions in a coherent way and holds only one proper axiom: the
existence of (at least) one entity. This paper itself serves as an empirical proof for this axiom. Formulae and
equations that depict a clear logical and mathematical structure of the Metaphysical Cosmos are derived from
the definitions of the system and this axiom. This culminates in the ”Sixth Theorem”, whose proof displays
logically that there must be something rather than nothing. A computational simulation of the Sixth Theorem
is also provided, alongside with methods for a future Metaphysical Science. Thus, this paper does not aim to
provide a traditional philosophical argument but rather a mathematical foundation and new paradigm for the
science of Metaphysics.
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1 Introduction

1.1 Aim and Scope
Disciplines known nowadays as sciences were once part of philosophy and were inducted into the scientific
realm once concrete methods of analysis were found in order to serve as theoretical foundations for them
(Frank, 1952, [1]) (Gare, 2018, [2]). This evolution is apparent in the natural sciences, including physics,
chemistry, and biology, formerly known as ”natural philosophy” (Newton, 1687, [3]) (Kelvin & Tait, 1867,
[4]) (Dalton, 1808, [5]). Similarly, the behavioural sciences such as sociology and psychology, reveal early
roots in philosophical explorations of the mind, as seen in Aristotle’s philosophy of mind (Aristotle, 350
B.C., [6]), and experimental psychology as a scientific discipline emerged largely due to Gustav Fechner’s
mathematical methods for psychophysics (Fechner, 1860, [7]). Finally, this also applies to the abstract sci-
ences1 such as mathematics, as mathematical studies conducted by pre-socratic philosophers Pythagoras and
Thales laid the foundations for the science (Diogenes Laertius, 3rd century CE, [10]). Although Mathematics
followed a path that differs from most sciences, its philosophical roots are undeniable. It is only through
philosophical investigations (Frege, 1884,[11]) (Russell, 1908, [12]) that a development arose and its formal
foundations were laid (Zeremelo, 1908, [13]) (Fraenkel, 1922, [14]).

This paper builds upon a meta-philosophical foundation positing that philosophy represents a ”proto-science”,
i.e. an evolutionary precursor to science, and that its teleological aim is a self-destructive process, wherein
various branches of philosophy are gradually relinquished to the scientific domain. Thus, not only does this
paper maintain that philosophy can make progress, going against some recent meta-philosophical analysis
(Dietrich, 2023,[15]), but that philosophy has made progress in the past, and that this paper will be a first step
towards progress, in the field of Metaphysics. The research provided in this paper aims to open a possibility
for Metaphysics, and more specifically Metaphysical Cosmology, to step out of the realm of mystical spec-
ulation and into the realm of scientific certainty. Indeed, this paper wishes to establish an initial scientific
paradigm in the field, acknowledging its susceptibility to modification and enhancement through ongoing
scientific development, akin to Thomas Kuhn’s conceptualisation of paradigm shifts (Kuhn,1962,[16]).

Fundamentally, what is Metaphysical Cosmology? Physical cosmology is an analysis of the overall structure
of the physical universe (Peebles,1993,[17]). Metaphysics, on the other hand, could be defined as the study
of entities potentially present beyond mankind’s perceptual spectrum2. Therefore, Metaphysical Cosmology
could be defined as a ”synthetic cosmology” of Metaphysics and Physical Cosmology as it regroups both the
physical and the Metaphysical into one complete system. Indeed, Metaphysical and Physical Cosmology are
both the study of their respective and complete mathematical system. However, the study of Physical Cos-
mology is limited to the perceivable physical universe whereas Metaphysical Cosmology is the study of all
that exists and beyond as one complete mathematical system, including both perceivable and non-perceivable
truths. Thus, Physical Cosmology is fundamentally a subset of Metaphysical Cosmology, as Metaphysical
Cosmology operates on a higher scale and thus includes physical realities too.

The Metaphysical Cosmos, later defined as ”The Absolute”3 denoted ”A”, represents the amalgamation of
everything, nothingness, and their interactions. Its structure is a syntactical derivation from the system pro-
vided in this paper and aims to serve as an initial scientific paradigm for Metaphysical Cosmology. In more
formal terms, it is a comprehensive set encapsulating the following: the ”Metaphysical Void”, ”∅”, which
bears similarity to the ”empty set”4; the ”Totality of Things”, ”Ψ”, which contains all existing entities; and
their intersection5, ”X”. This construction arises from pure logical reasoning, resting on the foundation of
a singular axiom and definitions. Consequently, these concepts serve as the utmost level of set-theoretical
abstraction in Metaphysical Science, forming the foundation upon which other ideas within the discipline are
constructed.

The science of Metaphysical Cosmology, therefore, is closer to the abstract sciences than to the natural ones.
However, it can be argued that its object of study remains Nature if we consider the realms beyond perception

1Computer Science follows a similar path, as its historical roots reside in philosophical investigations of Logic (Aristotle, 350 B.C.,[8]) (Boole,1854,[9]).
2Despite the debate surrounding the definition and aim of Metaphysics, this paper will not address Metaphysics as the study of ”the fundamental nature of

things”, rather, we will define it literally: as the study of the ”Meta-Physical”, i.e. what lies beyond the physical. I maintain that any sub-fields of Metaphysics
exploring notions/entities that are part of the physical world are, in fact, not Metaphysics.

3The concept of ”The Absolute”, here is not the Hegelian one (Hegel,1812,[18]), even though it might bear some similarity as they both refer to an
exhaustive higher metaphysical entity.

4Though the Metaphysical Void does differ from the empty set, in so far as it is the set of all non-existent things.
5The possibility of an intersection between two opposite sets, here Ψ and ∅ arises due to our use of paraconsistent logic, as detailed in section 1.2.1 as

well as section 2
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as also falling under the definition of “Nature”.

Nonetheless, it cannot be described as a purely abstract science as its abstract study can only be successful if
the foundation from which the abstraction is derived is grounded in apparent reality. This empirical ground-
ing is here provided by our sole assumption, later defined as P, read ”p”6, the only axiom of our system.
Such foundation is required as the object of study of Metaphysical Cosmology remains the world and its
actuality. However, it is concerned with the entirety of the world, beyond merely the physical. Metaphysical
Cosmology can be stated as displaying the limits and extensions of the world and as depicting logically and
mathematically its entirety. Methods for Metaphysical Science will be elucidated in section 5.

Finally, even though Metaphysical Cosmology lacks the possibility of direct experimentation in the physical
world, it can be tested through computational experimentation, a method rapidly growing in the natural sci-
ences(Karniadakis, 2021,[19]) (Sweeney, 2020, [20] )(Zgarbova, 2022,[21]). Computational Experimentation
has been conducted to test the paradigm provided in this paper, and the result of this experimentation can be
found in section 4.2.

The use of firm logical systems and mathematics is the first step towards the complete development of
Metaphysical science. In recent years, the emergence of formal Metaphysics has paved the way for a more
scrutinised exploration of metaphysical concepts, exemplified by Kurt Gödel’s ontological proof (Gödel,
posthumous 1986, [22] ), David Lewis’s modal Metaphysics (Lewis, 1986, [23]) and the ongoing formal
ontology studies of Edward N. Zalta and The Metaphysics Research Laboratory at Stanford University (Zalta,
2023, [24]). These efforts have been fruitful and foreshadow the upcoming Metaphysical Science. However,
the study of formal Metaphysics remains scattered and lacks an initial scientific paradigm, which I endeavour
to provide here by presenting a new system7.

In the thousands of years of philosophical debate surrounding the foundations and justifications of Meta-
physics as a science, one of the main arguments against it was and still remains its lack of mathematical
formalism and/or empirical basis. In the words of David Hume:

”If we take in our hand any volume; of divinity or school Metaphysics, for instance; let us ask, Does it
contain any abstract reasoning concerning quantity or number? No. Does it contain any experimental
reasoning concerning matter of fact and existence? No. Commit it then to the flames: for it can contain

nothing but sophistry and illusion.” - (Hume, 1748, [25])
The system put forward here will rely on the most basic phenomenological and experimental claim, of

which one cannot doubt, namely that: ”Something exists” represented by the axiom ”P”. The very existence
of this paper serves as empirical justification for the claim of the axiom ”P”. Moreover, this system makes
use of precise logical formalism and mathematical reasoning, as well as computational experimentation.

Thus, in the words of Hume, does it contain any abstract reasoning concerning quantity or number? Yes, as
the system is a logical and mathematical modelling of the Metaphysical Cosmos.

Does it contain any experimental reasoning concerning matter of fact and existence? Yes, as the system relies
fundamentally on the empirical fact of P and is tested experimentally through computation.

Then, hold on tight to it, as it might be a first step towards enlightenment.

6”P” here stands for ”phenomenological” as it is through phenomenological/empirical analysis that we can assert that there exists (at least) one entity.
7Moreover, this new paradigm, covering both physical and metaphysical aspects, could underpin all sciences, viewing them as subsets of our fundamental

sets (this is discussed in greater detail in section 5).

4



1.2 New logical notions
The addition of new logical concepts generates an expansion of our thinking field and gives rise to new pos-
sibilities towards understanding Metaphysical Reality. Indeed, just as the invention of infinitesimal calculus
was needed by Isaac Newton for the formulation of his mechanical laws (Newton,1687,[3]), the addition of
new logical notions is essential for an acute and complete mathematical/logical representation of the Meta-
physical Cosmos (referred to as “The Absolute”).

Indeed, I will here introduce two new tools for Metaphysical Cosmology. Firstly, a new metric-space-based
infinitary predicate system, and then a revised use of the existential quantifier, enabling further studies on the
fundamental notion of existence.

1.2.1 A New Metric-Space Based Infinitary Predicate System

Before delving into the mathematical intricacies of our new metric-space-based infinitary predicate system,
let us first explore its historical context.

