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Abstract

The ambition of this paper is extensive: to bring about a new paradigm and firm
mathematical foundations to Metaphysics, to aid its progress from the realm of mysti-
cal speculation to the realm of scientific scrutiny. More precisely, this paper aims to
introduce the field of Metaphysical Cosmology. The Metaphysical Cosmos here refers
to the complete structure containing all entities, both existent and non-existent, with the
physical universe as a subset. Through this paradigm, future endeavours in Metaphys-
ical Science could thus analyse non-physical parts of the Metaphysical Cosmos. New
logical notions are displayed as tools for Metaphysical Cosmology, such as a Metric-
Space-based predicate system, as well as a revised version of the Existential Quantifier.
A type system is presented to derive a construction of the Metaphysical Cosmos. The
system is structured through semantic and syntactic definitions in a coherent way and
holds only one proper axiom: the existence of (at least) one entity. This paper itself
serves as an empirical proof for this axiom. Formulae and equations that depict a clear
logical and mathematical structure of the Metaphysical Cosmos are derived from the def-
initions of the system and this axiom. This culminates in the ”Sixth Theorem”, whose
proof displays logically that there must be something rather than nothing. A compu-
tational simulation of the Sixth Theorem is also provided, alongside with methods for
a future Metaphysical Science. Thus, this paper does not aim to provide a traditional
philosophical argument but rather a mathematical foundation and new paradigm for the
science of Metaphysics.
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1 Introduction

1.1 Aim and Scope
Disciplines known nowadays as sciences were once part of philosophy and were inducted
into the scientific realm once concrete methods of analysis were found in order to serve as
theoretical foundations for them (Frank, 1952, [22]) (Gare, 2018, [37]). This evolution is
apparent in the natural sciences, including physics, chemistry, and biology, formerly known
as ”natural philosophy” (Newton, 1687, [2]) (Kelvin & Tait, 1867, [10]) (Dalton, 1808, [6]).
Similarly, the behavioural sciences such as sociology and psychology, reveal early roots in
philosophical explorations of the mind, as seen in Aristotle’s philosophy of mind (Aristotle,
350 B.C., [51]), and experimental psychology as a scientific discipline emerged largely due to
Gustav Fechner’s mathematical methods for psychophysics (Fechner, 1860, [9]). Finally, this
also applies to the abstract sciences1 such as mathematics, as mathematical studies conducted
by pre-socratic philosophers Pythagoras and Thales laid the foundations for the science (Dio-
genes Laertius, 3rd century CE, [54]). Although Mathematics followed a path that differs
from most sciences, its philosophical roots are undeniable. It is only through philosophical
investigations (Frege, 1884,[11]) that a development arose and its formal foundations were
laid (Zeremelo, 1908, [15]).

This paper builds upon a meta-philosophical foundation positing that philosophy represents
a ”proto-science”, i.e. an evolutionary precursor to science, and that its teleological aim is a
self-destructive process, wherein various branches of philosophy are gradually relinquished
to the scientific domain. Thus, not only does this paper maintain that philosophy can make
progress, going against some recent meta-philosophical analysis (Dietrich, 2023,[49]), but
that philosophy has made progress in the past, and that this paper will be a first step towards
progress, in the field of Metaphysics. The research provided in this paper aims to open a
possibility for Metaphysics, and more specifically Metaphysical Cosmology, to step out of
the realm of mystical speculation and into the realm of scientific certainty. Indeed, this paper
wishes to establish an initial scientific paradigm in the field, acknowledging its susceptibility
to modification and enhancement through ongoing scientific development, akin to Thomas
Kuhn’s conceptualisation of paradigm shifts (Kuhn,1962,[25]).

Fundamentally, what is Metaphysical Cosmology? Physical cosmology is an analysis of
the overall structure of the physical universe (Peebles,1993,[28]). Metaphysics, on the other
hand, could be defined as the study of entities potentially present beyond mankind’s per-
ceptual spectrum2. Therefore, Metaphysical Cosmology could be defined as a ”synthetic
cosmology” of Metaphysics and Physical Cosmology as it regroups both the physical and the
Metaphysical into one complete system. Indeed, Metaphysical and Physical Cosmology are
both the study of their respective and complete mathematical system. However, the study
of Physical Cosmology is limited to the perceivable physical universe whereas Metaphysical
Cosmology is the study of all that exists and beyond as one complete mathematical system,
including both perceivable and non-perceivable truths. Thus, Physical Cosmology is funda-
mentally a subset of Metaphysical Cosmology, as Metaphysical Cosmology operates on a
higher scale and thus includes physical realities too.

1Computer Science follows a similar path, as its historical roots reside in philosophical investigations of
Logic (Aristotle, 350 B.C.,[52]) (Boole,1854,[8]).

2Despite the debate surrounding the definition and aim of Metaphysics, this paper will not address Meta-
physics as the study of ”the fundamental nature of things”, rather, we will define it literally: as the study of the
”Meta-Physical”, i.e. what lies beyond the physical. I maintain that any sub-fields of Metaphysics exploring
notions/entities that are part of the physical world are, in fact, not Metaphysics.
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The Metaphysical Cosmos, later defined as ”The Absolute”3 denoted ”A”, represents the
amalgamation of everything, nothingness, and their interactions. Its structure is a syntactical
derivation from the system provided in this paper and aims to serve as an initial scientific
paradigm for Metaphysical Cosmology. In more formal terms, it is a comprehensive set
encapsulating the following: the ”Metaphysical Void”, ”∅”, which bears similarity to the
”empty set”4; the ”Totality of Things”, ”Ψ”, which contains all existing entities; and their
intersection, ”X”. This construction arises from pure logical reasoning, resting on the foun-
dation of a singular axiom and definitions. Consequently, these concepts serve as the utmost
level of set-theoretical abstraction in Metaphysical Science, forming the foundation upon
which other ideas within the discipline are constructed.

The science of Metaphysical Cosmology, therefore, is closer to the abstract sciences than
to the natural ones. However, it can be argued that its object of study remains Nature if we
consider the realms beyond perception as also falling under the definition of “Nature”.

Nonetheless, it cannot be described as a purely abstract science as its abstract study can only
be successful if the foundation from which the abstraction is derived is grounded in apparent
reality. This empirical grounding is here provided by our sole assumption, later defined asP,
read ”p”5, the only axiom of our system. Such foundation is required as the object of study
of Metaphysical Cosmology remains the world and its actuality. However, it is concerned
with the entirety of the world, beyond merely the physical. Metaphysical Cosmology can
be stated as displaying the limits and extensions of the world and as depicting logically and
mathematically its entirety. Methods for Metaphysical Science will be elucidated in section
5.

Finally, even though Metaphysical Cosmology lacks the possibility of direct experimenta-
tion in the physical world, it can be tested through computational experimentation, a method
rapidly growing in the natural sciences(Karniadakis, 2021,[43]) (Sweeney, 2020, [42] )(Zgar-
bova, 2022,[47]). Computational Experimentation has been conducted to test the paradigm
provided in this paper, and the result of this experimentation can be found in section 4.2.

The use of firm logical systems and mathematics is the first step towards the complete devel-
opment of Metaphysical science. In recent years, the emergence of formal Metaphysics has
paved the way for a more scrutinised exploration of metaphysical concepts, exemplified by
Kurt Gödel’s ontological proof (Gödel, posthumous 1986, [26] ), David Lewis’s modal Meta-
physics (Lewis, 1986, [27]) and the ongoing formal ontology studies of Edward N. Zalta and
The Metaphysics Research Lab at Stanford University (Zalta, 2023, [50]). These efforts have
been fruitful and foreshadow the upcoming Metaphysical Science. However, the study of
formal Metaphysics remains scattered and lacks an initial scientific paradigm, which I en-
deavour to provide here by presenting a new system6.

3The concept of ”The Absolute”, here is not the Hegelian one (Hegel,1812,[7]), even though it might bear
some similarity as they both refer to an exhaustive higher metaphysical entity.

4Though the Metaphysical Void does differ from the Empty Set, in so far as it is the set of all non-existent
things.

5”P” here stands for ”phenomenological” as it is through phenomenological/empirical analysis that we can
assert that there exists (at least) one entity.

6In addition, as the new paradigm we wish to introduce in Metaphysical Cosmology encompasses both the
physical and the metaphysical, it could serve as a fundamental foundation for all sciences, not just Metaphysics.
Indeed, all other sciences could be seen as studies of smaller subsets of the fundamental sets we will derive from
our system.
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In the thousands of years of philosophical debate surrounding the foundations and justifica-
tions of Metaphysics as a science, one of the main arguments against it was and still remains
its lack of mathematical formalism and/or empirical basis. In the words of David Hume:

”If we take in our hand any volume; of divinity or school Metaphysics, for instance; let us
ask, Does it contain any abstract reasoning concerning quantity or number? No. Does it

contain any experimental reasoning concerning matter of fact and existence? No. Commit it
then to the flames: for it can contain nothing but sophistry and illusion.” - (Hume, 1748, [4])

The system put forward here will rely on the most basic phenomenological and experi-
mental claim, of which one cannot doubt, namely that: ”Something exists” represented by
the axiom ”P”. The very existence of this paper serves as empirical justification for the claim
of the axiom ”P”. Moreover, this system makes use of precise logical formalism and mathe-
matical reasoning, as well as computational experimentation.

Thus, in the words of Hume, does it contain any abstract reasoning concerning quantity or
number? Yes, as the system is a logical and mathematical modelling of the Metaphysical
Cosmos.

Does it contain any experimental reasoning concerning matter of fact and existence? Yes,
as the system relies fundamentally on the empirical fact of P and is tested experimentally
through computation.

Then, hold on tight to it, as it might be a first step towards enlightenment.

1.2 New logical notions
The addition of new logical concepts generates an expansion of our thinking field and gives
rise to new possibilities towards understanding Metaphysical Reality. Indeed, just as the in-
vention of infinitesimal calculus was needed by Isaac Newton for the formulation of his me-
chanical laws (Newton,1687,[2]), the addition of new logical notions is essential for an acute
and complete mathematical/logical representation of the Metaphysical Cosmos (referred to
as “The Absolute”).