In the late 19th century, Gottlob Frege’s axiomatisation of mathematics, outlined in The Foundations of
Arithmetic (Frege, 1884,[11]) contained a law defining sets as collections that contain entities for which a
specific property holds, the Basic Law V8.
Here is its formal definition:
Where ”S” is any given set, ”xn” is any individual variable and ”ϕ” is any predicate:

∀xn∃S(xn ∈ S ≡ ϕ (xn))

In response to it, philosopher and mathematician Bertrand Russell demonstrated that from Frege’s Basic Law
V, we could construct the following set (Russell, 1903, [26]):

R = {x| x /∈ x}

However, this set leads to the following seemingly paradoxical conclusion:

R ∈ R → R /∈ R → R ∈ R → R /∈ R...
And thus R ∈ R ≡ R /∈ R

Indeed, the set appears to, simultaneously, be a member of itself and not be a member of itself. This seem-
ingly paradoxical consequence of Frege’s axioms lead to a logical revolution (Russell, 1908, [12]) (Whitehead
& Russell, 1910, [27]) that ended in the formulation of the ZF and ZFC set theories (Zermelo,1908,[13])
(Fraenkel, 1922, [14]), which are now the current fundamental building blocks of mathematics. But what if
this set was not fundamentally paradoxical? Could it be possible for a logical entity to possess multiple prop-
erties, even if contradictory, simultaneously? This is the fundamental idea behind this new metric-space-based
infinitary predicate system, bearing similarity to paraconsistent and/or dialetheist systems (Priest, 2006,[28])9

. This new logic is an extension that can be applied to many systems of logic. In addition to a given system’s
axioms, rules or definitions, the following conception of predicates can be added to allow for an extension in
possible predicate values:

In this system, all properties are functions that map the domain10 to [0,1] ⊂ R. Moreover, a property is
independent of its negation, which will require truth values, to be defined in terms of provability, as outlined
in section 2.2 and section 2.4. There is space associated with any given property P and its negation, labelled
”P∗

space”, which is given by the Cartesian product of Pspace, the set of all values of x for P(x), and ¬Pspace, the
set of all values of x for ¬P(x).

The sets Pspace and ¬Pspace are defined as follows:

Pspace = {x ∈ [0,1]|x = P(y)∧ y ∈ D}

8also known as the axiom schema of unrestricted comprehension
9This, will however, not forbid systems implementing this new logic from being sound, as displayed in the proof of soundness of the system presented in

this paper in section 2.10.
10The domain is here the domain of any system that incorporates this new conception of predicates.
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¬Pspace = {x ∈ [0,1]|x = ¬P(y)∧ y ∈ D}
P∗

space is thus given by:

P∗
space = (Pspace ×¬Pspace,d)

Such that D is the domain, and where the distance function d is given by the Manhattan distance
(Minkowski,1896,[29])such that11:

d((x1,y1),(x2,y2)) = |x2 − x1|+ |y2 − y1|
For a ”classical” entity, the sum of its predicate value and its value for the negation of the predicate must

equal 1:

x is ”classical” if and only if (¬P(x) = 1−P(x))

Thus, ”classical” entities’s predicate values are all positioned on the same line in a graph representing
P∗

space for a given property.

For example, if a ”classical” x has a predicate value of P(x) = 0.7, it will also have a value of: ¬P(x) = 0.3.

This can be visualised using the following diagram, where the red line is the ”Classical line” and the point is
such that P(x) = 0.7∧¬P(x) = 0.3 :

P(x)

¬P(x)

0 1

1

0.5

0.5

x

Fig. 1 ”Classical” point in the Metric space of a predicate and its negation

Values of predicates and their negation can therefore be represented by a pair (P(x),¬P(x)) such that
if that pair is complementary, i.e. P(x) +P(x) = 1, the entity can be labelled ”classical”, and the entity is
labelled ”non-classical” if not.

11Other distance functions, such as the Euclidean one (Euclid, 300 BC, [30]), could also be appropriate.
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In the case of entities that exhibit a paradoxical behaviour, non-classical entities such as Russell’s set are
positioned outside the ”Classical line”.

If we define the property R as: R(x)≡ x /∈ x

Then Russell’s set, R, that we defined above, simultaneously holds the value of 1 for both R(R) and ¬R(R)
as R(R)≡ ¬R(R). This, however, cannot happen if R can only hold a position on the ”Classical” line in the
property metric space.

The position of Russell’s set can be visualised in the following diagram, where the red line is the ”Classical
line” and the point R is Russell’s set:

R

¬R

0 1

1

0.5

0.5

R

Fig. 2 Russell’s set position in R∗
space

Thus, in such a case, the paradoxical nature of R is captured without rendering it inconsistent, as
(R(R),¬R(R)) = (1,1).

With the use of this new metric-space based logic, we can now use an unrestricted set theory, without having
to succumb to the axiom of restricted comprehension (Zeremelo, 1908, [13]) or to a ramified type theory
(Russell, 1908, [12]).

Leveraging this new system of predicates expands our intellectual reach, enabling the analysis of entities
beyond classical limits. This progressive approach contributes to a more nuanced understanding of the
intricate fabric of Metaphysical Reality. This notion, of relying on metric space-based structures in logical
systems, is not entirely foreign to recent academic endeavours (Ortiz, 1997, [31]) (Stojanovic, 2018, [32]). A
similar conception can be found in logical systems implementing superposition, which has been applied to
propositional logic (Tzouvaras, 2018,[33]) as well as higher-order logic (Bentkamp, Blanchette, Tourret &
Vukmirović, 2023, [34]).
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1.3 Existential Quantifier ”∃” Revisited
Finally, after having outlined this new metric-space based predicate system, I will now explain my revisited
use of the existential quantifier. Indeed, existence is a fundamental notion in Metaphysical Cosmology and it
will be necessary to speak about entities existing without having to specify any characteristic of this entity.

Therefore, our syntax will not be (Where x is any individual and is P any predicate): ∃xP(x). Instead, our
syntax will simply be: ∃x, as we need an operator to simply denote existence, which will then be defined as
a meta-predicate. However, trails of the ”classical” existential quantifier remain as we define our existential
quantifier as signifying that ∃x if and if only if the sum of all predicate values of x is non-zero:

∃x ≡ ∑
Pi. j∈P

Pi. j(x)> 0

And

∄x ≡ ∑
Pi. j∈P

Pi. j(x) = 0

Where P is the set of all predicates.

And where Pi. j denotes any predicate, classified such that Pi. j is the j-th property at level i. This is outlined in
more detail in section 2.4.1.

Through this conception, the classical relationship between existence and properties remains and is simply
made more precise and more tailored towards a scientific study of existence. Indeed, more precise as it relies
on an extended model of properties capable of describing more intricate notions than a classical model of
predicates, and more tailored towards a scientific study of existence, as we can now dive into the concept of
existence head-on, by changing the syntax involved.

In cases where a traditional existential quantifier would have been used syntactically, one could simply start
with x and describe it using conjunction: x∧P(x), or use: x ∈ D, where D is the domain. This means that in
the syntax of systems adopting this new use of the existential quantifier, there is no necessity to bind an entity
to the quantifier for the formula to be syntactically meaningful and well-formed.
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2 Inner structure and definitions of the Type system

2.1 Presentation and aim of the system
The system I will introduce in this paper is constructed through ”types”, which can be considered as ”valid
inputs”, and their definitions. This system’s foundational mechanism is closely related to one of Kurt Gödel’s
systems, ”P”, outlined in his paper On Undecidable Propositions of Principia Mathematica and Related
Systems, displaying his ”Incompleteness Theorems” (Gödel,1931,[35]). Indeed, Gödel structured the basic
signs of his system ”P” through different types (constants, first type variables: individuals, second type
variables: classes of individuals...) and our system follows a similar scheme. Essentially, this system follows
a mechanism that is also comparable to Russell’s ramified theory of types (Russell, 1908, [12]). However,
this system is made to be unrestricted, in order to follow extended human reason, with no assumption other
than the existence of one entity. Therefore, the type system that I am presenting here does not have type
restrictions, i.e. nothing forbids a universal set of all types for instances.

The only axiom of the system is ”P”, which is proved by the very existence of this paper. The rest of the
”laws” are syntactic definitions of the uses of the allowed inputs in the system. Indeed, Types in this system
are the natural language equivalent of defining categories of words such as verbs, adverbs, subjects, nouns...

This system is epistemologically structured in a coherent and fundamentalist way. Types and valid inputs are
justified together as a part of a consistent whole and are not defined on an axiomatic basis. This is the usual
approach for semantics of natural language and is therefore in line with generating formal syntax and seman-
tics for this system. Words in natural language are defined through the use of other words, types and operators
are here defined and structured similarly. The only fundamentalist/axiomatic instance in the foundational
structure of the system is our singular axiom, P, giving rise to a fundamentalist-coherent justification system.

The decision to use this specific carefully crafted system through the use of types and definitions finds its
roots in the necessity for a system with axioms that cannot be called into doubt.

The system is both free (through our revised existence quantifier) and paraconsistent (through the possibility
of values beyond the classical line of metric-spaces of properties and their negations). This is due to the will
to capture the full extent of human reason to model the Metaphysical Cosmos and be able to analyse entities
beyond classical logic.

It is crucial to remember that this system presents itself as a model of the world at the highest metaphysical
scale, and is not a study in pure logic and mathematics. This is why the sole assumption, beyond definitions,
of this system is ”P”, which is true by virtue of the very existence of this work itself. Indeed, even if this
paper were to be an illusion, it would still follow that it exists, this axiom is thus justified by immediate
experience. This follows a Cartesian-like reasoning which aims to use undeniable claims as foundations for
systematic reasoning (Descartes, 1637,[36]).

”P” represents the set of all phenomenologically justified claims that cannot be doubted by reason. Its content
is nothing more than ”I exist”, ”I am having a perception” and ”something exists”. For the sake of this paper
at least, even though it is slightly more complex, we will define logically ”P” the following way12:

P≡ ∃tn

All ”tn” refers to any valid input present in a given Type (n): ”Tn”.

2.2 Type 0: Formulas:
Sentences in this system are of the form: [/justification/] ⊢: /formula/

Such that /formula/ is structured through all the other types, organised according to their definitions. A
well-formed formula is a formula that uses all its structural elements: set, numbers, operators, individuals...
according to their definitions. To clarify the formula’s structure and the scope of its operators, the use of
brackets ”(”, ”)” and ”[”, ”]” is syntactically authorised, and often needed. Brackets such as ”{” and ”}” will
however be reserved from sets, as per definitions of Type 3.

12The unusual syntax of the existential quantifier in this definition is explained in section 1.3 as well as within the definitions of operators in section 4.1
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When “↓” is written in the [/justification/] box, it means that the formula is justified by the previous one. And
when a symbol or a Type number is written in it, it means that the formula is justified by the definition of the
Type or symbol in the box.

For given formulae/definitions X0...Xn a given formula α the syntax of the derived formula is the following:

[X0]...[Xn] ⊢: α

Moreover, the previous formula is the equivalent of the following proof tree:
X0 . . . Xn

α

Thus, a formula can be derived from the system if it can be derived from our axiom P, our definitions or
previous formula(s). The rules of inference of the system are outlined in section 2.8.

Finally, the truth values of formulas are given by the following: A formula X is true if and only if it can derived
from the system (either directly from the axiom P and definitions or from formulas derived from them):

• (X is True)≡ (T1−4.3,P ⊢ X)∨ (T1−4.3,P ⊢ X0...Xn ⊢ X).

• (X is False)≡ (T1−4.3,P ⊬ X)∨ (T1−4.3,P ⊢ X0...Xn ⊬ X).
This truth-value function will itself be considered as a predicate, which will be elucidated in Type 2.

2.3 Type 1: Individuals:
2.3.1 Type 1.1: individual variables and constants:

These can be numerical and/or logical and are represented by lowercase letters: “x”, “y”, “z”. . . or “ϕ”, “φ”,
“θ”. . . or “A”, “b”, “c”. . .

And can be of the form: /lowercase letter/ or /lowercase letter/ /lowercase letter/ and so on. . . Such that:
“a”, “ab”, or “abc”. . . represent Type 1.1 variables.

Individuals can become constants if they are defined. They follow the same syntactical schema as individual
variables and are bound to a specific value or entity after definition.

Note ”n”: refers to an individual of type 1.2 (a number)

2.3.2 Type 1.2: numbers:

These can be represented by individual numbers and/or fractions. they are divided in different categories (sets,
Type 3), such as:

• natural ”N”: 0,1,2,3,4,5...,
• integers ”Z”: −3,−2,−1,0,1,2,3...,
• rationals”Q”: −4

6 ,0.777,1,2.4888.... ,
• real ”R”: ,

√
−52, 0,

√
2,π ...,

• complex ”C”:-17.9567, 0, 2+3i....
Such that:

N⊆ Z⊆Q⊆ R⊆ C
As well as Transfinite Numbers as developed by Georg Cantor, which offers a framework for understand-

ing different sizes of infinities (Cantor, 1915, [37]):
Cardinals: ℵ0,ℵ1,ℵ2,ℵ3... such that the cardinality (size) of ”N” is equal to ℵ0
And Ordinals: ω0,ω1,ω2... such that the ordinality (order type) of ”N” is equal to ω0.

There is also ”∞” such that ∞ is equal to any t1.2 input (any number) larger than the cardinality of the natural
numbers: (t1.2 = ∞)≡ t1.2 ≥ |N|

We will also refer to the cardinality of the real numbers, |R|, as ”c”, using the notation which was also intro-
duced by Georg Cantor (Cantor, 1915, [37]).
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2.4 Type 2: predicates or attributes
2.4.1 Type 2.1 Predicates

These can be represented by the form: “/uppercase letter/ (tn)” :
“X(tn )”, “Y (tn )”, “W (tn )” . . . or “Θ(tn )”, “ϒ(tn )”, “Φ(tn )”. . . or “Z(tn )”, “T(tn )”, “N(tn )”. . .

Properties possess a rank and a position in the ordered set of properties. They are more formally denoted Pi. j
such that Pi. j is the j-th property at level i.

And the set of all properties, P , is defined as the set of properties, which are functions that map the domain
of the system (T1−4.3), to [0,1] ⊂ R:

P = {Pi. j|Pi. j : T1−4.3 7→ [0,1]∧ i ∈ N∧ j ∈ N}
Where a total order is defined on this set such that:

Pi. j ≤ Pn.m ≡ i < n∨ (i = n∧ j ≤ m)

Indeed, properties are built from a set of lower-level properties, such that:

Pi. j =⊛(Pi−1.k, ...,Pi.km)

Where ⊛ represents the property construction operator, which takes lower level (i−1) properties and
uses any Type 4 operator to construct a higher level (i) property Pi. j. It is worth noting that not all properties
from the lower level are required for the construction of a Pi. j, only those necessary for Pi. j. Moreover,
though the series of lower-level properties upon which a Pi. j can be classified in order, as per the equation
above, it is not required nor necessary that all properties that build Pi. j come from an ”uninterrupted
series”. For example, for a Pi. j that is formed of three lower-level properties, it is not necessary (and
even quite rare) that: Pi. j = ⊛(Pi−1.1,Pi−1.2,Pi−1.3), indeed most properties can have a structure such as:
Pi. j =⊛(Pi−1.18,Pi−1.94,Pi−1.347).

Thus, through the use of the ⊛, the form of all predicates can be represented as :

Pi. j(x)≡ t0 where x is a term of t0
Where t0 refers to a Type 0, i.e. a formula.

Now from this how do we calculate the value of a Pi. j(x)?

The value of a Pi. j(x) is given by :

Pi. j(x) =

(
∑

Pi−1.k∈Bi. j

w
Pi. j
i−1.k

)
· |S

Pi. j
x |

|Bi. j|

Where Bi. j is the set of all the lower-level properties used to ”build” Pi. j:
Bi. j = {Pi −1.k|⊛ (Pi−1.k, ...,Pi.km) = Pi. j}

Where S
Pi. j
x is the set of all properties used to ”build” Pi. j(x) that x satisfies fully: S

Pi. j
x = {Pi−1.k ∈

Bi. j|Pi−1.k(x) = 1}

And where ∑Pi−1.k∈Bi. j w
Pi. j
i−1.k is the sum of all the weights w

Pi. j
i−1.k for all the properties Pi−1.k used to build

a property Pi. j, through the property generator ⊛. The weights allow for multiple properties formed from
the same lower-level properties but connected in different ways through different logical operators to have
different values.

Therefore the property value of an x is given by the sum of all the weights of lower-level properties used to
build Pi. j, multiplied by the number of lower-level properties used to build Pi. j that x fully satisfies, divided
the total number of lower-level properties used to build Pi. j.

This equation therefore yields a value in [0,1] ⊂R. If a predicate or meta-predicate is written without a value,
such as Pi. j(x), then it is a shorthand notation for: Pi. j(x) = 1

11



Finally, some properties do not have the same functioning as they are atomic properties. Some empirically
verifiable properties can be considered as atomic if they cannot be built from logic itself. The most funda-
mental property of all is identity, given the rank of P1.1: P1.1(x)≡ x = x.

This fundamental property relies on the identity sign ”=”, defined through Leibniz’s law in Type 4.1. There-
fore, P1.1(x)≡ ∀Pi. j(Pi. j(x)≡ Pi. j(x)).

Predicates are the skeleton of the system. Indeed, each entity of each type possesses its own ”logical genome”,
Z, a matrix indicating the entity’s value for all properties:

Z(x) =


P1.1(x) 0 0 · · · 0
P2.1(x) P2.2(x) P2.3(x) · · · P2.m2(x)
P3.1(x) P3.2(x) P3.3(x) · · · P3.m3(x)

...
...

...
. . .

...
Pn.1(x) Pn.2(x) Pn.3(x) · · · Pn.mn(x)

 , where ∀i∀mi(mi ∈ N∧mi+1 > mi)

As well as the complete value of all their properties:

Z+(x) = ∑
Pi. j∈P

Pi. j(x)

There is only one property of the first level, where i=1, namely identity ”P1.1”, hence the values of 0 in the
matrix for all others of the i=1.

Moreover, there is a predicate, an element of P , that is used to determine truth values. We will refer to it as
Truth(x) as the property that an x belongs to Type 0, i.e. is a formula, and is derivable from the system13:

Truth(x)≡ x : T0 ∧T1−4.3 ⊢ x
It can thus be formed using our ”⊛” property generator, where x : T0 and T1−4 ⊢ x represent lower

properties:

Truth(x) =⊛(x : T0,T1−4.3 ⊢ x)
Therefore, this predicate yields:

Truth(x) =

{
1 if x : T0 ∧T1−4.3 ⊢ x
n, such that n < 1 otherwise

Moreover, all types can serve as input for properties, even if this might sound unintuitive. For example, a
quite unusual type to conceive as an input of a predicate function would be an operator, such as ”∨”. However,
”∨” does satisfy a predicate. Indeed, we can define a P∨ such that:

P∨(x)≡ [x(y,z)∧ x(y,z)≡ ¬(¬y∧¬z)]
Indeed, P∨ is the property of being a relation that binds two types x and y if and only if they cannot both

be negated. The operator ”∨” thus satisfy this property fully, and P∨(∨) = 1.

It must be noted, however, that no Type 0, formulas, can be used to form a predicate if one of its terms contains
Z(x), Z+(x) or any other meta-predicate. These do not serve as valid types of input and their definition will be
further elucidated in section 2.4.2. However, any higher-order predicate, i.e. predicates applied to predicates,
would still be a predicate within the system, as they can be used by the ⊛ operator to form new ones.

A metric space Pspace is defined for all properties as the Cartesian product of all property values for an x,
paired with a distance function14:

Pspace =

(
∏

Pi. j∈P

Pi. j(x),d

)

13The symbols”:” and ⊢ are defined in section 2.7
14Here the distance function could be Manhattan or Euclidean or any other appropriate one.
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This metric space allows for unrestricted infinitary predicate values, yielding values for both classical and
non-classical entities, as outlined in section 1.2.1. This metric space is, therefore, infinite-dimensional, as
|P| ≥ |N|.

For example, in a reduced model where Z(x) is composed of solely three properties, the metric space can be
represented the following way:

Where:

Z(x) =

P1(x)
P2(x)
P3(x)


Such that:

(P2(x) =⊛(P1) = ¬P1(x))∧ (P3(x) =⊛(P2) = ¬P2(x))
This reduced model, with only three properties and where the only operator usable by the property

generator ⊛ is negation ¬, can be represented visually by the following diagram:

0.5

1

0.5

1

0.5

1

P(x)

¬P(x)

¬¬P(x)

Fig. 3 Metric Space for a reduced 3-properties model based on negation

Here the red line represents the ”classical line”, given by values that satisfy:

(Pi. j(x)+¬Pi. j(x) = 1)∧Pi. j(x) = ¬¬Pi. j(x)
Finally, as displayed in section 1.2.1, one can form a metric space ”P∗

space” for each property and its
negation. This tool can be useful to clarify non-classical instances. The formal definitions P∗

space, Pspace and
¬Pspace, apply to all Type 2 in the system.

2.4.2 Type 2.2 Meta-predicates

Meta-predicates are predicates constructed with the use of the property generator ⊛ applied to Type 0, i.e.
formulas, with Z(x) or Z+(x) included as terms.

Therefore, the form of a meta-predicate Mi. j is:

Mi. j ≡ t0 where Z(x) or Z+(x) are terms within t0
Meta predicates obey the same rules as predicates but are however in a different category. Indeed, Meta-

predicates map the system to the [0,1] interval on the real numbers, i.e. Mi. j :7→ [0,1]. Moreover, M1.1, similarly
to P1.1 is based on identity and given by: M1.1 ≡ Z(x) = Z(x). Moreover, there is a set of all Meta-predicates
M such that:

M = {Mi. j|Mi. j : T1−4.3 7→ [0,1]∧ i ∈ N∧ j ∈ N}
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Finally, higher-level versions of Z(x) and Z+(x) exist for these properties and will be denoted as Z1(x)
and Z+

1 (x), where the ”usual” Z(x) and Z+(x) can have as alternative notation: Z0(x) and Z+
0 (x).