Indeed, I will here introduce two new tools for Metaphysical Cosmology. Firstly, a new
metric-space-based infinitary predicate system, and then a revised use of the existential quan-
tifier, enabling further studies on the fundamental notion of existence.

1.2.1 A New Metric-Space Based Infinitary Predicate System

Before delving into the mathematical intricacies of our new metric-space-based infinitary
predicate system, let us first explore its historical context.

In the late 19th century, Gottlob Frege’s axiomatisation of mathematics, outlined in The
Foundations of Arithmetic (Frege, 1884,[11]) contained a law defining sets as collections
that contain all entities that possess a certain property, the Basic Law V7.
Here is its formal definition:
Where ”S” is any given set, ”xn” is any individual variable and ”ϕ” is any predicate:

∀xn∃S(xn ∈ S ≡ ϕ (xn))

7also known as the axiom schema of unrestricted comprehension
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In response to it, philosopher and mathematician Bertrand Russell demonstrated that from
Frege’s Basic Law V, we could construct the following set (Russell, 1903, [13]):

R = {x| x < x}

However, this set leads to the following seemingly paradoxical conclusion:

R ∈ R → R < R → R ∈ R → R < R...

And thus R ∈ R ≡ R < R

Indeed, the set appears to, simultaneously, be a member of itself and not be a member of
itself. This seemingly paradoxical consequence of Frege’s axioms lead to a logical revolu-
tion (Russell, 1908, [14]) (Whitehead & Russell, 1910, [16]) that ended in the formulation
of the ZF and ZFC set theories (Zermelo,1908,[15]) (Fraenkel, 1922, [19]), which are now
the current fundamental building blocks of mathematics. But what if this set was not funda-
mentally paradoxical? Could it be possible for a logical entity to possess multiple properties,
even if contradictory, simultaneously? This is the fundamental idea behind this new metric-
space-based infinitary predicate system, bearing similarity to paraconsistent and/or dialetheist
systems (Priest, 2006,[31])8 . This new logic is not a system in and of itself. Rather, it is an
extension that can be applied to many systems of logic. In addition to a given system’s ax-
ioms, rules or definitions, the following conception of predicates can be added to allow for
an extension in possible predicate values:

In this system, properties yield a value in the interval [0,1]. Morever, a property is inde-
pendent of its negation, which will require truth values, to be defined in terms of provability,
as outlined in section 2.2 and section 2.4. There is space associated with any given property
P and its negation, labelled ”P∗

space”, which is given by the Cartesian product of Pspace, the set
of all values of x for P(x), and ¬Pspace, the set of all values of x for ¬P(x).

The sets Pspace and ¬Pspace are defined as follows:

Pspace = {x ∈ [0,1]|x = P(y)∧ y ∈ D}

¬Pspace = {x ∈ [0,1]|x = ¬P(y)∧ y ∈ D}

P∗
space is thus given by:

P∗
space = (Pspace ×¬Pspace,d)

Such that D is the domain, and where the distance function d is given by the Manhattan
distance (Minkowski,1896,[12])such that9:

d((x1,y1),(x2,y2)) = |x2 − x1|+ |y2 − y1|

8This, will however, not forbid systems implementing this new logic from being sound, as displayed in the
proof of soundness of the system presented in this paper in section 2.10.

9Other distance functions, such as the Euclidean one (Euclid, 300 BC, [53]), could also be appropriate.
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For a ”classical” entity, the sum of its predicate value and its value for the negation of the
predicate must equal 1:

x is ”classical” if and only if (¬P(x) = 1−P(x))

Thus, ”classical” entities’s predicate values are all positioned on the same line in a graph
representing P∗

space for a given property.

For example, if a ”classical” x has a predicate value of P(x) = 0.7, due to the properties
of the metric space, it will also have a value of: ¬P(x) = 0.3.
This can be visualised using the following diagram, where the red line is the ”Classical line”
and the point is such that P(x) = 0.7∧¬P(x) = 0.3 :

P(x)

¬P(x)

0 1

1

0.5

0.5

x

Figure 1: ”Classical” point in the Metric space of a predicate and its negation

Values of predicates and their negation can therefore be represented by a pair (P(x),¬P(x))
such that if that pair is complementary, i.e. P(x)+P(x) = 1, the entity can be labelled ”clas-
sical”, and the entity is labelled ”non-classical” if not.
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In the case of entities that exhibit a paradoxical behaviour, non-classical entities such as
Russell’s set are positioned outside the ”Classical line”.

If we define the property R as: R(x)≡ x < x

Then Russell’s set, R, that we defined above, simultaneously holds the value of 1 for both
R(R) and ¬R(R) as R(R) ≡ ¬R(R). This, however, cannot happen if R can only hold a
position on the ”Classical” line in the property metric space.

The position of Russell’s set can be visualised in the following diagram:

R

¬R

0 1

1

0.5

0.5

R

Figure 2: Russell’s set position in R∗
space

Thus, in such a case, the paradoxical nature of R is captured without rendering it incon-
sistent, as (R(R),¬R(R)) = (1,1).

With the use of this new metric-space based logic, which is (grounded in an Infinitary Predi-
cate System, upon which all predicates are functions that map the domain of a system to [0,1]
∈R), we can now use an unrestricted set theory, without having to succumb to the axiom of
restricted comprehension (Zeremelo, 1908, [15]) or to a ramified type theory (Russell, 1908,
[14]).

Leveraging this new system of predicates expands our intellectual reach, enabling the anal-
ysis of entities beyond classical limits. This progressive approach contributes to a more
nuanced understanding of the intricate fabric of Metaphysical Reality. This notion, of relying
on metric space-based structures in logical systems, is not entirely foreign to recent academic
endeavours (Ortiz, 1997, [30]) (Stojanovic, 2018, [38]). A similar conception can be found
in logical systems implementing superposition, which has been applied to propositional logic
(Tzouvaras, 2018,[39]) as well as higher-order logic (Bentkamp, Blanchette, Tourret & Vuk-
mirović, 2023, [48]).
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1.3 Existential Quantifier ”∃” Revisited
Finally, after having outlined this new metric-space based predicate system, I will now ex-
plain my revisited use of the existential quantifier. Indeed, existence is a fundamental notion
in Metaphysical Cosmology and it will be necessary to speak about entities existing without
having to specify any characteristic of this entity.

Therefore, our syntax will not be (Where x is any individual and is P any predicate): ∃xP(x).
Instead, our syntax will simply be: ∃x, as we need an operator to simply denote existence,
which will then be defined as a meta-predicate. However, trails of the ”classical” existential
quantifier remain as we define our existential quantifier as signifying that ∃x if and if only if
the sum of all predicate values of x is non-zero:

∃x ≡ ∑
Pi. j∈P

Pi. j(x)> 0

And

∄x ≡ ∑
Pi. j∈P

Pi. j(x) = 0

Where P is the set of all predicates.

And where Pi. j denotes any predicate, classified such that Pi. j is the j-th property at level
i. This is outlined in more detail in section 2.4.1.

Through this conception, the classical relationship between existence and properties remains
and is simply made more precise and more tailored towards a scientific study of existence. In-
deed, more precise as it relies on an extended model of properties capable of describing more
intricate notions than a classical model of predicates, and more tailored towards a scientific
study of existence, as we can now dive into the concept of existence head-on, by changing
the syntax involved.

In cases where a traditional existential quantifier would have been used syntactically, one
could simply start with x and describe it using conjunction: x∧P(x), or use: x ∈ D, where
D is the domain. This means that in the syntax of systems adopting this new use of the exis-
tential quantifier, there is no necessity to bind an entity to the quantifier for the formula to be
syntactically meaningful and well-formed.
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2 Inner structure and definitions of the Type system

2.1 Presentation and aim of the system
The system I will introduce in this paper is constructed through ”types”, which can be con-
sidered as ”valid inputs”, and their definitions. This system’s foundational mechanism is
closely related to one of Kurt Gödel’s systems, ”P”, outlined in his paper On Undecidable
Propositions of Principia Mathematica and Related Systems, displaying his ”Incompleteness
Theorems” (Gödel,1931,[21]). Indeed, Gödel structured the basic signs of his system ”P”
through different types (constants, first type variables: individuals, second type variables:
classes of individuals...) and our system follows a similar scheme. Essentially, this system
follows a mechanism that is also comparable to Russell’s ramified theory of types (Russell,
1908, [14]). However, our system is made to be unrestricted to follow reason with no assump-
tion other than the existence of one entity. Therefore, the type system that I am presenting
here does not have type restrictions, i.e. nothing forbids a universal set of all types for in-
stances.

The only axiom of the system is ”P”, which is proved by the very existence of this paper.
The rest of the ”laws” are syntactic definitions of the uses of the allowed inputs in the sys-
tem. Indeed, Types in this system are the natural language equivalent of defining categories
of words such as verbs, adverbs, subjects, nouns...

This system is epistemologically structured in a coherent and fundamentalist way. Types
and valid inputs are justified together as a part of a consistent whole and are not defined on
an axiomatic basis. This is the usual approach for semantics of natural language and is there-
fore in line with generating formal syntax and semantics for this system. Words in natural
language are defined through the use of other words, types and operators are here defined and
structured similarly. The only fundamentalist/axiomatic instance in the foundational structure
of the system is our singular axiom, P, giving rise to a fundamentalist-coherent justification
system.

The decision to use this specific carefully crafted system through the use of types and defini-
tions finds its roots in the necessity for a system with axioms that cannot be called into doubt.

The system is both free (through our revised existence quantifier) and paraconsistent (through
the possibility of values beyond the classical line of metric-space of properties and their nega-
tion). This is due to the will to capture the full extent of human reason to model the Meta-
physical Cosmos and be able to analyse entities beyond classical logic.