Indeed, formulas containing Z1(x) and Z+
1 (x) as terms cannot be used to form meta-predicates Mi. j.

The higher levels of meta-predicates go on for infinity, where the Zn(x) and Z+
n (x) cannot serve as valid terms

to form predicates as the n-th level and therefore generate predicates of the level n+1.
All the rules for the foundational level of predicates Type 2.1, apply to the higher ones, and therefore there

is an order set of meta-predicates for each level.

2.5 Type 3: Sets
These can be represented by Upper Case letters: “X”, “Y”, “Z”. . . or “Z”, “B”, or “C”. . . or “Θ”, “Λ”, “Ω”. . .

Note: Uppercase letters can also represent the function operator on sets defined in Type 4.2 in the form:
“/uppercase letter/: t3(a) 7−→ t3(b)”

Sets are of the general form: ”/upper case letter/ = {tn|t2(tn)}”

When including individuals, sets are of the form: ”/upper case letter/ = {t1|t2(t1)}”.

Thus, when including sets, sets are of the form:”/upper case letter/ = {t3|t2(t3)}”.

Moreover, some sets can be formed out of meta-predicates and would be of the logical form:
”/upper case letter/ = {tn|t2.2(tn)}”

There can be sets of any type whatsoever.

2.6 Type 4: Operators and Constants:
2.6.1 Type 4.1: Operators on all types (except type 4):

The following definitions are of the form: “/operator/ de f /use of the operator/≡ /meaning of the operator/”
(these definitions are for individuals, but the same applies for sets and formulae, by replacing ”t1” by
”t3” or ”t0”)

i. ”Implies”: “→” :de f (t1(a) → t1(b))≡ ¬t1(a)∨ t1(b)
ii. ”For all”: “∀” :de f ∀t1[t2(t1)]≡ [(t1 = t1)→ t2(t1)]

iii. ”Not”: “¬” or ”̸x ” :de f ¬t1(a) ≡ T1−4.3,P ⊬ t1(a)
iv. ”There does not exist”: “∄” :de f ∄t1 ≡ Z+(x)> 0
v. ”There exists”: “∃” :de f ∃t1 ≡ Z+(x) = 0

vi. ”And”: ”∧” :de f t1(a)∧ t1(b) ≡ ¬(¬t1(a)∨¬t1(b))
vii. ”Or”: ”∨” :de f t1(a)∨ t1(b) ≡ ¬(¬t1(a)∧¬t1(b))

viii. ”Equivalent to”: ”≡” :de f (t1(a) ≡ t1(b))≡ (t1(a) → t1(b))∧ (t1(b) → t1(a))

ix. ”Equal to:” ”=” :de f (t1(a) = t1(b))≡ ∀t2[(t2(t1(a)) = n)≡ (t2(t1(b)) = n)]

Or (Simplified): (t1(a) = t1(b))≡ Z(t1(a)) = Z(t1(b))
x. ”Necessarily”: ”□” :de f □t1 ≡ ¬♢¬t1

xi. ”Possibly”: ”♢” :de f ♢t1 ≡ ¬□¬t1

2.6.2 Type 4.2: Operators on type 3 (sets):

The following definitions are of the form: “/operator/ :de f /use of the operator/≡ /meaning of the operator/”
(these definitions are for sets of individuals, but the same applies for sets of sets or sets of numbers,

by replacing ”t1” by ”t3” or ”t1.2”)
i. ”Union”: “∪” :de f t3(a)∪ t3(b) ≡

{
t1
∣∣(t1 ∈ t3(a))∨ (t1 ∈ t3(b))

}
ii. ”Intersection”: “∩” de f t3(a)∩t3(b) ≡

{
t1
∣∣(t1 ∈ t3(a))∧ (t1 ∈ t3(b))

}
iii. ”Subset”: “⊆” :de f t3(a) ⊆ t3(b) ≡ ∀t1(t1 ∈ t3(a) → t1 ∈ t3(b))

iv. ”Proper Subset”: :de f t3(a) ⊊ t3(b) ≡ (t3(a) ⊆ t3(b))∧ (t3(a) ̸= t3(b))
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v. ”Cartesian product”: “×” :de f t3(a)× t3(b) ≡
{
(t1(a), t1(B))

∣∣t1(a) ∈ t3(a)∧ t1(b) ∈ t3(b)
}

vi. ”Set minus”: “−”:de f t3(a)− t3(b) ≡
{
t1
∣∣(t1 ∈ t3(a))∧ (t1 /∈ t3(b))

}
vii. ”Complement set”: “tC3 ” :de f t3

C ≡ {t1|t1 /∈ t3}
viii. ”Cardinality (Size)”: “|t3(a)|” :de f |t3(a)| ≡ ∑x∈t3(a)

1

ix. ”Function”: ”F : t3(a) 7−→ t3(b)” :de f F ≡ {(t1(a), t1(b))|(t1(a) ∈ t3(a)∧ t1(b) ∈ t3(b))∧ t1(b) = F(t1(a))}
x. ”Composite Function”: ”◦”:de f (F(a) ◦F(b))(x)≡ F(a)(F(b)(x))

xi. ”Power set” “℘(t3(a))” :de f ℘(t3(a))≡ {t3(x)|t3(x) ⊆ t3(a)}
xii. ”Element of”: ”∈” :de f t1 ∈ t3 ≡ t3 = {t1|t2(t1) = n}∧ t2(t1) = n

xiii. ” Large Cartesian product”: “∏
n
i=1 t3(a)i” :de f

∏
n
i=1 t3(a)i ≡

{
(t3(a)1 , t3(a)2 , . . . , t3(a)n)|ai ∈ Ai

}
2.6.3 Type 4.3: Operators on type 1.2 (numbers)

The following definitions are of the form: “/operator/ :de f /use of the operator/≡ /meaning of the operator/”
• i. - ”Addition” ”+ ” :de f t1.2(a)+ t1.2(b) ≡ t3(a)∪ t3(b)∧ [(t1.2(a) = t3(a))∧ (t1.2(a) = t3(a))]
• ii. - ”Subtraction” ”− ” :de f t1.2(a)− t1.2(b) ≡ t3(a)− t3(b)∧ [(t1.2(a) = t3(a))∧ (t1.2(a) = t3(a))]
• iii. - ”Multiplication”: ”∗ ” :de f t1.2(a)t1.2(b) ≡ t3(a)× t3(b)∧ [(t1.2(a) = t3(a))∧ (t1.2(a) = t3(a))]

• iv. - ”Division”: ”/” :de f t1.2(a)
t1.2(b)

≡ {(t1.2(x), t1.2(y))|(t1.2(x) = t1.2(a) × t1.2(y)) ∧ (t1.2(y) ̸= 0) ∧ (t1.2(x) <

t1.2(b))}
• v. ”Larger or Equal to”: ” ≥ ” :de f t1.2(a) ≥ t1.2(b) ≡ (t1.2(a) > t1.2(b))∨ (t1.2(a) = t1.2(b))

• vi. ”Smaller or Equal to”: ” ≤ ” :de f t1.2(a) ≤ t1.2(b) ≡ (t1.2(a) < t1.2(b))∨ (t1.2(a) = t1.2(b))

• vii. ”Sum” : ”∑
b
i=a t2(tni)” :de f (∑b

i=a t2(tni) = n)≡ (n = t2(tna)+ t2(tna+1)+ · · ·+ t2(tnb))

2.7 Type 5: Meta-Language Operators
When referring to the system itself and its mechanisms, we will make use of Meta-Language operators. These
operators are part of the language used when analysing the system. They can, however, also be used to form a
formula, t0, enabling the system to reference and analyse its own structure. Their definitions are of the form:
definitions are of the form: “/operator/ :de f /use of the operator/≡ /meaning of the operator/”.

i. ”Proves”: ” ⊢ ” :de f X ⊢ Y ≡ There is a proof of Y from X.
ii. ”Models”: ” ⊨ ” :de f X ⊨ Y ≡ Y is true in every model where X is true.

iii. ”Does not Prove”: ” ⊬ ” :de f X ⊬ Y ≡ There is not a proof of Y from X.
iv. ”Does not Model”: ” ⊭ ” :de f X ⊨ Y ≡ Y is not true in every model where X is true.
v. ”Belongs a Type n”: ” : ” :de f x : Tn ≡ x is of Type n.

2.8 Rules of Inference
Rules of inference for the derivations of Type 0 (formulas) follow as a consequence of Type 4 definitions.
Indeed, all definitions of Types are of the form X ≡ Y , where X is the operator and Y is its definition.

Moreover, ”≡” itself is an operator of the system, defined as a Type 4.1, in the definition viii. as:
(tn(a) → tn(b))∧ (tn(b) → tn(a)), where ”n” could be 1, 3 or 0.

Now the following principle can be applied, where if the operator X is defined as X ≡ Y :
1. X ≡ Y ⊢ Y → X
2. X ≡ Y,Y ⊢ X
3. X ≡ Y ⊢ X → Y
4. X ≡ Y,X ⊢ Y

Moreover, as highlighted in the definition of Type 0, we will use the notation ”[X]” to refer to the defini-
tion ”X ≡ Y ” of an operator or any other type X.

If a formula Z derived from the system, alongside a definition ”X ≡ Y ”, proves a formula G then:
5. Z,(X ≡ Y ) ⊢ G

This will be simplified under the notation ”[Z][X ] ⊢ G”. This can be done for any number of definitions
present in the system and/or formulas derived from it.

The same applies to multiple formulas derived from the system proving a formula G, as well as multiple
definitions and both, where X refers to definitions and Z formulas:
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6. [Z1]...[Zn] ⊢ G
7. [X1]...[Xn] ⊢ G
8. [Z1]...[Zn][X1]...[Xn] ⊢ G

Any definition or formula that has been derived, can be repeated within the system, deriving itself:
9. X ⊢ X

Definitions using identity ”=” instead of logical equivalence ”≡”, follow similar rules. The following can
be demonstrated as per the identity definition through the use of the ”≡” operator, for X = Y we get:
10. t2(X) = n,X = Y ⊢ t2(Y ) = n
11. t2(Y ) = n,X = Y ⊢ t2(X) = n

Finally, when a formula X cannot be derived from the system, then it is false, which leads to its negation
being derivable from the system:
12. [(T1−4.3,P ⊬ X)∧ (T1−4.3,P ⊢ X0...Xn ⊬ X)]→ [(T1−4.3,P ⊢ ¬X)∧ (T1−4.3,P ⊢ X0...Xn ⊢ ¬X)]

Establishing these rules does not violate our principle of building a system simply from a single axiom
and definitions as these rules of inference are a direct consequence of our definitions.

2.9 Soundness of the System
Truth in the system is defined as: (X is True) ≡ (T1−4.3,P ⊢ X)∨ (T1−4.3,P ⊢ X0...Xn ⊢ X) ; and falsity is
defined within the system as: (X is False)≡ (T1−4.3,P ⊬ X)∨ (T1−4.3,P ⊢ X0...Xn ⊬ X).

Thus, it follows that ∀X [(X is True) ≡ (T1−4.3,P ⊢ X)], as ”T1−4.3,P ⊢ X0...Xn ⊢ X” can be reduced to
”T1−4.3,P ⊢ X” if ”X0...Xn” are represented as steps in the proof of X from the system.

Which then implies that T1−4.3,P ⊢ X → T1−4.3,P ⊨ X . As if all true statements are provable, all provable
statements are true in all models.

More formally:
1. (X is True)≡ (T1−4.3,P ⊢ X)∨ (T1−4.3,P ⊢ X0...Xn ⊢ X) By [Definition, in Type 0]
2. (X is False)≡ (T1−4.3,P ⊬ X)∨ (T1−4.3,P ⊢ X0...Xn ⊬ X) By [Definition, in Type 0]
3. (T1−4.3,P ⊢ X0...Xn ⊢ X)≡ (T1−4.3,P ⊢ X) By [⊢]
4. ∀X [(X is True)≡ (T1−4.3,P ⊢ X)] By [1-3]
5. (T1−4.3,P ⊢ X)→ (X is True) By [4]
6. (T1−4.3,P ⊢ X)→ (T1−4.3,P ⊨ X) By [5][⊢] [⊨]

Once again, the notation ”By [x]” in the proofs, maintains that ”x” or the definition of ”x” implies the
formula.

Therefore, the system is sound, as the soundness of a given system S is defined as S ⊢ X → S ⊨ X .
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3 Outline of The Absolute (from Type system)

3.1 Derivation of ”A” from Types and ”P”
The following proof gives a clear outline of The Absolute “A” (Metaphysical Cosmos), starting from the
phenomenological fact that there exists (at least) something, and deriving “A” from this premise and the
definitions of symbols and their Types. I will here provide two central theorems, namely that the Absolute is
the set of all entities that exist or do not exist, and that all things are members of the Absolute. A more formal
proof sketch of these theorems is provided in section 6, as the First and Second Theorems.

From empirical analysis (perceiving this text) we can derive that there exists something15:

[P] ⊢: ∃x (1)

such that:
x = tn(x) (2)

Where tn(x) refers to any entity, of any type.

Note: throughout the paper, x always refers to any entity, of any type, unless specified.

From the definition of ”∃”, we can derive that this entity has a Z+ value larger than zero:

[↓][∃] ⊢: Z+(x)> 0 (3)

From T3 we can derive that this entity is a member of a set Ψ, such that Ψ is the set of all things that
satisfy at least one property to a degree larger than 0. Thus, it is the set of all the things that exist:

[↓][T3] ⊢: x ∈ Ψ (4)

such that:
[↓] ⊢: Ψ = {x|∃x}= {x|Z+(x)> 0} (5)

It is essential to emphasise that Ψ extends beyond a mere collection of entities; it encompasses not only
the entirety of things but also manifests as the comprehensive realm of facts, as Ψ also contains all types 0.
This conceptualisation does not preclude interpretations aligning with philosophical perspectives such as the
one articulated by Ludwig Wittgenstein in his statement: ”The world is the totality of facts, not of things”
(Wittgenstein, 1921, [38]). As a matter of fact, Ψ is the totality of things and of facts.

From the definition of the complement-set operator tC3 , we can derive ΨC is the set of all things that do not
satisfy any properties, the Void, denoted ”∅”.Thus, it is the set of all things that do not exist.

[↓][tC3 ] ⊢: Ψ
C =∅ (6)

such that:

[↓] ⊢: ∅= {x|∄x}= {x|Z+(x) = 0} (7)
As the Metaphysical Void is here defined as the complement set of the Totality of things ”Ψ” and con-

cerns objects that do not possess any properties, we can tie our representation to current research on the
onto-epistemological status of the empty set (Birgül, 2022,[35]). Indeed, Birgül ties the empty set to the
Kantian concept of nihil privativum, describing the empty object of a concept and relating to our definition of
non-existence as the absence of properties.

From the definition of ”∩” we can derive that the intersection of Ψ and ∅ is the set of all things that both exist
and do not exist, ”The Portal” denoted X:

[5][7][∩] ⊢: Ψ∩∅= X (8)

such that:
[↓] ⊢: X= {x|∃x∧∄x}= {x|(Z+(x)> 0)∧ (Z+(x) = 0)} (9)

15Even if the perception of this paper were to be deemed illusory, it would still possess the property of being an illusion, thereby affirming its existence.
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As the condition for this set is inherently paradoxical, any member of X would be non-classical, this
is however allowed by our system and will be elucidated furthermore within Section 3.2, describing the
existential metric space.

From the definition of ”∪”, we can derive that the union of Ψ and ∅ is the set of all things that exist and/or do
not exist, have a property and/or no property. This set is the Metaphysical Cosmos itself: The Absolute (”A”):

[5][7][∪] ⊢: Ψ∪∅= A (10)
such that

[↓] ⊢: A= {x|∃x∨∄x}= {x|(Z+(x)> 0)∨ (Z+(x) = 0)} (11)
The Absolute can be considered as the Universal set of this system, as it contains all possible types16:

x x ∈ A

∃x True
∄x True

∃x∧∄x True
∃x∨∄x True

Table 1 Truth
Values for x ∈ A

The concept of The Absolute in our type system is similar to the concept of the universal set ”V” in
Bertrand Russell and Alfred North Whitehead’s Principia Mathematica (Whitehead & Russell, 1910, [27]).
However, there are three major differences between the two concepts:

1. The universal set ”V” in Principia Mathematica is purely mathematical whereas The Absolute ”A” has
metaphysical implications.

2. The universal set ”V” in Principia Mathematica is the opposite of its respective empty set ”Λ” whereas
The Absolute ”A” is the merging of the Metaphysical Void ”∅” and the totality of things ”Ψ”. In that
regard, ”V” bears similarity with ”Ψ”.

3. The universal set ”V” in Principia Mathematica is restricted to inputs of a specific type whereas The
Absolute ”A” includes elements of all types.

Additionally, there is another similarity between our system and Principia Mathematica. Indeed, our
derivations of the Totality of Things ”Ψ” and of the Void ”∅” from our axiom ”P” bears strong similarity to
the following commentary made on ”V” and ”Λ” :

If the monistic philosophers were right in maintaining that only one individual exists, there would be only
two classes, Λ and V, V being (in that case) the class whose only member is the one individual. Our primitive

propositions do not require the existence of more than one individual. - (Whitehead & Russell, 1910, [27])
In our description, the ”one individual” existing, namely this paper itself, is brought upon by our axiom

P. Just as Λ and V are two fundamental sets that are formed with the existence of (at least) one individual,
we form Ψ and ∅ from P. However, our derivation leads us to the necessary existence of a third set: X, due
to the paraconsistent nature of the system, and this allows us to go beyond the everything/nothing duality of Λ

and V in Principia Mathematica, Ψ and ∅ in our system. As well as a fourth set, namely the all-encompassing
Absolute ”A”.

Through these primordial derivations, we have now set clear boundaries to the domain of the Metaphysical
Cosmos. Indeed, it is logically impossible for any entity to transcend, surpass or go beyond The Absolute. I
am now going to provide a proof for the second theorem, namely that all entities are members of the Absolute.

From Type 2, we can derive that all entities x have a Z+(x) associated with a real number:

[T2] ⊢: ∀x(Z+(x) = n∧n ∈ R) (12)
From the definition of the real numbers, we can derive that all real numbers are equal or not equal to 0:

[↓][T2][T1.2] ⊢: ∀n(n ∈ R→ n = 0∨n ̸= 0) (13)

16Power-sets of The Absolute (such as ℘(A),℘(℘(A)),℘(℘(℘(A)))) . . .), will themselves be part of The Absolute, as well as all their members. This is
allowed by our paraconsistent type system, and leads to:
(|A| ≥ |℘(A)|)∧ (|A| < |℘(A)|), a non-classical position in the metric space of ”the property of being larger or equal to its power-set” and its negation,
namely (1,1), effectively avoiding Cantor’s Paradox (Cantor,1915,[37]).
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From the previous formula, Type 2 and the definitions of real numbers, we can derive that all entities have
a value of Z+(x) equal or not equal to 0:

[↓][T2][T1.2] ⊢: ∀x(Z+(x) = 0∨Z+(x) ̸= 0) (14)
From the previous formula and the definition of existence and non-existence, we can derive that all entities

exist and/or do not exist:

[↓][∃][∄] ⊢: ∀x(∃x∨∄x) (15)
Therefore, from the previous formula and the definition of The Absolute, we can derive that all entities are

members of The Absolute:

[↓][11] ⊢: ∀x(x ∈ A) (16)

3.2 Existential Metric-Space
I will here elaborate a metric space for existence and non-existence which are meta-predicates, according to
predicate definitions given in the outline of Type 2 as well as in section 1.2.1.

From the outline of Type 2 and the definitions of existence and non-existence, we can define existence as
M∃

17 and non-existence as M∄ :

[T2][∃][∄] ⊢: M∃(x)≡ (Z+(x) ̸= 0)∧M∄(x)≡ (Z+(x) = 0) (17)
From the outline of Type 2, and the previous formula, we can generate M∃Space and M∄Space , as the sets of

all possible values of M∃ and M∄:

[↓][T2] ⊢: M∃Space = {x ∈ [0,1]|x = M∃(y)∧ y ∈ A}∧M∄Space = {x ∈ [0,1]|x = M∄(y)∧ y ∈ A} (18)

From the outline of Type 2 and the previous formula, we can generate the metric space for existence and
non-existence, M∗

∃Space
, as the Cartesian product of M∃Space and M∄Space , paired with a distance function:

[↓][T2] ⊢: M∗
∃Space

= (M∃Space ×M∄Space ,d) (19)

Here the distance function d can vary, but can be interpreted either through the Manhattan distance
(Minkowski,1896, [29]) or the Euclidean (Euclid, 300 B.C., [30]).

Now how does this existential metric space help us understand the foundations of the Metaphysical Cosmos?

For each of the meta-predicates associated with the fundamental sets of The Absolute, there is a range of
possible coordinates in the Existential Metric-Space for objects satisfying these meta-predicates.