It is crucial to remember that this system presents itself as a model of the world at the highest
metaphysical scale, and is not a study in pure logic and mathematics. This is why the sole
assumption, beyond definitions, of this system is ”P”, which is true by virtue of the very exis-
tence of this work itself. Indeed, even if this paper was an illusion, it would still follow that it
exists, this axiom is justified by immediate experience. This follows a Cartesian-like reason-
ing which aims to use undeniable claims as foundations for systematic reasoning (Descartes,
1637,[1]).

”P” represents the set of all phenomenologically justified claims that cannot be doubted by
reason. Its content is nothing more than ”I exist”, ”I am having a perception” and ”something
exists”. For the sake of this paper at least, even though it is slightly more complex, we will
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define logically ”P” the following way10:

P≡ ∃tn

All ”tn” refers to any valid input present in a given Type (n): ”Tn”.

2.2 Type 0: Formulas:
Sentences in this system are of the form: [/justification/] ⊢: /formula/

Such that /formula/ is structured through all the other types, organised according to their defi-
nitions. A well-formed formula is a formula that uses all its structural elements: set, numbers,
operators, individuals... according to their definitions. To clarify the formula’s structure and
the scope of its operators, the use of brackets ”(”, ”)” and ”[”, ”]” is syntactically authorised,
and often needed. Brackets such as ”{” and ”}” will however be reserved from sets, as per
definitions of Type 3.

When “↓” is written in the [/justification/] box, it means that the formula is justified by the
previous one. And when a symbol or a Type number is written in it, it means that the formula
is justified by the definition of the Type or symbol in the box.

The justification of a formula works in the following way:
if a formula ”α”is justified by the previous formulae/definitions X0, ...,Xn the justifi-

cation scheme of the formula is the following:

([X0]...[Xn] ⊢: α)≡de f ((X0 ∧ ...∧Xn)→ α)

Moreover, the previous formula is the equivalent of the following proof tree:

x y z
α

Thus, a formula can be derived from the system if it can be derived from our axiom P,
our definitions or previous formula(s).

Finally, the truth values of formulas are given by the following: A formula X is true if and
only if it can derived from the system (either directly from the axiom P and definitions or
from formulas derived from them):

• (X is True)≡ (T1−4.3,P ⊢ X)∨ (T1−4.3,P ⊢ X0...Xn ⊢ X).

• (X is False)≡ (T1−4.3,P ⊬ X)∨ (T1−4.3,P ⊢ X0...Xn ⊬ X).

This truth-value function will itself be considered as a predicate, which will be elucidated
in Type 2.

10The unusual syntax of the existential quantifier in this definition is explained in section 1.3 as well as within
the definitions of operators in section 4.1
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2.3 Type 1: Individuals:
2.3.1 Type 1.1: individual variables and constant:

These can be numerical and/or logical and are represented by lowercase letters: “x”, “y”,
“z”. . . or “ϕ”, “φ”, “θ”. . . or “a”, “b”, “c”. . .

And can be of the form: /lowercase letter/ or /lowercase letter/ /lowercase letter/ and so
on. . . Such that: “a”, “ab”, or “abc”. . . represent Type 1.1 variables.

Any given x is an individual if and only if it is equal to itself: ”x is an individual ≡ x = x”.

Individuals can become constants if they are defined. They follow the same syntactical
schema as individual variables and are bound to a specific value or entity after definition.

Note ”n”: refers to a variable of type 1.2 (a number)

2.3.2 Type 1.2: numbers:

These can be represented by individual numbers and/or fractions. they are divided in different
categories (sets, type 3), such as:

• natural ”N”: 0,1,2,3,4,5...,

• integers ”Z”: −3,−2,−1,0,1,2,3...,

• rationals”Q”: −4
6 ,0.777,1,2.4888.... ,

• real ”R”: ,
√
−52, 0,

√
2,π ...,

• complex ”C”:-17.9567, 0, 2+3i....

Such that:
N⊆Z⊆Q⊆R⊆ C

As well as Transfinite Numbers as developed by Georg Cantor, which offers a framework
for understanding different sizes of infinities (Cantor, 1915, [17]):
Cardinals: ℵ0,ℵ1,ℵ2,ℵ3... such that the cardinality (size) of ”N” is equal to ℵ0
And Ordinals: ω0,ω1,ω2... such that the ordinality (order type) of ”N” is equal to ω0.

There is also ”∞” such that ∞ is equal to any t1.2 input (any number) larger than the car-
dinality of the natural numbers: (t1.2 = ∞)≡ t1.2 ≥ |N|

We will also refer to the cardinality of the real numbers, |R|, as ”c”, using the notation
which was also introduced by Georg Cantor (Cantor, 1915, [17]).
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2.4 Type 2: predicates or attributes
2.4.1 Type 2.1 Predicates

These can be represented by the form: “/uppercase letter/ tn” :
“X(tn )”, “Y (tn )”, “Z(tn )” . . . or “Θ(tn )”, “ϒ(tn )”, “Φ(tn )”. . . or “Z(tn )”, “T(tn )”,

“N(tn )”. . .

Properties possess a rank and a position in the ordered set of properties. They are more
formally denoted Pi. j such that Pi. j is the j-th property at level i.

And the set of all properties, P , is defined as the set of properties, which are functions
that map the domain of the system (T1−4.3), to [0,1] ∈R:

P = {Pi. j|Pi. j : T1−4.3 7→ [0,1]∧ i ∈N∧ j ∈N}

Where a total order is defined on this set such that:

Pi. j ≤ Pn.m ≡ i < n∨ (i = n∧ j ≤ m)

Indeed, properties are built from a set of lower-level properties, such that:

Pi. j = ⊛(Pi−1.k, ...,Pi.km)

Where ⊛ represents the property construction operator, which takes lower level (i-1) prop-
erties and uses any Type 4 operator to construct a higher level (i) property Pi. j. It is worth
noting that not all properties from the lower level are required for the construction of a Pi. j,
only those necessary for Pi. j. Moreover, though the series of lower-level properties upon
which a Pi. j can be classified in order, as per the equation above, it is not required nor nec-
essary that all properties that build Pi. j come from an ”uninterrupted series”. For example,
for a Pi. j that is formed of three lower-level properties, it is not necessary (and even quite
rare) that: Pi. j = ⊛(Pi−1.1,Pi−1.2,Pi−1.3), indeed most properties can have a structure such as:
Pi. j = ⊛(Pi−1.18,Pi−1.94,Pi−1.347).

Thus, through the use of the ⊛, the form of all predicates can be represented as :

Pi. j(x)≡ t0 where x is a term of t0

Where t0 refers to a Type 0, i.e. a formula.

Now from this how do we calculate the value of a Pi. j(x)?

The value of a Pi. j(x) is given by:

Pi. j(x) =

(
∑

Pi−1.k∈Bi. j

wPi. j
i−1.k

)
· |S

Pi. j
x |

|Bi. j|

Where Bi. j is the set of all the lower-level properties used to ”build” Pi. j:
Bi. j = {Pi −1.k|⊛ (Pi−1.k, ...,Pi.km) = Pi. j}

Where SPi. j
x : SPi. j

x = {Pi−1.k ∈ Bi. j|Pi−1.k(x) = 1}

And where ∑Pi−1.k∈Bi. j wPi. j
i−1.k is the sum of all the weights wPi. j

i−1.k for all the properties Pi−1.k
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used to build a property Pi. j, through the property generator ⊛. The weights allow for mul-
tiple properties formed from the same lower-level properties but connected in different ways
through different logical operators to have different values.

Therefore the property value of an x is given by the sum of all the weights of lower-level
properties used to build Pi. j, multiplied by the number of lower-level properties used to build
Pi. j that x fully satisfies, divided the total number of lower-level properties used to build Pi. j.

This equation therefore yields a value between [0,1] ∈R. If a predicate or meta-predicate is
written without a value, such as Pi. j(x), then it is a shorthand notation for: Pi. j(x) = 1

Finally, some properties do not have the same functioning as they are atomic properties. Some
empirically verifiable properties can be considered as atomic if they cannot be built for logic
itself. The most fundamental property of all is identity, given the rank of P1.1: P1.1(x)≡ x = x.

However, this most fundamental property is relying on the identity sign ”=”, defined through
Leibniz’s law in Type 4.1. Therefore, P1.1(x)≡ ∀Pi. j(Pi. j(x)≡ Pi. j(x)).

Predicates are the skeleton of the system. Indeed, each entity of each type possesses its
own ”logical genome”, Z, a matrix indicating the entity’s value for all properties:

Z(x) =


P1.1(x) 0 0 · · · 0
P2.1(x) P2.2(x) P2.3(x) · · · P2.m2(x)
P3.1(x) P3.2(x) P3.3(x) · · · P3.m3(x)

...
...

...
. . .

...
Pn.1(x) Pn.2(x) Pn.3(x) · · · Pn.mn(x)

 , where ∀i∀mi(mi ∈N∧mi+1 > mi)

As well as the complete value of all their properties:

Z+(x) = ∑
Pi. j∈P

Pi. j(x)

There is only one property of i=1, namely identity ”P1.1”, hence the values of 0 in the
matrix for all others of the i=1.

Moreover, there is a predicate, an element of P , that is used to determine truth values. We
will refer to it as Truth(x) as the property that an x belongs to Type 0, i.e. is a formula, and is
derivable from the system:

Truth(x)≡ x : T0 ∧T1−4 ⊢ x

It can thus be formed using our ”⊛” property generator, where x :T0 and T1−4 ⊢ x repre-
sent lower properties:

Truth(x) = ⊛(x : T0,T1−4.3 ⊢ x)

Therefore, this predicate yields:

Truth(x) =

{
1 if x : T0 ∧T1−4.3 ⊢ x
n, such that n < 1 otherwise

Moreover, all types can serve as input for properties, even if this might sound unintuitive.
For example, a quite unusual type to conceive as an input of a predicate function would be

14



an operator, such as ”∨”. However, ”∨” does satisfy a predicate. Indeed, we can define a P∨
such that:

P∨(x)≡ [x(y,z)∧ x(y,z)≡ ¬(¬y∧¬z)]

Indeed, P∨ is the property of being a relation that binds two types x and y if and only if
they cannot both be negated. The operator ”∨” thus satisfy this property fully, and P∨(∨) = 1.

It must be noted, however, that no Type 0, formulas, can be used to form a predicate if one
of its terms contains Z(x), Z+(x) or any other meta-predicate. These do not serve as valid
types of input and their definition will be further elucidated in section 2.4.2. However, any
higher-order predicate, i.e. predicates applied to predicates, would still be a predicate within
the system, as they can be used by the ⊛ operator to form new ones.

A metric space Pspace is defined for all properties as the Cartesian product of all property
values for an x, paired with a distance function:

Pspace =

(
∏

Pi. j∈P

Pi. j(x),d

)
This metric space allows for unrestricted infinitary predicate values, yielding values for

both classical and non-classical entities, as outlined in section 1.2.1. This metric space is,
therefore, infinite-dimensional, as |P| ≥ |N|.

For example, in a reduced model where Z(x) is composed of solely three properties, the
metric space can be represented the following way:

Where:

Z(x) =

P1(x)
P2(x)
P3(x)


Such that:

(P2(x) = ⊛(P1) = ¬P1(x))∧ (P3(x) = ⊛(P2) = ¬P2(x))
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This reduced model, with only three properties and where the only operator usable by the
property generator ⊛ is negation ¬, can be represented visually by the following diagram:

0.5

1

0.5

1

0.5

1

P(x)

¬P(x)

¬¬P(x)

Figure 3: Metric Space for a reduced 3-properties model based on negation

Here the red line represents the ”classical line”, given by values that satisfy:

(Pi. j(x)+¬Pi. j(x) = 1)∧Pi. j(x) = ¬¬Pi. j(x)

Finally, as displayed in section 1.2.1, one can form a metric space ”P∗
space” for each prop-

erty and its negation. This tool can be useful to clarify non-classical instances. The formal
definitions P∗

space, Pspace and ¬Pspace, apply to all Type 2 in the system.

2.4.2 Type 2.2 Meta-predicates

Meta-predicates are predicates constructed with the use of the property generator ⊛ applied
to Type 0, i.e. formulas, with include Z(x) or Z+(x) as terms.

Therefore, the form of a meta-predicate Mi. j is:

Mi. j ≡ t0 where Z(x) or Z+(x) are terms within t0

Meta predicates obey the same rules as predicates but are however in a different category.
Indeed, Meta-predicates map the system to the [0,1] interval on the real numbers, i.e. Mi. j :7→
[0,1]. Moreover, M1.1, similarly to P1.1 is based on identity and given by: M1.1 ≡ Z(x) = Z(x).
Moreover, there is a set of all Meta-predicates M such that:

M = {Mi. j|Mi. j : T1−4.3 7→ [0,1]∧ i ∈N∧ j ∈N}

Finally, higher-level versions of Z(x) and Z+(x) exist for these properties and will be de-
noted as Z1(x) and Z+

1 (x), where the ”usual” Z(x) and Z+(x) can have as alternative notation:
Z0(x) and Z+

0 (x).

Indeed, formulas containing Z1(x) and Z+
1 (x) as terms cannot be used to form meta-predicates

Mi. j.
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The higher levels of meta-predicates go on for infinity, where the Zn(x) and Z+
n (x) cannot

serve as valid terms to form predicates as the n-th level and therefore generate predicates of
the level n+1.

All the rules for the foundational level of predicates Type 2.1, apply to the higher ones,
and therefore there is an order set of meta-predicates for each level.

2.5 Type 3: Sets
These can be represented by Upper Case letters: “X”, “Y”, “Z”. . . or “Z”, “B”, or “C”. . . or
“Θ”, “Λ”, “Ω”. . .

Note: Uppercase variables can also represent the function operator on sets defined in Type
4.2 in the form: “/uppercase letter/: t3(a) 7−→ t3(b)”

Sets are of the general form: ”/upper case letter/ = {tn|t2(tn)}”

When including individuals, sets are of the form: ”/upper case letter/ = {t1|t2(t1)}”.

Thus, when including sets, sets are of the form:”/upper case letter/ = {t3|t2(t3)}”.

Moreover, some sets can be formed out of meta-predicates and would be of the logical
form: ”/upper case letter/ = {tn|t2.2(tn)}”

There can be sets of any type whatsoever.

2.6 Type 4: Operators and Constants:
2.6.1 Type 4.1: Operators on all types (except type 4):

The following definitions are of the form: “/operator/ de f /use of the operator/≡ /meaning of
the operator/” (these definitions are for individuals, but the same applies for sets and
formulae, by replacing ”t1” by ”t3” or ”t0”)

i. ”Implies”: “→” :de f (t1(a) → t1(b))≡ ¬t1(a)∨ t1(b)

ii. ”For all”: “∀” :de f ∀t1[t2(t1)]≡ [(t1 = t1)→ t2(t1)]

iii. ”Not”: “¬” or ” ̸x ” :de f ¬t1(a) ≡T1−4.3,P ⊬ t1(a)

iv. ”There does not exist”: “∄” :de f ∄t1 ≡ Z+(x)> 0

v. ”There exists”: “∃” :de f ∃t1 ≡ Z+(x) = 0

vi. ”And”: ”∧” :de f t1(a)∧ t1(b) ≡ ¬(¬t1(a)∨¬t1(b))

vii. ”Or”: ”∨” :de f t1(a)∨ t1(b) ≡ ¬(¬t1(a)∧¬t1(b))

viii. ”Equivalent to”: ”≡” :de f (t1(a) ≡ t1(b))≡ (t1(a) → t1(b))∧ (t1(b) → t1(a))

ix. ”Equal to:” ”=” :de f (t1(a) = t1(b)) ≡ ∀t2∀n(n ∈ R∧ t2(t1(a)) = n ≡ t2(t1(b)) = n) ≡
Z(x) = Z(y)

x. ”Necessarily”: ”□” :de f □t1 ≡ ¬^¬t1

xi. ”Possibly”: ”^” :de f ^t1 ≡ ¬□¬t1
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2.6.2 Type 4.2: Operators on type 3 (sets):

The following definitions are of the form: “/operator/ :de f /use of the operator/≡ /meaning of
the operator/”

(these definitions are for sets of individuals, but the same applies for sets of sets or
sets of numbers, by replacing ”t1” by ”t3” or ”t1.2”)

i. ”Union”: “∪” :de f t3(a)∪ t3(b) ≡
{
t1
∣∣(t1 ∈ t3(a))∨ (t1 ∈ t3(b))

}
ii. ”Intersection”: “∩” de f t3(a)∩t3(b) ≡

{
t1
∣∣(t1 ∈ t3(a))∧ (t1 ∈ t3(b))

}
iii. ”Subset”: “⊆” :de f t3(a) ⊆ t3(b) ≡ ∀t1(t1 ∈ t3(a) → t1 ∈ t3(b))

iv. ”Proper Subset”: :de f t3(a) ⊊ t3(b) ≡ (t3(a) ⊆ t3(b))∧ (t3(a) , t3(b))

v. ”Cartesian product”: “×” :de f t3(a)× t3(b) ≡
{
(t1(a), t1(B))

∣∣t1(a) ∈ t3(a)∧ t1(b) ∈ t3(b)}
vi. ”Set minus”: “−”:de f t3(a)− t3(b) ≡

{
t1
∣∣(t1 ∈ t3(a))∧ (t1 < t3(b))

}
vii. ”Complement set”: “tC3 ” :de f t3

C ≡ {t1|t1 < t3}

viii. ”Cardinality (Size)”: “|t3(a)|” :de f |t3(a)| ≡ |t3(b)|∧[(∃F : t3(a) 7−→ t3(b))∧(∃F : t3(b) 7−→
t3(a))]

ix. ”Function”: ”F” :de f F : t3(a) 7−→ t3(b) ≡ {(t1(a), t1(b))|(t1(a) ∈ t3(a) ∧ t1(b) ∈ t3(b))∧
t1(b) = F(t1(a))}

x. ”Composite Function”: ”◦”:de f (F(a) ◦F(b))(x)≡ F(a)(F(b)(x))

xi. ”Power set” “℘(t3(a))” :de f ℘(t3(a))≡ {t3(x)|t3(x) ⊆ t3(a)}

xii. ”Element of”: ”∈” :de f t1 ∈ t3 ≡ t3 = {t1|t2(t1) = n}∧ t2(t1) = n

xiii. ” Large Cartesian product”: “∏
n
i=1 t3(a)i” :de f

∏
n
i=1 t3(a)i ≡

{
(t3(a)1, t3(a)2 , . . . , t3(a)n)|ai ∈ Ai

}
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2.6.3 Type 4.3: Operators on type 1.2 (numbers)

The following definitions are of the form: “/operator/ :de f /use of the operator/≡ /meaning of
the operator/”

• i. - ”Addition” ”+” :de f t1.2(a)+ t1.2(b) ≡ t3(a)∪ t3(b)∧ [(t1.2(a) = t3(a))∧(t1.2(a) = t3(a))]

• ii. - ”Subtraction” ”− ” :de f t1.2(a)− t1.2(b) ≡ t3(a)− t3(b)∧ [(t1.2(a) = t3(a))∧ (t1.2(a) =
t3(a))]

• iii. - ”Multiplication”: ”∗ ” :de f t1.2(a)t1.2(b) ≡ t3(a)× t3(b)∧ [(t1.2(a) = t3(a))∧ (t1.2(a) =
t3(a))]

• iv. - ”Division”: ”/” :de f t1.2(a)
t1.2(b)

≡ {(t1.2(x), t1.2(y))|(t1.2(x) = t1.2(a)× t1.2(y))∧ (t1.2(y) ,

0)∧ (t1.2(x) < t1.2(b))}

• v. ”Larger or Equal to”: ” ≥ ” :de f t1.2(a) ≥ t1.2(b) ≡ (t1.2(a) > t1.2(b))∨ (t1.2(a) = t1.2(b))