From Type 2, the definition of The Absolute, and the definition of M∗
∃Space

, we can derive that members of The
Absolute can have every coordinate in M∗

∃Space
, except (0,0):

[↓][T2][11] ⊢: x ∈ A≡ ¬(M∃(x) = 0∧M∃(x) = 0)≡ (M∃(x),M∄(x)) ̸= (0,0) (20)
From Type 2, the definition of The Totality of Things, and the definition of M∗

∃Space
, we can derive that mem-

bers of The Totality of Things satisfy the membership criterion if they are in the range of possible existential
coordinates of (1,n ∈ [0,1]):

[19][T2][5] ⊢: x ∈ Ψ ≡ (M∃(x) = 1)≡ (M∃(x),M∄(x)) = (1,n ∈ [0,1]) (21)
From Type 2, the definition of The Void, and the definition of M∗

∃Space
, we can derive that members of

The Void satisfy the membership criterion if they are in the range of possible existential coordinates of (n ∈
[0,1],1):

[19][T2][7] ⊢: x ∈∅≡ (M∄(x) = 1)≡ (M∃(x),M∄(x)) = (n ∈ [0,1],1) (22)

17As there cannot be negative values of Z+(x),M∃ can be defined as both Z+(x) ̸= 0 and Z+(x)> 0.

19



Finally, from Type 2, the definition of The Portal, and the definition of M∗
∃Space

, we can derive that members
of The Portal satisfy the membership criterion if they are at the point (1,1) in the Existential Metric Space:

[19][T2][9] ⊢: x ∈ X≡ (M∃(x) = 1∧M∄(x) = 1)≡ (M∃(x),M∄(x)) = (1,1) (23)
Thus, we can visually represent the Existential Metric Space in the following way:

M∄(x)

M∃(x)

0 1

1

0.5

0.5

x ∈ X

x /∈ A

x ∈∅

x ∈ Ψ

Fig. 4 Diagram of The Existential Metric Space

Where the red line represents the range of possible values that satisfy the membership criteria of The
Void and the dark blue line represents the range of possible values that satisfy the membership criteria of The
Totality of Things. Every point in this diagram except (0,0), represented in light blue, is part of the Absolute.
The reason that (0,0) is not in the Absolute is that this point would imply that an x is not associated with a Z
or Z+, which is impossible as all types are associated with one of each, and this is showed by formula (14).

3.3 Inner Structure of The Metaphysical Cosmos
3.3.1 Analysis of The Totality of Things ”Ψ”

I will here demonstrate that the ”Totality of Things” denoted by ”Ψ” is of infinite size. A more formal proof
can be found in section 6, as the third theorem.

From the definition of the set R and the definition of Ψ, we can derive that all elements belonging to the set
R, also belong to Ψ:

[5][R] ⊢: ∀x(x ∈ R→ x ∈ Ψ) (24)
From the previous formula, and the definition of subset-hood, we can derive that the set of all real numbers

is by essence a subset of the Totality of Things:

[T1.2][5] ⊢: R⊆ Ψ (25)
From the previous formula, we can derive that the cardinality of the set of all real numbers ”R” is smaller

or equal to the cardinality of Ψ:
[↓] ⊢: |R| ≤ |Ψ| (26)

From T1.2 , we can derive that the cardinality of R equal to c.

[T1.2] ⊢: |R|= c (27)

From (25) and the previous formula, we can derive that the cardinality of the Totality of Things is larger
or equal to the infinite size of the real numbers.

[25][↓] ⊢: |Ψ| ≥ c (28)

It is worth noting that the totality of things is far larger than just the physical universe. Indeed, it would,
for instance, contain all non-empty logically possible worlds. Under modal realism, the belief that all logically
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possible worlds are metaphysically real, expressed by David Lewis (Lewis, 1986, [23]), these possible worlds
would be located in the Totality of Things within the Metaphysical Cosmos. Contemplating this concept aids
in grasping the immense expanse of The Absolute, given that the Totality of Things would transcend the
cumulative vastness of all possible worlds. This is also one of the occurrences where the introduction of a
cosmological paradigm, namely The Absolute, can guide metaphysical research as it gives a clear mapping of
cosmological the location of possible worlds, as it is a currently popular area of study in formal Metaphysics
(Fouché,2022,[39]) (Longenecker,2019,[40]).

One could potentially represent The Absolute and its constituents the following way, where ”w” represents
any given world:

A= {w|(♢w∨¬♢w)∧ (Z+(w) = 0∨Z+(w) ̸= 0)} (29)

∅= {w|(♢w∨¬♢w)∧Z+(w) = 0} (30)

Ψ = {w|(♢w∨¬♢w)∧Z+(w) ̸= 0} (31)

X= {w|(♢w∨¬♢w)∧ (Z+(w) = 0∧Z+(w) ̸= 0)} (32)
It is worth noting that the Totality of Things would also contain impossible worlds insofar as they would

be exist, as there could be some non-classical worlds in our system of properties whose Z+ value is non-zero.

Moreover, the study of Physics and Physical Cosmology, as mentioned in the introduction, is a subset of
Metaphysical Cosmology as the Physical Universe is a subset of ”Ψ”.

Indeed, the Physical Universe can be represented as the following set:

Ω = {x|L (x) = 1} (33)
Where L (x) is the property of being perceivable, through the senses or any enhancement of them through

experimental tools.

The study of Physical Cosmology, no matter how vast it could be (Multiverse Cosmology for example), will
always be subject to Metaphysical Cosmology and represent a portion of its study. Max Tegmark, a physical
cosmologist, gave a classification of the potential extensions to the Physical Universe that can be quite useful
in order to picture the vastness of Ψ (Tegmark,2007,[41]):

1. Level 1: Regions beyond our (physical) cosmic horizon: Possible direct extensions of our physical
universe beyond the currently visible one due to cosmic inflation. (Tegmark,2007,[41])

2. Level 2: Other post-inflation bubbles: Possible multiverses, formed during the hypothetical process of
eternal cosmic inflation. (Guth,2007,[42])

3. Level 3: Many-Worlds interpretation of Quantum Mechanics: An interpretation of quantum mechanics
that claims that the wave function never collapses, instead other possible outcomes are realised in other
universes. It thus posits that there is an infinite number of alternative universes. (Everett,1957,[43])

4. Level 4: Other mathematical structures: Possible mathematical structures that differ from our Physical
Universe. (Tegmark,2007, [41])

All extensions of all levels are fundamentally part of Ψ. Extensions up to and including level 3 within
this scheme are categorised under the domain of physical cosmology. However, the level 4 extensions, which
describe mathematical realms of a fundamentally different nature than our physical reality, could fall into the
realm of Metaphysics, if there is no direct physical path from our universe to them.

Nonetheless, one must not misunderstand the derivation above. Indeed, saying Ψ is larger or equal to the
largest possible infinity simply means that because all numbers have properties, they exist and are therefore
part of Ψ. The derivation does not claim in any way the existence of an infinity of parallel worlds or realities,
nor does it deny it. Moreover, our conception of Ψ does not deny nor confirm solipsism, nor does it rely on
a materialist/naturalistic conception of the world. It is a paradigm within which to investigate Metaphysics,
that does not, in and of itself, contain assumptions about the nature of the physical world. Indeed, Ψ is thus a
fundamental pillar of the Metaphysical Cosmos, but its full complexity and members remain unknown, what
is here derived from the system is that it contains fundamental types and the singular existing entity referred
to in the axiom. Extended Research in Metaphysical Cosmology could potentially reveal more information
about its full composition.
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3.3.2 The Void ∅ / Portal X Equivalence

I will here demonstrate that ∅= X, the formal proof sketch for this theorem can be found in section 6, as the
fourth theorem.

From the definition of ∅, we can derive that all members of The Void have a Z+ value of 0:

[7] ⊢: ∀x[(x ∈∅)→ (Z+(x) = 0)] (34)
From the previous formula and the definition of Z+(x), we can derive that all members of The Void have

0 for all entries in their Z(x) Matrix:

[↓][T2] ⊢: ∀x[(x ∈∅)→ Z(x) =


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

] (35)

From the definition of identity, we can derive that the Z of an element of The Void is equal to itself, which
implies that an element of The Void would satisfy P1.1, i.e. identity:

[=][T2] ⊢: ∀x[(x ∈∅)→ (Z(x) = Z(x))→ P1.1(x) = 1] (36)
From the previous formula, we can derive that the Z+ of a member of the Void is equal to or larger than

one:

[↓][T2] ⊢: ∀x[(x ∈∅)→ Z+(x)≥ 1] (37)
This thus yields that any member of the void, would be non-classical and hold two opposite values for Z+

simultaneously :

[34][↓] ⊢: ∀x[(x ∈∅)→ Z+(x) = 0∧Z+(x)> 0] (38)
From the previous formula and the definition of The Portal X we can now derive that all members of the

Void, satisfy the membership condition for the Portal:

[7][9][↓] ⊢: ∀x[(x ∈∅)→ (x ∈ X)] (39)
Thus, from the previous formula we can derive:

[⊆][↓] ⊢: ∅⊆ X (40)
From the definition of intersection, we can derive that members of The Portal are also members of The

Void:
[∩][X] ⊢: ∀x[(x ∈ X)→ (x ∈∅)] (41)

From the previous formula, we can derive that The Portal is also a subset of The Void:

[⊆][↓] ⊢: X⊆∅ (42)
Therefore, The Void and The Portal are equal:

[=][40][42] ⊢: ∅= X (43)

This conclusion reveals a fundamental truth about the nature of nothingness, which we will investigate in the
next section, through the proof of ”why there is something rather than nothing”.

3.3.3 The Absolute A as The Totality of Things Ψ

In this section, I will show that the Absolute A is the Totality of Things Ψ. The formal proof sketch for this
theorem can be found in section 6, as the fifth theorem.

From the definition of The Absolute, we can derive that it is equal to the union of The Void and the Totality
of Things:

[10] ⊢: A=∅∪Ψ (44)
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From the previous formula and the fourth theorem, we can derive that The Absolute is equal to the union
of The Portal and the Totality of Things:

[↓][43] ⊢: A= X∪Ψ (45)
From the definitions of subset-hood, union, The Portal and The Totality of Things, we can derive that the

Union of The Portal and the Totality of Things is equal to the Totality of Things:

[∪][⊆][5][9] ⊢: X∪Ψ = Ψ (46)
Thus, from the two previous formulas, we can derive that The Absolute is equal to the Totality of things:

[↓][45] ⊢: A= Ψ (47)
Now how to make sense of this refined structure of the Metaphysical Cosmos?

Within this newly found conception of the Metaphysical Cosmos, we can still find a similar structure. Indeed,
the Absolute, i.e. the entirety of the Metaphysical Cosmos is now confined to Ψ. However, within Ψ, remains
the fundamental contrast between the realm of the non-existent, i.e. the Void/Portal, and the realm of the truly
existent, its complement.