• vi. ”Smaller or Equal to”: ” ≤ ” :de f t1.2(a) ≤ t1.2(b) ≡ (t1.2(a) < t1.2(b))∨ (t1.2(a) =
t1.2(b))

• vii. ”Sum” : ”∑
b
i=a t2(tni)” :de f (∑b

i=a t2(tni) = n) ≡ (n = t2(tna) + t2(tna+1) + · · ·+
t2(tnb))

2.7 Type 5: Meta-Language Operators
When referring to the system itself and its mechanisms, we will make use of Meta-Language
operators. These operators are part of the language used when analysing the system. They
can, however, also be used to form a formula, t0, enabling the system to reference and analyse
its own structure. Their definitions are of the form: definitions are of the form: “/operator/
:de f /use of the operator/≡ /meaning of the operator/”.

i. ”Proves”: ” ⊢ ” :de f X ⊢ Y ≡ There is a proof of Y from X.

ii. ”Models”: ” ⊨ ” :de f X ⊨ Y ≡ Y is true in every model where X is true.

iii. ”Does not Prove”: ” ⊬ ” :de f X ⊬ Y ≡ There is not a proof of Y from X.

iv. ”Does not Model”: ” ⊭ ” :de f X ⊨ Y ≡ Y is not true in every model where X is true.

v. ”Belongs a Type n”: ” : ” :de f x : Tn ≡ x is of Type n.

2.8 Rules of Inference
From the definitions of Type 4, rules of inference are implied for the derivations of Type 0
(formulas).

Indeed, all definitions of Types are of the form X ≡ Y , where X is the operator and Y is
its definition.

Moreover, ”≡” itself is an operator of the system, defined as a Type 4.1, in the definition
viii. as: (tn(a) → tn(b))∧ (tn(b) → tn(a)), where ”n” could be 1, 3 or 0.

Now the following principle can be applied, where if the operator X is defined as X ≡ Y :
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1. X ≡ Y ⊢ Y → X

2. X ≡ Y,Y ⊢ X

3. X ≡ Y ⊢ X → Y

4. X ≡ Y,X ⊢ Y

Moreover, as highlighted in the definition of Type 0, we will use the notation ”[X]” to
refer to the definition ”X ≡ Y ” of an operator or type X.

If a formula Z derived from the system, alongside a definition ”X ≡ Y ” imply a formula
G then:

5. Z ∧ (X ≡ Y ) ⊢ G

This will be simplified under the notation ”[Z][X ] ⊢ G”. This can be done for any number
of definitions present in the system and/or formulas derived from it.

The same applies to multiple formulas derived from the system implying a formula G, as
well as multiple definitions and both, where X refers to definitions and Z formulas:

6. [Z1]...[Zn] ⊢ G

7. [X1]...[Xn] ⊢ G

8. [Z1]...[Zn][X1]...[Xn] ⊢ G

Any definition or formula that has been derived, can be repeated within the system, de-
riving itself:

9. X ⊢ X

Definitions using identity ”=” instead of logical equivalence ”≡”, follow similar rules.
The following can be demonstrated as per the identity definition through the use of the ”≡”
operator, for X = Y we get:

10. t2(X),X = Y ⊢ t2(Y )

11. t2(Y ),X = Y ⊢ t2(X)

Finally, when a formula X cannot be derived from the system, then it is false, which leads
to its negation being derivable from the system:

12. [(T1−4.3,P ⊬X)∧(T1−4.3,P⊢X0...Xn ⊬X)]→ [(T1−4.3,P⊢¬X)∧(T1−4.3,P⊢X0...Xn ⊢
¬X)]

Establishing these rules does not violate our principle of building a system simply from
a single axiom and definitions as these rules of inference are a direct consequence of our
definitions.
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2.9 Soundness of the system
As truth is system defined as: (X is True)≡ (T1−4.3,P⊢X)∨(T1−4.3,P⊢X0...Xn ⊢X) ; and
falsity is defined within the system as (X is False)≡ (T1−4.3,P ⊬ X)∨ (T1−4.3,P ⊢ X0...Xn ⊬
X).

It follows that ∀X [(X is True) ≡ (T1−4.3,P ⊢ X)], as ”T1−4.3,P ⊢ X0...Xn ⊢ X” can be re-
duced to ”T1−4.3,P ⊢ X” if ”X0...Xn” are represented as steps in the proof of X from the
system.

Which then implies that T1−4.3,P ⊢ X → T1−4.3,P ⊨ X . As if all true statements are prov-
able, all provable statements are true in all models.

More formally:

1. (X is True)≡ (T1−4.3,P ⊢ X)∨ (T1−4.3,P ⊢ X0...Xn ⊢ X) By [Definition, in Type 0]

2. (X is False)≡ (T1−4.3,P ⊬ X)∨ (T1−4.3,P ⊢ X0...Xn ⊬ X) By [Definition, in Type 0]

3. (T1−4.3,P ⊢ X0...Xn ⊢ X)≡ (T1−4.3,P ⊢ X) By [⊢]

4. ∀X [(X is True)≡ (T1−4.3,P ⊢ X)] By [1-3]

5. T1−4.3,P ⊢ X → X is True By [4]

6. T1−4.3,P ⊢ X → T1−4.3,P ⊨ X By [5][⊢] [⊨]

Once again, the notation ”By [x]” in the proofs, maintains that ”x” or the definition of ”x”
implies the formula.

Therefore, the system is sound, as the soundness of a given system S is defined as S ⊢ X →
S ⊨ X .
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3 Outline of The Absolute (from Type system)

3.1 Derivation of ”A” from Types and ”P”
The following proof gives a clear outline of The Absolute “A” (Metaphysical Cosmos), start-
ing from the phenomenological fact that there exists (at least) something, and deriving “A”
from this premise and the definitions of symbols and their Types. I will here provide two
central theorems, namely that the Absolute is the set of all entities that exist or does not exist,
and that all things are members of the Absolute. A more formal proof sketch of these theo-
rems is provided in section 6, as the First and Second Theorems.

From empirical analysis (perceiving this text) we can derive that there exists something11:

[P] ⊢: ∃x (1)

such that:
x = tn(x) (2)

Where tn(x) refers to any entity, of any type.

Note: throughout the paper, x always refers to any entity, of any type, unless specified.

From the definition of ”∃”, we can derive that this entity has a Z+ value larger than zero:

[↓][∃] ⊢: Z+(x)> 0 (3)

From T3 we can derive that this entity exists in a set Ψ, such that Ψ is the set of all things
that satisfy at least one property to a degree larger than 0, which is the inherent form of sets.
Thus, it is the set of all the things that exist:

[↓][T3] ⊢: x ∈ Ψ (4)

such that:
[↓] ⊢: Ψ = {x|∃x}= {x|Z+(x)> 0} (5)

It is essential to emphasise that Ψ extends beyond a mere collection of entities; it en-
compasses not only the entirety of things but also manifests as the comprehensive realm of
facts, as Ψ also contains all types 0. This conceptualisation does not preclude interpretations
aligning with philosophical perspectives such as the one articulated by Ludwig Wittgenstein
in his statement: ”The world is the totality of facts, not of things” (Wittgenstein, 1921, [18]).
As a matter of fact, Ψ is the totality of things and of facts.

From the definition of the complement-set operator tC3 , we can derive ΨC is the set of all
things that do not satisfy any properties, the Void: ”∅”.Thus, it is the set of all things that do
not exist.

[↓][tC3 ] ⊢: Ψ
C = ∅ (6)

such that:
[↓] ⊢: ∅= {x|∄x}= {x|Z+(x) = 0} (7)

As the Metaphysical Void is here defined as the complement set of the Totality of things
”Ψ” and concerns objects that do not possess any properties and thus, using our definition

11Even if the perception of this paper were to be deemed illusory, it would still possess the property of being
an illusion, thereby affirming its existence.
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of existence do not exist, we can tie our representation to current research on the onto-
epistemological status of the empty set (Birgül, 2022,[35]). Indeed, Birgül ties the empty
set to the Kantian concept of nihil privativum, describing the empty object of a concept and
relating to our definition of non-existence as the absence of properties.

From the definition of ”∩” we can derive that the intersection of Ψ and ∅ is X, the set of
all things that both exist and not exist.

[5][6][∩] ⊢: Ψ∩∅= X (8)

such that:
[↓] ⊢: X= {x|∃x∧∄x}= {x|Z+(x)> 0∧Z+(x) = 0} (9)

As the condition for this set is inherently paradoxical, any member of X would be non-
classical, this is however allowed by our system and will be elucidated furthermore within
Section 3.2, describing the existential metric space.

From the definition of ”∪”, we can derive that the union of Ψ and ∅ is the set of all things
that exist and/or do not exist, have a property and/or no property. This set is the Metaphysical
Cosmos itself: The Absolute (”A”).

[5][6][∪] ⊢: Ψ∪∅= A (10)

such that
[↓] ⊢: A= {x|∃x∨∄x}= {x|Z+(x)> 0∨Z+(x) = 0} (11)

The Absolute can be considered as the Universal set of this system, as it contains all
possible types12:

x x ∈ A
∃(x) True
∄(x) True

∃(x)∧∄(x) True
∃(x)∨∄(x) True

Table 1: Truth Values for x ∈ A
(12)

12The notion of power-sets of The Absolute, that seems to counter the idea of it being the Universal Set will
be discussed in part 4.3 and used to represent the expansion of the Metaphysical Cosmos.
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The concept of The Absolute in our type system is similar to the concept of the universal
set ”V” in Bertrand Russell and Alfred North Whitehead’s Principia Mathematica (Whitehead
& Russell, 1910, [16]). However, there are three major differences between the two concepts:

1. The universal set ”V” in Principia Mathematica is purely mathematical whereas The
Absolute ”A” has metaphysical implications.

2. The universal set ”V” in Principia Mathematica is the opposite of its respective empty
set ”Λ” whereas The Absolute ”A” is the merging of the Metaphysical Void ”∅” and
the totality of things ”Ψ”. In that regard, ”V” bears similarity with ”Ψ”.

3. The universal set ”V” in Principia Mathematica is restricted to inputs of a specific type
whereas The Absolute ”A” includes elements of all types.

Additionally, there is another similarity between our system and Principia Mathematica.
Indeed, our derivations of the Totality of Things ”Ψ” and of the Void ”∅” from our axiom
”P” bears strong similarity to the following commentary made on ”V” and ”Λ” :

If the monistic philosophers were right in maintaining that only one individual exists, there
would be only two classes, Λ and V, V being (in that case) the class whose only member is

the one individual. Our primitive propositions do not require the existence of more than one
individual. - (Whitehead & Russell, 1910, [16])

In our description, the ”one individual” existing, namely this paper itself, is brought upon
by our axiomP. Just as Λ and V are two fundamental sets that are formed with the existence
of (at least) one individual, we form Ψ and∅ fromP. However, our derivation leads us to the
necessary existence of a third set: X, due to the paraconsistent nature of the system, and this
allows us to go beyond the everything/nothing duality of Λ and V in Principia Mathematica,
Ψ and ∅ in our system.

Through these primordial derivations, we have now set clear boundaries to the domain of
the Metaphysical Cosmos. Indeed, it is logically impossible for any entity to transcend, sur-
pass or go beyond The Absolute. I am now going to provide a proof for the second theorem,
namely that all entities are members of the Absolute.

From Type 2, we can derive that all entities x have a Z+(x) associated with a real number:

[T2] ⊢: ∀x(Z+(x) = n∧n ∈R) (13)

From the definition of the real numbers, we can derive that all real numbers are equal or
not equal to 0:

[↓][T2][T1.2] ⊢: ∀n(n ∈R→ n = 0∨n , 0) (14)

From the previous formula, Type 2 and the definitions of real numbers, we can derive that
all entities have a value of Z+(x) equal or not equal to 0:

[↓][T2][T1.2] ⊢: ∀x(Z+(x) = 0∨Z+(x) , 0) (15)

From the previous formula and the definition of existence and non-existence, we can
derive that:

[↓][∃][∄] ⊢: ∀x(∃x∨∄x) (16)

24



Therefore, from the previous formula and the definition of The Absolute, we can derive
that:

[↓][11] ⊢: ∀x(x ∈ A) (17)

3.2 Existential Metric-Space
I will here elaborate a metric space for existence and non-existence which are meta-predicates,
according to predicate definitions given in the outline of Type 2 as well as in section 1.2.1.

From the outline of Type 2 and the definitions of existence and non-existence, we can de-
fine existence as M∃

13 and non-existence as M∄ :

[T2][∃][∄] ⊢: M∃(x)≡ (Z+(x) , 0)∧M∄(x)≡ (Z+(x) = 0) (18)

From the outline of Type 2, and the previous formula, we can generate M∃Space and M∄Space
,

as the sets of all possible values of M∃ and M∄:

[↓][T2] ⊢: M∃Space = {x ∈ [0,1]|x = M∃(y)∧y ∈ A}∧M∄Space
= {x ∈ [0,1]|x = M∄(y)∧y ∈ A}

(19)
From the outline of Type and the previous formula, we can generate the metric space for

existence and non-existence, M∗
∃Space

, as the Cartesian product of M∃Space and M∄Space
, paired

with a distance function:

[↓][T2] ⊢: M∗
∃Space

= (M∃Space ×M∄Space
,d) (20)

Here the distance function d can vary, but can be interpreted either through the Manhattan
distance (Minkowski,1896, [12]) or the Euclidean (Euclid, 300 B.C., [53]).

Now how does this existential metric space help us understand the foundations of the Meta-
physical Cosmos?

For each of the meta-predicates associated with the fundamental sets of the absolute, there
is a range of possible coordinates for an object that satisfy these predicates in the Existential
Metric-Space.

From Type 2, the definition of The Absolute, and the definition of M∗
∃Space

, we can derive
that members of The Absolute can have every coordinate in M∗

∃Space
, except (0,0):

[↓][T2][11] ⊢: x ∈ A≡ ¬(M∃(x) = 0∧M∃(x) = 0)∧ ≡ (M∃(x),M∄(x)) , (0,0) (21)

From Type 2, the definition of The Totality of Things, and the definition of M∗
∃Space

, we
can derive that members of The Totality of Things satisfy the membership criterion if they
are in the range of possible existential coordinates of (1,n ∈ [0,1]):

[↓][T2][5] ⊢: x ∈ Ψ ≡ (M∃(x) = 1)≡ (M∃(x),M∄(x)) = (1,n ∈ [0,1]) (22)

13As there cannot be negative values of Z+(x),M∃ can be defined as both Z+(x) , 0 and Z+(x)> 0.
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From Type 2, the definition of The Void, and the definition of M∗
∃Space

, we can derive that
members of The Void satisfy the membership criterion if they are in the range of possible
existential coordinates of (n ∈ [0,1],1):

[↓][T2][7] ⊢: x ∈ ∅≡ (M∄(x) = 1)≡ (M∃(x),M∄(x)) = (n ∈ [0,1],1) (23)

Finally, from Type 2, the definition of The Portal, and the definition of M∗
∃Space

, we can
derive that members of The Portal satisfy the membership criterion if they are at the point
(1,1) in the Existential Metric Space:

[↓][T2][9] ⊢: x ∈ X≡ (M∃(x) = 1∧M∄(x) = 1)≡ (M∃(x),M∄(x)) = (1,1) (24)

Thus, we can visually represent the Existential Metric Space in the following way:

M∄(x)

M∃(x)

0 1

1

0.5

0.5

x ∈ X

x < A

x ∈ ∅

x ∈ Ψ

Figure 4: Diagram of The Existential Metric Space

Where the red line represents the range of possible values that satisfy the membership
criteria of The Void and the dark blue line represents the range of possible values that satisfy
the membership criteria of The Totality of Things. Every point in this diagram except (0,0),
represented in light blue, is part of the Absolute. The reason that (0,0) is not in the Absolute
is that this point would imply that an x is not associated with a Z or Z+, which is impossible
as all types are associated with one of each, i.e. Z and Z+14.

3.3 Inner Structure of The Metaphysical Cosmos
3.3.1 Analysis of The Totality of Things ”Ψ”

I will here demonstrate that the ”Totality of Things” denoted by ”Ψ” is of infinite size. A
moral formal proof can be found in section 6, as the third theorem.

From the definition of the set R and the definition of Ψ, we can derive that all elements
belonging to the set R, also belong to Ψ:

[5][R] ⊢: ∀x(x ∈R→ x ∈ Ψ) (25)

From the previous formula, and the definition of subset-hood, we can derive that the
Totality of Things contains by essence the set of all real numbers:

14This is showed by formula (13)
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[T1.2][5] ⊢:R⊆ Ψ (26)

From the previous formula, we can derive that the cardinality of the set of all real numbers
”R” is smaller or equal to the cardinality of Ψ:

[↓] ⊢: |R| ≤ |Ψ| (27)

From T1.2 , we can derive that the cardinality of R equal to c.

[T1.2] ⊢: |R|= c (28)

From (26) and the previous formula, we can derive that the cardinality of the Totality of
Things is larger or equal to the infinite size of the real numbers.

[26][↓] ⊢: |Ψ| ≥ c (29)

It is worth noting that the totality of things is far larger than just the physical universe.
Indeed, it would, for instance, contain all non-empty logically possible worlds. Under modal
realism, the belief that all logically possible worlds are metaphysically real, expressed by
David Lewis (Lewis, 1986, [27]), these possible worlds would be located in the Totality of
Things within the Metaphysical Cosmos. Contemplating this concept aids in grasping the
immense expanse of The Absolute, given that the totality of things transcends the cumulative
vastness of all possible worlds. Moreover, The Absolute itself surpasses even this staggering
magnitude, accentuating the vastness of Metaphysical reality. This is also one of the occur-
rences where the introduction of a cosmological paradigm, namely The Absolute, can guide
metaphysical research as it gives a clear mapping of cosmological the location of possible
worlds, as it is a currently popular area of study in formal Metaphysics (Fouché,2022,[46])
(Longenecker,2019,[41]).

One could potentially represent The Absolute and its constituents the following way, where
”w” represents any given world:

A= {w|(^w∨¬^w)∧ (Z+(w) = 0∨Z+(w) , 0)} (30)

∅= {w|(^w∨¬^w)∧Z+(w) = 0} (31)

Ψ = {w|(^w∨¬^w)∧Z+(w) , 0} (32)

X= {w|(^w∨¬^w)∧ (Z+(w) = 0∧Z+(w) , 0)} (33)

It is worth noting that the Totality of Things also contains impossible worlds insofar as
they are existent, as there can be some non-classical worlds in our system of properties whose
Z+ value is non-zero.

Moreover, the study of Physics and Physical Cosmology, as mentioned in the introduction, is
a subset of Metaphysical Cosmology as the Physical Universe is a subset of ”Ψ”.

Indeed, the Physical Universe can be represented as the following set:

Ω = {x|L (x) = 1} (34)
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Where L (x) is the property of being perceivable, through the senses or any enhancement
of them through experimental tools.