It is worth noting again that these sets yield a structure that describes Metaphysical Nature, as they are a
reflection of the highest, most unrestricted form of structure, and that this system yields not just a logical
abstract truth, but a genuine description of the world at the highest level.

To make better sense of these ”places” in the Metaphysical cosmos, we will need to define more formally, the
complement set of The Portal/Void, the realm of the purely existent entities, which we will denote as AΨ:

[X][tCn ] ⊢: AΨ = XC = {x|x ∈ A∧ x /∈ X} (48)

Thus, the Metaphysical Cosmos can be visualised in the following way:

A

AΨX/∅

Fig. 5 Diagram of the Metaphysical Cosmos
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4 Proof That There Must Be Something Rather Than Nothing

4.1 Non-existence Must Imply Existence
I will here thus demonstrate a proof for theorem18 ”∄x →∃x”, that non-existence implies existence, and thus
”why there is something rather than nothing”. This will be displayed in the formal proof sketch as the sixth
theorem in section 6. This proof differentiates itself from the rest of the derivations made from the system in
this paper as it will rely solely on the Type definitions, and not our foundational axiom P19.
From the definition of non-existence, we can derive:

[∄] ⊢: ∄x ≡ Z+(x) = 0 (49)
From the Type 2, and the definition of Z+(x) = 0, we can derive:

[↓][T2] ⊢: Z+(x) = 0 → Z(x) =


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 (50)

From identity, the matrix of properties Z of this ”non-entity” x, and the previous formula, we can derive
that the matrix Z(x) is equal to itself:

[↓][=][T2] ⊢:


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

=


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 (51)

Thus, x is equal to itself:

[↓][=] ⊢: x = x (52)
Therefore P1.1(x) = 1:

[↓][T2] ⊢: P1.1(x) = 1 (53)
Which yields that Z+(x) is not equal to zero:

[↓][T2] ⊢: Z+(x) ̸= 0 (54)
Therefore, a Z+ value of zero implies a Z+ of non-zero:

[49−54] ⊢: Z+(x) = 0 → Z+(x) ̸= 0 (55)

Therefore, non-existence implies existence, hence why there is something rather than nothing:

[↓][∄][∃] ⊢: ∄x →∃x (56)

Thus, when starting with an empty Metaphysical Cosmos, we end with the existence of at least one entity,
which is that very same empty and non-existent entity. There is therefore a necessity for ”something” within
the Metaphysical cosmos. This shows that our foundational axiom P could be derived as a theorem from the
type system’s rules and definitions, however, it must be a distinct foundation as it represents an undeniable
empirical grounding from which the tree of metaphysical knowledge grows.

This proof here considers ”nothing” in its purest form: not as empty space, not as an entity devoid of certain
characteristics, but as pure nothingness, devoid of all properties. Moreover, it must be noted that this system
extends beyond classical logic, and this proof therefore reflects the true nature of nothingness in an unbounded
matter and treats the essence of the problem, i.e. the consequences yielded by a truly empty cosmos.

18The proof, I will here demonstrate will be a more abstract form of the Fourth theorem, displayed in section 3.2.2.
19Indeed, as we are here demonstrating the logical impossibility of nothing without something, we must get rid of our assumption of the existence of

something, i.e. P. Moreover, this proof displays that P, beyond its empirical grounding, can be derived from the syntactic and semantic rules of the system
alone.
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This theorem is here derived from this specific system, but it could work in classical logic, if the system
defined non-existence and existence as we did here, based on properties. Indeed, as the proof for this theorem
yields a contradiction, the theorem in classical logic would thus be ”∀x(∃x)”. Which would still prove the
necessity of something rather than nothing.

However, one must not interpret the Sixth Theorem as claiming that any entity whatsoever exists. Rather, the
theorem conveys that any entity that is derivable from the system exists. This allows for a general explanation
as why there must be something rather than nothing, without leading into the existence of non-derived entities.

This perplexing question has been the topic of thousands of years of enquiry and debate (Leibniz, 1714, [44])
(Heidegger, 1929,[45]). Recently, some formal approaches have been given to answer this problem (Phillips,
2021, [46]) (Inwagen & Lowe, 1996, [47]) (Heylen, 2016, [48]), but though they are thorough, answers
largely focus on dismal of the question, and once again, they remain fragmented and lacking the background
of an initial scientific paradigm, which we aim to provide here.

4.2 Experimentation: Computational Metaphysics
4.2.1 Python Simulation

1 import numpy as np

2

3 #defining P1 as identity:

4

5 def P1(x):

6 return 1 if x == x else 0

7

8 #defining two additional properties as 0, to ensure that x represents

nothingness in this reduced model:

9

10 def P2(x):

11 return 0

12

13 def P3(x):

14 return 0

15

16 #defining Z(x) as the Matrix of all properties of the reduced model , akin to

the definition in Type 2:

17

18 def Z(x):

19 return np.array ([P1(x), P2(x), P3(x)])

20

21 #defining ZPlus as the sum of all the values of the predicates present in Z(x

), akin to the definition in Type 2:

22

23 def ZPlus(x):

24 return np.sum(Z(x))

25

26 #defining x as a pure variable (string or numerical) and the value of P1 as 0

to ensure that x represents pure nothingness

27 P1_value = 0

28 x_value = (( float) or (int) or (str))

29

30 #checking the validity of the conditional ZPlus(x) = 0 implies ZPlus(x) != 0

using the definition from Type 4:

31 if (not (ZPlus(x_value) == 0) or (ZPlus(x_value) != 0)) == True:

32 print("Theorem␣Proved:␣ZPlus(x)␣=", ZPlus(x_value), "and␣Z(x)␣=", Z(

x_value))

33 else:

34 print("Nothingness␣without␣existence:␣ZPlus(x)␣=", ZPlus(x_value), "and␣Z

(x)␣=", Z(x_value))

35

36
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37 OUTPUT:

38 Theorem Proved: ZPlus(x) = 1 and Z(x) = [1 0 0]

Listing 1 Experimental Computation for Sixth Theorem Part 1 (Python) ”∄x →∃x”

This simulation was conducted in Python, and is here based on a three-property reduced system, that
follows closely the outline of the more complex Type System introduced in this paper. Indeed, all that is needed
for the proof of the Sixth Theorem is that entity has a value of 0 for all predicates, and that one of them is the
identity predicate. The properties are all set to return 0, and the first one is defined through identity. As within
the type system, Z(x) is defined as the matrix containing all predicates applied to x, and the Z+(x) defined as
the sum of all predicate values. The conditional Z+(x) = 0 → Z+(x) ̸= 0 is tested through the initial definition
of ”→” in Type 4: ¬Z+(x) = 0∨Z+(x) ̸= 0, and asked to return ”Theorem Proved” if the conditional is True.
As displayed above, the result of the simulation yielded, ”Theorem Proved”, indicating that the computational
experimentation did align with the theoretical basis provided in section 4.1.

4.2.2 Mathematica Simulation

1

2 (* Declare Properties to ensure they are recognized properly *)

3 ClearAll[P11 , P12 , P13];

4

5 (* Define Properties as 0*)

6 properties[x_] := {P12[x] -> 0, P13[x] -> 0};

7

8 (* Define the sum of properties , Z^+(x) *)

9 ZPlus[x_] := P11[x] + P12[x] + P13[x];

10

11 (* Define Identity Property P11 *)

12 identityRule[x_] := P11[x] -> If[ZPlus[x] === ZPlus[x], 1, 0];

13

14 (* Check for logical consistency of Z^+(x) = 0 *)

15 CheckContradiction[x_] := Module [{rules , result},

16 rules = properties[x] ~Join~ {identityRule[x]};

17 result = Simplify[ZPlus[x] == 0 /. rules ];

18 If[result === False , "Contradiction:␣ZPlus[x]␣!=␣0", "No␣Contradiction"]

19 ];

20

21 (* Run the contradiction check for a specific entity x *)

22 CheckContradiction[x]

23

24

25 OUTPUT:

26 Contradiction: ZPlus[x] != 0

Listing 2 Experimental Computation for Sixth Theorem Part 2 (Mathematica) ”∄x →∃x”

This here is a simulation of the proof for the Sixth Theorem on the software Mathematica. Akin to the
Python simulation, the proof here occurs in a reduced model with only three properties, it defines one prop-
erty as identity, P1.1, and the other two as 0. This is thus to evaluate the statement Z+(x) = 0, in a reduced
framework that still contains identity as a property. After, evaluating the statement, the software found the
contradiction underpinning the Sixth Theorem, namely that when evaluating Z+(x) = 0 it yields Z+(x) ̸= 0.

These computational simulations display once again the viability of this new paradigm for Metaphysical Cos-
mology. Indeed, the paradigm introduced by the Type System is: (i) epistemological sound and does not rely
on unfounded assumptions (T1−4.3), (ii) grounded in direct undeniable empirical proof (P), (iii) structured
through mathematics and formal logic, but it also, (iv) has a possibility for experimentation (Computational
Metaphysics), and finally, (v) it also provides a logico-mathematical answer to, arguably, the biggest problem
in the History of Metaphysics (Heidegger, 1929,[45]) (Wittgenstein, 1921,[38]).
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5 Methods For Metaphysical Science
In this section, I will here display the methods that can be used in the upcoming Metaphysical Science.

Metaphysical Science can be divided into two sections: Metaphysical Cosmology, as studied in this paper,
and Noumenology, in reference to the Kantian ”noumenon” (Kant, 1783,[49]), as the study of worlds beyond
perception.

Discipline Modelling Tools Experimental Tools Domain of Study
Metaphysical Cosmol-
ogy

Type system presented
in this paper, enhanced
versions of it, or other
logico-mathematical
systems founded on
definitions and undeni-
able axiom(s)

Experimental Compu-
tation, Simulations of
Theorems and of Mod-
els of the entire Meta-
physical Cosmos

A, The Metaphysical
Cosmos

Noumenology Sub-systems of sys-
tems of Metaphysical
Cosmology and various
other mathematical and
logical systems

Experimental Compu-
tation, Experimental
Psychology and Neuro-
science

ΩC, the set of all things
that are not in the Phys-
ical Universe.

Table 2 Table of Methods for Metaphysical Science

The Type system presented in this paper thus serves as an initial paradigm in Metaphysical Cosmology,
upon which more research can be conducted, such as additional computational experimentation and simu-
lations of the system and its derivations, or even enhancements of the system and the type definitions. The
falsifiability of Metaphysical Cosmology thus comes from experimental computation, which can confirm or
deny results (Popper, 1959,[50]). Computational tools are already starting to be used in formal Metaphysics
(Fitelson & Zalta,2007,[51]) (Kirchner & Benzmüller & Zalta,2019,[52]). Moreover, Metaphysical Cosmol-
ogy still stands on empirical grounds through the P axiom. This thus makes Metaphysical Cosmology a
hybrid science in between formal sciences, i.e. logic, computation and pure mathematics, and natural sciences,
such as physics, chemistry and biology. Indeed, the object of study of Metaphysical Cosmology remains the
world, or ”Nature”, as broadly understood, and it possesses some experimental tools and empirical founda-
tions. However, it relies mainly on the formalism and systematic rendition and modelling of its paradigm.