The study of Physical Cosmology, no matter how vast it could be (Multiverse Cosmology
for example), will always be subject to Metaphysical Cosmology and represent a portion of
its study. Max Tegmark, a physical cosmologist, gave a classification of the potential exten-
sions to the Physical Universe that can be quite useful in order to picture the vastness of Ψ

(Tegmark,2007,[34]):

1. Level 1: Regions beyond our (physical) cosmic horizon: Possible direct extensions
of our physical universe beyond the currently visible one due to cosmic inflation.
(Tegmark,2007,[34])

2. Level 2: Other post-inflation bubbles: Possible multiverses, formed during the hypo-
thetical process of eternal cosmic inflation. (Guth,2007,[33])

3. Level 3: Many-Worlds interpretation of Quantum Mechanics: An interpretation of
quantum mechanics that claims that the wave function never collapses, instead other
possible outcomes are realised in other universes. It thus posits that there is an infinite
number of alternative universes. (Everett,1957,[23])

4. Level 4: Other mathematical structures: Possible mathematical structures that differ
from our Physical Universe. (Tegmark,2007, [34])

All extensions of all levels are fundamentally part of Ψ. Extensions to and including level
3 within this scheme are categorised under the domain of physical cosmology. However, the
level 4 extensions, which describe mathematical realms of a fundamentally different nature
than our physical reality, could fall into the realm of Metaphysics, if there is no direct physi-
cal path from our universe to them.

Nonetheless, one must not misunderstand the derivation above. Indeed, saying Ψ is larger
or equal to the largest possible infinity simply means that because all numbers have proper-
ties, they exist and are therefore part of Ψ. The derivation does not claim in any way the
existence of an infinity of parallel worlds or realities, nor does it deny it. Moreover, our con-
ception of Ψ does not deny nor confirm solipsism, nor does it rely on a materialist/naturalistic
conception of the world. It is a paradigm within which to investigate Metaphysics, that does
not, in and of itself, contain assumptions about the nature of the physical world. Indeed, it is
thus a fundamental pillar of the Metaphysical Cosmos, but its full complexity and members
remain unknown, what is here derived from the system is that it contains fundamental types
and the singular existing entity referred to in the axiom. Extended Research in Metaphysical
Cosmology could potentially reveal more information about its full composition.

3.3.2 The Void ∅ / Portal X Equivalence

I will here demonstrate that ∅⊆ X, the formal proof sketch for this theorem can be found in
section 6, as the fourth theorem.

From the definition of ∅, we can derive that all members of The Void have a Z+ value of
0:

[7] ⊢: ∀x[(x ∈ ∅)→ (Z+(x) = 0)] (35)
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From the previous formula and the definition of Z+(x), we can derive that all members of
The Void have 0 for all entries in their Z(x) Matrix:

[↓][T2] ⊢: ∀x[(x ∈ ∅)→ Z(x) =


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

] (36)

From the definition of identity, we can derive that the Z of an element of The Void is equal
to itself, which implies that an element of The Void would satisfy P1.1, i.e. identity:

[=][T2] ⊢: ∀x[(x ∈ ∅)→ (Z(x) = Z(x))→ P1.1(x) = 1] (37)

From the previous formula, we can derive that the Z+ of a member of the Void is equal to
or larger than one:

[↓][T2] ⊢: ∀x[(x ∈ ∅)→ Z+(x)≥ 1] (38)

This thus yields that any member of the void, would be non-classical and hold two oppo-
site values for Z+ simultaneously :

[35][↓] ⊢: ∀x[(x ∈ ∅)→ Z+(x) = 0∧Z+(x)> 0] (39)

From the previous formula and the definition of The Portal X we can now derive that all
members of the Void, satisfy the membership condition for the Portal:

[7][9][↓] ⊢: ∀x[(x ∈ ∅)→ (x ∈ X)] (40)

Thus, from the previous formula we can derive:

[⊆][↓] ⊢: ∅⊆ X (41)

From the definition of intersection, we can derive that members of The Portal also exist
in The Void:

[⊆][X] ⊢: ∀x[(x ∈ X)→ (x ∈ ∅)] (42)

From the previous formula, we can derive that The Portal is also a subset of The Void:

[⊆][↓] ⊢: X⊆ ∅ (43)

Therefore, The Void and The Portal are equal:

[⊆][41][43] ⊢: ∅= X (44)

This conclusion reveals a fundamental truth of nothingness, which we will investigate in
the next section, through the proof of ”why there is something rather than nothing”.

3.3.3 The Absolute A as The Totality of Things Ψ

In this section, will show that the Absolute A is the Totality of Things Ψ. The formal proof
sketch for this theorem can be found in section 6, as the fourth theorem.

From the definition of The Absolute, we can derive that it is equal to the union of The
Void and the Totality of Things:

[10] ⊢: A= ∅∪Ψ (45)
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From the previous formula and the fourth theorem, we can derive that The Absolute is
equal to the union of The Portal and the Totality of Things:

[↓][44] ⊢: A= X∪Ψ (46)

From the definitions of subset-hood, union, The Portal and The Totality of Things, we
can derive that the Union of The Portal and the Totality of Things is equal to the Totality of
Things:

[∪][⊆][5][9] ⊢: X∪Ψ = Ψ (47)

Thus, from the two previous formulas, we can derive that The Absolute is equal to the
Totality of things:

[↓][46] ⊢: A= Ψ (48)

Now how to make sense of this refined structure of the Metaphysical Cosmos?

Within this newly found conception of the Metaphysical Cosmos, we can still find a sim-
ilar structure. Indeed, the Absolute, i.e. the entirety of the Metaphysical Cosmos is now
confined to Ψ. However, within Ψ, remains the fundamental contrast between the realm of
the non-existent, i.e. the Void/Portal, and the realm of the truly existent, its complement.

It is worth noting again that these sets yield a structure that describes Metaphysical Nature, as
they are a reflection of the highest, most unrestricted form of structure, and that this system
yields not just a logical abstract truth, but a genuine description of the world at the highest
level.

To make better sense of these ”places” in the Metaphysical cosmos, we will need to de-
fine more formally, the complement set of The Portal/Void, the realm of the purely existent
entities, which we will denote as AΨ:

[X][tCn ] ⊢: AΨ = XC = {x|x ∈ A∧ x < X} (49)

Thus, the Metaphysical Cosmos can be visualised in the following way:

A

AΨX/∅

Figure 5: Diagram of the Metaphysical Cosmos
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4 Proof That There Must Be Something Rather Than Noth-
ing

4.1 Non-existence Must Imply Existence
I will here thus demonstrate a proof for theorem15 ”∄x → ∃x”, that non-existence implies
existence, and thus ”why there is something rather than nothing”. This will be displayed in
the formal proof sketch as the sixth theorem in section 6. Indeed, this proof differentiates
itself from the rest of the derivations made from the system in this paper as it will rely solely
on the Type definitions, and not our foundational axiom P16.

From the definition of non-existence, we can derive:

[∄] ⊢: ∄x ≡ Z+(x) = 0 (50)

From the Type 2, and the definition of Z+(x) = 0, we can derive:

[↓][T2] ⊢: Z+(x) = 0 → Z(x) =


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 (51)

From identity, The matrix of properties Z of this non-entity x, is equal to itself:

[↓][=][T2] ⊢:


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

=


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 (52)

Thus, x is equal to itself:

[↓][=] ⊢: x = x (53)

Therefore P1.1(x) = 1:
[↓][T2] ⊢: P1.1(x) = 1 (54)

Which yields that Z+(x) is not equal to zero:

[↓][T2] ⊢: Z+(x) , 0 (55)

Therefore, a Z+ value of zero implies a Z+ of non-zero:

[50−55] ⊢: Z+(x) = 0 → Z+(x) , 0 (56)

Therefore, non-existence implies existence, hence why there is something rather than
nothing:

[↓][∄][∃] ⊢: ∄x →∃x (57)

15The proof, I will here demonstrate will be a more abstract form of the Fourth theorem, displayed in section
3.2.2.

16Indeed, as we are here demonstrating the logical impossibility of nothing without something, we must get
rid of our assumption of the existence of something, i.e. P
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Thus, when starting with an empty Metaphysical Cosmos, we end with the existence of
at least one entity, which is that very same empty and non-existent entity. There is therefore
a necessity for ”something” within the Metaphysical cosmos.

This theorem is here derived from this specific system, but it could work in classical logic, if
the system defined non-existence and existence as we did here, based on properties. Indeed,
as the proof for this theorem yields a contradiction, the theorem in classical logic would thus
be ”∀x(∃x)”. Which would still prove the necessity of something rather than nothing.

This proof here considers ”nothing” in its purest form: not as empty space, not as an entity
devoid of certain characteristics, but as pure nothingness, devoid of all properties. Moreover,
it must be not that this system extends beyond classical logic, and this proof therefore reflects
the true nature of nothingness in an unbounded matter and treats the essence of the problem,
i.e. the consequences yielded by a truly empty cosmos.

This perplexing question has been the topic of thousands of years of enquiry and debate
(Leibniz, 1714, [3]) (Heidegger, 1929,[20]). Recently, some formal approaches have been
given to answer this problem (Phillips, 2021, [45]) (Inwagen & Lowe, 1996, [29]) (Heylen,
2016, [36]), but though they are thorough, answers largely focus on dismal of the question,
and once again, they remain fragmented and lacking the background of an initial scientific
paradigm, which we aim to provide here.
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4.2 Experimentation: Computational Metaphysics

Listing 1: Experimental Computation for Sixth Theorem ”∄x →∃x”
1 (* Step 1: Define an entity *)

2

3 (* Declare Properties to ensure they are recognized properly *)

4 ClearAll[P11, P12, P13];

5

6 (* Define Properties as 0*)

7 properties[x_] := {P12[x] -> 0, P13[x] -> 0};

8

9 (* Define the sum of properties, Zˆ+(x) *)

10 ZPlus[x_] := P11[x] + P12[x] + P13[x];

11

12 (* Define Identity Property P11 *)

13 identityRule[x_] := P11[x] -> If[ZPlus[x] === ZPlus[x], 1, 0];

14

15 (* Check for logical consistency of Zˆ+(x) = 0 *)

16 CheckContradiction[x_] := Module[{rules, result},

17 rules = properties[x] ˜Join˜ {identityRule[x]};

18 result = Simplify[ZPlus[x] == 0 /. rules];

19 If[result === False, "Contradiction: ZPlus[x] != 0", "No

Contradiction"]

20 ];

21

22 (* Run the contradiction check for a specific entity x *)

23 CheckContradiction[x]

24

25

26 OUTPUT:

27 Contradiction: ZPlus[x] != 0

This here is a simulation of the proof for the Sixth Theorem run on the software Math-
ematica. The proof occurs in a reduced model with only three properties, it defines one
property as identity, P1.1, and the other two as 0. This is thus to evaluate the statement
Z+(x) = 0, in a reduced framework that still contains identity as a property. After, evaluating
the statement, the software found the contradiction underpinning the Sixth Theorem, namely
that when evaluating Z+(x) = 0 it yields Z+(x) , 0.