The case of the advent of Noumenology is harder to illustrate as it is not the object of this paper. However, its
fundamental aim is to discern realms beyond perception and analyse their structure. Noumenology, however,
does have an advantage over Metaphysical Cosmology, as it might benefit from a wider range of experimental
tools and empirical evidence. Indeed, experimentation in neuroscience and psychology could serve as empir-
ical foundations for Noumenological modelling. In fact, a realm beyond the physical world, though arguably
dependent on it, can be analysed empirically through experimental psychology and neuroscience: dreams.
The inner structure of dreams is not made of matter, nor is it directly perceived by the senses, though it is
arguably dependent on it. Thus, some studies already conducted in the realm of experimental psychology and
neuroscience, could serve as empirical evidence for Noumenonlogical modelling (Konkoly, 2021, [53]) (Nir
& Tononi, 2010, [54]).

These are thus the frameworks and methodologies upon which Metaphysical Science would rely, and they
could also serve as foundations for other sciences, as Ω is a subset of the Metaphysical Cosmos A. Indeed, Ω,
the Physical Universe, thus represents the domain of study of fundamental Physics, and other natural sciences
study subsets of Ω.
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6 Proof Sketch
In this section, I will provide proof sketches of the derivations made from our system in this paper. All proofs
are made according to the derivation rules expressed in the foundations of the system, and constructed through
the definitions. Whenever ”x” occurs in these proofs, ”x” will refer to a variable of any type, not just an
individual, it is therefore a shorthand for ”tn(x)”.

6.1 First Theorem : T1−4.3,P ⊢ Ψ∪∅= A

| T1−4.3 Def
| P Axiom, by empirical justification
...
1. | ∃x Law 9, By [P]

2. | Z+(x)> 0 Law 4, By [∃]

3. | x ∈ Ψ∧Ψ = {x|∃x}= {x|Z+(x)> 0} Law 5, By [↓] [T3]

4. | Ψ
C =∅= {x|∄x}= {x|Z+(x) = 0} Law 5, By [↓] [tC3 ]

5. | Ψ∩∅= X= {x|∃x∧∄x}= {x|Z+(x)> 0∧Z+(x) = 0} Law 8, By [↓] [3] [∩]

6. | Ψ∪∅= A= {x|∃x∨∄x}= {x|Z+(x)> 0∨Z+(x) = 0} Law 8, By [∪] [3] [4]

6.2 Second Theorem: T1−4.3,P ⊢ ∀x(x ∈ A)

| T1−4.3 Def
| P Axiom, by empirical justification
...

1. | ∀x(Z+(x) = n∧n ∈ R) Law 7, By [T2] [R]
2. | ∀n(n ∈ R→ n = 0∨n ̸= 0) Law 7, By [R] [∨]

3. | ∀x(Z+(x)> 0∨Z+(x) = 0) Law 5, By [↓] [T2]
4. | ∀x(∃x∨¬∄x) Law 5, By [↓] [∃]
5. | ∀x((∃x∨¬∄x))≡ x ∈ A) Law 6, By [↓] [6 in First Theorem]
6. | ∀x(x ∈ A) Law 6, By [4] [5]

6.3 Third Theorem: T1−4.3,P ⊢ |Ψ| ≥ c

| T1−4.3 Def
| P Axiom, by empirical justification
...
1. | ∀x(x ∈ R→ x ∈ Ψ) Law 5, By [R] and [3 in First Theorem]
2. | R⊆ Ψ Law 5, By [⊆] and [↓]
3. | |R| ≤ |Ψ| Law 5, By [|t3|] and [↓]
4. | |R|= c Law 9, By [R]
5. | |Ψ| ≥ c Law 8, By [3-4] [≥]
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6.4 Fourth Theorem: T1−4.3,P ⊢∅= X

| T1−4.3 Def
| P Axiom, by empirical justification
...

1. | ∀x[(x ∈∅)→ (Z+(x) = 0)] Law 5, By [∈] and [4 in First Theorem]

2. | ∀x[(x ∈∅)→ Z(x) =


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

] Law 5, By [T2] and [↓]

3. |


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

=


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 Law 2, By [=]

4. | ∀x[(x ∈∅)→ (Z(x) = Z(x))] Law 5, By [↓] and [T2]
5. | ∀x[(x ∈∅)→ P1.1(x) = 1] Law 5, By [↓] and [T2]

6. | ∀x[(x ∈∅)→ Z+(x)≥ 1] Law 5, By [↓] and [T2]

7. | ∀x[(x ∈∅)→ Z+(x) = 0∧Z+(x)> 0] Law 6, By [1] and [↓]
8. | ∀x[(x ∈∅)→ (x ∈ X)] Law 6, By [↓] [5 in First Theorem]
9. | ∅⊆ X Law 5, By [⊆] and [↓]
10. | ∀x[(x ∈ X)→ (x ∈∅)] Law 5, By [∩] [5 in First Theorem]
11. | X⊆∅ Law 5, By [⊆] and [↓]
12. | ∅= X Law 8, By [9] [11][=]

6.5 Fifth Theorem:T1−4.3,P ⊢ A= Ψ

| T1−4.3 Def
| P Axiom, by empirical justification
...
1. | A=∅∪Ψ Law 9, By [6 in First Theorem]
2. | A= X∪Ψ Law 6, By [12 in Fourth Theorem] and [↓]
3. | X∪Ψ = Ψ Law 8, By [⊆] [∪] [3 and 5 in First Theorem]
4. | A= Ψ Law 6, By [2 and 3]

6.6 Sixth Theorem: T1−4.3 ⊢ ∄x →∃x

| T1−4.3 Def
...

1. | ∄x ≡ Z+(x) = 0 Law 9, [∄]
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2. | Z+(x) = 0 → Z(x) =


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 Law 5, By [↓] and [T2]

2. |


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

=


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 Law 2, By [=]

3. | x = x Law 5, By [↓] and [=]
4. | P1.1(x) = 1 Law 5, By [↓] and [T2]

5. | Z+(x) ̸= 0 Law 5, By [↓] and [T2]

6. | Z+(x) = 0 → Z+(x) ̸= 0 Law 6, By [2-4]
7. | ∄x →∃x Law 8, By [↓] [∃] [∄]

7 Conclusion
In conclusion, through meticulous logical systematisation, I have demonstrated the inner skeleton of the
Metaphysical Cosmos. From a type system built on semantic and syntactic definitions and holding for sole
assumption the existence of an entity, we were able to analyse the fundamental structure of the Metaphysical
Cosmos. This research seeks to contribute to the development of Metaphysics as a science by laying the foun-
dations for an initial scientific paradigm in the field. I strongly encourage fellow researchers to build upon
the foundation laid here, propelling us further in our collective quest for understanding the intricacies of the
Metaphysical Cosmos. Just as physics studies instances within the physical universe, after having established
a new paradigm for research in this paper, Metaphysics can now have the task of exploring instances within
The Absolute.
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[39] Fouché, C.: Hybrid modal realism debugged. Erkenntnis (2022)

[40] Longenecker, M.T.-S.: Dualism about possible worlds. Erkenntnis (2019)

[41] Tegmark, M.: The mathematical universe. Foundations of Physics (2007)

[42] Guth, A.H.: Eternal inflation and its implications. Journal of Physics A: Mathematical and Theoretical
(2007)

[43] III, H.E.: ”relative state” formulation of quantum mechanics. Reviews of Modern Physics (1957)

[44] Leibniz, G.: Monadology, (1714)

[45] Heidegger, M.: What Is Metaphysics?, (1929)

[46] Phillips, C.K.: Why is there something rather than nothing? the substantivity of the question for quantifer
pluralists. Erkenntnis (2021)

[47] Inwagen, P., Lowe, E.: Why is there anything at all? Proceedings of the Aristotelian Society, Supplemen-
tary Volume (1996)

[48] Heylen, J.: Why is there something rather than nothing? a logical investigation. Erkenntnis (2016)

[49] Kant, I.: Prolegomena to Any Future Metaphysics, (1783)

[50] Popper, K.R.: The Logic of Scientific Discovery, (1959)

[51] Fitelson, B., Zalta, E.N.: Steps toward a computational metaphysics. Journal of Philosophical Logic
(2007)

[52] Kirchner, D., Benzmüller, C., Zalta, E.N.: Computer science and metaphysics: A cross-fertilization.
Open Philosophy (2019)

[53] Konkoly, K.R., Appel, K., Chabani, E., Mangiaruga, A., Gott, J.: Real-time dialogue between experi-
menters and dreamers during rem sleep. Current Biology (2021)

[54] Nir, Y., Tononi, G.: Dreaming and the brain: from phenomenology to neurophysiology. Trends in
Cognitive Sciences (2010)

32


	Introduction
	Aim and Scope
	New logical notions
	A New Metric-Space Based Infinitary Predicate System

	Existential Quantifier "Exists" Revisited

	Inner structure and definitions of the Type system
	Presentation and aim of the system
	Type 0: Formulas:
	Type 1: Individuals: 
	Type 1.1: individual variables and constants:
	Type 1.2: numbers:

	Type 2: predicates or attributes 
	Type 2.1 Predicates
	Type 2.2 Meta-predicates

	Type 3: Sets
	Type 4: Operators and Constants: 
	Type 4.1: Operators on all types (except type 4):
	Type 4.2: Operators on type 3 (sets): 
	Type 4.3: Operators on type 1.2 (numbers)

	Type 5: Meta-Language Operators
	Rules of Inference
	Soundness of the System

	Outline of The Absolute (from Type system)
	Derivation of "A" from Types and "P"
	Existential Metric-Space
	Inner Structure of The Metaphysical Cosmos
	Analysis of The Totality of Things "Psi"
	The Void VarNothing / Portal X Equivalence
	The Absolute A as The Totality of Things Psi


	Proof That There Must Be Something Rather Than Nothing
	Non-existence Must Imply Existence
	Experimentation: Computational Metaphysics
	Python Simulation
	Mathematica Simulation


	Methods For Metaphysical Science
	Proof Sketch
	First Theorem : T1-4.3, P = A
	Second Theorem: T1-4.3, P x (x A) 
	Third Theorem: T1-4.3, P || c  
	Fourth Theorem: T1-4.3, P = X
	Fifth Theorem:T1-4.3, P A = 
	Sixth Theorem: T1-4.3 x x 

	Conclusion