This proof displays once again the viability of this new paradigm for Metaphysical Cos-
mology as it not only is epistemological sound and does not rely on unfounded assumptions
(T1−4.3), finds ground in empirical proof (P), is structured through mathematics and formal
logic, has a possibility for experimentation (Computational Metaphysics), but it also provides
a logico-mathematical answer to, arguably, the biggest problem in the History of Metaphysics
(Heidegger, 1929,[20]) (Wittgenstein, 1921,[18]).
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5 Methods For Metaphysical Science
In this section, I will here display the methods that can be used in the upcoming Metaphysical
Science.

Metaphysical Science can be divided into two sections: Metaphysical Cosmology, as studied
in this paper, and Noumenology, in reference to the Kantian ”noumenon” (Kant, 1783,[5]),
as the study of worlds beyond perception.

Discipline Modelling Tools Experimental Tools Domain of Study
Metaphysical Cosmology Type system presented

in this paper, enhanced
versions of it, or other
logico-mathematical
systems founded on def-
initions and undeniable
axiom(s)

Experimental Compu-
tation, Simulations of
Theorems and of Models
of the entire Metaphysical
Cosmos

A, The Metaphysical Cos-
mos

Noumenology Sub-systems of systems
of Metaphysical Cosmol-
ogy and various other
mathematical and logical
systems

Experimental Compu-
tation, Experimental
Psychology and Neuro-
science

ΩC, the set of all things
that are not in the Physi-
cal Universe.

Table 2: Table of Methods for Metaphysical Science

The Type system presented in this paper thus serves as an initial paradigm in Metaphys-
ical Cosmology, upon which more research can be conducted, such as additional computa-
tional experimentation and simulations of the system and its derivations, or even enhance-
ments of the system and the type definitions. The falsifiability of Metaphysical Cosmol-
ogy thus comes from experimental computation, which can confirm or deny results (Popper,
1959,[24]). Computational tools are already starting to be used in formal Metaphysics (Fitel-
son & Zalta,2007,[32]) (Kirchner & Benzmüller & Zalta,2019,[40]). Moreover, it still stands
on empirical grounds through the P axiom. This thus makes Metaphysical Cosmology a
hybrid science in between formal sciences, i.e. logic, computation and pure mathematics,
and natural sciences, such as physics, chemistry and biology. Indeed, the object of study
of Metaphysical Cosmology remains the world, or ”Nature”, as broadly understood, and it
possesses some experimental tools and empirical foundations. However, it relies mainly on
the formalism and systematic rendition and modelling of its paradigm.

The case of the advent of Noumenology is harder to illustrate as it is not the object of this
paper. However, its fundamental aim is to discern realms beyond perception and analyse
their structure. Noumenology, however, does have an advantage over Metaphysical Cosmol-
ogy, as it might benefit from a wider range of experimental tools and empirical evidence.
Indeed, experimentation in neuroscience and psychology could serve as empirical founda-
tions for Noumenological modelling. In fact, a realm beyond the physical world, though
arguably dependent on it, can be analysed empirically through experimental psychology and
neuroscience: dreams. The inner structure of dreams is not made of matter, nor is it directly
perceived by the senses, though it is arguably dependent on it. Thus, some studies already
conducted in the realm of experimental psychology and neuroscience, could serve as empir-
ical evidence for Noumenonlogical modelling (Konkoly, 2021, [44]) (Nir & Tononi, 2010,
[35]).
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These are thus the frameworks and methodologies upon which Metaphysical Science would
rely, and they could also serve as foundations for other sciences, as Ω is a subset of the Meta-
physical Cosmos A. Indeed, Ω, the Physical Universe, thus represents the domain of study of
fundamental Physics, and other natural sciences study subsets of Ω.

6 Proof Sketch
In this section, I will provide proof sketches of the derivations made from our system in this
paper. All proofs are made according to the derivation rules expressed in the foundations of
the system, and constructed through the definitions. Whenever ”x” occurs in these proofs,
”x” will refer to a variable of any type, not just an individual, it is therefore a shorthand for
”tn(x)”.

6.1 First Theorem : T1−4.3,P ⊢ Ψ∪∅= A

| T1−4.3 Def
| P Axiom, by empirical justification
...

1. | ∃x Law 9, By [P]

2. | Z+(x)> 0 Law 4, By [∃]

3. | x ∈ Ψ∧Ψ = {x|∃x}= {x|Z+(x)> 0} Law 5, By [↓] [T3]

4. | Ψ
C = ∅= {x|∄x}= {x|Z+(x) = 0} Law 5, By [↓] [tC3 ]

5. | Ψ∩∅= X= {x|∃x∧∄x}= {x|Z+(x)> 0∧Z+(x) = 0} Law 8, By [↓] [3] [∩]

6. | Ψ∪∅= A= {x|∃x∨∄x}= {x|Z+(x)> 0∨Z+(x) = 0} Law 8, By [∪] [3] [4]

6.2 Second Theorem: T1−4.3,P ⊢ ∀x(x ∈ A)

| T1−4.3 Def
| P Axiom, by empirical justification
...

1. | ∀x(Z+(x) = n∧n ∈R) Law 7, By [T2] [x : Tn]
2. | ∀n(n ∈R→ n = 0∨n , 0) Law 7, By [R] [∨]

3. | ∀x(Z+(x)> 0∨Z+(x) = 0) Law 5, By [↓] [T2]
4. | ∀x(∃x∨¬∄x) Law 5, By [↓] [∃]
5. | ∀x((∃x∨¬∄x))≡ x ∈ A) Law 6, By [↓] [6 in First Theorem]
6. | ∀x(x ∈ A) Law 6, By [4] [5]
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6.3 Third Theorem: T1−4.3,P ⊢ |Ψ| ≥ c

| T1−4.3 Def
| P Axiom, by empirical justification
...

1. | ∀x(x ∈R→ x ∈ Ψ) Law 5, By [R] and [3 in First Theorem]
2. | R⊆ Ψ Law 5, By [⊆] and [↓]
3. | |R| ≤ |Ψ| Law 5, By [|t3|] and [↓]
4. | |R|= c Law 9, By [R]
5. | |Ψ| ≥ c Law 8, By [3-4] [≥]

6.4 Fourth Theorem: T1−4.3,P ⊢ ∅= X

| T1−4.3 Def
| P Axiom, by empirical justification
...

1. | ∀x[(x ∈ ∅)→ (Z+(x) = 0)] Law 5, By [∈] and [4 in First Theorem]

2. | ∀x[(x ∈ ∅)→ Z(x) =


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

] Law 5, By [T2] and [↓]

3. |


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

=


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 Law 2, By [=]

4. | ∀x[(x ∈ ∅)→ (Z(x) = Z(x))] Law 5, By [↓] and [T2]
5. | ∀x[(x ∈ ∅)→ P1.1(x) = 1] Law 5, By [↓] and [T2]

6. | ∀x[(x ∈ ∅)→ Z+(x)≥ 1] Law 5, By [↓] and [T2]

7. | ∀x[(x ∈ ∅)→ Z+(x) = 0∧Z+(x)> 0] Law 6, By [1] and [↓]
8. | ∀x[(x ∈ ∅)→ (x ∈ X)] Law 6, By [↓] [5 in First Theorem]
9. | ∅⊆ X Law 5, By [⊆] and [↓]
10. | ∀x[(x ∈ X)→ (x ∈ ∅)] Law 5, By [⊆] [5 in First Theorem]
11. | X⊆ ∅ Law 5, By [⊆] and [↓]
12. | ∅= X Law 8, By [9] [11][=]
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6.5 Fifth Theorem:T1−4.3,P ⊢ A= Ψ

| T1−4.3 Def
| P Axiom, by empirical justification
...

1. | A= ∅∪Ψ Law 9, By [6 in First Theorem]
2. | A= X∪Ψ Law 6, By [12 in Fourth Theorem] and [↓]
3. | X∪Ψ = Ψ Law 8, By [⊆] [∪] [3 and 5 in First Theorem]
4. | A= Ψ Law 6, By [2 and 3]

6.6 Sixth Theorem: T1−4.3 ⊢ ∄x →∃x

| T1−4.3 Def
...

1. | ∄x ≡ Z+(x) = 0 Law 9, [∄]

2. | Z+(x) = 0 → Z(x) =


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 Law 5, By [↓] and [T2]

2. |


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

=


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 Law 2, By [=]

3. | x = x Law 5, By [↓] and [=]
4. | P1.1(x) = 1 Law 5, By [↓] and [T2]

5. | Z+(x) , 0 Law 5, By [↓] and [T2]

6. | Z+(x) = 0 → Z+(x) , 0 Law 6, By [2-4]
7. | ∄x →∃x Law 8, By [↓] [∃] [∄]
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7 Conclusion
In conclusion, we have here demonstrated, through meticulous logical systematisation the
inner skeleton of the Metaphysical Cosmos. From a type system built on semantic defini-
tions and holding for sole assumption the existence of an entity, we were able to analyse
the fundamental structure of the Metaphysical Cosmos. This research aims to play a pivotal
role in advancing Metaphysics as a science by laying the foundations for an initial scientific
paradigm in the field. I strongly encourage fellow researchers to build upon the foundation
laid here, propelling us further in our collective quest for understanding the intricacies of the
Metaphysical Cosmos. Just as physics studies instances within the physical universe, after
having established a new paradigm for research in this paper, Metaphysics can now have the
task of exploring instances within The Absolute.
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